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Abstract 

Running Machine Learning (ML) in embedded systems has fueled the rush for edge computing, 

where machine learning runs in edge devices. This approach to ML yields many results, such as 

lower latencies and reduction of network traffic and bandwidth. This project set out to explore 

machine learning in embedded systems. The Edge Impulse Platform was used to collect data and 

to a neural network. The neural network created was able to distinguish between five classes of  

motion. The Neural Network created was tested on two microcontrollers and a desktop. 

Inferencing on the Arduino Nano BLE took 24ms, and on the desktop, it took 271.8 µs.  
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Chapter 1: Introduction and Background 

1.1 Background 

Artificial Intelligence (AI) has been on the rise with the technology revolution and has evolved 

from being used in remote applications to driving applications that are a significant part of our 

everyday lives [1]. Machine Learning (ML), a subset of AI, is a method designed for data analysis, 

enabling automation for intelligent systems by identifying data, recognizing data patterns, and 

making data-driven predictions with little to no human interaction. In some devices, ML has been 

so carefully developed to run accurately and seamlessly without supervision and has been the 

reason for scalability and sustainability in several industries across the world [2].  

 Machine Learning models are sometimes complex, with large data sets and intensive 

computations that require large memory and expensive computing power. However, extending 

ML to run on inexpensive hardware has helped make this efficient technology accessible, even in 

the smallest systems on network edges, by using hardware such as microcontroller units [3]. 

Running ML models on the edge, i.e., edge computing where data processing in an embedded 

system is done at the data source and closer to the network edge, has provided many advantages 

for several applications and created hope for advanced embedded applications that would 

previously drain network traffic [3]. This is because in some current systems, data collection is 

done at the data source by the sensors, and inference happens on the cloud, and then the results are 

sent back to the embedded system via the internet. A pictorial view of this process is shown in 

Figure 1.1Figure 1.1. This drains network traffic and increases bandwidth, introducing delays and 

possible errors and cyber-attacks. The realization of such advanced systems relies on the ability of 

devices and processes to analyze large amounts of data, also taking into consideration that edge 
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devices usually cannot perform the computations required for data analytics since their sole 

purpose is to monitor and transmit data to more powerful systems, which usually are cloud-based 

[4].  

Edge computing has many crucial advantages. Lower latencies can be achieved by moving 

computations closer to network edges and data sources, eliminating several data exchanges 

between data sources and computation systems, meaning no delay in computations and inferencing 

[4]. This reduces network traffic while ensuring complex tasks are still executed accurately. In 

these cases, there is efficient resource usage and effective bandwidth usage. Also, higher 

accuracies are reached since there are fewer errors from data transfer to data processing centers or 

systems, owing to the use of raw and not aggregate data [4]. For the same reasons, higher energy 

efficiency and better privacy are achieved as data is not moved between the source and the cloud 

[4]. Sustainability is also an added advantage of ML on embedded devices since microcontrollers 

used for these tasks are power efficient, reducing the carbon footprint. These reasons have 

advanced the use of edge computing in new applications and its adoption in existing ones. 

Embedded applications can utilize the data from sensors through low-power devices that can 

perform intensive computations efficiently on microcontrollers. 

Figure 1.1: Steps in embedded ML with inference done on the cloud Figure 1.1: Steps in embedded ML with inference done on the cloud 
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 ML on embedded devices has several applications, ranging from vibration and motion 

detection, and voice and sound recognition, to vision and image detection, in order of increasing 

computing power required for each task. These tasks have been further applied to applications in 

networked systems in the Internet of Things (IoT), innovative healthcare, and robotics. Generally, 

ML models are computationally intensive and consume large memory. Owing to this critical 

drawback, the adoption of ML in embedded and mobile devices is relatively low as advanced 

models require more resources [5]. Different optimization techniques are adopted to fit 

computationally and memory intensive models to enable them to run within resource-limited 

hardware in embedded systems and mobile environments.  

Common examples of machine learning algorithms include Naïve Bayes Classifier 

Algorithm, K-means clustering algorithm, and linear and logistic regression algorithms. Others 

include random forest and nearest-neighbors algorithms [6]. The complexity in both time and 

power required by these machine learning models may depend on a variety of factors, including 

implementation, data properties, and model parameters. Of these algorithms, the Naïve Bayes 

algorithm is the least computationally intensive one, while the regression and the random forest 

ones are similarly intensive algorithms, stated in terms of training complexity [7]. Support vector 

machines (SVMs), hidden Markov models (HMMs), and deep neural networks (DNNs), which are 

very computationally expensive, even more than the former ones, have been optimized to run in 

resource-constrained spaces. While ML is still a recent technology, research has already been done 

to take advantage of embedded ML, to develop efficient hardware structures and to create 

innovative and intelligent hardware architectures that can handle the requirements of the models 

even with their high performance.  
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ML on microcontrollers requires optimization because microcontrollers use less power, 

have less memory space, have real-time operating systems, and offer a more focused user interface 

that gives them an advantage over single-board computers (SBCs). SBCs, while very fast, are 

microcomputers with many peripherals that are not necessary for use in embedded machine 

learning, and they also require more computing power [8]. On the other hand, microcontrollers are 

very specialized in their use cases and provide just enough peripherals for embedded systems, 

therefore are more efficient and do not waste resources. However, SBCs are an excellent 

alternative to microcontrollers in the embedded world because they can be easily modified to host 

applications that require intensive computing and extended to have analog peripherals through 

advanced circuitry [8]. This project will focus on running ML on microcontrollers because of their 

advantages and how they can be integrated into many projects and applications easily and for the 

reasons mentioned above. 

From classifiers to Bayesian networks and decision trees, several machine learning 

algorithms have been developed, each having its own specified set of outcomes and application 

areas [9]. These algorithms can be deployed to microcontrollers in embedded devices on the edge 

to perform their tasks. The ML algorithm of interest to this project is Neural Networks (NNs), 

which refers to systems of algorithms trained to realize underlying relationships in huge data sets, 

while doing so in a fashion that mimics how the human brain works [10]. NNs are mathematically 

elegant with encapsulated layers connected by links, which connect the input data to the output 

data in the model from end to end. In these intelligent systems, data propagation happens 

sequentially per layer. In every layer, each node consists of a function that collates all the 

information from all nodes in the preceding layer, determines its own output, and passes it out to 

the nodes of the next layer. The next layer then uses the data to determine its own output, which it 
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sends to the next, in such a way that the input for each hidden layer is the output of its preceding 

layer. The computations, usually mathematical operations, happen progressively until the last 

layer, where the output of the NN is determined. The next chapter will give a more detailed 

explanation of how NNs work. Consequently, NNs become computationally expensive quickly 

and require hardware that can handle such computations and keep up with speed.  

Fixed point arithmetic has been used in machine learning for computations and to store 

numbers in memory. Fixed point arithmetic has been used for its advantages in memory reduction 

and latency, especially when values are represented in low precision in four bits or less [11]. It has 

also been used owing to its low power consumption and computation time, especially for models 

such as deep convolutional networks (DCNs), whose complex architecture has been increasing 

[12]. For some processes requiring compute-intensive synthesis of models in optimization 

schemes, such as during optimization in HMMs for speech synthesis, fixed-point representation 

introduces accuracy errors to the synthesis [5]. This has opened a window for floating-point 

arithmetic to be explored. Recently, ML has taken advantage of floating-point arithmetic, with 

some systems and processors built with floating-point computation capability and deviating from 

the usual fixed-point domain. The main advantage floating point has over fixed-point 

representation is its ability to represent both small and large real numbers in a reasonably small 

amount of memory, which can be particularly useful in representing a wider range of numbers in 

the same amount of memory [5]. This is ideal for embedded devices because they are resource-

constrained with very little memory to store all their data.  

 Other advantages of floating-point computations include fitting more numbers implying 

more training samples and activations, storing more numbers implying more models in system 

caches, transmitting more numbers per second, and computing faster due to the extraction of more 
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parallelism in fixed-width registers [13]. In fixed-point arithmetic, however, fewer numbers are 

stored, fewer training samples can be extracted, and even fewer models are stored in the system 

cache, saving memory but compromising the effectiveness of the models. With floating-point 

representation comes the advantage of having an accurate representation of deep learning 

parameters that are usually non-linear; hence, no optimization or estimation of these is needed as 

in fixed-point representation [14]. Of course, these pros come with cons, including the limitation 

of ranges of numbers that can be represented and the introduction of quantization errors when full-

precision numbers are stored. These disadvantages can be mitigated by using more exponent bits 

and using Stochastic rounding, respectively [14]. Most disadvantages of the floating-point domain 

can be mitigated by using more exponent bits which increases the range of numbers, and stochastic 

rounding and fine-tuning to address errors introduced in quantization [5]. Furthermore, though 

fixed-point arithmetic poses a power advantage over floating-point, it is not suitable for 

representing parameters in non-linear models and cannot carry as many numbers as floating-point 

representation can. Most disadvantages of the floating-point domain can be mitigated by using 

more exponent bits which increases the range of numbers, and stochastic rounding and fine-tuning 

to address errors introduced in quantization [5].  

1.2 Objective  

An implementation of embedded machine learning was done using an ATMega328P 

microcontroller interfaced with a Field Programmable Gate Array (FPGA), which acts as a 

coprocessor [14]. The speed of inferencing of the ML model was found to be twice that of 

inferencing on a microcontroller only. Also, in [15], an ML library was built to implement neural 

network algorithms in embedded system hardware, whose final output was VHDL code. This 

project extends these implementations already explored by deploying the ML model fully on a 
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microcontroller capable of floating-point computations to change the way the Machine Learning 

model actuates and increase accuracy. This project aims to determine the speed gain or loss when 

using such a microcontroller because of the change in operations while also using a neural network 

ML model. The NN implemented will categorize motion into any one of five classes, i.e., idle, 

clockwise, anticlockwise, left-right and up-down motions. The results of inferencing by the NN 

will be used to feed a motion detection application database, whose contents will be displayed on 

a web application. This embedded system can be adapted for spaces where the recognition and 

detection of motion types are essential, for example, in sports gyms and physiological training 

centers to track equipment in use or in alarm systems. 
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Chapter 2: Literature Review and Related work 

2.1 Machine Learning (ML) 

Machine Learning describes the several methods by which systems make informed data-

driven decisions by learning from already available data and making inferences on new data. ML 

has three main branches: supervised learning, unsupervised learning, and reinforcement learning. 

In supervised learning, the model learns already existing data (labeled data) and then makes 

predictions on unseen data. Most supervised learning techniques are classification methods. 

Examples of supervised learning techniques include logistic regression, k-nearest neighbors 

(kNNs), and artificial neural networks (ANNs) [9]. With unsupervised learning, ML models learn 

on their own from unlabeled data through the identification of similarities and patterns, and 

examples include clustering, k-means, and anomaly detection algorithms. Lastly, reinforcement 

learning is one through which models learn through trial and error, with example techniques such 

as genetic algorithms and estimated value functions. The training phase is the process through 

which ML models learn, and the trained model is used to make decisions on new data in the 

inference phase of the implementation.  

2.2 Neural Networks (NN) 

Neural networks fall under supervised machine learning techniques and are an example of 

classification methods. Neural networks (NN) can be trained to do complex event classification 

that works very well and efficiently in embedded machine learning. In NNs, interconnected 

neurons rely on each other, and each holds an activation which is just a number. Neural networks 

work in a way that mirrors the behavior of the human brain. Neurons are nodes that hold numbers 

for computations when data is passed through them to the next neuron [16]. A number of processes 

happen inside a node, which include computing weighted sums of inputs from previous layers, 



9 
 

adding bias terms and applying one or more activation functions which introduce non-linearity to 

the model. 

Neural networks consist of many node layers, the first of which is an input layer, followed 

by hidden layers and an output layer. Computations in a neuron or node are done using data inputs 

from the preceding layer, weights, and a bias or threshold. A threshold or a bias is a value below 

which the particular neuron is inactive in a given inference cycle. The weight is used to determine 

the importance of any given variable in the neuron; hence, larger values contribute more to the 

output than lower ones [17]. The input data is then multiplied by the respective weight and passed 

to an activation function which determines the output. The threshold then comes into play to fire 

or activate the neuron if the output value exceeds it, allowing it to pass its output to the neurons in 

the next layer [17]. This direction of flow creates a feedforward network. A network in which each 

neuron is connected to each one in the next layer is called a fully connected network. The output 

of the final layer in a neural network is a number, which is the probability that the particular class 

is the one to which the input data belongs; hence the output class is determined by probability. 

Neural networks are deterministic, which means that once a model is trained, it always 

produces the same output for the same input, and there is no randomness in the model as for 

probabilistic methods [18]. This is explained in Figure 2.1.1 below.  

 

 

 

 Figure 2.1: Inputs and outputs of a neural network 
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There is at least one hidden layer in deep neural networks, that is, at least three layers in 

total. Figure 2.2 below, adapted from [17], shows a fully connected deep neural network (DNN)

with many hidden layers.

Neural networks have been used in signal processing applications to get better accuracy 

(sometimes over 10x) in predicting the next sample of signals using sequential deep neural

networks while using less memory space. They can also be applied in computer vision, natural 

language processing, and other applications that require even more intensive computations and 

better inferencing patterns.

Interfacing a microcontroller and an FPGA has already been demonstrated using Arduino 

and FPGA to determine how much faster inferencing will be if the FPGA acts as an accelerator

[16]. In [6], the speed was found to be twice that of machine learning on microcontrollers only, 

which is very efficient and useful for embedded devices, especially on the edge, because of reduced 

delays in providing outputs to users. However, in [16], the FPGA accelerator was not used for 

Figure 2.2: Deep neural network (DNN) [17]
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training purposes which did not allow real-time inferencing of input data. In addition, the board of 

choice for the project only allowed a limited number of DSP tiles which was 90; hence, more 

extensive networks could not be tested to determine how the speed changes when networks 

become wider. Also, the use of the FPGA implies more power losses introduced to the system, 

which, usually, engineers do not have control over power optimizations [19]. 

In [20], a library was built to help with code generation of advanced tasks for developers 

to help with deploying heavy algorithms on resource-constrained devices. The tool developed was 

able to create VHDL code for a problem described which is very useful, especially for embedded 

engineers. However, a Python library was developed for the problem defined. While this can be 

quite useful, most embedded engineers use the C or C-like programming languages to program 

their devices; hence, switching to Python can be a challenge. In addition, the library does not 

contain any network pruning to ensure memory efficiency of the library in the real world. The 

author also mentions that their use of fixed-point arithmetic is owing to the ease of computation it 

introduces, ignoring how the limited precision and range can affect the accuracy and performance 

of the output.  

In this project, a high-end microcontroller capable of performing computations in floating-

point arithmetic will be used to evaluate any performance differences. This will increase model 

accuracy and performance, as non-linear parameters can be stored in their raw form without 

optimization. Though having a drawback of quantization errors that can be introduced, techniques 

such as stochastic rounding or randomized rounding have been developed to counter them, making 

floating-point representation the next stage in ensuring the development of more accurate and 

efficient ML models to be deployed on embedded hardware.  
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2.3 Tiny Machine Learning (TinyML) 

Tiny Machine Learning (TinyML), a machine learning technique that shrinks ML models 

to run on small, low-powered devices, adds the ability to leverage deep learning algorithms to train 

and adapt their size without sending data back to the cloud [5]. On the cloud, compute-intensive 

models are trained in high-end data centers using supercomputers equipped with the necessary 

build to sustain such complicated models, while with TinyML, mobile machine learning can be 

carried out with very low power consumption, usually in the 0.1W range [5]. Enabling ML models 

to run on low-powered hardware offers many advantages that enable applications to improve user 

experience and enhance applications. This provides a decrease in latency, which decreases the time 

for data analysis at edge devices. Compared to traditional ML models running on edge devices, 

TinyML saves computing power and uses less memory, with on-device applications in the 1mW 

and below power range, allowing edge devices to run unplugged for a long time, sometimes 

months or even years [21]. TinyML has inspired solutions in different sectors, such as powering 

smart homes, health, agriculture, avionics, and human-computer interactions. 

2.4 Strategies for deploying Machine Learning in Embedded Systems  

To take full advantage of the power of edge computing, ML models have to be deployed 

at the edge of the network to ensure inferencing at those points. Several strategies have been 

employed to ensure optimum delivery of ML models at the edge. In most cases, ML models are 

pre-trained on cloud servers where large data sets are initially sent to from sensors for training and 

validation processes. Due to the memory and power constraints of edge devices, ML models 

cannot be deployed directly to these devices [11]. This constraint is even more significant if cases 

of compute expensive models such as deep learning models or models requiring large data sets to 

maintain their features and accuracy are considered. Because of this, ML models are simplified 



13 
 

through processes such as quantization, of course, taking necessary caution to ensure no loss of 

accuracy. Quantization approximates a neural network that is dependent on floating-point numbers 

by one that uses numbers of low bit-width [11].  

 For ML models developed for Android and microcontrollers running with an Arduino-

compatible software, the TensorFlow Lite library [22] is usually utilized to simplify TensorFlow 

models. TensorFlow Lite is an open-source software library that allows running TensorFlow 

models on mobile and embedded environments and devices. TensorFlow encapsulates many layers 

of its processes to ensure seamless use of TensorFlow models, even for beginners in IoT 

development [22]. TensorFlow example models span from object detection, image recognition, 

speech recognition, and text classification. These can be used and expanded in various applications 

to create powerful applications in different fields.  

 The Edge Impulse Platform is another resource used to deploy ML on embedded devices 

[23]. The platform helps create robust, quantized ML models through a few clicks and can perform 

inferencing online by collecting data on any provided development boards, most of which are 

predominantly ARM processors [23]. Though with encapsulation and optimization of processes, 

it allows the engineer to define their model on their own through a series of guided steps. 

 Research [24] shows that machine learning models run on microcontrollers face issues with 

memory, power, and speeds; hence, this practice is not advisable. However, there can be hardware 

optimizations such as energy efficiency enhancement, and software optimizations such as 

architectural and algorithmic enhancement methods can be used to enable ML on microcontrollers 

[24]. In addition, lightweight applications can be implemented on microcontrollers, for example, 

signal controllers that awaken a system once it detects activity [24]. One of the strategies used to 

deploy machine learning in embedded systems is Graphics Processing Units (GPUs), which can 
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perform high-spee  [24]. They, 

however, require more power to run ML models, and given that embedded applications usually 

have to run in power-constrained devices, GPUs are impractical for such applications.   

Microcontrollers paired with FPGAs (Field Programmable Gate Arrays) are also used as 

one of the best strategies for ML development on the edge. The FPGA acts as an accelerator that 

runs the ML models and delivers its output to the MCU, which can then drive full state applications 

that require the results of inferencing. FPGAs are easily programmed, do not consume as much 

power as GPUs, and are usually used in systems where minimal development time and high gains 

in hardware are required. In previous works [16], a microcontroller was successfully paired with 

an FPGA, as shown in Figure 2.3. The data from the sensors is fed into the microcontroller unit, 

which delivers it to the FPGA via General Purpose Input-Output (GPIO) pins [16]. The FPGA 

performs the necessary computations on its fast hardware and returns the results to the 

microcontroller which then makes predictions. 

 

Figure 2.3: FPGA in an embedded system [16] 
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In some cases, two microcontrollers are used, one with enough resources to run a full-

fledged ML model and another whose role is the same as that for a microcontroller paired with a 

hardware accelerator [18]. An example adapted from [18] is shown in Figure 2.4 for an audio 

classification neural network. The microphone sends data to the first microcontroller (Arm Cortex 

M4), which reads input data and performs the inferencing function. Once done, it signals the 

second microcontroller (ARM Cortex M7) of this event by either toggling a pin or any serial or 

I2C communication protocol. Though cheaper, this setup requires more power and more code for 

it to run seamlessly compared to one with only one microcontroller.  

Figure 2.4: ML audio classification model with ARM M4 and M7 

 

2.5 Project Scope  

Much work has been done in embedded machine learning on which this work is based and 

modifies. Intelligent systems, including home/office systems, have been designed and built by 

leveraging IoT technology, edge computing, and embedded machine learning. However, for 

advanced tasks such as image recognition, there is a need for very high processing power and high 

specialized, expensive hardware that is commercially not viable. The focus of most previous 

projects and work is on ensuring deep learning inferences on low-end microcontrollers such as the 
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ATMega328P, and sometimes this microcontroller is interfaced with an accelerator. However, in 

[25], a Jetson TX2 embedded deep learning platform was used to evaluate an approach to 

embedded ML that determines an appropriate DNN for a given input. This is by employing ML to 

build a cheap predictive model that selects a previously trained DNN and an optimization 

constraint. Though this approach significantly increased the speed of inferencing and improved 

accuracy, there were high memory overheads. In this work, a single pre-trained DNN will be used 

for inference to ensure the space and time efficiency of the model, which will then be applied to a 

motion detection system. In addition, the authors in [25] used Python to execute feature extraction, 

which increased the overhead in their application, and recommended, however, that a more 

efficient language be used to reduce the overhead. This project will use C and C++ to perform 

feature extraction, which is expected to reduce these overhead costs.  

 Also, the use of floating-point computations to alter the actuation of the machine learning 

model and using a more robust microcontroller such as the K64F microcontroller than the 

ATMega328P will be implemented in this work as well. Furthermore, a simple application to 

illustrate a practical application of the motion detection NN will be developed for use in training 

centers, etc.   
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Chapter 3: System Design and Implementation 

 3.1 Chapter Objectives 

This chapter will provide clarification on the specific needs this project intends to address 

in the form of functional requirements, non-functional requirements, and constraints. This outline 

will then inform the high-level design of the system that will explore the project topic and the 

various technologies that will be utilized for the project s success. The use case of this project will 

be discussed in detail in this chapter.  

The system proposes a workflow to enable Machine Learning on a microcontroller that can 

do floating-point computations to change the way the ML model actuates and to increase accuracy. 

Floating-point computation is key because of its ability to represent both large and small real 

numbers in a reasonable amount of memory storage. A NN machine learning model will be built 

and run on the chosen microcontroller to determine the speed gain or loss of inferencing in terms 

of inference time by comparing the results to those of inferencing for the same model in an 

optimized fixed-point version. 

This system is targeted at embedded system designers, students, and professionals who 

wish to use ML on microcontrollers in various projects. The requirements stated below determine 

the choice of the microcontroller to use during this project. 

3.2 Use Case  

Lisa Tim, a machine learning researcher, has collected data and trained a machine learning 

model (DNN) to solve her problem and wants to deploy her application in an embedded device at 

the network edge to reduce her network traffic. Lisa requires high accuracy for her system, higher 

speed, and accurate representation since her deep learning parameters have non-linear properties. 
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As a result, she decides to use a microcontroller capable of storing numbers and performing 

computations in floating-point format.  

3.3 User Requirements  

3.3.1 Functional and non-functional Requirements  

The system should:  

 Detect at least three types of motion  

 Fetch and receive data from the internet  

 Use an ARM processor that supports floating-point computations   

 Perform computations in floating-point  

 Perform computations in fixed-point (for comparison, as a base for floating-point)  

 Be cheap  

 Connect to the internet 

 Consume minimal power. 

 Easy to use and integrate into projects. 

3.4 Choice of microcontroller  

Two microcontrollers were initially chosen for this project, the K64F, and the 

STM32F407VG. The specifications for the microcontrollers can be found in Table 3.1. Although 

the specifications given in the table above make the STM32 a better choice of microcontroller for 

this project, the MKL64F will be used since it is readily available. The MKL64F meets the 

 in frequency, power, cost, and floating-point capabilities. Although the 

STM32 would outperform the MKL64F given the specifications above, the results will still be 

valid and indicative. In addition, the MKL64F can be connected to the internet via Ethernet which 
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makes it a smart choice for the development of an application that requires data from the 

microcontroller. The board of choice with this microcontroller is shown in Figure 3.1. 

Table 3.1: Specifications for the K64F and the STM32F407VG microcontrollers

3.5 Workflow Overview 

The Edge Impulse Platform will be used to create, train and test the Machine Learning 

Model to use with this project. The model built will be a simple deep learning motion detection 

system that determines the type of motion an accelerometer is exhibiting by classification among 

five different motion classes. The classes are:

Specification MKL64F STM32F407VG

Operating Frequency 120 MHz 168 MHz

Power consumption Low power 12.7 mA 

Cost $6.63 $15

Computations in floating-point Yes Yes 

Ease of use Easy Easy 

Figure 3.1: FRDM-K64F Development Board with MK64FN1M0VLL12 
microcontroller



20 
 

 Idle: the accelerometer is considered idle when it is static, i.e., not moving.  

 Clockwise: in a clockwise motion, the accelerometer moves in a circular motion forward.  

 Anticlockwise: the accelerometer moves in an anticlockwise motion, which is reverse of 

the clockwise motion, hence backward. 

 Left-right: the accelerometer moves in a left to right or right to left pattern. 

 Up-down: the accelerometer moves in an up and down or vice versa pattern. 

Figure 3.2 below shows the different configurations of a device or embedded system E 

with arrows showing the motion directions that result in the classes described above. These 

motions may represent, for example, types of exercise or movement of equipment. 

 

Figure 3.2: Different possible configurations of an embedded system E  

 

After creating, evaluating, and modifying the model, the model is deployed on the K64F 

microcontroller, and analysis is done. Figure 3.3 below shows the workflow overview, with the 

work to be done on the Edge Impulse platform and on the microcontroller in an embedded device.  
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3.6 Implementation Steps in detail  

The Edge Impulse (EI) Platform was built to enable the creation and deployment of 

machine learning models on embedded systems through any microcontroller that can understand 

the C++ programming language. Several microcontrollers and development boards are supported 

on the platform, such as the Arduino Nano BLE, Raspberry Pi 4, NVIDIA Jeston Nano, and the 

Raspberry Pi RP2040 among others. This platform was chosen for this project because of its 

simplicity and proper documentation for developing the machine learning model on the cloud. 

Such a platform will speed up the development process of the ML model, thereby having users 

spend more time on the development of the embedded system overall.  

3.7 Creating a NN machine learning model on Edge Impulse 

3.7.1 Data Acquisition 

The data is collected on the EI platform by connecting a suitable device, preferably the 

device on which the machine learning model is expected to run. For instance, it is advisable to 

collect data using the Arduino Nano BLE board if it is the actual board that will be used to deploy 

Figure 3.3: Workflow overview 
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the ML model. This ensures accuracy, reduces anomalies in the data, and helps keep account of 

inconsistencies across different sensor models on different devices [18]. The device or 

development board is connected to the EI platform via the internet, or through the Edge Impulse 

CLI downloaded and installed on the user s machine. In this project, sensor data was collected 

through a mobile phone because of the ease of access to the platform via the internet, requiring no 

installations; hence, it was the quickest way to get started. To collect data using a mobile phone, 

platform.  

Due to requiring multiple data sets to create a robust machine learning model, twenty-five 

samples, each ten seconds long, were collected for each class of motion described above. Having 

an equal number of samples per data set is essential in ensuring that the model does not lean 

towards a particular data set when performing live classification with unseen data; hence it does 

not become a naïve classifier [18]. The classes are then the labels of the data. Hence, the model 

here is a supervised machine learning model and belongs to the classification group of the same 

type of machine learning model. Samples of data representing each class are shown in Figure 3.4, 

extracted randomly from the data collected on the EI platform. The image captions are self-

explanatory. 
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Figure 3.4: Data samples for motion classes from Edge Impulse platform 
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Following data collection, the data is divided into Training Set and Test/Validation Set, as 

shown in Figure 3.5. Initially, all data collected exists in the training set. However, there is a need 

to split the data to enable model testing on unseen data and make way for parameter modification 

if required. Also, splitting is essential to measure  on unseen data, ensure 

effective mapping of inputs and outputs, and prevent model overfitting. Overfitting occurs when 

the ML model accurately predicts training data but fails to classify unseen data, a trait commonly 

exhibited by highly complex models. The training set is the actual sample of the data used to fit 

the model from which the model learns, while the Validation set or development set is the sample 

used to provide an unbiased evaluation of the model fit on the training set while also tuning the 

 [25]. However, the model does not learn from the validation set data. 

The training and validation sets are implicitly defined in the 80% of data belonging to the Training 

set, and the remaining 20% belongs to the Test dataset, which evaluates the final model fit of the 

training dataset once model training is complete. Since twenty-five data samples were collected 

for each motion class, this split entails that twenty samples per class belong in the Training Set 

and the remaining five in the Test Set.  

Figure 3.5: Train and Test splits before and after balancing data sets 
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3.7.2 Impulse Design: Developing the Neural Network 

Feature extraction is also done on the EI platform by creating an impulse by signal processing on 

raw data. The different blocks contained within this stage are explained below: 

a. Spectral Analysis - this processing block is ideal for repetitive motion, usually from 

accelerometers, and is responsible for extracting 

characteristics over time. Figure 3.6(a) shows this block and its inputs. 

b. Classification (Keras) - this is a learning block that learns the patterns from data 

and applies them to new data. This learning block is ideal for motion or audio 

recognition. Figure 3.6(b) shows the Keras classification block. 

c. Anomaly Detection - this is also a learning block that helps find outliers in new 

data, hence determining whether something went wrong during classification. It 

complements classifiers and is ideal for the recognition of unknown states. Figure 

3.6(c) shows the K-means anomaly detection block. 

d. Output features represent the expected outputs from the machine learning model, 

as shown in Figure 3.6(d). 

 Figure 3.6: Impulse design on EI platform 
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After impulse design, the data features will be seen in the Feature Explorer, as shown in 

Figure 3.7, with the left key indicating the distinctive features for the classes. The RMS values of 

 x, y, and z values are used to plot the points to express the overall changes in 

the values and for uniformity of error. 

 

 

In a neural network architecture, there are input layers, hidden layers, and output layers in 

the model, as shown in Figure 2.2 in Chapter 2. The number of input nodes corresponds to the 

number of features extracted from the input data during feature extraction. Depending on the model 

created for each application, the number of hidden layers is determined.  

In this project, five layers were chosen, which maximized the accuracy of the machine 

learning model. This architecture is broken down in Figure 3.8, with twenty-five, eighteen, and 

eleven neurons or nodes in the three hidden layers, respectively. The number of hidden layers and 

Figure 3.7: Feature explorer for ML model classes 
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the number of neurons in each hidden layer can be changed, requiring the model to be retrained. 

With this, there is a need to check the model performance to ensure that it matches the requirements 

or specifications of the embedded system or the application it has to work in.  

 

For this project, the architecture in Figure 3.8 was initially chosen through trial and error 

with two layers, and one more layer was added while training. The model was retrained with 

different combinations of nodes per layer with three hidden layers until this architecture was 

reached where the accuracy was at its maximum.  

3.7.3 Training  

With the chosen architecture of the neural network, the model is trained. The EI platform 

trains the model automatically and generates the confusion matrix of the model. A confusion 

matrix is an N-by-M matrix used to assess the performance of a machine learning model by testing 

the model against data in its validation set [27]. With this, the accuracy of the model is determined 

and its loss. The accuracy is determined in the confusion matrix by the equation below. 

Figure 3.8: Neural network architecture 
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When training, the EI platform trains and creates two models for the data, an optimized 

integer version and an unoptimized floating point one. The accuracy of the quantized integer 

(fixed-point) version of the model is slightly lower than the accuracy of the unoptimized float 

model, as shown in Table 3.2. This is due to the rounding-off involved in quantization to help 

ensure minimal accuracy loss. These losses are recognizable in cases where model accuracy is of 

paramount importance, for example, for tests for a disease. The differences in the accuracies of the 

integer version and the float version of this project, as shown in Table 3.2, are also because Edge 

Impulse highly optimizes its processes to ensure the highest performance of ML models. 

Table 3.2: Training performances of int8 and float32 model 

 Quantized/Optimized int8 version  Unoptimized float32 version 

Accuracy 99.2% 99.5% 

Loss 0.02 0.02 

 

 

 

 

 

 

 

 
Figure 3.9: Confusion matrices for (a) float32 and (b) int8 model 
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The confusion matrix in Figure 3.9 shows the model prediction results against the actual 

classification that was expected in a confusion matrix. The values show the percentages of total 

predictions that was done for each class. The information in Figure 3.9 shows that classification 

 -right  - ses were determined without any errors in both 

models, hence 100% accuracy. However, th es were 

predicted with some errors, hence 99.5% and 97.9% accuracies for the unoptimized float32 model, 

and the corresponding percentages apply for the optimized int8 model.  

3.7.4 Anomaly Detection  

The anomalies or outliers in the data are determined through anomaly detection, using the 

same axes as those in the feature explorer (RMS axes values). Anomaly scores are determined, 

and an anomaly explorer is established. This process helps determine if something went wrong 

during classification and is an excellent technique for fraud detection. Figure 3.10 below shows 

the anomaly explorer for the ML model created. 

 

 

 

 

 

 

 

Figure 3.10: Anomaly explorer for ML model 
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3.7.5 Model Testing  

The model is tested using the Test data initially separated when the train/test split was done 

or new data recorded when live classifying. Figure 3.11 is an example testing the model using a 

new sample belonging to the left-right class. 

  

 

 

 

 

 

 

 

 

In Figure 3.11, the count for the left-right class is the highest; hence, the sample belongs to 

this class. Since the expected outcome and the actual outcome are both the same, the model 

accurately predicted that the sample belongs to its actual class. 

 Another test was also carried out on a sample belonging to the anticlockwise class, and the 

count for the anticlockwise class was the highest, as shown in Figure 3.12 below, although there 

were counts greater than zero in the other classes. With this, it can be seen that the model accurately 

predicted the outcome.  

Figure 3.11: Testing sample results with new data for left-right class 
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3.7.6 Model Deployment  

The ML model can be deployed on several microcontrollers listed on the Edge Impulse 

platform. However, since the development board for this project is not directly supported by the 

platform, the model was downloaded from the Edge Impulse platform as a C++ library that can be 

integrated into the workspace of the IDE used to program the microcontroller. The library contains 

three folders with interdependent files for inferencing. For some platforms not supported by the 

Edge Impulse Platform, some functions had to be implemented. These functions were 

implemented and added successfully to the library. Edge Impulse also provides other ways to 

deploy the machine learning model on several other devices aside microcontrollers and 

development boards.  

Figure 3.12: Testing result for an anticlockwise class sample from test set data 
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3.8 Building a web application to interface with FRDM-K64F  

An application to interface with the FRDM-K64F microcontroller was built. It can be used 

in a  gym or fitness center, for the center managers to know which systems or equipment is in use 

and how it is being used. This helps the managers assign equipment to people as they arrive at the 

gym, given that they already know which equipment is in use and which one is idle.  

3.8.1 Application Technology Stack 

The code for the application can be accessed on GitHub1. This application was built using the 

following programming languages and frameworks:  

 Frontend  HTML, CSS and JavaScript  

 Backend  Node JS and MySQL 

3.8.2 How it works  

 The workflow of the web application and the embedded system is described in Figure 3.13, 

with the arrows indicating the direction of data flow from each component of the entire system. 

 

 
1 https://github.com/lorrainemakuyana2022/capstone-application 

Figure 3.13: Web application data flow diagram 
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The information from the sensors in the embedded system is sent to the database by the 

microcontroller by sending the results of the ML model classification to a database via an API 

endpoint built in the application backend. The MCU classifies the motion periodically to update 

the database on the motion state of the device. The API then sends data and records this data in the 

database. The frontend application queries the database every three seconds to refresh its data and 

update the status of the equipment on the dashboard, hence displaying it to the fitness center 

managers, who will assign people only to unoccupied equipment. This system can also be applied 

to a monitoring system for the physical activity of a physiotherapy patient remotely or collating 

the types of exercise done by a person remotely as well. 

Figure 3.14 shows screenshots of the web application interface. The one on the left shows 

the current status as left-right, which shows as green, and the same applies for the other five classes 

of motion. However, as shown on the right, the current status shows in red if it is uncertain 

indicating an anomaly.  

Figure 3.14: Screenshots of web application 
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Chapter 4: Results and Analysis 

4.1 Chapter Objectives  

This chapter analyses the inference time of the ML model on both the Arduino Nano BLE 

board and the FRDM-K64F board. The parameter to determine the speed gain or loss of the system 

are classification time or inference time. Inference time is the time taken from when the 

accelerometer sensor on the board gets the data and data is put in the format it should be in to the 

time when the ML model completes inferencing and classification and displays the results, or the 

time just before it processes sending the data to the API endpoint for storage in the database.  

4.2 Running the model 

The programs for this project were uploaded on GitHub for ease of access and can be found 

in a GitHub repository2. The steps outlined below represent the approach taken to deploy the 

machine learning model on the Arduino Nano 33 BLE, the FRDM-K64F, and on the desktop. 

4.2.1 Deploying to Arduino Nano 33 BLE 

To test the model, its integer version was first deployed on the Arduino Nano 33 BLE 

board. The Edge Impulse platform fully supports this board. Inferencing was done using the Nano 

33 BLE compatible zip library generated from the Edge Impulse platform. The motion classes 

clockwise and anticlockwise were classified incorrectly and it seemed the model could not 

accurately distinguish among the two. The remaining classes were classified correctly without 

errors. Figure 4.1 shows the classification of the anticlockwise class on the left and on the right, a 

prediction of the idle class correctly.   

 

 
2 https://github.com/lorrainemakuyana2022/capstone-ML-models 
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The accuracy was not as expected because the data collection on which the algorithm is 

based was collected using a mobile phone and then run on the board. In developing models for 

commercial use, or in cases where an extremely high degree of accuracy is required, the data 

collection and the actual inferencing should be carried out on the same device, or at least the same 

type of device on which it will run live. In this project, data acquisition was not carried using the 

Arduino Nano BLE because of installation issues with the Edge Impulse CLI. The necessary 

specifications of the Arduino Nano BLE are shown in Table 4.1.  

Table 4.1: Arduino Nano specifications 

   

 

 

 The Edge Impulse Platform creates models and estimates for a device that runs on an ARM 

Cortex M4 with a clock speed of 80 MHz. However, the Nano BLE runs at a clock speed of 64 

Specification Value  

Microcontroller nRF52840 

Clock speed  64 MHz 

Figure 4.1: Predictions on an Arduino Nano BLE 
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MHz; hence the speed of inferencing is expected to be a bit slower as the clock speed is lower. 

After adding the .zip library to the Arduino IDE, the program in Appendix A was run on the board. 

For different inferences using data from different output classes, the inference time fluctuated 

between 22ms and 26ms; hence, the average inference time can be calculated as follows:  

 

 

The inference time for the Arduino Nano BLE above is tolerable for an embedded system 

that detects what type of exercise a person is doing, since it can give accurate results in 0.024 

seconds. 

4.2.2 Deploying to the FRDM-K64F development board 

The float32 version of the machine learning model was tested and run on the FRDM-K64F 

development board to now test the performance of the floating-point version of the model. To do 

this, a C++ library of the model was downloaded from the Edge Impulse Platform and added to 

the MCU Expresso IDE workspace. The specifications of the MK64F microcontroller are shown 

in Table 4.2.  

Table 4.2: MK64F Specifications 

 

 

 

Some challenges faced with deploying the neural network on the MK64F included 

compilation issues of having too many characters in the compile path filenames passed to the linker 

Specification Value  

Microcontroller MK64FN1M0VLL12 

Clock speed  120 MHz 
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(>32k characters allowed), which is a limitation of the MCU Expresso IDE. This problem persisted 

even when folder paths were shortened. The code for the neural network could be run on a desktop 

PC.  

4.2.3 Deploying on Desktop PC  

The machine learning model was also run on a desktop using the downloaded C++ library. 

The library content, including the three interdependent folders, was run with the implemented 

functions that required implementation. Raw features were taken from the data samples initially 

file. Figure 4.2 shows the 

classification of a test sample from the anticlockwise (left) and the left-right (right) classes, with 

the time for inferencing for each class.  

Inferencing on the desktop was much faster than inferencing on the Arduino Nano BLE. A 

sample from each output class was inferenced, and the time was noted to enable the calculation of 

an average. The initial run on the desktop took about 34ms to complete due to overheads. After 

the first run, the inferencing time reduced drastically because of optimizations by the operating 

system. The first run is not taken into consideration in this calculation as it can be seen as an outlier. 

Inferencing on the desktop PC was calculated as follows:  

Figure 4.2: Classification of anticlockwise (left) and left-right (right) classes on a Desktop PC 
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Chapter 5: Conclusion 

5.1 Chapter Objectives 

This paper explored running a complex deep learning algorithm on a microcontroller that 

can perform floating-point computations. Data for the neural network created was collected using 

a mobile phone and the Edge Impulse platform. The neural network was able to detect and learn 

different types of motion, and the model was built on the Edge Impulse platform as well. Tests 

were carried out on an Arduino Nano BLE, the FRDM-K64F, and a desktop PC. The model was 

successfully run on the Arduino Nano BLE and a desktop PC. It was found that inferencing on the 

Arduino Nano BLE took 24ms, and on the desktop, it took 271.8 µs, which was much faster than 

the Arduino Nano BLE inferencing. The motion classes idle, left-right, up-down were classified 

accurately with no error. While the model was able to classify anticlockwise and clockwise, 

sometimes, these classes were mixed up owing to the motions being the same with only a change 

in direction.  

 This chapter highlights the challenges and limitations faced in developing the ML 

algorithm and testing the neural network on both platforms. Some areas of development to further 

this research will also be proposed in this chapter for future researchers to explore.   

5.2 Limitations  

Some challenges were met while developing this project, and some influenced major 

project decisions. Listed below are some of the challenges that were faced when this project was 

being undertaken:  

 The Edge Impulse Platform used to develop the neural network for this project optimizes 

the creation of the neural network, making it challenging to know the nature of the 
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implementation of the neural network, hence, the difference between the fixed and floating-

point representations could not be determined.  

 The Edge Impulse platform targets particular hardware such as the Arduino Nano BLE and 

the STM32 Cube AI. Software and support for other hardware are not provided on the 

platform, making it challenging to set up for unsupported hardware correctly.  

5.3 Future Work  

While a highly performant machine learning algorithm was created and deployed for this 

project to test the speed of inferencing, there are ways to advance the project. This project creates 

a good baseline for future projects in embedded machine learning with microcontrollers capable 

of floating-point computations. Recommendations for future work include:  

 This work depended on building the neural network on the cloud on the Edge Impulse 

platform. The neural network development can be taken offline to allow multiple iterations 

of the model and reduce challenges with installing software to enable seamless inferencing.  

 Other Edge Impulse supported microcontrollers can also be used, for example, the STM32 

described in Chapter 3, to explore how the algorithm behaves on microcontrollers with 

different specifications. 

 Although continuous learning was done with the Arduino Nano BLE, it would be very 

useful to carry out real time inferencing on the FRDM-K64F with floating point capability.  

 A hardware accelerator such as an FPGA can be designed and deployed in the embedded 

system to explore the speed of inferencing if the microcontroller has floating point 

capability. 

 To reduce dependency on the Edge Impulse platform, TensorFlow Lite can be explored 

directly.  
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 The integer version of the machine learning model can also be tested on the K64F since 

this was not done in this project due to linker errors. 
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Appendix 
 

A. Code for Arduino Nano BLE 
Note: This file is dependent on the Arduino .zip library expected to be part of the user s Arduino 

libraries. The .zip library can be downloaded from GitHub at this link3. Once downloaded, run the 

nano_ble33_sense_accelerometer example file, or copy and paste the code below. 

/* Includes ------------------------------------------------------- */ 

#include <motion-detection-final_inferencing.h> 

#include <Arduino_LSM9DS1.h> 

 

/* Constant defines ---------------------------------------------- */ 

#define CONVERT_G_TO_MS2    9.80665f 

#define MAX_ACCEPTED_RANGE  2.0f         

 

/* Private variables ------------------------------------------- */ 

static bool debug_nn = false;  

static uint32_t run_inference_every_ms = 200; 

static rtos::Thread inference_thread(osPriorityLow); 

static float buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE] = { 0 }; 

static float inference_buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE]; 

 

/* Forward declaration */ 

void run_inference_background(); 

 

void setup() 

{ 

    Serial.begin(115200); 

    Serial.println("Edge Impulse Inferencing Demo"); 

    if (!IMU.begin()) { 

        ei_printf("Failed to initialize IMU!\r\n"); 

    } 

    else { 

        ei_printf("IMU initialized\r\n"); 

    } 

    if (EI_CLASSIFIER_RAW_SAMPLES_PER_FRAME != 3) { 

        ei_printf("ERR: EI_CLASSIFIER_RAW_SAMPLES_PER_FRAME should be equal to 3 (the 

3 sensor axes)\n"); 

        return; 

    } 

 
3 https://github.com/lorrainemakuyana2022/capstone-ML-models 
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    inference_thread.start(mbed::callback(&run_inference_background)); 

} 

 

float ei_get_sign(float number) { 

    return (number >= 0.0) ? 1.0 : -1.0; 

} 

void run_inference_background() 

{ 

    delay((EI_CLASSIFIER_INTERVAL_MS * EI_CLASSIFIER_RAW_SAMPLE_COUNT) + 100); 

    ei_classifier_smooth_t smooth; 

    ei_classifier_smooth_init(&smooth, ); 

 

    while (1) { 

        int start_time = millis(); 

         

        memcpy(inference_buffer, buffer, EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE * 

sizeof(float)); 

 

        signal_t signal; 

        int err = numpy::signal_from_buffer(inference_buffer, 

EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, &signal); 

        if (err != 0) { 

            ei_printf("Failed to create signal from buffer (%d)\n", err); 

            return; 

        } 

        ei_impulse_result_t result = { 0 }; 

 

        err = run_classifier(&signal, &result, debug_nn); 

        if (err != EI_IMPULSE_OK) { 

            ei_printf("ERR: Failed to run classifier (%d)\n", err); 

            return; 

        } 

        ei_printf("Predictions "); 

        ei_printf("(DSP: %d ms., Classification: %d ms., Anomaly: %d ms.)", 

            result.timing.dsp, result.timing.classification, result.timing.anomaly); 

        ei_printf(": "); 

 

        const char *prediction = ei_classifier_smooth_update(&smooth, &result); 

        ei_printf("%s ", prediction); 

        ei_printf(" [ "); 

        for (size_t ix = 0; ix < smooth.count_size; ix++) { 

            ei_printf("%u", smooth.count[ix]); 

            if (ix != smooth.count_size + 1) { 

                ei_printf(", "); 

            } 
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            else { 

              ei_printf(" "); 

            } 

        } 

        ei_printf("]\n"); 

        int time_taken = millis() - start_time; 

        ei_printf("\n Time taken is %d ms \n", time_taken);  

        delay(run_inference_every_ms); 

    } 

    ei_classifier_smooth_free(&smooth); 

} 

 

void loop() 

{ 

    while (1) { 

        uint64_t next_tick = micros() + (EI_CLASSIFIER_INTERVAL_MS * 1000); 

        numpy::roll(buffer, EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, -3); 

        IMU.readAcceleration( 

            buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE - 3], 

            buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE - 2], 

            buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE - 1] 

        ); 

 

        for (int i = 0; i < 3; i++) { 

            if (fabs(buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE - 3 + i]) > 

MAX_ACCEPTED_RANGE) { 

                buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE - 3 + i] = 

ei_get_sign(buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE - 3 + i]) * MAX_ACCEPTED_RANGE; 

            } 

        } 

 

        buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE - 3] *= CONVERT_G_TO_MS2; 

        buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE - 2] *= CONVERT_G_TO_MS2; 

        buffer[EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE - 1] *= CONVERT_G_TO_MS2; 

 

        uint64_t time_to_wait = next_tick - micros(); 

        delay((int)floor((float)time_to_wait / 1000.0f)); 

        delayMicroseconds(time_to_wait % 1000); 

    } 

} 

 

#if !defined(EI_CLASSIFIER_SENSOR) || EI_CLASSIFIER_SENSOR != 

EI_CLASSIFIER_SENSOR_ACCELEROMETER 

#error "Invalid model for current sensor" 

#endif 
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B. Code for FRDM-K64F  

Large files are needed to be able to run this file on the FRDM-K64F and are available on GitHub 

at this link4. In the frdm-k64f folder, download and extract the library zip file available and place 

its contents in the source folder in your workspace. Copy and paste the file below in the file you 

will run on the board. 

#define ML_ON_K64F 

 

#ifdef ML_ON_K64F 

 

#include "board.h" 

#include "peripherals.h" 

#include "pin_mux.h" 

#include "clock_config.h" 

#include "MK64F12.h" 

#include "fsl_debug_console.h" 

 

// Include files from Edge Impulse Library 

#include <ei/classifier/ei_run_classifier.h> 

#include <ei/porting/ei_classifier_porting.h> 

 

#define RED_LED         (22)    // PTB22 red onboard LED 

#define MASK(X)         (1UL << X) 

#define LED_INTERVAL            (500)   // 500ms restart 

 

// CONFIGURE SYSTICK TIMER TO GET INFERENCE TIME 

volatile unsigned long counter = 0; 

void configure_SysTick(); 

unsigned long  millis(void); 

void SysTick_Handler(void); 

 

// Initialize LED to turn on RED during inference 

void initialize_LED(); 

 

// Run inferencing 

int run_ML_inferencing(); 

 

// Callback function declaration 

static int get_signal_data(size_t offset, size_t length, float *out_ptr); 

 
4 https://github.com/lorrainemakuyana2022/capstone-ML-models 
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// Raw features copied from test sample (Edge Impulse > Model testing) 

// To be always changed by Microcontroller Accelerometer 

static float input_buf[] = { 

 -0.6550, 2.7881, 19.1040, -3.7558, }; 

 

int main(){ 

    initialize_LED(); 

    configure_SysTick(); 

    unsigned long start_time = 0u; 

    unsigned long end_time; 

 

    while (1){ 

        run_ML_inferencing(); 

        unsigned long end_time = millis(); 

        printf("Time for inferencing is %d ms", end_time); 

        end_time = 0u; 

    } 

} 

 

int run_ML_inferencing() { 

    signal_t signal;            // Wrapper for raw input buffer 

    ei_impulse_result_t result; // Used to store inference output 

    EI_IMPULSE_ERROR res;       // Return code from inference 

 

    size_t buf_len = sizeof(input_buf) / sizeof(input_buf[0]); 

 

    if (buf_len != EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE) { 

        printf("ERROR: The size of the input buffer is not correct.\r\n"); 

        printf("Expected %d items, but got %d\r\n", 

                EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE, 

                (int)buf_len); 

        return 1; 

    } 

    signal.total_length = EI_CLASSIFIER_DSP_INPUT_FRAME_SIZE; 

    signal.get_data = &get_signal_data; 

 

    res = run_classifier(&signal, &result, false); 

 

    printf("run_classifier returned: %d\r\n", res); 

    printf("Timing: DSP %d ms, inference %d ms, anomaly %d ms\r\n", 

            result.timing.dsp, 

            result.timing.classification, 

            result.timing.anomaly); 

    printf("Predictions:\r\n"); 
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    for (uint16_t i = 0; i < EI_CLASSIFIER_LABEL_COUNT; i++) { 

        printf("  %s: ", ei_classifier_inferencing_categories[i]); 

        printf("%.5f\r\n", result.classification[i].value); 

    } 

 

    #if EI_CLASSIFIER_HAS_ANOMALY == 1 

        printf("Anomaly prediction: %.3f\r\n", result.anomaly); 

    #endif 

 

    return 0; 

} 

 

static int get_signal_data(size_t offset, size_t length, float *out_ptr) { 

    for (size_t i = 0; i < length; i++) { 

        out_ptr[i] = (input_buf + offset)[i]; 

    } 

    return EIDSP_OK; 

} 

 

void initialize_LED() { 

 

    SIM->SCGC5 |= SIM_SCGC5_PORTB_MASK; 

    PORTB->PCR[RED_LED] &= ~PORT_PCR_MUX_MASK; 

    PORTB->PCR[RED_LED] |= PORT_PCR_MUX(1); 

 

    GPIOB->PDDR |= MASK(RED_LED); 

 

    GPIOB->PSOR |= MASK(RED_LED); 

} 

 

void configure_SysTick() { 

    SysTick->LOAD = (20971520u/1000u)-1 ;  //configure for every milli sec restart. 

    SysTick->CTRL |= SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_ENABLE_Msk 

|SysTick_CTRL_TICKINT_Msk; 

} 

 

void SysTick_Handler(void){ 

    counter++; 

} 

 

unsigned long  millis(void){ 

    return (unsigned long) counter; 

} 

 

#endif 
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C. Challenges and ways to address them  

1. Undefined references to functions 

This problem arises when using a board or device that is not supported by the Edge Impulse 

Platform. When using unsupported hardware, some functions have to be defined by the user. When 

these functions are not defined properly and the appropriate file not put in its correct location, an 

error (showing like Fig A below) occurs. 

 To counter this error, ensure the file with the user defined functions is at its appropriate 

location and includes the appropriate header file. For more information, you can use the Edge 

Impulse Forum topic5 created which as links to example files and structures, and videos to watch. 

2. Data Collection using the Edge Impulse CLI  

For supported hardware, the Edge Impulse CLI can be installed and used to collect data for 

the machine learning model. The CLI also comes with predefined datasets that can be used to 

create a model. Detailed steps to use the Edge Impulse CLI can be found on the Edge Impulse 

Platform Website6.  

 

 

 

 
5 https://forum.edgeimpulse.com/t/deployment-of-project-as-a-c-library-for-frdm-k64f/4161 
6 https://docs.edgeimpulse.com/docs/edge-impulse-cli/cli-installation 

Fig A: Undefined reference error 


