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Abstract 

 Induction motors are expensive and the backbone of every industry. There would be 

no production when induction motors break down. It is also costly to repair them after a 

sudden shutdown. Industries are gradually adapting to predictive maintenance to prevent 

unnecessary shutdowns and reduce the cost of maintenance. The objective of this paper is 

to even make the predictive maintenance of inter-turn short circuit fault in induction 

motors more reliable by adding fault detection and deploying the entire system in an alarm 

and display system. In this project, secondary current data from a three-phase induction 

motor has been used because of the current's capabilities of detecting a higher percentage 

of electrical faults. This is achieved using predictive maintenance toolbox in MATLAB. 
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Chapter 1: Introduction 

1.1 Background 

 Industries have been the driving force of a good economy. Almost all industries rely 

on induction motors for their functioning, and it consumes more than half of the total 

generation capacity of industrialized nations [1]. Therefore, the breakdown of these induction 

motors would mean there would be no production of goods and services, affecting the 

economy. This makes it crucial for the recent research interest in monitoring the condition of 

induction motors to detect any fault and failure in advance. Most industries have started 

implementing predictive maintenance in their equipment to make them reliable. However, 

rarely the prediction of faults in their machines would always be accurate. There could be 

times when the machine will suddenly develop faults without a prior warning. Hence, this 

project will focus on combining the detection and prediction of faults in induction motors 

using the Predictive Maintenance toolbox in MATLAB [2]. 

1.2 Problem Definition 

 Induction motors have high efficiency, performance, and reliability, and their speed 

can easily be controlled electronically [3], making them the most widely used motors in the 

industries. These motors are the backbone of many industries. Production comes to a halt if 

these motors break down [1]. Induction motors are expensive and operating them under faulty 

conditions can cause deviation in their regular performances, more damage, and reduce the 

machine's lifespan. They are very expensive to replace or repair when they break down. The 

cost of repairing a machine after failure is three times the cost of performing predictive 

maintenance on that same machine [4]. Hence the need to detect and predict any fault to save 

cost and ensure the reliability of these motors. 
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1.3 Objectives of the Project Work 

 The objectives of the project are to: 

1. design and construct a functional prototype for detecting and predicting faults 

in induction motors 

2. investigate and tests the various methods that will make the system very 

responsive to inter-turn short circuit faults. 

3. be able to analyze the various faults with the suitable fault analysis technique. 

1.4 Expected Outcomes of the Project Work 

 After the completion of this fault detection and prediction in induction motors, the 

following outcomes were achieved: 

1. A well-built prototype that would be able to detect and predict inter-turn faults 

in induction motors. 

2. An integrated system that is responsive with a very quick reaction time to 

detect and predict inter-turn short circuit faults in induction motors. 

3. A functional fault detection and prediction system with almost a perfect 

accuracy and efficiency. 

1.5 Motivation of Project Topic 

 Electrical machines like induction motors are the backbone of industries in the world. 

They consume 50% of all the energy generated in the world [4]. When these machines break 

down due to faults, the economy comes to a standstill. This has received global attention. 

Hence, the motivation to integrate emerging technologies to build a prototype that would 
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diagnose, detect, and predict the different faults to ensure the continuous running of the 

machine. 

1.6 Research Methodology Used 

 The research methodology used for this project included: 

1. Systematic literature reviews 

2. Interviews with predictive maintenance engineers in the industry. 

3. Computer modelling, software processing, and simulation 

1.7 Facilities Used for the Research 

 These facilities used for the project included: 

1. Ashesi Electrical and Electronics Lab 

2. Ashesi Mechanical Workshop 

3. Online Libraries like IEEE, google scholar, Institute of Physics Journal 

4. Software like MATLAB, EasyEDA, SolidWorks, and others 

1.8 Scope of Work 

 This project is primarily based on research using scholarly articles and scientific 

research papers. A model is trained to detect and predict inter-turn short circuit faults 

efficiently and effectively using secondary data. The model is integrated into an alarm and a 

display unit to alert the maintenance team whenever the system detects or predicts a fault. 
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Chapter 2: Literature Review 

2.1  Introduction 

 Many techniques exist for diagnosing, detecting, and predicting faults in electrical 

machines. These fault detection techniques include but are not limited to Signal Processing, 

Knowledge-Based techniques, model-based techniques, and the hybrid technique. Also, there 

has been the use of predictive maintenance approaches in the industries to ensure the 

reliability of their equipment. In this chapter, the functioning of these techniques will be 

explored, and their shortcomings identified. 

2.2  Induction Motor 

 An induction motor is an electrical machine invented by Nicholas Tesla in 1888 [5] 

that operates at speed less than its synchronous speed. It consists of the stationary part called 

type is derived from the type of 

rotor used. Hence, an induction motor can be a squirrel-cage or wound type. Figure 2.1 shows 

the schematic drawing of an induction motor. 

          

Figure 2. 1: Schematic drawing of an induction motor 
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2.3  Faults in Induction Motors 

  Induction motors become prone to catastrophic failure if their faults are not detected 

early. These faults can be electrical, mechanical, or environmental and can be found inside or 

outside the motor. Examples of induction motor faults include but are not limited to inter-turn 

short circuits of the stator windings, bearing failure, end ring failure, and broken rotor bars. 

Inter-turn short circuit fault is the puncturing of the insulation between conductors having 

different potentials in the same slot [2]. The bearing failure consists of two different types: the 

single point fault and the generalized roughness fault. The single point fault is caused by the 

overloading of the motor, which in turn causes a fatigue crack in the bearing surface. The 

generalized roughness fault is the deformation of the bearing surface caused by the lack of 

lubricant or misalignment [7]. According to Electric Power Research Institute (EPRI) 

research, 42% of faulty induction motors are associated with bearing failures. Inter-turn short 

circuit of the stator windings constitutes 31% of the faults, while end ring and broken rotor 

bars make up 9% of the faults reported in induction motors [6]. Figure 2.2 shows the various 

types of faults in an induction motor.  

 

Figure 2. 2: The various types of faults [7] 
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2.4  Importance of Fault Detection and Prediction in Induction Motors 

 The goal of performing maintenance on an induction motor is to ensure the motor's 

reliability. That is the ability of the machine to continuously run to increase production 

quantity and quality while lowering production costs. Therefore, induction motors must be 

kept in completely functional and efficient operating conditions to get maximum throughput. 

When overlooked for a very long time, maintenance will result in an increment in the cost of 

maintenance. It is mostly around 15% - 60% of the cost of production in the industry [9]. 

Hence, it has become one of the industry's most demanding and vital cultures. The breakdown 

of induction motors causes an increase in their downtime, which slows down the production 

of goods and services. Though fault detection and prediction help to ensure the reliability of 

the equipment, it is costly to put the system in place, especially in cases where there are many 

machines to be monitored. The criticality of the equipment is, therefore, assessed before 

choosing, in order, to acquire the essential equipment to monitor. 

2.5  Equipment Criticality  

 Equipment criticality is a rating that determines how frequently equipment should be 

maintained and which equipment should be prioritized in the case of a failure. Any equipment 

that could cause the process to stop or result in higher production costs if it fails is considered 

critical. An assessment is done to determine the criticality of equipment in the industry, the 

likelihood of failure (vulnerability), and the consequences. The assessment is numerically 

scored, allowing the assignment of a low, medium, or high-risk level to any piece of 

equipment that applies. The repercussions of an equipment failure determine whether it is 

worthwhile to do an equipment criticality assessment [10],[11]. Assigning a criticality rating 

to equipment ensures that the maintenance of all equipment is in the right direction 
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2.6  Milestone in Fault Detection and Prediction of Induction Motors 

 Engineers and researchers have made sure that there is continuous production in the 

industry with a cut down in the downtime of their induction motors. This fruitful journey 

started from breakdown or corrective maintenance to preventive maintenance. Condition 

monitoring then came into existence, and through this powerful technique, engineers and 

researchers brought forth predictive maintenance. Predictive maintenance cannot exist on its 

own since it needs condition monitoring techniques to forecast if there will be a failure [4]. 

2.7 Breakdown or Corrective or Reactive Maintenance 

 Breakdown or corrective maintenance is typically a series of complicated manual 

repairs requiring specialized training. The primary purpose of performing breakdown or 

corrective maintenance is to restore the machine that has broken down [9]. Unless and until 

there is a failure of equipment or a system, no maintenance operations are performed. In this 

maintenance method, even if minor problems or faults exist, no maintenance is performed 

until the entire system fails. As a result, the maintenance costs are the highest. Some 

precautionary services, such as lubrication and adjustments, are carried out, but no substantial 

repairs or system rebuilding are carried out until the system or equipment fails to function [9]. 

This technique is the most expensive because of the high cost of spare parts and the 

significant labor expenses associated with machine downtime [12]. This raises costs and puts 

a strain on other systems. 
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2.8  Preventive Maintenance 

 There are several types of preventive maintenance, but a very close look at each one 

shows that they are all time-based. Maintenance duties are time-driven, which means they are 

scheduled according to operation time [12]. The number of hours a given piece of equipment 

or system will work during its life cycle is used to schedule preventive maintenance activities. 

Figure. 2.4 describes an example of a machine train's life. The lifetime of every machine is 

represented by the following mean-time-to-failure (MTTF). The likelihood of failure for 

every machine is high on the first day of operation, as shown in Figure. 2.3. This is due to 

adjustments, calibration, and other factors. However, once this phase is completed, the 

likelihood of failure reduces and becomes stable for a more extended period. As time passes 

after this normal operation period, the likelihood of failure rises once more [7]. The 

preventive maintenance task schedule is centred on this life cycle graph. With reference to 

this graph, it is made with the assumption that the machine will break down. Even if the life 

expectancy of each type of machine is known, the actual life expectancy is determined by 

how it is used and maintained during its entire life cycle. The main disadvantage of this 

preventive maintenance is the increase in the cost of production [9]. This is because 

production is halted, and a huge amount of money is spent on performing maintenance that 

may not be required. 

 

 

 

Figure 2. 3: Mean-time-to-failure curve 
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2.9  Condition Monitoring 

 Condition monitoring is a technique of checking a particular machinery condition 

while it is in use. These conditions can be pressure, current, voltage, temperature, vibrations, 

and others. It entails gathering data, analyzing it, comparing it to trends, benchmarks, and 

sample data from similar healthy machines. Condition monitoring uses a potential failure (P-

F) curve in analyzing the data it collects from the machines under monitoring. This P-F curve 

condition before it reaches a state that 

can be considered a failure [13]. Condition monitoring studies various conditions of machines 

and analyzes those conditions using different techniques to determine if there is a failure. 

These condition monitoring techniques include oil analysis, vibration analysis, Motor Current 

Signature Analysis (MCSA), Infrared thermography, and many more. The data translation 

from these analyses into information and then using that information for maintenance 

optimization and reliability improvement is a critical challenge in condition monitoring [14]. 

2.9.1 Oil Analysis 

 Oil Analysis is one of the effective means of performing condition monitoring in 

 be 

monitored to detect a potential problem in time [8]. This makes it possible to maintain the 

induction motor promptly before the breakdown, hence decreasing the amount of money spent 

y and security.   

2.9.2  Vibration Analysis 

 Vibration analysis is a condition monitoring technique that monitors vibration levels 

and patterns from an electrical machine to detect abnormalities in the vibration event and 
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assess the machine's overall state [8]. Vibration levels rise when mechanical problems like 

bearing faults occur in high-speed rotating equipment. The radial forces caused by the air-gap 

field are the most significant sources of vibration and noise in electric devices. For example, 

when there is a crack in a motor's bearings, there would be periodic collisions that can change 

the vibration pattern. Vibration analysis is a cost-effective and time-saving method of 

obtaining condition indicators for machine health management. The best way for defect 

diagnosis is vibration-based diagnostics. However, this requires expensive accelerometers and 

accompanying wiring. This restricts its use in various applications, particularly in tiny 

machines where cost is a significant consideration when selecting a condition monitoring 

approach. Moreover, when the diagnosis is based on numerous motors working in tandem 

with much noise, this constraint becomes even more complicated [15].  

2.9.3  Motor Current Signature Analysis 

 This is a condition monitoring technique developed by the Oak Ridge National 

Laboratory [16]. It offers a sensitive, efficient, and cost-effective way to monitor a wide range 

of industrial machines in real-time. This technique can be implemented using either time-

domain or frequency domain, and it is best used for bearing failure and inter-turn short circuit 

detection. However, it involves a lot of mathematical computations making it error prone.  

2.9.4  Infrared Thermography 

 Infrared thermography is a non-contact technique for mapping the spatial pattern of 

heat and temperature measurement. It uses the concept of detecting infrared radiation emitted 

by a piece of equipment warmer than the Absolute Zero temperature. These radiations are 

transformed into electrical signals or pulses with the help of an infrared detector, which can 

subsequently be viewed on a monitor as a colour image, indicating the equipment's entire 
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surface temperature map. This technique is helpful in detecting many electrical faults. 

However, the technique requires vast sums of money, and it is very slow in processing the 

thermal images [16]. 

2.10 Methods for Fault Diagnosis 

 The methods for fault diagnosis are the tools used for tracing faults by studying trends 

in the data from the induction motor. These tools are used for performing and interpreting the 

results of condition monitoring techniques. These methods include signal processing, model-

based, knowledge-based and hybrid methods. 

2.10.1     Signal Processing Method  

 For fault diagnosis, signal-based approaches rely heavily on signal processing 

technologies. Typically, these methods necessitate pre-determined circumferences [17]. 

Signals are influenced by their characteristics. They are considered abnormal once the signal 

or features have passed outside their range. There are numerous approaches when using the 

Signal analysis method. The signal processing method is used to analyze condition 

monitoring techniques like vibration analysis and MCSA. 

2.10.2    Model-Based Technique  

 The dynamic system model is typically used in model-based fault diagnostic 

techniques. The actual system and model output benefit the industrial system's model-based 

techniques. The simulation and the real world can be compared, and actual data outputs, and 

hence, through visualization, the state of a motor can be determined [17]. Physical modelling 

can be used to create dynamic models. The most important challenge with model-based 
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techniques is the fact that the correctness of the model describes how the diagnosis system 

behaves.  

2.10.3    Knowledge-Based Technique  

 Knowledge-based model solutions typically use a human brain-like understanding of 

the process [17]. The human professional expert in real-time fault diagnostic methods could 

be an engineer who implements and operates with a strong understanding of diagnosing faults 

in induction motors. Knowledge-based strategies are prone to human errors, though they are 

effective when the signals are not working. 

2.10.4   Hybrid Method  

 Combining numerous approaches may be a viable alternative because each defect 

diagnosis method has its own limitations. Several writers have proposed combining 

techniques such as neuro-fuzzy, neural network, and Bayesian interface with the expert 

system. A hybrid system called generic integrated intelligent system architecture was 

proposed [17]. Different Artificial Intelligence techniques, such as fuzzy logic and neural 

networks, were incorporated into the system. 

2.11  Predictive Maintenance 

 Predictive maintenance is the application of data-driven condition monitoring 

techniques approaches to examine and assess equipment conditions and forecast when a 

machine will fail so that corrective maintenance can be planned before it happens. The goal is 

to plan maintenance at the most efficient and cost-effective time possible, maximizing the 

equipment's reliability. The stages involved in performing predictive maintenances are 

acquiring and storing data, data transformation, performing condition monitoring using the 
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acquired data, asset health evaluation, predicting, developing a decision support system, and 

creating a human interface to interpret the results. Predictive maintenance is performed with 

the help of Machine Learning algorithms like the Support Vector Machine and K-Nearest 

Neighbour.  

2.12 Remaining Useful Life (RUL) of an Induction Motor 

 The RUL of an induction motor is the length of time between its current condition and 

when it will fail. RUL is very useful to the maintenance team for scheduling purposes, 

optimizing the operating frequency, and reducing unplanned downtime. The methods used to 

estimate the remaining useful life of a machine are the survival model, similarity model, and 

the degradation model. The survival model is used to estimate the RUL of a machine when 

the data have a proportional hazard model and the pr

failure time. The similarity model estimates the RUL when run-to-failure data of a similar 

machine is available. The RUL can also be estimated with the degradation model when the 

only information available is the threshold beyond which the machine will fail. 

2.13 Survey of Related Work and Gaps Identified 

 Recently, many different approaches like the Motor Current Signature Analysis 

However, they involve a lot of mathematics. This makes them error-prone when applied to 

complicated systems. Due to their inability to manage non-linearity, these approaches are 

inefficient for electromechanical systems because of their high mathematical reliance [18]. 

Machine Learning using the MATLAB predictive maintenance toolbox, which comprises of 

the Diagnostic Feature Designer App and the Classification Learner App, is a robust 

methodology for fault detection and prediction. This methodology is robust because it is non-
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parametric, does not require complex mathematics, and can be implemented using basic tools. 

Predictive maintenance has taken over the field of maintenance of electrical machines. Most 

industries are deploying predictive maintenance techniques to ensure the reliability of their 

equipment. However, predictions can never be entirely accurate. There could be instances 

where the machine can fail without getting a warning earlier. Hence, there is the need to 

ensure that even if the machine escapes fault prediction, the fault within the machine must 

still be identified. This paper looks into the combination of fault detection and prediction and 

the remaining useful life to ensure the maximum reliability of induction motors. 

 

  

 

 

 

 

 

 

 

 

  



15 
 

Chapter 3: Design Methodology 

3.1  Introduction  

 
 This chapter focuses on the entire design of the system to detect and predict faults in 

induction motors. It introduces the detailed steps followed to achieve the goal of this project. 

That is to develop an efficient system to detect, predict faults, and estimate the remaining 

useful life (RUL) of an induction motor 

3.2  System Requirements and Architecture 

Table 3.1 shows the system requirements and their justifications for the 

system. 

Table 3. 1: System requirements for alarm unit 

No. System Requirement Justification 
1 An efficient microcontroller must be used to help 

display the fault details on an LCD and sound 
and alarm. 

The microcontroller is the brain 
of the alarm system, hence an 
efficient one must be used for 
quick response 

2 Alarm unit must have a different power source 
not more than 9V 

This helps to maximize the 
sounding effect. 

 
3 System must be enclosed fully in a container This helps to avoid electric 

shocks 
 

4 Must detect and predict inter turn short circuit 
fault in the motor 
 

This helps to monitor the health 
status of the induction motor 

5 Must not cost much to build 

 

Less expensive makes most 
industries use it to prevent 
unexpected breakdown 

6 There should not be any delay in sounding the 
alarm unit 

No delay helps the maintenance 
team to quickly react 
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3.3  Design Decision 

 Engineering projects are concerned with uniquely developing and defining new 

alternatives, solutions, and requirements to solve technical problems [13]. Hence, deciding on 

what the design of a project should look like is one of the most critical aspects of any 

engineering project. In deciding on the best microcontroller to use to meet the design 

requirements of this project, a PUGH chart was designed to help make the right choice. The 

ESP32 microcontroller was selected as the baseline for the comparison. The different 

microcontrollers are compared based on processing performance, cost, and availability 

criteria. The comparative analysis using the PUGH chart, as shown in Table 3.2, proved that 

ESP32, with the highest total score, is the best microcontroller for this project. 

Table 3. 2: PUGH chart for microcontroller selection 

Selection 

Criteria 

Weight 

(Out of 5) 

ESP 32 

(Baseline) 

STM32 AtMega328p Arduino 

Uno 

Processing 

Performance 

5 0 -2 -3 -4 

Cost 4 0 +1 +3 0 

Availability 4 0 -1 -1 0 

TOTAL  0 -10 -7 -20 

 

3.4 Hardware Design 

 Electronic components and devices characterize this project's hardware design and 

implementation. These components include a microcontroller (ESP 32), an LCD, a relay, a 
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9V power supply from a battery, and an alarm unit consisting of a speaker and LEDs, as

shown in Table 3.3. These components and devices are chosen based on engineering 

concepts, extensive research, and characteristics. Figure 3.1 shows the block diagram of the 

hardware design of the project.

Figure 3. 1: Block Diagram of the System

Table 3. 3: Electronic components and description

Block Description Picture
Software Processing MATLAB was used to preprocess the 

.csv file of the motor stator current 
data for the model

ESP32 The ESP32 with a high processing 
power was the best microcontroller 
for the project based on the Pugh 
Chart.

Relay The relay used electromagnetic coil 
to control a high current circuit with a 
lower one
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Power Supply from 
Battery 

The 9V battery was used as the 
power supply purposely to give the 
speaker an independent supply. 

 
LM7805 The 9V from the battery is regulated 

by the lm7805 to provide a constant 
5V to the ESP32  

LCD This is a 2 by 16-character display for 
showing if there is a fault 

 
Alarm Unit (Speaker 

and LEDs) 
The speaker sounds while the LEDs 
light when fault is detected or 
predicted 

 
 

3.5  Circuit Design for Alarm and Display System 

 The alarm unit consists of a speaker and LEDs that are activated anytime a fault is 

detected or predicted by the algorithm. Figure 3.2 (a)  shows the schematic circuit drawing of 

the alarm system. The circuit was designed using Easy EDA software, and then routed as 

shown in Figure 3.2 (b). The Printed Circuit Board (PCB) is autogenerated as shown in Figure 

3.2 (c) 
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(a) 

                            

(b)          (c) 

Figure 3. 2: (a) Schematic drawing. (b) Printed circuit board. (c) Routing circuit. 

3.6  Design Theory  

 Inductance and resistance are the main parameters of the circuit of an Induction motor. 

Studying the outcome of these parameters' malfunctioning helps identify the parameters and 
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the conditions that can affect their value. These two main parameters are further divided into 

self-inductance, mutual inductance, and resistance. 

3.6.1  Self-Inductance  

 Magnetizing and leakage inductance make up the self-inductance in stator and rotor 

windings. Because the windings of a healthy machine are identical, the self-inductance of all 

stator windings will be similar. 

LA =LB=LC=Lms +L s                                                                    (1) 

 Magnetizing inductance of the stator is given by: 

Lms =                   (2) 

Where l is the r, g is the radial 

length of the air gap and Ns represents the effective number of turns of the stator windings.  

3.6.2 Mutual Inductance  

 Mutual inductances can exist from stator-to-stator as shown in equation (3).  

Lxsys =  Cos xsys                                                                       (3) 

xsys is the angle between the stator windings x and y, and Lxsys is the inductance 

between any stator winding x and any other stator winding y. 

By substituting equation (2) into equation (3), 

Lxsys = LmsCos xsys            (4) 
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 The normal winding distribution in a healthy induction motor has two stator windings 

Cos 

xsys   in equation (6) can be rewritten as: 

Cos xsys   -0.5                                                             (5) 

From equations 5-7, the mutual inductance between two stator windings is: 

LAB = LBA = LAC = LCA=LCB = -0.5Lms                                                                                                          (6) 

xsys is the angle that exist between any stator winding x and y [19]. 

 The above equations show that the inductive flux in the motor's windings decreases 

when there is an inter-turn short circuit fault in the motor. This is because, when there is a 

short circuit, the current passes through the windings with the least or no resistance. This 

decreases the Ns from equation (2) and, in turn, decreases the flux. The reduced flux in one 

phase winding of the stator exposes the motor to unbalanced currents, which causes a negative 

sequence current. 

3.6.3  The Resistance  

 The resistance value is given as: 

R =            (7) 

where R is the resistance measured in ohms ( ), l is the cross-sectional area of the cable 

measured in meters square (m2), and the ).    
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3.7 Experimental Set-up

Secondary data for this project was obtained from an online data source of an 

induction motor [22]. The secondary data is obtained from a test bench consisting of a 4-pole 

and 3-phase induction motor with a rated amperage and voltage of 3A and 220V, respectively. 

The testbench is a 1H motor that operates at a frequency of 50Hz. The data has time labeled 

as 'TIME,' and current values from the four poles of the motor labelled as CH1, CH2, CH3, 

and CH4. The stator circuit was re-wound, allowing access to the winding's ramifications to 

introduce inter-turn short circuits. Different short-circuit levels were emulated, ranging from 

less severe to most severe.

3.8 Fault Detection and Prediction Approach

This project focuses on using MATLAB Predictive Maintenance Toolbox to detect, 

predict faults and estimate the remaining useful life of the motor. The Predictive Maintenance 

Toolbox includes functions and interactive apps like the Diagnostics Feature Designer and 

Classification Learner App that help extract and rank the four current values (CH1, CH2, 

CH3, and CH4) by the importance of the data and models, including statistical and time-series 

analysis. Extracting and sorting the most important current values from data using time-series 

approaches was crucial in monitoring the condition of induction motors. Figure 3.3 shows the 

block diagram for the detection and prediction algorithm.

Figure 3. 3: Detection and prediction algorithm
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3.8.1  Data Acquisition  

 Secondary data consisting of the current values of the motor was used for this project. 

The secondary dataset was already grouped into seven (7), from 0 to 6. Data under the 0 

group was the data for a healthy motor with no faults. Those under group 1 were slightly 

faulty, and they were in the initial stages of developing inter-turn short circuit fault. The 

severity of the fault increased as the group number of the motor increased from 0 to 6 [20]. 

The secondary data had 100,000 rolls of current values for each group of motor data. The 

number of rolls was trimmed to 35001 for training purposes on an ordinary computer. An 

extra column was created in the excel sheet containing the data to include the different motor 

groups as the fault condition of the motor. Figure 3.4 (a) shows a picture of the sample current 

data of a healthy under no-load motor data, and hence, belonging to the group 0. Figure 3.4 

(b) also shows a sample current data of a faulty motor under no-load condition, and hence 

belonging to group 6. The full dataset was imported into MATLAB for the model training. 

The current rating of the motor used for the experiment was 3A. Looking at the current 

values, namely, CH1, CH2, CH3, and CH4, Figure 3.4 (a) has values far below the 3A current 

rating of the motor used to get this secondary data. 

 On the other hand, Figure 3.4 (b) has current values either very close to or beyond the 

rated current value of 3A. The CH1, CH2, CH3, and CH4 current values follow the same 

trend for motor groups (1-5). The current values get close to or go beyond the rated current 

value of 3A, making the current values important features for machine learning model 

training.  
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    (a)              (b) 

Figure 3. 4: (a) healthy no-load motor data. (b) Faulty no-load motor data 

3.8.2  Pre-processing of Data 

  The pre-processing of data involved analyzing the current signals and time series of 

the online motor data and preparing the signals for the next step. Pre-processing the data was 

essential for converting the data into the form that the condition indicators can use. It entailed 

converting unstructured or raw data into a usable format. Data pre-processing required tracing 

signals into several domains to extract condition indicators from them and generate data 

ensembles for effective handling of data. The random features discovered using signal 

processing techniques and feature extraction were the current signals of the motor [21]. Time-

domain analysis was the main feature extraction technique used in the data pre-processing 

stage. In analyzing the signals, operations like filtering, smoothing, and labelling were 

performed on the signals. Performing these operations on the signals was user-friendly as it 

helped to get a clear graphical distinction between the healthy and faulty data as well as 

getting rid of any outlier signal. 
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3.8.3  Identification of Condition Indicators 

 The Diagnostic Feature Designer App in MATLAB analyzed and extracted the most 

important current values from the dataset. The current values were sorted and selected based 

on one-way ANOVA statistical tool for further processing. The identification of condition 

indicators from the one-way ANOVA helped rank the current values for effective training of 

the model in the Classification Learner App in MATLAB. The current values were ranked to 

select the most important ones as condition indicators from the raw data. The current values 

selected as the most important were the current values from CH1, CH2, CH3, and CH4 of the 

original dataset. Ranking and selecting the most important set of current values with one-way 

ANOVA ensured that the model's accuracy improved. One Way ANOVA is a parametric test 

that assumes that the normally distributed data sample has a homogenous variance and 

independent cases [23]. One Way ANOVA was used because of its statistical power and the 

ability to compare independent variables with different group means [23]. 

 Mathematically, equation (8) represents one-way ANOVA for testing a null 

hypothesis. 

 0:41=42=43                                                                                              (8) 
 
For one-way ANOVA, the results will either accept or reject this null hypothesis. When there 

is a rejection, it can be interpreted as there is unequal distribution means. Scatter plots are 

used for identifying the groups that are different, because the one-way ANOVA is unable to 

classify the groups that are not the same. The scatter plot is used to compare two of the 

variables to find out the relationship that exists between them.  
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3.8.4     Training of Model 

 The most important current values selected and ranked in the Diagnostic Feature 

Designer App were exported into Classification Learner App in MATLAB. For this model, all 

the current values (CH1, CH2, CH3, and CH4) were selected by the Diagnostic Feature 

Designer App. The model was classified and trained using Machine Learning algorithms 

deployed in the Classification Learner App in MATLAB. The Classification Learning App 

separated the data imported into MATLAB into three sets to increase the accuracy of the 

Machine Learning Models. The three sets of data were training, validation, and test data. The 

data was separated to have a higher accuracy of the trained model. Hence, 70% of the data 

was reserved for the training, 15% was used for validation, and 15% was used for testing. The 

classification of the different stages of inter-turn short circuit fault depended on the conditions 

indicator (rated current value of 3A), which distinguished a healthy motor from a faulty one. 

ns 

was failing. The selected condition indicator trained a model using different machine learning 

algorithms to detect and predict inter-turn short circuit fault in the induction motor. The 

machine learning algorithm for model training focused on Support Vector Machines (SVM) 

and the K-Nearest Neighbor (KNN) algorithms. These algorithms were chosen because they 

are not complicated and have a high-performance ability to accurately predict even with 

limited data. 

 Support Vector Machine is a machine learning algorithm in which the data for model 

training is separated by hyperplanes characterized by the sum of the support vectors. The 
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hyperplanes separate the data into positive and negative classes [24]. This type was used 

because both separable and non-separable data were available in the data set.  

          On the other hand, K-Nearest Neighbor is an instance-based supervised learning 

algorithm that classifies an unfamiliar instance by using an effective distance to compare it to 

a known instance. A data set is partitioned into a fixed number of clusters (k) in KNN. The 

KNN classifier is trained using the centroid, which can be real or imaginary, as the center data 

point in a cluster. The procedure of determining the centroid value is iterative. The emanated 

classifier is used to build an initial array of random clusters. The centroid value is then 

adjusted until it becomes stable. The stable centroids are used to classify input data by 

changing an unknown dataset into a known one [27]. Figure 3.5 shows the validation 

percentage and the range of current values from the one-way ANOVA performed on the 

current values using the Diagnostic Feature Designer App. 15% of the data was set aside for 

validation of the model to protect against overfitting data. The range of current values from 

Figure 3.5 in the dataset was trained with the SVM and the KNN machine learning models. 

 

Figure 3. 5: Range of each current set of values exported for model training 
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3.8.5  Deployment and Integration  

 A MATLAB function was automatically generated from the developed algorithm. The 

MATLAB function with a .mat extension was converted to a .c extension (C programming) 

using the Coder App in MATLAB. The C programming code was then uploaded onto the 

ESP32 microcontroller for building the alarm and display unit. A 9V battery passed through 

the LM705 voltage regulator that powers the unit. A relay drives the speaker that sounds to 

alert the maintenance. The LCD also displays the RUL whenever the system detects or 

predicts an inter-turn short circuit fault. Figure 3.6 shows the CAD model of the alarm and 

display unit designed using SolidWorks. 

   

Figure 3. 6: CAD model of the alarm and display unit 

 3.9  Detection of Inter-Turn Short Circuit Fault 

 In a short-circuit fault for a given phase, the number of turns of the winding will 

reduce, causing the resistance to increase, as shown in equation (7). As shown in equation 

(2), the inductive leakage flux also decreases. The inter-turn short circuit was introduced for 

the testbench used by taking out insulations from sections of the coil of a phase and 

connecting it to a conductive material. The severity of the inter-turn short (the percentage of 

short turns) depended on the particular turn of the coil on which the conductive material is 
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connected [22]. Detecting the inter-turn short-circuit fault was done in three ways: threshold 

comparison, the negative current sequence, and the machine-learning algorithm. 

3.9.1  Negative Sequence Current 

 The current sequence of the healthy motor is the positive sequence current. When the 

inter-turn short circuit fault occurs, two of the windings of the current signals are swapped. 

Based on that, an inter-turn short circuit can be detected. 

3.9.2  Threshold Comparison  

 Comparing the threshold of healthy motor data signals to a faulty one was one of the 

methods used to detect the inter-turn short circuit fault. The rating of the induction motor 

whose current values were used for this project was 3A. Hence, when the signals of these 

current values went beyond this threshold, it indicated that the induction motor was faulty. 

However, this method was inefficient since it only tells there is a fault and does not 

specifically determine if the fault is an inter-turn short circuit of the stator windings. 

3.9.3  Machine Learning Algorithm  

 The machine learning algorithm detects inter-turn short circuits of the stator windings 

when the algorithm predicts that the test data is classified under group 6. For group 6 motors, 

they have no remaining useful life. The motor has completely developed the inter-turn short 

circuit fault.   

3.10  Prediction of Inter-turn Short Circuit Fault in Stator Windings 

 Prediction of the inter-turn short circuit fault in the stator windings of the induction 

motor was based on the results of the machine learning algorithms deployed. The algorithm 

forecasts the inter-turn short circuit fault level by returning a number from 0 to 6. Number 0 
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meant there was no inter-turn short circuit fault in the stator of the induction motor. As the 

number increased from 0 to 6, the severity of the inter-turn short circuit fault increased, 

making group 6 the faulty motor with a total inter-turn short circuit fault. 

3.11  Estimation of the Remaining Useful Life (RUL) 

 The life expectancy of a three-phase induction motor from run-to-failure experiments 

shows that the motor can run for about 30,000 hours or 179 weeks before it breaks down [28]. 

Assuming the motor with a fault code of 0 or group 0 is a new motor with a remaining useful 

life of 179 weeks, the motor with a fault code of 6 has broken down and has no remaining 

useful life (0 weeks). Hence interpolation is used to estimate the remaining useful life of the 

other motors of groups 1, 2, 3, 4, and 5. Interpolation is the estimation of unknown values that 

fall between known data points. It is used to forecast unknown values for any data points with 

a geographical correlation. The formula for interpolation is given by: 

 =                          (9) 

for motor with fault code 1: 

let x1, x2, x3, x4, x5  be the RUL of the motor data with fault codes 1, 2, 3, 4, 5 respectively 

 =  ,      x1 =145.83 =146 weeks 

for motor with fault code 2: 

 =   ,     x2 = 119.33 = 120 weeks 

for motor with fault code 3: 

 =   ,     x3 = 89.5 = 90 weeks 
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for motor with fault code 4: 

 =   ,     x4 = 59.67 = 60 weeks 

for motor with fault code 5: 

 =   ,     x5 = 29.83= 30 weeks 
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Chapter 4: Results and Discussion 

4.1  Introduction  

 This chapter focuses on the results from the implementation of both the detection and 

predictive algorithm deployed in chapter three. Statistical analysis is performed to select the 

best algorithm which is deployed in the hardware design of an alarm and display unit.  

4.2  Fault Detection Results 

 The inter-turn short circuit fault was detected in three main ways: threshold 

comparison, negative sequence current and machine learning algorithms. However, the 

machine learning was able to detect and at the same time predicts the inter-turn short circuit.  

4.2.1 Threshold Comparison  

Inter-turn short circuit fault was detected by comparing the amplitude of any motor current 

signal to the threshold of the current signals of a healthy motor. The online testbench motor 

had a rated current of 3.0 A, so the inter-turn short circuit fault was detected whenever the 

signal went above the threshold of 3.0A, as seen in Figure 4.1. However, this method was 

inefficient because other faults could make the current signals go beyond the threshold. It 

was also unable to detect the level of inter-turn short circuit.                    

                     

          

Figure 4. 1: Threshold comparison of current signals 



33 
 

4.2.2 Negative Sequence Current 

 A balanced set of three-phase currents has positive sequence currents only as 

shown in Figure 4.2(a). Figure 4.2 (a) has unfiltered signals. A negative sequence current 

is a clear indication of abnormality in the system. During the negative sequence, the 

direction of two of the current signal switches is seen in Figure 4.2 (b). This fault 

detection method was, however, not effective. This is because other asymmetry factors 

could cause the induction of negative sequence current into the system. The negative 

sequence can also be caused by load fluctuations, unbalanced supply voltage, and 

instrumentation asymmetries. Hence, it is not a unique method for detecting inter-turn 

short circuit fault. 

                        

        (a)        (b) 

Figure 4. 2: (a) Positive sequence current graph. (b) Negative sequence current 

4.2.3 Machine Learning Algorithm 

The group six motor data had fully developed inter-turn short circuit fault. So, when the 

machine learning algorithm predicted a motor under group 6, it meant an inter-turn short 

circuit was detected. The machine learning algorithm is fully explained in section 4.3. 
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4.3  Fault Detection, Prediction and Remaining Useful Life Estimation 

 Two machine learning algorithms, Support Vector Machine (SVM) and K-

Nearest Neighbour (KNN) were used to detect and predict the inter-turn short circuit 

fault. The fault was detected when the machine learning algorithm classified the data 

under group six motor data. It meant the inter-turn short circuit had already occurred, and 

there are 0 weeks of remaining useful life of the motor as calculated in section 3.11 using 

equation (9). Under this section is the results from the procedures in training the SVM 

and KNN models. 

4.3.1 Feature Extraction and Ranking  

  The current values (CH1, CH2, CH3, and CH4) were extracted from the three 

sets (no-load, half load, and full load) of healthy and faulty data using one-way ANOVA. 

Figure 4.3 (a) shows the lists of the ranked current values (CH3 first) extracted in the 

MATLAB Diagnostic Feature Designer App. Histogram plots from Figure 4.3 (b) also 

help investigate how the important current values in the different classes of motor 

separated across a bin. The best feature histogram is the one with the 

motor group appearing in different bins ranges in a particular histogram. Figure 4.3 (a) 

shows that CH3 was the set of current values ranked as the most important. Figure 4.3 (b) 

explains it well as there are a lot of different motor groups across the CH3 bin in the 

histogram. The scatter plot from Figure 4.3 (c) further analyses the extracted features by 

investigating their relationship. For example, from Figure 4.3 (c), there is a high 

probability that when the current value from CH1 and CH3 are both 1A and belong to 

group 6, it will predict correctly.       
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                                  (a)                                                                                (b) 

 

                         (c) 

Figure 4. 3: (a) Current signal sorting. (b) Current in histogram. (c) Scatter plot of current 

 

4.3.2  Results from Classification Algorithm for No-Load, Half Load and Full Load 

Induction Motors 

 After the feature extraction, the Support Vector Machine (SVM) and K-Nearest 

Neighbour (KNN) models were used to train the model. All SVM classifiers, namely 

linear, quadratic, and fine Gaussian SVM, had a classification accuracy of 99.9% for both 
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no-load and half-load motors and 100% accuracy for the full load motor, as shown in 

Table 4.1. Figure 4.4 (a) shows the confusion matrix, which is the same for the no-load 

and half-load states of the motor. All classifiers of the SVM model under no load and 

half load state of the motor had a prediction accuracy of 99.9%. The model correctly 

predicted all the seven different groups of the motor fault (0-6) of the induction motor, 

except motors belonging to class 5. The algorithm correctly predicted only 99% of the 

group 5 motor and classified 1% of the group 5 motor data as group 4 motor data. 

Similarly, Figure 4.4 (b) shows the confusion matrix for the different SVM classifiers 

under the motor's full load state. The algorithm correctly predicted the classes the motor 

data belonged to for the full load state.  

 The remaining useful life of the motor was then estimated based on the 

calculations in section 3.11. Each motor group had its remaining useful life. For example, 

when the algorithm predicted the motor data to belong to group 4, it meant it had 60 

weeks remaining useful life.                                                          

Table 4. 1: Accuracies for SVM classifiers under different motor loads 

Load State of Motor SVM Classifier Accuracy 

 

No Load 

Linear 99.9% 

Quadratic 99.9% 

Fine Gaussian 99.9% 

 

Half load 

Linear 99.9% 

Quadratic 99.9% 

Fine Gaussian 99.9% 
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(a)                  (b) 

Figure 4. 4: (a) SVM no and half load confusion matrix. (b) SVM full load confusion matrix 

 For the KNN classifiers, namely medium, coarse, and cubic KNN, the confusion 

matrix accuracy of the trained models was 96.1% for all the classifiers under the motor's no-

load and half load state, as seen in Figure 4.5 (c). For the motor's full load, the confusion 

matrix accuracy for the medium, cosine, and cubic were 99.8%, 73.5%, and 99.7%, 

respectively, as shown in Table 4.2.  

Table 4. 2: Accuracies for KNN classifiers under different motor loads 

Load State of Motor KNN Classifier Accuracy 

 Medium 96.1% 

 

Full Load 

Linear 100.0% 

Quadratic 100.0% 

Fine Gaussian 100.0% 



38 
 

No Load Coarse 96.1% 

Cubic 96.1% 

 

Half load 

Medium 96.1% 

Coarse 96.1% 

Cubic 96.1% 

 

Full Load 

Medium 99.8% 

Cosine 73.5% 

Cubic 99.7% 

 

 Comparing the accuracies of the classifiers for both the SVM and KNN 

algorithms showed that the SVM algorithm was the best. The SVM algorithm had 99.9% 

for no-load and half load and 100% for full load state of the motor. Therefore, the SVM 

algorithm was chosen for statistical analysis to see if there is a significant difference 

between the three different types of motor load states (no-load, half-load, and full load). 
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(a)      (b) 

           

 

(c)                                                                                      (d) 

Figure 4. 5: Confusion Matrices for the KNN models 

4.4  Results from Statistical Analysis  

 The accuracy of the different classifiers of the SVM model under the different 

load states (no-load, half-load, and full load) was investigated to see if there was 

variation among them. Therefore, a one-way ANOVA test was performed on the SVM 

no load, half load, and full load accuracy values, as shown in Figure 4.6 (a). From Table 

4.1, the accuracy for the different motor loads was almost the same, with no significant 

differences. The one-way ANOVA was performed to either reject or accept this null 

hypothesis. After the test, the p-value of 1, as shown in Figure 4.6 (b), was greater than 

the critical p-value of 0.05. Hence, the hypothesis that the accuracies for the SVM model 

are statistically insignificantly different was accepted. This showed that the fault 

prediction accuracy did not significantly depend on the motor load. 
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   (a)      (b) 

Figure 4. 6: (a) One-way ANOVA graph. (b) p-value for the ANOVA 

4.5  Result from Interfacing SVM model with Alarm Unit 

 The hardware implementation of this project was the alarm unit that was activated 

whenever a fault was detected or predicted in the induction motor. The remaining useful life 

(RUL) algorithm was changed from a MATLAB (.mat) file to a C programming (.c ) file with 

the help of a MATLAB in-built application called Coder. The new code was deployed in an 

embedded system to sound an alarm and display the RUL of the induction motor. Figure 4.7 

(a) shows the internal circuitry of the system, while Figure 4.7 (b) shows the front where the 

LCD and speakers are attached.   



41 
 

 

       (a) 

 

         (b) 

Figure 4. 7: (a) internal circuitry. (b) Front view of alarm and display unit 
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Chapter 5: Conclusion, Limitations and Future Work  

5.1  Conclusion 

 Induction motor predictive maintenance, also known as fault detection and prediction, 

is useful for monitoring equipment health. Predictive maintenance is a unique technique for 

diagnosing and prognosing faults in industrial machines. The accuracy of the inter-turn short 

circuit fault detection, prediction, and remaining useful life estimation depends on getting 

accurate and enough data from the machine. The data is then pre-processed to identify 

condition indicators from them. A model is then trained with the condition indicators to get 

the relationship between the source of mistakes and projected damage [23]. Making an 

accurate prediction of machine fault is essential to avoid its breakdown, affecting production. 

Also, detecting and predicting faults in induction motor lowers maintenance costs and 

improve reliability and productivity. An alarm unit with a display was also integrated into the 

project for users to be easily alerted when there was a fault. The LCD displayed the exact 

fault and the number of weeks left for the fault to occur. 

5.2  Limitations  

The level of knowledge needed for the features extraction for the machine learning algorithm 

increased as the project proceeded. This made it difficult to extract different features to train 

models depicting the percentage of inter turns of the windings in the inter turn short circuit 

fault and determine if the direction of the inter turn winding is in vertical or axial 

position. Time needed to learn new concepts and software to implement in the project was 

also a constraint. Time constraints restricted the extension of the project to detecting and 

predicting faults when the motor has a different percentage of load attached as well as when 

the frequency is varied. 
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5.3  Future Works 

 Further works can be done to improve this project by incorporating Industrial Internet 

of Things (IIoT) into the system. Industrial IoT makes use of smart sensors to collect real time 

data for analysis. The results can be viewed from many places because it is part of a network 

of systems that can be monitored on devices like the Supervisory Control and Data 

Acquisition (SCADA) in the industry. This will make fault detection and prediction easier and 

faster. 

 Also, a dashboard could be added to the system so that the status of the induction 

motor could be accessed when logged in on the internet, and not only onsite where the alarm 

sounds to alert maintenance team if there should be a fault. 
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Appendices  

  Appendix A 

MATLAB code generated from Diagnostic Feature Designer and Classification Learner 

apps: https://github.com/kuzaydaniel671/CapstoneProject.git 

Code for ANOVA test: https://github.com/kuzaydaniel671/StatisticalAnalysis.git 

The secondary data used for training the model can be found in capstoneSecondaryData 
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Appendix B: Figures from Predictive Maintenance Toolbox 

   

 

 

     


