

ASHESI UNIVERSITY COLLEGE

STANDALONE IMU POSITIONING DETERMINING SYSTEM FOR

UAVs USING ARTIFICIAL INTELLIGENCE

CAPSTONE PROJECT

B.Sc. Electrical/Electronic Engineering

William Kwesi Akuffo

2021

ASHESI UNIVERSITY COLLEGE

STANDALONE POSITIONING DETERMINING SYSTEM FOR UAVs

USING ARTIFICIAL INTELLIGENCE

CAPSTONE PROJECT

Capstone Project submitted to the Department of Engineering, Ashesi

University College in partial fulfilment of the requirements for the award of

Bachelor of Science degree in Electrical/Electronic Engineering.

William Akuffo

2021

i

DECLARATION
I hereby declare that this capstone is the result of my own original work and that no part of it has

been presented for another degree in this university or elsewhere.

Date:

I hereby declare that preparation and presentation of this capstone were supervised in accordance

with the guidelines on supervision of capstone laid down by Ashesi University College.

ii

Acknowledgements
To God who first made all things that all other things are possible as a result. And then to my

supervisor, Dr Nathan whose encouragement and academic advice helped me undertake this

project.

iii

Abstract
Inertial Measurement Units (IMUs) are Micro-Electromechanical Systems (MEMS) that are able

to provide acceleration angular orientation rates information via inertial sensing. Unlike other

positioning devices like the Global positioning System (GPS), they do not require any form of

communication with an external device or technology in order to obtain this information. This

makes them the ideal positioning devices to serve as standalone systems. However, with certain

drawbacks associated with the IMU they are unable to effectively serve in this role. Existing

schemes employ the use of Kalman filters as a complementary approach to solve this issue but this

also presents complexity and drawbacks resulting in the failure of the Kalman estimator especially

when there is no GPS signal available. This paper proposes a technique by employing the use of

an Artificial neural Network (ANN) to model certain state variables in order to estimate the

position of an Unmanned Aerial Vehicle (UAV) quadrotor with the IMU serivng as a standalone

positionng determing device.

iv

Table of Contents
DECLARATION ... i

Acknowledgements ... ii

Abstract .. iii

Chapter 1: Introduction ... 1

1. Background ... 1

1.2 Problem Summary and Objective ... 2

Chapter 2: Related Literature Review .. 4

2.1 Inertial Navigation Systems (INS) and Inertial Measurement Units (IMUs) 4

2.2 GPS/INS .. 4

2.2.1 Coupling and Estimation with the Kalman Filter .. 6

2.2.2 Estimation with Intelligent methods .. 7

2.3. Machine Learning (ML) and Artificial Neural Networks (ANNs) 8

2.4 Artificial Neural Networks in Embedded Systems ... 10

2.4.1 Artificial Neural Networks High Level Overview ... 10

2.5. Unmanned Aerial Vehicles (UAVs) / Quadcopters ... 12

Chapter 3: Design Specifications and Requirements .. 14

3.1 System Requirements.. 14

3.2 Data Collection Environment Requirements .. 15

3.3 System Specifications ... 15

3.4 Environment specifications ... 16

3.4 High Level System Design Options .. 16

3.5 Design Selection ... 18

3.6 Selected Design ... 19

Chapter 4: Implementation, Testing and Results .. 21

4.1 Device Build ... 21

4.1.1 Sensor module .. 22

4.1.1.1 Data Sensing and Feature Production ... 22

4.1.1.2 Feature Engineering Architecture ... 23

4.1.2 Communication module ... 26

4.1.3 Intelligent module .. 26

4.1.4 Power Module .. 27

4.1.5 Device Casing .. 29

4.1.6 Device Assembly ... 30

v

4.2 Data Collection ... 31

4.3 Model Training ... 33

4.3.1 Data download ... 33

4.3.2 Reading data... 34

4.3.3 Data cleaning ... 34

4.3.4 Exploratory Data Analysis ... 34

4.4.4 Data pre-processing Feature Normalization and Scaling.. 38

4.4.5 Train test split .. 39

4.4.6 Model build .. 40

4.4.7 Model fitting .. 41

4.4.8 Model Validation ... 43

4.5 Deployment and Real-World Testing and Model Iteration .. 46

Chapter 5: Discussion and Conclusion ... 49

5.1 Limitations .. 49

5.2 Future Works .. 50

References ... 51

APPENDICES .. 53

1

Chapter 1: Introduction

1. Background
Our lives have become increasingly reliant on positioning determining systems. We depend

on them to tell us where we are in real time, or where an object is within a certain reference frame.

Some modern vehicles, such as ships and boats, automobiles, planes and helicopters, and

spacecrafts, are equipped with positioning determining systems that enable them to monitor their

positions more easily and conveniently within the space (reference frame) in which they are

operating. Inertial Measurement Units (IMUs) and the Global Positioning System (GPS) are two

examples of positioning systems (GPS). Inertial Measurement Units can be electronic devices that

provide acceleration and orientation information. This data can be used to estimate the position or

orientation of the vehicle or an object in space by applying some special algorithms to them.

Autonomous vehicles (land or aerial) require that their position in a local or global reference frame

is known in real-time. This helps it navigate properly within their reference frames.

These positions in real-time need to be frequently updated to match their true position in the

reference frame.

Most Unmanned Aerial Vehicles (UAVs) are equipped with GPS for position reporting.

Others like beginner drones may not be. However, what is common to both is the IMU. Data from

the IMU is required by the UAVs control algorithms to achieve the desired flight maneuvers. The

GPS onboard may not always be able to report the UAVs global position especially in situation

where there is the absence of a signal (GPS outage), no-clear-line-of-sight, or in urban areas or

around somewhat closed spaced such as tunnel. The GPS may suffer signal blockages or multipath

errors. Inherently, the GPS suffers all drawbacks associated with signal propagation. Like most

2

signal propagation dependent position estimation methods, the GPS always requires some form of

external technology with it can communicate before position can be estimated. The IMU on the

other uses inertial sensing which allows it so provide information such as angular orientation rates

and acceleration from its gyroscopes and accelerometers, respectively. The IMU however has

certain drawbacks which prevents it from being used as a standalone position estimating device.

Signal from the accelerometer can be noisy whereas the gyroscope may be subject to drift. Current

techniques employed to solve these problems utilize Kalman filters to fuse the IMU with the GPS.

This can be quite complex in development and presents its own drawbacks. The Kalman filters fail

when there is GPS outage because the GPS is required to compensate the IMU error, Other

schemes propose the use of Artificial Neural Networks (ANNs) to complement the Kalman filter

when this happens. All in all, ANNs have been proven to have a robust ability to model complex

non-linear functions and relationship. Other schemes like [4] employ ANNs as sole estimators to

reduce the complexity the Kalman Filter presents while being able to stand fast in all circumstances

of uncertainty.

1.2 Problem Summary and Objective
Using IMUs for position estimation is still an interesting area of research. However, their

inability to provide sub-meter level accuracy over prolonged periods makes this incredibly

difficult. IMUs as standalone position estimators quickly drift, producing unbounded estimates

which are unreliable. Therefore, they are unable to exclusively serve as standalone positioning

systems. Existing schemes like [1] fuse IMUs with GPS with Kalman Filtering approaches.

However, this ramps up the approach complexity and cost by requiring additional hardware (GPS).

Such methods are dependent on the availability of a GPS locking signal and fails in its absence.

3

More intelligent methods combine IMUs with GPS using some fuzzy logic or neural networks. In

an attempt to reduce complexity, [4], [14], [15] propose techniques that prove neural network as

an estimator due to its robust ability to learn very complex non-linear. Current methods are

complex, not reliable, and not self-reliant. For example, [1], utilizes a Kalman Filter in the presence

of a GPS signal and then switch to an ANN when there is GPS outage. However, the accuracy of

the ANN only lasts for about 60 seconds after which it begins to deteriorate This makes the system

somewhat dependent on the availability of a GPS signal. The system therefore is not effectively

self-reliant without the GPS signal and complex with the utilization of the Kalman Filter.

Therefore, taking advantage of the ability of ANNs to model complex relationships (linear and

non-linear) between variables, an ANN will be trained on data collected from an IMU and sonar

sensors (forming the state variables of the UAV) as a form of black box modelling approach,

learning the relationships between these variables in order to estimate the position of a UAV. This

technique will be also used to investigate the feasibility of an IMU as a standalone positioning

determining system. A portable devices capable of being carried by the UAV will interface with

two distinct sensors which are an IMU and a sonar sensor. Data will be collected from these two

sensors, on which an ANN will be trained in order to model the relationship between the IMU data

and the sonar data. Therefore, using the IMU alone, the position) of the UAV (which was initially

given by the sonar data)could be estimated by the trained ANN making the IMU a standalone

(self- reliant) positioning determining device.

4

Chapter 2: Related Literature Review
 In this chapter, related literature will be reviewed. Existing techniques or methods and

technologies related to the topic will also be discussed in detail.

2.1 Inertial Navigation Systems (INS) and Inertial Measurement Units (IMUs)
An Inertial Navigation System is made up of IMU sensors. These could be

gyroscopes, accelerometers, and magnetometers. MEMS IMU sensors are Micro-

Electromechanical Systems that can sense inertial information such as inertial acceleration and

inertial rotation. INS (Inertial Navigation System) systems (comprising of IMU) may utilize a

computer to calculate position using a method known as dead reckoning without the need for an

external reference frame [4]. However, using this method with and IMU or INS has its drawbacks.

The INS may only be accurate within a very short time. Over a long period, it accumulates errors

which degrades the estimation [4]. INS may be coupled with GPS in some applications for

positioning determination and navigation [1], [4].

An intuitive approach for position estimation using the IMU data is to perform a double

time integration on the IMU acceleration (from the accelerometers) to produce an estimate of the

 and a single time integral (from the gyroscopes)

orientation. However,

error with a non-zero mean which gets compounded with the true estimate within a short period

[1], [2]. This can lead to very large deviations from the true position of the vehicle or object.

2.2 GPS/INS
Combining the GPS with the INS provides a robust way of dealing with the problems of

one sensor alone. For example, the INS is subject to accumulate errors within a fair amount of time

5

which causes a degradation in the position estimates it produces. However, the GPS is immune to

this kind of drawback. The GPS on the other hand suffers all drawbacks associated with signal

propagation whereas the INS Therefore, coupling or fusing these 2 sensors together allows

for error compensation from one of the 2 sensors. The GPS is usually used to compensate the INS

error [1] during position estimation. Depending on the application and functional requirements,

various schemes propose various approaches for GPS/INS fusion or coupling.

. The working of GPS combines a receiver and a transmitter. The receiver must

communicate with a minimum of 4 GPS satellites for effective trilateration [3]. Trilateration is the

method used to determine the position of a GPS receiver on the surface of the earth [3]. GPS

signals can suffer signal blockages and multipath in urban areas with building presenting

themselves as obstacles, obstructing the clear line of sight needed by the GPS for position

estimation. Inherently [4], GPS suffers all the drawbacks associated with signal propagation such

as multipath and other forms of distortion.

GPS may be coupled with an INS (Inertial Navigation system) which is comprised of an

IMU to improve the position estimation. Numerous approaches utilize the Kalman Filter as a real-

time fusion algorithm of the GPS sensor data and the INS sensor data [4], [6]. The goal of the

fusion is to allow one sensor to compensate the other where one might fail. In many cases, this is

more robust than having one sensor as a standalone position estimator. The Kalman Filter acts as

an error estimator for the INS as long as the GPS signal is available [1]. Typical Kalman Filters

tend to fail along with the GPS/INS system when there is GPS outage [1]. This is because

the INS without the GPS deteriorates rapidly within a short time. Without GPS signal being

available, the Kalman Filter becomes useless making the whole system being dependent on the

availability of a GPS signal.

6

When coupling GPS with INS in the case of UAVs, the extra sensor (GPS), means extra

cost and extra weight. This extra weight also means more energy or power to work the GPS and fly

the UAV. Hence there is a reduction in flight time [5]. This incurs extra cost on the side of the

GPS hardware. The integration of these two systems as one unit is usually done using a Kalman

Filter as the sensor fusion algorithm. Kalman Filters are simply state estimators that predict the

Kalman Filters are then used to estimate the INS error for compensation [4]. However, this only

works if GPS signal is available. Since the GPS is required by the fusion algorithm to estimate to

INS error for compensation, the entire systems become somewhat dependent on the availability of

a GPS signal which is not very helpful in the event of a GPS outage, The Kalman Filter therefore

fails to do its INS error estimating job. In multipath prone environments as well, such as urban

areas and semi enclosed areas, the performance of the GPS is also affected leading to the gradual

deterioration of the GPS/INS system.

2.2.1 Coupling and Estimation with the Kalman Filter
Coupling the GPS with INS can take on several forms. Some of these are loosely or tightly

coupled integration, closed or open loop integration. In all such approaches, a typical Kalman

Filter is required [7]. As mentioned earlier, these Kalman Filters are used as state

estimators. Modified versions of these Kalman Filters are the Extended Kalman Filter (EKF),

which is applicable to non-linear systems, but has a degradation and divergence problem due to its

linearization process [1]. The Unscented Kalman Filter (UKF), which has been investigated to

have good performance than the EKF with about the same complexity [1]. The UKF makes use of

an Unscented transform which is used to propagate means and covariance through a non-linear

7

transformation [1]. In [1],[7], a set of variables are selected to represent the state . Some of

these state variables are position errors, velocity errors, accelerometer biases, as well INS and GPS

position differences. This is used as a measurement vector input to the Kalman Filter to estimate

the INS error for compensation. Therefore, the GPS and INS are fused together by a Kalman Filter

which uses both sensors for state estimation and position correction. However, there can be

situations (No clear line of sight) that lead to GPS outage or GPS signal multipath. The former can

cause the Kalman Filter to fail [1] because, there would be no GPS to compensate the INS. As a

result of this, some schemes like [1], propose new ways of using intelligent methods in

combination with Kalman Filter to address this.

2.2.2 Estimation with Intelligent methods
There are many proposals that seek to improve GPS accuracy, but these complexities

increase with the increasing need for more accuracy [4]. The common way is to combine GPS and

INS with some sort of fuzzy logic or neural networks [4]. In [4], a unique technique based solely

on Neural Networks is proposed. The sensor fusion algorithm or estimator which would have been

the Kalman Filter in most GPS/INS sensor fusion schemes as seen in [1] is replaced entirely by a

neural network. Neural Network proves robust where typical GPS/INS may suffer deterioration in

urban areas because of signal blockage and multipath, the Neural Network would prove robust.

Another technique to use the ANN together with the Kalman Filter. In [1], a Back propagation

Neural Network is used to simulate an Unscented Kalman Filter (UKF) during GPS outages for

INS error compensation. Other methods may propose other Kalman Filters depending on

requirements. However, regardless of the type of Kalman Filter used, if there is no GPS signal

available, the GPS/INS systems fails because the INS is left alone to do the estimation without the

8

GPS for compensation. Usually, the Kalman Filter algorithm also fails here. This is because it is

no longer able to do the error estimating job to compensate the INS without the GPS. This makes

the reliability of the whole system somewhat dependent on the availability of a GPS signal.

To account for signal multipath distortion and the likely event of a GPS outage around

areas with no clear line of sight, ANNs (Artificial Neural Networks) are used in some

schemes [1],[4] to either fully or partially replace the GPS/INS estimator (Kalman Filter or fusion

algorithm) in the event of GPS outage. When GPS signal is available, an ANN may be trained in

Some schemes train the ANN to completely replace the estimator[4]. Therefore, the

Artificial Neural Network can perform the job of the Kalman filter or estimator under multipath

condition where the GPS might be deteriorating or during GPS outages where the Kalman Filter

itself might fail. Many others go on to train an ANN which go on to train the ANN on the INS

error are able to use only data from the INS and the ANN to accurately predict navigation

information while causing the INS to act as a standalone system. Due to the robust ability of Neural

networks to generalize to uncertainties and non-linearities, they are explored and used in a wide

variety of modelling applications.

2.3. Machine Learning (ML) and Artificial Neural Networks (ANNs)
 Machine learning addresses the question of how to build computers or algorithms that self-

improve over experience [8]. Though not human experience, the experience is learned in the form

of fine-tuning certain weights that map input-output relationships through lots of data with the

assumption that there is a theoretical relationship between the input and output variables. The

situation whereby an algorithm gets better at a particular task overtime by not explicitly being

9

programmed. Machine learning has been widely adopted in various industries such as engineering,

research, even up to customer service, to help solve extremely complex problems which cannot be

easily modelled by humans. For machines, these problems become very easy once they have

learned the right weights or parameters through experience or training. Generally, there are about

three main approaches used in machine learning. These are, supervised learning, unsupervised

learning, and Reinforcement learning. Under supervised learning, the algorithm is given labeled

data from which it learns or trains on. Examples of supervised learning problems are regression

and classification. Unsupervised learning on the other hand does not require labeled data. The

algorithm is designed to learn these labels. Typically used where the engineers themselves have

no clue what the labels are. An Example of an unsupervised learning problem is clustering.

Reinforcement learning however requires no data at all. The algorithm presents itself as an agent

in an environment from which it learns the best policy mapping actions to states within the

environment usually driven by a reward scheme. Good actions merit good rewards whereas bad

action results in bad rewards or punishments. Reinforcement learning can be used in self-driving

cars or robots.

Artificial Neural Networks, a special kind of machine learning algorithm employs several

techniques to learn weights that map inputs and output relationships. These relationships are not

explicitly known. The first technique is a feed-forward algorithm that passes the data through the

network to make predictions. After this phase, a back propagation algorithm is used to update the

weights within the network. This would be the first epoch of many possible iterations. This cycle

repeated several times until the optimum sets of weights is found or learned by the network, hence

an optimum solution to the problem is found. This is called convergence, Most ANNs may employ

stochastic gradient descent as the learning algorithm whereas others may use the Adam learning

10

-squared- -mean-squared- is

used to monitor the loss of the network. All these helps it to learn and converge. ANNs have proven

themselves to be very robust for complex linear and non-linear modelling while being able to

generalize well [4], [9]. Neural Networks with just a single hidden layer can be used to approximate

very complex non-linear functions or relationships[4], [10].

2.4 Artificial Neural Networks in Embedded Systems
 The execution of most deep learning tasks is highly restricted to platforms with high

compute power making use of GPUs or external hardware accelerators [13]. Most embedded

microprocessors and controllers simply do not have the compute power to perform these

computationally strenuous tasks. Even if they are able to run inferences on data using deep learning

models, they end being too slow. Such a performance is usually unacceptable in most machine

learning or deep learning applications. In order to improve performance in embedded applications,

precision scaling may be used to reduce memory occupation of such models or networks. Weights

are rounded using fixed-point representations reducing them from higher bit data types to 8-bit

data types. This reduces computational load and improves performance [13]. However, there could

be some trade-offs in accuracy.

2.4.1 Artificial Neural Networks High Level Overview
 Artificial Neural Networks are essentially algorithms that are able to extract patterns from

data and learn those patterns through weights. A set of input parameters are weighted to assign

levels of importance to the individual input parameters or features. These features after being

weighted (multiplied with the weights), are linearly combined in a summation. A bias term may

11

be added. The result is then transformed by a non-linear activation function in most cases from

which an output estimation may be obtained. This is visualized in Figure 1 below.

Figure 1: Artificial Neural Networks at the core.

Artificial Neural Networks primarily involve 2 processes.

 Feed Forward: This is the process of computation whereby predictions or estimations are

done using learned or initialized weights.

Output Linear combination of inputs

Non-linear activation

 Back Propagation: This is the process of computations where results in updating former

weights with newly computed ones. The new weight is calculated as:

, where

 , where z is the output of an intermediate neuron,

12

 is the newly computed weight,

is the former weight at the previous iteration,

 is the learning rate of the algorithm and is the loss function.

2.5. Unmanned Aerial Vehicles (UAVs) / Quadcopters
 Unmanned Aerial Vehicles (UAVs) popularly referred to as drones are aircrafts that

operate without onboard human pilots. UAVs are a part of an Unmanned Aerial System (UAS)

which usually includes a ground-based controller and a system of communication between them

[11]. Advanced UAVs may have an auto-pilot feature that allows it to automatically return to the

ground station in the event of a signal loss or critical battery power [12]. UAVs may be designed

to have a number of propellers usually with equiangular spacing between them. The number of

propellers presents different flight and control dynamics to the UAV. Quadrotors or quadcopters

are designed to have 4 propellers. Thrust on each propeller is varied in order to achieve a desired

control or flight maneuver. In modern time, UAVs are applied in so many industries such as aerial

photography, deliveries, the military, and RC-sports. UAVs may also be used for surveillance

missions and surveying land areas.

The most common technology used to determine the position of UAVs

is the GPS. Onboard GPS receivers communicate with GPS satellites which constantly track and

report the position of the UAV in real-time using the propagation time of the signal (time of flight).

GPS as a positioning system for UAVs can provide very accurate positioning information as long

as there is a clear and unobstructed line of sight [1], [4]. However, in places where there is not, the

GPS may suffer signal blockage or multipath signal distortion which can cause failure or errors in

the GPS positioning [1], [4]. Further, GPS consumes more energy than IMUs and have a low

position update rate making it unsuitable for real-time demand of UAVs [5]. This can affect the

13

flight time of such UAVs. In high dynamic maneuvering environments, higher update rates of the

UAVs position may be required to provide a smooth position report in real-time. The drawbacks

of GPS such as the increased probability of signal blockages around buildings, and multipath

distortion, which yields multiple copies or reflections of the GPS signal, prevents it from being an

effective positioning system indoors or somewhat enclosed spaces, or around buildings and in

urban areas, where these conditions are present. Accuracy and precision of position may be greatly

compromised.

14

Chapter 3: Design Specifications and Requirements
 In this chapter, the fundamental design requirements, and specifications of a lightweight

system capable of being carried by a UAV will be presented. This device will have two distinct

sensors as shown in Figure 2. The MPU6050 which is an Inertial Measurement unit consisting of

a 3-axis accelerometer and a 3-axis gyroscope. The device will be carried by a UAV within a

chosen flight environment to collect data from these sensors from which an Artificial Neural

Network will be modelled. The selected UAV type is a quadrotor. A quadrotor is selected for this

application because;

 It is easily maneuverable.

 It can fly within a small and confined space.

 Its cost and availability are within project constraints - time, cost, and scope.

HC-SR04 sonar sensor MPU6050 IMU

Figure 2 : The two distinct sensors

3.1 System Requirements
The device should:

 be inexpensive.

 easily interface with the UAV.

 not be heavy for the UAV.

 have a reasonable power consumption.

15

 not be bulky UAV.

 Should be computationally efficient.

 Should be able to handle and collect data and store easily.

3.2 Data Collection Environment Requirements
 Nature of environment: The kind of environment required to collect the required data for

this application has to have walls forming a 3d corner with representable 3d planes (x, y

and z). A 3d corner looks like a 3-axis Cartesian plane with the meeting of 3 planes at 90-

degree angles to each other. This can be represented as 2 walls meeting in a corner at 90-

degrees and standing vertical at 90 degrees to the ground.

 Environment space: Space should be of good size to be in range of proximity sensors.

3.3 System Specifications

Criteria Requirement Specification
Cost Should be inexpensive Cost < GHC 500
Compute Should have reasonable inference

time.
 Inference time should not affect

performance

Inference time < 1 second

Weight Should be light weight.
 Weight should not compromise flight

time of UAV

Weight < 100g

Power
Consumption

 Power consumption should be
reasonable.
 Power consumption should not affect

flight time of UAV

Power < 10W

Size Should be portable Size <150mm by 50mm by
30mm

16

Data
Handling

 Should have good storage size for
temporal data storage and handling
(e.g., push to cloud a base) to be retrieved
later for training.

 memory > 1Gb

 Push to GitHub

3.4 Environment specifications
Environment
for Data
Collection

 Data collection and training

environments should be in a 3d corner
with representable 3d planes (x, y and
z)
 Space should be of good size to be

in range of proximity sensors.

Size <= 400cm (l) by
400cm (w) by400cm (h)
by

3.4 High Level System Design Options
 Option A : As visualized in Figure 3 below, a Micro-Controller Unit (MCU) interfaces with the

sensors. The (MPU6050 IMU) 3-axis gyroscope and accelerometer module and 3 sonar sensors

(HC-SR04). It also hosts the Artificial Neural Network estimator for predicting the -axis

position. The sensors will collect data used for training the ANN and data for making real-time

predictions after the ANN is trained. most MCUs do not have enough compute power and memory

for Deep Learning and Machine Learning applications in general therefore inference times from

hosted models might be too slow and not meet the application requirements. For this application,

real time estimations need to be done by the system. However, the lack of compute power for most

microcontrollers may cause this design specification to not be met.

17

Figure 3: High level design architecture of design option A.

Option B : With this option, there are 4 submodules.

 The Intelligent module: This is made up of the ANN hosted on a raspberry pi. The

raspberry pi offers about 1.4GHz of processing power compared to the 16MHz clock of

the ATMEGA328P which is the choice of MCU used. This would provide enough

computational resources for the ANN to meet the inference time of the design specification

which is supposed to be less than 1 second for every inference by the model.

 Sensor module: The sensor module is made up of all the systems sensors and the micro-

controller unit.

variables is done here.

 Communication module: This is the link between the Intelligent module and the Sensor

module.

 Power Module: The power module will consist of a voltage regulator which will supply

the right amount of power to the device. The main power source will be the UAV

18

As visualized in Figure 4, this option has the with sensors (MPU6050 3-axis accelerometers and

gyroscope, 3 HSR04 Ultrasonic sensors) connected to the ATMEGA328 MCU. The data is

collected by the MCU and transferred to the raspberry pi which rather hosts and runs ANN.

Figure 4: High level architecture of design option B.

3.5 Design Selection
Using the Pugh matrix, the design selection criteria are presented and evaluated on the

proposed design options. The highest scoring design is selected and implemented. This can be seen

in the Pugh matric below of Figure 5. Alternative 2 (option B) was selected.

Criteria Weight Alternative1 Alternative 2 Baseline

Weight 2 +2 +1 0

Power Consumption 2 +3 -1 0

Computational
Power/Efficiency

3 -3 +1 0

Data Handling 2 +1 +2

Size 1 +2 0 0
Cost 1 +2 +1 0
Score

0 8

Figure 5: Pugh Matrix for design selection

19

3.6 Selected Design
 The selected design presents two architectures. The first is during data collection and

training and the second is during the real-time position estimation of the UAV. This can be seen

in Figure 6. During data collection and training, the data is collected by the sensors which interface

with the MCU and transferred to the raspberry pi for management and storage. When that is done,

the data is pushed to the project s GitHub repository and then pulled unto a local machine where

the model is trained. During real-time position estimation, only, data from the IMU (MPU6050) is

required from the sensor module. When the data is transferred to the raspberry pi to be used for

inference, the results of the predicted UAV positions are displayed over a Local Area Network IP

address which the raspberry pi is connected to during an SSH connection.

A. Estimating positions B. Data collection and training

Figure 6: Selected design architecture

A complete circuit schematic of the system consisting of all submodules is shown in

Figure 7 below along with the designed Printed Circuit Board (PCB). The sensor module has

digital pins that connect 3 sonar sensors (HC-SR04) and one IMU (MPU6050) to the

microcontroller. These sensors are seen in Figure 2. The power module powers the system using

power from the UAVs battery. Data collected from the sensors is then transferred to the raspberry

20

pi (intelligent module) over the UART-Serial interface from the TXD pin (pin 3 on the

ATMEGA328 for transmit) on the microcontroller to the RXD (GPIO 15 on the raspberry pi for

receive) pin on the raspberry pi.

Schematic PCB

Figure 7: Electronic Design Schematic of submodules and Printed Circuit Board.

21

 Chapter 4: Implementation, Testing and Results
In this chapter, the procedure undertaken to implement the project will be presented and discussed.

The project implementation occurred under four primary parts which follow as;

 Device build

 Data collection

 Model training

 Model deployment and real-world testing.

4.1 Device Build
This phase of the project involved building the device itself by sourcing the required electronic

components and implementing all the circuitry required. All hardware and electronic components

were put together. This was accomplished by developing the 5 subsystems shown in

Figure 8.

 Figure 8: All submodules housed within device casing.

22

4.1.1 Sensor module
The sensor module consists of 4 sensors. These are three (3) HC-SR04 sonar sensors and

one (1) 3-axis MPU6050 IMU. The sonar sensors provided the ground truth 3-axis (x, y, z)

positions of the UAV, while the IMU provided inertial data such as 3-axis accelerations the

accelerometers and 3-axis angular rotation rates from the gyroscopes. It also consisted of the

microcontroller unit (ATMEGA328) which interfaced with these sensors for the required

information. Data from the sensor module is collected by the intelligent module for storage and

management to later serve as training data for the Artificial Neural Network. After the model has

been trained and deployed to be hosted on the intelligent module, this data is used for real time

prediction of the UAVs position by the Artificial Neural Network.

4.1.1.1 Data Sensing and Feature Production
Feature production consists of data sensing by the sensors and feature engineering. Feature

engineering is done to produce extra features or state variables using the sensor data. Some

examples of the sensor data are the 3-axis positions from the ultrasonic sensors, and the 3-axis

accelerations from the IMU (Inertial Measurement Unit). All these present themselves as features

or parameters to be used by the ANN (Artificial Neural Network) in making predictions. Feature

engineering therefore provides more information to the ANN in the form of extra variables or

parameters. These features form the state variables of the UAV (Unmanned Aerial Vehicle) in

flight. Thus, more features mean more state variables to define the system, thereby supplying more

information for the ANN to make better predictions. Two examples of such engineered features

include velocity and position integrated and double integrated from the IMU accelerations,

respectively. Acceleration here is directly sensed by the IMU. Consequently, the position and

velocity are engineered from this measurement by finding their time integrals. The sensors are

23

grouped into two according to which features or parameters they produce (input or output features

or state variables). The IMU (MPU6050) is the input sensor. It measures all data used as input

features or parameters to the ANN. The ANN uses this input to predict the output parameters or

state variables. Some of these input features or parameters include the 3-axis accelerations (ax,

ay, az) and the 3-axis angular rotation rates from the accelerometers and the gyroscopes,

respectively. Another is the angular orientation in degrees measured by the IMU. The output

parameters are measured in corresponding time with the input features. The time corresponding

output parameters or variables are measured by the 3 ultrasonic range sensors (HC-SR04) oriented

in the x, y, and z axis to capture the 3-dimensional position of the UAV quadrotor in point space

of its environment. The ultrasonic sensors serve as the output sensors, producing those parameters

(ground truth) the ANN is trained to predict using the input features. Some of these output features

include the 3-axis position, velocity and acceleration of the UAV measured by the 3 ultrasonic

sensors.

4.1.1.2 Feature Engineering Architecture
There are 2 kinds of parameters or features. These are grouped according to which sensors they

come from. Parameters from the output sensor (ultrasonic HC-SR04) forms the output features.

These are the variables the ANN is trained to predict using the input features. Parameters from the

input sensor or IMU forms the input parameters or features. These are used to predict the output.

Input IMU (MPU6050) Output ultrasonic sensor (HC-SR04) -
ground truth

3-axis accelerations (non-linear with gravity
component) 3-axis accelerometers (ar)

3-axis true positions (x, y z) of the UAV
 (r)

3-axis angular rotation rates 3-axis
gyroscopes (gr)

Figure 9: Features Directly Measured by Sensors

24

 From the features directly measured by the sensors whose symbols are ar (raw 3-axis accelerations

 and gr (raw 3-axis gyroscope rates)

as in seen in Figure 9, other state variables are engineered to provide more information on the

state of the UAV in flight. This is illustrated in Figure 10.

Input

Output

Figure 10: Feature Engineering architecture

25

Figure 11: Table of feature transform

 The feature transform blocks labeled P1 to P12 whose transforms can be found in Figure

11 above are used to produce all the feature engineered parameters used to monitor the UAVs state

at each time step of feature sampling during data collection or position estimation. The output of

P Transform Description
1 ap is 3-axis acceleration (axp, ayp, azp) in

meters per second

2 3-axis angular rates in degrees per second

3 axang =

ayang =

Pitch (axang) and roll (ayang) Euler angles
calculated from accelerometers only

4 gxang = (*dt

gyang = (*dt

gzang = (*dt

Single time integrated angles pitch (gxang),
roll (gyang) and yaw (gzang) calculated
from gyroscopes only.

5 Cpitch =

Croll =

Cyaw

Cpitch, Croll and Cyaw are the
complementary filter angles calculated
from both the gyroscope and accelerometer
angles.

6 ,

for z, ap = ap-gravity

Vt is the single time integrated velocity from
the accelerometers

7 ,
 for z, ap = ap-gravity

St is the double time integrated distance or
displacement from the accelerometers

8 da = apt - apt-1 da is the magnitude change in ap

9 dv = Vt - Vt-1 dv is the magnitude change in Vt

10 ds = St - St-1 ds is the magnitude change in St

11 ru = ru is the un-angled distance measured from
the x, y, z planes. Corrects for UAV pitch,
roll and yaw

12 trv = ru - (origin) trv is the distance (trvx, trvy, trvz)travelled
in each axis from each plane (x, y and z)

26

4.1.2 Communication module
 Communication is required between the sensor module and the intelligent module. This is

seen in Figure 12. After data has been sensed from the real world, it is passed from the sensor

module to the intelligent module using the Universal Asynchronous Receiver Transmitter (UART)

hardware. On the raspberry pi, the UART pins are GPIO 14 (TXD/Transmit) and GPIO 15

(RXD/Receive). The ATMEGA328 has its UART pins on digital pin 2 (RXD/Receive) and digital

pin 3 (TXD/Transmit). Using two jumper wires, the TX pin on the raspberry pi is connected to the

RX pin on the ATMEGA328 and the RX of the raspberry pi to the TX of the ATMEGA328. Data

is sent asynchronously without the need for a clock synchronizing the 2 modules. A timing

parameter known as the baud rate is agreed upon by the two modules indicating the number of

symbols transmitted per second. The baud rate used was 115200.

 UART pins on ATMEGA328 UART pins on raspberry pi

UART line

Figure 12: The communication module

4.1.3 Intelligent module
 The intelligent module performs 2 roles. These are;

Data collection role: Data sent over from the sensor module is collected and managed by the

intelligent module during data collection. Data collection occurs when UAV flight data. Data

collection occurs when the UAVs dynamic state variables are recorded by the sensor module under

various flight maneuvers and sent over to the intelligent module using the serial protocol involving

the UART. During this time, the data is recorded and managed by 2 python scripts on the

27

intelligent module namely datamanager.py and serialcom.py. The former is responsible for

collecting and the right amount of data (samples) for every flight episode and managing all storage

directories. The latter is responsible for setting all communication parameters such as the baud

rate. It also handles any err features,

and establishes the serial connection.

Figure 13: The raspberry pi as the intelligent module

ANN host: As the host for the Artificial Neural Network, it is also responsible for running

inferences or predictions of the UAVs position in real-time from the data sent over by the sensor

module. Here, only the sition estimation

by the Artificial Neural Network. It does this by running the inference.py python script in real-

time which imports the TensorFlow-lite-runtime library for this purpose. After deployment, the

inference time of the trained ANN was determined to have an inference time of 0.05 seconds using

the raspberry 1.4GHz processor. Therefore, the mount of compute required to satisfy the

specification of 1 second was calculated to be approximately 84MHz.

4.1.4 Power Module
 The power module consists of the UAV s battery seen in and voltage regulator integrated

circuit device both seen Figure 14 . The battery is a 2S 7.4V Lithium-ion battery with 2000mAh

capacity. The voltage regulator used was the L7805 which produces a 5V dc output. 10uF input

28

and output capacitors were used to keep the power stable. This is also seen in Figure 15. The total

amount of power drawn by the entire system was approximately 5W. The 2000mAh UAV battery

is able of supply 2A at 7.4V continuously for 1 hour.

Figure 14: 2S ,7.4V ,2000mAh Li-ion UAV battery on the left, L7805 voltage regulator on the

right

Figure 15: During the power module implementation, the fully charged UAV battery at 8.4V

(blue line on scope) is regulated by the L7805 giving a 5V output (yellow line on scope)

29

4.1.5 Device Casing
 The device casing is made up of 2 parts. The top and the bottom casings. These two come

together to form an enclosure around all the electronics and circuitry to give support to the

components. The top casing has extrusions designed to fit and attach itself to the removable

camera mount shown in Figure 16.

Figure 16:

This attaches to the UAV and carries the device. These were 3d modelled and designed using the

SolidWorks software after which the parts were 3d printed and assembled with all the electronics.

The material used was PLA. This is shown in Figure 17.

Figure 17: Top and bottom casing of device

30

4.1.6 Device Assembly
 The device assembly took 2 forms. The circuitry is seen in Figure 18, and the physical

assembly of the device attached to the UAV is shown in Figure 19 below.

 Figure 18: Circuitry with all the electronics

 Physical assembly

 Figure 19: Full realization of device attached to base of UAV using its camera mount.

31

4.2 Data Collection
 In his phase, data made up of features representing the state variables of the UAV was

recorded and stored. The data measured by the sensor module is sent via the UART/serial interface

to the intelligent module and stored locally for a short while. Then it is pushed to the project

repository on GitHub where it is later pulled at a convenient time onto another remote or local

machine for analysis, preprocessing and training of the Artificial Neural Network.

 In his phase, data made up of features representing the state variables of the UAV was

recorded and stored. The data measured by the sensor module is sent via the UART/serial interface

to the intelligent module and stored locally for a short while. This process is managed by 2 python

scripts namely, datamanager.py and serialcom.py. The former manages the data in the raspberry

d he latter gets the data from the sensor module. The data is then pushed to

the project repository on GitHub where it is later pulled at a convenient time onto another remote

or local machine for analysis, preprocessing and training of the Artificial Neural Network. This

process is visualized in Figure 20.

 Raspberry pi
 datamanager.py

 serialcom.py

Figure 20: Data collection pipeline

32

The process: At the onset, the UAV with the device attached is placed in the data collection

environment as shown in Figure 21. The environment characteristic is a 3d corner like a 3-

dimensional cartesian plane.

Figure 21: UAV in data collection environment -3d corner for data collection.

After powering on the device, the sensor module automatically calibrates certain essential

parameters before sent to the intelligent module. These calibrations involve zeroing out the IMU

and the 3-axis position from the 3 sonar sensors. After this is done, the datamanager.py script is

run as shown in Figure 22 to start the data collection process. There are 2 categories of flight data

collected. The first is labelled ground hold and the second, 3d translate. The former is implemented

as a local directory that holds stores episodes of flight data when the UAV is stationary. This

presents real-examples to the Artificial Neural Network of a events when the IMU is held at a fixed

3-axis position and not moving. The latter is just for normal flight maneuvers in any direction.

Though there are not specific categories in flight, the data is collected this way to ensure that real

word examples of when the UAV is stationary is provided to the ANN and to keep track of how

much data has been collected for a certain maneuver.

33

Figure 22: running datamanager.py.

4.3 Model Training
 The model training phase follows after the collected data has been pushed or uploaded to

the GitHub project repository. The steps taken before and after the real training of the Artificial

Neural Network are the following.

4.3.1 Data download
 The data required for training the Artificial Neural Network or ANN is downloaded from

the project repository into the training environment. Google Colab or jupyter notebook provides

python environments that can be used for such a purpose. command was used in the

Google Colab environment to download the data from the GitHub remote project repository. This

is seen in Figure 23.

Figure 23:

34

4.3.2 Reading data
 At this point, the data is now in the training (Google Colab/ jupyter

notebook) local directory. The data is read using the pandas library into dataframes. This is shown

in Figure 24.

Figure 24: Code cell reading data into pandas dataframes.

4.3.3 Data cleaning
 To ensure that the data has no null values or NaNs (Not a Number), rows containing any

null and NaNs were dropped from the Pandas dataframe into which the data was read into. This is

shown in Figure 25 using the dropna function.

Figure 25: An example code cell dropping rows with NaNs or null values.

4.3.4 Exploratory Data Analysis
 Exploratory Data Analysis (EDA) involved searching the dataset prior to t

training to learn insights that may be present in the data. Figure 26 shows the various features and

35

their corresponding labels used in the training environment. Their corresponding feature symbols

are also indicated. These feature symbols are the same as in Figure 11.

Feature/state variable label
n = axis => x, y, z

 Description Symbol

accel_ms_n IMU 3-axis acceleration in x,
y, z axes in m/s2

ap

accel_ang_n IMU 3-axis orientation angles
in x, y, z in degrees

aang

IMU_vel_n IMU estimate of velocity in x,
y, z in m/s

vt

IMU_dist_n IMU 3-axis position in x, y, z
in meters (m)

St

gyro_deg_n IMU gyroscope angular
orientation rates in x, y, z in
degrees per second

gp

chng_veln Magnitude change in 3-axis
IMU velocity in x, y, z

dv

chng_anp Magnitude change in IMU 3-
axis accelerations in x, y, z

da

 gyro_ang_n IMU gyroscope angles in x, y,
z

gang

com_pitch Complementary filter angle
for UAV pitch

Cpitch

com_yaw Complementary filter angle
for UAV yaw

Cyaw

com_roll Complementary filter angle
for UAV roll

Croll

travel_n Sonar sensor 3-axis position in
x, y, z. This is the true position
of the UAV

trv

 Figure 26: Table of labels and descriptions

 Magnitude of feature relationships: To have an idea of which features or state variables

within the dataset contributed more to the output (3-axis positions of the UAV), the

 to find the degree of monotonic relationship that

36

existed between axis features or state variables and their corresponding axis position. For

example, the distance moved by the UAV in the x direction is the x-axis position. X-axis

features or state variables will be the all the state variables that occur in that axis such as

acceleration in the x-axis labeled as accel_ms_x . The absolute value of the correlation

was used because the sign in this application only showed the orientation or direction of

 or direction. These are all

vector quantities. The direction of relationship therefore was ignored as it was dependent

on these factors. Only the magnitude of monotonic relationships was focused on.

Figure 27: function that calculates using pandas correlation function.

Figure 28: Absolute value of

relationship between axis features (state variables) and axis position.

From Figure 28, the green color represents the all the features or state variables and their

 in descending order associated with the x-axis of the UAV. The red

37

color represents the y-axis and the blue, the z-axis. From the results shown in Figure 28 per the

data collected, chng_velx (whose feature symbol is dv) contributed more to the x-axis position of

the UAV. This means that the more the magnitude of the velocity in the x-axis changed, the more

likely the x-axis position (distance) of the UAV changed as well. For the y-axis, the greatest

contributor was com_roll (whose feature symbol is Croll).This also meant that the more the

Complementary filter roll angle of the UAV changed, the more likely there was going to be a

change in the y-axis position of the UAV. This makes sense considering that UAV has to pitch or

roll in a particular axis in order to translate through that axis. And finally, for the z-axis IMU_dist_z

(whose feature symbol is St) contributed more to the z-axis position (altitude) of the UAV.

 Feature Visualizations: For the second part of Exploratory Data Analysis (EDA), some

 flight data belonging to the 2 different flight categories were

visualized. This revealed visually, how some of the state variables

features or columns) behaved while the UAV was in flight. This can be seen in Figure 29

and Figure 20.

 UAV true altitude from
 z-axis sonar sensor

 IMU estimated altitude.

38

Figure 29: A visualization of the state variables or features of one 3d translate episode of the

. The z-axis features (state variables) are isolated and visualized.

 UAV true y-axis position

 IMU estimated y-axis position

Figure 30: A visualization of the state variables or features of one ground hold episode of the

-axis features (state variables) are isolated and visualized.

4.4.4 Data pre-processing Feature Normalization and Scaling
 This section involved scaling and normalizing the data. The features in the dataset were

transformed to fit within a range of 0 to 1 using a minimum-maximum scaler. This is shown in

Figure 32. This was achieved as shown in Figure 31.

Figure 31: Code cell showing scaling and normalization of data features.

39

Unscaled scaled

 Figure 32: Code cell showing scaling and normalization of data features.

4.4.5 Train test split
The data was split into two unequal parts. The first part made up 70 % and the second,

30%. The larger portion was used to train the Artificial neural Network and the smaller portion for

model during training therefore when used to test, represents an idea of how well the model will

do on real world data which is unseen just the same. The total size of the dataset after preprocessing

and dropping NaNs and null values was 12,449. After splitting, 70 % that made up the training

data was 8,714 samples and 30% that made up the testing or validation data was 3,735 samples.

All in all, the number of state variables or features in the dataset was 34. Three of which were the

output variables. These were travel_x, travel_y and travel_z which represented the 3-axis UAV

positions measured by the sonar sensor. Therefore, the input state variables were 31.

40

4.4.6 Model build

 The ANN model was built from the Keras Sequential class with eight hidden layers with

ReLu (Rectified Linear Unit) activation. A linear activation function is used at the output layer

because the ANN is designed to be a regression model. Figure 33 shows the code that implements

and compiles the ANN model. The built and compiled ANN model is shown in Figure 34.

 Input layer with relu
A hidden layers with relu
 activation

 output layer with linear activation

Figure 33: Function in code cell defining the ANN model.

Figure 34:Model Architecture.

41

4.4.7 Model fitting
 Under this phase, a training experiment is done to fit the Artificial Neural Network to the

data (using the IMU data as input and the sonar data as output) using a number of selected loss

functions and optimizers shown in Figure 37. For the training experiment, the goal was to train

different ANN models using different optimizer-loss pair combinations, from which the best is

select after performance evaluation. In total, 18 ANN models were trained all the possible

optimizer-loss pair combinations in Figure 37.

 Two callbacks are employed in the fit functions to improve performance. This is shown in the

train experiment function in Figure 36.

 ReduceLROnPLateau (Reduce Learning Rate on Plateau): This callback reduces the

learning rate by a set or desired factor after a number of iterations (epochs) through the

dataset while training or fitting is ongoing. The factor was set to 0.1. The number of epochs

to wait before reducing the learning rate known as the patient factor. This was set to 10.

The validation loss (error) is used as a monitoring metric. If after 10 iterations without any

improvement o reduction (this is the plateau) in this score, the learning rate is reduced by

the set factor (patient factor) to allow the algorithm take smaller steps than before to

increase the chances of the optimizer finding a global minimum with respect to the loss

function.

42

visible learning rate reduction on plateau

 Figure 35: Model

In Figure 35 the green line represents the learning rate through the entire training process

or epochs. At the 45th epoch, a plateau in the validation loss occurred which triggered the

ReduceLROnPLateau callback to reduce the learning rate by the patient factor. The

corresponding effect is a visible reduction in the validation and training loss (which is an

improvement) shown by the blue and orange lines.

 ModelCheckPoint: This call back is used to save the model at the epoch or iteration when

the validation loss or error is at its minimum during training. This is able to check the

problem of over fitting s

improves by reducing.

43

callbacks

Figure 36: Function that runs training experiment.

Figure 37: Optimizers and loss functions used in training experiment.

4.4.8 Model Validation
 The trained ANN model was validated and tested on 30 % of the entire dataset. This made

up 3,537 samples or real-world validation examples. Since this portion of the dataset was not seen

by the model during training, performance evaluation on this data gives an idea of how well the

trained neural network would perform on real-world data. The trained model was validated on the

unseen data and ranked in two ways.

 Overall Ranking by Coefficient of determination: Using the coefficient of determination

or R2 metric, all 18 models were ranked according to how well their predictions on the

validation data fitted to the ground truth from the sonar sensors.

44

Figure 38: R2 model ranking.

The model ranking results from Figure 38 shows that the best model was the one trained

with the mean absolute error loss and the Nadam optimizer which achieved a coefficient of

determination of 0.959 on the validation data.

The figure below (Figure 39) shows the

output by the ANN.

 x-axis position y-axis position

45

z-axis position

Figure 39: itions

 Best optimizer per loss function : For all the loss functions used in the training experiment,

all optimizers were ranked. This revealed which optimizer performed best for a given loss

function.

Optimizer

Loss Function

Mean absolute error Mean squared error Mean squared
logarithmic error

R2 loss R2 loss R2 loss

Nadam 0.959 0.017 0.957 0.0014 0.931 0.0009

Adam -0.065 0.146 0.954 0.0015 0.849 0.0012

RMSprop 0.928 0.023 0.938 0.0019 0.810 0.0009

Stochastic Gradient
Descent (SDG)

0.470 0.082 0.360 0.0208 0.347 0.0111

Adagrad 0.026 0.123 0.320 0.0230 -1.641 0.0292

Adadelta 0.181 0.119 0.095 0.0336 -6.937 0.1104

Figure 40: model ranking optimizer per loss.

46

The best optimizer-loss pair combination was the Nadam optimizer and the mean absolute

error loss achieving a validation R2 score of 0.959 and a loss of 0.017. For a given loss function,

there was an optimizer that performed the best. Generally, the Nadam optimizer was the best

optimizer regardless of the loss function used. This can be seen in Figure 38 and Figure 40.

4.5 Deployment and Real-World Testing and Model Iteration

 After selecting the best performing ANN model (based on the R2 score on the validation

data), it was converted to a TensorFlow lite model using the TensorFlow lite converter. This is

shown in Figure 41. During this process, the trained 64-bit floating-point weights are converted

to 32-bit floating-point weights. This allows for faster computational times during inference.

Figure 41: Code cell to convert model to TensorFlow lite model

The model is then put on the raspberry pi and allowed to make real world inferences or estimations

using the IMU data only. Data from the real-world was used to evaluate te model. At this point,

the architecture is the one shown in Figure 6A.

Model Iteration: The initial training sample size of 8,253 was increased to 42,110 by collecting

more data. -world

performance. As seen in Figure 39, even though the initial selected trained model performs really

well on its validation data, thus achieving an R2 of 0.959, this may not be representative of real-

world data and performance and as such, more data was collected to investigate this effect.

47

 Using the best optimizer-loss pair a newer model was trained on new larger data having

42,110 samples. Two ANN models (the first trained on 8,253 samples and second trained on

42,110) were both used to perform predictions in the real-world. The positions estimated by the

two models are shown in Figure 42 (showing the x estimated position), Figure 43 (showing the y

estimated position) and Figure 44 (showing the z estimated position). The R2 validation of the

estimated against the true positions as shown in Figure 45. In these figures, the blue line represents

the UAV sensors, the orange line represents the estimates of

model 1 (trained on 8,253 samples), and the green line represents the estimates made by model 2

(trained on 42,110 samples).

Figure 42: x position estimation of model 1 and 2

Figure 43: y position estimation of model 1 and 2

48

Figure 44: z position (altitude) estimation of model 1 and 2

The results showed that a drastic increase in the training sample size resulted in a rather small

improvement in the real-world performance of the ANN. However, increasing the training sample

size still improved the real-world performance of the ANN in predicting the UAV s 3-axis

position.

Model Training Sample Size Real World R2

1 8,253 -1.33

2 42,110 -0.87

Figure 45: Model training sample size and real-world R2 performance

49

Chapter 5: Discussion and Conclusion
 The problem of making an IMU a standalone positioning determining system is an

interesting one. However, this is quite hard to achieve. The technique employed in this paper

utilizes an Artificial Neural Network as an estimator, taking data inputs from feature engineered

state variables or parameters from an IMU. This data is used to predict the 3-dimensional position

of the UAV in the x, y and z cartesian coordinates. However, with very good performance of the

ANN on the validation or unseen data obtained during data collection, it was not able to replicate

a similar ability of performance on real-world data. As a result, the ANN lacked the required

generalization capability required on real-world data. Even though a substantial amount of data

was collected, this data also was not very representative of the real-world data. The results,

however demonstrated that, the ANN was able to model the relationship between the collected

input data from IMU and the true UAV positions reported by the sonar sensor. But since this data

was still not representative of all the real-world data, the ANN failed to generalize to maintain a

very good performance in the real-world. The results also showed that a substantial increase in the

size of the training set generated a little improvement in the real-world performance and

generalization capability of the ANN. This means with more data, better estimations in the real-

world could be achieved.

5.1 Limitations
 The following were things that served to obstruct project progress and consequently the

overall performance of the Artificial neural Network. These limitations prevented the collection

of enough data which could have boosted the performance of the Artificial Neural Network.

50

 Serial Exception Errors: These errors were randomly thrown during the data collection

process while the UAV was in flight. This caused a significant reduction in the total data

collected during flight episodes.

 Inadequate UAV battery life: With a very long charging time and a short battery life after

charging, a lot of time was spent recharging the UAV battery rather than collecting data.

The short battery life also meant very little data could be collected after each charge cycle.

5.2 Future Works
 Overall, the design and technique proposed by this paper are feasible. The following are

some recommendations to improve the outcome of the technique used in this paper.

 Collecting lots of data to train the ANN and improve its generalization capability in the

real-world

 Expand the size of the Artificial Neural Network by adding more hidden layers to allow

the learning of more complex relationships which may not have been captured by this

model. This would help tackle edge cases not seen by the model during training.

 Develop a more efficient data collection algorithm to improve data collection efficiency.

 Doing more feature engineering to present more state variables for better generalization.

 Improving the weight and form factor of the device built. This will improve power

consumption of the UAV during flight as it will carry less weight.

51

References
[1] -cost GPS/INS integration based on UKF and BP neural

Fifth International Conference on Intelligent Control and Information Processing,
Aug. 2014, pp. 100 107, doi: 10.1109/ICICIP.2014.7010322.

[2]

[3]
trilateration scheme for GPS- 2018 IEEE Aerospace Conference, Mar.
2018, pp. 1 10, doi: 10.1109/AERO.2018.8396377.

[4] Sara. Benkouider, Nasreddine. Lagraa, Mohamed. B. Yagoubi, and Abderrahmane.
2013

9th International Wireless Communications and Mobile Computing Conference (IWCMC), Jul.
2013, pp. 53 58, doi: 10.1109/IWCMC.2013.6583534.

[5] -sensor
Geo-Spat. Inf. Sci., vol. 21, no. 4, pp. 302 310, Oct. 2018, doi:

10.1080/10095020.2018.1465209.

[6]
GPS using radial basis function neural networ 2010 11th
International Conference on Control Automation Robotics Vision, Dec. 2010, pp. 2427 2430,
doi: 10.1109/ICARCV.2010.5707295.

[7]
integration IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 2, pp. 687 693, Apr. 2002, doi:
10.1109/TAES.2002.1008998.

[8]
Science, vol. 349, no. 6245, pp. 255 260, Jul. 2015, doi: 10.1126/science.aaa8415.

[9]
Proceedings of the 2000 American Control Conference.

ACC (IEEE Cat. No.00CH36334), Chicago, IL, USA, 2000, pp. 4014 4018 vol.6, doi:
10.1109/ACC.2000.876976.

[10]
J. Approx. Theory, vol. 70, no. 2, pp. 131 141, Aug. 1992, doi: 10.1016/0021-

9045(92)90081-X.

[11] A. Sharma et al. J.
Netw. Comput. Appl., vol. 168, p. 102739, Oct. 2020, doi: 10.1016/j.jnca.2020.102739.

[12] roelectromechanical
2017 IEEE 4th International Conference Actual Problems of Unmanned Aerial

52

Vehicles Developments (APUAVD), Kiev, Oct. 2017, pp. 180 183, doi:
10.1109/APUAVD.2017.8308804.

[13]
Embedded Systems: The AlexNet and VGG- 2018 17th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN), Apr. 2018, pp. 212 223, doi:
10.1109/IPSN.2018.00049.

[14]
IEEE Trans. Aerosp. Electron. Syst., vol. 40, no. 2, pp. 591 600, Apr. 2004,

doi: 10.1109/TAES.2004.1310007.

[15] N. El-Sheimy, K.-
IEEE

Trans. Instrum. Meas., vol. 55, no. 5, pp. 1606 1615, Oct. 2006, doi: 10.1109/TIM.2006.881033.

53

APPENDICES
APPENDIX A: ENGINNERING DR AWING OF TOP CASING

Figure 46: Engineering drawing of Top casing

54

APPENDIX B: ENGINNERING DRAWING OF BUTTOM CASING

Figure 47: Engineering drawing of Bottom casing

