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ABSTRACT

The Team Formation Problem aims to identify a group of experts who possess

the required skills to complete a common goal. Graph-based approaches have been

commonly used to solve this problem, but recently, researchers have started exploring

this problem from the perspective of social information retrieval and applying neural

architectures to recommend teams of experts. However, the learning process of these

architectures is faced with several challenges. This includes the inability to handle

network modifications after the training process is over as well as the time complexity

of the learning process is high, which is proportional to the size of the network.

In this study, we propose a new framework called “LANT - Leveraging Graph

Attention N etwork for T eam formation” which leverages graph neural networks and

variational inference to address the challenges faced by existing approaches. The

proposed framework utilizes transfer learning and neural team recommendation, with

self-supervised learning of node embeddings achieved using Deep Graph Infomax with

Graph Attention Networks as an encoder.

We demonstrate empirically how LANT effectively addresses the challenges faced

by existing approaches and outperforms state-of-the-art methods on large scale real

world datasets. The proposed framework provides an efficient and scalable solution

to team formation problems and can be applied in various fields where expert teams

are required to achieve a common goal.
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Chapter 1

Introduction

The Team Formation Problem (TFP) refers to the process of grouping individuals or

agents together to form a team for a common goal. This process involves identifying

a subset of agents who have the necessary skills, abilities, and preferences to work

effectively together.

There are various approaches and algorithms that have been proposed to solve

the TFP, such as graph-based methods, mathematical optimization, and machine

learning techniques. These approaches aim to balance the needs of the individual

agents with the requirements of the team as a whole and to find a solution that is

both effective and efficient.

The TFP is relevant to a range of fields and applications, including sports, busi-

ness, and education. In these fields, the ability to form effective teams can have a

significant impact on success, and the team formation process is therefore of great

importance.

1.1 Background

Social network refers to the structure of relationships, connections, and interactions

between individuals, groups, organizations, and communities. For example, social

networking websites such as Facebook, Twitter, LinkedIn etc., have greatly facilitated

interactions between web users worldwide. These interactions can be based on a wide

range of factors, including shared interests, values, beliefs, and activities, as well as

more formal interactions, such as those between co-workers, classmates, or business

1



1. INTRODUCTION

Figure 1.0.1: DBLP Heterogeneous Social Network

partners.

Social networks can be analyzed to better understand the patterns of relationships

and interactions within a community and the ways in which these relationships can

influence behavior, cognition, and communication. The information gleaned from

analyzing social networks is particularly useful in various applications such as team

formation, recommendation systems, healthcare, etc.

1.1.1 Social Network Analysis (SNA)

Social network analysis (SNA)[3] is a branch of the social sciences that deals with the

study of social relationships and connections between individuals, groups, organiza-

tions, and communities. SNA is concerned with the structure and properties of social

networks, including their size, shape, and connectivity, as well as the ways in which

these networks influence behavior, cognition, and communication.

SNA has roots in sociology and anthropology but has since expanded to encompass

a range of disciplines, including computer science, mathematics, and psychology. The

field of SNA has grown significantly in recent years, due in part to the increasing

availability of large-scale social network data, as well as advances in computational

and data analysis methods.

SNA is used to study a variety of social phenomena, including the spread of

2



1. INTRODUCTION

information, the formation of groups and communities, the influence of social networks

on behavior and attitudes, and the formation of opinion and attitudes. SNA is also

used to study the structure of complex systems, such as organizations, cities, and

economies, and to understand the relationships between individuals and organizations

within these systems.

SNA relies on mathematical and computational techniques to analyze and model

social networks. This includes the use of graph theory, network algorithms, and

machine learning techniques, as well as the use of statistical methods to analyze and

interpret the data. SNA also involves the collection and analysis of large-scale social

network data, which can be obtained through various sources, including surveys,

online platforms, and digital traces.

1.1.2 SNA and Team Formation Problem (TFP)

Social network analysis (SNA) and the Team Formation Problem (TFP) are two

related fields that deal with the study of social relationships and connections between

individuals, groups, organizations, and communities. SNA focuses on the structure

and properties of social networks, while the TFP is concerned with finding the optimal

combination of agents to form a team.

Both SNA and the TFP are important in a range of fields, including sports, busi-

ness, and education, where the ability to form effective teams can have a significant

impact on success. In these fields, SNA can provide valuable insights into the social

relationships and connections between individuals and can inform the team formation

process by identifying potential team members who have strong connections within

the network and the necessary skills, abilities, and preferences to work together effec-

tively.

1.1.3 Affinity Seeking and Member Compatibility

Affinity seeking[4] is a concept in team formation that refers to the tendency of

individuals to form relationships with others who share similar interests, attitudes,

3



1. INTRODUCTION

and values. The idea is that individuals with strong connections are more likely to

work effectively and efficiently together. This can positively impact team performance

and satisfaction.

Affinity seeking can occur naturally through social interactions and relationships

that develop outside of work, or it can be facilitated through intentional efforts to

match individuals with compatible team members. The concept of affinity seeking is

important in team formation because it can help to ensure that individuals are placed

in teams where they are likely to work well with others, and this can contribute to

the success of the team and the organization as a whole.

Member compatibility refers to the degree to which individuals in a team are

similar in terms of their personality traits, skills, and abilities.

1.2 Problem Definition

Neural Team Formation Problem [2]: Given a heterogeneous collaboration graph

G, let {s1, s2, . . . , sm} ⊆ S be a set of m skills and {e1, e2, . . . , en} ⊆ E be a set of

n experts; (⟨Sr, Er⟩) is a Team of Experts such that Er ⊆ E ; Er ̸= ∅, who collectively

hold a subset of skills Sr ⊆ S; Sr ̸= ∅. Our aim is to estimate a mapping function

f of parameters θ, where f represents a neural network and θ represents the neural

network’s weights or parameters, from a subset of skills to a set of experts f : {S →

E}, such that f(Sr; θ) = Er, so that potential individuals can form a team to work on

the given set of skills.

Team of Experts: For a given set of n experts {e1, e2, . . . , en} ⊆ E and a task

that requires a set of m skills {s1, s2, . . . , sm} ⊆ S, a team of experts for a task is a

set of r skill-expert pairs: T = {⟨S1, E1⟩, ⟨S2, E2⟩, . . . , ⟨Sr, Er⟩}, where Er represents

a set of experts ei in Er, i ∈ {1, 2 . . . , n} that possesses a set of skills sj in Sr,

j ∈ {1, 2 . . . ,m}.

4



1. INTRODUCTION

1.3 Thesis Motivation

Traditionally, Heuristic [5][6][7], Metaheuristic [8][9][10][11][12] or Rule-based meth-

ods have been used to solve TFP. However, these methods are often limited in their

ability to handle the complexity and variability of the TFP. For instance, TFP uses

large and complex social networks to identify experts for a given task. These networks

are often dynamic in nature, meaning that they change over time. Individuals may

join or leave a team, the team’s objectives and requirements may change, and the

skills and preferences of team members may evolve. This can make it challenging for

Heuristic and Metaheuristic methods to identify the optimal team composition at a

given instance. Some of the known shortcomings of these methods in TFP are:

• Limited information about the network [2], [13]: Heuristic and Metaheuristic

methods may not have access to complete or accurate information about the

network as it is often constantly evolving in the real world. As these methods

are applicable to a snapshot of the network at a given instance of time, therefore

they are limited in terms of their ability to accurately identify the optimal team

compositions in the real world.

• Computationally expensive [2], [13]: Heuristic and Metaheuristic methods can

be computationally expensive, especially when dealing with large and complex

networks. This is because they identify subgraphs as teams from the network

and subgraph optimization techniques have been shown to be a reduced version

of the Steiner Tree problem, which is NP-hard in nature [14]. This can limit the

scalability and applicability of these methods in real-world settings.

• Assumptions made may not hold true: Heuristic and Metaheuristic methods of-

ten rely on certain assumptions about the relationship between individual char-

acteristics, team dynamics, and team performance. For example, some research

works [15], [16], [17] assume that team performance is solely determined by the

communication cost between team members, some other research works [18], [19]

assume that team members with similar personalities or backgrounds work bet-

ter together. Although these assumptions are an attempt to simulate favorable

5



1. INTRODUCTION

scenarios in the real world for TFP they may not always hold true in practice

due to the complex and dynamic nature of real-world networks.

• Lack of validation: Heuristic and Metaheuristic methods may not provide a way

to validate the quality of the resulting team formation. Here, the quality of the

team composition may depend on the optimized value of the objective function

(individual factors such as communication cost, geo-proximity, etc., or their

combination) as in [15], [16], [17], [18], [19] (and more research works included

in table 2.1.1 etc.) involved. But as discussed above, the optimized value might

reflect satisfying a favorable scenario but it is not always clear whether the

resulting team will be successful or not in the real world.

Recently, researchers have started to see this problem as a social information re-

trieval and examine it through neural network architectures that recommend the

team of experts by learning a relationship between the skills and experts’ space

[13][2][20][21]. These methods overcome the challenges posed by Heuristics and Meta-

heuristics such that they are capable of automatically learning and extracting relevant

features from large and complex social networks. They also provide a way to validate

the resultant teams. However, these methods face the following shortcomings:

• They are unable to handle the modification of a network (i.e., the dynamic

nature of a network) once the training process is over.

• The time complexity of the learning process is high and proportional to the size

of the network.

Therefore, the motivation of this thesis is to address the challenges faced by current

neural network architectures by leveraging state-of-the-art deep learning methods for

TFP in any social network.

1.4 Thesis Statement

The objective of this research is to design a novel expert recommendation frame-

work that can efficiently learn the implicit and valuable characteristics underlying

6



1. INTRODUCTION

the social network. In literature, Graph Neural Networks (GNNs) [22] are designed

to perform inference on data described by graphs. This research utilizes Graph At-

tention Networks (GAT)[23], one of the most popular types of GNN, to recommend

suitable experts for TFPs in social networks.

The state-of-the-art in neural TFP [13][2][20] uses random walks based Metap-

ath2Vec [24] for graph representation learning. However, random walk methods suf-

fer from known limitations. To overcome these limitations, our proposed framework,

LANT, replaces the random walk-based method Metapath2Vec [24] with Graph At-

tention Networks(GATs) [23] in the existing state-of-the-art solutions for TFP. The

main focus of this study is to demonstrate the effectiveness of GATs in capturing

the complex structural information of social networks and to show that they can

outperform random walk-based methods in handling dynamic graphs, learning node

embeddings, and scalability.

1.5 Thesis Contribution

This thesis addresses the TFP and proposes a novel deep learning framework “LANT

- Leveraging Graph Attention Networks for Team Recommendation”. The proposed

approach optimizes the graph representation learning process in the existing state-

of-the-art deep learning frameworks for TFP. GATs take the social network as input

and generate low-dimensional vector representations for each node in the latent di-

mensional space. These vector representations aid in the downstream task of recom-

mending experts in the social network. Our key contributions can be found in the

following list:

• We have proposed a new deep-learning framework, LANT, for the team forma-

tion problem.

• We have shown that our proposed framework, LANT, outperforms the existing

state-of-the-art deep-learning frameworks for TFP in terms of computational

efficiency for graph representation learning both in static as well as dynamic

social networks.
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1. INTRODUCTION

• We have compared our proposed framework, LANT, against two real-world

datasets - DBLP and IMDB.

1.6 Thesis Organization

The rest of the thesis/research work is organized in the following manner.

In chapter 2, We discuss the related works in the field of Team Formation Problem.

The literature review comprises classical rule-based approaches including heuristics,

meta-heuristics, etc., and the current state-of-the-art deep learning frameworks on

TFP.

In chapter 3, We introduce our proposed approach, LANT, to solve the TFP. Ba-

sically, LANT leverages Graph Attention Networks (GATs) for the graph representa-

tion learning step in the deep learning framework for TFP. This chapter discusses step

by step process of our approach and how it optimizes the state-of-art deep learning

framework for TFP.

In chapter 4, We provide our experimental setup and environment, which includes

the tools and libraries we used to implement our suggested framework (LANT), the

system configuration, the dataset information, the hyper-parameters for training, the

specifics of the evaluation metrics and the baselines we utilized to assess our model.

In chapter 5, We conducted experiments on two different benchmark datasets

DBLP and IMDB. We compared our framework to the existing state-of-the-art meth-

ods for graph representation learning in TFP in which our framework outperformed

existing architecture in terms of computational efficiency.

In Chapter 6, We conclude our research, explain the insights we gained during our

research work, and describe some of the opportunities for future work.
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Chapter 2

Related Works

Team recommendation or Team Formation Problem (TFP) is the process of efficiently

selecting individuals from a network to form a collaborative group that can achieve

shared objectives [15]. Team-based opportunities have become more common in a

variety of situations such as manufacturing, games, law, academia, healthcare sectors,

in freelancer jobs - Upwork1 and Guru2, and other professional organizations [1].

2.1 Classical Approaches

The TFP in social networks has been an area of intense research, with many seminal

contributions to the field. Among these, Lappas et al.[15] made the first significant

strides in addressing the TFP. In their research, they formulated the TFP using com-

munication costs, which represent the amount of effort required for individuals to

interact and collaborate within a team. They identified collaboration and communi-

cation between team members as critical factors that impact the success of a project.

Communication cost measures the closeness of individuals within a social network,

with the aim of identifying the most efficient ways to form a team. By minimizing

the communication cost between team members, the authors believed that the team

formation algorithms will identify the most efficient team configurations for a given

task, which can improve the overall effectiveness and efficiency of a project. Numer-

ous studies in the field of team formation have explored various functions aimed at

optimizing communication costs. These functions include but are not limited to the

1https://www.upwork.com/
2https://www.guru.com/
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2. RELATED WORKS

minimum spanning tree, the diameter distance, and the sum-of-distance techniques.

• The minimum spanning tree approach involves constructing a shortest-distance

path that connects all the members of the team. The idea is to identify the

shortest paths between all pairs of team members, thereby minimizing the over-

all communication cost. This technique is particularly useful when the team

members are spread out across the network and need to communicate with

each other frequently. Li et al.[25][26], Anagnostopoulos et al.[27], Majumder et

al.[28], Basiri et al.[16], Chen et al.[17] are some of the works which used this

approach.

• The diameter distance technique involves selecting team members based on their

distance to the center of the network, which is the node that has the longest

distance from any other node in the network. The aim is to minimize the longest

distance between any two team members, which can reduce communication costs.

Lappas et al.[15], Selvarajah et al. [29] are some of the works which used this

approach.

• The sum-of-distance approach involves selecting team members that minimize

the sum of distances between them. The idea is to minimize the total commu-

nication cost by selecting team members that are closer to each other, thereby

reducing the need for extensive communication. Kargar et al.[30][31][32], Li et

al.[33], Selvarajah et al.[34] are some of the works which used this approach.

Furthermore, Lappas et al.[15] demonstrated that the TFP is computationally

complex, belonging to the NP-hard class of problems, which are notoriously chal-

lenging to solve optimally. Their work laid the foundation for subsequent research in

the field and provided a vital framework for further investigation of the TFP using a

range of algorithmic approaches, including approximate, heuristic, and metaheuristic

techniques.
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2. RELATED WORKS

Authors Communication Work Expertise Personnel Geo
Cost Load Level Cost Proximity

T. Lappas, K. Liu and E. Terzi
[15]

✓

M. Kargar and A. An [30] ✓

C.T. Li and M.K. Shan [25][26] ✓

C.T. Li, M.Y. Huang and R. Yan
[33]

✓

J. Basiri, F. Taghiyareh and A.
Ghorbani [16]

✓

W. Chen, J. Yang and Y. Yu [17] ✓

K. Selvarajah, A. Bhullar, Z.
Kobti and M. Kargar [34][35]

✓

K. Selvarajah, Z. Kobti and M.
Kargar [35]

✓

A. Anagnostopoulos, L. Becchetti,
C. Castillo, A. Gionis and S.
Leonardi[27]

✓ ✓

A. Majumder, S. Datta and K.
Naidu [28]

✓ ✓

J. H. Gutierrez, C. A. Astudillo,
P. Ballesteros-Perez, D. Mora-
Melia and A. Candia-Vejar [36]

✓ ✓

M. Kargar, A. An and M. Zihayat
[37][32]

✓ ✓

B. Ashenagar, N. F. Eghlidi, A.
Afshar and A. Hamzeh [18]

✓ ✓

K. Selvarajah, P. M. Zadeh, Z.
Kobti, M. Kargar, M. T. Ishraque
and K. Pfaff [38]

✓ ✓ ✓

Y. Han, Y. Wan, L. Chen, G. Xu
and J. Wu [19]

✓ ✓

L. Chen, Y. Ye, A. Zheng, F. Xie,
Z. Zheng and M. R. Lyu [39]

✓ ✓

C. Dorn and S. Dustdar [10] ✓ ✓

H. Zhu, E. Chen, H. Xiong, H.
Cao and J. Tian [40]

✓ ✓

M. Neshati, S. H. Hashemi and H.
Beigy [41]

✓ ✓

Table 2.1.1: Team Formation Problem based on various parameters [1]
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Table 2.1.1 shows some research works which used communication cost in con-

juction with the additional parameters such as work load, expertise level etc. for

TFP. Anagnostopoulos et al.[27] used heuristic and metaheuristic approaches to solve

the multi-task TFP. In particular, they propose a greedy algorithm that employs a

number of heuristics to construct initial teams, followed by a local search algorithm

that uses a simulated annealing metaheuristic to refine the team composition. Ma-

jumder et al.[28] used approximation algorithms to find nearly optimal teams with

balanced workloads. Gutiêrrez et al.[36] used a constraint programming approach,

a local search heuristic and a variable neighborhood search metaheuristic to solve

the multiple tasks TFP. Selvarajah et al.[38] considered geo-proximity in addition

to communication cost and workload. The authors used a cultural algorithm as a

metaheuristic optimization technique to find the best team composition for palliative

care.

Kargar et al.[37][32] combined communication costs with personnel costs to min-

imize the total cost of forming the team and maximize the quality of the team. To

solve the TFP efficiently, the authors propose a two-stage approach. In the first stage,

a heuristic algorithm is used to select a set of candidate team members based on their

expertise and compatibility. In the second stage, a multi-objective genetic algorithm

is used to optimize the team formation problem with respect to both cost and quality

objectives. Ashenagar et al.[18] utilized a clustering algorithm and a multi-objective

optimization framework that considered both team effectiveness and personnel cost.

The clustering algorithm used the local distance metric to group individuals into small

subgroups, and the multi-objective optimization framework optimized both team ef-

fectiveness and personnel cost to form teams that are both effective and cost-efficient.

Both Han et al.[19] and Chen et al.[39] used genetic algorithm-based optimization

functions for forming a team with low communication costs which are geographically

closer to each other. Few other research works Dorn et al.[10], Farhadi et al. [42],

Zhu et al.[40], Neshati et al.[41], Zhang et al.[12] considered communication cost along

with the level of skills using a heuristic based optimization function.

In all these works, researchers used multiple parameters such as communication

12
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cost, work load, expertise level, personnel cost, geo-proximity etc. in TFP because

they believed these parameters can significantly affect the quality and efficiency of

the teams that are formed. For example, Communication Cost can affect the team’s

ability to collaborate effectively, the Work Load can impact the team’s productivity

and Availability can influence the team’s ability to meet project deadlines. By consid-

ering multiple parameters, researchers were able to better model real-world scenarios

and create more realistic and effective team formation algorithms. Moreover, different

parameters may be more or less important in different contexts, so considering multi-

ple parameters helped researchers design more flexible and adaptable team formation

algorithms that can be customized to different situations.

2.2 Deep Learning Approaches

Researchers have recently begun to examine deep learning architectures for team

recommendation [43, 13]. Sapienza et al. [43] built a model using a traditional

autoencoder to recommend the teams for online multiplayer games. The model was

unable to handle the uncertainty in the training data [13]. This problem was then

addressed by Rad et al.[13] by employing a variational Bayesian neural architecture

in which the network weights are assigned a probability distribution, i.e., uncertainty

in weight, which can be used to estimate uncertainty in predictions. However, this

work ignored supporting information such as venues for expert recommendation and

treated the relationship between the set of skills and the corresponding set of experts

as a standalone instance.

The subsequent works by Rad et al. [2] considered a heterogeneous collaboration

network to include all the associations between different nodes, i.e., skills, experts,

papers, and their corresponding venues in the DBLP dataset. They used a meta-

path-based random walks technique i.e. Metapath2Vec [24] which generates paths

that are able to capture both the semantic and structural relationships between var-

ious types of nodes through randomwalk and skipgram. They demonstrated that
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incorporating contextual data into collaboration network node embedding enhances

expert recommendations. In their approach, a meta-path P is defined as a path

with predefined node and edge types pattern based on the DBLP network such that,

P : V1
r1−→ V2

r2−→ ...
rl−1−−→ Vl, where Vi ∈{’Expert’, ’Skill’, ’Paper’, ’Venue’} defines

the type of node and ri defines the type of relation [44]. The authors also showed

that these composite patterns are useful in capturing the structural and semantic

relations in the DBLP collaboration network. Specifically, they defined metapaths

“Expert ↔ Paper ↔ Expert” for capturing the co-author relationship between Ex-

perts, “Expert ↔ Paper ↔ V enue ↔ Paper ↔ Expert” for capturing the co-venue

relationship between Experts and “Expert ↔ Paper ↔ Skill ↔ Paper ↔ Expert”

for capturing the co-skill relationship between Experts. Based on these metapaths,

they used random walks [45] for crawling the collaboration network and then trained

the node representations using an unsupervised heterogeneous skipgram model. These

representations were then used by VBNN in the downstream task for ranking experts.

Later in [46], the author incorporated an additional penalty term into the loss function

of a VBNN to improve the quality of the recommended expert team by prioritizing

candidates with stronger collaboration histories. The modified loss function seeks to

minimize the difference between the predicted expert ranking and the actual expert

ranking, while also penalizing recommendations of experts with low past collaboration

scores in the top positions of the ranking list. More recently, in [20], Rad et al. used

subgraph representation learning using the same Metapath2Vec technique, such that

the subgraph comprises the set of skills and a corresponding set of experts who have

successfully collaborated in the past. More precisely, the author identified the most

similar expert subgraph representations to the input skill subgraph representations

using the maximum similarity index instead of VBNN.

Although the models in [2][46][20] have modest variations, the evaluation metrics

for these models do not seem to benefit from their procedures. Moreover, these models

use contextual information in the DBLP heterogeneous network using Metapath2Vec

[24] to learn the representations of nodes in the collaboration system. But since

Metapath2Vec uses random walks [45] to generate node embedding, it comes under the
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category of shallow graph embedding approaches [47] and is a self-supervised learner.

The shallow graph embedding approaches have been shown to face the following

challenges, which we address in this paper:

• (C1) The number of parameters used to train the neural network in shallow

embedding methods is directly proportional to the size of the network, so, the

complexity is O(|V|), where |V| represents the number of nodes in the collabo-

ration network. It is a computationally inefficient method [47].

• (C2) The shallow embedding methods are inherently transductive, i.e., they can-

not generate embeddings for previously unseen nodes unless additional rounds

of optimization are performed to optimize embeddings for these nodes. This is

problematic for evolving collaboration networks because they are huge in size,

therefore, cannot be entirely stored in the memory [47].

• (C3) These approaches fail to leverage node attributes during encoding, and in

many collaboration networks, the attribute information is often highly informa-

tive with respect to the node’s position and role in the graph [47].

Lv et al. [48] assert that the premise of Graph Neural Network (GNN) is to

avoid the feature engineering process by automatically extracting the implicit and

valuable characteristics underlying the network. In contrast, if the model uses Meta-

path2Vec approach, it then involves human engineering to define the Meta-paths and

the number of Meta-paths. They further prove that graph representation learning in

heterogeneous collaboration networks using GNNs such as Graph Convolutional Net-

works [49] and Graph Attention Networks [23] outperforms meta-path-based random

walks.

Therefore, in order to circumvent the shortcomings of the previous methodologies,

this research work proposes a novel framework, LANT, to learn graph structure fea-

tures from the heterogeneous network using Graph Attention Networks (GAT) and

recommend experts for teams. GAT basically aggregates the node’s neighborhood

information and uses both the attention-based aggregation function and shared pa-

rameters to generate embedding for every node in the collaboration network [50].
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Because GAT incorporates parameter sharing during the information aggregation

with other nodes, it increases the computational efficiency, and hence it alleviates the

challenge C1 posed by current solutions. As a result, LANT can generate embed-

ding for nodes not observed during training [50] and hence solves the challenge C2

posed by the current state-of-the-art. Further, LANT incorporates the collaboration

network graph structure by leveraging its node’s attributes [50], and hence it can

overcome challenge C3. We demonstrate empirically that our suggested technique

outperforms the state-of-the-art methods for ranking experts in collaboration net-

works in terms of computational efficiency, functionality in inductive contexts, and

improved quantitative performance.
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Chapter 3

Proposed Approach

3.1 Introduction

Graph Neural Network (GNN) is a type of neural network designed to operate on

graph-structured data, where each node in the graph is associated with a feature

vector. The goal of a GNN is to learn a low-dimensional vector representation for

each node, and/or the entire graph, that captures both the local and global structural

information of the graph[51]. GNNs use node features to learn a vector representation

of node, hv, or the entire graph, hG. A GNN usually consists of graph aggregation

layer to aggregate node-level features into a graph-level feature vector, i.e., it em-

ploys a neighborhood aggregation technique, which involves iteratively updating a

node’s representation by aggregating representations of its neighbors. During each

message passing iteration in GNN, the updated representation of the target node

{hv ∈ RF | v ∈ V } associated with each node v ∈ V updates after each iteration

based on the information aggregated from v’s neighborhood N (v), where F is the

number of features in each node. The embedding or updated representation of target

node v can be expressed as follows:

hv =
1

|N (v)|
∑

u∈N (v)

hu (1)

where hu is the feature vector of node u.

Graph Attention Networks [23] (GATs) are one of the most popular types of Graph
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3. PROPOSED APPROACH

Neural Networks. Unlike other GNNs, which give equal importance to all neighbors

and assigns static weights based on node degrees, GAT assigns dynamic weights to

node features because some neighbors are more important than others. This process

in GAT is called self-attention, which allows each node to weigh its own features, as

well as the features of its neighbors in the graph, in order to compute an updated

representation of itself. Specifically, the self-attention mechanism computes a set of

attention coefficients, which represent the importance of each neighboring node to

the current node. In team recommendation, the heterogeneous networks comprise

several information in the neighbors such as publications (i.e., existing successful

teams), skills, experts, and venue. LANT leverages the potential benefits of GAT to

learn the graph features efficiently so that this information can be used in the team

recommendation.

GNNs are supervised or semi-supervised algorithms for learning node represen-

tations that require data with class labels. Since LANT addresses an unsupervised

task, where no label information can be used to train a graph neural network, we

need to learn node embeddings in an unsupervised manner. Recently, Deep graph

Infomax(DGI)[52] has achieved fairly high performance for unsupervised graph rep-

resentation learning.

3.2 Team Recommendation Model

Our aim is to build a neural model for the team recommendation problem. We

leverage the concept of Rad et al.[2] to define our architecture, consisting of two

primary phases: 1) Transfer learning and 2) Neural Team Recommender.

3.2.1 Transfer learning in LANT

Transfer learning defines the learning process of the local substructure of nodes. For

the team recommendation problem, we aim to learn the representations of experts

and associated skills in a heterogeneous collaboration network. Because of the chal-

lenges with Metapath2Vec in capturing the node features and generating meta-paths,
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3. PROPOSED APPROACH

we decide to use GNN, especially Deep Graph Infomax [52] combined with Graph

Attention Network (GAT) [23]

As shown in Figure 3.2.1, LANT uses GAT as an encoder in DGI to learn node

embeddings in a self-supervised manner. G is a true graph with true information of

nodes, edges, and features associated with each node, while H is a corrupted graph

where the nodes and edges have been changed using a corrupted function, C. Then,

an encoder E, GAT in our case, generates the node embeddings of G (i.e., hi), and

H (i.e., hj). The node embedding of each node in G is summarized into a single

embedding vector TG, a global graph summary, by using the read-out function R.

D is a discriminator, a logistic non-linear sigmoid function, that compares hi and hj

against TG using the following loss function [53].

L =
1

N +M
(

N∑
i=1

E(h,A)[logD(hi, TG)] +
M∑
j=1

E(h′,A′)[log(1−D(hj, TG))]) (2)

The encoder GAT in DGI updates the representation of a target node using a

function called attention function e(hu, hv) as shown in equation 3.

hv =
∑

u∈N (v)

e(hu, hv)hu (3)

The attention function considers the embedding of both source and target nodes.

It allows the weight to depend not only on the number of neighbors but also on

capturing the features and local structures. So, the attention function allows the

nodes to attend to some important nodes more than others. The normalized updated

representation of a target node v can be written as:

hv =
∑

u∈N (v)

softmaxu(e(hu, hv))hu (4)

αu,v = softmaxu(e(hu, hv)) =
exp(e(hu, hv))∑

k∈Ni
exp(e(hu, hv))

(5)
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The attention score e : RF × RF → R calculates a score for every edge (u, v), where

F is the number of features in each node.

e(hu, hv) = LeakyReLU(aT .[Whu ∥ Whv]) (6)

where a ∈ R2F ′
is a learnable vector, W ∈ RF ′×F is learnable linear projection matrix,

and ∥ denotes vector concatenation. The normalized attention score or the weight for

every edge (u, v) is defined as:

αu,v =
exp

(
LeakyReLU

(
aT .[Whu ∥ Whv]

))∑
k∈Nu

LeakyReLU(aT .[Whu ∥ Whk])
(7)

As shown in Figure 3.1.1, the target node takes the messages, i.e, features, from its

neighbors and combines them with the linear projection matrix W and normalized

attention score. As shown in Figure 3.1.1 (a), we consider 4 hops of connections

with the node of interest. In Figure 3.1.1 (b), we then have 4 different aggregators

(aggregator 1, aggregator 2, aggregator 3, and aggregator 4) for message passing and

aggregation functionality. So, the normalized updated representation of a target node

can be written as below;

hv = σ

 ∑
u∈N (v)

αu,vWhu

 (8)

where σ is a non-linearity activation.

We then use a multi-head attention mechanism, as shown in Figure 3.1.1 (c) with

heads = 2, for stabilizing the learning process of the attention mechanism; it creates

multiple attention scores – each replica with a different set of parameters in the

following way:

hv[1] = σ

 ∑
u∈N (v)

α1
u,vWhu

 (9)

hv[2] = σ

 ∑
u∈N (v)

α2
u,vWhu

 (10)
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3. PROPOSED APPROACH

Figure 3.2.2: VBNN for experts recommendation – adapted from Rad et al. [2]

The outputs from the multi-head attention mechanism in equations 9 and 10 are then

aggregated (AGG) by concatenation or summation in the following way:

hv = AGG(hv[1] + hv[2]) (11)

3.2.2 Neural Team Recommender

In the second phase, we adapt the fine-tuning methodology by Rad et al. [2] to

construct LANT’s team recommender system. The aim is to recommend a team of

experts e ⊆ E for a given skill subset s ⊆ S using the transform function f(s; θ).

We need to learn the transform function f from the skill space to the experts’ space;

therefore, we build variational neural networks as shown in Figure 3.2.2. We initialize

the input skill embedding vector with the embedding representations S⃗n from the

transfer learning and train the transform function with parameter θ of the conditional

probability p(e|s, θ).

Here, the Bayes rule is used to infer the posterior distribution after evaluating the

prior distribution of θ. Evaluating the posterior distribution p(θ|T ) = p(T |θ)p(θ),

however, p(θ) is hard to calculate. Therefore, we approximate it by a solvable distri-

bution q(θ|µ, σ) with multivariate Gaussian distribution N(µ, σ2), where µ is means
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and σ is Variance. To estimate the actual posterior p(θ) by q(θ|µ, σ), Kullback-Leibler

divergence is used to minimize the difference between q and p.

KL(q(θ|µ, σ) ∥ p(θ)|T )) =

∫
q(θ|µ, σ) log

[
q(θ|µ, σ)
p(θ)|T )

]
dθ = Eq(θ|µ,σ)log

[
q(θ|µ, σ)
p(θ)|T )

]
dT )

= KL(q(θ|µ, σ) ∥ p(θ)))− Eq(θ|µ,σ)log p(θ|T ) + log p(T )) (12)

If we assume l0 is our input layer, we can define l0 = ρ(S⃗n), where ρ calculates

the N(µ, σ2) for the input layer. Then it passes through hidden layers with their

activation function, ReLu to the output layer with the activation function, softmax.

To fine-tune the embeddings, we use Adam backpropagation. We train the neural

network with the loss function in equation 12.
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Chapter 4

Experimental Setup

This chapter describes our experimental setup and environment, including tools and

libraries used to implement our framework (LANT), system configuration, hyper-

parameters for training, dataset details, details of evaluation metrics and baseline

models that are used to evaluate our model.

4.1 Tools and Libraries

Our proposed framework, LANT, has been implemented using a combination of the

Graph Attention Network (GAT) and Deep Graph Infomax (DGI) algorithms, both

of which are implemented in the Stellargraph[54] library. The StellarGraph[54] li-

brary offers state-of-the-art algorithms for graph machine learning, making it easy to

discover patterns and answer questions about graph-structured data. The up-to-date

version of our code for the proposed framework, LANT, is available on GitHub 1.

We have implemented our code in Python 3.8.0 language. The details of the used

libraries are listed below:

• Stellargraph 1.2.1

• TensorFlow 2.9.1

• Keras 2.9.0

• Scikit-learn 0.24.2

• NumPy 1.20.3

1https://github.com/LANT
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• Pandas 1.4.3

• Matplotlib 3.4.2

• Pytrec-Eval 0.5

4.2 System Configuration

To evaluate the efficiency and effectiveness of our model, we build the proposed archi-

tecture and compared it against the state-of-the-art models. All the experiments are

conducted on Macbook-Air 2017 with device specifications of a 1.8 GHz Dual-Core

Intel Core i5 Processor, 8 GB 1600 MHz DDR3 of RAM, and a 64-bit based Mac OS

Monterey version 12.6.3.

4.3 Datasets

The proposed model is a generalized model which works well on several datasets. We

have evaluated our model (LANT) on two benchmark datasets - DBLP and IMDB

with several other state-of-the-art models. Data within both datasets are divided into

two groups - Transductive and Inductive:

• Transductive: Here we use the Transductive DBLP and Transductive IMDB

with the statistics shown in Table 4.3.1 for the entire process. In this step, the

nodes and edges in the heterogeneous collaboration network used in the training

phase remain the same in the testing phase.

• Inductive: We use the same Transductive DBLP and Transductive IMDB as

above with the statistics shown in Table 4.3.1 for training. Here we modify the

networks with the Inductive DBLP and Inductive IMDB correspondingly with

the statistics as shown in Table 4.3.1 and directly use the trained LANT model

on Transductive DBLP and Transductive IMDB for testing on the modified

network.
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Table 4.3.1 summarizes the basic statistics of each benchmark dataset. The

datasets contain the data in the form of a Comma-Separated Values (CSV) file.

• DBLP2 dataset is a bibliographic database that contains information about pub-

lications in the fields of computer science and related disciplines. It contains

information about papers, experts, venues and skills, among other details.

• IMDB3 dataset is a large and widely-used dataset of movie information. It con-

tains information about movies, directors, release years, and genres, among other

details. In IMDB, genres are considered as skills and directors are considered as

experts who successfully collaborated to release a movie.

Table 4.3.1: Dataset Statistics

DBLP 2 Papers Experts Skills Venues Nodes Edges

Transductive DBLP 4678 2076 1985 21 8760 51228

Inductive DBLP 33002 2470 2000 21 37493 301369

IMDB 3 Movies Directors Genres Years Nodes Edges

Transductive IMDB 22392 1928 28 81 24429 194243

Inductive IMDB 44785 2000 28 81 46894 385910

In our analysis of the datasets, we noticed that the experts in DBLP and the

directors in IMDB suffer from the long-tailed distribution as shown in figure 4.3.1

and figure 4.3.2, wherein few experts collaborated extensively whereas the majority

collaborated sparingly.

2https://originalstatic.aminer.cn/misc/dblp.v12.7z /
3https://datasets.imdbws.com/
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Figure 4.3.1: Distribution of Papers per Expert - DBLP

Figure 4.3.2: Distribution of Movies per Director - IMDB

4.4 Evaluation Metrics

We consider publications in the DBLP dataset and movies in the IMDB dataset as

the ones having optimal teams. We evaluated the performance of our framework us-

ing Quantitative Evaluation and Qualitative Evaluation against the baselines:
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• Quantitative Evaluation: The quantitative metrics aim to assess the computa-

tional complexity of the proposed framework against baselines. Additionally, it

also aims to evaluate the recommendations in order of their relevance by com-

paring it to a pre-defined ground truth. Here we used the following metrics for

comparisons against baselines.

a) Computational Efficiency

b) Ranking Metrics

c) AUCROC

• Qualitative Evaluation: The qualitative metrics aim to assess the recommended

experts’ quality relative to the ground truth experts. Here we used the following

metrcis for our analysis:

a) Skill Association

b) Skill Expertise Ratio

c) Collaboration Score

4.4.1 Quantitative Evaluation

4.4.1.1 Computational Efficiency

In the evaluation of the proposed deep learning framework for team recommendation

in this thesis, computational efficiency is considered a key evaluation metric. To

compare the proposed model’s performance with that of the baseline models, training

time per epoch is used as a measure of efficiency. By analyzing the training time per

epoch of the proposed model and comparing it with the baseline models, the research

aims to determine if the proposed model is able to achieve similar or better results

while requiring less training time per epoch. This evaluation metric provides valuable

insights into the model’s efficiency and scalability for large-scale datasets. The results

of this analysis are beneficial for future research in developing more efficient deep

learning models that can be trained more quickly and at lower computational costs.
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4.4.1.2 Ranking Metrics

The state-of-the-art in neural team recommendation [13] [2] considers ranking metrics

to analyze the effectiveness of the models. The ranking metrics used are Recall, Mean

Reciprocal Rank (MRR), Mean Average Precision (MAP) and Normalized Discounted

Cumulative Gain (NDCG). We use the same metrics for our evaluation. Below is a

detailed explanation of the metrics:

• Recall: Recall measures the ability of the model to identify relevant instances

or experts from a larger set of potential candidates. It measures the proportion

of relevant experts that the model is able to identify out of all the experts in the

dataset.

To calculate recall, the model is evaluated on a test set that includes examples

of teams with known expert compositions. The model predicts a set of experts

for each team, and the predicted set is compared to the true set of experts using

the following formula:

Recall =
true positives

# of relevant experts
(1)

true positives represent the number of correctly identified relevant experts, while

# of relevant experts represent the the true set of experts.

A high recall score indicates that the model is effective at identifying relevant

experts, while a low score indicates that the model is missing important experts.

By optimizing for recall, the model can be trained to prioritize the identification

of relevant experts, which can lead to more effective team compositions.

• Mean Reciprocal Rank (MRR):MRRmeasures the average of the reciprocal

ranks of the relevant experts in the model’s predictions. It measures the average

rank of the first relevant expert in the model’s predictions. For example, if a

team has five experts, and the model correctly identifies the top expert, the
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reciprocal rank for this expert would be 1/1=1. If the model correctly identifies

the second expert, the reciprocal rank would be 1/2=0.5, and so on. The MRR

is calculated as the average of these reciprocal ranks over all the teams in the

test set. The formula for calculating MRR is as follows:

MRR =
1

|n|
∑ 1

ranki
(2)

where n represents the total number of teams in the test set and ranki is the

rank of the first relevant expert in the model’s predictions for the ith team and∑
is the sum of all reciprocal ranks.

A high MRR score indicates that the model is effective at identifying the most

relevant experts, while a low score indicates that the model is less accurate.

By optimizing for MRR, the model can be trained to prioritize the identification

of the most relevant experts, which can lead to more effective team compositions.

• Mean Average Precision (MAP):MAP is a measure of the average precision

of the model’s predictions for a set of teams with known expert compositions.

It measures the average precision of the model’s predictions for a set of teams.

Precision is defined as the proportion of relevant experts in the model’s pre-

dictions, while Recall is the proportion of relevant experts in the test set that

the model identifies. Precision and recall are related by the trade-off between

identifying all relevant experts and minimizing the number of false positives.

The Average Precision is calculated by computing the precision for each team

in the test set and then taking the average of these values. The MAP is the

average of the average precision across all teams in the test set.

The formula for calculating MAP is as follows:
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MAP =
1

n

∑
APi (3)

where n is the number of teams in the test set, APi is the average precision for

the ith team, and
∑

is the sum of all average precisions.

The formula for calculating the average precision (AP) for a given team is as

follows:

APi =
1

m

∑
P@k ∗ rel(k) (4)

where m is the total number of relevant experts in the team, P@k is the precision

at the kth position in the model’s predictions, and rel(k) is an indicator function

that is 1 if the expert at the kth position is relevant, and 0 otherwise.

To calculate precision at position k, we use the formula:

P@k =
# of relevant experts in top k predictions

k
(5)

where k is the current position in the ranking.

Overall, the MAP metric aggregates the average precision values across all teams

in the test set to give a comprehensive measure of the model’s performance in

identifying relevant experts.

• Normalized Discounted Cumulative Gain (NDCG): NDCG is a measure

of the quality of the model’s predicted rankings for a set of experts. It measures
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the quality of the model’s predicted rankings by assigning a score to each pre-

dicted ranking based on the relevance and order of the experts. The relevance

of each expert is assigned a value between 0 and 1, based on their importance

to the team. The order of the experts is assigned a discount factor that de-

creases with position, reflecting the fact that experts who are ranked lower are

less important. The formula for calculating NDCG is as follows:

NDCG =
DCG

iDCG
(6)

where DCG is the discounted cumulative gain of the predicted ranking, and

iDCG is the ideal discounted cumulative gain, which represents the maximum

possible score for the ranking.

The discounted cumulative gain (DCG) is calculated as follows:

DCG =
∑(

rel(i)

log2(i+1)

)
(7)

where rel(i) is the relevance score of the expert at position i in the predicted

ranking.

The ideal discounted cumulative gain iDCG is calculated by sorting the true set

of experts in descending order of relevance and applying the same formula for

DCG.

The relevance score for each expert can be defined in various ways, depending

on the context of the team formation problem. For example, the relevance score

could be based on the expert’s domain expertise, their past performance on

similar projects, or their fit with the existing team members.

By normalizing the DCG score with the iDCG score, NDCG provides a value

between 0 and 1 that indicates the quality of the predicted ranking relative to
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the ideal ranking. A higher NDCG score indicates a better-predicted ranking.

By optimizing for NDCG, the model can be trained to prioritize the identifica-

tion of the most relevant experts and their appropriate order in the predicted

rankings, which can lead to more effective team compositions.

4.4.1.3 AUCROC

AUCROC (Area under the ROC curve) is a measure of the model’s ability to distin-

guish between relevant and irrelevant experts based on their predicted scores. The

ROC(Receiver Operating Characteristic) curve is a plot of the true positive rate

(TPR) against the false positive rate (FPR) for different threshold values of the

model’s predicted scores. The TPR represents the proportion of relevant experts

that are correctly identified by the model, while the FPR represents the proportion

of irrelevant experts that are incorrectly identified by the model.

The AUCROC is the area under the ROC curve, which provides a single value

between 0 and 1 that represents the overall performance of the model in distinguishing

between relevant and irrelevant experts. A higher AUCROC score indicates a better

performance.

To calculate the AUCROC score, the model’s predicted scores for a set of experts

are first sorted in descending order. Then, for each threshold value, the TPR and

FPR are calculated as follows:

TPR =
# of true positives

# of relevant experts
(8)

FPR =
# of false positives

# of irrelevant experts
(9)

where a true positive is a relevant expert that is correctly identified by the model,
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a false positive is an irrelevant expert that is incorrectly identified by the model, and

the number of relevant and irrelevant experts are known from the dataset.

The ROC curve is then plotted by connecting the TPR and FPR values for each

threshold value. The AUCROC score is calculated as the area under the ROC curve.

By optimizing for AUCROC, the model can be trained to prioritize the identification

of the most relevant experts while minimizing the identification of irrelevant experts,

which can lead to more effective team compositions.

4.4.2 Qualitative Evaluation

In qualitative analysis, we maintained the number of recommended experts equal to

the number of experts in the ground truth. While the ranking metrics used in the

quantitative evaluation section 4.4.1.2 examined whether the original experts were

retrieved by the team recommendation methods, the quality metrics are focused on

analyzing the quality of the recommended experts in comparison to the ones in the

ground truth using the following metrics:

4.4.2.1 Skill Association

In Skill Association based qualitative analysis, we need to identify experts who can

provide valuable insights on specific topics or skills. To do this, we compare the

recommendations of our system with the list of experts who are already known to

have the necessary expertise (the ground truth). To evaluate the performance of

our recommended experts, we count how many times each expert has worked on the

specific topics or skills in question (i.e. input). We then compare the total number of

times each recommended expert has worked with the total number of times the experts

in the ground truth have worked on the same topics or skills. If the recommended

expert has worked on the topics or skills an equal or greater number of times than

the experts in the ground truth, we consider the recommended expert to be as good

as the experts in the ground truth.

For example, suppose we have two input skills (S1 and S2) and two recommended

35



4. EXPERIMENTAL SETUP

experts (A and B), and two experts in the ground truth (C and D). We count how

many times A and B have worked on S1 and S2, and similarly, for C and D. We then

compare the total number of times A and B have worked on S1 and S2 with the total

number of times C and D have worked on those skills. If A and B have worked on S1

and S2 an equal or greater number of times than C and D, we consider A and B to

be as good as C and D.

We then report the average percentage of the recommended experts who had equal

or better skill associations in comparison to the experts in the ground truth.

4.4.2.2 Skill Expertise Ratio

In Skill Expertise Ratio based qualitative analysis, we first calculated the skill exper-

tise ratio of individual expert on each input skill. This ratio is obtained by dividing

the number of times an expert has worked on a specific input skill by the total number

of skills the expert has worked on. Once we have obtained the skill expertise ratios

for each expert and input skill, we calculate the combined skill expertise ratio of each

expert by summing up their skill expertise ratios across all input skills. This provides

us with a comprehensive measure of an expert’s overall expertise level across all input

skills.

For example, let’s say we have two input skills (S1 and S2) and two recommended

experts (A and B) and two experts in the ground truth (C and D). Let’s assume

that in the dataset experts A, B, C, and D each worked on four different skills. We

calculate the skill-expertise ratio of A on S1 by dividing the number of times A has

worked on S1 by 4. We do the same for S2. We then sum up the skill-expertise

ratios of A across all input skills to get A’s combined skill expertise ratio. We do

the same for B, C, and D. Next, we compare the combined skill expertise ratio of

A with those of C and D. If A has a combined skill expertise ratio that is equal to

or greater than both C and D, we consider A to be as good as C and D for those

input skills. Similarly, we compare the combined skill expertise ratio of B with those

of C and D. If B has a combined skill expertise ratio that is equal to or greater

than both C and D, we consider B to be as good as C and D for those input skills.
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In summary, our evaluation method involves comparing the combined skill expertise

ratios of each recommended expert with those of the experts in the ground truth to

determine whether the recommended experts are as good as the experts in the ground

truth for the given input skills.

We then report the average percentage of skill expertise ratio of the recommended

experts which were equal to or better than the experts in the ground truth.

4.4.2.3 Collaboration Score

For Collaboration Score-based qualitative analysis, we measured the number of times

the recommended experts collaborated with each other on the given set of input skills.

We then compared this number with the collaboration frequency of the experts in the

ground truth.

For example, if we have three recommended experts named A, B, C and three

experts in the ground truth named D, E, F, we would create all possible combinations

of teams using the recommended experts (AB, BC, AC) and do the same for the

experts in the ground truth (DE, EF, DF). Then, we would compare the sum of the

number of times each team in the recommended expert set collaborated to the sum

of the number of times each team in the ground truth expert set collaborated. If

a recommended team had an equal or higher collaboration score compared to the

teams in the ground truth, we considered the recommended team to be as good as

the ground truth team.

Finally, we reported the percentage of recommended teams that were equal to or

better than the teams in the ground truth.

4.5 Baselines

The following state-of-the-art are compared against our proposed model, LANT:

a) ParagraphVectors’20[13]: In this work, they incorporated Document to Vectors

method Paragraph Vectors[55] for low dimensional dense representation of sparse
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skill vectors, which are used as inputs by Variational Bayesian Neural Network

for ranking experts.

b) Metapath2Vec’21[2]: In this work, they incorporated the Heterogeneous Graph

Representation Learning method Metapath2Vec[24] for low dimensional dense

representation of sparse skill vectors, which are used as inputs by Variational

Bayesian Neural Network model for ranking experts.

Additionally, we compared the baselines and our proposed framework against

randomly selecting experts based on the input set of skills. It helps to establish the

minimum level of performance that the system must surpass to be considered useful.
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Chapter 5

Discussions, Comparisons and

Analysis

In this chapter, we compare our results with the state-of-the-art deep neural network-

based models ParagraphVectors’20 [13] andMetapath2Vec’21 [2] used in Team forma-

tion problems. We conducted our experiments on two different datasets. The details

of the experimental setup are explained in Chapter 4. Herein, we have not compared

our results with deep neural frameworks for TFP in [46] and [20] because although

they performed better than [13] but we did not notice any significant improvements

in evaluation metrics with their changes when compared with [2]. Therefore, we used

[2] as the baseline for our comparative analysis.

To determine the efficiency of our proposed framework, we measured and com-

pared the computational time for graph representation learning of our framework

against Metapath2vec used in [2] and the document-to-vector or paragraph-vector

representation learning used in [13]. Our comparative results indicate that our model

converges faster than both the previous representation learning methods.

5.1 Result Analysis

5.1.1 Quantitative Evaluation - DBLP

5.1.1.1 Computational Efficiency - DBLP

Here, we used Transductive DBLP with the attributes as shown in Table 4.3.1.
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MetaPath2Vec’21 [2] and our proposed framework LANT uses graph representa-

tion learning algorithms for generating low-dimensional real-valued vectors for nodes

in a network. In terms of computational efficiency, as shown in Figure 5.1.1, MetaP-

ath2Vec takes approximately 600 seconds for 100 epochs to generate embeddings for

the DBLP network as it trains the embeddings for each node individually. On the

other hand, LANT uses Graph Attention Networks (GAT) to train an aggregation

function using an attentive mechanism, enabling it to generate embeddings in a much

shorter time of approximately 60 seconds for the DBLP network.

ParagraphVectors’20 [13], on the other hand, uses the document to vectors tech-

nique for generating fixed-length feature representations of variable-length pieces of

text such as paragraphs, documents, or sentences. To generate the document embed-

dings for the DBLP network, Paragraph Vectors [55] takes approximately 155 seconds

for 100 epochs. It considers teams as documents and skills as document words to map

them into a real-valued embedding space. Overall, we observed a decrease of 90%

and 61% in the time taken when LANT is used instead of MetaPath2Vec’21 and

ParagraphVectors’20 correspondingly in transductive settings.

Figure 5.1.1: ParagraphVectors’20 vs Metapath2Vec’21 vs LANT - Computation Time
in Transductive DBLP
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5.1.1.2 Ranking Metrics - DBLP

Table 5.1.1 shows the performance of our proposed model against baselines in Trans-

ductive DBLP.

Table 5.1.1: Performance of LANT vs baselines models on Transductive DBLP

Transductive Learning

Metrics Models TOP@1 TOP@3 TOP@5 TOP@10

Recall (%)

Random 0.12 0.77 1.28 2.46

ParagraphVectors’20 1.17 2.23 3.20 5.34

Metapath2Vec’21 1.17 2.25 3.23 5.35

LANT 1.17 2.27 3.24 5.40

MRR (%)

Random 0.43 1.28 1.69 2.14

ParagraphVectors’20 4.42 6.02 6.67 7.43

Metapath2Vec’21 4.42 6.07 6.74 7.47

LANT 4.42 6.10 6.75 7.51

MAP (%)

Random 0.12 0.38 0.5 0.73

ParagraphVectors’20 1.17 1.63 1.88 2.22

Metapath2Vec’21 1.17 1.64 1.89 2.25

LANT 1.17 1.65 1.90 2.26

NDCG (%)

Random 0.43 0.75 1.02 1.62

ParagraphVectors’20 4.42 3.11 3.32 4.30

Metapath2Vec’21 4.42 3.14 3.35 4.33

LANT 4.42 3.15 3.40 4.35
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Table 5.1.2 shows the performance of our proposed model in Inductive DBLP. As

in inductive settings, the baseline models fail to infer low dimensional vector represen-

tation for newly added nodes in DBLP network, therefore we only calculated LANT

performance in this case.

Table 5.1.2: Performance of LANT vs baselines models on Inductive DBLP

Inductive Learning

Metrics Models TOP@1 TOP@3 TOP@5 TOP@10

Recall(%)

Random 0.06 0.3 0.43 0.77

ParagraphVectors’20 NA NA NA NA

Metapath2Vec’21 NA NA NA NA

LANT 0.42 1.08 1.42 2.55

MRR(%)

Random 0.1 0.26 0.31 0.37

ParagraphVectors’20 NA NA NA NA

Metapath2Vec’21 NA NA NA NA

LANT 0.99 1.52 1.67 1.99

MAP(%)

Random 0.06 0.15 0.18 0.23

ParagraphVectors’20 NA NA NA NA

Metapath2Vec’21 NA NA NA NA

LANT 0.42 0.70 0.78 1.00

NDCG(%)

Random 0.1 0.22 0.28 0.41

ParagraphVectors’20 NA NA NA NA

Metapath2Vec’21 NA NA NA NA

LANT 0.99 1.01 1.15 1.63
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5.1.1.3 AUCROC - DBLP

Figure 5.1.2: AUCROC - Transductive DBLP

Figure 5.1.3: AUCROC - Inductive DBLP
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5.1.2 Qualitative Evaluation - DBLP

5.1.2.1 Skill Association - DBLP

Table 5.1.3: Performance of LANT vs baselines

Models Transductive Learning Inductive Learning

Random 4.34% 5.65%

ParagraphVectors’20 67.56% NA

Metapath2Vec’21 67.58% NA

LANT 67.62% 91.45%

5.1.2.2 Skill Expertise Ratio - DBLP

Table 5.1.4: Performance of LANT vs baselines

Models Transductive Learning Inductive Learning

Random 0.43% 0.67%

ParagraphVectors’20 3.27% NA

Metapath2Vec’21 3.33% NA

LANT 3.41% 16.34%

5.1.2.3 Collaboration Score - DBLP

Table 5.1.5: Performance of LANT vs baselines

Models Transductive Learning Inductive Learning

Random 0.83% 1.42%

ParagraphVectors’20 18.77% NA

Metapath2Vec’21 18.80% NA

LANT 18.85% 27.42%
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5.1.3 Quantitative Evaluation - IMDB

5.1.3.1 Computational Efficiency - IMDB

Here, we used Transductive IMDB with the attributes as shown in Table 4.3.1. Meta-

Path2Vec’21 [2] and our proposed framework LANT uses graph representation learn-

ing algorithms for generating low-dimensional real-valued vectors for nodes in a net-

work. In terms of computational efficiency, as shown in Figure 5.1.4, MetaPath2Vec

takes approximately 850 seconds for 100 epochs to generate embeddings for the IMDB

network as it trains the embeddings for each node individually. On the other hand,

LANT uses Graph Attention Networks (GAT) to train an aggregation function using

an attentive mechanism, enabling it to generate embeddings in a much shorter time

of approximately 99 seconds for the IMDB network.

Figure 5.1.4: ParagraphVectors’20 vs Metapath2Vec’21 vs LANT - Computation Time
in Transductive IMDB
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ParagraphVectors’20 [13], on the other hand, uses the document to vectors tech-

nique for generating fixed-length feature representations of variable-length pieces of

text such as paragraphs, documents, or sentences. To generate the document embed-

dings for the IMDB network, Paragraph Vectors [55] takes approximately 675 seconds

for 100 epochs. It considers teams as documents and skills as document words to map

them into a real-valued embedding space. Overall, we observed a decrease of 88.35%

and 85.33% in the time taken when LANT is used instead of MetaPath2Vec’21 and

ParagraphVectors’20 correspondingly in transductive settings. We also notice that

there is not much significant improvement in the top positions for TOP@1, TOP@3,

and TOP@5 scores. We believe that it is because of the limitation of the long-tailed

distribution of directors (fewer directors collaborated highly, whereas the majority

collaborated sparingly) in the IMDB dataset as shown in Figure 4.3.2.
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5.1.3.2 Ranking Metrics - IMDB

Table 5.1.6 shows the performance of our proposed model against baselines in Trans-

ductive IMDB.

Table 5.1.6: Performance of LANT vs baselines models on Transductive IMDB

Transductive Learning

Metrics Models TOP@1 TOP@3 TOP@5 TOP@10

Recall (%)

Random 0.25 0.57 0.89 1.52

ParagraphVectors’20 1.21 3.21 4.49 7.75

Metapath2Vec’21 1.22 3.21 4.53 7.76

LANT 1.22 3.22 4.53 7.77

MRR (%)

Random 0.77 1.44 1.72 2.07

ParagraphVectors’20 6.48 10.73 11.49 11.94

Metapath2Vec’21 6.49 10.74 11.58 12.09

LANT 6.49 10.74 11.60 12.10

MAP (%)

Random 0.25 0.63 0.94 1.63

ParagraphVectors’20 1.21 2.15 2.61 3.64

Metapath2Vec’21 1.22 2.17 2.62 3.72

LANT 1.22 2.17 2.64 3.72

NDCG (%)

Random 0.77 1.04 1.16 1.63

ParagraphVectors’20 6.48 5.88 5.20 6.83

Metapath2Vec’21 6.49 5.88 5.23 6.85

LANT 6.49 5.89 5.23 6.86
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Table 5.1.7 shows the performance of our proposed model in Inductive IMDB. As

in inductive settings, the baseline models fail to infer low dimensional vector represen-

tation for newly added nodes in IMDB network, therefore we only calculated LANT

performance in this case.

Table 5.1.7: Performance of LANT vs baselines models on Inductive IMDB

Inductive Learning

Metrics Models TOP@1 TOP@3 TOP@5 TOP@10

Recall (%)

Random 0.13 0.39 0.56 1.02

ParagraphVectors’20 NA NA NA NA

Metapath2Vec’21 NA NA NA NA

LANT 1.02 2.61 3.84 6.55

MRR (%)

Random 0.51 0.98 1.16 1.45

ParagraphVectors’20 NA NA NA NA

Metapath2Vec’21 NA NA NA NA

LANT 5.34 8.41 9.60 10.38

MAP (%)

Random 0.13 0.30 0.40 0.61

ParagraphVectors’20 NA NA NA NA

Metapath2Vec’21 NA NA NA NA

LANT 1.02 1.82 2.16 2.77

MAP (%)

Random 0.51 0.63 0.64 0.90

ParagraphVectors’20 NA NA NA NA

Metapath2Vec’21 NA NA NA NA

LANT 5.34 4.82 4.46 5.77
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5.1.3.3 AUCROC - IMDB

Figure 5.1.5: AUCROC - Transductive IMDB

Figure 5.1.6: AUCROC - Inductive IMDB
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5.1.3.4 Skill Association - IMDB

Table 5.1.8: Performance of LANT vs baselines

Models Transductive Learning Inductive Learning

Random 13.98% 14.45%

ParagraphVectors’20 64.27% NA

Metapath2Vec’21 64.30% NA

LANT 64.32% 78.89%

5.1.3.5 Skill Expertise Ratio - IMDB

Table 5.1.9: Performance of LANT vs baselines

Models Transductive Learning Inductive Learning

Random 13.86% 14.63%

ParagraphVectors’20 57.96% NA

Metapath2Vec’21 58.03% NA

LANT 58.03% 65.27%

5.1.3.6 Collaboration Score - IMDB

Table 5.1.10: Performance of LANT vs baselines

Models Transductive Learning Inductive Learning

Random 8.52% 9.02%

ParagraphVectors’20 32.80% NA

Metapath2Vec’21 32.92% NA

LANT 32.95% 38.40%
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5.2 Consistency in Results

We ran the experiment 10 times to ensure the consistency of our proposed approach

result. Based on the small values of standard deviation and variance of the different

experiments, we can conclude that our algorithm can generate consistent results in

all measures.
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Chapter 6

Conclusions, Limitations and

Future Works

6.1 Conclusions

In this research, we proposed a novel deep learning architecture LANT for team rec-

ommendation. We overcome the computational complexity of the previously proposed

state-of-the-art models for team formation problems. This is a significant improve-

ment as it allows for faster and more efficient team recommendations. Our proposed

architecture is more robust. It can recommend teams in both transductive and in-

ductive settings, which is important for real-world applications where data can be

incomplete or missing. In transductive settings, the model is trained on a complete

set of data. In inductive settings, the model trained in the transductive settings is

used to draw inferences on the new set of data, which is not seen during training.

Overall, the proposed architecture demonstrated significant reductions in training

time compared to MetaPath2Vec’21 and ParagraphVectors’20 in both the DBLP

and IMDB datasets. Specifically, the proposed architecture achieved a 90% and

61% reduction in training time against MetaPath2Vec’21 and ParagraphVectors’20

in the DBLP dataset, and an 88.35% and 85.33% reduction in training time against

MetaPath2Vec’21 and ParagraphVectors’20 in the IMDB dataset.
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6.2 Limitations and Future Works

We observed that one of the primary limitations is the long-tailed distribution of

experts, which results in lower prediction scores in the evaluation metrics for recom-

mending experts. This issue is more commonly observed in real-world data for team

formation, and it can lead to approximation errors that result in a poor estimate

of the posterior distribution in VBNN. Additionally, the long-tailed distribution can

lead to overfitting, where the model becomes too specialized for the training data and

performs poorly on unseen data.

To mitigate the effects of the long-tailed distribution in VBNNs for team forma-

tion, several techniques can be employed. These techniques include negative sampling,

regularization, weight decay, and early stopping. Additionally, more advanced tech-

niques such as hierarchical Bayesian models and mixture density networks can be

used to capture the complex relationships between experts and their skills and help

improve the accuracy of our recommendations.

To improve the explainability of the model, we plan to experiment with various

node features and incorporate saliency maps to analyze their impact on the recom-

mendation metrics. Salience maps can help visualize the contribution of each input

feature to the final recommendation score. Furthermore, model-agnostic techniques

such as LIME (Local Interpretable Model-Agnostic Explanations) and SHAP (SHap-

ley Additive exPlanations) can be explored to provide users with more interpretable

explanations of the model’s recommendations.

Another important direction for future research is evaluating the fairness of the

team recommendation process. Techniques such as counterfactual fairness and group

fairness can be employed to ensure that the recommendations are fair across different

groups of users, such as different genders or races. We will also investigate the use

of fairness metrics such as equal opportunity and demographic parity to evaluate the

fairness of our model.
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