

ASHESI UNIVERSITY

ACTIVE CANCELLATION OF NOISE IN ACOUSTIC SIGNALS

CAPSTONE PROJECT

B.Sc. Computer Engineering

Otema Yirenkyi

2020

Page | 1

Branding and Identity Guide
The Ashesi brand and logo are integral parts of our worldwide image and identity. We must be
careful of how and where the Ashesi is used to ensure we maintain the integrity of our
organization.

This guide has been developed to help you clearly understand our policies towards the use of
the Ashesi logo in a variety of mediums, as well as type faces and a color palate to help you
produce materials that maintain the brand’s integrity. We would request that you seek
approval from the Ashesi University College Marketing Committee before creating any media
that reproduces the Ashesi logo.

Contents
The Logo .. 2

Using the Logo .. 3

Clear Space and Logo Design .. 5

Unacceptable Logo Uses ... 6

The Ashesi Seal .. 7

Color Palette ... 8

Fonts.. 8

Mission Statement .. 9

ASHESI UNIVERSITY

ACTIVE CANCELLATION OF NOISE IN ACOUSTIC SIGNALS

CAPSTONE PROJECT

Applied Capstone Project submitted to the Department of Engineering, Ashesi University

in partial fulfilment of the requirements for the award of Bachelor of Science degree in

Computer Engineering.

Otema Yirenkyi

2020

	 i

DECLARATION

I hereby declare that this capstone is the result of my own original work and that no part of

it has been presented for another degree in this university or elsewhere.

Candidate’s Signature:

……..………………………….…Otema Yirenkyi……….…………………….…………

Candidate’s Name:

…….. ………………………….…Otema Yirenkyi………..………………………………

Date:

 ……………………………………29th May 2020…………….……………………………

I hereby declare that preparation and presentation of this capstone were supervised in

accordance with the guidelines on supervision of capstone laid down by Ashesi University

College.

Supervisor’s Signature:

……………………………………………………………………………………………

Supervisor’s Name:

……………………………………………………………………………………………

Date:

……………………………………………………………………………………………

	 ii

Acknowledgements

To God Almighty for seeing me through it all. Grateful to my family and friends for the

support. To my supervisor, Dr Nathan Amanquah whose encouragement and academic

advice helped me undertake this project.

	 iii

Abstract

In the acoustic domain, sources of noise can be derived from music, vibration from an

engine or a person shouting. There has been a rise in different technologies to combat the

problem of noise. Passive techniques such as using soundproof materials have been

developed, however they pose the challenge of weight from the bulky materials used. Active

noise cancellation techniques although requiring complex computation, can cancel noise up

to 50 decibels (dB), depending on the efficiency of the technology or algorithm used. In this

project, an active noise cancellation device which has the capability of cancelling

surrounding sound has been built using the filtered NLMS algorithm in a digital signal

processor to create a region of silence. It is based on the principle of Destructive

Interference. It is a more affordable rendition of existing products on the market which

incorporate these same principles.

	

	 iv

Table of Content

DECLARATION ... I

ACKNOWLEDGEMENT ... II

ABSTRACT .. III

LIST OF FIGURES………....……..……………………………….……..…………..…..VI

LIST OF TABLES ……….………..……………………………………..……………....VI

CHAPTER 1: INTRODUCTION ... 1

1.1 Background .. 1

1.2 Problem Identified .. 2

1.3 Motivation .. 2

1.4 Scope of Work .. 3

CHAPTER 2: RELATED WORK .. 4

CHAPTER 3: REQUIREMENTS AND DESIGN ... 8

3.1 Project Requirements ... 8

 3.1.1 User Requirements………………………………………………………....8

 3.1.2 System Requirements………………………………………….………......8

3.2 Design Specifications ... 9

 3.2.1 High Level Architecture - Block Diagram………………………………..9

 3.2.2 Microcontroller unit Selection…………………………………………...10

 3.2.3 Design Components……………….…………………………………….11

 3.3 Circuit Schematic……………………………………………………………….14

CHAPTER 4: METHODOLOGY .. 15

4.1 Arduino Sound Processing……………...…………………………………...15

	 v

 4.2 Digital to Analog Conversion using Teensy………………………………….15

4.3 Implementation Technologies……………………………………………….16

4.7 Filtering Techniques…………………………………………………………17

CHAPTER 5: TESTING... 19

5.2 Test results…………………………………………………..……………..….19

5.2 Playing a .wav file using Digital to Analog Conversion…………………..….19

5.3 Creating and testing the adaptive filter…………………………………….….19

5.4Analysis on results……………………………………………..………….…...22

CHAPTER 6: CONCLUSION ... 23

 6.1 Project limitations ... 23

 6.2 Recommendation and Future Work .. 23

REFERENCES ... 24

APPENDICES…………………………………………………………………………….25

APPENDIX A - i. Arduino code for playing audio file………………………………..…25

 ii. PCM Code………….……………………………………………..….25

APPENDIX B - DAC with Teensy ………………..……………………………………. 26

APPENDIX C - High Pass filter code in MATLAB……..……………………………….27

APPENDIX D - MATLAB code with NLMS filtering…..….…………..…………….….27

APPENDIX E - High pass filter code in Arduino……….……………….…….…………28

	 vi

LIST OF FIGURES

Fig 2.1 Diagram of Feedforward Approach………………………………………………..5

Fig 2.2 Diagram of Hybrid Approach……………………………………………………...5

Fig 3.1 Noise Cancelling Principle…………………………………………………………8

Fig 3.2 Block Diagram of Feedforward Approach…………………………………………9

Fig 3.3 Block Diagram of Hybrid Approach……………………………………………….9

Fig 3.4 Pugh Matrix…………………………………………………..…………………...11

Fig 3.5 KY 038 Sound Sensor…………………………………………………………….11

Fig 3.6 Teensy 3.6………………………………………………………………………...12

Fig 3.7 8-Ohm Speaker…………………………………………………………………....13

Fig 3.8 Arduino Uno development board…………………………………………………13

Fig 3.9 Analog Discovery 2……………………………………………………………….14

Fig 3.10 Circuit Schematic of System…………………………………………………….14

Fig 4.1 Block diagram of audio conversion………………………………….....………...17

Fig 4.2 Block diagram for audio processing using Teensy…………………...…………..17

Fig 5.1 Waveforms results for audio processing in Arduino………………………………20

Fig 5.2 Spectrum of original audio………………………………………………………..20

Fig 5.3 Graph of magnitude and phase of filtered audio………………………….……….21

Fig 5.4 Spectrum of filtered audio.……………………………………..…………………21

Fig 5.5 Spectrum of filtered audio with NLMS algorithm………………………………..21

LIST OF TABLES

Table 2.1 SNR Improvement in dB………………………………………………………..6

Table 2.2 Comparison of LMS NLMS RLS Table………………………………………..6

 1

Chapter 1: Introduction

1.1 Background

Technology has contributed to improving our lives in various spheres and improvements in

sound and audio processing is not an exception. Application of audio processing has been

evident in sound mixing and editing, artificial reverberation and noise cancellation. Research

shows that, long exposure to noise can reduce productivity at the workplace. In a survey which

questioned some workers, 57% reported that “background noise caused major deterioration in

their ability to concentrate. The longer they stayed in the office, the more disrupted they were

by the noise” [1]. Although some people might not mind sound or music in the background

when working, others prefer serene environments to be more productive. In some workplaces,

noise absorption materials are used to combat the issues of noise. There are carpets which

absorb sound due to its additional cushioning. Furniture is also strategically placed at certain

points to block sound from travelling from one end to the other such that a person’s

conversation may not reach another. Although these are helpful strategies, the bulky material

cannot easily be moved around. Some of these materials can be rather expensive. A common

technology is noise cancelling headphones. Headphones whose cups (speaker compartment)

cover the ear employ both passive and active technologies. Passive technology is seen in the

material used for the ear cups to cover the entire ear and block out outside noise. They also

have the more complex functionality of active noise cancellation circuitry to cancel noise.

	 2

1.2 Problem Identified

Students on campus can find it difficult to find quiet places to study. Intermittent noise or

constant noise which is out of one’s control can arise to cause distractions while studying.

Noise could be generated periodically or randomly. Random noise is harder to control and

could consist of a person coughing in the background, wind or any noise generated from

movement of an object. Periodic noise, such as that generated from engines, can be controlled

by installing noise cancelling technology at the source of noise. Noise cancelling technologies

pose no health risks. Instead, they aid in eradicating the problems associated with loud noises.

An epidemiological study has found that cardiovascular diseases such as high blood pressure

and myocardial infarction can be a result of long exposure to environmental noise [2].

 It is for the above issues, that this project is designed to build an acoustic noise

cancellation device which will create a suitable noise-free environment. It will be of benefit to

students, workers and generally any person who wishes for a serene working environment free

from noise in their immediate surroundings.

1.3 Motivation

The purpose of this project is to build an electronic device which will:

1. Cancel out surrounding noise which is above 60dB (noise level of normal conversation)

which cannot be directly controlled.

2. Erase the need of passive noise cancellation techniques such as headphones.

3. Protect user from problems that arise from constant loud noises. These include hearing

damage, high blood pressure, headaches and increased stress levels.

	 3

1.3 Scope of Work

Digital noise cancellation will be employed in achieving the aim of the project. Thus, the

deliverables for this project includes:

1. Designing an optimal algorithm to be used in a digital signal processor

- To cancel out surrounding noise, an adaptive filter algorithm must be developed.

This algorithm must employ the principle of destructive interference where it picks

up the original surrounding sound and phases it by 180° to produce an anti-sound.

2. Use a microphone to pick up surrounding sound, pass it through the

cancellation circuit, and play the anti-sound through a speaker

- The objective here is to build a circuit using the appropriate hardware that will

create the silence effect. A microphone is used to pick up the surrounding sound

and it is fed to a digital signal processor (DSP) optimised for fast audio processing.

The filter is used in the DSP for the cancellation process. After cancellation, the

resulting sound must be heard by the user.

Particularly, students or learners with a need for constant quiet study spaces will benefit

greatly from this product. It will be cheap and thus can be purchased by almost anyone.

Other users who want absolute silence during night time or when sleeping, will benefit

from this product.

	 4

Chapter 2: Related Work

Many have been involved in the cancellation of random noise from acoustic signals

especially in various industries. There are two main methods employed for noise cancellation.

There is passive cancellation, which is most commonly used, and active noise cancellation.

With passive cancellation, sound proofing mechanisms are used to cancel out the noise. An

example is the circumaural headphones where the earbuds are padded with foam to prevent

ambient noise from entering the ear. Other times too, passive sound proofing involves the use

of bulky materials to reduce noise at a low-frequency [3]. Good design of a physical device

can block out noise even before the electronics of active cancellation is applied. The magnitude

of noise blocked is attributed to passive cancellation techniques. However, passive cancellation

cannot easily cancel out sounds with frequency below 1kHz [4]. The employment of active

noise control technologies help to cancel out extra weight that passive technologies add. They

accomplish better results at a lower weight load [3].

Significant research and experimentation is being made into active noise cancellation.

Research into attenuation of surrounding noise in a small space such as a car or an office cubicle

has been achieved using both hardware and software technologies. For this experiment, noise

signals were fed into a DSP TMS 320C6713 processor and a signal 180 degrees out of phase

of the noisy signal is produced. The principle of destructive interference is acted upon here.

The hardware used are two microphones, the DSP Processor and a cancellation speaker. One

microphone picks up the noisy signal while the other picks up residue error signal which both

feed into the processor. The primary path is between the first microphone and cancellation

speaker while the secondary path or cancellation path is between the speaker and error

microphone. Figures 2.1 and 2.2 show pictorially, the primary and secondary paths. The active

noise cancellation circuitry exists in the processor which has an adaptive filter. The adaptive

algorithm used in the filter is programmed to update its coefficients to determine the weights

	 5

for the filter [5]. Here, the Finite Impulse Response (FIR) Filter uses the filtered-x Least Mean

Square (LMS) algorithm to adapt the weights of the filter. The challenge with this model is the

delay between the noise signal reaching the cancellation speaker and the anti-phase signal

being generated. The delay is determined by the length of impulse response from the secondary

path.

Fig 2.1 Diagram of Feedforward Approach

Fig 2.2 Diagram of Hybrid Approach

 Different adaptive filtering techniques are employed in active noise cancellation. Some

are more effective over the others, based on certain performance criteria displayed in the tables

below. The Least Mean Squares (LMS), Normalized Least Mean Squares (NLMS) and

Recursive Least Squares (RLS) algorithm are used in active noise cancellation. A comparison

between the three to check the performance was conducted by Dhiman, Ahmad, & Gulia [6]

by analyzing their mean square errors to check which algorithm performed better in

cancellation of noise. RLS algorithm has the highest convergence speed and less steady state

	 6

error as compared to the other two [6]. At a constant sampling rate of 1500Hz and different

noise variances, the RLS exhibited the most improved Signal-to-Noise Ratio (SNR) in dB as

seen in table 2.1 below [4].

Noise
Variance

Sampling Rate (kHz)

SNR
Improvement
(dB) LMS

SNR Improvement
(dB) NLMS

SNR Improvement (dB)
RLS

0.02
1.5

8.85 9.85 9.91

0.05

1.5

7.55

8.62 8.89

0.10 1.5 5.12 6.38 7.02

 Table 2.1 SNR Improvement in dB

In terms of stability, RLS is highly stable due to a least mean-square error as seen in Table 2.2

[5]. The challenge with RLS however, is that, it has higher computational complexity with

higher memory requirements [6].

S. No. Algorithms MSE Complexity Stability

1. LMS 1.5*10-2 2N+1 Less Stable

2. NLMS 9.0*10-3 3N+1 Stable

3. RLS 6.2*10-3 4N2 High Stable

Table 2.2 Comparison of LMS NLMS RLS Table

A simulation to attenuate noise in a conference room using the FxLMS algorithm

showed the capacity of the algorithm to cancel surrounding noise up to -50dB [7]. Others argue

that FxLMS algorithm which is mostly used is not that efficient when it comes to non-linear

noise control. Functional link artificial neural network (FLANN) structure and genetic

	 7

algorithm (S-GA) is another example of a noise cancellation algorithm which does not use

secondary path identification [8].

The Sillentium Quiet Bubble is an existing technology on the market which cancels

surrounding low to medium noise up to 1.8kHz [9]. It also has sensors which pick up the noise

and sends it to the controller to output anti-noise through loudspeakers. It includes error

microphones placed in a quiet zone which is created by the loudspeakers. These microphones

provide feedback to refine the effects of the desired signal. For this project, the Normalized

Least Square Algorithm will be developed to be used on the Teensy 3.6 due to its stable

performance and lower complexity as compared to the Recursive Least Square Algorithm.

	 8

Chapter 3: Requirements and Design

3.1 Project Requirements

The user requirements define what features the product must hold to benefit the user. The

system requirements define how the product needs to be designed in order to satisfy the

objectives that the project needs to deliver.

3.1.1 User Requirements

a. The user should be able to operate the device by placing the device in the direction of

sound to pick up surrounding sound effectively to have it attenuated

b. The device should be lightweight and portable for the user to easily carry about

3.1.2 System Requirements

To serve the purpose of the project, and provide the stated benefits to the user, the product needs to

fulfil the following requirements.

a. Must have a microphone module to sense surrounding sound

b. Have an adaptive filter algorithm for destructive interference

c. Use a digital signal processor with high resolution to process audio signals

d. Must include a speaker to play out anti-sound

e. Be an energy efficient product with controlled power consumption

f. Attenuate noise below 1500 Hz

High-level explanation of noise cancelling principle:

Fig 3.1 Noise cancelling principle

	 9

3.2 Design Specifications
 The following design specifications are based on the requirements stated above.

3.2.1 High Level Architecture - Block Diagram

Fig 3.2 Block Diagram of Feedforward Approach

Fig 3.1 shows the feedforward approach used for the cancellation system. This is a

straightforward approach where the microphone is connected to the digital signal processor.

This processor has both analog to digital and digital to analog converters. The A/D Converter

converts analog signals from the microphone to digital form which can be processed by the

processor. It has an adaptive filter which is responsible for the noise cancellation. The D/A

Converter converts the digital signal to analog form such that it can be perceived by the speaker

and played for the human ear to appreciate.

Fig 3.3 Block Diagram of Hybrid Approach

	 10

Fig 3.2 is more complex as it has a microphone to pick up error signals. This is the hybrid

approach which has both feedforward and feedback incorporated. Cancellation may not be

100% accurate on first try. Thus, the error microphone feeds back the cancelled ‘anti-sound’

back to the processor, compares it with the desired anti-sound and feeds it through the speaker

to produce a sound that is more accurately cancelled or attenuated.

3.2.2 Microcontroller unit selection

In selecting the digital signal processor, the Teensy 3.6 development board, the LPCXpresso

18S37 Dev board and the C6713 Dev board by Texas Instruments (TI), are compared. Used as

the baseline, the TI board uses the DSP TMS 320C6713 processor with processing speed of

225MHz. Both Teensy and LPCXpresso boards use ARM Cortex-M4 core processors which

have 180MHz processing speeds. The totals are a summation of the weights of the different

criteria. The lower the total, the higher the rank. This demonstrates which item is the better

choice. Among the three, the TI dev board is the most expensive at $408.94. The Teensy board

costs $29.25 while the LPCXpresso costs $27.00. The Teensy and LPCXpresso have similar

features with a fair price. Although the LPCXpressso ranked higher, Teensy was settled on in

the end because while it is a little above $2.00 more expensive than the LPCXpresso, it was

more easily available. The ‘0’ weight means both alternatives are similar for a set criteria. The

plus sign, ‘+’ signifies that one is better than the other, while the minus sign, ‘ -’ shows than

one is least better than the other according to the set criteria listed on the left. Below is a pugh

matrix summarising the selection choice between the three dev boards.

	 11

Fig 3.4 Pugh Matrix

3.2.3 Design Components

This section describes the hardware components which will be used to build this project.

KY 038 Sound Sensor

The KY 038 is a sound sensor whose job is to pick up or read in surrounding sound for

processing. It has an electret condenser microphone and an LM393 comparator. When sound

detected reaches a certain value, a digital signal is triggered and a high output is recorded by

the board. An analog output of real-time voltage signals of the microphone can also be

recorded. The triggering value is fixed by adjusting the sensitivity on the potentiometer. It is

compatible with Arduino, thus with Teensyduino. Below is the Sound sensor:

Fig 3.4 KY 038 Sound Sensor

	 12

Teensy 3.6

The Teensy 3.6 is a breadboard-friendly development board with an inbuilt 32-bit ARM

Cortex-M4 Microprocessor. The Teensy uses a specific version of the Arduino IDE known as

the Teensyduino (v. 1.48) which allows programmers to directly program the Teensy with C

language. It makes the board much simpler to use. The Cortex-M4 processor is very fast as

compared to other processors in the Cortex M series line. It has a processing speed of 180MHz,

has floating point unit and is able to do digital signal processing. It is a major reason for which

this board was selected for this project. It does both Analog-Digital Conversion (ADC) and

Digital-Analog Conversion (ADC). The sound detector can easily be connected to its analog

inputs while a speaker is connected to its analog output, whose DAC has 12-bit resolution.

Below is the Teensy layout:

Fig 3.5 Teensy 3.6

8 Ohm Speaker

The 8 Ohm speaker produces audio output for the processed sound from the Teensy board. The

sound, or anti-sound in this case, is heard via the speaker. For the scale of the project, and

availability of resources, the 8 Ohm speaker would suffice. Surrounding sound is picked up by

	 13

the microphone, converted to digital form to be processed by the teensy, and re-converted to

analog signal such that it can be appreciated by the human ear.

Fig 3.6 8-Ohm Speaker

Arduino UNO

Arduino UNO is a microcontroller based development board with an inbuilt ATmega328P

microcontroller. The Arduino IDE software is using in conjunction with the board. Good to

note that the version Arduino 1.8.10 works with the Teensy board. Newer versions do not work

yet. In this project, the Arduino is used for testing purposes only as will be discussed in the

chapters to come, and does not form a major component in the final work.

Fig 3.7 Arduino Uno development board

Analog Discovery 2

Digilent Analog Discovery 2 is a USB oscilloscope, logic analyser and instrument which

measures, generates and records multiple signals. It is used in this project to input signals and

audio to the Teensy3.6 board for processing. It is driven by the WaveForms software. It is

	 14

used in this project for testing purposes in place of the microphone since it easily generates

signals for processing.

Fig 3.9 Analog Discovery 2

3.3 Circuit Schematic

The schematic below shows how the different components to used in the project are connected.

As indicated in the diagram below, the SL1 is the sound sensor while the SP1 to the right, is

the speaker. One end of the speaker connects to the Analog output pin (DAC) with the other

grounded. The sound sensor’s Analog pin is connected to the Analog input pin of the board.

Fig 3.10 Circuit Schematic of System

	 15

Chapter 4: Methodology

4.1 Arduino Sound Processing

The use of Arduino in stage one is because of familiarity with the Arduino board. This is done

for testing purposes.

A sound sample is fed into Arduino to be played via an 8 Ohm loudspeaker. Pin 11 (PWM pin)

is connected to the positive end of the speaker while the negative end is connected to the ground

pin on the Arduino board. Using Audacity Software, a 2-Stereo song is converted to Mono

with one channel. This is because, Arduino caters only for mono sounds. An audio encoder is

used to retrieve the sample data of the audio and these samples are stored in Arduino as arrays

in memory. The array represents the digitized sound. It uses pulse-code modulation. A PCM

library is downloaded and used in the Arduino IDE. This code was an already existing code

which plays sound using Arduino. The modification made was the conversion of an audio from

2-Stereo to Mono. Find code in Appendix A.

4.2 Digital to Analog Conversion using Teensy

Using the Digilent waveforms software, an input sine wave is fed into the Teensy 3.6 through

an analog input pin 11 and its output is fed out through output pin 30.

analogWriteResolution(16) is used to read the audio through the input pin and map it out

through the output pin. This is because Teensy 3.6 has 16-bit resolution. Analogue signal is

accepted into the teensy board, converted to digital form for processing and re-converted to

analog. The sound is fed into Teensy through an analog input pin 16 which is read using wave

generator in the waveforms software. A .wav audio file is imported into the wave generator to

be played through the teensy. Output is fed through output pins A21 and A22. The speaker is

connected to A21 pin while the signal output pin is connected to A22 of the Teensy. This is the

DAC pin. The signal output is read from the Wavegen scope. See code in Appendix B.

	 16

4.3 Implementation Technologies

A. Audacity

Audacity is a software used for digital audio editing and recording. For this project, it was used

for down-sampling an audio signal such that it can be processed by the Teensy board. The

sound is imported into Audacity and it is converted to a mono audio with only one channel

from stereo which has two channels. Sampling is done at 8000 samples per second with 8 bits

per sample. The audio is exported as a Waveform Audio Format (WAV) file as these are the

requirements for generating a small uncompressed wav file.

B. EncodeAudio

This a software which converts an audio to a series of numbers that can be run in the Arduino

IDE. After the audio has been down-sampled to 8 kHz 8-bit mono sound, it can be encoded.

The software was downloaded online. Once it is run on the local computer, it prompts the user

for the suitable audio file. The EncodeAudio software converts the audio to numeric array and

copies it to clipboard. Once successful, the array can be pasted in Arduino.

C. Digilent WaveForms

This is a software application which is used in conjunction with the Analog Discovery 2

hardware. It is used for the generation, processing and analysis of both analog and digital

signals. For this project, the WaveForms generator was used to either send a sine signal to the

teensy or import an 8kHz audio into the Teensy for processing. The Scope reader for the

software was used for reading processed signals from the Teensy board to analyse all signal

behaviour.

D. Teensyduino

Teensyduino is a software which is run with the help of Arduino IDE. It allows users to run

sketches on Teensy boards. To write code onto the Teensy board, Teensyduino must be

	 17

downloaded and configured to run with Arduino. Once set up, code is written in Arduino with

C syntax and can be uploaded directly to the Teensy 3.6 as used in this project.

E. MATLAB

MATLAB is a programming language with an environment used for numerical computations.

It allows users to create and plot functions and device algorithms. In this project, it is used to

create adaptive filters for attenuating frequencies of audio signals and analysing their results.

Fig 4.1 Block diagram of audio conversion

Fig 4.2 Block diagram for audio processing using Teensy

4.4 Filtering techniques

The next stage is to apply the different filter techniques for noise cancellation. Noise

cancellation can be employed using either one of two adaptive filters. Finite impulse response

systems (FIR filter) or infinite impulse response systems (IIR filters) can be used.

The Processor will use an adaptive algorithm produced by the adaptive filter. The FIR filter

will be used in this project for its stability and power over IIR filters. Using FIR filters,

correction of frequency-response errors in speakers are more precise. NLMS (normalized least

mean squares) is an adaptive algorithm which will be used for adapting the weights of the FIR

	 18

filter. The adaptive filter is a self-adjusting filter which has a transfer function that is adjusted

using an optimizing algorithm [10]. The intent is to improve the performance of the signal by

adjusting the coefficients of the filter’s transfer function.

The adaptive FIR high pass filter was created. The high pass filter allows signals above a certain

cut off frequency to pass through the filter while signals with lower frequencies are not heard.

The selection of an FIR filter is done to factor in emergencies. The typical highest frequency

of an alarm siren is 3000Hz. Thus, in this project, sounds above 3000Hz are classified as an

emergency and should be heard by the user.

For testing purposes of the FIR filter, MATLAB software was used to create the filter and an

audio signal of format .WAV was passed through it. Next, the FIR filter was used in

conjunction with the NLMS algorithm in the software. Audio is imported into MATLAB and

the filter and filter algorithm was applied to attenuate sound below 1500Hz.

A high pass filter is then created using Teensyduino to process an audio signal and attenuate

low frequencies. It is processed through the Teensy board and the resulting sound is played

through the speaker. Appendix E shows the code of a high pass filter which was then designed

in Arduino and processed by Teensy 3.6 board through Teensyduino.

	

	

	

	
	

	 19

Chapter 5: Testing
5.1 Test Results

This chapter outlines the various tests done at different stages to ensure that the

system being designed and built works appropriately.

5.1 Playing a .wav file using Digital to Analog Conversion	

The screenshot below, as extracted from WaveForms, displays the output read from the DAC

pin of Teensy board. Analog audio signals are digitized. A 16 seconds audio file in wav

format is inputted to analyse behaviour of audio. See code in Appendix B.	

Fig 5.1 Waveforms results for audio processing in Arduino

5.2 Creating and testing the adaptive filter

The graphs below display the results of applying the FIR Filter in MATLAB. The audio file is

imported into MATLAB. Appendix C displays the code.

	 20

Fig 5.2 Spectrum of original audio

Fig 5.3 Graph of magnitude and phase of filtered audio

	 21

Fig 5.4 Spectrum of filtered audio

The graph below displays the Filter in use with the Normalized Least Mean Square algorithm.

Appendix D displays the MATLAB code.

Fig 5.5 Spectrum of filtered audio with NLMS algorithm

	 22

5.4 Analysis on results

The results of the tests in Arduino shows that the use of an FIR Filter alone is able to attenuate

sounds. However, an adaptive algorithm ensures that the performance of attenuation is better

improved. The Teensy 3.6 uses Digital to Analog conversion to convert analog audio signals

into digitised form as seen in Figure 5.1 displaying the WaveForm results. Figure 5.2 displays

the original sound as first played in MATLAB.

Figure 5.3 displays the magnitude and phase response after filtering. The phase of the signal

drops with increasing frequency. At the normalised frequency of 0.375 (derived from a cut-off

frequency of 1500Hz), the magnitude of the signal does not climb higher than the 0dB mark.

Fig 5.4 shows the filtered signal with lower frequencies attenuated. When played through the

speakers, there was significant drop in the loudness of the sound.

Fig 5.5 displays the error signal and input audio signal as it is passed through the FIR filter

with NLMS adaptive algorithm. The error (blue coloured signal) was calculated as the original

audio was added to the filtered audio. The error is plotted against the desired signal and shows

an error with a much smaller amplitude of 0.5V. As compared with the results from the high

pass filter only, the filtering with the NLMS algorithm shows higher attenuation of the signal.

The same uncompressed 8kHz .WAV file was used for in testing for uniformity. The high pass

filter was used on the Teensy 3.6 to attenuate sounds using coefficient of 0.75 as used in the

MATLAB demonstration and a significant decrease in the frequency of the sound was heard.

	 23

Chapter 6: Conclusion

	 The paper presents an active noise cancellation system which attenuates surrounding

sound below a set frequency. With this system, surrounding sound can be attenuated through a

cancellation device without the need of wearing headphones. An adaptive FIR filter was

designed to attenuate low frequencies below 1500Hz such that the user is not disturbed. The

algorithm designed, allows a user to create an ambience of silence around them. Additionally,

it factors in probable emergency cases in that, very loud frequencies above 3000 Hz (typical

frequency of an alarm siren) can be heard.

6.1 Project limitations

The design and total realization of this project was inhibited by a few limitations. Below are

the limitations faced:

1) The limited data on Teensy 3.6 available slowed the project down at some stages.

Teensy 3.6 is the latest digital signal processor after Teensy 4.0 thus not much

exploration has gone into the product. Information and related works done on older

versions of the Teensy board was much easier to find as compared to the Teensy 3.6.

Nonetheless, the information sourced, significantly advised the project.

6.2 Recommendation and Future Work

Much work has been covered in this project, however, there are more ways in which

the project can be explored and improved upon. Concentration on cancellation of

random and intermittent noise can be tackled. Intermittent noise is harder to track and

cancel however, with more enhanced algorithms through artificial neural networks,

smooth noise cancellation results can be achieved. Computation is more complex yet

better results are produced from effective training.

	 24

References

[1]		 SP. Banbury and DC. Berry. “Office noise and employee concentration: Identifying
causes of disruption and potential improvements”, 2005. Ergonomics, 48:1, 25-37,
DOI: 10.1080/00140130412331311390

[2] T. Münzel, T. Gori, W. Babisch, M. Basner, “Cardiovascular effects of environmental
noise exposure”, European Heart Journal, vol. 35, no. 13. Pages 829–836, April
2014. Accessed on: May 11, 2020. [Online].
Available https://doi.org/10.1093/eurheartj/ehu030

[3] B. Giuseppe, and A.Frediani, Variational analysis and aerospace engineering. Vol.
33. Springer Science & Business Media, 2009.

[4] D. Phillips. “What’s the Difference Between Passive and Active Noise Cancellation?”,
Endeavor Business Media, LLC, Nov. 2017. Accessed on: May 11, 2020. [Online].
Available:https://www.electronicdesign.com/industrial-
automation/article/21805808/whats-the-difference-between-passive-and-active-noise-
cancellation

[5] P. P. Hirave and B. Pathak, "Fundamentals of active noise control for local

cancellation of noise," 2011 3rd International Conference on Electronics Computer
Technology, Kanyakumari, 2011, pp. 246-249.
doi: 10.1109/ICECTECH.2011.5941896

[6] J. Dhiman, S. Ahmad, and K. Gulia. Comparison between Adaptive Filter Algorithms
(LMS, NLMS and RLS). 2013. International journal of science, engineering and
technology research (IJSETR), 2(5), 1100-1103.

[7] M. M. Hasan and M. A. Howlader, "A new application of FxLMS Algorithm and
designing of a silent seminar room using Active Noise Cancellation," 2018
International Conference on Computer, Communication, Chemical, Material and
Electronic Engineering (IC4ME2), Rajshahi, 2018, pp. 1-4.
doi: 10.1109/IC4ME2.2018.8465677

[8] B. Liu and J. Q. Xiong, "Single Channel Active Noise Control Based on S-Genetic
Algorithm," 2009 Second International Conference on Intelligent Computation
Technology and Automation, Changsha, Hunan, 2009, pp. 888-890.
doi: 10.1109/ICICTA.2009.221

[9] “Sillentium Technology”. 2017. Accessed on: May 11, 2020. [Online]. Available:
https://www.silentium.com/technology/

[10] A.O.M. Salih. “Audio Noise Reduction Using Low Pass Filters”. Nov. 2017. Open
Access Library Journal, 4: e3709. https://doi.org/10.4236/oalib.1103709

	 25

Appendices

Appendix A –Arduino codes for playing Audio file

i. Playback code which plays an audio file from memory in Arduino
#include <PCM.h>
const unsigned char sample[] PROGMEM = {
107, 90, 100, 103, 112, 114, 118, 122, 129, 132, 139, 141, 142, 138…};
void setup()
{
 startPlayback(sample, sizeof(sample));
}

void loop()
{
}

ii. PCM Code

int speakerPin = 11;
unsigned char const *sounddata_data=0;
int sounddata_length=0;
volatile uint16_t sample;
byte lastSample;

// This is called at 8000 Hz to load the next sample.
ISR(TIMER1_COMPA_vect) {
 if (sample >= sounddata_length) {
 if (sample == sounddata_length + lastSample) {
 stopPlayback();
 }
 else {
 // Ramp down to zero to reduce the click at the end of playback.
 OCR2A = sounddata_length + lastSample - sample;
 }
 }
 else {
 OCR2A = pgm_read_byte(&sounddata_data[sample]);
 }

 ++sample;
}

void startPlayback(unsigned char const *data, int length)
{
 sounddata_data = data;
 sounddata_length = length;

 pinMode(speakerPin, OUTPUT);

 // Set up Timer 2 to do pulse width modulation on the speaker
 // pin.

 // Use internal clock (datasheet p.160)
 ASSR &= ~(_BV(EXCLK) | _BV(AS2));

 // Set fast PWM mode (p.157)
 TCCR2A |= _BV(WGM21) | _BV(WGM20);
 TCCR2B &= ~_BV(WGM22);

 // Do non-inverting PWM on pin OC2A (p.155)
 // On the Arduino this is pin 11.
 TCCR2A = (TCCR2A | _BV(COM2A1)) & ~_BV(COM2A0);
 TCCR2A &= ~(_BV(COM2B1) | _BV(COM2B0));

 // No prescaler (p.158)
 TCCR2B = (TCCR2B & ~(_BV(CS12) | _BV(CS11))) | _BV(CS10);

 // Set initial pulse width to the first sample.
 OCR2A = pgm_read_byte(&sounddata_data[0]);

 // Set up Timer 1 to send a sample every interrupt.

 cli();

	 26

 // Set CTC mode (Clear Timer on Compare Match) (p.133)
 // Have to set OCR1A *after*, otherwise it gets reset to 0!
 TCCR1B = (TCCR1B & ~_BV(WGM13)) | _BV(WGM12);
 TCCR1A = TCCR1A & ~(_BV(WGM11) | _BV(WGM10));

 // No prescaler (p.134)
 TCCR1B = (TCCR1B & ~(_BV(CS12) | _BV(CS11))) | _BV(CS10);

 // Set the compare register (OCR1A).
 // OCR1A is a 16-bit register, so we have to do this with
 // interrupts disabled to be safe.
 OCR1A = F_CPU / SAMPLE_RATE; // 16e6 / 8000 = 2000

 // Enable interrupt when TCNT1 == OCR1A (p.136)
 TIMSK1 |= _BV(OCIE1A);

 lastSample = pgm_read_byte(&sounddata_data[sounddata_length-1]);
 sample = 0;
 sei();
}

void stopPlayback()
{
 // Disable playback per-sample interrupt.
 TIMSK1 &= ~_BV(OCIE1A);

 // Disable the per-sample timer completely.
 TCCR1B &= ~_BV(CS10);

 // Disable the PWM timer.
 TCCR2B &= ~_BV(CS10);

 digitalWrite(speakerPin, LOW);
}

Appendix B

The code below displays how audio signals are played through Teensy using Digital to Analog
Conversion
const int analogpin = 16;
const int speakerpin = A21;
const int outputpin = A22;
//int speaker =29;
int val = 0;
int outputval = 0;
int speakerval = 0;

void setup() {
pinMode(analogpin, INPUT);
pinMode(outputpin, OUTPUT);
pinMode(speakerpin, OUTPUT);
Serial.begin(9600);

analogWriteResolution(16); //for 16 bit resolution 65535

}

void loop() {
val = analogRead(analogpin);

Serial.println(val);

//map function for analog to digital(byte) conversion
outputval = map(val, 0, 1023, 0, 65535);//16 bit res

analogWrite(outputpin, outputval);

//Speaker
speakerval = map(val,0,1023,0,65535);
analogWrite(speakerpin, speakerval);

Serial.println(speakerval);

}

	 27

Appendix C

Below is the high pass filter code in Matlab used to attenuate sounds below 300Hz.

spirit = audioplayer(data, fs);
play(spirit);

info= audioinfo('spiritualplayc.wav');
t=0:seconds(1/fs):seconds(info.Duration);
t=t(1:end-1); %return without the last element
figure(1);
plot(t,data)
ylim([-5 5])
xlabel('Time')
ylabel('Audio Signal of Spriritual')

% Read standard sample tune that ships with MATLAB.
[dataIn, fs] = audioread('spiritualplayc.wav');

%cutoff frequency of 300 Hz,
f=300;
%data sampled at 1000 Hz,
s=1000;
%angular freq/sample
w=2*pi*f;
w_sample= w/s;

[z,p,k] = butter(9,400/500,'high');
%300/500 to get the normalized frequency

sos = zp2sos(z,p,k); %converting z,p,k to second-order sections

filteredSignal = filter2(sos, data);

fvtool(sos,'Analysis','freq') %analysis tool to display magnitude and
% phase response
player = audioplayer(filteredSignal, fs);

%info= audioinfo('spiritualplayc.wav');
t=0:seconds(1/fs):seconds(info.Duration);
t=t(1:end-1); %return without the last element
figure(3);
plot(t,filteredSignal)
ylim([-5 5])
xlabel('Time')
ylabel('Audio Signal of filtered Spriritual')
stop(spirit);
play(player)

	

Appendix D

Below is the MATLAB code for filtering an audio signal with NLMS
info= audioinfo('spiritualplayc.wav');
%import audio data
filename = 'spiritualplayc.wav';
[dataIn, fs] = audioread(filename);
spirit = audioplayer(dataIn, fs);
audiowrite(filename,dataIn,fs);
play(spirit);

FrameSize = 100;
NIter = 10; %number of iterations/filter order(taps/length-1)
lmsfilt2 = dsp.LMSFilter('Length',11,'Method','Normalized LMS','StepSize',0.05);

%creating FIR high pass filter
firfilt2 = dsp.FIRFilter('Numerator', fir1(30,0.75));%,'high')); %for determining filter coeff

%audioIn = dsp.AudioFileReader;
%audioIn.Filename = "spiritualplayc.wav";

	 28

%audioOut = audioDeviceWriter('SampleRate',fs);

%introducing sine wave
sinewave = dsp.SineWave('Frequency',1000,'SampleRate',fs);%,'SamplesPerFrame',FrameSize);

%creating timescope GUI
TS = dsp.TimeScope('TimeSpan',FrameSize*NIter,'TimeUnits','Seconds',...
 'YLimits',[-3 3],'BufferLength',2*FrameSize*NIter, ...
 'ShowLegend',true,'ChannelNames', {'Input audio signal', 'Error signal'});

for k = 1:NIter

 % while [dataIn :fs]
 audio = dataIn(); % Read audio source file
 %ye = firfilt2(audio); % Filter the data
 % Play the filtered data

[dataIn, fs] = audioread(filename);
 % x = dataIn(:,1); %randomly generated input sinewave

 d = firfilt2(dataIn) + sinewave(); %desired signal
 [y,error,w] = lmsfilt2(dataIn,d);
 TS([d,error]);
end
stop(spirit);
 player = audioplayer(d,fs);
 play(player)

release(TS)

Appendix E

Below is the high pass filter code in Teensyduino using a filter coefficient of 0.3

const int sensorPin = 16; //input pin
int sensorValue = 0; //initialization of sensor variable
float coeff = 0.3; //coefficient
int filtered = 0;
int highpass = 0;
const int speakerpin = A21; //DAC
int speakerval = 0;

void setup(){
 pinMode(sensorPin, INPUT);
 pinMode(speakerpin, OUTPUT);
 Serial.begin(9600);
 analogWriteResolution(16); //for 16 bit resolution 65535

}

void loop(){
 sensorValue = analogRead(sensorPin); //read the sensor value using ADC
 Serial.println(sensorValue);
 filtered = (coeff*sensorValue) + ((1-coeff)*filtered);
 highpass = sensorValue - filtered; //input -desired //calculate the high-pass
signal

 Serial.println(filtered);
Serial.println("highpass");

 Serial.println(highpass);

 speakerval = map(filtered, 0, 1023, 0, 65535);//16 bit res

 analogWrite(speakerpin, speakerval);

 Serial.println(speakerval);

 }

