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Abstract. An ordered set W = {wy, w5, ... ,wy} € V(G) and a vertex v in a connected graph
G, the representation of v with respect to W is the ordered k-tuple r(v|W) =
(d(v, wi ), d(v, wa), ..., d(v, Wk)), where d(x,y) represents the distance between the vertices
xand y in G. The set W is called a resolving set for G if every vertex of G has distinct
representations. A resolving set with the minimum number of vertices is called a basis for G and
its cardinality is called the metric dimension of G, denoted by dim(G). A resolving set W is
called a non-isolated resolving set if the induced subgraph (W) has no isolated vertices. The
minimum cardinality of a non-isolated resolving set of G is called the non-isolated resolving
number of G, denoted by nr(G). The corona product between a graph G and a graph H, denoted
by GOH, is a graph obtained from one copy of G and |V(G)| copies Hy, Hy, ... ,\H, of H such
that all vertices in H; are adjacent to the i-th vertex of G. We study the non-isolated resolving
sets of some corona graphs. We determine nr(G ©@H) where G is any connected graph and H is
a complete graph, a cycle, or a path.

1. Inroduction

All graphs in this paper are finite, simple, and connected. Let G = (V,E) be a graph. The distance
d(u, v) between two vertices u and v in a connected graph G is the length of a shortest u — v pathin G.
For W = {wy, w3, ..., w;} € V(G) and a vertex v in a connected graph G, the representation of v with
respect to G is the ordered k-tuple r(v|W) = (d(v,wl),d(v, wy), ...,d(v,wk)). If every distinct
vertices x,y € V(G) satisfy r(x|W) = r(y|W), then W is called a resolving set. A resolving set with
the minimum cardinality is called a hasis of G. Its cardinality is called the metric dimension of G, denoted
by dim(G).

The metric dimension problem was first studied by Harary and Melter [8] and independently by
Slater [15]. Slater considered the minimum resolving set of a graph as the location of the placement of
a minimum number of sonar/loran detecting devices in a network. Thus, the position of every vertex in
the network can be uniquely describe by its distances to the devices in the set.

The metric dimension problem is a difficult problem. Garey and Johnson [7] have shown that
determining the metric dimension of any graph is an NP-Problem. However, some results for certain
classes of graph has been obtained, which can be seen in [2,5,9,10,11,12,13,16].

Now in this paper, let us consider the other version of the resolving set problem, which is called a
non-isolated resolving number. In this version, if an induced subgraph of G by a resolving set W does
not contain an isolated vertex, then W is called a non-isolated resolving set. The non-isolated resolving
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set with minimum cardinality is called an nr-set. The non-isolated resolving number of G, denoted by
nr(G), is the cardinality of nr-set of G.

This non-isolated resolving problem was introduced by Chitra and Arumugam [6]. They have proven
that nr(G) < 2dim(G). They have characterized all connected graphs of order n = 3 with nr(G) =
1 — 1. They have also determined an exact value of the non-isolated resolving number of some graphs
included paths, complete graphs, friendship graphs, complete bipartite graphs, and the Cartesian product
of graphs.

In another paper, Yunika et al [17] determined the non-isolated resolving number of some
exponential graphs. Meanwhile, Avadayappan et al. [1] determined the non-isolated resolving number
of double broom graphs, the join of a complete graph and a path.

In this paper, we consider the corona product between two connected graphs G and H. The corona
graph GOH is a graph obtained from one copy of G and V(G) copies Hy, Hs, ..., Hyy(g) of H where
every vertex of H; is adjacent to the i-th vertex of ¢ We recall that a graph ¢ + H is a graph with
V(G+H)=V(G)UV(H) and E(G+H)=E(G)VE(H)U{xy|x eV(G),y € V(H)}. Note that
GQOH contains an induced subgraph which is isomorphic to K; + H. Some of our results provide a
connection between nr(G ®H) and dim(K; + H). In order to prove that, we use the following usefull
lemma, which has been proved in [14].

Lemma 1 [14] Let @ be a connected graph. Then there exists a basis S of G 4+ K, such that S € V().

2. Main Results
In this section, we study the non-isolated resolving set of G@H where G is a connected graphs and H is
cither a complete graph, a path, or a cycle as stated in Theorem 1,2,3, respectively.
Theorem 1 Let m and n be two positive integers. Let G be a connected graph G of ordern = 1. Then
nm, ifm=2,

nr(GOKy) = [n(mf 1), ifm=> 3.
Proaof.
Let V(G) ={ay,az, ..., an} and H = (GOK,,), where V(H) = V() U{vfrfll<l<nl1<i<j<
m} and E(H) = E(G}U{vfb}lll slsnl<i<j Sm}u{a;vj‘Il <lsnl<i<j<m}. We
distinguish two cases.
Casel.l:m=2
For l €(1.2,..,n}, we define the set W, = {v},vi}. Let W = UL, W,. Note that |W|=2n.
Since v}v} € E(H), it is clear that W does not contain an isolated vertex.
Now, we will show that W is a resolving set of H. Let x and y be two distinct vertices in V(H) — W.
Then x and y are in G. Let x = a, x=a, and y = a, for some p, q € {1,2,..., n} with p # g. Since
d(x,vF)=1=22<d(y, vf),r(xl[/l/p) + T(yle). It implies that r(x|W) = r(y|W).

By contradiction, suppose that nr (GOK,,) < 2n — 1.
Let W be an nr-set of GOK,with |W|<2n—-1. For l€{12,..,n}, let W=

{vf (= W|i € {12, m}] Since |W| < 2n —1, there exists [ € {1,2,...,n} such that |W)| < 1. If
[W;| = 0, then for w € W d(v],w) = d(v3, w), which implies r(v{|W) = r(v}|W), a contradiction.

If |W,] = 1, then W contains an isolated vertex, a contradiction.
Casel.2:m =3

For € {1,2,...,n}, we define the set W; = {v{,vé, ...,vﬁn_l}. Let W = UjL; W,. Note that |W]| =
n(m—1). Since va; EE(H)for1<i<j<m-—1,itis clear that W does not contain an isolated
vertex.

Now, we show that W is a resolving set of H.Let x and y be two distinct vertices in V(H) — W. We
distinguish three subcases.
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Subcases 1.2.1 :

Let x = Uri and y = ?):31 for p,q € {1,2, ...,n} with p # q. Since d(x,vlp) =1+#3< d(y,vf), we

have T(xlwp) * T(yl%).

Subcases 1.2.2 :

Let x = ap and y = a, forp, q € {1,2,...,n} withp # q. Since d(x. vf) =1=+2< d(y, vf).we have

(xl) + r(31Wp).

Subcases 1.2.3:

Let x= 7?51 and y=a; for pq€{l2..,n} Since d(x, vlp) =1#2=< d(y,vf), we

obtain r(lep) * r(yle).

All subcases above imply that r(x|W) # r(y|W).

Now, we will prove that nr(GOK,,) =n(m—1). Let W be an nr-set of GOK,,. For every [ €

{1,2,...,n}, let W, = {vf € Wli €{1,2, m}] We have claim that |W;| = (m — 1). Otherwise, we

have two vertices v_i and vé for some s,t € {1,2, ..., m} such that vsI & W, and UtI & W,. Since

d(vl, x) = d(vf, x) vxeW, we obtain r(v!|W) = r(v{|W), a contradiction. Hence, |W| = n(m — 1).

Next, we consider the corona graph H = G®(@,,, where G is any connected graph and @, is a path or a

cycle with order . Let S! be a set of two or more vertices of QL. Let vf. v; € S! be two distinct vertices
i

0 . et v, v e a path 1n rom v; to v;. ¢ defing a gap between v; and v; as
f Qi Let P(v},v) be a path in Q} fi { to vj. We defi gap b { and vj

4 (P(vf. T/}I)) - {vf.v;} where every vertex in a gap is not element of S'. The vertices v} and v} we
called as end points of gap between vf and v}. Two different gaps are called neighboring gaps if they
have common end point. In case Q) is a cycle, if |S[| =1, then S! hasr gaps. In case QL is a path, if
|.S“| =17 — 1, then S has r gaps. Note that, for both cases, some of gaps maybe empty. This definition
was first introduced by Buczkowski et al. [3] to prove the metric dimension of the wheel graph. In

addition M. Baéa er al. [2] using this gap technique to prove metric dimensions of complete bipartite
graph minus its Hamiltonian cycle.
Now, let V(H,) = V({a;} + Qﬁl) where a; € V(G), QL € Q, and W, be basis of H,. We observe the
following three facts.
(i)  Every gap of Wy contains at most three vertices. Otherwise, there is a gap containing four
; T ! ! ! i ! —
vertices Vi Vi Vigg Vigs of Qp, where 1 <j<mn1<I[<m. However, T(Uj+1|W;) =
T(T}}-I_'_lel) =(22,..,2), acontradiction.
(i) At most one gap of W, contains three vertices. Otherwise, there exist distinct two gaps
[ ! Ul ! ! !
1V, Vi1 Vs and {vi, vi,1, vEss). However, T("}'+1|W1) =r(vhi2|W) = (2,2, ...,2). a
contradiction.

(iii)  If'a gap of Wcontains at least two vertices, then any neighboring gaps contain at most one

vertex. Otherwise, there exist five consecutive vertices vjl. vjl_,_l, va+2- v}+3, U;H of @1, such that

U}-'-z is the only vertex of W,;. However r(v;.,_llWI) = T(UJ'I+3|M]I), a contradiction.

Suppose now that W is any set of vertices (a basis or not) of Q}, that satisfies (i)-(iii), and let v be any
vertex of V(H;) — W,. There are four possibilities.

(1) v belongs to a gap of size 1 of W. Let v(-l and L}I be the neighboring vertices of W, that determine
this gap. Then v is adjacent to vf and T/}-I and has distance 2 from all other vertices of W,. Since
n=7, no other vertices of H, has this property and so r(v|W;) = r(x|W),) for v = x.

(2) v belongs to agap of size 2 of W;. Then we may assume that v}, 1/}-‘.,_1 =, va+2- v}” are vertices

of QL, where U}H, v}+3 € W, and U;+2 & W,. Then v is adjacent to v} and has distance 2 from
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all other vertices of W,. By property (iii), only v has this property and so r(v|W;) # r(x|W,)
forv + x.
(3) v belongs to a gap of size 3 of W,. Then there exist vertices v, J,-I, UJ,-IH, th”_ U;+3' ];H of QL, only
v/,
has distance 2 from all other vertices of W}. By property (iii), v is the only vertex of H; with this
property and so r(v| W) # r(x|W)) forv # x. Next, we assume that v = v}”. Thenr(v|W)) =

; and U;H which of belong to W,. Assume first that v = v, ;. Then v is adjacent to v and

j+1-

(2,2,2, ...,2). By properties (i) and (ii), no other vertex of H; has this representation.

(4) wu=a;.Thenr(w|W) =(1,1,..,1) and is w the only vertex of H; with this representation.
Consequently, any set W having properties (i)-(iii) is a resolving set of H.
The following lemma will be used to prove the upperbound of the Theorem 2 and Theorem 3.
Lemma 2 Forn = 7, let @, be a path or a cycle. Then very basis S of K; + @Q,, contains an isolated
vertex.
Proof.
Suppose there is a basis § of K; + @, that does not contain an isolated vertex.
Case 2.1: || is even.
Let |S| = 2¢q
Subcases 2.1.1 : Q, isa cycle.
For some integer ¢ = 1. By (iil) at most g gaps contain more than one vertex and, by (i) and (i), all
contain at most two vertices except possibly one containing three vertices. So, the number of vertices
belonging to the gaps of § is at most 2q + 1. Since S does not contain an isolated vertex, we have g

empty gaps. Hence n — 2q < 2q + 1, which implie% that |S| =2q = [nT_l] In [3], Buczkowski et al.

5n—5 4n+4 Zn+2
= we have a

contradiction.

Subcases 2.1.2 : Q,, is a path.

For some integer g = 1. By (iii) at most g gaps contain more than one vertex and, by (i) and (ii), all
contain at most two vertices except possibly one containing three vertices. So, the number of vertices

belonging to the gaps of S is at most 2g — 1. Since § does not contain an isolated vertex, we have g
n+1

empty gaps. Hence n — 2q < 2q — 1, which implies that |S| = 2qg = ru In [4], Caceres et al. has

been proven that dim(B, +K;) = lzns I Since [%1] = [%] > l‘mHJ = IZMZI we have a

contradiction.

Case 2.2 :|5| is odd.

Let |S| =2+ 1.

Subcases 2.2.1: Q,, is a cycle.

For some integer g = 1. By (iii) at most g gaps contain more than one vertex and, by (i) and (ii), all
contain at most two vertices except possibly one containing three vertices. So, the number of vertices
belonging to the gaps of S is at most 2q + 1. Since S does not contain an isolated vertex, we have g + 1

empty gaps. Hence n — 2q — 1 < 2q + 1, which implies that |S| = 2q = [— . In [3], Buczkowski
et al. has been proven that dim(C,, + K;) = lzn 2] Since [n_ ] [Sn_m] MH] lzn+2l we have

a contradiction.

Subcases 2.2.2: Q,, is a path.

For some integer g = 1. By (iii) at most g gaps contain more than one vertex and, by (i) and (ii), all
contain at most two vertices except possibly one containing three vertices. So, the number of vertices
belonging to the gaps of S is at most 2¢g — 1. Since 5 does not contain an isolated vertex, we have g + 1

empty gaps. Hence n — 2q — 1 < 2q — 1, which implies that |S| = 2g + 1 = [HTH] In [4], Céaceres el
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al. has been proven that dim(F, + K;) = I%J Since [HT”] = [5n+10] l+n+4l = lzmzl we have a

contradiction.
Theorem 2 Forn = 7, let G be a connected graph of order m = 1 then,
nr(GOC,) = [dim(K;, + ;) + 1|m
Proof.
Let V(G) = {ay, az, ..., am}, V(C,) = {vy,v3, ..., v ). Forn=7, let H = (GOC,), V(H) =V(G)U
whli<i<n, 1<i<m} and E(H)= E(G)U{v v(.,_l,vlvnll <i<j<n- 1}U{a;v.1£l£
m}. Let V(Ky + C,) = {vg} UV{C,}and E(K, + C,,) = E(C,) U {vgv;|1 <i <n}. Let B beabasisof
K, + C,. In[14] it is proven that there exists a basis B of K; + Q for a connected graph @, such that all
vertices of B are from Q.
Forl € {1,2,...,m}, we deﬁne the set W, = {v}|v; € B} U {@;}. Note that, [W;| = dim(K, + C,) + 1.
Let W = U™, W,. Since v} a € E(H), then W does not contain an isolated vertex.
Now, we will show that W is aresolving set of H. Let x and y be two different vertices in V(H) — W.
i Letx=vlandy= vb,wnh a,be€{1,2,..,n}, a+b.Since x and y are the vertices in a copy
of Ky + C,, and B is a basis of K; + Cp, then x and y resolve by W,;. Therefore, r(x|W) =
rylw).
ii. Letx=vlandy=v],witha b€ {12, ..,n}, Lp€ {12 ..,m}l +p. Sinced(x,q) =1#
2 < d(y, ;) then r(x|W) = r(y|W).

By contradiction, suppose that nr(GOC,) < [dim(K; + C,) + 1]Jm — 1.
Let W be an nr-set of H with |[W| < [dim(K; 4+ C,) +1]Jm —1. For [ € {1,2,...,m}, let W; =
{vf,a; € Wli € {1z, m}] Then there exists [ € {1,2, ..., m} such that |W,| < dim(K; + C,,). Since
an induced subgraph of H by {u[.v“l < [ < n} is isomorphic to Ky + Cy, say H;, then |W;| must be
dim(K; + Cp). So, it is clear that every two different vertices in H;, has different representation with
respect to W;. However, by Lemma 2, every basis § of K; + €}, contains an isolated vertex. Therefore,
we have a contradiction.
Theorem 3 For n = 7, let G be a connected graph of order m = 1, then
nr(GOPF,) = [dim(i; + B,) + 1]m.
Proof.
Let V(G) ={aq,az, ...,am}, V(Py) = v, v, ..., 0y} For n=>7, let H = (GOPn) V(H)=V(G)u
whli<isnl<l<mland E(H) =EG)U{vivl,|1<i<j <n—1}U{a1 ,1 <1< m}. Let
V(Ky + B) = {vo}UV{B}and E(K, + B,) = E(P,) U {vov;]1 <i < n} Let B be abaqlﬂ of Ky +F,.
In [14] it is proven that there exists a basis B of K; 4+ @ for a connected graph @Q, such that all vertices
of B are from Q.
For | € {1,2,...,m}, we define the set W, = {v!|v; € B} U {@;}. Note that, |W}| = dim(K; + B,) + 1.
Let W = U™, W,. Since v!a;, € E(H), then W does not contain an isolated vertex.
Now, we will show that W is a resolving set of H. Let x and y be two different vertices in V(H) — W.
ii Letx=vlandy= vb witha, b € {1,2,...,n}, a # b. Since x and y are the vertices in a copy
of Ky + P, and B is a basis of K; + P, then x and y resolve by W,. Therefore, r(x|W) #
r(y|Ww).
il Letx=vlandy = vg,with a,be {12 ..,n}, Lpe{l2, ..,m}l#p Sinced(x,aq;) =1+
2 < d(y, a;) then r(x|W) = r(y|W).

By contradiction, suppose that nr (GOB,) < [dim(K; + B,) + 1]Jm — 1.
Let W be an nr-set of H with |W| < [dim(K; + B,) +1]Jm — 1. For l € {1,2,...,m}, let W, =

{vf,a; € Wli €{1.2, m}] Then there exists [ € {1,2, ..., m} such that |W;| < dim(K; + P,)). Since
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an induced subgraph of H by {q,, vfll < i < n} is isomorphic to K; + B, say H;, then |W;| must be
dim(K, + B,). So, it is clear that every two different vertices in H;, has different representation with
respect to W;. However, by Lemma 2, every basis § of K; + B, contains an isolated vertex. Therefore,
we have a contradiction.

3. Conclusion

In this paper, we have studied non-isolated resolving set of the corona product G®H where G is any
connected graphs and H is complete graph, a cycle or a paths. We obtain an exact value of non-isolated
resolving number of them.
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