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ABSTRACT

A recent issue in statistical analysis is modelling data when the effect variable

changes at different locations. This can be difficult to accomplish when the dimensions

of the covariates are very high, and when the domain of the varying coefficient

functions of predictors are not necessarily regular. This research paper will investigate

a method to overcome these challenges by approximating the varying coefficient

functions using bivariate splines. We do this by splitting the domain of the varying

coefficient functions into a number of triangles, and build the bivariate spline functions

based on this triangulation. This major paper will outline detailed theoretical results

of this method, and provide simulation studies to demonstrate the efficiency of this

approach. Finally, to illustrate the application of this method, we analyze heart

disease dataset where the given covariates are in spatially varying form.
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guidance and support throughout my Master’s program. I would also like to thank

the University of Windsor committee members for allowing me the opportunity to

showcase my research.

I would also like to thank my parents for their constant support and inspiration

to pursue my goals.

v



TABLE OF CONTENTS

AUTHOR’S DECLARATION OF ORIGINALITY iii

ABSTRACT iv

ACKNOWLEDGEMENTS v

1 INTRODUCTION 1

2 ESTIMATION OF THE PLSVCM 4

2.1 Approximation of the Varying Coefficient Functions . . . . . . . . . . 4

2.2 Description of the Model . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Estimation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Asymptotic Properties of the Estimators . . . . . . . . . . . . . . . . 8

3 MODELLING HIGH-DIMENSIONAL DATA 10

3.1 Description of the Model . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Asymptotic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 SIMULATION RESULTS AND DATA ANALYSIS 15

4.1 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.2 Real Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 CONCLUSION 23

REFERENCES 26

vi



APPENDIX 27

VITA AUCTORIS 68

vii



Chapter 1

INTRODUCTION

In this major paper, we consider addressing the problem of modelling spatially

varying data. Spatially varying data are data that changes while moving from one

location to another, within a known space. In certain fields of study, including

medicine, it can be of great interest to analyze these types of data. With the

many advancements of modern technology, there has been increased focus on imaging

data, which come from magnetic resonance imaging (MRI) scans, positron emission

tomography (PET) scans, etc. When the covariates are images and the observed

response is a scalar, the relationship is generally modelled using image-on-scalar

regression. There can be scenarios where the functional data are located in a complex

domain, in which it can be computationally cumbersome to model the data. This can

be an issue because it may be difficult to smooth the functional data if its domain is

too complex. Another concern with this idea is the accuracy of the fitted model when

the dimension of the predictors is greater than the sample size. The main objective

of this research paper is to investigate an appropriate method that is able to regulate

these issues.

To analyze spatially varying data, a regression model with functional coefficients

and scalar coefficients should be implemented. This would allow one to differentiate
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between predictor variables which have constant effects and predictor variables which

have varying effects. As presented in Li et al. (2021), an efficient method that can be

used to work with these functional data is the Partially Linear Spatially Varying

Coefficient Model (PLSVCM). The PLSVCM models spatially varying predicted

values over a two-dimensional, complex domain. To apply the PLSVCM, we consider

a mixture of spatially varying coefficient functions to deal with predictors which have

varying effects and constant coefficients to deal with predictors which have constant

effects ( Li et al. (2021)). To estimate these coefficient functions, approximation

of the coefficient functions using bivariate splines should be considered. To work

with complex domains, the domain can be split up into a number of triangles. The

coefficient functions can then be approximated on this triangulation. To account

for the case where the dimension of the predictors exceeds the sample size, adaptive

LASSO penalty functions can be included in the model before estimating the scalar

coefficients and varying coefficient functions.

The remaining material in this major paper will be organized as follows. In

Chapter 2, we give a method to estimate the scalar coefficients and varying coefficient

functions of the PLSVCM. In Section 2.1, we provide a detailed method to triangulate

the domain of the varying coefficient functions, and approximate them using bivariate

splines. In Section 2.2, we give a description of the PLSVCM and state some necessary

assumptions given in Li et al. (2021). In Section 2.3, we show how to obtain the

estimators from the PLSVCM by minimizing the likelihood function corresponding

to the PLSVCM. In Section 2.4, we determine some asymptotic properties of the

estimators. In particular, we give the consistency of the estimators of the parameters

in the PLSVCM and determine the asymptotic variance-covariance matrix of the

estimator of the constant coefficients. In Chapter 3, we consider the case where the

number of covariates exceeds the sample size. In this scenario, we model the data

using a penalized LASSO regression approach. In Section 3.1, we provide a detailed

description of the proposed LASSO model and state some necessary assumptions

given in Li et al. (2021). In Section 3.2, we provide some asymptotic properties

2



of the estimators obtained from the LASSO model. In Chapter 4, we look at two

applications of the proposed model in this major paper by simulation and real data

analysis. In Section 4.1, we run a simulation study to show the efficiency of the

estimators obtained from the PLSVCM. In Section 4.2, we apply the PLSVCM to

analyze a real dataset, which aims to determine influential predictors that increase

the likelihood of having heart disease. In Chapter 5, we conclude by giving a brief

summary of the major paper, along with some possible ideas for further research

related to this topic. Finally, in the Appendix, we provide detailed proofs of the

results in Sections 2.4 and 3.2. We also state and prove some key results used in the

proofs of the results in Sections 2.4 and 3.2.
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Chapter 2

ESTIMATION OF THE PLSVCM

In this Chapter, we define the PLSVCM and show how to approximate the varying

coefficient functions using bivariate splines over triangulations. We also establish some

asymptotic results of the estimators of the constant and spatially varying coefficients.

This is important because it addresses the potential problem in which the domain of

the functional data is not necessarily regular.

2.1 Approximation of the Varying Coefficient

Functions

One method to overcome the problem of smoothing over complex domains is

to approximate the varying coefficients by bivariate spline basis functions over a

triangulated domain, which was proposed in Lai and Schumaker (2007).

To set up some notation, let τ be a triangle such that its three points do not lie

along one straight line. Denote ∆ = {τ1, τ2, ..., τN} as a triangulation of an arbitrary

domain, Ω = ∪N
i=1τi, under the condition that if τi and τj (i ̸= j) intersect, they

much share a common vertex or share a common edge. For any triangle, τ , in a

triangulation, ∆, define |τ | as the length of the longest edge of τ . Let Rτ be the

radius of the largest circle that can be wholly contained inside of τ , and let Sτ = |τ |
Rτ
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be the shape parameter of τ . Define the length of the longest edge in the triangulation

∆ as |∆| = max{|τ |, τ ∈ ∆}.

The Bernstein basis polynomial can be used to create the bivariate spline functions,

which can approximate the varying coefficient functions (Li et al. (2021)). Given

a triangle, τ ∈ ∆ with non-zero area, define its vertices as < v1,v2,v3 > in a

counter-clockwise way (Lai and Schumaker (2007)). Then, any point v inside τ

can be expressed as v = b1v1 + b2v2 + b3v3, where b1 + b2 + b3 = 1. The scalars

(b1, b2, b3) are called the barycentric coordinates of v relative to the triangle τ , and

are used to form the Bernstein basis polynomials. To introduce the definition of

the Bernstein basis polynomials, let v be a point inside a triangle τ , whose area is

non-zero. Let (b1, b2, b3) be the barycentric coordinates of v relative to the triangle τ .

For nonnegative integers, i, j, k, the Bernstein basis polynomial of degree d relative

to τ is defined as

Bτ,d
ijk(v) :=

d!

i!j!k!
bi1b

j
2b

k
3, with i+ j + k = d

Let Pd(τ) denote the space of all polynomials with degree less than or equal to d,

defined on τ . Then, the set {Bτ,d
ijk(v) : i, j, k ≥ 0, i + j + k = d} forms a basis for

Pd(τ). This means that any polynomial p(v) ∈ Pd(τ) can be written as

p(v)|τ =
∑

i+j+k=d γ
τ
ijkB

τ,d
ijk(v). The coefficients {γτ

ijk}i+j+k=d are called the “B-coefficients

of p.”

2.2 Description of the Model

To define the data, let Ω be a two-dimensional domain with a complex structure.

Let sj = (s1j, s2j)
T , j = 1, 2, ..., Ns, be a vector in Ω, where Ns is the number of

elements in Ω. Let n be the sample size, and define Yi(sj), i = 1, 2, ..., n, as the actual

observed values at the point sj. Define X(i) = (Xi1, Xi2, ..., Xip)
T , i = 1, 2, .., n, as the

vector of covariates for the ith sample, where p is the number of covariates. Let Ac be

the index set for constant coefficients and Av be the index set for varying coefficients.
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For all k ∈ Ac, denote the constant coefficient parameter as α0k. For all k ∈ Av,

denote the actual varying coefficient function as β0k. Then, for i = 1, 2, ..., n and

j = 1, 2, ..., Ns, the PLSVCM is

Yi(sj) =
∑
k∈Ac

Xikα0k +
∑
k∈Av

Xikβ0k(sj) + ηi(sj) + ϵi(sj).

The within image dependences, ηi, i = 1, 2, ..., n, are assumed to be independent

and identical copies of a stochastic process with mean zero and covariance function

Gη(s, s
′). The measurement errors, ϵi, i = 1, 2, ..., n, are assumed to be independent

and identical copies of a random process with mean zero, and covariance Cov(ϵi(s), ϵi(s
′)).

It can be assumed that for all i = 1, 2, ..., n and for all k = 1, 2, ..., p, ϵi and ηi are

independent, ϵi and Xik are independent, and ηi and Xik are independent.

Before performing the estimation method for the parameter values, some assumptions

must be stated (Li et al. (2021)). For any function f over the closure of the domain

Ω, let ||f ||∞,Ω = sups∈Ω|f(s)|. Let Dk
sj
f(s) be the kth derivative of f at s in the

direction of sj, where j = 1, 2. Denote |f |q,∞,Ω = maxi+j=q||Di
s1
Dj

s2
f(s)||∞,Ω.

Assumption 1. For all k ∈ Av, β0k ∈ W d+1,∞(Ω) = {f : |f |q,∞,Ω < ∞, 0 ≤ q ≤

d+ 1}, where d is a nonnegative integer. Further,
∫
Ω
β0k(s)ds = 0, for all k ∈ Av.

Assumption 2. For all k = 1, 2, ...p, there exists a positive real number CX , such

that E[|Xk|6] ≤ CX .

Assumption 3. For all i = 1, 2, ..., n and for all j = 1, 2, ..., Ns, the errors ϵij are

independent with mean 0 and variance σ2
ϵ . For all i = 1, 2, ..., n, j = 1, 2, ..., Ns, and

for all s ∈ Ω, 0 < cG ≤ Gη(s, s) ≤ CG < ∞, with cG, CG ∈ R.

Assumption 4. The triangulation ∆ is π-quasi uniform. That is, for all τ ∈ ∆,

there exists a positive real number π, such that Sτ ≤ π.

Assumption 5. As Ns → ∞, n → ∞, Ns|∆|2 → ∞ and n|∆|2(d+1) → 0.
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2.3 Estimation Method

To perform the estimation, triangulate the domain and let

Sr
d(∆) = {s ∈ Cr(Ω) : s|τ ∈ Pd(τ), τ ∈ ∆} be a spline space with degree d and

smoothness parameter r, over a triangulation ∆. Cr(Ω) is the the set of all rth

continuously differentiable functions over Ω, s|τ is the polynomial part of the spline

s restricted on τ ∈ ∆, and Pd is defined as the space of all polynomials with degree

less than or equal to d. Define Ik as the index set for the kth spline basis function.

Then for all s ∈ Ω, and for all k = 1, 2, ..., p, approximate βk(s) by
∑

ℓ∈Ik Bkℓ(s)ckℓ,

where ck = (ckℓ, ℓ ∈ Ik)
T is the vector of spline coefficients and for all s ∈ Ω, Bk(s) =

(Bkℓ(s), ℓ ∈ Ik)
T is the vector of bivariate basis functions. Applying the method in

Yu et al. (2019) and Li et al. (2021), let Hk be the constraint matrix on the vectors

ck, such that Hkck = 0. For all s ∈ Ω, assume that B1 = B2 = ... = Bp and define

this to be B(s) = (Bℓ(s), ℓ ∈ I)T . Also, assume that H1 = H2 = ... = Hp and

define this as H. Let Yij = Yi(sj), then to obtain estimators α̂ = (α̂1 α̂2 . . . α̂|Ac|)
T

and ĉ = (ĉT1 ĉT2 . . . ĉT|Av |)
T for α = (α1 α2 . . . α|Ac|)

T and c = (cT1 cT2 . . . cT|Av |)
T ,

respectively, the following likelihood function must be minimized:

Ln(α, c) =
n∑

i=1

Ns∑
j=1

[
Yij −

∑
k∈Ac

Xikαk −
∑
k∈Av

XikB
T (sj)ck

]2
,

under the constraint Hkck = 0. By the QR-decomposition, write HT = QR, where

Q = (Q1 Q2) is an orthogonal matrix and R =

R1

R2

 is an upper-triangular matrix.

Further, Q1 is a matrix containing the first r columns of Q, where r is the rank of H,

and R2 is a zero matrix. Then under no constraints, the likelihood function above

becomes

Ln(α,γ) =
n∑

i=1

Ns∑
j=1

[
Yij −

∑
k∈Ac

Xikαk −
∑
k∈Av

Xik(B
∗(sj))

Tγk

]2
,
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where B∗(s) = QT
2B(s), for all s ∈ Ω. Assume that B∗(s) is the collection of all of

the normalized basis functions, and to simplify the notation, denote it as B(s). Now,

to obtain the estimators α̂0
k, ∀k ∈ Ac and γ̂0

k , ∀k ∈ Av for the true parameter values

α0k, ∀k ∈ Ac and γ0k, ∀k ∈ Av, respectively, the following likelihood function must

be minimized:

Ln(α,γ) =
n∑

i=1

Ns∑
j=1

[
Yij −

∑
k∈Ac

Xikαk −
∑
k∈Av

XikB
T (sj)γk

]2
.

As a result, for all s ∈ Ω, and for all k ∈ Av, the estimator of the true parameter

β0k(s) is β̂
0
k(s) = BT (s)γ̂0

k .

2.4 Asymptotic Properties of the Estimators

It is of interest to determine the consistency of the estimators α̂0
k and γ̂0

k , under

mandatory conditions. Define XAc = (Xk, k ∈ Ac), where Xk is the kth column

vector of the matrix of predictors, X, and let Z1,Ac = XAc ⊗ 1Ns , where 1Ns is a

column vector of ones with dimension Ns. Similarly, define XAv = (Xk, k ∈ Av),

and let Z2,Av = XAv ⊗ B. Define ZA = (Zm,m ∈ Ac ∪ Av), where Zm = Z1,Ac

if m ∈ Ac and Zm = Z2,Av if m ∈ Av. Define the vector of the actual parameter

values as θA = θ0,A = (αT
0,A γT

0,A)
T . Then, the minimizer for the likelihood function,

Ln(α,γ) defined above, is the ordinary least-squares estimator of θ0,A. This estimator

is θ̂0 = (ZT
AZA)

−1ZT
AY, where θ̂0 = ((α̂0)T , (γ̂0)T )T . Further, define || · || as the

Euclidean Norm.

The following result from Li et al. (2021) describes the consistency of the estimators

α̂0 and β̂0(·).

Theorem 2.1. Under the assumptions in Section 2.2 and the assumption that ||C−1
A ||

8



is bounded by a positive constant, π−1
1 , where CA = 1

nNs
ZT

AZA, the following hold:

(a)
∑
k∈Ac

(α̂0
k − α0k)

2 = Op

(
1

n
+

1

nNs|∆|2
+ |∆|2(d+1)

)
(b)

∑
k∈Av

||β̂0
k − β0k||2L2(Ω) = Op

(
1

n
+

1

nNs|∆|2
+ |∆|2(d+1)

)
,

where ||f ||2L2(Ω) =
∫
s∈Ω f 2(s)ds is the L2 norm for a function f , over the domain Ω.

A detailed proof of Theorem 2.1 is given in the Appendix.

Before giving the explicit form of the sample variance-covariance matrix of α̂0,

some definitions must be introduced. Let PZ1,Ac
= Z1,Ac(Z

T
1,Ac

Z1,Ac)
−1ZT

1,Ac
be the

projection matrix on Z1,Ac , and letPZ2,Av
= Z2,Av(Z

T
2,Av

Z2,Av)
−1ZT

2,Av
be the projection

matrix on Z2,Av . Let Dc = (InNs − PZ2,Av
)Z1,Ac , where InNs is the identity matrix

with dimension nNs × nNs. Next, define

Σi,e = {Gη(sj, sj′)}Ns

j,j′=1 + diag{σ2(sj)}Ns
j=1,

Σc,e =
1

n2N2
s

DT
c diag{Σi,e}ni=1Dc,

Σc =
1

nNs

DT
c Dc.

The following theorem from Li et al. (2021) gives the sample variance-covariance

matrix of α̂0.

Theorem 2.2. Suppose the assumptions in Section 2.2 hold. Let Vc = Σ−1
c Σc,eΣ

−1
c .

Then,

V−1/2
c (α̂0 −α0,Ac)

D−−−−−→
n,Ns→∞

N(0, I|Ac|),

where I|Ac| is the identity matrix with dimension |Ac|.

A detailed proof of Theorem 2.2 is given in the Appendix.
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Chapter 3

MODELLING

HIGH-DIMENSIONAL DATA

In this Chapter, we consider a modified PLSVCM to deal with the case where the

data is high-dimensional. To do this, we implement a penalized LASSO regression

model to accurately determine which covariates have nonzero constant and varying

effects. In Section 3.1, we give a detailed description of the penalized LASSO regression

model, along with some assumptions about the proposed estimators. In Section 3.2,

we state some asymptotic properties of the estimators obtained from the penalized

LASSO regression model.

First, define three index sets:

Ac = {k = 1, 2, ..., p : αk ̸= 0, βk(·) ≡ 0}

Av = {k = 1, 2, ...p : βk(·) ̸= 0}

N = {k = 1, 2, ..., p : αk ≡ 0, βk(·) ≡ 0}

Thus, the active index set for X is A = Ac ∪Av. The main objective is to obtain

estimators for the active constant set and active varying set and consequently, the

10



active index set. Recall that for all k ∈ Av, and for all s ∈ Ω, β̂k(s) = BT (s)γ̂k.

Then, define the estimators for the three index sets above as

Âc = {k : |α̂k| ≠ 0, ||γ̂k|| = 0, 1 ≤ k ≤ p}

Âv = {k : ||γ̂k|| ≠ 0, 1 ≤ k ≤ p}

N̂ = {k : |α̂k| = 0, ||γ̂k|| = 0, 1 ≤ k ≤ p}

3.1 Description of the Model

For all k = 1, 2, ..., p, let α̃k and γ̃k be consistent initial estimators for αk and γk,

respectively. Let wc
n,k = |α̃k|−1 and wv

n,k = ||γ̃k||−1. Let ρn1 and ρn2 be regularization

parameters, with the assumption that ρn1 −→ ∞ and ρn2 −→ ∞, as n −→ ∞ and

Ns −→ ∞. Then, for the LASSO regression model, define penalty functions

pρn1(|αk|) = ρn1w
c
n,k|αk| = ρn1

|αk|
|α̃k|

and pρn2(||γk||) = ρn2w
v
n,k||γk|| = ρn2

||γk||
||γ̃k||

.

Under the assumption that
∫
Ω
βk(s)ds = 0, then for all i = 1, 2, ..., n and for

all s ∈ Ω, the Spatially Varying Coefficient Model (SVCM) from Li et al. (2021) is

defined as

Yi(s) =

p∑
k=1

Xikαk +

p∑
k=1

Xikβk(s) + ηi(s) + ϵi(s).

To accurately perform the model selection for the SVCM above and correctly

identify the index sets, the penalized score function given in Li et al. (2021)

Ln(α,γ; ρn1, ρn2) =
n∑

i=1

Ns∑
j=1

[
Yi(sj)−

p∑
k=1

Xikαk −
p∑

k=1

XikB
T (sj)γk

]2

+

p∑
k=1

pρn1(|αk|) +
p∑

k=1

pρn2(||γk||),

11



must be minimized.

Some further assumptions taken from Li et al. (2021) must be provided before

stating certain theoretical results which give some asymptotic properties of the estimators

from this model.

Assumption 6. The cardinalities |Ac| and |Av| are fixed. Also, there exists positive

real numbers, cα, cβ, such that mink∈Ac |α0k| ≥ cα and mink∈Av ||β0k||L2(Ω) ≥ cβ.

Assumption 7. For all k = 1, 2, ..., p, there exists a positive real number CX , such

that |Xk| < CX , with probability one.

Assumption 8. Let rnα, rnγ be real numbers, such that rnα, rnγ −→ ∞, as n −→ ∞.

Then as rnα, rnγ −→ ∞,

rnα max
k ̸∈Ac

|α̃k| = Op(1)

rnγ max
k ̸∈Av

||γ̃k|| = Op(1)

For real numbers cα and cβ defined in Assumption 6, there exists positive real numbers

bα and bγ, such that

P

(
min
k∈Ac

|α̃k| ≥ cαbα

)
−→ 1

P

(
min
k∈Av

||γ̃k|| ≥ cγbγ

)
−→ 1,

as n,Ns −→ ∞.

Assumption 9. Assume that

12



√
nN2

s log(p)

ρn1rnα
+

√
nN2

s log(pJn)

ρn2rnγ
+

nNs|∆|d+1

ρn1rnα
= o(1),

√
nN2

s log(p)

ρn1rnα
+

√
nN2

s log(pJn)

ρn2rnγ
+

nNs|∆|d+1

ρn2rnγ
= o(1),

ρ2n1 + ρ2n2
nN2

s

= o(1),
n

J
(d+1)
n log(pJn)

= o(1).

3.2 Asymptotic Results

Theorem 3.1 from Li et al. (2021) gives the asymptotic properties of the constant

and varying index sets. Theorem 3.2 from Li et al. (2021) provides the convergence

rates of the estimators that are obtained by minimizing the likelihood function Ln

above.

Theorem 3.1. Suppose that the assumptions in Sections 2.2 and 3.1 hold. Then, as

n → ∞ and Ns → ∞, P(Âc = Ac) −→ 1 and P(Âv = Av) −→ 1.

Theorem 3.2. Suppose that the assumptions in Sections 2.2 and 3.1 hold. Let α̂ and

β̂(·) be estimators that are obtained by minimizing the likelihood function Ln above.

Then

(a)
∑
k∈Ac

(α̂k − α0k)
2 = Op

(
1

n
+

1

nNs|∆|2
+ |∆|2(d+1) +

ρ2n1 + ρ2n2
n2N2

s

)
(b)

∑
k∈Av

||β̂k − β0k||2L2(Ω) = Op

(
1

n
+

1

nNs|∆|2
+ |∆|2(d+1) +

ρ2n1 + ρ2n2
n2N2

s

)
.
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The above results are critical because they provide consistent estimators to accurately

predict the image response in a high-dimensional setting. The proofs of these results

are outlined in Li et al. (2021). For the convenience of the reader, we also provide a

proof with more details in the Appendix.
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Chapter 4

SIMULATION RESULTS AND

DATA ANALYSIS

4.1 Simulation Study

To demonstrate how the estimation method works, a simulation similar to the

study in Section 4.2 in Li et al. (2021) will be conducted. Actual parameter values

from the model given in Chapter 2 will be generated first. Two constant coefficients

will be estimated (α01 and α02) and two varying coefficient functions will be estimated

(β03(·) and β04(·)). To differentiate between the SVCM and the PLSVCM, consider

the case where α01 and α02 are both zero and the case where α01 and α02 are both

nonzero. In both of these cases, values from a square domain will be generated. The

domain will be triangulated and the mean squared errors of the estimators of the

parameters will be computed for different refinements of the triangulation.

First, let Ac = {1, 2} and Av = {3, 4}. For all j = 1, 2, ..., Ns, let sj = (s1j, s2j)
T

be in the domain Ω. Generate s1j and s2j independently from a Uniform(0,1). For

all i = 1, 2, ..., n, generate Xi1, Xi2, Xi3, Xi4 independently from a Uniform(-1,1). To

15



simulate the actual varying coefficient functions, let

β3(sj) = 20
[
(s1j − 0.5)2 + (sj2 − 0.5)2

]
β4(sj) = exp{−15

[
(s1j − 0.5)2 + (sj2 − 0.5)2

]
},

for sj ∈ Ω, j = 1, 2, ..., Ns. To simulate the within-image dependence, for all i =

1, 2, ..., n and for all j = 1, 2, ..., Ns, let

ηi(sj) = (0.3)Zi1(1.588sin(πs1j)) + (0.075)Zi2(2.157cos(πs2j)− 0.039),

where Zi1 and Zi2 are generated independently from a N(0,1). To simulate the errors,

generate {ϵ(sj) : sj ∈ Ω} from a Gaussian distribution with mean zero and variance

σ2
ϵ . The values of σ

2
ϵ are selected in such a way that the signal-noise-ratio, defined as

SNR =
N−1

s

∑Ns

j=1 Var
[∑

k∈Ac
Xikα0k +

∑
k∈Av

Xikβ0k(sj)
]

N−1
s

∑Ns

j=1 Var [ηi(sj) + ϵi(sj)]
,

is approximately equal to either 3 or 5.

The square domain, Ω can be partitioned into many triangles. This simulation

will focus on triangulating the domain into 8 triangles with 9 vertices, and then again

with 18 triangles with 16 vertices. Both images are depicted below.
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(a) 9 vertices and 8 triangles. (b) 16 vertices and 18 triangles.

Figure 4.1: Triangulating a square domain.

In each case, the estimators α̂1, α̂2, β̂3(·), and β̂4(·) will be evaluated on both of

the domains in Figure 1.

Case 1 (α01 = α02 = 0):

Let Partition 1 represent the triangulated domain split into 8 triangles with 9

vertices and let Partition 2 represent the triangulated domain split into 18 triangles

with 16 vertices. The tables below show the mean squared errors of the estimators

β̂3(·), and β̂4(·), over 50 simulations on both partitions for different sample sizes

(n = 50, 100), and different number of points in the domain (Ns = 1600, 2500).
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Table 4.1: MSE of β̂3(·) (Case 1)

MSE of β̂3(·)
Ns n SNR Partition 1 Partition 2

1600
50

3 24005.60 24308.48
5 23986.03 24301.29

100
3 24673.46 24507.35
5 24671.60 24519.88

2500
50

3 37179.45 38060.01
5 37139.00 38042.08

100
3 38498.97 38502.32
5 38491.34 38511.28

Table 4.2: MSE of β̂4(·) (Case 1)

MSE of β̂4(·)
Ns n SNR Partition 1 Partition 2

1600
50

3 266.89 237.84
5 258.42 228.48

100
3 211.51 201.83
5 209.15 200.04

2500
50

3 333.08 336.11
5 328.38 327.98

100
3 291.37 302.79
5 287.38 299.93

Case 2 (α01 = 1 and α02 = −1):

Now, the case where the parameters α01 and α02 are both nonzero will be considered.

Similar to case one, the mean squared errors of the estimators will be given below for

different sample sizes, and different number of points in the domain. Note that since

α01 and α02 are constant coefficients, the difference in mean squared errors between

the estimators from Partitions 1 and 2 should not differ drastically.

Tables 4.3 and 4.4 below give the point estimates and mean squared errors of α̂1

and α̂2 for 50 simulations from both partitions.
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Table 4.3: MSE of α̂1 (Case 2)

Partition 1 Partition 2
Ns n SNR α̂1 MSE α̂1 MSE

1600
50

3 0.0064 0.9919 0.0139 0.9756
5 0.0075 0.9898 0.0130 0.9774

100
3 0.0155 0.9708 -0.0006 1.0019
5 0.0172 0.9675 0.0006 0.9995

2500
50

3 -0.0002 1.0036 0.0159 0.9745
5 0.0011 1.0008 0.0167 0.9728

100
3 0.0011 0.9996 0.0054 0.9904
5 0.0007 1.000 0.0052 0.9908

Table 4.4: MSE of α̂2 (Case 2)

Partition 1 Partition 2
Ns n SNR α̂2 MSE α̂2 MSE

1600
50

3 -0.0206 0.9643 -0.0227 0.9598
5 -0.02178 0.9621 -0.0242 0.9570

100
3 -0.0089 0.9839 -0.0118 0.9785
5 -0.0095 0.9826 -0.0101 0.9817

2500
50

3 -0.0168 0.9699 -0.0434 0.9225
5 -0.0167 0.9702 -0.0411 0.9267

100
3 -0.0062 0.9888 -0.0046 0.9917
5 -0.0065 0.9883 -0.0049 0.9910

Tables 4.5 and 4.6 below give the mean squared errors of β̂3(·) and β̂4(·) for 50

simulations from both partitions.
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Table 4.5: MSE of β̂3(·) (Case 2)

MSE of β̂3(·)
Ns n SNR Partition 1 Partition 2

1600
50

3 24621.58 24145.77
5 24604.53 24148.40

100
3 24610.97 24389.44
5 24620.17 24396.94

2500
50

3 38267.63 38190.77
5 38272.71 38212.02

100
3 38091.68 38342.35
5 38093.11 38373.96

Table 4.6: MSE of β̂4(·) (Case 2)

MSE of β̂4(·)
Ns n SNR Partition 1 Partition 2

1600
50

3 246.28 278.42
5 238.19 267.35

100
3 211.25 225.95
5 207.15 221.71

2500
50

3 355.61 344.46
5 347.85 333.89

100
3 303.18 320.41
5 296.75 316.51

4.2 Real Data Analysis

Heart disease is one of the leading causes of mortality in the United States, and it is

estimated that the prevalence of cardiovascular disease will continue to increase in the

future Madjid and Fatemi (2013). There are many risk factors that are related to heart

disease, including age, blood pressure, cigarette smoking, serum cholesterol levels, etc.

Kannel et al. (1964). We analyze which variables are influential in increasing the risk

of heart disease by applying the spatially varying model discussed in the paper.

We consider a dataset consisting of 303 subjects, 138 of those who have an

increased risk of heart disease, and 165 of those who do not have an increased
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risk of heart disease. We consider the following 11 predictors: age, gender, chest

pain type, resting blood pressure, serum cholesterol level, fasting blood sugar (FBS),

resting electrocardiographic results, maximum heart rate, exercise-induced angina,

electrocardiographic peak and the number of damaged major vessels. We consider the

following variables in spatially varying form: age, resting blood pressure, cholesterol

level, maximum heart rate, and electrocardiographic peak. The other 6 variables are

categorical.

For gender, there are 96 males and 207 females. For chest pain type, we consider

four levels: 1 if the subject had typical angina, 2 if the subject had atypical angina, 3

if the subject had nonanginal chest pain, and 4 if the subject was asymptomatic. For

FBS, we consider two levels: 1 if the subject’s FBS was greater than 120 mg/dl, and 0

if the subject’s FBS was less than or equal to 120 mg/dl. For resting electrocardiographic

results, we consider three levels: 0 if the subject’s resting electrocardiographic results

were normal, 1 if the subject had ST-T wave abnormality, and 2 if the subject showed

probable of definite left ventricular hypertrophy. For exercise-induced angina, we

consider two levels: 1 if the subject had exercise-induced angina, and 0 if the subject

did not have exercise-induced angina. For the number of damaged major vessels, we

consider four levels: 0 if no major vessel is damaged, 1 if one major vessel is damaged,

2 if two major vessels are damaged, and 3 if three major vessels are damaged.

To set up the model, we generate the Bernstein basis polynomials over a triangulation

with 16 vertices and 18 triangles. After we notice that following variables are significant

in predicting the likelihood of heart disease: gender, chest pain type, maximum

heart rate, exercise-induced angina, electrocardiographic peak and the number of

damaged major vessels. When considering level 1 from gender, we obtain a p-value of

approximately 4.46×10−6 and an estimate of approximately -0.2180. This means that

females have about 21.8% less of a chance of suffering from heart disease than males,

holding other variables constant. The p-values for chest pain type are approximately

0.0011, 3.97 × 10−6, and 0.0006 for levels 1,2 and 3, respectively. The estimates for

levels 1,2 and 3 are approximately 0.2179, 0.2610 and 0.2939, respectively. Thus,
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compared to those with no chest pain, those with typical angina have about 21.8%

more of a chance of suffering from heart disease, those with atypical angina have about

26.1% more of a chance of suffering from heart disease and those with nonanginal

pain have about 29.4% more of a chance of suffering from heart disease, holding other

variables constant. For maximum heart rate, we obtain a p-value of approximately

0.0068 and an estimate of approximately 0.0030. Thus, for every one unit increase

in maximum heart rate, the likelihood of having heart disease increases by about

0.3%, holding other variables constant. The estimate for exercise-induced angina was

approximately -0.1283 for level 1, with a p-value of approximately 0.0138. Thus,

holding other variables constant, those who had exercise-induced angina have about

12.8% less of a chance of suffering from heart disease than those who did not have

exercise-induced angina. The estimate of electrocardiographic peak was about -0.0732,

with a p-value of approximately 0.0004. This means that for every one unit increase

in electrocardiographic peak, the chance of having heart disease decreases by about

7.3%, holding other variables constant. Finally, for levels 1,2 and 3 of the number of

damaged major vessels, the estimates were approximately -0.2837 with p-value 4.24×

10−7, -0.3455 with p-value 1.30× 10−6 and -0.3124 with p-value 0.0006, respectively.

Thus, compared to those with three damaged major vessels, those with no damaged

major vessels have 28.4% less of a chance of having heart disease, those with one

damaged major vessel have 34.6% less of a chance of having heart disease, and those

with two damaged major vessels have 31.2% less of a chance of having heart disease,

holding other variables constant.
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Chapter 5

CONCLUSION

I this major paper we discussed the difficulties of modelling spatially varying

data over complex domains. In this major paper, the method of approximating

bivariate varying coefficient functions over a triangulated domain was investigated

in depth. Theoretically, we demonstrated how consistent estimators of the constant

and varying coefficients are obtained from the PLSVCM when the active constant

and active varying index sets are known. Through simulation, numerical values for

the estimators from the PLSVCM were calculated. Simulation was used to determine

if the mean squared errors of the estimators changed when the refinement of the

triangulations varied. In the simulation study, the given domain was partitioned

into two different triangulations and the mean squared error of the estimators of the

varying coefficient functions were compared.

When the dimension of the covariates are very large, the active index sets need

to be estimated. In Chapter 3, the dimension of the covariates are greater than

the sample size. Thus, a penalized regression approach was considered to mitigate

error . Based on the Karush-Kuhn-Tucker conditions given in Boyd et al. (2004),

new estimators for the constant coefficients and varying coefficient functions were

obtained and detailed theoretical results related to these estimators were shown.

With today’s technological advancements, there has been emphasis on
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three-dimensional imaging scans. To treat these imaging scans as covariates in a

regression model, the domain of the varying coefficient functions must be increased

from a two-dimensional domain to a three-dimensional domain. This could beneficial

to future research, as it would allow one to consider the whole three-dimensional

image as a covariate.
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APPENDIX

The purpose of the Appendix is to state and prove some of the lemmas used in

Li et al. Li et al. (2021), as well as provide detailed proofs of the Theorems in this

paper.

Denote H1 = {f :
∫
Ω
f(s)dQ(s) = 0,

∫
Ω
f 2(s)dQ(s) < ∞} as the space for centred

functions, where Q(s) is a distribution with positive continuous density. Denote H2 =

{f :
∫
Ω
f(s)dQ(s) = 0,

∫
Ω
f 2(s)dQ(s) = 1} as the space for normalized functions.

Lemma A1. Assume that d ≥ 3r + 2 and for all k ∈ Av, β0k ∈ W d+1,∞(Ω) ∩ H1.

Then for k = 1, 2, ..., p, there exists a vector γ0k, where ||γ0k|| ≠ 0 if k ∈ Av, and

||γ0k|| = 0 if k ̸∈ Av.

Further, there exists a positive constant C depending on d and π, such that for all

k ∈ Av, and for all normalized Bernstein basis polynomials Bk = (Bkℓ, ℓ ∈ Ik)
T of

degree d ≥ 0,

sups∈Ω|β0k(s)−BT
k (s)γ0k| ≤ C|∆|d+1|β0k|d+1,∞.

Proof. Note that from Lai et al. Lai and Wang (2013), there exists a vector γ∗
0k and

a positive constant C, such that for Bernstein basis polynomials B∗
k,

sups∈Ω|β0k(s)− (B∗
k(s))

Tγ∗
0k| ≤

C

2
|∆|d+1|β0k|d+1,∞
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Let

C ′ = ||B∗
k −

∫
Ω

B∗
k||L2(Ω)

and define γ0k = C ′γ∗
0k. Let Bk(s) =

1
C′ (B

∗
k(s)−

∫
Ω
B∗

k(s)dQ(s)). Then

∣∣β0k(s)−BT
k (s)γ0k

∣∣ ≤ ∣∣β0k(s)− (B∗
k(s))

Tγ0k

∣∣+ ∣∣∣∣∫
Ω

(B∗
k(s))

Tγ∗
0kdQ(s)

∣∣∣∣
Adding and subtracting β0k(s) and taking the supremum over Ω gives

sups∈Ω
∣∣β0k(s)−BT

k (s)γ0k

∣∣ ≤ sups∈Ω
∣∣β0k(s)− (B∗

k(s))
Tγ∗

0k

∣∣
+ sups∈Ω

∣∣∣∣∫
Ω

[
(B∗

k(s))
Tγ∗

0k + β0k(s)− β0k(s)
]
dQ(s)

∣∣∣∣ .
Then, by the Triangle Inequality,

sups∈Ω
∣∣β0k(s)−BT

k (s)γ0k

∣∣ ≤ sups∈Ω
∣∣β0k(s)− (B∗

k(s))
Tγ∗

0k

∣∣
+ sups∈Ω

∣∣∣∣∫
Ω

[
(B∗

k(s))
Tγ∗

0k − β0k(s)
]
dQ(s)

∣∣∣∣
+ sups∈Ω

∣∣∣∣∫
Ω

β0k(s)dQ(s)

∣∣∣∣ .
Note that sups∈Ω

∣∣∫
Ω
β0k(s)dQ(s)

∣∣ = 0, since β0k ∈ W d+1,∞(Ω)∩H1, for all k ∈ Av.

Therefore,

sups∈Ω
∣∣β0k(s)−BT

k (s)γ0k

∣∣ ≤ (C

2
+

C

2

)
|∆|d+1|β0k|d+1,∞

= C|∆|d+1|β0k|d+1,∞.

The following lemma from Li et al. (2021) is used to state some properties of the

normalized Bernstein basis polynomials.

Lemma A2. For any normalized Bernstein basis polynomials Bℓ, Bℓ′ ∈ H2, with
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degree d ≥ 0 and ℓ, ℓ′ ∈ Jn, the following hold:

max
ℓ∈Jn

∣∣∣∣∫
Ω

Bk
ℓ (s)dQ(s)

∣∣∣∣ = O(|∆|2−k), (A1)

max
ℓ,ℓ′∈Jn

∣∣∣∣∫
Ω2

Bk
ℓ (s)B

k
ℓ′(s

′)dQ(s)dQ(s′)

∣∣∣∣ = O(|∆|4−2k), (A2)

max
ℓ∈Jn

∣∣∣∣∣ 1Ns

Ns∑
j,j′=1

Bk
ℓ (sj)−

∫
Ω

Bk
ℓ (s)dQ(s)

∣∣∣∣∣ = O(N−1/2
s |∆|−k+1), k ≥ 1, (A3)

max
ℓ,ℓ′∈Jn

∣∣∣∣∣ 1

N2
s

Ns∑
j,j′=1

Gη(sj, sj′)Bℓ(sj)Bℓ′(sj′)−
∫
Ω2

Gη(s, s
′)Bℓ(s)Bℓ′(s

′)dQ(s)dQ(s′)

∣∣∣∣∣
= O(N−1/2

s |∆|), (A4)

max
ℓ∈Jn

∣∣∣∣∣ 1Ns

Ns∑
j=1

B2
ℓ (sj)σ

2(sj)−
∫
Ω

σ2(s)B2
ℓ (s)dQ(s)

∣∣∣∣∣ = O(N−1/2
s |∆|−1). (A5)

The proof of the above lemma is outlined in Li et al. (2021).

The following lemma is cited from Li et al. (2021).

Lemma A3. Recall the definition of ζij (i = 1, 2, ..., n, j = 1, 2, ..., Ns) from the proof

of Theorem 1 and that ζi = (ζi1 ζi2 . . . ζiNs)
T and ζ = (ζT

1 ζT
2 . . . ζT

n )
T . Then, under

the assumptions in Sections 2.2 and 3.1 and that N
1/2
s |∆| −→ ∞, as Ns −→ ∞,

||ZT
Aζ||2

(nNs)2
= Op

(
|∆|2(d+1)

)
.

Proof. By definition,

ZT
Aζ =

n∑
i=1

Ns∑
j=1

(
XT

(i),Ac
,XT

(i),Av
⊗BT (sj)

)T ×
∑
k′∈Av

Xik′δjk′ .
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Taking the Euclidean norm and dividing by (nNs)
2 gives

∥ZT
Aζ∥

n2N2
s

=
1

n2N2
s

n∑
i,i′=1

Ns∑
j,j′=1

[∑
k∈Ac

XikXi′k +
∑
k∈Av

XikXi′kB
T (sj)B(s′j)

]

×
∑
k′∈Av

∑
k′′∈Av

Xik′Xi′k′′δjk′δj′k′′ .

Recall that for all j = 1, 2, ..., Ns and for all k ∈ Av, δjk is nonrandom. Thus for

all k ∈ Ac,

1

n2N2
s

n∑
i,i′=1

Ns∑
j,j′=1

E

[
XikXi′k

∑
k′,k′′∈Av

Xik′Xi′k′′δjk′δj′k′′

]

≤ 1

n2N2
s

maxj,k′ |δjk′ |maxj′,k′′ |δj′k′′|
n∑

i,i′=1

Ns∑
j,j′=1

∑
k′∈Av

∑
k′′∈Av

E [|XikXi′kXik′Xi′k′′ |] .

Recall from Lemma A1 that sups∈Ω|β0k(s)−BT
k (s)γ0k| ≤ C|∆|d+1|β0k|d+1,∞. So,

maxj,k′ |δjk′| = maxj,k′|β0k′(s)−BT
k′(sj)γ0k′| = O

(
|∆|d+1

)
,

and then maxj′,k′′ |δj′k′′ | = O
(
|∆|d+1

)
.

Therefore,

maxj,k′ |δjk′| ×maxj′,k′′ |δj′k′′ | = O
(
|∆|2(d+1)

)
.

Now, a bound for the expected value of the product of the predictor variables

must be found. To do this, the Cauchy-Schwarz inequality must be applied twice. So

for all i, i′ = 1, 2, ..., n, for all k ∈ Ac, and for all k′, k′′ ∈ Av,

E [|XikXi′kXik′Xi′k′′ |] = E [|XikXi′k||Xik′Xi′k′′ |] ≤
√
E [|XikXik′|2]

√
E [|Xi′kXi′k′′|2].

Then,

√
E [|XikXik′|2]

√
E [|Xi′kXi′k′′ |2] ≤

√√
E [|Xik|4]

√
E [|Xik′ |4]

√√
E [|Xi′k|4]

√
E [|Xi′k′′|4].
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Raising each term to the power of 3/2 and then to the power of 2/3 gives

(
(E
[
|Xik|4

]
)3/2(E

[
|Xik′ |4

]
)3/2(E

[
|Xi′k|4

]
)3/2(E

[
|Xi′k′′|4

]
)3/2
) 1

4
× 2

3 .

Now, let g(x) = x3/2, which is convex on the interval (0,+∞). So for any random

variable X,

(E[|X|])3/2 ≤ E[|X|3/2],

by Jensen’s inequality. Applying Jensen’s inequality, we get

(
(E
[
|Xik|4

]
)3/2(E

[
|Xik′|4

]
)3/2(E

[
|Xi′k|4

]
)3/2(E

[
|Xi′k′′ |4

]
)3/2
) 1

6

≤
(
E[|Xik|6]E[|Xik′|6]E[|Xi′k|6]E[|Xi′k′′ |6]

) 1
6

≤ (C1C2C3C4)
1
6 ,

where C1, C2, C3, C4 are all positive real numbers given in Assumption 2.

Define C = (C1C2C3C4)
1
6 . Then

n∑
i,i′=1

Ns∑
j,j′=1

∑
k′∈Av

∑
k′′∈Av

E [|XikXi′kXik′Xi′k′′ |] ≤ n2N2
s |Av|2C.

Therefore, for all i, i′ = 1, 2, ..., n and for all k ∈ Ac,

1

n2N2
s

n∑
i,i′=1

Ns∑
j,j′=1

E

[
XikXi′k

∑
k′,k′′∈Av

Xik′Xi′k′′δjk′δj′k′′

]

≤ 1

n2N2
s

|∆|2(d+1) n2N2
s |Av|2C.

Hence,

1

n2N2
s

n∑
i,i′=1

Ns∑
j,j′=1

E

[
XikXi′k

∑
k′,k′′∈Av

Xik′Xi′k′′δjk′δj′k′′

]
= O

(
|∆|2(d+1)

)
.
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Similarly, for all i, i′ = 1, 2, ..., n and for all k ∈ Av,

1

n2N2
s

n∑
i,i′=1

Ns∑
j,j′=1

E

[
XikXi′kB

T (sj)B(sj′)
∑
k′∈Av

∑
k′′∈Av

Xik′Xi′k′′δjk′δj′k′′

]

=
1

n2N2
s

n∑
i,i′=1

Ns∑
j,j′=1

Jn∑
ℓ=1

Bℓ(sj)Bℓ(sj′)
∑
k′∈Av

∑
k′′∈Av

E [XikXi′kXik′Xi′k′′δjk′δj′k′′ ]

≤ maxj,k′ |δjk′ |maxj′,k′′ |δj′k′′|
Jn∑
ℓ=1

1

N2
s

Ns∑
j,j′=1

|Bℓ(sj)Bℓ(sj′)|

× 1

n2

∑
i,i′=1

∑
k′,k′′∈Av

E [|XikXi′kXik′Xi′k′′ |] .

Arguing in the same way as earlier in the proof, for all i, i′ = 1, 2, ..., n and for all

k ∈ Av,

E [|XikXi′kXik′Xi′k′′ |]

≤
(
E[|Xik|6]E[|Xik′|6]E[|Xi′k|6]E[|Xi′k′′ |6]

) 1
6

≤ (C ′
1C

′
2C

′
3C

′
4)

1
6 ,

where C ′
1, C

′
2, C

′
3, C

′
4 are all positive real numbers defined in Assumption 2.

Denote C ′ = C ′
1C

′
2C

′
3C

′
4. Then

∑
i,i′=1

∑
k′,k′′∈Av

E [|XikXi′kXik′Xi′k′′ |] ≤ n2|Av|2C ′.

By the definition of Bernstein basis polynomials,

Jn∑
ℓ=1

1

N2
s

Ns∑
j,j′=1

|Bℓ(sj)Bℓ(sj′)| ≤
Jn∑
ℓ=1

(
N2

s

N2
s

C∗
)

= JnC
∗,

where C∗ is a positive real number. Further, it has already been showed that

maxj,k′ |δjk′ | ×maxj′,k′′ |δj′k′′| = O
(
|∆|2(d+1)

)
.
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Putting everything together gives

1

n2N2
s

n∑
i,i′=1

Ns∑
j,j′=1

E

[
XikXi′kB

T (sj)B(sj′)
∑
k′∈Av

∑
k′′∈Av

Xik′Xi′k′′δjk′δj′k′′

]

≤ 1

n2
|∆|2(d+1) JnC

∗n2|Av|2C ′.

Hence,

1

n2N2
s

n∑
i,i′=1

Ns∑
j,j′=1

E

[
XikXi′kB

T (sj)B(sj′)
∑
k′∈Av

∑
k′′∈Av

Xik′Xi′k′′δjk′δj′k′′

]
= O

(
|∆|2(d+1)

)
.

Therefore,

||ZT
Aζ||2

(nNs)2
= Op

(
|∆|2(d+1)

)
,

which proves the result.

The following lemma is cited from Li et al. (2021).

Lemma A4. Recall that ϵi = (ϵi(s1) ϵi(s2) . . . ϵi(sNs))
T and ϵ = (ϵT1 ϵT2 . . . ϵTn )

T .

Then, under the assumptions in Sections 2.2 and 3.1 and that N
1/2
s |∆| −→ ∞, as

Ns −→ ∞,

||ZT
Aϵ||2

(nNs)2
= Op

(
1

nNs|∆|2

)
.

Proof. By definition of the Euclidean Norm,

||ZT
Aϵ||2

(nNs)2
=

1

n2N2
s

n∑
i,i′=1

Ns∑
j,j′=1

[∑
k∈Ac

XikXi′k +
∑
k∈Av

XikXi′kB
T (sj)B(sj′)

]
× ϵijϵi′j′

Using the condition that every Xik (i = 1, 2, ..., n, k = 1, 2, ..., p) and ϵij (i =
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1, 2, ..., n, j = 1, 2, ..., Ns) are independent, for all i = 1, 2, ..., n and for all k ∈ Ac,

1

N2
s

Ns∑
j,j′=1

E
[
X2

ikϵijϵij′
]
=

1

N2
s

Ns∑
j,j′=1

E
[
X2

ik

]
E [ϵijϵij′ ] .

Note that for all i = 1, 2, ..., n and for all j = 1, 2, ..., Ns, the ϵij’s are independent

with mean zero and variance σ2(sj) by Assumption 3. Thus for j ̸= j′, E [ϵijϵij′ ] =

E [ϵij] E [ϵij′ ] = 0. Therefore, write E [ϵijϵij′ ] = σ2(sj)I(j = j′), where I(·) is the

indicator function. Thus, by Cauchy-Schwarz inequality,

1

N2
s

Ns∑
j,j′=1

E
[
X2

ik

]
σ2(sj)I(j = j′) ≤ 1

N2
s

Ns∑
j,j′=1

(E
[
X4

ik

]
)1/2σ2(sj)I(j = j′).

By Jensen’s inequality and Assumption 2,

1

N2
s

Ns∑
j,j′=1

(E
[
X4

ik

]
)1/2σ2(sj)I(j = j′) ≤ 1

N2
s

Ns∑
j,j′=1

(E
[
X6

ik

]
)1/3σ2(sj)I(j = j′)

≤ 1

N2
s

Ns∑
j,j′=1

c1/3x σ2(sj)I(j = j′).

This gives

1

N2
s

Ns∑
j,j′=1

(E
[
X4

ik

]
)1/2σ2(sj)I(j = j′) ≤ 1

N2
s

Ns∑
j=1

c1/3x σ2(sj)I(j = j′),

where c
1/3
x is a positive real number. So, for some positive real number c′x,

1

N2
s

Ns∑
j=1

c1/3x σ2(sj)I(j = j′) ≤ 1

N2
s

Ns(c
′
x) = O

(
1

Ns

)
,

because σ2(sj) is bounded, for all j = 1, 2, ..., Ns. Thus, for all i = 1, 2, ..., n and for
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all k ∈ Ac,

1

N2
s

Ns∑
j,j′=1

E
[
X2

ikϵijϵij′
]
= O

(
1

Ns

)
.

Similar as before, for all i = 1, 2, ..., n and for all k ∈ Av,

1

N2
s

Ns∑
j,j′=1

E
[
X2

ikB
T (sj)B(sj′)ϵijϵij′

]
=

1

N2
s

Ns∑
j,j′=1

E
[
X2

ik

] Jn∑
ℓ=1

B2
ℓ (sj)E [ϵijϵij′ ]

≤ 1

N2
s

Ns∑
j,j′=1

k1/3
x

Jn∑
ℓ=1

B2
ℓ (sj)σ

2(sj)I(j = j′)

=
k
1/3
x

N2
s

Ns∑
j=1

Jn∑
ℓ=1

B2
ℓ (sj)σ

2(sj),

where k
1/3
x := k is some positive real number.

Using Equation (A5), we get

k

N2
s

Ns∑
j=1

Jn∑
ℓ=1

B2
ℓ (sj)σ

2(sj) =
k

Ns

Jn∑
ℓ=1

[
1

Ns

Ns∑
j=1

B2
ℓ (sj)σ

2(sj)

]

=
k

Ns

Jn∑
ℓ=1

∫
Ω

B2
ℓ (s)σ

2(s)dQ(s)

+
k

Ns

Jn∑
ℓ=1

∫
Ω

B2
ℓ (s)σ

2(s)dQ(s) ·O
(
N−1/2

s |∆|−1
)
.

The assumption that N
1/2
s |∆| −→ ∞, as Ns → ∞ implies that N

−1/2
s |∆|−1 −→ 0,

as Ns → ∞. Therefore,

k

Ns

Jn∑
ℓ=1

∫
Ω

B2
ℓ (s)σ

2(s)dQ(s) +
k

Ns

Jn∑
ℓ=1

∫
Ω

B2
ℓ (s)σ

2(s)dQ(s) ·O
(
N−1/2

s |∆|−1
)

=
k

Ns

Jn∑
ℓ=1

[∫
Ω

B2
ℓ (s)σ

2(s)dQ(s)

]
=

k

Ns

Jn|∆|−2 = O

(
1

Ns|∆|2

)
.

35



For all i ̸= i′, E [XikXi′kϵijϵi′j′ ] = 0 and E [XikXi′k] = 0, so

1

n2

n∑
i,i′=1

E

[
1

N2
s

Ns∑
j,j′=1

(∑
k∈Ac

XikXi′k +
∑
k∈Av

XikXi′kB
T (sj)B(sj′)

)
ϵijϵij′

]

=
1

n2

n∑
i=1

E

[
1

N2
s

Ns∑
j,j′=1

(∑
k∈Ac

XikXi′k +
∑
k∈Av

XikXi′kB
T (sj)B(sj′)

)
ϵijϵij′

]

=
1

n2
× n×O

(
1

Ns|∆|2

)
.

This gives

1

n2

n∑
i,i′=1

E

[
1

N2
s

Ns∑
j,j′=1

(∑
k∈Ac

XikXi′k +
∑
k∈Av

XikXi′kB
T (sj)B(sj′)

)
ϵijϵij′

]

= O

(
1

nNs|∆|2

)
.

Therefore,

||ZT
Aϵ||2

(nNs)2
= Op

(
1

nNs|∆|2

)
,

which proves the result.

The following lemma is cited from Li et al. (2021).

Lemma A5. Recall from definition that ηi = (ηi(s1) ηi(s2) . . . ηi(sNs))
T and η =

(ηT
1 ηT

2 . . .ηT
n )

T . Then, under the assumptions in Sections 2.2 and 3.1 and that

N
1/2
s |∆| −→ ∞, as Ns −→ ∞,

||ZT
Aη||2

(nNs)2
= Op

(
1

n

)
.
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Proof. By defiintion of the Euclidean norm,

||ZT
Aη||2

(nNs)2
=

1

(nNs)2

n∑
i,i′=1

Ns∑
j,j′=1

[∑
k∈Ac

XikXi′k +
∑
k∈Av

XikXi′kB
T (sj)B(sj′)

]
× ηi(sj)ηi′(sj′)

Note that for all i ̸= i′, and k ∈ Ac, E [XikXi′k] = 0. Thus, by the condition that

every Xik (i = 1, 2, ..., n, k = 1, 2, ..., p) and ηi(sj) (i = 1, 2, ..., n, j = 1, 2, ..., Ns) are

independent,

1

n2N2
s

Ns∑
j,j′=1

n∑
i,i′=1

E [XikXi′kηi(sj)ηi′(sj′)] =
1

n2N2
s

Ns∑
j,j′=1

n∑
i=1

E
[
X2

ikηi(sj)ηi′(sj′)
]

=
1

n2N2
s

n∑
i=1

E
[
X2

ik

] Ns∑
j,j′=1

Gη(sj, sj′)

By the Cauchy-Schwarz inequality, for all k ∈ Ac,

1

n2N2
s

n∑
i=1

E
[
X2

ik

] Ns∑
j,j′=1

Gη(sj, sj′) ≤
1

n2N2
s

n∑
i=1

(E
[
X4

ik

]
)1/2

Ns∑
j,j′=1

Gη(sj, sj′)

≤ 1

n2N2
s

n∑
i=1

(E
[
X6

ik

]
)1/3

Ns∑
j,j′=1

Gη(sj, sj′).

By Jensen’s Inequality, for all k ∈ Ac,

1

n2N2
s

n∑
i=1

(E
[
X4

ik

]
)1/2

Ns∑
j,j′=1

Gη(sj, sj′) ≤
1

n2N2
s

n∑
i=1

(E
[
X6

ik

]
)1/3

Ns∑
j,j′=1

Gη(sj, sj′).

Recall from Assumption 2 that there exists a positive real number CX , such that

E[|Xk|6] ≤ CX . Recall from Assumption 3 that there exists a positive real number

CG, such that Gη(s, s) ≤ CG, for all s ∈ Ω. So for all k ∈ Ac,

1

n2N2
s

n∑
i=1

(E
[
X6

ik

]
)1/3

Ns∑
j,j′=1

Gη(sj, sj′) ≤
1

n2N2
s

n∑
i=1

(CX)
1/3

Ns∑
j,j′=1

CG

=
1

n2N2
s

(nCX)(N
2
sCG).
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Thus,

1

n2N2
s

n∑
i=1

(E
[
X6

ik

]
)1/3

Ns∑
j,j′=1

Gη(sj, sj′) = O

(
1

n

)
.

Again since E [XikXi′k] = 0, for all i ̸= i′, and k ∈ Av,

1

n2N2
s

n∑
i,i′=1

Ns∑
j,j′=1

E
[
XikXi′kB

T (sj)B(sj′)ηi(sj)ηi′(sj′)
]

=
1

n2N2
s

n∑
i=1

E
[
X2

ik

] Jn∑
ℓ=1

Ns∑
j,j′=1

Bℓ(sj)Bℓ(sj′)Gη(sj, sj′)

≤ 1

n2N2
s

n∑
i=1

C ′
X

Jn∑
ℓ=1

Ns∑
j,j′=1

Bℓ(sj)Bℓ(sj′)Gη(sj, sj′),

where C ′
X is a positive real number. For all 1 ≤ ℓ ≤ Jn, B

2
ℓ (s)B

2
ℓ (s

′) ̸= 0 only if s

and s′ are in the same triangle τ⌈ℓ/d′⌉, where d
′ = (d+1)(d+2)

2
is the number of Bernstein

basis polynomials on each triangle.

Recall from Equation (A4) that

max
ℓ,ℓ′∈Jn

∣∣∣∣∣ 1

N2
s

Ns∑
j,j′=1

Gη(sj, sj′)Bℓ(sj)Bℓ′(sj′)−
∫
Ω2

Gη(s, s
′)Bℓ(s)Bℓ′(s

′)dQ(s)dQ(s′)

∣∣∣∣∣
= O(N−1/2

s |∆|).

This implies that

1

N2
s

Ns∑
j,j′=1

Bℓ(sj)Bℓ(sj′)Gη(sj, sj′)

=
(
1 +O(N−1/2

s |∆|)
) ∫

Ω2

Gη(s, s
′)Bℓ(s)Bℓ(s

′)dQ(s)dQ(s′)

≤
(
1 +O(N−1/2

s |∆|)
) ∫

τ⌈ℓ/d′⌉×τ⌈ℓ/d′⌉

Gη(s, s
′)Bℓ(s)Bℓ(s

′)dQ(s)dQ(s′).

Therefore,

1

N2
s

Ns∑
j,j′=1

Bℓ(sj)Bℓ(sj′)Gη(sj, sj′) = O
(
|∆|2

)
.
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So, for all k ∈ Av,

=
1

n2N2
s

n∑
i=1

E
[
X2

ik

] Jn∑
ℓ=1

Ns∑
j,j′=1

Bℓ(sj)Bℓ(sj′)Gη(sj, sj′)

≤ 1

n2N2
s

(n)(C)(Jn)(N
2
s ),

where C is a positive real number. Thus,

1

n2N2
s

n∑
i=1

E
[
X2

ik

] Jn∑
ℓ=1

Ns∑
j,j′=1

Bℓ(sj)Bℓ(sj′)Gη(sj, sj′) = O

(
1

n

)
.

Therefore,

||ZT
Aη||2

(nNs)2
= Op

(
1

n

)
,

which proves the result.

Proof of Theorem 2.1. Define δjk = β0k(sj)−BT (sj)γ0k to be the best spline

approximation error of β0k at the point sj. Define ζi = (ζi1 ζi2 . . . ζiNs)
T , where

ζij =
∑

k∈Av
Xikδjk, and denote ζ = (ζT

1 ζT
2 . . . ζT

n )
T , which is a vector with length

nNs. Further, define ηi = (ηi(s1) ηi(s2) . . . ηi(sNs))
T , η = (ηT

1 ηT
2 . . .ηT

n )
T and ϵi =

(ϵi(s1) ϵi(s2) . . . ϵi(sNs))
T , ϵ = (ϵT1 ϵT2 . . . ϵTn )

T . So, η and ϵ are vectors with length

nNs. Thus, Y−ZAθ0,A = η+ ϵ+ ζ. Taking the difference between θ̂0 and θ0,A gives

θ̂0 − θ0,A = (ZT
AZA)

−1ZT
AY − θ0,A

= (ZT
AZA)

−1ZT
A(η + ϵ+ ζ + ZAθ0,A)− θ0,A

= (ZT
AZA)

−1ZT
A(η + ϵ+ ζ) + IAθ0,A − θ0,A

= (nNsCA)
−1ZT

A(η + ϵ+ ζ).
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Then,

θ̂0 − θ0,A =
1

nNs

C−1
A ZT

A(η + ϵ+ ζ),

and then, by the Cauchy-Schwarz Inequality,

||θ̂0 − θ0,A||2 ≤ ||C−1
A ||2 1

(nNs)2
||ZT

A(η + ϵ+ ζ)||2

≤ π−2
1

1

(nNs)2
||ZT

A(η + ϵ+ ζ)||2.

By applying the Triangle Inequality twice,

||ZT
Aη + ZT

Aϵ+ ZT
Aζ||2 ≤ (||ZT

Aη||+ ||ZT
Aϵ||+ ||ZT

Aζ||)2

= ||ZT
Aη||2 + ||ZT

Aϵ||2 + ||ZT
Aζ||2 + 2||ZT

Aη||||ZT
Aϵ||

+ 2||ZT
Aη||||ZT

Aζ||+ 2||ZT
Aϵ||||ZT

Aζ||.

Further,

||ZT
Aη||2 + ||ZT

Aϵ||2 + ||ZT
Aζ||2 + 2||ZT

Aη||||ZT
Aϵ||+ 2||ZT

Aη||||ZT
Aζ||

+ 2||ZT
Aϵ||||ZT

Aζ||

≤ ||ZT
Aη||2 + ||ZT

Aϵ||2 + ||ZT
Aζ||2 + (||ZT

Aη||2 + ||ZT
Aϵ||2)

+ (||ZT
Aη||2 + ||ZT

Aζ||2) + (||ZT
Aϵ||2 + ||ZT

Aζ||2)

= 3(||ZT
Aη||2 + ||ZT

Aϵ||2 + ||ZT
Aζ||2).

Thus, for some positive constant c,

||θ̂0 − θ0,A||2 ≤ c

(
||ZT

Aη||2

(nNs)2
+

||ZT
Aϵ||2

(nNs)2
+

||ZT
Aζ||2

(nNs)2

)
= Op

(
1

n

)
+Op

(
1

nNs|∆|2

)
+Op

(
|∆|2(d+1)

)
= Op

(
1

n
+

1

nNs|∆|2
+ |∆|2(d+1)

)
,
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by Lemmas A3, A4, and A5.

Define the block matrix
[
I|Ac| 0|Ac|×|Av |Jn

]
, where I|Ac| is the |Ac|-dimensional

identity matrix, and 0|Ac|×|Av |Jn is a matrix of zeros with dimension |Ac| × |Av|Jn.

Similarly, define the block matrix
[
0|Av |Jn×|Ac| I|Av |Jn

]
. Write

α̂0 −α0,Ac =
[
I|Ac| 0|Ac|×|Av |Jn

]
(θ̂0 − θ0,A).

This implies that

∑
k∈Ac

(α̂0
k − α0k)

2 = Op

(
1

n
+

1

nNs|∆|2
+ |∆|2(d+1)

)
,

which proves (a). Write

(γ̂0 − γ0,Av) =
[
0|Av |Jn×|Ac| I|Av |Jn

]
(θ̂0 − θ0,A).

Further, for all k ∈ Av, β̂
0
k(s)− β0k(s) = BT (s)(γ̂0

k − γ0,k) This implies that

∑
k∈Av

||β̂0
k − β0k||2L2(Ω) = Op

(
1

n
+

1

nNs|∆|2
+ |∆|2(d+1)

)
,

which proves (b).

To consider bounds for the normalized Bernstein basis functions, the following

lemma from Lai and Wang (2013) and Li et al. (2021) is cited below.

Lemma A6. Recall the spline space Sr
d(∆) ∩ H2 and let {Bℓ}ℓ∈I be the normalized

Bernstein basis polynomials for Sr
d(∆) ∩ H2, where I ⊆ {1, 2, ..., p} is any index

set. Then there exists positive real numbers c and C, depending on the smoothness

parameter r and the shape parameter π of ∆, such that

c
∑
ℓ∈I

γ2
ℓ ≤ ∥

∑
ℓ∈I

γℓBℓ∥2L2(Ω) ≤ C
∑
ℓ∈I

γ2
ℓ .
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The proof of this lemma can be found in Lai and Wang (2013).

Now, some new definitions and notations will be cited from Li et al. (2021). For

all k = 1, 2, ..., p, let xk(x, s) = xk be a functions which maps (x, s) to the kth element

of x. Define

F+ = {F (x, s) =
∑
k∈Av

xkgk(s) :

∫
Ω

gk(s)dQ(s) = 0}

and for all k ∈ Ac, let

Γk(·, ·) = argmin
F (·,·)∈F+

E

[∫
Ω

(Xik − F (X(i), s))
2dQ(s)

]
= argmin

F (·,·)∈F+

∥xk − F∥2

be the orthogonal projection of xk onto F+ relative to the theoretical inner product

defined as

< g1, g2 >= E

[∫
Ω

g1(X, s)g2(X, s)dQ(s)

]
.

Define the corresponding theoretical norm as || · ||. Let ΓAc(X, s) = {Γk(X, s), k ∈

Ac}T and define

Fn,+ = {F (x, s) =
∑
k∈Av

xkgk(s) : gk(s) ∈ Sr
d(∆) ∩H2}.

For all k ∈ Ac, define

Γn,k(·, ·) = argmin
F (·,·)∈Fn,+

1

nNs

n∑
i=1

Ns∑
j=1

(Xik − F (X(i), sj))
2

as the orthogonal projection of xk onto Fn,+ relative to the empirical inner product

defined as

< g1, g2 >n,Ns=
1

nNs

n∑
i=1

Ns∑
j=1

g1(X(i), sj) g2(X(i), sj).
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Define the corresponding empirical norm as || · ||n,Ns . Next, define two matrices

Ξ = E

∫
Ω

[XAc − ΓAc(X, s)][XAc − ΓAc(X, s)]Tds,

Ξe = E

∫
Ω⊗2

[XAc − ΓAc(X, s)]Σe(s, s
′)[XAc − ΓAc(X, s′)]Tdsds′,

where Σe(s, s
′) = Gη(s, s

′) + σ(s)I(s = s′).

The following Theorem from Li et al. (2021) is cited below.

Theorem A1. Suppose that the assumptions in Sections 2.2 and 3.1 hold. Then for

all k ∈ Ac,

||Γ̂n,k − Γk||2n,Ns
= op(1).

Proof. For any k ∈ Ac, define

Γ̃n,k = argmin
F (·,·)∈Fn,+

E

[∫
Ω

(
Xik − F (X(i), s)

)2
dQ(s)

]
= argmin

F (·,·)∈Fn,+

||xk − F ||2

as the orthogonal projection of xk onto Fn,+, relative to the theoretical norm, || · ||.

Then, Γ̃n,k = Πnxk, where Πn is the projection operator onto Fn,+, relative to the

theoretical norm. Define Π̂n as the projection operator onto Fn,+, relative to the

empirical norm. Then, by the triangle inequality,

||Γ̂n,k − Γk||n,Ns ≤ ||Γ̃n,k − Γk||n,Ns + ||Γ̂n,k − Γ̃n,k||n,Ns .

By the definition of Γk, there exists {g0k,k′ :
∫
Ω
gk′(s)dQ(s) = 0}k′∈Av , such that

Γk =
∑

k′∈Av
xk′g

0
k,k′ . Since Γ̃n,k = Πnxk, we have

||Γ̃n,k − Γk||2 = ||ΠnΓk − Γk||2.
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So,

||Γ̃n,k − Γk||2 = inf
F (·,·)∈Fn,+

||F − Γk||2 = inf
F (·,·)∈Fn,+

∥∥∥∥F −
∑
k′∈Av

Xk′g
0
k,k′

∥∥∥∥2
= inf

gk,k′∈Sr
d∩H2

∥∥∥∥ ∑
k′∈Av

Xk′gk,k′ −
∑
k′∈Av

Xk′g
0
k,k′

∥∥∥∥2
= inf

gk,k′∈Sr
d∩H2

∥∥∥∥ ∑
k′∈Av

Xk′(gk,k′ − g0k,k′)

∥∥∥∥2.
By the Cauchy-Schwarz inequality, ∀k ∈ Ac, we get

inf
gk,k′∈Sr

d∩H2

∥∥∥∥ ∑
k′∈Av

Xk′(gk,k′ − g0k,k′)

∥∥∥∥2 ≤ inf
gk,k′∈Sr

d∩H2

∑
k′∈Av

||Xk′||2
∑
k′∈Av

||gk,k′ − g0k,k′ ||2,

and so,

||Γ̃n,k − Γk||2 ≤
∑
k′∈Av

E[X2
k′ ]
∑
k′∈Av

inf
gk,k′∈Sr

d∩H2
||gk,k′ − g0k,k′||2.

By Jensen’s inequality, ∀k′ ∈ Av,

(
E[X2

k′ ]
)3 ≤ E

[
(X2

k′)
3
]
,

which implies

E[X2
k′ ] ≤ (CX)

1/3,

where CX is defined in Assumption 2. So, we have

∑
k′∈Av

E[X2
k′ ]
∑
k′∈Av

inf
gk,k′∈Sr

d∩H2
||gk,k′ − g0k,k′||2

≤ |Av|(CX)
1/3
∑
k′∈Av

inf
gk,k′∈Sr

d∩H2
||gk,k′ − g0k,k′||2L2(Ω),

and thus, by Lemma A1,

||Γ̃n,k − Γk||2 = O
(
|∆|2(d+1)

)
.
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Since E
[
||Γ̃n,k − Γk||n,Ns

]
= ||Γ̃n,k − Γk||, we get ||Γ̃n,k − Γk||n,Ns = Op

(
|∆|(d+1)

)
=

op(1).

Recall that Γ̂n,k = Π̂nxk and Γ̃n,k = Πnxk. Since (Γ̂n,k − Γ̃n,k) and (xk − Γ̃n,k) are

orthogonal in the space Fn,+ with respect to the theoretical norm, we have

||Γ̃n,k − Γk||2 = ||xk − Γ̂n,k||2 − ||xk − Γ̃n,k||2.

For the empirical norm, we have

||xk − Γ̂n,k||2n,Ns
≤ ||xk − Γ̃n,k||2n,Ns

. (A6)

It is shown in Li et al. (2021) that for any vector of spline functions,

g(s) = (g1(s), g2(s), ..., gp(s))
T in Sr

d ∩H2,

||g||2n,Ns

||g||2
− 1 = Op

(
n−1/2(log(n))−1/2 +N−1/2

s |∆|−1
)
= op(1),

so,

||xk − Γ̂n,k||2n,Ns

||xk − Γ̂n,k||2
= op(1) + 1.

This gives

||xk − Γ̂n,k||2n,Ns
= ||xk − Γ̂n,k||2 (op(1) + 1) .

Similarly,

||xk − Γ̃n,k||2n,Ns
= ||xk − Γ̃n,k||2 (op(1) + 1) . (A7)

From Equations (A6) and (A7), we get

||xk − Γ̂n,k||2n,Ns
− ||xk − Γ̃n,k||2 ≤ ||xk − Γ̃n,k||2n,Ns

− ||xk − Γ̃n,k||2

= op

(
||xk − Γ̃n,k||2

)
.
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Further,

||xk − Γ̂n,k||2n,Ns
− ||xk − Γ̃n,k||2 = ||xk − Γ̂n,k||2 (op(1) + 1)− ||xk − Γ̃n,k||2

= ||xk − Γ̂n,k||2 + op

(
||xk − Γ̃n,k||2

)
− ||xk − Γ̃n,k||2

= ||Γ̂n,k − Γ̃n,k||2 + op

(
||xk − Γ̃n,k||2

)
,

and thus,

||Γ̂n,k − Γ̃n,k||2 = op

(
||xk − Γ̂n,k||2

)
+ op

(
||xk − Γ̃n,k||2

)
.

Since ||xk − Γ̃n,k||2 = Op(1), we have

||xk − Γ̂n,k|| ≤ ||xk − Γ̃n,k||+ ||Γ̂n,k − Γ̃n,k|| = Op(1) + ||Γ̂n,k − Γ̃n,k||.

Then, we have

||Γ̂n,k − Γ̃n,k||2 = op

(
||Γ̂n,k − Γ̃n,k||2

)
+ op(1).

Hence,

||Γ̂n,k − Γ̃n,k||2 = op(1).

Therefore, for all k ∈ Ac,

||Γ̂n,k − Γ̃n,k||2n,Ns
= op(1),

which proves that

||Γ̂n,k − Γk||2n,Ns
= op(1).

The following lemma from Li et al. (2021) will be used to prove Theorem 2.2.
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Lemma A7. Suppose that the assumptions in Chapter 2 hold and that for all k ∈ Ac,

there exists a positive real number CX such that |Xik| ≤ CX . Then for all b ∈ R|Ac|,

with ∥b∥2 = max∥x∥=1∥bx∥ = 1,

(Var(bT α̂e
0))

−1/2(bT α̂e
0)

D−−−−−→
n,Ns→∞

N(0, 1),

where

α̂e
0 =

1

nNs

U11Z
T
1,Ac

(InNs −PZ2,Av)(η + ϵ),

and

U11 = (nNs)
[
ZT

1,Ac
(InNs −PZ2,Av)Z1,Ac

]−1
.

Proof. Write bT α̂e
0 = (nNs)

−1bTU11Z
T
1,Ac

(InNs −PZ2,Av)(η + ϵ). Then

(bT α̂e
0)

T =
1

nNs

[
(η + ϵ)T (ZT

1,Ac
− ZT

1,Ac
Z2,Av(Z

T
2,Av

Z2,Av)
−1ZT

2,Av
)TU11b

]
=

1

nNs

[
(η + ϵ)T (Z1,Ac − Z2,Av(Z

T
2,Av

Z2,Av)
−1ZT

2,Av
Z1,Ac)U11b

]
= bT α̂e

0,

because bT α̂e
0 is a scalar.

For all i = 1, 2, ..., n, take the ith row vectors of Z1,Ac and Z2,Av , and let

ai =
1

nNs

[
(ηi + ϵi)

T (XT
(i),Ac

⊗ 1Ns −XT
(i),Av

⊗B (ZT
2,Av

Z2,Av)
−1ZT

2,Av
Z1,Ac)U11b

]
.

Then, write

bT α̂e
0 =

n∑
i=1

aiWi,

where conditional on {Xi}ni=1, Wi (i = 1, 2, ..., n) are independent with mean zero
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and variance one.

Note that ai is a scalar, so write

a2i = aTi ai

=
1

n2N2
s

bTU11

(
XT

(i),Ac
⊗ 1Ns −XT

(i),Av
⊗B (ZT

2,Av
Z2,Av)

−1ZT
2,Av

Z1,Ac

)T
×Σe

(
XT

(i),Ac
⊗ 1Ns −XT

(i),Av
⊗B (ZT

2,Av
Z2,Av)

−1ZT
2,Av

Z1,Ac

)
U11b,

where Σe = {Σe(sj, sj′)}Ns

j,j′=1.

Let X⊥
(i),Ac

= XT
(i),Ac

⊗ 1Ns − XT
(i),Av

⊗ B (ZT
2,Av

Z2,Av)
−1ZT

2,Av
Z1,Ac . Then for all

i = 1, 2, ..., n,

a2i =
1

n2N2
s

bTU11(X
⊥
(i),Ac

)TΣe(X
⊥
(i),Ac

)U11b

=
1

n2N2
s

bTU11

(
Ns∑

j,j′=1

X⊥
ijkΣe(sj, sj′)X

⊥
ij′k′

)
k,k′∈Ac

U11b,

where X⊥
ijk is the (j, k)th entry of X⊥

(i),Ac
.

The eigenvalues of Gη are strictly positive, so by Theorem A1,

1

nN2
s

n∑
i=1

(
Ns∑

j,j′=1

X⊥
ijkΣe(sj, sj′)X

⊥
ij′k′

)
k,k′∈Ac

P−−−−−→
n,Ns→∞

Ξe,

where Ξe is positive definite.
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Now,

U−1
11 =

1

nNs

ZT
1,Ac

(
InNs − Z2,Av(Z

T
2,Av

Z2,Av)
−1ZT

2,Av

)
Z1,Ac

=
1

nNs

ZT
1,Ac

(
Z1,Ac − Z2,Av(Z

T
2,Av

Z2,Av)
−1ZT

2,Av
Z1,Ac

)
=

1

nNs

(XAc ⊗ 1Ns)
T
(
XAc ⊗ 1Ns −XAv ⊗B (ZT

2,Av
Z2,Av)

−1ZT
2,Av

Z1,Ac

)
.

So,

U−1
11 =

1

nNs

n∑
i=1

(X⊥
(i),Ac

)T (X⊥
(i),Ac

)

=
1

nNs

n∑
i=1

(
Ns∑

j,j′=1

X⊥
ijkX

⊥
ij′k′

)
k,k′∈Ac

.

By Theorem 3,

1

nNs

n∑
i=1

(
Ns∑

j,j′=1

X⊥
ijkX

⊥
ij′k′

)
k,k′∈Ac

P−−−−−→
n,Ns→∞

Ξ,

where Ξ is positive definite.

By Assumption 2,

n∑
i=1

a2i ≥ c1n
−1bTU11b

(
1 +O(N−1

s )
)

≥ c n−1∥b∥2,

for some positive real numbers c1 and c. Again by Assumption 2,

max
1≤i≤n

a2i ≤ (nNs)
−2 bTU11

(
Ns∑

j,j′=1

X⊥
ijkΣe(sj, sj′)X

⊥
ij′k′

)
k,k′∈Ac

U11b

≤ C n−2∥b∥2,
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where C is a positive real number.

Thus,
max1≤i≤n a

2
i∑n

i=1 a
2
i

= Op

(
1

n

)
= op(1),

so bT α̂e
0 satisfies Lindeberg’s condition.

Therefore, by the Lindeberg-Feller Central Limit Theorem,

(Var(bT α̂e
0))

−1/2(bT α̂e
0)

D−−−−−→
n,Ns→∞

N(0, 1).

Proof of Theorem 2.2. Recall that

α̂0 −α0,Ac =
[
I|Ac| 0|Ac|×|Av |Jn

]
(θ̂0 − θ0,A)

=
[
I|Ac| 0|Ac|×|Av |Jn

]
(nNs)

−1C−1
A ZT

A(η + ζ + ϵ)

= (nNs)
−1U11Z

T
1,Ac

(InNs −PZ2,Av)((η + ϵ) + ζ).

Then, let

α̂0 −α0,Ac := α̂0
e + α̂0

ζ ,

where

α̂0
e = (nNs)

−1U11Z
T
1,Ac

(InNs −PZ2,Av)(η + ϵ),

α̂0
ζ = (nNs)

−1U11Z
T
1,Ac

(InNs −PZ2,Av)ζ.

Recall that

Vc = (nNs)
−2U11Z

T
1,Ac

(InNs −PZ2,Av)diag{Σi,e}ni=1(InNs −PZ2,Av)Z1,AcU11

is the variance-covariance matrix of α̂0
e, where Σi,e = Var(ηi + ϵi).

50



Denote α̂0
e = (α̂0

e1
α̂0
e2
... α̂0

e|Ac|
)T and let b = (b1 b2 ... b|Ac|)

T be such that ∥b∥2 = 1.

Then by Lemma A7,

Var
 |Ac|∑

i=1

biα̂
0
ei

−1/2 |Ac|∑
i=1

biα̂
0
ei

 D−−−−−→
n,Ns→∞

|Ac|∑
i=1

biWi,

where
∑|Ac|

i=1 biWi ∼ N(0, 1) for all i = 1, 2, ..., n.

By Cramer-Wold device,

(Vc)
−1/2α̂0

e
D−−−−−→

n,Ns→∞
N(0, I|Ac|).

Now,

∥α̂0
ζ∥2 =

∥∥∥∥ [I|Ac| 0|Ac|×|Av |Jn

]
(nNs)

−1C−1
A ZT

Aζ

∥∥∥∥2 ≤ (nNs)
−2π−1∥ZT

Aζ∥2.

Then, by Lemma A3,

∥α̂0
ζ∥2 = Op

(
|∆|2(d+1)

)
.

Thus,

∥α̂0
ζ∥ = Op

(
|∆|(d+1)

)
.

Then, since ∥Vc∥
n,Ns→∞−−−−−→ 0,

V−1/2
c (α̂0 −α0,Ac)

D−−−−−→
n,Ns→∞

N(0, I|Ac|).

Some definitions cited from Li et al. (2021) are needed before providing detailed

proofs of the results in Chapter 3.
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Let

Ln(α,γ; ρ̃n1, ρ̃n2) =
n∑

i=1

Ns∑
j=1

(
Yij −

p∑
k=1

Xikαk −
p∑

k=1

XikB
T (sj)γk

)2

+ ρ̃n1

p∑
k=1

|αk|+ ρ̃n2

p∑
k=1

||γk||2,

and define the group LASSO estimator θ̃ = (α̃T γ̃T )T as the minimizer of Ln.

Define the constant and varying index sets as

A∗
c = {k : αk ̸= 0, 1 ≤ k ≤ p},

Ã∗
c = {k : |α̃k| ≠ 0, 1 ≤ k ≤ p},

Ãv = {k : ∥γ̃k∥ ≠ 0, 1 ≤ k ≤ p},

Ã = Ã∗
c ∪ Ãv.

The following theorem from Li et al. (2021) will be used to determine some

properties of the group LASSO estimator θ̃ defined above.

Theorem A2. Suppose that the assumptions in Sections 2.2 and 3.1 hold. Then the

following statements hold.

1. With probability approaching one, |Ã∗
c | ≤ M |A∗

c | and |Ãv| ≤ M |Av|, for some

1 < M < ∞.

2. ∑
k∈A∗

c

|α̃k − α0k|2 = Op

(
log(pJn)

n
+ |∆|2(d+1) +

ρ̃2n1 + ρ̃2n2
n2N2

s

)
,

∑
k∈Av

∥γ̃k − γ0k∥2 = Op

(
log(pJn)

n
+ |∆|2(d+1) +

ρ̃2n1 + ρ̃2n2
n2N2

s

)
.
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3. If n−1 log(pJn) −→ 0 and (nNs)
−2(ρ̃2n1 + ρ̃2n2) −→ 0, as n → ∞ and Ns → ∞,

then with probability converging to one, all of the nonzero parameters α0k, k ∈

A∗
c and β0k(·), k ∈ Av, are selected.

Proof. To set up the proof of Part 1, pick index sets I1 ⊆ {1, 2, ..., p} and I2 ⊆

{1, 2, ..., p}, such that |I1| = q1 and |I2| = q2, where q1 and q2 are positive real

numbers. Define SI =
(
ρ̃n1u

T
q1
, ρ̃n2

√
Jn(U

I
1 )

T , ..., ρ̃n2
√
Jn(U

I
q2
)T
)T

, where uq1 ∈

RJn and for all k = 1, 2, ..., q2, U
I
k is in a unit ball with dimension Jn. Let PI =

ZI(Z
T
IZ

T
I )

−1ZT
I be the projection matrix of ZI , and define

VI = ZI(Z
T
IZ

T
I )

−1SI − (I−PI)Zθ0.

Let ξ = η + ϵ+ ζ and define

χq1,q2 = max
I=I1∪I2

max
uq1∈{±1}q1 ||UI

k ||2=1,1≤k≤q2

|ξTVI |
∥VI∥

,

Ξ|A∗
c |,|Av | = {(Z, ξ) : χq1,q2 ≤ (

√
Ns + σ)C1

√
q1 log(p) ∨ q2 log(pJn),

∀q1 ≥ |A∗
c |,∀q2 ≥ |Av|},

where C1 is a sufficiently large enough constant.

As shown in Wei and Huang (2010), if (Z, ξ) ∈ Ξ|A∗
c |,|Av |, then |Ã∗

c | ≤ M |A∗
c | and

|Ãv| ≤ M |Av|, for some 1 < M < ∞. Write

|ξTVI |
∥VI∥

=
|(η + ϵ)TVI + ζTVI|

∥VI∥
.

Then, by the triangle inequality,

|ξTVI |
∥VI∥

≤ |(η + ϵ)TVI |
∥VI∥

+
|ζTVI |
∥VI∥

.
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By applying the Cauchy-Schwarz inequality on the second term, we get

|(η + ϵ)TVI |
∥VI∥

+
|ζTVI |
∥VI∥

≤ |(η + ϵ)TVI |
∥VI∥

+
||ζT || ||VI ||

∥VI∥
,

and thus,
|ξTVI |
∥VI∥

≤ |(η + ϵ)TVI |
∥VI∥

+ ||ζ||.

Next, define

χ∗
q1,q2

= max
I=I1∪I2

max
uq1∈{±1}q1 ||UI

k ||2=1,1≤k≤q2

|(η + ϵ)TVI |
∥VI∥

,

Ξ∗
|A∗

c |,|Av | = {(Z,η + ϵ) : χ∗
q1,q2

≤ (
√

Ns + σ)C2

√
q1 log(p) ∨ q2 log(pJn),

∀q1 ≥ |A∗
c |,∀q2 ≥ |Av|},

where C2 is a sufficiently large enough constant.

As shown in Wei and Huang (2010),

P(Ξ∗
|A∗

c |,|Av |)
n,Ns→∞−−−−−→ 1.

Further, for sufficiently large n,

||ζ|| ≤ (
√

Ns + σ)C2

√
|Av| log(pJn).

Therefore,

P(Ξ|A∗
c |,|Av |)

n,Ns→∞−−−−−→ 1,

and hence,

(Z, ξ) ∈ Ξ|A∗
c |,|Av |.

Therefore, |Ã∗
c | ≤ M |A∗

c | and |Ãv| ≤ M |Av|, with probability approaching one,

for some 1 < M < ∞. This proves Part 1.
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Now, define θ̃T = (θ̃T
1 , θ̃

T
2 , ..., θ̃

T
2p) = (α̃1, α̃2, ..., α̃p, γ̃1, γ̃2, ..., γ̃2p), and denote

A′
c = A∗

c ∪ Ã∗
c ,

A′
v = Av ∪ Ãv,

A′ = A′
c ∪ A′

v.

Let d′ = |A′| = O(|A|), and denote Zθ̃ = ZA′θ̃A′ and Zθ0 = ZA′θ0,A′ . Define

ν = ZA′(θ̃A′ − θ0,A′).

Then,

ξ − ν = (Y − Zθ0)ZA′(θ̃A′ − θ0,A′) = (Y − Zθ0)− ZA′θ̃A′ + ZA′θ0,A′)

= Y − ZA′θ̃A′ .

Now,

(ξ − ν)T (ξ − ν) = ξTξ − ξTν − νTξ + νTν

⇐⇒ ∥Y − ZA′θ̃A′∥2 = ξTξ − 2ξTν + νTν

⇐⇒ ∥Y − ZA′θ̃A′∥2 − ∥Y − ZA′θ0,A′∥2 = νTν − 2ξTν.

By the definitions of θ̃, A′
c and A′

v,

||Y − ZA′θ̃A′||2 +
∑
k∈A′

c

ρ̃n1|α̃k|+
∑
k∈A′

v

ρ̃n2||γ̃k||

≤ ||Y − ZA′θ0,A′||2 +
∑
k∈A′

c

ρ̃n1|α0k|+
∑
k∈A′

v

ρ̃n2||γ0k||,

which means

||ν||2 − 2ξTν ≤
∑
k∈A′

c

ρ̃n1(|α0k| − |α̃k|) +
∑
k∈A′

v

ρ̃n2(||γ0k|| − ||γ̃k||).
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Note that |A′
c| ≤ d′ and |A′

v| ≤ d′, so

∑
k∈A′

c

ρ̃2n1
= |A′

c|ρ̃2n1
≤ d′ρ̃2n1

,

∑
k∈A′

v

ρ̃2n2
= |Acv|ρ̃2n2

≤ d′ρ̃2n2
.

By the triangle inequality, we have

∑
k∈A′

c

ρ̃n1(|α0k| − |α̃k|) +
∑
k∈A′

v

ρ̃n2(||γ0k|| − ||γ̃k||)

≤
∑
k∈A′

c

ρ̃n1|α0k − α̃k|+
∑
k∈A′

v

ρ̃n2 ||γ0k − γ̃k||,

and then

∑
k∈A′

c

ρ̃n1|α0k − α̃k|+
∑
k∈A′

v

ρ̃n2||γ0k − γ̃k||

=
∑

k∈A′
c∪A′

v

(ρ̃n1 |α0k − α̃k|I(k ∈ A′
c) + ρ̃n2||γ0k − γ̃k||I(k ∈ A′

v))

≤
∑
k∈A′

max(ρ̃n1 , ρ̃n2) (|α̃k − α0k|I(k ∈ A′
c) + ||γ̃k − γ0k||I(k ∈ A′

v))

≤
∑
k∈A′

√
ρ̃2n1

+ ρ̃2n2
(|α̃k − α0k|I(k ∈ A′

c) + ||γ̃k − γ0k||I(k ∈ A′
v)) .

Further, by Cauchy-Schwarz inequality,

∑
k∈A′

√
ρ̃2n1

+ ρ̃2n2
(|α̃k − α0k|I(k ∈ A′

c) + ||γ̃k − γ0k||I(k ∈ A′
v))

≤
√∑

k∈A′

(ρ̃2n1
+ ρ̃2n2

)

√∑
k∈A′

(|α̃k − α0k|I(k ∈ A′
c) + ||γ̃k − γ0k||I(k ∈ A′

v))
2,
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and then,

√∑
k∈A′

(ρ̃2n1
+ ρ̃2n2

)

√∑
k∈A′

(|α̃k − α0k|I(k ∈ A′
c) + ||γ̃k − γ0k||I(k ∈ A′

v))
2

≤
√

d′(ρ̃2n1
+ ρ̃2n2

)

√∑
k∈A′

(|α̃k − α0k|2I(k ∈ A′
c) + ||γ̃k − γ0k||2I(k ∈ A′

v))

=
√

d′(ρ̃2n1
+ ρ̃2n2

)

√∑
k∈A′

c

|α̃k − α0k|2 +
∑
k∈A′

v

||γ̃k − γ0k||2

=
√

d′(ρ̃2n1
+ ρ̃2n2

)||θ̃A′ − θ0,A′ ||.

Denote c as the lower bound of the eigenvalues of (nNs)
−1ZT

A′ZA′ , and write

√
d′(ρ̃2n1

+ ρ̃2n2
)||θ̃A′ − θ0,A′ || = 2

√
d′(ρ̃2n1

+ ρ̃2n2
)

nNsc

1

2

√
nNsc||θ̃A′ − θ0,A′||,

and thus,

√
d′(ρ̃2n1

+ ρ̃2n2
)||θ̃A′ − θ0,A′|| ≤

d′(ρ̃2n1
+ ρ̃2n2

)

nNsc
+

1

4
(nNsc)||θ̃A′ − θ0,A′ ||.

Therefore, we have

||ν||2 − 2ξTν ≤
d′(ρ̃2n1

+ ρ̃2n2
)

nNsc
+

1

4
(nNsc)||θ̃A′ − θ0,A′ ||.

Recall that ν = ZA′(θ̃A′ − θ0,A′), so,

||ν||2 ≥ (nNsc)||θ̃A′ − θ0,A′ ||2.

Define ξ∗ = ZA′(ZT
A′ZA′)−1ZT

A′ξ as the projection of ξ onto the column space of ZA′ .

Then,

(ξ∗)Tν = ξTZA′ [(ZT
A′ZA′)−1]ZT

A′ν = ξTZA′(ZT
A′ZA′)−1ZT

A′ [ZA′(θ̃A′ − θ0,A′)]

= ξTZA′(θ̃A′ − θ0,A′) = ξTν.

57



By the Cauchy-Schwarz inequality,

2|ξTν| = 2|(ξ∗)Tν| ≤ 2||ξ∗|| ||ν|| ≤ 2||ξ∗||2 + 1

2
||ν||2.

Then, we have

||ν||2 − 1

4
(nNsc)||θ̃A′ − θ0,A′||2 −

d′(ρ̃2n1
+ ρ̃2n2

)

nNsc
≤ 2||ξ∗||2 + 1

2
||ν||2

=⇒ 1

2
||ν||2 − 1

4
(nNsc)||θ̃A′ − θ0,A′ ||2 ≤ 2||ξ∗||2 +

d′(ρ̃2n1
+ ρ̃2n2

)

nNsc
.

Since
1

2
(nNsc)||θ̃A′ − θ0,A′ ||2 ≤ 1

2
||ν||2,

we have (
1

2
− 1

4

)
(nNsc)||θ̃A′ − θ0,A′||2 ≤ 2||ξ∗||2 +

d′(ρ̃2n1
+ ρ̃2n2

)

nNsc
,

and hence,

||θ̃A′ − θ0,A′||2 ≤ 8||ξ∗||2

nNsc
+

4d′(ρ̃2n1
+ ρ̃2n2

)

(nNsc)2
.

Let η∗ ≡ PZA′η, ϵ
∗ ≡ PZA′ϵ and ζ∗

A′ ≡ PZA′ζA′ be the projections of η, ϵ and ζA′

onto the column space of ZA′ , respectively. Then. by the triangle inequality,

||ξ∗||2 = ||(η∗ + ϵ∗) + ζ∗
A′||2 ≤ (||(η∗ + ϵ∗||+ ||ζ∗

A′||)2

= ||(η∗ + ϵ∗||2 + ||ζ∗
A′||2 + 2||η∗ + ϵ∗|| ||ζ∗

A′||

≤ ||(η∗ + ϵ∗||2 + ||ζ∗
A′||2 +

(
||η∗ + ϵ∗||2 + ||ζ∗

A′ ||2
)
,

and hence,

||ξ∗||2 ≤ 2
(
||η∗ + ϵ∗||2 + ||ζ∗

A′ ||2
)
.

Note that for some positive real number C,

||ζ∗
A′||2 ≤ C(nNs)|A′|2|∆|2(d+1),
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so,

||ξ∗||2 ≤ 2||η∗ + ϵ∗||2 + 2C(nNs)(d
′)2|∆|2(d+1).

Further, we have

||η∗ + ϵ∗||2 = ||ZA′(ZT
A′ZA′)−1ZT

A′(η + ϵ)||2 = ||(ZT
A′ZA′)−1/2ZT

A′(η + ϵ)||2.

By the Cauchy-Schwarz inequality,

||η∗ + ϵ∗||2 ≤ ||(ZT
A′ZA′)−1/2||2 ||ZT

A′(η + ϵ)||2 = ||(nNs)
−1/2C

−1/2
A′ ||2 ||ZT

A′(η + ϵ)||2.

Hence,

||η∗ + ϵ∗||2 ≤ (nNsc)
−1||ZT

A′(η + ϵ)||2.

For any index set I ⊆ {1, 2, ..., p}, we have

max
I:|I|≤d′

||ZT
I (η + ϵ)||2 = max

I:|I|≤d′

∑
m∈I

(
||ZT

mη||2 + ||ZT
mϵ||2

)
≤ (nNsd

′)
(
(Rη

1)
2 + (Rϵ

1)
2
)
∨ (nNsd

′)
(
(Rη

2)
2 + (Rϵ

2)
2
)
,

where

Rη
1 = max

1≤k≤p

∣∣∣∣∣(nNs)
−1/2

n∑
i=1

Xik

Ns∑
j=1

ηi(sj)

∣∣∣∣∣ ,
Rϵ

1 = max
1≤k≤p

∣∣∣∣∣(nNs)
−1/2

n∑
i=1

Xik

Ns∑
j=1

ϵij

∣∣∣∣∣ ,
and

Rη
2 = max

1≤k≤p

∥∥∥∥(nNs)
−1/2

n∑
i=1

Xik

Ns∑
j=1

ηi(sj)B(sj)

∥∥∥∥
∞
,

Rϵ
2 = max

1≤k≤p

∥∥∥∥(nNs)
−1/2

n∑
i=1

Xik

Ns∑
j=1

ϵijB(sj)

∥∥∥∥
∞
.
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Let C be a positive real number. It is shown in Li et al. (2021) that

Rη
1 ≤ C

√
Ns log(p), Rη

2 ≤ C
√
Ns log(pJn),

and

Rϵ
1 ≤ Cσ

√
log(p), Rϵ

2 ≤ Cσ
√
log(pJn).

So, we get

||ZT
I (η + ϵ)||2 ≤ (nNsd

′)
(
(C
√
Ns log(pJn))

2 + (Cσ
√
log(pJn))

2
)

= (nNsd
′C2) log(pJn)(Ns + σ2),

and then,

||ZT
I (η + ϵ)||2 = Op

(
nNsd

′(Ns + σ2) log(pJn)
)
.

Putting everything together, we have

||η∗ + ϵ∗||2 = Op

(
d′(Ns + σ2)c−1 log(pJn)

)
,

||ξ∗||2 = Op

(
d′(Ns + σ2)c−1 log(pJn)

)
+Op

(
nNs(d

′)2|∆|2(d+1)
)
,

and therefore,

||θ̃A′ − θ0,A′||2 = Op

(
d′(Ns + σ2) log(pJn)

nNsc2

)
+Op

(
nNs(d

′)2|∆|2(d+1)

nNsc

)
+O

(
d′(ρ̃2n1

+ ρ̃2n2
)

(nNsc)2

)
.

Since c is bounded by a positive constant and d′ = O(|A|), we get

||θ̃A′ − θ0,A′ ||2 = Op

(
n−1 log(pJn)

)
+Op

(
|∆|2(d+1)

)
+O

(
(nNs)

−2(ρ̃2n1
+ ρ̃2n2

)
)
,

which completes the proof of Part 2.
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Recall from Assumption 6 that there exists cα, cβ > 0 such that

min
k∈Ac

|α0k| ≥ cα, min
k∈Av

||β0k||L2(Ω) ≥ cβ.

So for all k ∈ Ac, if |α0k| ̸= 0 but |α̃k| = 0, then |α0k − α̃k| ≥ cα. By Lemma A6,

for all k ∈ Av, if ||γ0k|| ≠ 0, but ||γ̃k|| = 0, then ||γ0k − γ̃k|| ≥ c1cβ. However, this

contradicts Part 2 when

n−1 log(pJn)
n→∞−−−→ 0, and

(ρ̃2n1
+ ρ̃2n2

)

(nNs)2
n,Ns→∞−−−−−→ .

Since N
−1/2
s < |∆| < n

−1
2(d+1) , |∆|2(d+1) −→ 0, as n,Ns → ∞.

Therefore, with probability converging to one, all of the nonzero parameters α0k,

k ∈ A∗
c and β0k(·), k ∈ Av, are selected. This completes the proof of part 3.

As defined in Li et al. (2021), let

Â∗
c = {k : |α̂k| ≠ 0, 1 ≤ k ≤ p}.

Then, Ac = A∗
c\Av and Âc = Â∗

c\Âv.

The following lemma from Li et al. (2021) is used to help prove Theorem 3.1.

Lemma A8. Suppose that the assumptions in Sections 2.2 and 3.1 hold. Then, as

n → ∞ and Ns → ∞,

P
(
Â∗

c = A∗
c

)
−→ 1, P

(
Âv = Av

)
−→ 1.

Proof. By the Karush-Kuhn-Tucker (KKT) conditions in Boyd et al. (2004), the
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unique minimizer, θ̂ = (α̂T , γ̂T )T of

Ln(α,γ; ρn1, ρn2) =
n∑

i=1

Ns∑
j=1

[
Yi(sj)−

p∑
k=1

Xikαk −
p∑

k=1

XikB
T (sj)γk

]2

+ ρn1

p∑
k=1

wc
n,k(|αk|) + ρn2

p∑
k=1

wv
n,k(||γk||)

satisfies the following conditions:

(1.1) (Xk ⊗ 1Ns)
T [Y − (Xk ⊗ 1Ns)α̂− (Xk ⊗B)γ̂] = ρn1w

c
n,k

αk

|αk|
,∀k ∈ A∗

c ,

(1.2) (Xk ⊗B)T [Y − (Xk ⊗ 1Ns)α̂− (Xk ⊗B)γ̂] = ρn2w
v
n,k

γk

||γk||
,∀k ∈ Av,

(2)
∣∣(Xk ⊗ 1Ns)

T [Y − (Xk ⊗ 1Ns)α̂− (Xk ⊗B)γ̂]
∣∣ ≤ ρn1w

c
n,k, ∀k ̸∈ A∗

c ,

(3)
∣∣(Xk ⊗B)T [Y − (Xk ⊗ 1Ns)α̂− (Xk ⊗B)γ̂]

∣∣ ≤ ρn2w
v
n,k,∀k ̸∈ Av.

Define θ̄0 = (ZT
AZA)

−1ZT
AY, which is a vector with length |A∗

c | + |Av|Jn. Define

two vectors v1 and v2, both with length |A|, such that

v1m
wc

n,mθ̄0m

|θ̄0m|
I(m ∈ A∗

c) + 0JnI (m ̸∈ A∗
c) ,∀m ∈ A,

v2m
wv

n,(m−|A∗
c |)
θ̄0m

||θ̄0m||
I ((m− |A∗

c |) ∈ Av) ,∀m ∈ A.

Define

θ̂0,A = (ZT
AZA)

−1
(
ZT

AY − ρn1v1 − ρn2v2

)
,

and decompose it into two vectors defined as

θ̂0,A∗
c
=
(
θ̂0,m,m ∈ A∗

c

)T
, and θ̂0,Av =

(
θ̂0,m,m ∈ Av

)T
.

Let Â0 = {1 ≤ m ≤ 2p : ||θ̂0,m|| > 0} ⊆ A. and define

θ̂0 =
(
θ̂T
0,A∗

c
,0T

p−|A∗
c |, θ̂

T
0,Av

,0T
p−|Av |

)T
.
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The objective is to show that θ̂0 satisfies the KKT conditions and hence, is the

unique minimizer of Ln.

Note that Zθ̂0 and {Zm,m ∈ A} are linearly independent, so conditions (1.1) and

(1.2) will hold for θ̂0 if A = Â0. Let condition

(1′) A ⊆ Â0,

and if we show this holds, along with conditions (2) and (3) for θ̂0, then θ̂0 is the

unique minimizer of Ln. This is equivalent to showing

P
(
Â∗

c = A∗
c

)
n,Ns→∞−−−−−→ 1, P

(
Âv = Av

)
n,Ns→∞−−−−−→ 1.

To prove condition (1’), we must have

||θ0m|| − ||θ̂0m|| ≤ ||θ0m − θ̂0m|| < ||θ0m||,

for all m ∈ A, as n → ∞ and Ns → ∞. It is shown in Li et al. (2021) that

P
(
||θ0m − θ̂0m|| ≥ ||θ0m||,∃m ∈ A

)
n,Ns→∞−−−−−→ 0,

which implies that ||θ̂0m|| > 0, for all m ∈ A. Thus, every m ∈ A is also in Â0, which

proves (1’).

Further, it is shown in Li et al. (2021) that

P
(
|(Xk ⊗ 1Ns)

T (Y − Zθ̂)| > ρn1w
c
n,k,∃k ̸∈ A∗

c

)
n,Ns→∞−−−−−→ 0,

P
(
||(Xk ⊗B)T (Y − Zθ̂)|| > ρn2w

v
n,k, ∃k ̸∈ Av

)
n,Ns→∞−−−−−→ 0,

which prove conditions (2) and (3).

Therefore, conditions (1’), (2), and (3) hold, which implies

P
(
Â∗

c = A∗
c

)
n,Ns→∞−−−−−→ 1, P

(
Âv = Av

)
n,Ns→∞−−−−−→ 1.
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Proof of Theorem 3.1. Recall that Ac = A∗
c\Av and Âc = Â∗

c\Âv. From Lemma A8,

we had

P
(
Â∗

c = A∗
c

)
n,Ns→∞−−−−−→ 1, P

(
Âv = Av

)
n,Ns→∞−−−−−→ 1.

Since we have P
(
Âc = Ac

)
= P

(
Â∗

c\Âv = A∗
c\Av

)
, and P

(
Âv = Av

)
n,Ns→∞−−−−−→ 1,

P
(
Â∗

c\Âv = A∗
c\Av

)
= P

(
Â∗

c = A∗
c

)
n,Ns→∞−−−−−→ 1.

Therefore, as n,Ns → ∞,

P
(
Âc = Ac

)
−→ 1, and P

(
Âv = Av

)
−→ 1,

which completes the proof.

Proof of Theorem 3.2. Denote π1 as the minimum eigenvalue of CA. We have

θ̂A = θ̂0,A = (ZT
AZA)

−1
(
ZT

AY − ρn1v1 − ρn2v2

)
,

where v1 and v2 are vectors defined in the proof of Lemma A8. Then,

θ̂0,A = (ZT
AZA)

−1
(
ZT

AY − ρn1v1 − ρn2v2

)
= (ZT

AZA)
−1
(
ZT

A ((η + ϵ+ ζ) + ZAθ0,A)− ρn1v1 − ρn2v2

)
= (ZT

AZA)
−1
(
ZT

AZAθ0,A + ZT
A(η + ϵ+ ζ)− ρn1v1 − ρn2v2

)
= θ0,A + (ZT

AZA)
−1
(
ZT

A(η + ϵ+ ζ)− ρn1v1 − ρn2v2

)
,
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and so,

θ̂0,A − θ0,A = (ZT
AZA)

−1
(
ZT

A(η + ϵ+ ζ)− ρn1v1 − ρn2v2

)
= (nNs)

−1C−1
A

(
ZT

A(η + ϵ+ ζ)− ρn1v1 − ρn2v2

)
.

Define ξ∗, η∗, and ϵ∗ as the projections of ξ, η, and ϵ∗ onto the column space of

ZA, respectively. So,

||η∗ + ϵ∗||2 = ||ZA(Z
T
AZA)

−1ZT
A(η + ϵ)||2 = ||(ZT

AZA)
−1/2ZT

A(η + ϵ)||2.

Then,

||η∗ + ϵ∗||2 = ||(nNs)
−1/2C

−1/2
A ZT

A(η + ϵ)||2.

By the Cauchy-Schwarz inequality,

||(nNs)
−1/2C

−1/2
A ZT

A(η + ϵ)||2 ≤ (nNs)
−1||C−1/2

A ||2||ZT
A(η + ϵ)||2

≤ (nNsπ1)
−1||ZT

A(η + ϵ)||2.

By the triangle inequality,

||ZT
A(η + ϵ)||2 ≤

(
||ZT

Aη||+ ||ZT
Aϵ||

)2 ≤ 2||ZT
Aη||2 + 2||ZT

Aϵ||2.

Multiplying and dividing by n2N2
s , we get

||ZT
A(η + ϵ)||2 ≤ 2(nNs)

2

(
|ZT

Aη||2

(nNs)2
+

|ZT
Aϵ||2

(nNs)2

)
.

By Lemmas A4 and A5,

2(nNs)
2

(
|ZT

Aη||2

(nNs)2
+

|ZT
Aϵ||2

(nNs)2

)
≤ 2(nNs)

2

(
1

n
+

1

nNs|∆|2

)
,

and thus,

||ZT
A(η + ϵ)||2 = Op

(
nN2

s + nNs|∆|−2
)
.
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We also have

||ζ||2 = Op

(
nNs|∆|2(d+1)

)
.

Now, by the triangle inequality,

||ξ∗||2 = ||(η∗ + ϵ∗) + ζ||2 ≤ (||η∗ + ϵ∗||+ ||ζ||)2 ≤ 2||η∗ + ϵ∗||2 + 2||ζ||2,

and therefore, since π−1
1 is bounded by a positive real number,

||ξ∗||2 = Op

(
(nNsπ1)

−1(nN2
s + nNs|∆|−2)

)
+Op

(
nNs|∆|2(d+1)

)
= Op

(
Ns + |∆|−2 + nNs|∆|2(d+1)

)
.

In a similar way as in Part 2 of the proof of Theorem A2,

||θ̂A − θ0,A||2 ≤
8||ξ∗||2

nNsπ1

+
4(ρ2n1

|Ac|+ ρ2n2
|Av|)

n2N2
s π

2
1

,

and so,

||θ̂A − θ0,A||2 = Op

(
Ns + |∆|−2

nNs

)
+Op

(
nNs|∆|2(d+1)

nNs

)
+O

(
ρ2n1

|Ac|+ ρ2n2
|Av|

n2N2
s

)
.

Thus,

||θ̂A − θ0,A||2 = Op

(
1

n
+

1

nNs|∆|2
+ |∆|2(d+1) +

ρ2n1
+ ρ2n2

n2N2
s

)
.

Since

(α̂Ac −α0,Ac) =
[
I|Ac| 0|Ac|×|Av |Jn

]
(θ̂A − θ0,A),

we get

∑
k∈Ac

(α̂k − α0k)
2 = Op

(
1

n
+

1

nNs|∆|2
+ |∆|2(d+1) +

ρ2n1
+ ρ2n2

n2N2
s

)
,
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which completes the proof of (a). Since

(γ̂Av − γ0,Av) =
[
0|Av |Jn×|Ac| I|Av |Jn

]
(θ̂A − θ0,A),

and for all s ∈ Ω,

β̂Av(s)− β0,Av(s) =
[
I|Av | ⊗BT (s)

]
(γ̂Av − γ0,Av),

we get

∑
k∈Av

||β̂k − β0k||2L2(Ω) = Op

(
1

n
+

1

nNs|∆|2
+ |∆|2(d+1) +

ρ2n1
+ ρ2n2

n2N2
s

)
,

which completes the proof of (b).
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