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ABSTRACT

Advances in multi-task learning (MTL) models have improved the performance

and explainability of recommender systems (RS) by jointly learning the recommenda-

tion and knowledge graph completion (KGC) tasks. Recent studies have established

that considering the incomplete nature of knowledge graphs (KG) can further enhance

the performance of RS. However, most existing MTL models depend on translation-

based knowledge graph embedding (KGE) methods for KGC, which cannot capture

various relation patterns, including composition relations that are prevalent in real-

world KG.

To address this limitation, this thesis proposes a new MTL model, named ro-

tational knowledge-enhanced translation-based user preference (RKTUP). RKTUP

enhances the KGC task by incorporating rotational-based KGE techniques (RotatE

or HRotatE) to model and infer diverse relation patterns. These relation patterns

include symmetry/asymmetry, composition, and inversion. RKTUP is an advanced

variant of the knowledge-enhanced translation-based user preference (KTUP) MTL

model, which provides interpretations of its recommendations.

The experimental results demonstrate that RKTUP outperforms existing meth-

ods and achieves state-of-the-art performance on both recommendation and KGC

tasks. Specifically, it shows a 13.7% and 11.6% improvement in F1 score for recom-

mendations on DBbook2014 and MovieLens-1m, respectively, and a 12.8% and 13.6%

increase in hit ratio for KGC on the same datasets, respectively.

The use of RotatE improves the two tasks’ performance, while HRotatE enhances

the two tasks’ performance and the model’s efficiency.
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CHAPTER 1

Introduction

Recommender systems (RS) are a type of information filtering system that uses his-

torical data to recommend one or more unobserved items to a particular user based

on their past behaviour and predicted preference [8]. RS are widely used in various

applications such as e-commerce, online advertising, social media, and many more

[39]. There are several types of RS algorithms, each with its unique approach to

making recommendations [20].

The input to various recommendation algorithms is called the user-item inter-

action list [8]. It is typically represented as a matrix, where rows represent users,

columns represent items, and each cell contains the interaction between the corre-

sponding user and item [55]. These interactions can take many forms, depending

on the specific application, but commonly include things like ratings and written re-

views (known as explicit interactions) and actions such as purchases, views, and clicks

(known as implicit interactions) [68].

The main idea behind the RS’s algorithms is to use the observed interactions in

the user-item interaction list to infer the preferences of users for items with which

they have not yet interacted [65].

User interactions provide valuable information about the preferences and opinions

of users, which can be used to make more accurate, personalized and relevant recom-

mendations based on the items that users with similar preferences have liked in the

past [39]. However, one of the biggest challenges the RSs face is data sparsity, which

is the lack of reviews, feedback and information about the users and items [49]. This

results in a large number of empty cells in the user-item interaction matrix, leading
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1. INTRODUCTION

to a decrease in the performance of the RS.

Many research papers have focused on resolving some of the challenges RSs face,

including data sparsity and decreased performance, by using knowledge graphs (KG).

Nevertheless, most of these studies did not consider the incomplete nature of KGs [27].

A few papers have taken this into account by proposing the use of multi-task learning

(MTL) models, which jointly learn both the knowledge graph completion (KGC) and

the RS algorithms to enhance the performance of both tasks [11, 41]. The majority of

these models use TransH [71] and TransR [45] for the KGC task. These translation-

based knowledge graph embedding (KGE) approaches fail to capture different relation

patterns, such as composition relations, which are prevalent in real-world KGs [32].

We suspect that the more relation patterns the KGE model can infer, the better the

representation of the user’s preference, ultimately enhancing the RS’s performance.

This thesis aims to investigate the effect of capturing a wide range of relation

patterns, including composition relations, on the performance of the RS in an MTL

model that provides explanations for its recommendations. One possible solution is to

improve the entity and relation representations in the KG by utilizing rotation-based

KGE models.

1.0.1 Recommender System

This is a classification task where the system recommends the top-N items for a target

user in the user–item interaction list y = {(u, i)}. The pair (u, i) means that user

u ∈ U interacted with item i ∈ I by clicking, watching, purchasing, or reviewing

[68], where U and I denote the sets of users and items. There are several types of

Recommender Systems. The most common types include:

1. Collaborative Filtering [8]: This method is based on the assumption that

users with similar preferences in the past will have similar preferences in the

future. There are two types of collaborative filtering: user-based and item-

based. The process of identifying similar users and recommending items that

those users have liked is known as user-based collaborative filtering. Item-

2



1. INTRODUCTION

based collaborative filtering, on the other hand, entails identifying items and

recommending them to users who have previously liked similar items.

2. Content-based Filtering [65]: This strategy entails recommending items

that are comparable to those that a user has previously liked. Content-based

filtering recommends items based on their attributes, such as the movie’s genre,

director, and actors.

3. Hybrid Recommender Systems [6]: These systems use a combination of

both collaborative filtering and content-based filtering to make recommenda-

tions. This approach combines the strengths of both methods in order to provide

more accurate and diverse recommendations.

4. Neural Network-based [77]: In this approach, several types of neural net-

works are utilized in combination with collaborative filtering or content-based

filtering. Neural network-based techniques have demonstrated impressive per-

formance, particularly in feature extraction and the accuracy of the predic-

tions. These techniques, however, have some drawbacks, such as the lack of

interpretability. The neural network’s black-box nature limits the use of this

approach in situations where understanding the reasoning behind the recom-

mender decision is critical.

5. Knowledge Graph-based [27]: In an attempt to solve the issues that arose

with the previous approaches, this strategy combines KGs and other types

of recommendation, such as collaborative filtering, content-based filtering etc.

This approach utilizes the knowledge of items and their attributes, along with

other information, such as user interactions, to make recommendations. The

aim of this research is to enhance the performance of a multi-task learning RS,

which falls under this category.

These are the main types of RSs, but many other variations and hybrids can be created

to overcome the challenges these methods face. Classical RSs, such as collaborative

3



1. INTRODUCTION

filtering and content-based filtering, suffer from a variety of issues. The most common

issues include:

1. Cold-start Problem: This occurs when an RS cannot make recommendations

for a new user or item because there is insufficient historical data [42]. Knowl-

edge graph-based RS can help to solve this problem by using item attributes

and relationships to make recommendations for new items, even if there is no

historical data available [27]. For example, if a new item is added to an enter-

tainment service site such as Netflix, the system can use the item’s attributes,

such as movie genre, director, and actors, to recommend similar items that users

might be interested in selecting. Additionally, Knowledge graph-based RS can

use demographic information about a new user to make recommendations. For

example, if a new user has not interacted with any items yet, the system can

use the user’s age, gender, and geographic location to recommend items that

are likely to be relevant to them.

2. Data Sparsity: The sparsity problem occurs when the number of interactions

or ratings between users and items is very low, making it difficult to find pat-

terns or similarities [49]. The KG-based RS attempts to solve this issue by

leveraging additional information about the users and items already contained

in the system [27].

3. The Long-tail Problem: This occurs when a small number of items receive

a large number of recommendations, while a large number of items receive very

fewer recommendations. It is caused by the sparsity of the data and the diversity

of user preferences. Since there are a limited number of interactions or ratings

between users and items, it is difficult for the RS to find patterns or similarities

among the vast number of available items [3]. KG-based RS can potentially

address the long-tail problem [72]. For example, the RS can use item attributes

in the KG, such as genre, director, and actors, to recommend similar items,

even if those items have not been rated or interacted with by many users. This

can help to uncover items that are not as well-known or popular, but still may

4



1. INTRODUCTION

be relevant to a user’s preferences.

4. Performance: Performance is a critical factor for RSs, and it often presents a

challenge [4]. The goal of an RS is to make relevant recommendations to users

[27]. Performance is a measure of how well the system is or is not achieving

this goal. Performance enhancement of RSs is an active area of research [25, 4].

The field of RSs is constantly evolving, and researchers are continuously work-

ing to develop new algorithms and approaches that improve the performance

of these systems. This is driven by the growing demand for personalized rec-

ommendations in various applications, such as e-commerce, entertainment, and

information retrieval [38]. In practice, there are several factors that can impact

the performance of an RS, such as the size of the dataset, the quality of the

data, the type of the algorithms used, and the computational resources available

[25]. Thus, the need for more efficient and effective RSs is becoming increas-

ingly more important. In this research, we study the problem of performance

enhancement of a KG-based multi-task learning RS.

It’s worth mentioning that, even though KG-based systems have the potential to

address these problems, it is not guaranteed to solve them completely, as it still

depends on the quality and the completeness of the knowledge graph, the available

data, and the effectiveness of the algorithms used.

1.0.2 Multi-task Learning Models

Multi-task learning models are a category of KG-based recommendation systems that

use KGC methods to enhance the recommendations by predicting missing facts in the

KG. These models align the items in the RS with corresponding entities in the KG

and then alternate training between the recommendation and KGC tasks. The joint

learning layer improves the embeddings in the RS with the help of KG embeddings.

Most models only improve the item embeddings by adding them to the corresponding

entity embeddings. However, the knowledge-enhanced translation-based user prefer-

ence (KTUP) model enhances the representation of users’ preferences and items by

5



1. INTRODUCTION

integrating the corresponding embeddings of entities and relations in the KG, result-

ing in more enhanced and explainable recommendations [27]. This thesis presents a

new variant of the KTUP model called RKTUP, which improves KTUP’s performance

by incorporating a vast majority of relation types from the KG into the RS.

1.0.3 Knowledge Graphs

Knowledge graphs can be traced back to the early days of AI and the development

of semantic networks [58]. However, Google popularized the term “knowledge graph”

in 2012 [23] when it released the Knowledge Graph system, which leverages KGs to

improve search results.

Knowledge graphs are widely used to power search and recommendation systems,

knowledge base systems, and other applications that require an understanding of the

links between pieces of information [27].

Since 2012, knowledge graphs have been one of the main research subjects, leading

to numerous descriptions and definitions being published [23]. In general, though, a

knowledge graph is a type of data model that represents information as a collection

of items (nodes) and their interactions (edges). Each triple has a subject, a predicate

(or “ relation”), and an object. Typically, the subject and object are both entities,

while the predicate describes their relationship.

Formally, A Knowledge graph is a directed triple G = (E,R, T ) in which E and

R are two disjoint finite sets [73]. Each element of E is called an entity, and each

element of R is called a relation. T ⊆ E ×R×E is called the triples set, where each

triple (es, r, et) ∈ T represents a fact in G such that the source entity es has relation

r with tail entity et [12]. Fig 1.0.1 shows an example of a Knowledge Graph.

6



1. INTRODUCTION

Fig. 1.0.1: An Example of a Knowledge Graph

1.0.4 Knowledge Graph Completion

Real-life KGs are inherently incomplete [43] because the information they represent

is always a subset of the total knowledge that exists in the world. For this reason,

we need Knowledge Graph Completion methods that can automatically infer missing

information in a knowledge graph.

KGC methods use known facts in the KG to infer unknown facts using embedding-

based [70], neural network-based [13] or multi-hop reasoning-based [13] approaches.

KGC models either predict missing relations (h, ?, t) or missing target entities (h, r, ?)

in the knowledge graph [61], where h, r, t, and ? denote the source entity, the relation,

the head entity, and the missing fact, respectively. Fig 1.0.2 shows an example of

Knowledge Graph Completion.

7



1. INTRODUCTION

Fig. 1.0.2: An Example of Knowledge Graph Completion

1.0.5 Knowledge Graph Embedding

1.0.5.1 Definition and Background

Knowledge Graph Embedding (KGE) is the process of mapping entities and relation-

ships in a KG to a low-dimensional vector space, where entities and relationships are

represented as unique vectors [70]. The goal of knowledge graph embedding is to

capture the underlying structure and semantic meaning of the knowledge graph in

an efficient computational way. KGE can be used for downstream tasks such as link

prediction, and knowledge graph completion [5].

The main KGE approaches are classified into three types: translation-based meth-

ods, semantic matching-based methods and neural network-based methods [58].

In the translation-based methods, entities are represented as points in a continu-

ous vector space, and relationships between entities are modelled using a translation

operation [70]. Some examples of translation-based methods are TransE [9], TransH

[71], TransR [45], RotatE [64], and HRotatE [58].

The semantic matching-based methods use tensor factorization to break up high-

dimensional relationship tensors into low-dimensional entity embeddings to find pos-

sible semantic connections between entities and relationships [13]. DistMult [74], and

8



1. INTRODUCTION

ComplEx [66] are some examples in this category.

Lastly, the neural network-based methods use neural networks to learn the em-

beddings for the entities and relationships in a knowledge graph [19]. Examples of

neural-network-based methods include ConvE [19], and E-MLP [61]. This thesis fo-

cuses on translation-based models only.

The ability to effectively capture the underlying relationship properties and pat-

terns in a knowledge graph is crucial for the performance of translation-based models

[32]. These models rely on the ability to translate between vectors to model the

relationships in the graph [70].

Understanding the patterns of relationships such as inverse, hierarchical, com-

position and symmetry, as well as properties like the relation’s cardinality, such as

one-to-many and many-to-one allows these models to better reflect the structure of

the knowledge graph. This leads to improved results in various downstream tasks

[32].

Furthermore, handling these properties and patterns can help reduce the number

of duplicated relationships in the KG and help learn more general representations

of entities and relationships, making the models more robust and efficient [64]. Not

all translation-based models can capture all relationship patterns and properties.

However, RotatE and HRotatE can capture the majority of them [58, 64].

1.0.5.2 KGE Models at a Glance

Inspired by [16], this section provides an example to explain the steps taken by KGE

models, in general.

Consider a knowledge graph with three entities “ Toronto”, “ City”, and “ Canada”

and two relationships “ is-a” and “ located-in”. We want to train a knowledge graph

embedding model to predict missing relationships in this knowledge graph. To do so,

a knowledge graph embedding model would generally go through the following steps:

1. Lookup layer: It assigns an embedding to each node and relationship in the

graph. It randomly initializes the embeddings for each entity and relationship.

9



1. INTRODUCTION

For example, “ Toronto” is assigned an embedding [0.1, 0.2, 0.3], “ City” is

assigned [0.4, 0.5, 0.6] and “ is-a” is assigned [0.7, 0.8, 0.9].

2. Scoring function: Different models have different scoring functions. This

example uses a distance scoring function. The scoring function assigns a score

to each triple (head entity, relationship, tail entity) in the knowledge graph.

For example, the score of the triple (Toronto, is-a, City) would be computed as

||[0.1, 0.2, 0.3]+ [0.7, 0.8, 0.9]− [0.4, 0.5, 0.6]|| = ||[0.8, 1.0, 1.2]− [0.4, 0.5, 0.6]|| =

||[0.4, 0.5, 0.6]|| = 0.782

3. Loss Function (training): Different models have different loss functions. The

loss function used in this example is the margin-based loss function. For each

positive triple (head entity, relationship, tail entity), the model pays a penalty

if the score of a positive triple is lower than the score of a negative triple by

a margin γ. The negative triple is generated by corrupting the head or tail of

the positive triple. For example, if the positive triple is (“ Toronto”, “ is-a”, “

City”), the negative triple could be (“ Toronto”, “ is-a”, “ Canada”). The loss

function is used to measure the error of the model’s predictions and to guide

the training process.

4. Negative samples generations: Generating negative samples is done by

corrupting the head or tail of the positive triples. For each positive triple, KGE

models generate one negative triple by corrupting the head and one negative

triple by corrupting the tail. There are several methods to generate negative

samples.

• Uniform sampling: To generate negative triples, the uniform sampling

approach generates all possible synthetic negatives randomly and samples

n negatives for each positive triple.

• Complete set: In the complete set approach, all possible synthetic negatives

are used for each positive triple without any sampling.

• Self-adversarial sampling: This approach generates negatives based on the
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current embedding mode which allows the model to continuously improve

its performance during training.

5. Optimizer: The optimizer is responsible for updating the embeddings in the

lookup layer during the training process. It minimizes the loss function by

adjusting the embeddings in the lookup layer. Common optimizers used in

knowledge graph embeddings include Adam and AdaGrad.

6. Downstream task: In this example, the downstream task is link prediction,

where the goal is to predict missing relationships between entities in the knowl-

edge graph. The trained model can be used to predict the missing relationship

“ located-in” between “ Toronto” and “ Canada”.

Fig 1.0.3 shows the input, the components and the output of a KGE model.

Fig. 1.0.3: KGE Models at a Glance [16]

1.0.6 Relationship Patterns and Multi-folds

Each relation in the KG has its corresponding relation pattern and multi-fold relation

type [32]. For example, the relation marriedTo is symmetric and one-to-one. Thus,

it is crucial for the KGE to recognize the relations’ pattern and multi-fold [32]. Many

translation-based KGE models exist in the literature, such as TransE and its exten-

sion. However, many of them cannot represent all types of the relation’s pattern and

multi-folds [32]. In this section, we provide some definitions of common relationship

patterns and multi-folds.
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1.0.6.1 Relationship Pattern

This section presents definitions for several common relationship patterns, drawn from

[64]. Each pattern is accompanied by an example from the movie RS.

Definition 1 A relation r is symmetric (antisymmetric) if

∀x, y : r(x, y)⇒ r(y, x) (r(x, y)⇒ ¬r(y, x)) (1.0.1)

The similarity between two movies is a symmetric relation. If movie A is similar to

movie B, then it follows that B is also similar to A. For example, if a user has watched

and liked the movie “ The Dark Knight,” the recommendation system could suggest

other similar movies such as “ Batman Begins”. The system could also recommend

“ The Dark Knight” to users who have liked “ Batman Begins”.

Definition 2 Relation r1 is inverse to relation r2 if

∀x, y : r2(x, y)⇒ r1(y, x) (1.0.2)

The “users who liked this movie also liked” is an inverse relation. The inverse

of this relation would be “movies that are liked by users who liked this movie“. For

example, if a user likes the movie “ The Lord of the Rings,” the RS could suggest

other movies that are popular among users who also liked “ The Lord of the Rings”

series, such as “ The Hobbit” “ Avatar,” or “ Star Wars.”.

Definition 3 Relation r1 is composed of relations r2 and r3 if

∀x, y, z : r2(x, y) ∧ r3(y, z)⇒ r1(x, z) (1.0.3)

The “ movies by the same director watched by users who have enjoyed similar

movies” is a composition relation. For example, if user A enjoyed the movie “ The

Grand Budapest Hotel” directed by Wes Anderson, the RS could suggest other movies

based on the behavior of other users who have also enjoyed “ The Grand Budapest

Hotel” and other movies directed by Wes Anderson. This is considered a composition

relation because it involves combining multiple relationships to make a more accurate
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recommendation. Specifically, it combines the relationship between user A and the

movie “ The Grand Budapest Hotel,” the relationship between the movie “ The Grand

Budapest Hotel” and its director Wes Anderson, and the relationship between users

who have enjoyed “ The Grand Budapest Hotel” and other movies directed by Wes

Anderson.

1.0.6.2 Relationship Multi-folds

Here, we provide some informal definitions for common relation multi-folds. These

definitions are based on the definitions in [24]

One-to-many: A type of relationship cardinality where an entity is related to

multiple other entities, but each of those other entities are not related back to the

original entity in a one-to-many relation. An example of a one-to-many relationship

is the relationship between a director and the movies they directed. A director can

direct multiple movies. However, each one of these movies can not relate back to the

director in a one-to-many relation.

Many-to-one: A type of relationship cardinality, where multiple entities are

related to a single entity, but the single entity is not related back to all of those other

entities. An example of a many-to-one relation is the relationship between movies and

a movie production company. A production company can produce multiple movies,

but each movie is only produced by one production company.

One-to-one: A type of relationship cardinality, where a single entity is related

to exactly one other entity, and vice versa. For example, a movie and its Internet

Movie Database (IMDb) identification number. Each movie is assigned a unique

IMDb ID, and each IMDb ID corresponds to exactly one movie. This is a one-to-one

relationship because each movie is uniquely identified by one IMDb ID, and each

IMDb ID corresponds to only one movie.

Many-to-many: A type of relationship cardinality, where multiple entities can

relate to multiple entities. For example, multiple movies can have the same multiple

actors, and multiple actors can be in the same multiple movies.
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1.1 Problem Definition

Given a knowledge graph G = (E,R, T ), where E is the set of entities, R is the set

of relations, and T is the set of triples in G.

Additionally, we have a list of user-item interactions denoted by Y = {(u, i)}.

Here u ∈ U denotes the set of all users and i ∈ I denotes the set of all items. We

know that I∩E ̸= ∅, which means that there exists at least one item that is common

to both sets I and E. The value of Yui ∈ {0, 1}, depending on whether the user u

engaged with item i. Specifically, if Yui = 1, it means that the user u interacted with

item i, whereas if Yui = 0, it means that the user did not interact with the item.

Our goal is to learn more expressive vector representations of entities (E) and

relations (R) in a KG that is part of a multi-task learning (MTL) model. The MTL

model jointly learns to recommend the top-N items for a user and complete G through

finding the missing set of triplets T’ = {(es, r, et) |es ∈ E, r ∈ R, et ∈ E, (es, r, et) /∈

T}, where es, r and et denote the source entity, the relation and the head entity,

respectively.

The notations used in this section are commonly used in research related to knowl-

edge representation and data recommnder systems such as [68, 60].

1.2 Thesis Motivation

Knowledge graphs are computable databases that store structural knowledge in a

graph, with nodes representing entities and edges representing relations [43]. In re-

cent years, KGs have attracted considerable interest due to their unique capability of

displaying and managing vast amounts of nonlinear information in an interpretable

manner [59]. Thus, KGs have improved many downstream tasks, including recom-

mendations [27].

Recommender systems help provide the best recommendations by suggesting prod-

ucts and items most relevant to the user’s preference. Most classical recommendation

tasks rely on a rating structure in which the user explicitly or implicitly rates an item
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by watching, clicking, or purchasing [68]. Classical similarity-based approaches, such

as collaborative filtering (CF) [56] and content-based filtering, suffer from data spar-

sity, and cold start problems [65] leading to poor RS performance. Combining the

KG and RS training can resolve these issues and improve the recommendation’s per-

formance and explainability by giving comprehensive details about the recommended

items [27].

While most RSs that rely on KGs assume that the KGs are complete [27], in

reality, KGs are inherently incomplete [43]. Therefore, it is crucial to consider this

aspect when designing RS. Several Multi-task learning (MTL) models that jointly

learn the knowledge graph completion (KGC) and recommendation tasks have been

proposed to address this issue. Some of the popular MTL models include [69, 41, 11].

However, the majority of these models, which employ translation-based knowledge

graph embedding (KGE) techniques like TransH [71] and TransR [45], fail to capture

various relation patterns, such as composition relations, which are common in real-

world KGs [32]. As a result, their performance may be negatively affected when

dealing with missing composition relations.

The relationships between entities in the KG can reflect the user’s preferences.

However, the incompleteness of KGs can lead to some relationships being missed,

which can affect the representation of user preferences [11]. Some KGE methods can

learn to better represent entities and relations in the KG [58, 64]. We suspect that

KGE models that can infer a wider range of relation patterns may provide a more

accurate representation of user preferences, which could ultimately lead to improved

performance of the RS.

Fig 1.2.1 illustrates the significance of capturing compositional relations during

the joint learning of the KGC and the recommendation tasks for personalized rec-

ommendations. The red dotted arrow between Dan Aykroyd and Canada represents

the missing relation isFrom. Assuming that the reason for the user’s choices is his

preference for movies starring Canadian actors, we can infer that the relation isFrom

represents the user’s preference.

In this case, although the user’s preference was determined, the RS fails to rec-
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ommend Ghostbusters II, which is one of the user’s preferences. The fact that Dan

Aykroyd is Canadian was overlooked due to the missing relation in the KG (the red

dotted arrow), which prevented the recommendation of Ghostbusters II.

The relation isFrom is a composition relation. Composition relations are defined

in [64] as follows: relation r1 is composed of relations r2 and relation r3 if

∀x, y, z : r2(x, y) ∧ r3(y, z)⇒ r1(x, z) (1.2.1)

In our example, x = Dan Aykroyd, y = Ottawa, ON, z = Canada, r2 = bornIn,

r3 = locatedIn, and r1 = isFrom. Thus, r2(x, y) = Dan Aykroyd bornIN Ottawa, ON

∧ r3(y, z) = Ottawa, ON locatedIn Canada ⇒, and r1(x, z) = Dan Aykroyd isFrom

Canada.

Fig. 1.2.1: An illustration of the significance of predicting missing composition pat-
terns for better recommendations.

As real-life KGs are full of composition relations [32], we can see the importance

of utilizing a KGC method capable of capturing various relation patterns to improve

upon the KG and enhance the RS’s performance. Our proposed approach explores the

effect of capturing a wide range of relation patterns, including composition relations,
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on the performance of the RS by leveraging a multi-task learning (MTL) model called

rotational knowledge-enhanced translation-based user preference (RKTUP). We aim

to investigate whether incorporating rotational-based KGE methods, such as RotatE

or HRotatE, in the MTL model would improve the RS’s performance compared to

a state-of-the-art approach that uses TransE, TransR and TransH for the KGC task

and outperforms other baselines.

1.3 Thesis Statement

The primary objective of this research is to create an MTL model in order to boost

the performance of the recommender system. The aim is to enhance an existing MTL

model by using a stronger KGC approach that can infer and predict a broader range of

relationship patterns leading to higher precision and more relevant recommendations.

Our proposed approach (RKTUP) is based on KTUP [11] and inherits all of its

features and operations, including interpretability. However, RKTUP utilizes RotatE

[64] instead of TransH [71] for the knowledge graph completion task. This provides

an improvement over KTUP, as RotatE’s ability to model and infer a wider range of

relation patterns enhances the performance of the recommender system.

TransH is utilized by the KTUP model for the KGC task. Nevertheless, TransH

is incapable of capturing all related patterns, such as composition relations, which

are prevalent in real-world KGs. Therefore, the performance of TransH is limited on

KGC [32].

The second objective of this thesis is to improve the efficiency of the RKTUP

model by adopting HRotatE [58] for the KGC task instead of RotatE. By doing so,

we hope to reduce the number of training steps while keeping the same performance

level. We shall illustrate the efficiency of our proposed methodology through experi-

mentation and analysis.
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1.4 Thesis Contributions

This research focuses on enhancing the performance of an MTL recommender system

by introducing a new MTL model called RKTUP. This model builds upon an existing

MTL model, KTUP, and improves its ability to learn more expressive representations

of users, items, entities and relations. By using RKTUP, the recommender system

can better understand the user’s preferences and provide more personalized recom-

mendations. The model takes in a knowledge graph and a user-item interaction list

as inputs and uses rotation-based KGE approaches such as RotatE or HRotatE. The

main contributions of this thesis are:

1. We propose a new MTL model that utilizes rotational-based KGE techniques

to capture a broad range of relation patterns in the KGC task.

2. We demonstrate that using RotatE for the KGC task in an MTL model improves

the performance of the RS.

3. We show that HRotatE can increase the efficiency of RKTUP model by reducing

the number of training steps while achieving the same results as RotatE.

4. Our model outperforms various state-of-the-art models for recommendation and

KGC tasks using two popular benchmark datasets.

5. We reaffirm the significance of jointly learning item recommendations and KGC

to enhance recommendations.

1.5 Thesis Organization

The following outline constitutes this thesis’s structure:

In Chapter 2, we present a comprehensive review of prior research in the areas

of classical recommender systems, knowledge graph-based recommender systems, as

well as, translation-based knowledge graph embeddings.
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In Chapter 3, we discuss our framework, which is referred to as RKTUP. In this

chapter, we present a full overview of the step-by-step methodology that underpins

our approach.

In Chapter 4, we describe the experimental setup and analysis that we carried

out. This includes specifics of the datasets that were utilized, the hyper-parameters

that were used for training and the assessment metrics that were used to determine

how well our model performed.

In Chapter 5, we discuss how our findings compare to several models that are

considered to be state-of-the-art. Experiments were conducted using two benchmark

datasets.

Lastly, in Chapter 6, we summarize our findings and propose suggestions for future

research based on what we observed during this study.
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CHAPTER 2

Related Works

Despite significant advancements, modern recommender systems still have significant

limitations. The cold start problem, data sparsity and performance are the main

issues that most studies are attempting to overcome. Knowledge graphs (KG) have

been used by many researchers to improve the performance of recommender systems.

Some of them demonstrated a variety of intriguing methods for incorporating the

KG into the recommender system. This section will go over these models as well

as the relevant knowledge graph embedding (KGE) models. We divided the litera-

ture review into three sections: classical recommender system approaches, KG-based

recommender system approaches and KGE models for KG completion.

2.1 Classical Recommender Systems

The rating and similarity structure is used in the majority of classical recommendation

problems. The recommender system in an application suggests to users what they

might like to watch, buy or read based on similarities between users and items[39].

Classical recommender system approaches are classified as follows:

Collaborative Recommendations: This approach is based on the assumption

that similar users like similar things. Items that have been preferred previously by

users with similar tastes will be recommended [54]. One of the most popular tech-

niques for collaborative recommendations is collaborative filtering (CF) [56]. The

most common form of collaborative recommendation is user-based collaborative fil-

tering. This method involves looking at the past behaviour of users who are similar
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to the active user and making recommendations based on what those similar users

liked in the past [54]. Another form of collaborative recommendation is item-based

collaborative filtering. This method involves looking at the past behaviour of users

who liked similar items to the active user and making recommendations based on

what those users liked in the past [54].

One of the techniques that is widely used in collaborative recommendations is

matrix factorization [37]. This technique aims to factorize the user-item interaction

matrix into two low-rank matrices, one representing users and the other representing

items. The most popular matrix factorization technique is Singular Value Decompo-

sition (SVD) [2], which is based on the idea that the user-item interaction matrix can

be approximated by the product of two low-rank matrices. Another popular technique

is factorization machines (FM) [52] which is a generalization of matrix factorization

and can handle both categorical and numerical features.

BPRMF (Bayesian Personalized Ranking Matrix Factorization) [53] is another

approach in this category, which is an extension of matrix factorization that aims to

optimize the ranking of items for each user. BPRMF is based on the assumption that

users only interact with a small subset of items and that the ranking of items is more

important than their absolute values.

Despite the effectiveness of collaborative recommendations, some challenges need

to be addressed. One of the main challenges is the sparsity of the user-item inter-

action data, making it difficult to extract meaningful patterns and make accurate

recommendations since these systems rely on feature extraction to express numerical

similarities between users and items [54].

Content-based Recommendations: This technique bases the recommenda-

tions on the user’s behaviour [65]. The system suggests items based on their simi-

larity to previously consumed items. The algorithm uses the features of the items

to identify the similarity between them [65]. For example, if a user has previously

watched a particular type of movie, the algorithm will recommend other movies that

are similar in genre. These approaches are highly dependent on data. Thus, recent

techniques tried to gather additional information from external sources, such as Liked
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Open Data Clouds like DBpedia [40]. This additional information can help to improve

the accuracy of recommendations [65].

The co-Factorization model (CoFM) [51] is a leading approach in this category.

CoFM relies on item-entity alignments which is a method to link items to their corre-

sponding entities in a KG. The CoFM model uses two methods, share and regularize,

to align the item and entity latent factors. The share approach assumes that linked

item and entity latent factors are the same, while the regularize approach reduces the

distance between latent item and entity representations. However, this approach may

lead to information loss. Additionally, CoFM fails to transfer relation representations

and only focuses on entity vector information. Thus, it fails to offer interpretability.

Other notable approaches in content-based recommendations include the item-

based k-nearest neighbors (k-NN) method [56] and the Latent Semantic Analysis

(LSA) [18]. The k-NN method uses the similarity between items to make recommen-

dations, while LSA is a technique that is used to extract latent semantic information

from text data.

Lastly, in recent years, there have been many efforts to combine content-based

recommendations with other types of recommendation techniques, such as collabora-

tive filtering (CF) and hybrid recommendation systems (HRS) [8]. These approaches

aim to exploit the strengths of both approaches by combining the information from

both techniques to make more accurate recommendations.

Hybrid Approaches: These models combine elements of neural network, content-

based and collaborative filtering approaches to make better recommendations.

One of the leading models in this category is the Multilayer Perception (MLP)

model [7], which combines both content-based and collaborative filtering informa-

tion in a neural network architecture. Another popular model is Autoencoders [57]

which uses an unsupervised learning technique to extract features from the user-item

interactions then uses these features to make recommendations.

The Neural Network Matrix Factorization (NNMF) [22] model is another popular

approach in this category which combines matrix factorization techniques with neural

networks to make recommendations. Similarly, Neural Collaborative Filtering (NCF)
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[30] uses neural networks to model the user-item interactions for collaborative filtering.

The Factorization-Machine based Neural Network (DeepFM) [26] is another hybrid

model that combines the strengths of factorization machines and neural networks.

While these models have shown promising results, one of the main concerns with

hybrid approaches is that they are often not interpretable, meaning it is difficult to

understand how the system is making recommendations. This lack of interpretability

can make it challenging for practitioners to understand and trust the recommenda-

tions made by these systems [47].

2.2 Knowledge Graph-based Recommender Sys-

tems

With classical methods a lot of challenges and issues exist. Some of the challenges

faced in the previously mentioned methods are the cold start problem, sparsity in

ratings, scalability of the approach, the performance of the RS, and the interpretabil-

ity of the recommendations. In an attempt to solve these issues, KGs have been

used as a source of side information. These attempts are classified into three groups:

connection-based, propagation-based, and graph embedding-based models [27]. In

this study, we focus on graph embedding-based models. These models aim to en-

hance the users’ and items’ vector representation. There are three approaches for

models in this category:

Two-Stage Learning Methods (TSL.): This approach is a sequential training

process for the graph embedding and recommendation models. Initially, the KGE

algorithms are utilized to learn representations of entities and relations in the first

phase. Subsequently, the pre-trained KG-related entity embeddings are inputted

into the recommendation model, along with other user and item features, to make

predictions [27]. One of the leading models in this category is the deep knowledge-

aware network (DKN) [67]. It is a model for news recommendation that utilizes a

two-stage approach. In the first stage, entities in news titles are matched to a KG to
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extract knowledge-level relationships between news. The news representation is then

created by combining the sentence-level textual embedding learned through CNN.

The second stage is training the recommendation model. The RS then uses the KG

embeddings of the news items to enhance the accuracy of the recommendation model.

Another model in this category is the KSR [31]. The authors first propose a

method to construct a KG, called KB-Rec, which is built based on the items’ at-

tributes and the relations between them. Then, they use the TransE model to learn

the embeddings of the entities and relations in the KG. These embeddings are then

inputted into a gated recurrent unit (GRU) network to capture the users’ short-term

and long-term interests. A key contribution of this work is the integration of a GRU

network with a KG embedding model, enabling the model to effectively capture the

users’ short-term and long-term interests and the inter-dependencies between the

items.

The two-stage learning (TSL) models have certain benefits. They are compara-

tively easy to implement, as the embeddings of the KG are usually considered extra

features for the recommendation model [27]. Moreover, these embeddings can be

learned without relying on interaction data, making it possible to work with mas-

sive datasets without increasing computational complexity. Also, the embeddings

typically do not need to be updated frequently once learned, as the KG remains

stable[27].

Although the TSL methods have shown promise, they do have some limitations.

One such limitation is that they tend to rely solely on the TransE model to learn

the embeddings of the entities and relations within the KG. However, other models

such as TransH, TransR, TransD, RotatE and HRotatE can be utilized to learn the

embeddings of entities and relations in the KG which may lead to better performance

of the recommender system. Furthermore, since the KGE model and the recommen-

dation model are loosely coupled, the learned embeddings may not be suitable for

recommendation tasks [27].

Joint Learning Methods (JL.): In this approach, the embedding model and

the recommender system are jointly trained. The main purpose of the KG is to store
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the user’s side information, such as their social media profiles.

One of the popular approaches in this category is Collaborative knowledge-base

embedding (CKE) [76]. It was introduced in 2016. CKE is a joint learning method

that uses a KG to store the side information of users, such as their social media

profiles.

The CKE algorithm consists of two main components: a KG embedding model

and a recommendation model. TransE [9] is used for the KG embedding model.

The recommendation model is based on a pairwise ranking objective which maxi-

mizes the probability of a positive item being ranked higher than a negative item for

each user. The CKE algorithm learns the representations of entities and relationships

in the KG and uses them to make recommendations to users.

CKE learns the representations of entities and relationships in the KG then uses

them to make recommendations to users. By jointly learning the side information

from a KG and the recommendation task, CKE aims to improve the performance of

the recommendation system.

However, CKE has a limitation. It assumes that the KG is complete, which

means that it assumes the KG contains all the information that is necessary to make

recommendations. This assumption may not hold in practice, and it is a limitation

that researchers are trying to overcome in recent works.

Another JL method that is similar to CKE is Collaborative filtering with KG

model (CFKG) [78]. The CFKG model is an extension of the collaborative filtering

(CF) approach that incorporates KG representations to enhance the performance of

CF.

The CFKG model has two main components: a KG embedding model and a

recommendation model. The KG embedding model is based on the TransE model.

The recommendation model is a matrix factorization-based approach that uses the

embeddings of entities in the KG to learn the representations of users and items.

CFKG outperforms classical CF methods and effectively utilizes the side infor-

mation stored in the KG to make more accurate recommendations. However, it also

assumes that the KG is complete which may limit its applicability in real-world set-
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tings.

Multi-Task Learning Methods (MTL.): Recent research uses multitask learn-

ing to train the recommendation task with the guidance of the KG-related task. The

concept is that items in the list of user-item interactions and their corresponding KG

entities have comparable structures. The findings demonstrate that transferring low-

level features between items and entities enhances recommender systems’ performance

[27].

One of the early models in this category is the Multi-task Feature Learning ap-

proach for KG enhanced recommendation (MKR) [69]. This model is an end-to-end

deep framework that utilizes KG entity embeddings to assist in recommendation tasks.

MKR combines joint learning and alternating learning approaches for the KG and

RS. Its framework consists of three main components: the recommendation model,

the KGE model and cross and compress units. The recommendation model receives

a user and item as inputs, extracting features for each through an MLP and cross

and compress units. The KGE model uses another MLP to extract features from the

head and relation of a KG triple, outputting a predicted tail representation using a

score function. The two models are bridged by cross and compress units designed to

learn high-order feature interactions between items and entities. A drawback of this

model is the lack of interpretability of its recommendations.

Another approach in the KGE-based recommendation models is the Robustly

Co-Learning Model (RCoLM) [41]. This approach aims to improve both the recom-

mendation and KG completion tasks by transferring entities and items’ embeddings

between them. The model uses facts in the KG to enhance item recommendations

and uses user-item interactions in the recommendation task to fill in missing infor-

mation in the KG. However, RCoLM has limitations. For example, it uses TransR

[45] which cannot infer all types of relationship patterns, limiting its performance.

Furthermore, RCoLM does not consider the interpretability of recommendations by

transferring relation embedding from the KG to the RS.

One of the leading approaches in the KGE-based recommendation category is the

Knowledge-enhanced Translation-based User Preference (KTUP) model [11] which
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jointly learns the recommendation and KG completion tasks. Unlike other models

in this category, KTUP uses KG embeddings to enhance the user’s preferences and

item representations. This is a very important feature for two reasons. First, the

enhanced item embeddings capture the relational knowledge among items and com-

plement user-item interactions, thereby improving item recommendations. Second,

combining the relations and preferences embeddings provides explicit interpretation

and explainability of the recommendations.

KTUP transfers knowledge from related entities and relations in the KG to the

item and preference embeddings. This approach captures the user’s preferences for

specific aspects of an item represented by related entities in the KG.

Although KTUP achieves state-of-the-art results, it has a disadvantage in using

TransH for the KGC task. The performance of TransH in KG completion is limited,

as it cannot infer all types of relation patterns, such as composition.

To overcome this limitation, our model adapts the TUP approach in KTUP, and

enhances it with rotational-based KGE methods for the KGC task. The item embed-

dings are enhanced by aligned entity embeddings to improve the RS’s knowledge of

the item, while the preference embeddings are enhanced by relation embeddings to

increase the recommendation’s interpretability. Our approach achieves better perfor-

mance than KTUP and other state-of-the-art models, demonstrating the importance

of embedding enhancement of items and preferences during joint training of KGC

and RS for improved performance and interoperability.

So far in the related work section, we discussed various recommender systems and

Fig. 2.2.1 illustrates their hierarchical branching. The Multi-task Learning model,

KTUP, which is the focus of this thesis, and whose performance we aim to enhance,

is highlighted in light blue.
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Fig. 2.2.1: Recommender Systems’ hierarchical branching

Table 2.2.1 provides a summary of our literature review for the state-of-the-art

models that will be compared to our proposed approach in chapter 5. The table in-

cludes information about various RSs, their categories, contributions, and challenges.

We have mainly focused on the points that are relevant to this thesis. In the table,

JL. refers to joint learning models, MTL. refers to multi-task learning models and

KG Emb. refers to KG embedding methods. Additionally, “improper embedding”

means that the model used a KGE method incapable of capturing one or more of the

common relation patterns and multi-folds described in Chapter 1, Section 1.0.6.1.
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Table 2.2.1: Comparison of recommender systems in the literature

Authors Category Year Model KG Emb. Contribution Challenges

Rendle et
al.

Classical 2010 FM N/A Similarity-
based Fac-
torization
Machine

Data Spar-
sity and
cold start

Rendle et
al.

Classical 2012 BPRMF N/A Bayesian
implicit
feedback
ranking

Data Spar-
sity and
cold start

Zhang et al. JL. 2016 CKE TranE Simple
implemen-
tation and
used KG to
store side
info.

Improper
embeddings
and as-
sumes KG
is complete

Zhang et al. JL. 2018 CFKG TransE Outperforms
classical CF
methods
and used
entity em-
beddings
to improve
the item
embeddings

Only shares
entity em-
bedding
and as-
sumed the
KG is com-
plete

Li et al. MTL. 2019 RCoLM TransR Used User-
Item in-
teraction
to improve
KGC

Improper
embeddings
and doesn’t
offer inter-
pretability

Cao et al. MTL. 2019 KTUP TransH Modeled
the user
preference
by relations
in KG and
offer inter-
pretability

Improper
embed-
dings (can’t
capture
composi-
tion)

29



2. RELATED WORKS

2.3 Knowledge Graph Embedding for Knowledge

Graph Completion

One of the most common methods for KG completion is KG embedding. These

models learn the representations of entities and relationships (head, relation, tail)

[71]. Then, the correctness of the predicted facts is validated using a scoring function.

The most widely used KGE approaches are bilinear-based, neural-network-based and

translation-based. Because of their simplicity and interpretability, translation-based

models are widely used for KGC [70]. In translation-based models, the distance

between two entities is used to build the scoring function, and the entities are linked

using relations embedding[70]. In this section we will go over the translation-based

approaches that fall within the scope of this thesis.

TransE [9]: It is one of the earliest and most well-known models in the translation-

based category. It was introduced by Bordes et al. in 2013, and since then, it has

been widely used and extended to various tasks such as link prediction, KGC and

triple classification. In TransE, entities and relationships are represented as vectors

in a low-dimensional space.

Given a triple (h, r, t) where h is the head entity, r is the relationship and t is the

tail entity, TransE assumes that the relationship is a translation from the head entity

to the tail entity. This assumption is modeled as a simple vector addition operation,

where the tail entity vector is the sum of the head entity vector and the relationship

vector. The score for (h, r, t) is calculated by:

||h+ r = t|| (2.3.1)

where ||.|| denote the L1-norm distance function [9].

The embeddings of entities and relationships are learned by minimizing the error

between the predicted tail entity and the actual tail entity. This is done by minimizing

a loss function which penalizes the model if the embedding of a correct triple (h, r,

t) is ranked lower than that of an incorrect triple (h, r, t’). The ranking loss function
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can be defined as:

L =
∑

(h,r,t)∈S

∑
(h′,r,t′)∈S′

([γ + d(h, r, t)− d(h′, r, t′)]+), (2.3.2)

where S is the set of all triples in the KG, [x]+ denotes the positive part of x,

γ > 0 is a margin (a positive constant) and S’ is the set of corrupted triples.

S ′
(h,r,t) = {(h′, r, t)|h′ ∈ E} ∪ {(h, r, t′)|t′ ∈ E} (2.3.3)

The corrupted triplets, which are generated according to equation (2.3.3), consist

of training triplets where either the head or the tail has been substituted with a

random entity, but not both at once.

One of the limitations of TransE is that it cannot handle symmetric relationships.

For example, in a symmetric relationship such as “ is friend of,” both h+ r = t and

t + r = h should be true, but this is not the case in TransE. In TransE, only one

direction of the relationship is encoded.

Let’s consider the symmetric relationship “ is friend of” between two entities “

John” and “ Sam”. We have the following triples: (John, is friend of, Sam) and (Sam,

is friend of, John).

Let ej, es represent the embeddings of entities “ John” and “ Sam”, respectively,

and er represent the embedding of the relationship “ is friend of”. In TransE the

relationship “ is friend of” is a translation from “ John” to “ Sam”, so we have the

following equation: ej + er = es. This does not hold true for the reverse relationship

from “ Sam” to “ John” (es + er = ej). It can only hold true if er = 0 and es = ej

which is not possible since Sam and John are different entities. Thus, Trans E cannot

model symmetric relationships that are equal in both directions.

Although TransE is a simple and effective method, it is incapable of capturing

symmetric relationships. Furthermore, it cannot capture many-to-many, one-to-many

or many-to-one expressions. To overcome these limitations, researchers have proposed

many variants of TransE. These variants resolved some of these issues but not all of
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them.

TransH [71]: It is a variant of TransE that was introduced in 2014 by Wang et al.

The main difference between TransE and TransH is that TransH uses a hyperplane

to represent relationships between entities in the KG, rather than a simple vector

addition as in TransE. In TransH, each relationship has its own hyperplane, and

entities are represented by vectors that are projected onto the hyperplanes. The

translation between head and tail entities is valid only if they are projected onto the

same hyperplane.

The hyperplane is a subspace of a higher-dimensional space, and it is defined by a

normal vector (wr).To project an entity vector into the hyperplane, the TransH model

subtracts the component of the entity vector along the normal vector from the entity

vector. The resulting vector is the orthogonal projection of h onto the hyperplane

which is represented by ⊥.

The transformed head and tail entities are then used in the scoring function to

calculate the likelihood of a relationship existing between the head and tail entities.

Let h, r and t be the head entity, relation and tail entity, respectively. The scoring

function calculates a score that represents the likelihood of a triplet (h, r, t) being true

is calculated by:

||(h⊥ + r − t⊥)|| (2.3.4)

where h⊥ and t⊥ are the projected entity vectors such that:

h⊥ = h− wT
r hwr (2.3.5)

t⊥ = t− wT
r twr (2.3.6)

where wr, ||.||, h, and t are the relation-specific hyperplane (normal vector), the

L1-norm distance function and the entity embeddings, respectively.

Then scoring function fr is:

fr(h, t) = ||(h− wT
r hwr) + dr − (t− wT

r twr)|| (2.3.7)
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where dr is the translation vector. This is a vector in the hyperplane that is used

to translate an entity vector to another point in the hyperplane. The purpose of the

translation vector is to allow entities with different relations to the same tail entity

to have different representations, even if they have the same head entity.

To train the TransH model, the margin-based ranking loss function aims to min-

imize the difference between the predicted score of a triplet (h, r, t) and the actual

truth value of that triplet. The truth value is represented as 1 for a true triplet and

0 for a false triplet. The loss is calculated as follows:

L =
∑

(h,r,t)∈S

∑
(h′,r′,t′)∈S′

(h,r,t)

[fr(h, t) + γ − fr′(h
′, t′)]+ (2.3.8)

where S is the set of positive (golden) triplets, [x]+ = max(0, x), γ > 0 is a margin

(a positive constant) separating positive and negative triplets and S ′
(h,r,t) is the set of

corrupted triples constructed by corrupting (h, r, t).

The loss function encourages the representations of positive triplets to be closer

to each other than the representations of negative triplets.

TransH addressed some of the limitations of TransE in modeling complex rela-

tionships between entities, including one-to-many, many-to-one and many-to-many.

However, it fails to capture composition relations commonly present in real-world

KGs which restricts its performance [32].

TransH’s failure to represent composition relations is due to its design limitations.

TransH projects entity vectors into a hyperplane which is defined by a normal vector

and a translation vector. However, the normal vector is fixed for all entities and can-

not vary based on the relationship being modeled. This means that the same normal

vector is used to model all relationships, regardless of whether they are composition

relationships or not. As a result, TransH cannot accurately capture the composition-

ality of relationships which involves combining multiple entity vectors to form a new

representation for the relationship. This limitation has been reported in the literature

[32, 64, 70], and research has shown that other models, such as RotatE perform better

in capturing compositionality.
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RotatE [64]: It was proposed in 2019 by Sun et al. The main goal of RotatE is

to overcome some of the limitations of existing models such as TransE and TransH.

Inspired by Euler’s identity, RotatE maps the entities and relations into a complex

space. Then, it views the relations as the result of the rotation from the head entity

to the tail entity.

Euler’s identity is an important concept in complex mathematics [63] and it states

that:

e(iθ) = cos(θ) + i ∗ sin(θ) (2.3.9)

where e is the base of the natural logarithm and i is the imaginary number (i2 =

−1)

In RotatE, θ represents the rotation angle for relation r. The real and imaginary

parts of e(iθ) are used to define the real-valued vectors representing the head and tail

entities. The real part of the complex number represents the cosine of the angle, and

the imaginary part represents the sine of the angle. These vectors are then used in

the scoring function to determine the likelihood of a given triple being true or not.

By defining each relation as a rotation from the head entity to the tail entity

in the complex space, RotatE can model different types of relationships between

entities in a KG, including one-to-one, many-to-one, one-to-many and many-to-many,

symmetric/antisymmetric, inversion and composition relationships.

For example, let’s say we have three entities, A, B, and C. The relationship between

A and B is represented by the vector r1 = eiθ1 , and the relationship between B and

C is represented by the vector r2 = eiθ2 . If the relationship between A and C is a

combination of the relationships between A and B and between B and C, then this

relationship can be represented by the vector r3 = eiθ3 , where θ3 = θ1 + θ2. This

means that r3 = r1 ◦ r2.

To model a relationship between entities h and t, the scoring function in RotatE

measures the proximity between the rotated entity vectors and calculates a score for

the relation between the entities as follows:

||h ◦ r = t|| (2.3.10)
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where h, r, t ∈ Cd, ||.|| denotes the L1-norm distance function and ◦ represents

the element-wise (Hadamard) product of two complex vectors. The magnitude of

each dimension of r is constrained to be 1, which represents the relationship being a

rotation in the complex plane.

Specifically, for each dimension in the complex space, RotatE expects that:

ti = hiri (2.3.11)

where hi, ri, ti ∈ C and |ri| = 1.

In training RotatE, the goal is to minimize the distance between the modelled

triples and the actual triples in the dataset. The model is optimized using a self-

adversarial negative sampling loss. The negative triples are sampled from a distribu-

tion which is represented by the following equation:

p(h′
j, r, t

′
j|(hi, ri, ti)) =

expαfr(h
′
j, t

′
j)∑

i expαfr(h
′
i, t

′
i)

(2.3.12)

where α is the temperature of the sampling. The self-adversarial negative sampling

formula used to update the embeddings during training is defined as follows:

Loss = logσ(γdr(h, t))−
n∑

i=1

p(h′
i, r, t

′
i)logσ(dr(h

′
i, t

′
i)− γ), (2.3.13)

where γ is a fixed margin, σ is the sigmoid function, and (h′
i, r, t

′
i) is the i-th

negative triplet.

Algorithm (2.3.1) shows the steps followed to train RotatE .

35



2. RELATED WORKS

Algorithm 2.3.1 Learning RotatE

Input: Knowledge graph G = (E,R, T ), embedding size k, learning rate α, margin
γ, number of negative samples n
Output: Entity and relation embeddings
Initialize entity and relation embeddings e ∈ R|E|×k and r ∈ R|R|×k randomly;
while terminal condition not met (i.e. maximum training steps not reached) do

Sample a batch of triples B from G;
Generate negative samples using self-adversarial generation;
for each (h, r, t) ∈ B and n negative samples (h′, r, t′) do

Compute the energy score ||h ◦ r − t||2 for the positive triple and negative
samples;
Update the embeddings w.r.t. the loss:
Loss = − log σ(γ − dr(h, t))−

∑n
i=1 p(h

′
i, r, t

′
i) log σ(dr(h

′
i, t

′
i)− γ)

end

end
return Entity and relation embeddings for downstream tasks such as link prediction

Despite its contributions, RotatE also has some limitations. One of the main

limitations of RotatE is that it is computationally expensive, as it requires a large

amount of memory to store the real and imaginary parts of each vector.

HRotatE [58]: HRotatE was introduced in 2021 by Shah et al. The main goal

of HRotatE is to overcome some of the limitations of RotatE. HRotatE combines

elements of two existing models: RotatE [64] and SimplE [35].

RotatE is a technique that views each relationship in a KG as a rotation from the

source entity (head) to the target entity (tail) in a complex vector space. However,

in RotatE, the head and tail entities are generated using a single set of rules. The

process of generating embeddings for both the head and tail entities using a single

set of rules is known as having a single embedding-generation class. Having a single

embedding-generation class allows for a simpler model architecture but can result in

lower prediction scores compared to other methods that have separate rules for the

head and tail entities.

SimplE is an approach that is primarily based on a Canonical Polyadic (CP)

decomposition. The Canonical Polyadic (CP) decomposition is a method for repre-

senting multi-dimensional arrays, also known as tensors, as a sum of rank-1 tensors.

In the CP approach, each rank-1 tensor is represented by a vector and the overall
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tensor is represented as the sum of these vectors. However, this method does not

allow for the modelling of inverse relationships in the data, as it only considers direct

relationships.

To address this limitation, SimplE enhances the CP approach by adding the in-

verse relation. This is done by representing each relation as a pair of vectors, one for

the direct relationship and one for the inverse relationship, where the head embed-

ding and tail embedding are taken from different embedding-generation classes. This

allows SimplE to model both direct and inverse relationships in the data, resulting in

a more comprehensive and expressive representation of the KG. However, SimplE is

not able to predict composition patterns.

The HRotatE approach inherits all the characteristics of RotatE such as the loss

function and the self-adversarial negative sampling technique. Although it aims to

improve the prediction scores of RotatE by using the principle of inverse embedding

from the SimplE model, HRotatE uses different embedding-generation classes to gen-

erate embedding vectors for the head entity and the tail entity. The main difference

between HRotatE and RotatE is in the scoring function. The scoring function of

HRotatE is as follows:

dr(h, t) =
1

2
(||(hei ◦ vr)− tej ||+ ||(hej ◦ v−1

r )− tei ||) (2.3.14)

In HRotatE, each entity, e, is represented by the two vectors, he, te ∈ Cd and each

relation, r, is also represented by two vectors vr, v
−1
r ∈ Cd.

The scoring function of HRotatE is used to predict the relationship between two

entities (head and tail) in a KG. The equation calculates the similarity between two

entities with respect to a particular relation.

The equation takes into consideration two factors:

1. The distance between the head entity vector and the target entity vector after

the head entity vector is transformed by the relation vector vr. This distance is

measured using the L1-norm (represented by ||·||).

2. The distance between the head entity vector and the target entity vector after
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the head entity vector is transformed by the inverse of the relation vector v−1
r .

The final result is obtained by taking the average of the two distances calculated

above and dividing it by 2. The resulting score reflects the similarity between the

head and tail entities with respect to a particular relation and can be used to predict

the presence of a missing relationship in a KG.

Algorithm (2.3.2) shows the steps used to train HRotatE.

Algorithm 2.3.2 Learning HRotatE

Input: Training Set S = (h, r, t)
Initialize: Hyperparameters γ, α, d, learning rate, hidden dimension and generating
negative samples, generating embedding class for h, r, t, r−1

while terminal condition not met (i.e., maximum training steps not reached) do
Sbatch ← a sample of (h, r, t) triples from S of size b
he, vr, te, vr−1 ← generating embedding vectors for h, r, t, r−1

for (hi, ri, tj) ∈ Sbatch do
score = 1

2
(||(hei ◦ vr)− tej ||+ ||(hej ◦ v−1

r )− tei ||)
Update embeddings w.r.t.
− log σ(γ − dr(h, t))−

∑n
i=1 p(h

′
i, r, t

′
i) log σ(dr(h

′
i, t

′
i)− γ)

The results of the HRotatE approach are shown to be better than the native

RotatE, and it outperforms several state-of-the-art models on different datasets. The

HRotatE approach is also relatively efficient, as it utilizes half the number of training

steps required by RotatE and generates approximately the same result as RotatE.

Table 2.3.1 shows some relationship patterns that can be captured by selected

translation-based KGE models that are within the scope of this study.

Table 2.3.1: Patterns captured by selected translational KGE models [64, 58]

Model Year Symmetry Asymmetry Inversion Composition

TransE 2013 × ✓ ✓ ✓

TransH 2014 ✓ ✓ ✓ ×

TransR 2015 ✓ ✓ ✓ ×

RotatE 2019 ✓ ✓ ✓ ✓

HRotatE 2021 ✓ ✓ ✓ ✓
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Proposed Approach

3.1 Introduction

In this section, we introduce our proposed approach, the Rotational Knowledge-

Enhanced Translation-Based User Preference (RKTUP) model, which combines a rec-

ommender system (TUP) and a rotational-based knowledge graph embedding model

(RotatE or HRotatE) for knowledge graph completion within a multi-task learning

framework. We begin by presenting TUP and then providing a brief overview of

RotatE and HRotatE. Finally, we offer a comprehensive explanation of RKTUP.

RKTUP is a novel approach that improves upon the Translation-Based User Pref-

erence (TUP) recommender system introduced in KTUP[11]. What sets RKTUP

apart from previous models is that it incorporates most relation patterns, including

composition relations, from the KG into an interpretable RS. Using rotational-based

KGE models enables RKTUP to effectively capture complex relationship patterns,

resulting in improved precision of personalized recommendations. Moreover, adopting

HRotatE enhances the model’s efficiency by achieving comparable results to RotatE

but with fewer training steps.

A KG contains rich information about entities and their relationships which can

provide valuable insights into the preferences of users and the characteristics of items.

Thus, capturing more relationship patterns by the KGC method can greatly improve

the recommender system’s ability to produce more relevant recommendations.

For example, consider a movie recommendation system with a KG of movie entities

and their relationships with actors, directors and genres. In this scenario, TransH [71]
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may not accurately capture the composition relationships between movies and their

associated entities (e.g., the relationship between a movie and its director). However,

with the use of rotation-based KGE methods, such as RotatE or HRotatE, the RK-

TUP algorithm can better understand these relationships and use this information to

make more relevant recommendations.

3.2 The Relation between Recommender System

and Knowledge Graph Completion

The recommendation and the KGC tasks share the common goal of ranking candi-

dates based on a query. The RS aims to suggest the top-N items for a particular user.

Meanwhile, in the KGC task, given a (head entity, target entity) pair, the objective

is to recommend the top-N items from a pool of candidate relations. Combining both

tasks into a single model leverages their interplay and enhances their performance

[11, 41, 51].

3.3 Translation-Based User Preference (TUP) for

Item Recommendation

We use TUP for item recommendation. It is a state-of-the-art recommender system

introduced in [11]. TUP aims to model user preferences as translational relationships

between users and items by projecting the user and item vector representations to the

preference hyperplane and employing a score function similar to that used in TransH

[71].

Given a list of user-item pairs Y , TUP takes as input a user u, an item i and a

preference p, then outputs a relevance score indicating the likelihood that user u likes

item i. The model learns the embeddings of preference, user and item that satisfy

the relationship u+ p ≈ i. The set of preferences P is a predefined hyperparameter,

where the number of preferences corresponds to the number of relations in the KG.
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For each user-item pair, the model generates a preference that serves as a relationship

between the user and the item.

TUP has two main components: preference prediction and hyperplane-based

translation.

1. User’s preference prediction: The preference prediction task is to predict

the user’s preference from a set of latent features P given a user-item pair (u, i).

The set P contains features shared between all users and each p ∈ P denotes

a different preference. The latent features include underlying characteristics

or attributes of users and items that influence their preferences. For example,

latent factors might include the genre of a movie.

Two strategies are employed to handle the user’s implicit and varied preferences:

a hard approach that selects one preference out of the set of P preferences and a

soft approach that combines all preferences with attention. In the hard strategy,

the Straight-Through (ST) Gumbel SoftMax technique is used to sample a

user’s preference for an item, while in the soft strategy, the user’s item selection

is based on more than one preference and combines them using an attention

mechanism.

(a) Hard strategy: This method assumes that when a user chooses an item

only a single preference has an effect on the user’s decision.

To achieve this, the Straight-Through (ST) Gumbel SoftMax [33] is used

to sample a user’s preference for an item. It works by approximating a

one-hot vector, which represents the preference, from a multi-classification

distribution.

The log softmax function is used to calculate the unnormalized output of

the score function which represents the probability of being a member of

class p in a P-way distribution:

Φ(p) =
exp(log(πp))∑p
j=1 exp(log(πj))

(3.3.1)
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where πp is the scoring function’s unnormalized output.

After that, a one-hot vector is sampled from the above distribution as

follows:

zp =

1, if p = argmaxj(log(πj) + gj)

0, otherwise

where the Gumbel noise is g = −log(−log(u)), and u is generated by a

specific noise distribution [11]. Adding the random Gumbel noise to the

log-softmax output makes the process equivalent to drawing a sample from

a continuous probability distribution.

For example, let’s say we have a user-item pair (u, i) and a set of preferences

P = {p1, p2, p3}. Using the score function fr(u, i, p), we calculate the

similarity between (u + i) and each preference in P. The unnormalized

output is then calculated using the log softmax function. The one-hot

vector zp is sampled from the Gumbel-Softmax distribution using the ST

Gumbel SoftMax technique. The resulting one-hot vector z represents the

preference that has the highest similarity with the user-item pair (u, i).

(b) Soft strategy: Here, the user’s item selection is based on more than

one preference. This strategy combines the user’s preferences using the

attention mechanism

P =
∑
p′∈P

αp′P ′ (3.3.2)

where αp′ is the attention weight of preference P’. Additionally, αp′ is

proportional to the similarity score:

αp′ ∝ ϕ(u, i, P ′) (3.3.3)

2. Hyperplane-based translation: To deal with the common N-to-N problem

where a set of users might have the same preference for different items, TUP

adopts the hyperplane translation strategy used by TransH [71]. In TUP, each
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preference has its own hyperplane and the item and user embeddings are pro-

jected onto the hyperplane. The projection helps to maintain the preference-

specific information for each user-item pair.

TUP’s scoring function is defined as follows:

g(u, i; p) = ||(u⊥ + p− i⊥)|| (3.3.4)

where p, u⊥ and i⊥ are the inferred preference and projected vectors of the user

and item, such that

u⊥ = u−W T
p uWp (3.3.5)

i⊥ = i−W T
p iWp (3.3.6)

Here, Wp denotes the projection vector of the corresponding hyperplane, p is

the translation vector and ||.|| denotes the L1-norm distance function [11].

To train the model, the loss function aims to minimize the difference between

the predicted score of a triplet (u, p, i) and the actual truth value of that triplet.

The loss is calculated as follows:

Lp =
∑

(u,i)∈Y

∑
(u,i′)∈Y ′

− log σ [g(u, i′; p′)− g(u, i; p)] (3.3.7)

where Y is the set of positive triplets and Y’ is the set of corrupted triples

constructed by randomly corrupting an interacted item to a non-interacted one

for each user.
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Algorithm 3.3.1 Learning TUP

Input: User-Item Interaction List Y = (u, i), set of latent features P
initialize users, items and preferences embeddings with random values;
while terminal condition not met (i.e. maximum training steps not reached) do

Sbatch ← a sample of (u,i) pairs from Y;
getPreferences (u, i, P, preference induction approach) for each pair in Sbatch;
Generate negative samples for each (u, p, i) triple;
for each (u, p, i) triple do

Calculate g(u, i; p) = ||(u⊥ + p− i⊥)||;
Update embeddings w.r.t.
Lp =

∑
(u,i)∈Y

∑
(u,i′)∈Y ′ − log σ [g(u, i′; p′)− g(u, i; p)];

end

end

3.4 RotatE (or HRotatE) for Knowledge Graph

Completion

RotatE [64] addresses the limitations of previous KGC models such as TransE and

TransH. Unlike these models, RotatE maps entities and relations into a complex

space. Then, it views the relations as the result of the rotation from the head entity

to the tail entity. To accomplish this for any triplet (h, r, t), RotatE does element-wise

multiplication as follows:

||h ◦ r = t|| (3.4.1)

where h, r, t ∈ Cd and ||.|| denote the L1-norm distance function.

During training, RotatE uses a self-adversarial negative sampling loss to optimize

the model. The loss function is defined as:

L = − log σ(γ − dr(h, t))−
n∑

i=1

p(h′
i, r, t

′
i) log σ(dr(h

′
i, t

′
i)− γ) (3.4.2)

where γ is a fixed margin, σ is the sigmoid function and (h′
i, r, t

′
i) is the i-th negative

triplet. The training goal is to minimize the distance between the modelled triples

and the actual triples in the dataset.

While RotatE has proven to be effective, one of its main limitations is its high
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computational cost. In response to this, HRotatE [58] addressed some of the limi-

tations of RotatE. HRotatE combines elements of two existing models, RotatE and

SimplE [35]. While HRotatE inherits the loss function and self-adversarial nega-

tive sampling technique from RotatE, it aims to improve prediction scores by using

the principle of inverse embedding from SimplE. HRotatE uses different embedding-

generation classes to generate embedding vectors for the head and tail entities. Thus,

it learns more efficiently. The scoring function of HRotatE is as follows:

dr(h, t) =
1

2
(||(hei ◦ vr)− tej ||+ ||(hej ◦ v−1

r )− tei ||) (3.4.3)

In HRotatE, each entity, e, is represented by the two vectors, he, te ∈ Cd, and

each relation, r, is also represented by two vectors vr, v
−1
r ∈ Cd.

RotatE and HRotatE define each relation as a rotation from the head entity to the

tail entity in the complex space. This unique approach enables the model to effectively

capture a diverse range of relationships between entities in a knowledge graph, in-

cluding but not limited to one-to-one, many-to-one, one-to-many and many-to-many,

as well as symmetric/antisymmetric, inversion and composition relationships.

3.5 Shared Embeddings and Explainability

In most KG-based recommender systems, shared embeddings are used to represent

both items and entities, reducing the number of parameters in the model and im-

proving scalability [51]. However, this approach can limit the ability to differentiate

between items and entities. As in [11], the RKTUP model uses separate embeddings

for entities and items and associates each item with its corresponding entity. This

enhances item embeddings with structural knowledge from the knowledge graph and

improves recommendations by complementing user-item interactions. Additionally,

using one-to-one mapping for relations and preferences enhances the explainability of

the model. In RKTUP, each preference is associated with a specific relation label,

which reveals its meaning. For example, a relation labeled “ isDirectedBy” could re-

veal a preference for certain directors, while a relation labeled “ hasGenre” indicates
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a preference for a specific genre.

In RKTUP the ultimate goal of the final loss function is to ensure a strong align-

ment between entity and item embeddings, as well as relation and preference em-

beddings. This alignment is crucial because the same entity may appear in both the

knowledge graph and recommendation tasks, and a lack of alignment between these

embeddings could have a negative impact on the overall performance of the model.

For example, the entity “ Tom Hanks” may appear in the knowledge graph as an

actor who acted in a certain movie, and also in the recommendation task as a user

who likes to watch movies featuring Tom Hanks. If the entity embedding for “ Tom

Hanks” in the knowledge graph task is very different from the entity embedding for “

Tom Hanks” in the recommendation task, then the performance of the overall model

may suffer.

3.6 Enhanced Learning via RKTUP

This thesis aims to explore how modelling the vast majority of relation patterns

impacts the performance of the RS in an MTL framework. To achieve this, we

propose a new approach called RKTUP that jointly learns the task of recommendation

and rotational-based KGC. To the best of our knowledge, there is no other model

that specifically focuses on incorporating most of the relation patterns, including

compositional relations from the knowledge graph, into the recommendation system.

The main goal of RKTUP is to enhance the RS’s knowledge of user preferences

and items by leveraging related entity and relation embeddings produced by the

rotational-based KGC method.

RKTUP takes as inputs a KG, a user-item interaction list Y = {(u, i)} and a set

of item-entity alignments A = (i, e)|i ∈ I, e ∈ E, where each (i, e) means that i can

be mapped to an entity e in the given KG. It outputs g(u, i; p), which is the score

that measures the likelihood of a user u interacting with an item i with a preference

p and also a score f(eh, r, et) that indicates the plausibility of the given fact. This

is based on the jointly learned embeddings of users, items, preferences, entities and
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relations.

The knowledge enhancement of TUP with the guidance of the rotational-based

KGC methods is done as follows::

Step 1. Calculate the enhanced item embedding î as i+ e where (i, e) ∈ A.

î = i+ e, (i, e) ∈ A (3.6.1)

Step 2. Calculate the translation vector p̂ and the projection vector Ŵp en-

hanced by the corresponding relation embedding.

p̂ = p+ r (3.6.2)

Ŵp = Wp +Wr (3.6.3)

Step 3. Project the enhanced item embedding î onto the enhanced preference

hyperplane.

î⊥ = î− Ŵ T
p îŴp (3.6.4)

Step 4. Calculate the enhanced score of recommendation g(u, i; p).

g(u, i; p) = ||(u⊥ + p̂− î⊥)|| (3.6.5)

Step 5. Calculate the final loss as a weighted sum of the RS and KGC losses

with a hyperparameter λ used to adjust their hyperparameters.

L = λLp + (1− λ)LR (3.6.6)

An overview of the algorithm to optimize RKTUP is presented in algorithm 3.6.1,

where the target task is item recommendations.
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Algorithm 3.6.1 Main components of the algorithm to learn RKTUP

Input: KG, Y = {(u, i)}, A = (i, e)|i ∈ I, e ∈ E, set of latent features P
Output: g(u, i; p): score of recommendation, f(eh, r, et): plausibility of the given
fact. Initialize: initialize models’ hyperparameters and λ;
while terminal condition not met (i.e. converged or maximum training steps not
reached) do

for trainingStep = 1 to N do
if trainingStep is even then

SbatchR
← a sample of (u,i) pairs from Y;

entityID, itemID ← getMappedEntities(A); for each (u, i) ∈ SbatchR

Optimize Opt(TUP) using algorithm 3.3.1;
end
else

SbatchK
← a sample of triples from KG;

entityID, itemID = getMappedItems(A); for each (eh, r, et) ∈ SbatchK

Optimize Opt (RotatE) using algorithm 2.3.1 or Opt(HRotatE) using
algorithm (2.3.2);

end
for each (u, p, i) and its corresponding (eh, r, et) triple do

î← i+ e;
p̂← p+ r;
Project î onto p̂ hyperplane using equations (3.6.3) and (3.6.4);
g(u, i, p)← ||(u⊥ + p̂− î⊥)||;
Update embeddings w.r.t.
L = λLp + (1− λ)LR;
f(eh, r, et)← likelihood score of (eh, r, et) being true from KGE method;

end

end

end
return f(eh, r, et) and g(u, i; p)

An illustration of the RKTUP model is shown in Fig 3.6.1. The input is on the

left: user-item interactions, knowledge graph and the alignments between items and

entities. The TUPmodel for item recommendation is at the top-right corner, while the

RotatE (or HRotatE) model for knowledge graph completion is at the bottom-right

corner. The RKTUP model jointly learns both tasks by enhancing the embeddings

of items and preferences with those of entities and relations.
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Fig. 3.6.1: An illustration of RKTUP model

In this chapter, we presented an MTL approach for integrating a wide range

of relationship types from KG into RS. To achieve this, we employed two different

rotational-based KGE models for the KGC task. Specifically, we utilized RotatE to

capture complex and compositional relationships that are often present in real-world

recommender systems. Additionally, we leveraged the efficiency of the HRotatE model

to improve the overall effectiveness of the KGC task. In the next chapter, we will

dive into the details of our experimental setup and evaluation methodology.
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CHAPTER 4

Experimental Evaluation

In this chapter, we provide a comprehensive overview of our experimental setup, which

encompasses detailed information regarding the datasets used, the hyperparameters

utilized during training and the evaluation metrics employed to assess the performance

of our model.

4.1 Datasets

Our experiments were conducted on two widely-used datasets in the field namely,

MovieLens-1m [50] and DBbook2014 [1]. Notably, numerous state-of-the-art rec-

ommender systems rely exclusively on these two datasets for model evaluation, as

evidenced by prior research such as [51, 11].

MovieLens-1m was compiled by the University of Minnesota Grouplens research

project [28]. The dataset consists of user ratings on movies. The ratings are on a

scale of 1-5, and there are a total of 1 million ratings provided by 6,040 users on 3,952

movies. The dataset also includes additional information such as movie titles, genres

and release year [7].

The DBbook2014 dataset collects book reviews, ratings, and metadata. The

dataset was released in 2014. Each review in the DBbook2014 dataset includes rat-

ings on a scale of 1 to 5. The metadata associated with each book includes its title,

author and genre [46].

To enrich the datasets, they were refined for linked open data-based RS (LO-

DRecSys) by mapping entities to DBpedia KG [40] where mappings were available.
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This allows for incorporating additional information about the movies and books and

related entities in the recommendation process.

To build the knowledge graphs, both datasets’ items are first mapped into their

corresponding DBpedia Uniform Resource Identifiers (URIs) if a mapping is available.

Then, SPARQL queries retrieve Resource Description Framework (RDF) triples from

DBpedia for each mapped item, regardless of whether they are represented as head

or tail entities. Afterwards, the query results are filtered to remove any non-English

literals. This extracted information is subsequently used as input to construct the

knowledge graphs. This process ensures the intersection between the set of items I

in the user-item interaction list and the entity set E in the knowledge graph is not

empty (i.e. I ∩ E ̸= ∅).

RKTUP is an enhanced variant of KTUP. To ensure a fair comparison, we main-

tained consistency with the data pre-processing methodology outlined in [11] as fol-

lows:

1. Users who rate less than 10 movies in MovieLens-1m and less than 5 books in

DBbook2014 were dropped.

2. Items that occurred less than 10 times were dropped from both datasets.

3. Existing ratings were treated as positive samples, and negative samples were

randomly generated.

4. Unrelated relations were dropped, and similar relations were merged manually.

Table 4.1.1 shows a statistical overview of MovieLens-1m and DBbook2014 after

preprocessing.
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Table 4.1.1: Datasets characteristics

Attribute MovieLens-1m DBbook2014

Users 6,040 5,576

Items 3,240 2,680

Ratings 998,539 65,961

Avg. ratings 165 12

Positive ratings 56 % 45.8%

Sparsity 94.9 % 99.6 %

Entity 14,708 13,882

Relation 20 13

Triple 434,189 334,511

I-E Mapping 2,934 2,534

The preprocessed MovieLens-1m dataset contains 6,040 users and 3,230 items with

a total of 998,539 ratings and an average of 165 ratings per user. The dataset is highly

sparse with a sparsity rate of 94.9 percent. The sparsity rate is even higher in the

DBbook2014 dataset, which contains 5,576 users and 2,680 items with 65,961 ratings

and an average of 12 ratings per user. The sparsity rate in this dataset is 99.6 percent.

MovieLens-1m has approximately 100,000 more triplets than DBbook2014. Specifi-

cally, MovieLens-1m contains 14,708 entities and 20 relations, whereas DBbook2014

comprises 13,882 entities and 13 relations.

Furthermore, we randomly divided the datasets into training, validation and test-

ing subsets using a 70:10:20 ratio and confirmed that each user had at least one item

in the test set.
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4.2 Hyperparameter Tuning

Hyperparameter tuning is the process of selecting the optimal set of hyperparameters

for a machine-learning model. In this section, we first define the hyperparameters

utilized in this thesis, then we discuss the values used to generate the results discussed

in chapter 5. In this thesis, we consider the following hyper-parameters:

• Learning rate (η): It determines how quickly or slowly the model parameters

converge to the optimal values during the training process. Basically, it controls

the step size. The step size is the size of the update that the optimizer makes to

adjust the model parameters during each iteration of the training process while

moving toward a minimum of the loss function.

• Embedding size (k): It is the hyperparameter that controls the dimension-

ality of the learned embeddings. Increasing the embedding dimension may

enhance the model’s expressiveness, but it could also result in longer training

periods.

• Batch size (b): It controls the number of examples sampled from the training

dataset to be used in each training iteration. While utilizing larger batch sizes

can expedite convergence, it may also result in memory limitations and slower

training durations.

• Joint hyperparameter (λ): It is used in models that perform joint learning of

two tasks, and it controls the trade-off between the two models’ hyperparameter.

• Self-adversarial sampling temperature (α): This is the hyperparameter

used in RotatE and HRotatE to control the degree of randomness introduced in

the negative sampling process. Opting for a lower value results in more cautious

sampling, whereas selecting a higher value leads to more daring sampling.

• Fixed margin (γ): It is the hyperparameter used in the loss function of RotatE

and HRotatE to control the minimum distance between positive and negative

samples.
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• The L2 coefficient: This is a regularization hyperparameter that controls the

amount of L2 regularization applied to the model’s weights during training.

• Adam, Adagrad, and SGD: These are optimization algorithms used to up-

date the model’s parameters during training.

• The number of preferences: This is a predefined hyperparameter that de-

termines the number of preferences in the set of latent features P used for the

preference induction process in TUP.

• Maximum Step: This is a hyperparameter that determines the maximum

number of iterations the model undergoes during training.

We conducted a grid search to determine the optimal hyperparameters for both

the recommendation and KGC tasks. For the learning rate η, we searched in {0.0005,

0.005, 0.001, 0.05, 0.01} and ultimately set it to 0.001. The L2 coefficient value

was searched in {10−5, 10−4, 10−3, 10−2, 10−1, 0} and set to 10−5. The self-adversarial

sampling temperature α was searched in the values of {0.5, 1.0} and we set it to

1.0. The fixed margin γ was searched in {3, 6, 9, 12, 18, 24, 30} and set to 24. The

joint hyperparameter λ was used to balance the parameters of the two tasks during

joint learning and was set to 0.5 in MovieLens and 0.7 in DBook after searching

in {0.7, 0.5, 0.3}. The embedding and batch sizes were empirically set to 100 and

256, respectively. In both MovieLens-1m and DBook2014 datasets, the number of

preferences was predefine as the same number of distinct relations in the triplets,

which amounts to 20 and 13 different preferences, respectively. Adam [36] was selected

as the optimizer out of Adagrad and SGD. Moreover, we set the maximum number of

steps to 140,000 for RotatE. However, to demonstrate the effectiveness of HRotatE,

we set the maximum number of training steps to 70,000.

To ensure a fair comparison, we trained RKTUP and all baseline models in the

same environment and with the same hyperparameters.

We list the values of the hyperparameters for all models in Table 4.2.1
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Table 4.2.1: Models’ hyperparameters

Search method Hyperparameter Value

Grid search

η 0.001

L2 coefficient 10−5

α 1.0

γ 24

λ 0.5 (MovieLens) and 0.7 (DBbook)

Optimizer Adam

Empirically
k 100

b 256

Predefined preferences 20 (MovieLens) and 13 (DBbook)

4.3 Evaluation Metrics

Evolution metrics are commonly utilized in machine learning to assess a model’s

performance and efficacy, as it is trained on more data or as new models are developed.

These metrics are crucial for evaluating a model’s capability to learn from data, make

precise predictions and enhance its performance. Therefore, it is vital to choose the

appropriate metric for learning and evaluating the machine learning model. While

accuracy is a popular metric, it is not always suitable for evaluating recommender or

link prediction systems, as these tasks are rank-based.

For example, consider a movie recommendation system that has a database of

10,000 movies and a user has only watched 50 of them. In this case, the vast majority

of movies are not relevant to the user, and simply predicting that they will dislike every

movie will still result in a high accuracy score, but an ineffective recommendation.

Several decision support metrics are commonly used to evaluate the performance

of recommender systems, depending on the specific needs and goals of the task. For

the Recommendation Task, we measured the performance of our approach using five
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metrics. These are Precision, Recall, F1 score, Hit ratio and Normalized Discounted

Cumulative Gain (nDCG).

As for the knowledge graph completion task we used two of the common metrics

that have been widely used in the literature (Hit ratio and Mean Rank).

Regarding our experiments, the mean value of Precision, Recall and Hit ratio for all

users is considered as the final result, where the value of N for Top-N recommendation

is set to 10 in both recommendation and KGC tasks. Additionally, in the KGC task,

the final result of the Hit ratio is computed as the mean of all triples.

We discuss these matrices in the following sections.

4.3.1 Precision

Precision measures the proportion of recommended items that are relevant to the user,

i.e., out of the top N recommendations, what proportion of items the user actually

liked or found useful? It is also denoted as Precision@N.

Precision is computed using equation (4.3.1).

Precision =
True Positive

True Positive + False Positive
(4.3.1)

where “ True Positive” is the number of items in the recommendation list that

the user found relevant or useful, and “ True Positive + False Positive” is the total

number of items in the recommendation list.

For example, if a recommender system suggests ten items to a user, and the user

finds four of them relevant, the precision of the system for that user is 0.4 or 40%.

The higher the precision, the better the system is at recommending items that the

user likes or finds useful.

4.3.2 Recall

Recall measures The fraction of items relevant to the user that were successfully

recommended to the user among the top N recommendations. It is also denoted as

Recall@N.

56



4. EXPERIMENTAL EVALUATION

Recall is computed using equation (4.3.2).

Recall =
True Positive

True Positive + False Negatives
(4.3.2)

True Positive represents the number of relevant items that were correctly recom-

mended, and False Negatives represents the number of relevant items that were not

recommended by the system.

Recall is an important metric when the goal is to ensure that no relevant items

are missed, as it penalizes the system more for missing relevant items than for rec-

ommending irrelevant items. A higher recall indicates that the recommender system

is recommending more of the relevant items to the user.

However, the high recall does not necessarily guarantee high precision. A system

with high recall may also have a lot of false positives, which are irrelevant items that

were also recommended. Therefore, a good recommender system should aim for a

balance between high recall and high precision. Thus we need to use a metric like

The F1 score.

4.3.3 F1 score

The F1 score is a measure of a model’s performance that combines both precisions

and recall into a single value. It provides a way to balance the tradeoff between

precision and recall. The F1 score is calculated using the harmonic mean of precision

and recall as shown in equation (4.3.3).

F1 score =
2× precision× recall

precision+ recall
(4.3.3)

The F1 score ranges between 0 and 1, with a higher score indicating better per-

formance. A perfect F1 score of 1 indicates that the model has perfect precision and

recall.
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4.3.4 nDCG

Normalized Discounted Cumulative Gain (nDCG) is a measure of ranking quality. It

measures how well a ranking algorithm ranks a set of items based on their relevance

to a user’s preferences. The further down the list of results you go, the more the

metric “ discounts” the result, so it pays to have the best results up top. This metric

is also denoted as nDCG@N, where N represents the length of the recommendation

list. It is computed using equation (4.3.4).

NDCGp =
DCGp

IDCGp

(4.3.4)

where p is the position of the last item in the ranking that is considered, DCGp

is the discounted cumulative gain at position p, and IDCGp is the ideal discounted

cumulative gain at position p.

Discounted Cumulative Gain (DCG) at position p is computed as:

DCGp =

p∑
i=1

2reli − 1

log2(i+ 1)
(4.3.5)

where reli is the relevance of the item at position i in the ranking. The relevance

is typically a binary or ordinal value that reflects how relevant the item is to the

user’s query or preferences.

The Ideal Discounted Cumulative Gain (IDCG) at position p is the DCG score

that would be obtained if the ranking contained only relevant items, and they were

perfectly ranked according to their relevance. IDCG is computed as:

IDCGp =

min(p,|R|)∑
i=1

2reli − 1

log2(i+ 1)
(4.3.6)

where |R| is the total number of relevant items in the dataset.

NDCG ranges between 0 and 1 with higher values indicating better ranking qual-

ity.
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4.3.5 Hit Ratio

For the recommendation task, the hit ratio is a way to test how good the top-N

recommendations are. It measures how many relevant items made it to the top N

recommendation list. It is also denoted as Hit@N. It is calculated using equation

(4.3.7).

hit rate =
hits

total recommendations
(4.3.7)

where hits represent the number of recommended items that the user actually

interacted with, and total recommendations represent the total number of items rec-

ommended to the user.

Hit ratio can also be used to assess the knowledge graph completion model’s ability

to predict the correct head or tail entity for a given relation among the top N-ranked

candidate entities. Equation (4.3.8) is used to compute Hit Ratio@N in the KGC

task.

Hit@N =
1

|S|
∑

(h,r,t)∈S

δ(t ∈ Top-Nr
h) (4.3.8)

where S is the set of test triples, (h, r, t) represents a triple with head entity h,

relation r and tail entity t. Top-Nr
h denotes the top-N ranked candidate entities for

the triple (h, r, ?) where “ ?” denotes a missing entity (either head or tail). δ is the

indicator function, which returns 1 if the true tail entity t is present in the set of

top-N ranked candidate entities and 0 otherwise.

The higher the Hit@N, the better the model is at predicting missing entities in

the knowledge graph and relevant items to the user in the recommendation list.

4.3.6 Mean Rank

This metric measures How good the knowledge graph completion model is at guessing

the missing facts in a KG. It measures the average rank of the true tail entity among

all possible entities in the knowledge graph, given a head entity and a relation.
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The Mean Rank is computed using equation (4.3.9)

Mean Rank =
1

|S|
∑

(h,r,t)∈S

rank(h, r, t) (4.3.9)

where S is the set of triples in the test set, and rank(h, r, t) is the rank of the true

tail entity t among all possible entities in the knowledge graph, according to the score

assigned by the model for the triple (h, r, t). A lower Mean Rank indicates better

performance, as it means that the true tail entity is ranked higher on average.

In this chapter, we discussed the implementation requirements, provided details

about the dataset used, and the evaluation matrices and described the hyperparame-

ters that were set to achieve optimal results. The next chapter will focus on presenting

a detailed analysis of our findings.
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CHAPTER 5

Results, Analysis, and Discussion

In this chapter, we evaluate our model’s performance by comparing it with several

state-of-the-art models for both the recommendation and knowledge graph completion

tasks. Specifically, for the recommendation task, we compare our model against

classical recommender systems like FM [52] and BPRMF [53], as well as three joint-

learning models (CFKG [78], CKE [76], and CoFM [51]) and a multi-task learning

model (KTUP [11]). For the knowledge graph completion task, we compare our model

against TransE [9], TransH [71], and TransR [44].

To conduct our experiments, we used two widely-used benchmark datasets. The

entities in both datasets were mapped to DBpedia when mappings were available.

Chapter 4 provides details on the experimental setup and hyperparameters used.

To further improve the efficacy of our model, we tested it using HRotatE instead

of RotatE for the KGC task. When using HRotatE, we trained RKTUP with half

the number of training steps required when using RotatE.

Our comparative results demonstrate the importance of incorporating the vast

majority of relation patterns from the KG into the RS, including the compositional

relations that were previously overlooked in previous studies. Additionally, we found

that RKTUP converged to the optimum solution much faster when using HRotatE

for the KGC task.
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5.1 Result Analysis and Discussion

5.1.1 Recommender System’s Performance

Table 5.1.1: Recommender systems’ experimental results on two datasets.

Models
MovieLens-1M (@10, %) DBook2014 (@10, %)

Percis. Recall F1 Hit NDCG Percis. Recall F1 Hit NDCG

FM 28.91 12.07 12.34 80.01 58.74 4.19 20.89 4.99 31.28 19.87

BPRMF 31.07 13.10 12.98 82.76 60.56 4.59 21.03 6.14 30.67 22.38

CKE 37.54 15.87 18.68 87.32 66.98 4.01 22.73 6.60 34.09 27.35

CFKG 30.14 11.82 13.76 81.93 57.86 4.50 20.85 4.28 30.01 18.94

CoFM(share) 31.78 12.53 15.62 82.98 57.19 3.27 21.04 6.31 29.80 20.87

CoFM(reg) 30.87 11.98 13.05 81.32 57.45 4.05 20.97 5.13 29.32 20.98

TUP(hard) 36.67 16.71 18.83 88.12 66.81 3.98 22.08 4.99 30.14 20.35

TUP(soft) 36.03 15.94 18.41 87.95 66.17 3.86 22.15 7.08 30.59 22.67

KTUP(hard) 40.90 17.11 18.72 87.88 69.04 4.86 25.06 7.50 34.38 28.16

KTUP(soft) 41.06 17.64 18.75 87.94 69.31 4.89 25.12 7.53 34.50 28.25

RKTUP(hard)R 46.85 19.24 21.15 89.72 74.96 5.78 29.61 8.62 38.20 30.79

RKTUP(soft)R 47.26 19.84 21.18 90.34 75.08 5.81 29.80 8.70 38.64 31.07

RKTUP(hard)H 46.91 19.31 21.20 89.87 75.12 5.81 29.73 8.63 38.29 30.86

RKTUP(soft)H 47.28 19.89 21.23 90.42 75.23 5.85 29.82 8.73 38.70 31.16

In table 5.1.1 Precis. refers to precision, F1 refers to the F1 score and Hit refers

to the Hit Ratio. Additionally, we use abbreviations to indicate the specific models

and strategies used. CoFM(share) indicates the CoFM model used with its shared

entity strategy, while CoFM(reg) indicates CoFM used with its entity regularization

strategy. TUP(hard) refers to training the TUP recommender system without the

KGC task, using the hard strategy for preference induction, while TUP(soft) uses

the soft strategy. Similarly, KTUP(hard) and KTUP(soft) indicate the hard or soft

strategies used for preference induction in TUP. Lastly, the R in RKTUP(hard)R

and RKTUP(soft)R indicates the use of RotatE for the KGC task, while the H

in RKTUP(hard)H and RKTUP(soft)H indicates the use of HRotatE. The same

notations are used in table 5.1.2. The results presented in both tables for RKTUP
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model strategies represent an average of five runs for each strategy.

The experimental results of several recommender systems, including our model

RKTUP, on two datasets, MovieLens-1M and DBook2014 are presented in Table

5.1.1. Looking at the results, we can see that RKTUP outperformed several state-

of-the-art models, such as FM, BPRMF, CKE, CFKG, CoFM and KTUP on both

datasets based on precision, recall, F1 score, hit ratio and NDCG metrics.

Specifically, RKTUP(soft)H outperforms the state-of-the-art models and shows

comparable results to RKTUP(soft)R but with only half the number of required

training steps (i.e. 70,000 v.s. 140,000). This is due to RotatE and HRotatE’s

ability to detect various relationship patterns, including symmetry, inversion and

composition. HRotatE also converges faster than RotatE.

Furthermore, RKTUP demonstrated more improvements on DBbook2014 than

MovieLens-1m (i.e., 13.7% vs. 11.6% gains in F1). This suggests that integrating

more knowledge is particularly helpful for sparse data.

However, RKTUP performs better on MovieLens-1m compared to DBbook2014,

which may be caused by the higher level of data sparsity in DBbook2014. The data

sparsity in DBbook2014 is 99.6%. This led to several items not having corresponding

entities in the KG, thus restricting the performance of all the recommender systems

on DBbook2014.

The results highlight the effectiveness of integrating compositional relations, and

various other relation patterns, from the KG into the RS to enhance recommendation

performance. The enriched embeddings with additional knowledge led to a notice-

able improvement in recommendation performance. This enhancement was achieved

through the rotational-based KGE method’s ability to handle complex relationships.

Moreover, the superiority of RKTUP over classical and joint learning models further

accentuates the significance of joint learning of item recommendations and KG com-

pletion to enhance recommendation systems’ performance. Figures 5.1.1 and 5.1.2

are visualization of the results.

63



5. RESULTS, ANALYSIS, AND DISCUSSION

Fig. 5.1.1: Comparing RS Models on MovieLens-1M
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Fig. 5.1.2: Comparing RS Models on DBbook2014
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Table 5.1.2: Knowledge graph completion experimental results on two datasets.

Model
MovieLens-1M DBook2014

Hit @10 (%) MR Hit @10(%) MR

TransE 47.50 536 59.87 532

TransH 46.85 536 61.02 554

TransR 40.29 608 55.23 565

CKE 35.26 584 55.02 592

CFKG 42.16 522 58.93 547

CoFM(share) 47.65 513 58.01 529

CoFM(reg) 47.38 505 61.09 521

KTUP(hard) 49.00 525 59.94 502

KTUP(soft) 49.68 526 60.37 499

RKTUP(hard)R 56.19 499 67.66 474

RKTUP(soft)R 56.42 494 68.07 466

RKTUP(hard)H 56.30 498 67.71 473

RKTUP(soft)H 56.47 493 68.13 465

Table 5.1.2 presents the overall performance of the KGC task by several models,

and it can be observed that RKTUP(soft)H outperforms all other models on both

datasets. In comparison to KTUP(soft), RKTUP(soft)H achieves a higher Hit Ratio

for MovieLens-1m as compared to that for DBbook2014 (13.6% v.s. 12.8%) which

can be due to the fact that MovieLens-1m has more connectivities between users and

items that can help in modeling structural knowledge between entities.

Furthermore, the results demonstrate that RKTUP(soft)H performs similarly to

RKTUP(soft)R while requiring only half of the training steps needed for the KGC

task by RKTUP(soft)R, i.e. 70,000 steps v.s. 140,000 steps. These findings provide

evidence to support our initial hypothesis that integrating rotational-based KGE

methods into an MTL model can lead to better performance. Moreover, the results
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suggest that using HRotatE enhances the efficiency of RKTUP by using half the

number of training steps required by RotatE to achieve comparable results. Figures

5.1.3 and 5.1.4 visualize the results.

Fig. 5.1.3: Comparing KGC Models on MovieLens-1M
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Fig. 5.1.4: Comparing KGC Models on DBbook2014

5.1.2 Assumptions

The RKTUP model is designed with certain assumptions about the datasets used in

the study and the factors that can influence a user’s preference. The model assumes

that both datasets have an adequate number of composition patterns. To ensure a fair

comparison with the KTUP model, RKTUP adopted the same assumptions. These

assumptions dictate that a user’s preference is solely determined by their interactions

with the items and knowledge graph entities used in the study and do not take into

account external factors such as social or cultural influences. Lastly, all other models

used in the study were trained under the same set of assumptions as RKTUP.

5.1.3 Test Case of RKTUP Model

In this section, we demonstrate a test case of generating personalized recommenda-

tions for UserID: 1920 from the MovieLens 1M dataset using RKTUP(soft)H and
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KTUP(soft) models. This test case serves as an example to compare the performance

of the RKTUP(soft)H and KTUP(soft) models.

The user 1920 is a female aged between 35-44 who works in an executive/manage-

rial position. She rated 601 movies in the MovieLens 1M dataset, with 252 movies

from the Comedy/Romance genre receiving high ratings. Additionally, she rated 210

movies from the Drama genre, while the remaining 139 ratings were divided among

other genres such as Action, Adventure, Children’s, Sci-Fi, Thriller, Musical, War,

Animation, Western, Crime, Horror, Mystery, and Documentary. TUP’s preference

induction with the soft strategy revealed that user 1920 prefers movies from the

Comedy/Romance, movies starring Tom Hanks, movies directed by Nora Ephron,

and movies from drama genres, in this order based on the weights assigned to them

by the attention mechanism.

Table 5.1.3 displays the top 10 movie recommendations generated for user 1920

by RKTUP(soft)H and KTUP(soft). The recommended movies are listed in the

same order as their ranking based on the recommendation and the plausibility scores

produced by the models. For example, in RKTUP(soft)H “Sleepless in Seattle” and

“You’ve Got Mail” were ranked higher than “That Thing You Do!” even though all

three movies are in the Comedy/Romance genre. This is because the first two movies

starred Tom Hanks and were directed by Nora Ephron, which is more relevant to the

user’s preference.

Furthermore, RKTUP provided better recommendations for this user compared

to KTUP. For example, let’s compare the second recommendation generated by both

models. KTUP recommended “Forrest Gump”, which is a Comedy/Romance that

starred Tom Hanks but did not fit the user’s preferences, as well as, RKTUP(soft)H ’s

recommendation. In contrast, RKTUP(soft)H recommended “You’ve Got Mail”,

which is a Comedy/Romance that starred Tom Hanks and was directed by Nora

Ephron, making it a better fit for the user’s preferences. Therefore, RKTUP(soft)H ’s

recommendations were more relevant to the user’s interests.

Lastly, in this example, RKTUP(soft)H method outperformed the KTUP(soft)

method with a 15.7% increase in F1 score. Specifically, RKTUP(soft)H achieved a
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precision of 0.67, a recall of 0.86, and an F1 score of 0.75, while KTUP(soft) achieved

a precision of 0.62, a recall of 0.71, and an F1 score of 0.66. It should be noted that

the results presented in Table 5.1.1 represent the average performance across all users.

Table 5.1.3: Test Case of RKTUP Model

RKTUP(soft)H KTUP(soft)

Movie Genre Movie Genre

Sleepless in Seattle (1993) Comedy/Romance Sleepless in Seattle (1993) Comedy/Romance

You’ve Got Mail (1998) Comedy/Romance Forrest Gump (1994) Comedy/Romance

That Thing You Do! (1996) Comedy/Romance Animal House (1978) Comedy

Notting Hill (1999) Comedy/Romance Young Guns (1988) Action/Comedy

Remember the Titans (2000) Drama Driving Miss Daisy (1989) Drama

King of Masks, The (Bian Lian) Drama Highlander (1986) Action/Adventure

Gladiator (2000) Action/Drama The Deer Hunter (1978) Drama/War

The Patriot (2000) Action/Drama Remember the Titans (2000) Drama

Sanjuro (1962) Action/Adventure Dr. No (1962) Action

Double Jeopardy (1999) Action/Thriller Sleeping Beauty (1959) Children’s

This chapter examines the experimental results and compares them with state-

of-the-art models. To conduct our experiments, we used two widely-used benchmark

datasets in the field. These datasets were refined for LODRecSys, and in cases where

mappings were available, the entities were mapped to DBpedia.

To further improve the efficacy of our model, we tested it using HRotatE instead

of RotatE for the KGC task. When using HRotatE, we trained RKTUP with half

the number of training steps required when using RotatE.

Our comparative results empirically demonstrate the importance of modeling and

inferring different relation patterns to enhance the performance of recommendation

and KG completion. Additionally, we found that RKTUP converged to the optimum

solution much faster when using HRotatE for the KGC task.
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CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

This thesis focused on enhancing the performance of MTL recommendation systems

by introducing a new MTL model called RKTUP. This model builds upon an existing

MTL model, KTUP, and improves its ability to learn the representations of users,

items, entities and relations. By using RKTUP, the recommender system can gain

a better understanding of a user’s preferences, thereby providing more personalized

recommendations. This is evidenced by the increase in F1 score that RKTUP achieved

compared to the KTUP model on the DBbook2014 and MovieLens-1m datasets, with

improvements of 13.7% and 11.6%, respectively.

The model uses a knowledge graph and a user-item interaction list as inputs and

rotation-based KGE approaches such as RotatE or HRotatE.

Knowledge graph Embedding-based recommendation systems (KGE-based RS)

have been shown to be effective in providing personalized recommendations to users.

However, these systems rely heavily on the quality of entity and relation represen-

tations in the knowledge graph. Inaccurate or incomplete representations can lead

to poor recommendation performance. Although numerous KGE-based RS are avail-

able, they either overlook the inherent incompleteness of knowledge graphs or employ

KGE models that cannot adequately capture complex relation patterns, such as com-

position.

Therefore, we have proposed a new Multi-Task Learning (MTL) model that uti-

lizes Rotation-based Knowledge Graph Embedding (KGE) techniques like RotatE or
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HRotatE to infer complex relationship patterns for the Knowledge Graph Completion

(KGC) task to overcome the limitations of TransH in KTUP.

We evaluated the effectiveness of RKTUP using two different rotational-based

KGE models, RotatE and HRotatE, on two benchmark datasets that are widely

used. The experimental results revealed that RKTUP outperforms several state-of-

the-art methods (including classical models and several KGE-based RS models) in

recommendation and KG completion tasks when it uses RotatE or HRotatE.

Specifically, we showed that RKTUP can capture relation patterns better, leading

to improved user preference representation and recommendation performance. Addi-

tionally, using HRotatE in RKTUP improved its efficiency by reducing training steps

by half while achieving comparable results to RotatE. Overall, the results of this the-

sis contribute to the development of KGE-based RS by identifying the importance

of multi-task learning models that consider KG incompleteness and the potential of

advanced KGE methods to improve the recommendation’s performance.

6.2 Limitations and Future Research

We identified some limitations of our work and potential directions for future research.

First, our proposed model uses a rotational-based embedding approaches that fail to

capture hierarchical relations. RKTUP can be extended further by investigating

advanced KGE models capable of capturing and inferring more complex relation

patterns, such as hierarchical relations.

Second, RKTUP employs static KGE models that do not account for changes

in entities and relations over time. In contrast, dynamic KGE methods capture

temporal dynamics by adapting to evolving relationships in the graph. Therefore,

exploring how RKTUP’s performance might be enhanced by integrating dynamic

KGE methods that can capture changes in the graph over time would be a promising

avenue for future research.

Finally, the main objective of this thesis was to improve the performance of MTL

models, but there are other challenges that recommender systems commonly face,
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such as the cold start problem, data sparsity, interpretability and the long-tail prob-

lem. Therefore, future investigations could explore the effectiveness of RKTUP in

addressing these challenges.
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