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Abstract 
Inertial Measurement Units (IMUs) are Micro-Electromechanical Systems (MEMS) that are able 

to provide acceleration angular orientation rates information via inertial sensing. Unlike other 

positioning devices like the Global positioning System (GPS), they do not require any form of 

communication with an external device or technology in order to obtain this information. This 

makes them the ideal positioning devices to serve as standalone systems. However, with certain 

drawbacks associated with the IMU they are unable to effectively serve in this role. Existing 

schemes employ the use of Kalman filters as a complementary approach to solve this issue but this 

also presents complexity and drawbacks resulting in the failure of the Kalman estimator especially 

when there is no GPS signal available. This paper proposes a technique by employing the use of 

an Artificial neural Network (ANN) to model certain state variables in order to estimate the 

position of an Unmanned Aerial Vehicle (UAV) quadrotor with the IMU serivng as a standalone 

positionng determing device. 
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Chapter 1: Introduction 

1. Background  
Our lives have become increasingly reliant on positioning determining systems. We depend 

on them to tell us where we are in real time, or where an object is within a certain reference frame. 

Some modern vehicles, such as ships and boats, automobiles, planes and helicopters, and 

spacecrafts, are equipped with positioning determining systems that enable them to monitor their 

positions more easily and conveniently within the space (reference frame) in which they are 

operating. Inertial Measurement Units (IMUs) and the Global Positioning System (GPS) are two 

examples of positioning systems (GPS). Inertial Measurement Units can be electronic devices that 

provide acceleration and orientation information. This data can be used to estimate the position or 

orientation of the vehicle or an object in space by applying some special algorithms to them. 

Autonomous vehicles (land or aerial) require that their position in a local or global reference frame 

is known in real-time. This helps it navigate properly within their reference frames. 

These positions in real-time need to be frequently updated to match their true position in the 

reference frame.  

Most Unmanned Aerial Vehicles (UAVs) are equipped with GPS for position reporting. 

Others like beginner drones may not be. However, what is common to both is the IMU. Data from 

the IMU is required by the UAVs control algorithms to achieve the desired flight maneuvers. The 

GPS onboard may not always be able to report the UAVs global position especially in situation 

where there is the absence of a signal (GPS outage), no-clear-line-of-sight, or in urban areas or 

around somewhat closed spaced such as tunnel. The GPS may suffer signal blockages or multipath 

errors. Inherently, the GPS suffers all drawbacks associated with signal propagation. Like most 
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signal propagation dependent position estimation methods, the GPS always requires some form of 

external technology with it can communicate before position can be estimated. The IMU on the 

other uses inertial sensing which allows it so provide information such as angular orientation rates 

and acceleration from its gyroscopes and accelerometers, respectively. The IMU however has 

certain drawbacks which prevents it from being used as a standalone position estimating device. 

Signal from the accelerometer can be noisy whereas the gyroscope may be subject to drift. Current 

techniques employed to solve these problems utilize Kalman filters to fuse the IMU with the GPS. 

This can be quite complex in development and presents its own drawbacks. The Kalman filters fail 

when there is GPS outage because the GPS is required to compensate the IMU error, Other 

schemes propose the use of Artificial Neural Networks (ANNs ) to complement the Kalman filter 

when this happens. All in all, ANNs  have been proven to have a robust ability to model complex 

non-linear functions and relationship.  Other schemes like [4] employ ANNs as sole estimators to 

reduce the complexity the Kalman Filter presents while being able to stand fast in all circumstances 

of uncertainty. 

1.2 Problem Summary and Objective 
Using IMUs for position estimation is still an interesting area of research. However, their 

inability to provide sub-meter level accuracy over prolonged periods makes this incredibly 

difficult. IMUs as standalone position estimators quickly drift, producing unbounded estimates 

which are unreliable. Therefore, they are unable to exclusively serve as standalone positioning 

systems. Existing schemes like [1] fuse IMUs with GPS with Kalman Filtering approaches. 

However, this ramps up the approach complexity and cost by requiring additional hardware (GPS). 

Such methods are dependent on the availability of a GPS locking signal and fails in its absence. 



3 

 
  

More intelligent methods combine IMUs with GPS using some fuzzy logic or neural networks. In 

an attempt to reduce complexity, [4], [14], [15] propose techniques that prove neural network as 

an estimator due to its robust ability to learn very complex non-linear. Current methods are 

complex, not reliable, and not self-reliant. For example, [1], utilizes a Kalman Filter in the presence 

of a GPS signal and then switch to an ANN when there is GPS outage. However, the accuracy of 

the ANN only lasts for about 60 seconds after which it begins to deteriorate  This makes the system 

somewhat dependent on the availability of a GPS signal. The system therefore is not effectively 

self-reliant without the GPS signal and complex with the utilization of the Kalman Filter. 

Therefore, taking advantage of the ability of ANNs to model complex relationships (linear and 

non-linear) between variables, an ANN will be trained on data collected from an IMU and sonar 

sensors (forming the state variables of the UAV) as a form of black box modelling approach, 

learning the relationships between these variables in order to estimate the position of a UAV. This 

technique will be also used to investigate the feasibility of an IMU as a standalone positioning 

determining system. A portable devices capable of being carried by the UAV will interface with 

two distinct sensors which are an IMU and a sonar sensor. Data will be collected from these two 

sensors, on which an ANN will be trained in order to model the relationship between the IMU data 

and the sonar data. Therefore, using the IMU alone, the position) of the UAV (which was initially 

given by the sonar data )could be estimated by the trained ANN making the IMU a standalone 

(self- reliant) positioning determining device.  
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Chapter 2: Related Literature Review   
 In this chapter, related literature will be reviewed. Existing techniques or methods and 

technologies related to the topic will also be discussed in detail. 

2.1 Inertial Navigation Systems (INS) and Inertial Measurement Units (IMUs)  
An Inertial Navigation System is made up of IMU sensors. These could be 

gyroscopes, accelerometers, and magnetometers. MEMS IMU sensors are Micro-

Electromechanical Systems that can sense inertial information such as inertial acceleration and 

inertial rotation. INS (Inertial Navigation System) systems (comprising of IMU) may utilize a 

computer to calculate position using a method known as dead reckoning without the need for an 

external reference frame [4]. However, using this method with and IMU or INS has its drawbacks. 

The INS may only be accurate within a very short time. Over a long period, it accumulates errors 

which degrades the estimation [4]. INS may be coupled with GPS in some applications for 

positioning determination and navigation [1], [4]. 

An intuitive approach for position estimation using the IMU data is to perform a double 

time integration on the IMU acceleration (from the accelerometers) to produce an estimate of the 

 and a single time integral (from the gyroscopes) 

orientation. However, 

error with a non-zero mean which gets compounded with the true estimate within a short period 

[1], [2]. This can lead to very large deviations from the true position of the vehicle or object. 

2.2 GPS/INS  
Combining the GPS with the INS provides a robust way of dealing with the problems of 

one sensor alone. For example, the INS is subject to accumulate errors within a fair amount of time 
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which causes a degradation in the position estimates it produces. However, the GPS is immune to 

this kind of drawback. The GPS on the other hand suffers all drawbacks associated with signal 

propagation whereas the INS Therefore, coupling or fusing these 2 sensors together allows 

for error compensation from one of the 2 sensors. The GPS is usually used to compensate the INS 

error [1] during position estimation. Depending on the application and functional requirements, 

various schemes propose various approaches for GPS/INS fusion or coupling.  

. The working of GPS combines a receiver and a transmitter. The receiver must 

communicate with a minimum of 4 GPS satellites for effective trilateration [3]. Trilateration is the 

method used to determine the position of a GPS receiver on the surface of the earth [3]. GPS 

signals can suffer signal blockages and multipath in urban areas with building presenting 

themselves as obstacles, obstructing the clear line of sight needed by the GPS for position 

estimation. Inherently [4], GPS suffers all the drawbacks associated with signal propagation such 

as multipath and other forms of distortion.  

GPS may be coupled with an INS (Inertial Navigation system) which is comprised of an 

IMU to improve the position estimation. Numerous approaches utilize the Kalman Filter as a real-

time fusion algorithm of the GPS sensor data and the INS sensor data  [4], [6]. The goal of the 

fusion is to allow one sensor to compensate the other where one might fail. In many cases, this is 

more robust than having one sensor as a standalone position estimator. The Kalman Filter acts as 

an error estimator for the INS as long as the GPS signal is available [1].  Typical Kalman Filters 

tend to fail along with the GPS/INS system when there is GPS outage [1]. This is because 

the INS without the GPS deteriorates rapidly within a short time. Without GPS signal being 

available, the Kalman Filter becomes useless making the whole system being dependent on the 

availability of a GPS signal.  
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When coupling GPS with INS in the case of UAVs, the extra sensor (GPS), means extra 

cost and extra weight. This extra weight also means more energy or power to work the GPS and fly 

the UAV. Hence there is a reduction in flight time [5]. This incurs extra cost on the side of the 

GPS hardware. The integration of these two systems as one unit is usually done using a Kalman 

Filter as the sensor fusion algorithm. Kalman Filters are simply state estimators that predict the 

Kalman Filters are then used to estimate the INS error for compensation [4]. However, this only 

works if GPS signal is available. Since the GPS is required by the fusion algorithm to estimate to 

INS error for compensation, the entire systems become somewhat dependent on the availability of 

a GPS signal which is not very helpful in the event of a GPS outage, The Kalman Filter therefore 

fails to do its INS error estimating job. In multipath prone environments as well, such as urban 

areas and semi enclosed areas, the performance of the GPS is also affected leading to the gradual 

deterioration of the GPS/INS system.   

2.2.1 Coupling and Estimation with the Kalman Filter  
Coupling the GPS with INS can take on several forms. Some of these are loosely or tightly 

coupled integration, closed or open loop integration. In all such approaches, a typical Kalman 

Filter is required [7]. As mentioned earlier, these Kalman Filters are used as state 

estimators. Modified versions of these Kalman Filters are the Extended Kalman Filter (EKF), 

which is applicable to non-linear systems, but has a degradation and divergence problem due to its 

linearization process [1]. The Unscented Kalman Filter (UKF), which has been investigated to 

have good performance than the EKF with about the same complexity [1]. The UKF makes use of 

an Unscented transform which is used to propagate means and covariance through a non-linear 



7 

 
  

transformation [1]. In [1],[7], a set of variables are selected to represent the state . Some of 

these state variables are position errors, velocity errors, accelerometer biases, as well INS and GPS 

position differences. This is used as a measurement vector input to the Kalman Filter to estimate 

the INS error for compensation.  Therefore, the GPS and INS are fused together by a Kalman Filter 

which uses both sensors for state estimation and position correction. However, there can be 

situations (No clear line of sight) that lead to GPS outage or GPS signal multipath. The former can 

cause the Kalman Filter to fail [1] because, there would be no GPS to compensate the INS. As a 

result of this, some schemes like [1], propose new ways of using intelligent methods in 

combination with Kalman Filter to address this.   

2.2.2 Estimation with Intelligent methods 
There are many proposals that seek to improve GPS accuracy, but these complexities 

increase with the increasing need for more accuracy [4]. The common way is to combine GPS and 

INS with some sort of fuzzy logic or neural networks [4]. In [4], a unique technique based solely 

on Neural Networks is proposed. The sensor fusion algorithm or estimator which would have been 

the Kalman Filter in most GPS/INS sensor fusion schemes as seen in [1] is replaced entirely by a 

neural network. Neural Network proves robust where typical GPS/INS may suffer deterioration in 

urban areas because of signal blockage and multipath, the Neural Network would prove robust. 

Another technique to use the ANN together with the Kalman Filter. In [1], a Back propagation 

Neural Network is used to simulate an Unscented Kalman Filter (UKF) during GPS outages for 

INS error compensation. Other methods may propose other Kalman Filters depending on 

requirements. However, regardless of the type of Kalman Filter used, if there is no GPS signal 

available, the GPS/INS systems fails because the INS is left alone to do the estimation without the 
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GPS for compensation. Usually, the Kalman Filter algorithm also fails here. This is because it is 

no longer able to do the error estimating job to compensate the INS without the GPS. This makes 

the reliability of the whole system somewhat dependent on the availability of a GPS signal. 

To account for signal multipath distortion and the likely event of a GPS outage around 

areas with no clear line of sight, ANNs (Artificial Neural Networks) are used in some 

schemes [1],[4] to either fully or partially replace the GPS/INS estimator (Kalman Filter or fusion 

algorithm) in the event of GPS outage. When GPS signal is available, an ANN may be trained in 

 

Some schemes train the ANN to completely replace the estimator[4]. Therefore, the 

Artificial Neural Network can perform the job of the Kalman filter or estimator under multipath 

condition where the GPS might be deteriorating or during GPS outages where the Kalman Filter 

itself might fail. Many others go on to train an ANN which go on to train the ANN on the INS 

error are able to use only data from the INS and the ANN to accurately predict navigation 

information while causing the INS to act as a standalone system. Due to the robust ability of Neural 

networks to generalize to uncertainties and non-linearities, they are explored and used in a wide 

variety of modelling applications.  

2.3.  Machine Learning (ML) and Artificial Neural Networks (ANNs)  
 Machine learning addresses the question of how to build computers or algorithms that self- 

improve over experience [8]. Though not human experience, the experience is learned in the form 

of fine-tuning certain weights that map input-output relationships through lots of data with the 

assumption that there is a theoretical relationship between the input and output variables. The 

situation whereby an algorithm gets better at a particular task overtime by not explicitly being 
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programmed. Machine learning has been widely adopted in various industries such as engineering, 

research, even up to customer service, to help solve extremely complex problems which cannot be 

easily modelled by humans. For machines, these problems become very easy once they have 

learned the right weights or parameters through experience or training. Generally, there are about 

three main approaches used in machine learning. These are, supervised learning, unsupervised 

learning, and Reinforcement learning. Under supervised learning, the algorithm is given labeled 

data from which it learns or trains on. Examples of supervised learning problems are regression 

and classification. Unsupervised learning on the other hand does not require labeled data. The 

algorithm is designed to learn these labels. Typically used where the engineers themselves have 

no clue what the labels are. An Example of an unsupervised learning problem is clustering. 

Reinforcement learning however requires no data at all. The algorithm presents itself as an agent 

in an environment from which it learns the best policy mapping actions to states within the 

environment usually driven by a reward scheme. Good actions merit good rewards whereas bad 

action results in bad rewards or punishments. Reinforcement learning can be used in self-driving 

cars or robots.  

Artificial Neural Networks, a special kind of machine learning algorithm employs several 

techniques to learn weights that map inputs and output relationships. These relationships are not 

explicitly known. The first technique is a feed-forward algorithm that passes the data through the 

network to make predictions. After this phase, a back propagation algorithm is used to update the 

weights within the network. This would be the first epoch of many possible iterations. This cycle 

repeated several times until the optimum sets of weights is found or learned by the network, hence 

an optimum solution to the problem is found. This is called convergence, Most ANNs may employ 

stochastic gradient descent  as the learning algorithm whereas others may use the Adam  learning 
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-squared- -mean-squared- is 

used to monitor the loss of the network. All these helps it to learn and converge. ANNs have proven 

themselves to be very robust for complex linear and non-linear modelling while being able to 

generalize well [4], [9]. Neural Networks with just a single hidden layer can be used to approximate 

very complex non-linear functions or relationships[4], [10].  

2.4 Artificial Neural Networks in Embedded Systems 
 The execution of most deep learning tasks is highly restricted to platforms with high 

compute power making use of GPUs or external hardware accelerators [13]. Most embedded 

microprocessors and controllers simply do not have the compute power to perform these 

computationally strenuous tasks. Even if they are able to run inferences on data using deep learning 

models, they end being too slow. Such a performance is usually unacceptable in most machine 

learning or deep learning applications. In order to improve performance in embedded applications, 

precision scaling may be used to reduce memory occupation of such models or networks. Weights 

are rounded using fixed-point representations reducing them from higher bit data types to 8-bit 

data types. This reduces computational load and improves performance [13]. However, there could 

be some trade-offs in accuracy. 

2.4.1 Artificial Neural Networks High Level Overview 
  Artificial Neural Networks are essentially algorithms that are able to extract patterns from 

data and learn those patterns through weights. A set of input parameters are weighted to assign 

levels of importance to the individual input parameters or features. These features after being 

weighted (multiplied with the weights), are linearly combined in a summation. A bias term may 
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be added. The result is then transformed by a non-linear activation function in most cases from 

which an output estimation may be obtained. This is visualized in Figure 1  below. 

 

Figure 1: Artificial Neural Networks at the core. 

Artificial Neural Networks primarily involve 2 processes. 

 Feed Forward: This is the process of computation whereby predictions or estimations are 

done using learned or initialized weights. 

Output               Linear combination of inputs 

 

  
Non-linear activation 

 Back Propagation: This is the process of computations where results in updating former 

weights with newly computed ones. The new weight is calculated as: 

, where 

 , where z is the output of an intermediate neuron, 
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 is the newly computed weight, 

is the former weight at the previous iteration, 

 is the learning rate of the algorithm and is the loss function.  

2.5. Unmanned Aerial Vehicles (UAVs) / Quadcopters 
 Unmanned Aerial Vehicles (UAVs) popularly referred to as drones are aircrafts that 

operate without onboard human pilots. UAVs are a part of an Unmanned Aerial System (UAS) 

which usually includes a ground-based controller and a system of communication between them  

[11]. Advanced UAVs may have an auto-pilot feature that allows it to automatically return to the 

ground station in the event of a signal loss or critical battery power [12]. UAVs may be designed 

to have a number of propellers usually with equiangular spacing between them. The number of 

propellers presents different flight and control dynamics to the UAV. Quadrotors or quadcopters 

are designed to have 4 propellers. Thrust on each propeller is varied in order to achieve a desired 

control or flight maneuver. In modern time, UAVs are applied in so many industries such as aerial 

photography, deliveries, the military, and RC-sports. UAVs may also be used for surveillance 

missions and surveying land areas. 

The most common technology used to determine the position of UAVs 

is the GPS. Onboard GPS receivers communicate with GPS satellites which constantly track and 

report the position of the UAV in real-time using the propagation time of the signal (time of flight). 

GPS as a positioning system for UAVs can provide very accurate positioning information as long 

as there is a clear and unobstructed line of sight [1], [4]. However, in places where there is not, the 

GPS may suffer signal blockage or multipath signal distortion which can cause failure or errors in 

the GPS positioning  [1], [4].  Further, GPS consumes more energy than IMUs and have a low 

position update rate making it unsuitable for real-time demand of UAVs [5]. This can affect the 



13 

 
  

flight time of such UAVs. In high dynamic maneuvering environments, higher update rates of the 

UAVs position may be required to provide a smooth position report in real-time. The drawbacks 

of GPS such as the increased probability of signal blockages around buildings, and multipath 

distortion, which yields multiple copies or reflections of the GPS signal, prevents it from being an 

effective positioning system indoors or somewhat enclosed spaces, or around buildings and in 

urban areas, where these conditions are present. Accuracy and precision of position may be greatly 

compromised.  
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Chapter 3: Design Specifications and Requirements 
 In this chapter, the fundamental design requirements, and specifications of a lightweight 

system capable of being carried by a UAV will be presented. This device will have two distinct 

sensors as shown in Figure 2. The MPU6050 which is an Inertial Measurement unit consisting of 

a 3-axis accelerometer and a 3-axis gyroscope. The device will be carried by a UAV within a 

chosen flight environment to collect data from these sensors from which an Artificial Neural 

Network will be modelled. The selected UAV type is a quadrotor. A quadrotor is selected for this 

application because; 

 It is easily maneuverable. 

 It can fly within a small and confined space. 

 Its cost and availability are within project constraints - time, cost, and scope. 

  

                                                             

HC-SR04 sonar sensor     MPU6050  IMU 

Figure 2 : The two distinct sensors 

3.1 System Requirements  
The device should: 

  be inexpensive.  

 easily interface with the UAV.  

 not be heavy for the UAV. 

 have a reasonable power consumption. 
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  not be bulky UAV. 

 Should be computationally efficient.  

 Should be able to handle and collect data and store easily.  

3.2 Data Collection Environment Requirements  
 Nature of environment: The kind of environment required to collect the required data for 

this application has to have walls forming a 3d corner with representable 3d planes (x, y 

and z). A 3d corner looks like a 3-axis Cartesian plane with the meeting of 3 planes at 90-

degree angles to each other. This can be represented as 2 walls meeting in a corner at 90-

degrees and standing vertical at 90 degrees to the ground.  

 Environment space: Space should be of good size to be in range of proximity sensors.   

3.3 System Specifications  
 

Criteria  Requirement  Specification  
Cost  Should be inexpensive  Cost < GHC 500  
Compute  Should have reasonable inference 

time.  
 Inference time should not affect 

performance  

Inference time < 1 second  

Weight   Should be light weight.  
 Weight should not compromise flight 

time of UAV  

Weight < 100g  

Power 
Consumption  

 Power consumption should be 
reasonable.  
 Power consumption should not affect 

flight time of UAV  

Power < 10W  

Size  Should be portable   Size <150mm by 50mm by 
30mm  
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Data 
Handling  
 

 

 

 
 

 Should have good storage size for 
temporal data storage and handling 
(e.g., push to cloud a base) to be retrieved 
later for training.  

 memory > 1Gb  
  

 Push to GitHub  

 

3.4 Environment specifications 
Environment 
for Data 
Collection  

 

  
 Data collection and training 

environments should be in a 3d corner 
with representable 3d planes (x, y and 
z)  
 Space should be of good size to be 

in range of proximity sensors.   
 

Size <= 400cm (l) by 
400cm (w) by400cm (h) 
by 

 
  

3.4 High Level System Design Options  
 Option A : As visualized in Figure 3 below, a Micro-Controller Unit (MCU) interfaces with the 

sensors. The (MPU6050 IMU) 3-axis gyroscope and accelerometer module and 3 sonar sensors 

(HC-SR04). It also hosts the Artificial Neural Network estimator for predicting the -axis 

position. The sensors will collect data used for training the ANN and data for making real-time 

predictions after the ANN is trained. most MCUs do not have enough compute power and memory 

for Deep Learning and Machine Learning applications in general therefore inference times from 

hosted models might be too slow and not meet the application requirements. For this application, 

real time estimations need to be done by the system. However, the lack of compute power for most 

microcontrollers  may cause this design specification to not be met. 



17 

 
  

 

Figure 3: High level design architecture of design option A. 

  

Option B : With this option, there are 4 submodules.  

 The Intelligent module:  This is made up of the ANN hosted on a raspberry pi. The 

raspberry pi offers about 1.4GHz of processing power compared to the 16MHz clock of 

the ATMEGA328P which is the choice of MCU used. This would provide enough 

computational resources for the ANN to meet the inference time of the design specification 

which is supposed to be less than 1 second for every inference by the model. 

 Sensor module: The sensor module is made up of all the systems sensors and the micro-

controller unit. 

variables is done here.  

 Communication module: This is the link between the Intelligent module and the Sensor 

module. 

 Power Module: The power module will consist of a voltage regulator which will supply 

the right amount of power to the device. The main power source will be the UAV  
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As visualized in Figure 4, this option has the with sensors (MPU6050 3-axis accelerometers and 

gyroscope, 3 HSR04 Ultrasonic sensors) connected to the ATMEGA328 MCU.  The data is 

collected by the MCU and transferred to the raspberry pi which rather hosts and runs ANN.  

 

Figure 4: High level architecture of design option B.   

3.5 Design Selection 
Using the Pugh matrix, the design selection criteria are presented and evaluated on the 

proposed design options. The highest scoring design is selected and implemented. This can be seen 

in the Pugh matric below of Figure 5. Alternative 2 (option B) was selected. 

Criteria Weight Alternative1 Alternative 2 Baseline 

Weight 2 +2 +1 0 

Power Consumption 2 +3 -1 0 

     

Computational 
Power/Efficiency 

3 -3 +1 0 

Data Handling 2 +1 +2  

Size 1 +2 0 0 
Cost 1 +2 +1 0 
Score 

 
0 8 

 

Figure 5: Pugh Matrix for design selection 
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3.6 Selected Design  
 The selected design presents two architectures. The first is during data collection and 

training and the second is during the real-time position estimation of the UAV. This can be seen 

in Figure 6. During data collection and training, the data is collected by the sensors which interface 

with the MCU and transferred to the raspberry pi for management and storage. When that is done, 

the data is pushed to the project s GitHub repository and then pulled unto a local machine where 

the model is trained. During real-time position estimation, only, data from the IMU (MPU6050) is 

required from the sensor module. When the data is transferred to the raspberry pi to be used for 

inference, the results of the predicted UAV positions are displayed over a Local Area Network IP 

address which the raspberry pi is connected to during an SSH connection.   

A. Estimating positions     B. Data collection and training 

 
Figure 6: Selected design architecture 

 

A complete circuit schematic of the system consisting of all submodules is shown in  

Figure 7 below along with the designed Printed Circuit Board (PCB). The sensor module has 

digital pins that connect 3 sonar sensors (HC-SR04) and one IMU (MPU6050) to the 

microcontroller. These sensors are seen in Figure 2.  The power module powers the system using 

power from the UAVs battery. Data collected from the sensors is then transferred to the raspberry 
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pi (intelligent module) over the UART-Serial interface from the TXD pin (pin 3 on the 

ATMEGA328 for transmit) on the microcontroller to the RXD (GPIO 15 on the raspberry pi for 

receive) pin on the raspberry pi. 

 

Schematic        PCB 

 

Figure 7: Electronic Design Schematic of submodules and Printed Circuit Board. 
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 Chapter 4: Implementation, Testing and Results 
In this chapter, the procedure undertaken to implement the project will be presented and discussed. 

The project implementation occurred under four primary parts which follow as; 

 Device build 

 Data collection 

 Model training 

 Model deployment and real-world testing. 

4.1 Device Build 
This phase of the project involved building the device itself by sourcing the required electronic 

components and implementing all the circuitry required. All hardware and electronic components 

were put together. This was accomplished by developing the  5 subsystems shown in 

Figure 8. 

 

 Figure 8: All submodules housed within device casing. 
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4.1.1 Sensor module 
The sensor module consists of 4 sensors. These are three (3) HC-SR04 sonar sensors and 

one (1) 3-axis MPU6050 IMU. The sonar sensors provided the ground truth 3-axis (x, y, z) 

positions of the UAV, while the IMU provided inertial data such as 3-axis accelerations the 

accelerometers and 3-axis angular rotation rates from the gyroscopes. It also consisted of the 

microcontroller unit (ATMEGA328) which interfaced with these sensors for the required 

information. Data from the sensor module is collected by the intelligent module for storage and 

management to later serve as training data for the Artificial Neural Network. After the model has 

been trained and deployed to be hosted on the intelligent module, this data is used for real time 

prediction of the UAVs position by the Artificial Neural Network. 

4.1.1.1 Data Sensing and Feature Production  
Feature production consists of data sensing by the sensors and feature engineering. Feature 

engineering is done to produce extra features or state variables using the sensor data. Some 

examples of the sensor data are the 3-axis positions from the ultrasonic sensors, and the 3-axis 

accelerations from the IMU (Inertial Measurement Unit). All these present themselves as features 

or parameters to be used by the ANN (Artificial Neural Network) in making predictions. Feature 

engineering therefore provides more information to the ANN in the form of extra variables or 

parameters. These features form the state variables of the UAV (Unmanned Aerial Vehicle) in 

flight. Thus, more features mean more state variables to define the system, thereby supplying more 

information for the ANN to make better predictions. Two examples of such engineered features 

include velocity and position integrated and double integrated from the IMU accelerations, 

respectively. Acceleration here is directly sensed by the IMU. Consequently, the position and 

velocity are engineered from this measurement by finding their time integrals. The sensors are 
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grouped into two according to which features or parameters they produce (input or output features 

or state variables). The IMU (MPU6050) is the input sensor. It measures all data used as input 

features or parameters to the ANN. The ANN uses this input to predict the output parameters or 

state variables. Some of these input features or parameters include the 3-axis accelerations (ax, 

ay, az) and the 3-axis angular rotation rates from the accelerometers and the gyroscopes, 

respectively. Another is the angular orientation in degrees measured by the IMU. The output 

parameters are measured in corresponding time with the input features. The time corresponding 

output parameters or variables are measured by the 3 ultrasonic range sensors (HC-SR04) oriented 

in the x, y, and z axis to capture the 3-dimensional position of the UAV quadrotor in point space 

of its environment. The ultrasonic sensors serve as the output sensors, producing those parameters 

(ground truth) the ANN is trained to predict using the input features. Some of these output features 

include the 3-axis position, velocity and acceleration of the UAV measured by the 3 ultrasonic 

sensors.   

4.1.1.2 Feature Engineering Architecture 
There are 2 kinds of parameters or features. These are grouped according to which sensors they 

come from. Parameters from the output sensor (ultrasonic HC-SR04) forms the output features. 

These are the variables the ANN is trained to predict using the input features. Parameters from the 

input sensor or IMU forms the input parameters or features. These are used to predict the output. 

Input  IMU (MPU6050)  Output  ultrasonic sensor (HC-SR04) - 
ground truth  

3-axis accelerations (non-linear with gravity 
component) 3-axis accelerometers  (ar) 

3-axis true positions  (x, y z) of the UAV  
 (r) 

3-axis angular rotation rates 3-axis 
gyroscopes  (gr) 

  

Figure 9: Features Directly Measured by Sensors  
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 From the features directly measured by the sensors whose symbols are ar (raw 3-axis accelerations 

 and  gr  (raw 3-axis gyroscope rates ) 

as in seen in Figure 9, other state variables are engineered to provide more information on the 

state of the UAV in flight. This is illustrated in Figure 10. 

Input  

 

Output  

 

Figure 10: Feature Engineering architecture 
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Figure 11: Table of feature transform 

 

 The feature transform blocks labeled P1 to P12 whose transforms can be found in Figure 

11 above are used to produce all the feature engineered parameters used to monitor the UAVs state 

at each time step of feature sampling during data collection or position estimation. The output of 

 

P Transform  Description 
1  ap is 3-axis acceleration (axp, ayp, azp) in 

meters per second 

2  3-axis angular rates in degrees per second 

3 axang  =  

ayang  =  

Pitch (axang) and roll (ayang) Euler angles 
calculated from accelerometers only 

4 gxang  = ( *dt 

gyang  = ( *dt 

gzang  = ( *dt 

Single time integrated angles pitch (gxang), 
roll (gyang) and yaw (gzang) calculated 
from gyroscopes only. 

5 Cpitch =  

Croll =  

Cyaw   

Cpitch, Croll and Cyaw are the 
complementary filter angles calculated 
from both the gyroscope and accelerometer 
angles.  

6 ,  

for z, ap = ap-gravity 

Vt is the single time integrated velocity from 
the accelerometers 

7 , 
 for z, ap = ap-gravity 

St is the double time integrated distance or 
displacement from the accelerometers 

8 da  = apt  - apt-1 da is the magnitude change in ap 

9 dv = Vt  - Vt-1 dv is the magnitude change in Vt 

10 ds = St - St-1 ds is the magnitude change in St 

11 ru =  ru is the un-angled distance measured from 
the x, y, z planes. Corrects for UAV pitch, 
roll and yaw  

12 trv = ru - (origin) trv is the distance (trvx, trvy, trvz)travelled 
in each axis from each plane (x, y and z) 
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4.1.2 Communication module 
  Communication is required between the sensor module and the intelligent module. This is 

seen in Figure 12. After data has been sensed from the real world, it is passed from the sensor 

module to the intelligent module using the Universal Asynchronous Receiver Transmitter (UART) 

hardware. On the raspberry pi, the UART pins are GPIO 14 (TXD/Transmit) and GPIO 15 

(RXD/Receive). The ATMEGA328 has its UART pins on digital pin 2 (RXD/Receive) and digital 

pin 3 (TXD/Transmit). Using two jumper wires, the TX pin on the raspberry pi is connected to the 

RX pin on the ATMEGA328 and the RX of the raspberry pi to the TX of the ATMEGA328. Data 

is sent asynchronously without the need for a clock synchronizing the 2 modules. A timing 

parameter known as the baud rate is agreed upon by the two modules indicating the number of 

symbols transmitted per second. The baud rate used was 115200. 

 UART pins on ATMEGA328        UART pins on raspberry pi 

UART line 

Figure 12: The communication module 

4.1.3 Intelligent module 
         The intelligent module performs 2 roles. These are; 

Data collection role: Data sent over from the sensor module is collected and managed by the 

intelligent module during data collection. Data collection occurs when UAV flight data. Data 

collection occurs when the UAVs dynamic state variables are recorded by the sensor module under 

various flight maneuvers and sent over to the intelligent module using the serial protocol involving 

the UART.  During this time, the data is recorded and managed by 2 python scripts on the 



27 

 
  

intelligent module namely datamanager.py and serialcom.py. The former is responsible for 

collecting and the right amount of data (samples) for every flight episode and managing all storage 

directories. The latter is responsible for setting all communication parameters such as the baud 

rate. It also handles any err features, 

and establishes the serial connection. 

 

Figure 13: The raspberry pi as the intelligent module 

 

ANN host: As the host for the Artificial Neural Network, it is also responsible for running 

inferences or predictions of the UAVs position in real-time from the data sent over by the sensor 

module. Here, only the sition estimation 

by the Artificial Neural Network. It does this by running the inference.py python script in real-

time which imports the TensorFlow-lite-runtime library for this purpose. After deployment, the 

inference time of the trained ANN was determined to have an inference time of 0.05 seconds using 

the raspberry  1.4GHz processor. Therefore, the mount of compute required to satisfy the 

specification of 1 second was calculated to be approximately 84MHz. 

4.1.4 Power Module 
 The power module consists of the UAV s battery seen in and voltage regulator integrated 

circuit device both seen Figure 14 . The battery is a 2S 7.4V Lithium-ion battery with 2000mAh 

capacity. The voltage regulator used was the L7805 which produces a 5V dc output. 10uF input 
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and output capacitors were used to keep the power stable. This is also seen in Figure 15. The total 

amount of power drawn by the entire system was approximately 5W. The 2000mAh UAV battery 

is able of supply 2A at 7.4V continuously for 1 hour. 

 

Figure 14: 2S ,7.4V ,2000mAh Li-ion UAV battery on the left, L7805 voltage regulator on the 

right  

 

 

Figure 15: During the power module implementation, the fully charged UAV battery at 8.4V 

(blue line on scope) is regulated by the L7805 giving a 5V output (yellow line on scope) 
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4.1.5 Device Casing 
 The device casing is made up of 2 parts. The top and the bottom casings. These two come 

together to form an enclosure around all the electronics and circuitry to give support to the 

components. The top casing has extrusions designed to fit and attach itself to the removable 

camera mount shown in Figure 16.             

 

Figure 16:  

 

This attaches to the UAV and carries the device. These were 3d modelled and designed using the 

SolidWorks software after which the parts were 3d printed and assembled with all the electronics. 

The material used was PLA. This is shown in Figure 17. 

 

Figure 17: Top and bottom casing of device 
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4.1.6 Device Assembly 
 The device assembly took 2 forms. The circuitry is seen in Figure 18,  and the physical 

assembly of the device attached to the UAV is shown in Figure 19 below. 

 

         Figure 18: Circuitry with all the electronics 

 Physical assembly 

 

 
                 Figure 19: Full realization of device attached to base of UAV using its camera mount. 
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4.2 Data Collection  
 In his phase, data made up of features representing the state variables of the UAV was 

recorded and stored. The data measured by the sensor module is sent via the UART/serial interface 

to the intelligent module and stored locally for a short while. Then it is pushed to the project 

repository on GitHub where it is later pulled at a convenient time onto another remote or local 

machine for analysis, preprocessing and training of the Artificial Neural Network. 

 In his phase, data made up of features representing the state variables of the UAV was 

recorded and stored. The data measured by the sensor module is sent via the UART/serial interface 

to the intelligent module and stored locally for a short while. This process is managed by 2 python 

scripts namely, datamanager.py and serialcom.py. The former manages the data in the raspberry 

d he latter gets the data from the sensor module. The data is then  pushed to 

the project repository on GitHub where it is later pulled at a convenient time onto another remote 

or local machine for analysis, preprocessing and training of the Artificial Neural Network. This 

process is visualized in Figure 20. 

 

 

 

                                 Raspberry pi 
                                                 datamanager.py  
 
 
                                                  serialcom.py  

 

 

 

Figure 20: Data collection pipeline 
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The process: At the onset, the UAV with the device attached is placed in the data collection 

environment as shown in Figure 21. The environment characteristic is a 3d corner like a 3-

dimensional cartesian plane. 

 

Figure 21: UAV in data collection environment -3d corner for data collection. 

            

After powering on the device, the sensor module automatically calibrates certain essential 

parameters before sent to the intelligent module. These calibrations involve zeroing out the IMU 

and the 3-axis position from the 3 sonar sensors. After this is done, the datamanager.py script is 

run as shown in Figure 22 to start the data collection process. There are 2 categories of flight data 

collected. The first is labelled ground hold and the second, 3d translate. The former is implemented 

as a local directory that holds stores episodes of flight data when the UAV is stationary. This 

presents real-examples to the Artificial Neural Network of a events when the IMU is held at a fixed 

3-axis position and not moving. The latter is just for normal flight maneuvers in any direction. 

Though there are not specific categories in flight, the data is collected this way to ensure that real 

word examples of when the UAV is stationary is provided to the ANN and to keep track of how 

much data has been collected for a certain maneuver. 
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Figure 22: running datamanager.py. 

4.3 Model Training 
 The model training phase follows after the collected data has been pushed or uploaded to 

the GitHub project repository. The steps taken before and after the real training of the Artificial 

Neural Network are the following. 

4.3.1 Data download 
 The data required for training the Artificial Neural Network or ANN is downloaded from 

the project repository into the training environment. Google Colab or jupyter notebook provides 

python environments that can be used for such a purpose.  command was used in the 

Google Colab environment to download the data from the GitHub remote project repository. This 

is seen in Figure 23. 

 

Figure 23:  
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4.3.2 Reading data 
 At this point, the data is now in the training (Google Colab/ jupyter 

notebook ) local directory. The data is read using the pandas library into dataframes. This is shown 

in Figure 24. 

 

Figure 24: Code cell reading data into pandas dataframes. 

4.3.3 Data cleaning 
 To ensure that the data has no null values or NaNs (Not a Number), rows containing any 

null and NaNs were dropped from the Pandas dataframe into which the data was read into. This is 

shown in Figure 25 using the dropna function.  

 

Figure 25: An example code cell dropping rows with NaNs or null values. 

4.3.4 Exploratory Data Analysis 
 Exploratory Data Analysis (EDA) involved searching the dataset prior to t

training to learn insights that may be present in the data. Figure 26 shows the various features and 



35 

 
  

their corresponding labels used in the training environment. Their corresponding feature symbols 

are also indicated. These feature symbols are the same as in Figure 11. 

Feature/state variable label 
n = axis => x, y, z 

 Description Symbol 

accel_ms_n IMU 3-axis acceleration in x, 
y, z axes in m/s2 

ap 

accel_ang_n IMU 3-axis orientation angles 
in x, y, z in degrees 

aang 

IMU_vel_n IMU estimate of velocity in x, 
y, z in m/s 

vt 

IMU_dist_n IMU 3-axis position in x, y, z 
in meters (m) 

St 

gyro_deg_n IMU gyroscope angular 
orientation rates in x, y, z in 
degrees per second 

gp 

chng_veln Magnitude change in 3-axis 
IMU velocity in x, y, z 

dv 

chng_anp Magnitude change in IMU 3-
axis accelerations in x, y, z 

da 

 gyro_ang_n IMU gyroscope angles in x, y, 
z 

gang 

com_pitch Complementary filter angle 
for UAV pitch 

Cpitch 

com_yaw Complementary filter angle 
for UAV yaw 

Cyaw 

com_roll Complementary filter angle 
for UAV roll 

Croll 

travel_n Sonar sensor 3-axis position in 
x, y, z. This is the true position 
of the UAV 

trv 

 Figure 26: Table of labels and descriptions 

 

 Magnitude of feature relationships: To have an idea of which features or state variables 

within the dataset contributed more to the output (3-axis positions of the UAV), the 

 to find the degree of monotonic relationship that 
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existed between axis features or state variables and their corresponding axis position. For 

example, the distance moved by the UAV in the x direction is the x-axis position. X-axis 

features or state variables will be the all the state variables that occur in that axis such as 

acceleration in the x-axis labeled as accel_ms_x .  The absolute value of the correlation 

was used because the sign in this application only showed the orientation or direction of 

 or direction. These are all 

vector quantities. The direction of relationship therefore was ignored as it was dependent 

on these factors. Only the magnitude of monotonic relationships was focused on. 

 

 

 
 

Figure 27: function that calculates using pandas correlation function. 

 

Figure 28: Absolute value of 

relationship between axis features (state variables) and axis position. 

 

From Figure 28, the green color represents the all the features or state variables and their 

 in descending order associated with the x-axis of the UAV. The red 
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color represents the y-axis and the blue, the z-axis. From the results shown in Figure 28 per the 

data collected, chng_velx (whose feature symbol is dv) contributed more to the x-axis position of 

the UAV. This means that the more the magnitude of the velocity in the x-axis changed, the more 

likely the x-axis position (distance) of the UAV changed as well. For the y-axis, the greatest 

contributor was com_roll (whose feature symbol is Croll).This also meant that the more the 

Complementary filter roll angle of the UAV changed, the more likely there was going to be a 

change in the y-axis position of the UAV. This makes sense considering that UAV has to pitch or 

roll in a particular axis in order to translate through that axis. And finally, for the z-axis IMU_dist_z 

(whose feature symbol is St) contributed more to the z-axis position (altitude) of the UAV.    

 

 Feature Visualizations: For the second part of Exploratory Data Analysis (EDA), some 

 flight data belonging to the 2 different flight categories were 

visualized. This revealed visually, how some of the state variables 

features or columns) behaved while the UAV was in flight. This can be seen in Figure 29  

and Figure 20. 

   

                 UAV true altitude from  
                                z-axis sonar sensor              

  

 IMU estimated altitude. 
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Figure 29: A visualization of the state variables or features of one 3d translate episode of the 

. The z-axis features (state variables) are isolated and visualized. 

 

 

 

 UAV  true y-axis position 

 

                        IMU estimated y-axis position  

 

 

Figure 30: A visualization of the state variables or features of one ground hold episode of the 

-axis features (state variables) are isolated and visualized.  

4.4.4 Data pre-processing  Feature Normalization and Scaling 
 This section involved scaling and normalizing the data. The features in the dataset were 

transformed to fit within a range of 0 to 1 using a minimum-maximum scaler. This is shown in 

Figure 32. This was achieved  as shown in Figure 31. 

 

Figure 31: Code cell showing scaling and normalization of data features. 
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Unscaled                                                             scaled 

                                                                                       
     

 Figure 32: Code cell showing scaling and normalization of data features. 

4.4.5 Train test split 
The data was split into two unequal parts. The first part made up 70 % and the second, 

30%. The larger portion was used to train the Artificial neural Network and the smaller portion for 

model during training therefore when used to test, represents an idea of how well the model will 

do on real world data which is unseen just the same. The total size of the dataset after preprocessing 

and dropping NaNs and null values was 12,449. After splitting, 70 % that made up the training 

data was 8,714 samples and 30% that made up the testing or validation data was 3,735 samples.  

All in all, the number of state variables or features in the dataset was 34. Three of which were the 

output variables. These were travel_x, travel_y and travel_z which represented the 3-axis UAV 

positions measured by the sonar sensor. Therefore, the input state variables were 31. 
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4.4.6 Model build 

 The ANN model was built from the Keras Sequential class with eight hidden layers with 

ReLu (Rectified Linear Unit) activation. A linear activation function is used at the output layer 

because the ANN is designed to be a regression model. Figure 33 shows the code that implements 

and compiles the ANN model. The built and compiled ANN model is shown in Figure 34. 

   

  

                                                                                                                                Input layer with relu                              
A                                                                                                                                      hidden layers with relu  
                                                                                                                                              activation        
  
                       
                                                                                                                output layer with linear activation  
 

Figure 33: Function in code cell defining the ANN model. 

 

Figure 34:Model Architecture.  



41 

 
  

4.4.7 Model fitting  
 Under this phase, a training experiment is done to fit the Artificial Neural Network to the 

data (using the IMU data as input and the sonar data as output) using a number of selected loss 

functions and optimizers shown in Figure 37. For the training experiment, the goal was to train 

different ANN models using different optimizer-loss pair combinations, from which the best is 

select after performance evaluation. In total, 18 ANN models were trained all the possible 

optimizer-loss pair combinations in Figure 37. 

 Two callbacks are employed in the fit functions to improve performance. This is shown in the 

train experiment function in Figure 36. 

 ReduceLROnPLateau (Reduce Learning Rate on Plateau): This callback reduces the 

learning rate by a set or desired factor after a number of iterations (epochs) through the 

dataset while training or fitting is ongoing. The factor was set to 0.1. The number of epochs 

to wait before reducing the learning rate known as the patient factor. This was set to 10. 

The validation loss (error) is used as a monitoring metric. If after 10 iterations without any 

improvement o reduction (this is the plateau) in this score, the learning rate is reduced by 

the set factor (patient factor) to allow the algorithm take smaller steps than before to 

increase the chances of the optimizer finding a global minimum with respect to the loss 

function. 

   

  

 

 

 

 



42 

 
  

 

 

visible learning rate reduction on plateau    

  

     

 

 

 

 Figure 35: Model  

 

In Figure 35 the green line represents the learning rate through the entire training process 

or epochs. At the 45th epoch, a plateau in the validation loss occurred which triggered the 

ReduceLROnPLateau callback to reduce the learning rate by the patient factor. The 

corresponding effect is a visible reduction in the validation and training loss (which is an 

improvement) shown by the blue and orange lines. 

 ModelCheckPoint: This call back is used to save the model at the epoch or iteration when 

the validation loss or error is at its minimum during training. This is able to check the 

problem of over fitting s 

improves by reducing. 
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callbacks 

 

                 

 

 

 

 

Figure 36: Function that runs training experiment. 

 

Figure 37: Optimizers and loss functions used in training experiment. 

4.4.8 Model Validation 
 The trained ANN model was validated and tested on 30 % of the entire dataset. This made 

up 3,537 samples or real-world validation examples. Since this portion of the dataset was not seen 

by the model during training, performance evaluation on this data gives an idea of how well the 

trained neural network would perform on real-world data. The trained model was validated on the 

unseen data and ranked in two ways. 

 Overall Ranking by Coefficient of determination:  Using the coefficient of determination 

or R2 metric, all 18 models were ranked according to how well their predictions on the 

validation data fitted to the ground truth from the sonar sensors. 
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Figure 38: R2 model ranking. 

 

The model ranking results from Figure 38 shows that the best model was the one trained 

with the mean absolute error loss and the Nadam optimizer which achieved a coefficient of 

determination of 0.959 on the validation data. 

The figure below (Figure 39) shows the  

output by the ANN. 

 x-axis position                                                                             y-axis position 
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z-axis position  

 

     

 

   

  

   

Figure 39:  itions 

 

 Best optimizer per loss function : For all the loss functions used in the training experiment, 

all optimizers were ranked. This revealed which optimizer performed best  for a given loss 

function.  

 

Optimizer 

Loss Function 

Mean absolute error Mean squared error Mean squared 
logarithmic error 

R2 loss R2 loss R2 loss 

Nadam 0.959 0.017 0.957    0.0014 0.931 0.0009 

Adam -0.065 0.146 0.954 0.0015 0.849 0.0012 

RMSprop 0.928 0.023 0.938 0.0019 0.810 0.0009 

Stochastic Gradient 
Descent (SDG) 

0.470 0.082 0.360 0.0208 0.347 0.0111 

Adagrad 0.026 0.123 0.320 0.0230 -1.641 0.0292 

Adadelta 0.181 0.119 0.095 0.0336 -6.937 0.1104 

Figure 40:  model ranking  optimizer per loss. 
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The best optimizer-loss pair combination was the Nadam optimizer and the mean absolute 

error loss achieving a validation R2 score of 0.959 and a loss of 0.017. For a given loss function, 

there was an optimizer that performed the best. Generally, the Nadam optimizer was the best 

optimizer regardless of the loss function used. This can be seen in Figure 38 and Figure 40. 

 

4.5 Deployment and Real-World Testing and Model Iteration 

 After selecting the best performing ANN model (based on the R2 score on the validation 

data), it was converted to a TensorFlow lite model using the TensorFlow lite converter. This is 

shown in Figure 41.  During this process, the trained 64-bit floating-point weights are converted 

to 32-bit floating-point weights. This allows for faster computational times during inference. 

 

Figure 41:  Code cell to convert model to TensorFlow lite model 

The model is then put on the raspberry pi and allowed to make real world inferences or estimations 

using the IMU data only. Data from the real-world was used to evaluate te model. At this point, 

the architecture is the one shown in Figure 6A.  

Model Iteration: The initial training sample size of 8,253 was increased to 42,110 by collecting 

more data. -world 

performance. As seen in Figure 39, even though the initial selected trained model performs really 

well on its validation data, thus achieving an R2 of  0.959, this may not be representative of real-

world data and performance and as such, more data was collected to investigate this effect. 
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  Using the best optimizer-loss pair a newer model was trained on new larger data having 

42,110 samples. Two ANN models (the first trained on 8,253 samples and second trained on 

42,110) were both used to perform predictions in the real-world. The positions estimated by the 

two models are shown in Figure 42 (showing the x estimated position), Figure 43 (showing the y 

estimated position) and Figure 44 (showing the z estimated position). The R2  validation of the 

estimated against the true positions as shown in Figure 45. In these figures, the blue line represents 

the UAV sensors, the orange line represents the estimates of  

model 1 (trained on 8,253 samples), and the green line represents the estimates made by model 2 

(trained on 42,110 samples). 

 

Figure 42: x position estimation of model 1 and 2 

 

 

 

Figure 43: y position estimation of model 1 and 2 
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Figure 44: z position (altitude) estimation of model 1 and 2 

 

The results showed that a drastic increase in the training sample size resulted in a rather small 

improvement in the real-world performance of the ANN. However, increasing the training sample 

size still improved the real-world performance of the ANN in predicting the UAV s 3-axis 

position. 

 

Model Training Sample Size Real World R2 

1 8,253 -1.33 

2 42,110 -0.87 

Figure 45: Model training sample size and real-world R2 performance 
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Chapter 5: Discussion and Conclusion 
 The problem of making an IMU a standalone positioning determining system is an 

interesting one. However, this is quite hard to achieve. The technique employed in this paper 

utilizes an Artificial Neural Network as an estimator, taking data inputs from feature engineered 

state variables or parameters from an IMU. This data is used to predict the 3-dimensional position 

of the UAV in the x, y and z cartesian coordinates. However, with very good performance of the 

ANN on the validation or unseen data obtained during data collection, it was not able to replicate 

a similar ability of performance on real-world data. As a result, the ANN lacked the required 

generalization capability required on real-world data. Even though a substantial amount of data 

was collected, this data also was not very representative of the real-world data. The results, 

however demonstrated that, the ANN was able to model the relationship between the collected 

input data from IMU and the true UAV positions reported by the sonar sensor. But since this data 

was still not representative of all the real-world data, the ANN failed to generalize to maintain a 

very good performance in the real-world. The results also showed that a substantial increase in the 

size of the training set generated a little improvement in the real-world performance and 

generalization capability of the ANN. This means with more data, better estimations in the real-

world could be achieved. 

5.1 Limitations 
 The following were things that served to obstruct project progress and consequently the 

overall performance of the Artificial neural Network. These limitations prevented the collection 

of enough data which could have boosted the performance of the Artificial Neural Network. 
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 Serial Exception Errors: These errors were randomly thrown during the data collection 

process while the UAV was in flight. This caused a significant reduction in the total data 

collected during flight episodes. 

 Inadequate UAV battery life: With a very long charging time and a short battery life after 

charging, a lot of time was spent recharging the UAV battery rather than collecting data. 

The short battery life also meant very little data could be collected after each charge cycle. 

5.2 Future Works 
 Overall, the design and technique proposed by this paper are feasible. The following are 

some recommendations to improve the outcome of the technique used in this paper. 

 Collecting lots of data to train the ANN and improve its generalization capability in the 

real-world 

 Expand the size of the Artificial Neural Network by adding more hidden layers to allow 

the learning of more complex relationships which may not have been captured by this 

model. This would help tackle edge cases not seen by the model during training. 

 Develop a more efficient data collection algorithm to improve data collection efficiency. 

 Doing more feature engineering to present more state variables for better generalization. 

 Improving the weight and form factor of the device built. This will improve power 

consumption of the UAV during flight as it will carry less weight. 

 

 

 

 



51 

 
  

References  
[1] -cost GPS/INS integration based on UKF and BP neural 

Fifth International Conference on Intelligent Control and Information Processing, 
Aug. 2014, pp. 100 107, doi: 10.1109/ICICIP.2014.7010322. 

[2] 
 

[3] 
trilateration scheme for GPS- 2018 IEEE Aerospace Conference, Mar. 
2018, pp. 1 10, doi: 10.1109/AERO.2018.8396377. 

[4] Sara. Benkouider, Nasreddine. Lagraa, Mohamed. B. Yagoubi, and Abderrahmane. 
2013 

9th International Wireless Communications and Mobile Computing Conference (IWCMC), Jul. 
2013, pp. 53 58, doi: 10.1109/IWCMC.2013.6583534. 

[5] -sensor 
Geo-Spat. Inf. Sci., vol. 21, no. 4, pp. 302 310, Oct. 2018, doi: 

10.1080/10095020.2018.1465209. 

[6] 
GPS using radial basis function neural networ 2010 11th 
International Conference on Control Automation Robotics Vision, Dec. 2010, pp. 2427 2430, 
doi: 10.1109/ICARCV.2010.5707295. 

[7] 
integration IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 2, pp. 687 693, Apr. 2002, doi: 
10.1109/TAES.2002.1008998. 

[8] 
Science, vol. 349, no. 6245, pp. 255 260, Jul. 2015, doi: 10.1126/science.aaa8415. 

[9] 
Proceedings of the 2000 American Control Conference. 

ACC (IEEE Cat. No.00CH36334), Chicago, IL, USA, 2000, pp. 4014 4018 vol.6, doi: 
10.1109/ACC.2000.876976. 

[10] 
J. Approx. Theory, vol. 70, no. 2, pp. 131 141, Aug. 1992, doi: 10.1016/0021-

9045(92)90081-X. 

[11] A. Sharma et al. J. 
Netw. Comput. Appl., vol. 168, p. 102739, Oct. 2020, doi: 10.1016/j.jnca.2020.102739. 

[12] roelectromechanical 
2017 IEEE 4th International Conference Actual Problems of Unmanned Aerial 



52 

 
  

Vehicles Developments (APUAVD), Kiev, Oct. 2017, pp. 180 183, doi: 
10.1109/APUAVD.2017.8308804. 

[13] 
Embedded Systems: The AlexNet and VGG- 2018 17th ACM/IEEE International 
Conference on Information Processing in Sensor Networks (IPSN), Apr. 2018, pp. 212 223, doi: 
10.1109/IPSN.2018.00049. 

[14] 
IEEE Trans. Aerosp. Electron. Syst., vol. 40, no. 2, pp. 591 600, Apr. 2004, 

doi: 10.1109/TAES.2004.1310007. 

[15] N. El-Sheimy, K.-
IEEE 

Trans. Instrum. Meas., vol. 55, no. 5, pp. 1606 1615, Oct. 2006, doi: 10.1109/TIM.2006.881033. 

 

 

 

 

  

 

 

 

 

 

 

 

 



53 

 
  

APPENDICES 
APPENDIX A: ENGINNERING DR AWING OF TOP CASING 

 

 

 

Figure 46: Engineering drawing of Top casing 
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APPENDIX B: ENGINNERING DRAWING OF BUTTOM CASING 

 

Figure 47: Engineering drawing of Bottom casing 

 


