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Abstract

The application of functional magnetic resonance imaging (fMRI) has greatly im-

proved our comprehension of the human brain and behaviour. However, after anatom-

ical alignment, there remains large inter-individual variability in brain anatomy and

functional localization, which is one of the obstacles to conducting group studies and

performing group-level inference. This major paper addresses this problem by ap-

plying a new method (Bayesian Functional Registration) to decrease misalignment

in functional brain systems between people by spatially transforming each subject’s

functional data into a common reference map. The proposed approach allows us to

assess differences in brain function across subjects. It also creates a framework that

integrates feature- and intensity-based data and enables inference of the transforma-

tion parameters using posterior samples. Next, we evaluate the method using the

data from a study of the correspondence of categorical and feature-based representa-

tions of music in the human brain. Finally, the proposed approach shows an increased

sensitivity for group-level inference compared with the standard method, which uses

the registration estimation toolbox in Matlab.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) or functional magnetic resonance imaging (fMRI)

is a kind of technique that measures brain activity by detecting changes associated

with blood flow (Huettel et al., 2009; Rinck, 2019)[1][2]. The cerebral blood flow

is associated with neuronal activation in this technique. This is because when an

area of the brain is used, the blood flow to that area also increases. Recently, fMRI

has contributed a lot to our understanding of the neurophysiological basis of human

behavioural patterns. The major factor behind these advancements has been the

development of more sophisticated statistical and computational methods, as well as

the ability to record brain data with finer spatial and temporal resolutions. As a result

of these developments, researchers can now go deeper into the relationship between the

brain and behaviour. At the same time, these advancements help us to create models

of functional brain representations which relate to behaviour, performance, clinical

status, and prognosis at the population level (Wang et al., 2021)[3]. However, in these

1
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contexts, the differences in functional brain anatomy constitute a major obstacle to

efficiently applying emerging analytic techniques. Specifically, the activation patterns

of different subjects have different locations. As a result of overcoming this barrier,

brain models will be created at the population level more efficiently. The capability

of performing hypothesis tests at the group level will be extended, which can be used

to predict behaviour better and utilize fMRI’s full spatial resolution.

An fMRI study would generally require each participant to receive one or more

stimuli while being monitored at hundreds of time points. In order to create multi-

variate time series data, approximately 100,000 spatial positions (voxels) at each time

point are recorded to calculate the subject’s blood oxygenation level-dependent re-

sponse (BOLD) (Wang et al., 2015)[3]. To accurately perform statistical analysis over

all participants, every voxel must be located in the same brain structure. However,

since each brain is unique in terms of size and structure, it does not occur naturally.

In order to achieve this purpose, as in Wang et al. (2021)[3], every subject’s brain is

normalized to a stereotaxic space prior to all analyses. A high-resolution anatomical

scan that is spatially aligned with the fMRI data is typically employed in this process.

Standard practices involve nonlinear transformations to warp anatomical scans of in-

dividual participants into anatomically-based reference spaces, such as the “Montreal

Neurologic Institute” (MNI) space. Once the data have been transformed, they are

placed in MNI space, enabling them to be compared across subjects. (Lindquist et

al., 2008; Ombao et al., 2016)[4][5].

However, this method does not account for residual differences in brain anatomy
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or the distribution and location of functional regions around anatomical landmarks

in all individuals. It has been reported that the primary visual cortex can differ

between individuals in size and position compared to other anatomical landmarks by

up to twofold (Rademacher et al., 1993; Amunts et al., 2000)[6][7], and the same is

true for sulcal sites (Thompson et al.,1996)[8]. However, sometimes normalization

cannot address inter-individual variations. As introduced in Wang et al. (2021)[3],

the cingulate sulcus has structural dimorphism (Vogt et al., 1995)[9]; there exists

a considerable fraction of individuals with a double cingulate sulcus, resulting in

an inability to align the anatomy with the current methods. Further, functional

localization still has a significant difference even after anatomical alignment (Wang et

al., 2021)[3]. For example, the location of the motion-sensitive area MT of the visual

system may vary by more than 2cm (Duncan et al.,2009)[10]. It has been shown that

both the size of the fusiform face region, as well as the position and size of the lateral

occipital cortex, varies greatly between individuals and are located in a variety of

anatomical sulcal landmarks (Iordan et al., 2016; Allison et al., 1999; McCarthy et

al., 1999)[11][12][13]. As a result of these facts, the normalization methods used in

the regular process are ineffective.

Instead of anatomically based brain spaces, recent methods have mapped each

brain into a functional population-level reference space. The “hyper alignment” ap-

proach is the first such model (Haxby et al., 2011)[14]. In this context, the neu-

ral representational space spanning the voxels in a local neighbourhood is used to

represent brain activity patterns in response to stimuli and other cognitive events.
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Hyper alignment aligns the representational geometry between subjects by rotating

each participant’s local voxel-wise activity patterns using a Procrustes transforma-

tion. This methodology is similar in mathematical structure to Canonical Correlation

Analysis (CCA). As a result of the development of time-series data analysis tech-

niques, other research methods have been developed to align subjects while watching

movies. It has been demonstrated that functional time series alignment (Sabuncu

et al., 2010)[15] aligns voxels among individuals using a 2D “rubber sheet” warping

method, which maximizes correlations across subjects at the individual level (Hasson

et al., 2004)[16]. Another technique is functional connectivity alignment (Conroy et

al., 2013)[17], which minimizes the Frobenius norm of the difference between a sub-

ject’s connectivity matrix and a reference matrix using a shape-preserving penalty

function.

However, while this body of research has great potential for changing functional

activation patterns, it also has a number of disadvantages (Haxby et al., 2011)[14].

First, functional connectivity-based approaches require a substantial amount of rest-

ing state data. Additionally, hyper-alignment requires patients to view a substantial

movie (up to two hours) in order to be aligned. As a second point, the type of func-

tional patterns that can be appropriately aligned may be determined by the selection

of the reference data. For example, audio-visual representations are well aligned

with movie reference data as opposed to prefrontal and limbic networks (Wang et

al., 2021)[3]. In addition, functional connectivity measures have been shown to be

more effective when applied to the limbic cortex but less effective when applied to
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the object and semantic representations. It should be noted that these approaches

have not been used to investigate important clinical functions like pain or emotion.

Third, some recent studies in this field have also made some progress but have not

incorporated an explicit spatial model (Nenning et al., 2017)[18].

Following the work of Wang et al. (2021)[3], we focus on the local registration

of brain activation according to subject-specific functional activation maps. These

maps represent the results of several voxel-wise models that measure the activation

in the BOLD signal that generates from the stimulus of interest. They are spatial

maps corresponding to the regression coefficient corresponding to the predictor mod-

elled by the stimulus (for more detail, see Chapter 3). Because of the significant

spatial correlation, these coefficients estimated from a normal-error linear model can

be well described using a Gaussian process (Wang et al., 2021)[3]. All subject-specific

activation maps should be in the same anatomical space in order to ensure that voxel-

specific values are directly comparable across subjects. As previously stated, there is

still a substantial amount of individual variation in functional brain anatomy even

after anatomical registration. Hence, the data need to be registered in a common

functional space by a secondary functional registration (Wang et al., 2021)[3]. In

order to perform secondary-level registration, the floating maps will be warped (or

transformed) to the predefined reference map. Additionally, the reference map can

be a particular subject-specific activation map or a group-averaged map.

Specifically, we use the generalized Bayes method introduced by Wang et al.

(2021)[3], which allows us to crop the subject-specific activation maps to enable them
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to fit specific regions of interest (ROIs). This method implements a flexible general

loss function-based pseudo-likelihood technique to measure and correct the relative

misalignment between the floating and reference maps. The pseudo-likelihood used

here represents how similar the reference map is to the warped floating map. It can

be defined as the sum of squared differences (SSD) or any other forms based on dif-

ferent situations. Prior distributions are first estimated by matching the features of

the activation maps (defined by local peaks). After that, the priors are assigned to

the parameters corresponding to the misalignment. Moreover, the intensity correc-

tion term simultaneously accounts for the difference in activation level between the

reference map and the floating map. Since the images are discrete and defined on a

regular lattice (Banerjee et al., 2014; Cressie and Wikle, 2015)[19][20], it is necessary

to use Gaussian process-based Kriging interpolation techniques to realign the im-

ages. Finally, the parameters of the model are inferred based on the draws from the

posterior distributions. To do this, we use the Markov Chain Monte Carlo (MCMC)

algorithm implemented in Rstan (Carpenter et al., 2017)[21] to simulate the posterior

distributions.

The structure of the rest of this major paper is as follows: Chapter 2 describes the

generalized Bayesian framework and the algorithms used for functional image registra-

tion. Chapter 3 introduces the data set and data preprocessing. We also evaluate the

proposed method in this chapter and make a comparison with the standard method.

The standard method is implemented by using the registration estimation toolbox in

Matlab. The major paper concludes with a discussion in Chapter 4.



Chapter 2

Methods

Image registration is a process of establishing a relationship between the voxels in

one image (the floating map) and their corresponding spatial locations in another

image (the reference map)(Wang et al., 2021)[3]. In order to define the problem

specifically, suppose there exists a set of voxel locations S = (s1, s2, . . . , sv)
T , which

respectively located at floating map Y = (Y (s1) , Y ( s2), . . . , Y (sv))
T and reference

map R = (R (s1) , R (s2) , . . . , R(sv))
T . In addition, a transformation operator T

is used here to describe the mapping (e.g., translation, scaling or rotations), which

would be used to align floating map Y with the reference map R.

Let w stand for the collection of parameters that define the transformation func-

tion T , which is defined as T (·,w). Our objective is to estimate T via w with

the appropriate quantification of uncertainty. After that, according to the posterior

Markov Chain Monte Carlo (MCMC) samples derived from the Bayesian framework,

we can then determine credible intervals for the transformation parameters.

7
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For the traditional Bayesian solution, it is generally necessary to have a likelihood

function that depicts the connection between the floating map and the reference map.

Based on Wang et al. (2021)[3], we can choose several forms of the likelihood function.

The first one is R ∼d F (Y(T ), θ), R(s) = bY(T (s,w))+e(s), for s ∈ S. However, this

is not desirable in our context because the observed floating map is expected to be as

noisy as the reference map or even noisier. In addition, since this approach generates

numerous generative models for the shared reference map R, it becomes problematic

when dealing with multiple floating maps Yi. For the second one, we can select

the likelihood function that changes the responsibilities of Y and R. To be more

specific, this model-based approach can be denoted as: Y(s) = bR (Trv (s,w
′))+

error, where Trv (s,w
′) means the reverse transformation operator, mapping R to Y

with parameterw′. This method successfully addresses the problems above. However,

it also has some drawbacks. For example, the model fit above does not incorporate

the subject-specific features that are not present in the reference map. It is important

to note that this switched approach does not offer a direct method for registering the

floating image with the reference image. The third likelihood function form considers

inverse consistency criteria to solve the problems in the second choice. As in Wang

et al. (2021)[3], in order to apply this method, we need to utilize two loss functions,

where one defining similarity between R and Y(T ), and the other defining similarity

between Y and R (Trv). It will simultaneously estimate the forward and reverse

transformation operator T and Trv with the restriction that their composition is the

identity operator. However, since this method uses two different generative models
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Y | R (Trv) and R | Y(T ) for the same set of data (R,Y), it is not easy to make it

amenable to a fully Bayesian treatment. Due to the reasons above, we forego a fully

model-based formulation in favour of a more adaptable generic loss function-based

strategy introduced by Wang et al. (2021)[3]. This strategy can measure and correct

the relative misalignment between individual map Y and reference map R at the

same time. We go into further of this approach in the next section.

2.1 Generalized Bayes Framework for Registration

Based on the Generalized Bayes Framework introduced by Wang et al. (2021)[3], we

firstly consider a loss-function which only relative to the forward transformation, de-

noted as ℓ(R,Y(T ),w), where Y(T ) = (Y (T (s1)) , . . . , Y (T (sv)))
T , here w denotes

all the possible parameters in the forward transformation and loss-function ℓ. Given

the loss-function ℓ, suppose π(w) is the prior of parameters, a posterior distribution

which does not depend on a complete probability distribution model for the data but

simply a loss function is given by:

π(w | data) = exp (−ℓ(R,Y(T ),w)) π(w)∫
exp (−ℓ(R,Y(T ),w)) π(w)dw

(2.1)

The posteriors above are called Gibbs posteriors or generalized posteriors. Their

posterior summaries are called Laplace Type Estimators (LTE) in Chernozhukov and

Hong (2003)[25]. According to Wang et al. (2021)[3], the multiple registrations to a

single template are compatible using this loss-function technique. The total loss is

calculated by adding the losses of each floating map when working with numerous



CHAPTER 2. METHODS 10

floating maps. Hence, by separating loss functions from likelihoods, the generalized

Bayes method of registration overcomes the incompatibility (described above) of a

model-based approach for registering multiple floating maps.

Furthermore, as in Wang et al. (2021)[3], we use the loss function defined below. It

uses the sum-of-squared differences (SSD) between the floating map Y and reference

map R.

ℓ(R,Y, b, ϕ,w) =
1

ϕ2
∥R− bY(T (·,w))∥2L2

(2.2)

ℓ (Y,R, b′, ϕ,w′) =
1

ϕ2
∥Y − b′R (Trv (·,w′))∥2L2

(2.3)

Where w and w′ denotes the parameters of forward and reverse transformation oper-

ators, respectively, ϕ is the scaling parameter used to control the learning rate from

the loss function and is supposed to be equal either for reverse or forward loss. Also,

the difference in intensities between the wrapped map Y and reference map R is

corrected by a factor b and b′. Additionally, to satisfy the inverse consistency require-

ment proposed by Christensen and Johnson (2001)[26] and Johnson and Christensen

(2002)[27], as in Wang et al.(2021)[3], we extend the loss function as below:

ℓic (Y,R, b, b′, ϕ,w,w′) = ℓ(R,Y, b, ϕ,w) + ℓ (Y,R, b′, ϕ,w′)

+ λrv ∥Trv(T (·))− Id(·)∥F

(2.4)

The penalty term of inverse consistency is the last term in (2.4), which limits for-

ward and reverse transformation composition to somewhat near identity. In addition,

the hyper-parameter λrv is used to balance the intensity loss and inverse consistency

penalty. Before we implement this new technique, we should first determine how spa-

tial interpolation is carried out on the discrete images to get Y(T ) used by the loss
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function (Wang et al., 2021)[3]. In addition, we should also choose the appropriate

transformation operator, reference map and hyper-parameters and the prior param-

eters used in the posterior. We first introduce how to obtain spatial interpolation in

the next section.

2.2 Kriging Interpolation

As the images are defined on a regular lattice, the discreteness leads to utilizing

Gaussian process-based kriging interpolation techniques, a point-level spatial predic-

tion (Banerjee et al., 2014; Cressie and Wikle, 2015)[19][20] while realigning images.

Hence, we assume a Gaussian process (GP) prior for the latent template to capture its

spatial features so that we can obtain warped image Y(T ) via kriging interpolation.

It is important to note that the wrapped images Y(T ) need to be evaluated for a

specific value of the transformation parameters w when the parameters are updated

via optimization or sampling using the loss function.

Kriging is an interpolation method based on a Gaussian process governed by prior

covariances, also called Gaussian process regression, originated in geostatistics and is

known as Kriging in statistics. With appropriate assumptions about the prior, krig-

ing can provide the best linear unbiased prediction (BLUP) at unsampled locations

(Chung et al., 2019)[28]. The problem is one of the usual optimal spatial predic-

tion: given observations of a random field Y = (Y (s1) , . . . , Y (sV ))
′, what is the best

predictor of variable Y at a site s0 where it has not been observed.

Before we introduce the principle of kriging interpolation used in Wang et al.
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(2021)[3], there are several elements of point-referenced modelling that need to be

illustrated first. Suppose the mean of our spatial process was denoted as µ(s) =

E(Y (s)) and the associated variance of this spatial process Y (s) exists for all s ∈

D. As a Gaussian process, Y = (Y (s1) , . . . , Y (sn))
T follows a multivariate normal

distribution for any set of {s1, s2, . . . , sn} (∀n ≥ 1).

Except strictly stationary (or strong stationary) and weak stationary (or second-

order stationary), there is another type which is called intrinsic stationary. The

definitions of the first two types of stationary are shown in Appendix A. Suppose

E[Y (s+ h)− Y (s)] = 0, and define:

E[Y (s+ h)− Y (s)]2 = Var(Y (s+ h)− Y (s)) = 2γ(h). (2.5)

The equation above makes sense only when the mean and variance of Y (s+h)−Y (s)

solely depend on h. If this is the case, we say the process is intrinsically stationary.

The function 2γ(h) is then called the variogram, and γ(h) is so called semi variogram

(Cressie and Wikle, 2015). Kriging relies on the semi variogram. In simple terms,

semivariograms quantify autocorrelation because it graphs out the variance of all

pairs of data according to distance. In general, when the distance between two points

Y (s + h) and Y (s) is short (or say ∥h∥ is small), we would expect there exists more

similarity between them. When distance ∥h∥ increases, we would expect less similarity

between Y (s+ h) and Y (s).

As in Cressie and Wikle (2015)[20], the covariance relationship between the values

of the process at any two locations can be summarized by a covariance function C

or C, where Cov(Y (s + h), Y (s)) = C(h), or say Cov(Y (si), Y (sj)) = C(si, sj).
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Therefore, based on (2.5), the relationship between variogram 2γ(h) and covariance

is shown below:

2γ(h) = Var(Y (s+ h)− Y (s))

= Var(Y (s+ h)) +Var(Y (s))− 2Cov(Y (s+ h), Y (s))

= C(0) + C(0)− 2C(h)

= 2[C(0)− C(h)].

(2.6)

Hence,

γ(h) = C(0)− C(h). (2.7)

Another important related concept is isotropy. The variogram is said to be

isotropic if the semi variogram function γ(h) relies solely on the separation vector’s

length ∥h∥; that is, if γ(h) is a real-valued function of a univariate argument and can

be written as γ(∥h∥). If not, we say it is anisotropic.

Isotropic variograms are popular due to their readability and simplicity, especially

since there are several reasonable and simple parametric forms of semi-variograms to

choose from. As in Wang et al. (2021)[3], we use the popular exponential parametric

form, which is shown below, denote ∥h∥ as d:

γ(d) =


τ 2 + σ2(1− exp(−ϕd) if d > 0

0 otherwise

(2.8)

It can also be written as C scale:

C(d) = lim
u→∞

γ(u)− γ(d) = τ 2 + σ2 −
[
τ 2 + σ2(1− exp(−ϕd))

]
= σ2 exp(−ϕd)
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Thus,

C(d) =


τ 2 + σ2 if d = 0

σ2 exp(−ϕd) if d > 0.

(2.9)

We introduce a simple example to illustrate the principle of kriging interpolation.

As in Banerjee et al. (2014), we first take a formal look at kriging in the context of

the Gaussian process. Given observations of a random field Y = (Y (s1), ..., Y (sV ))
T .

If the covariate values X = (x(s1), ..., x(sV ))
T and x0 (the covariate values at new site

s0) are available for incorporation into the analysis, the procedure is often referred to

as universal kriging. The universal kriging model has the following form:

Y = Xβ + ϵ,where ϵ ∼ NV (0,Σ) (2.10)

Y = (Y (s1), Y (s2), ..., Y (sV ))
T is a V × 1 dimensional vector that includes the re-

sponses Y (si), where i = 1, ..., V. As a particular case of universal kriging (Cressie

and Wikle, 2015)[20], X is a vector of ones of length V and is usually denoted as 1.

β in (2.10) is a scalar. ϵ is a V -dimensional vector which is the error. In addition,

Σ = C(si, sj) = σ2 exp(−ϕ dij), which is a V × V dimensional covariance matrix

with i = 1, ..., V, j = 1, ..., V , where dij = ||si − sj|| is the distance between si and sj.

For the response Y (s0) and covariate value x0 at the new site s0, the model can be

written as Y (s0) = x0β + ϵ0, where ϵ0 ∼ N (0,Σ0), Σ0 = C(s0, s0) = C(0) = τ 2 + σ2.

As in Cressie and Wikle (2015)[20], we now pose our prediction problem as follows:

we seek the function h(y) that minimizes the mean-squared prediction error,

E[(Y (s0)− h (y))2|y], (2.11)
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where y is the data we already observed. By adding and subtracting the conditional

mean E[Y (s0)|y] inside the square. Since the expectation of the cross-product term

equals zero, after grouping terms and squaring, we obtain the following:

E
[
(Y (s0)− h (y))2

∣∣y] = E
{
(Y (s0)− E[Y (s0)|y])2

∣∣y}+ {E[Y (s0)|y]− h (y)}2.

But, since the second term on the right-hand side is nonnegative, we have:

E
[
(Y (s0)− h (y))2

∣∣y] ≥ E
{
(Y (s0)− E[Y (s0)|y])2 |y

}
.

Equality holds if and only if h (y) = E[Y (s0)|y]. Hence, the predictor h(y) minimizes

the error is the conditional expectation of Y (s0) given the data y, which is E[Y (s0)|y].

Next, we show how to get the posterior mean of Y (s0). From a Bayesian point

of view, this h (y) is just the posterior mean of Y (s0). At the same time, this poste-

rior mean is linear under a Gaussian process model assumption (Cressie and Wikle,

2015)[20]. Based on the classical theory of multivariate normal, suppose Y1 is a m-

column vector, and Y2 is a (n −m) column vector. Similarly, let µ = (µ1, µ2)
T and

let
∑

=


∑

11

∑
12

∑
21

∑
22

 with
∑

21 =
∑T

12. Suppose that


Y1

Y2

 ∼ Nn




µ1

µ2

 ,


Σ11 Σ12

Σ21 Σ22



 ,Σ21 = ΣT
12,

Then, the conditional distribution Y1 | Y2 is normal and has the following mean and
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variance:

E [Y1 | Y2] = µ1 + Σ12Σ
−1
22 (Y2 − µ2) ,

Var [Y1 | Y2] = Σ11 − Σ12Σ
−1
22 Σ21.

Based on the framework above, we have Y1 = Y (s0) (the point we need to estimate at

new site s0) and Y2 = (Y (s1), . . . , Y (sv))
T . Let K0 be a V− column vector where ith

component is C(s0, si), i = 1, 2, ..., V. Let C be a V ×V -matrix where (i, j)-component

is C(si, sj), i = 1, 2, ..., V, j = 1, 2, ..., V. We then have:

Σ12 = KT
0 ,

Σ22 = Var(Y ) = C.

As in Banerjee et al. (2014)[19], we substitute these values into E(Y1|Y2 = Y ) above

and then obtain

E [Y (s0) | Y ] = xT
0 β +KT

0C
−1(Y −Xβ),

where X is a vector of ones of length V , K0 is a V × 1 dimensional vector and C is a

V ×V matrix with (i, j)th entries C(si, sj). We remark that this solution supposes we

have actually observed the covariate value x0 = x(s0) at new site s0. In practice, the

model parameter like β is unknown, it must be estimated from the data. Hence, by

using the usual weighted least squares estimator β̂ of β, where β̂ =
(
XTC−1X

)−1
XT

C−1Y , which is a scalar, we can then obtain h(y) as below:

ĥ (y) = xT
0

1TC−1Y

1TC−11
+K0

TC−1

(
Y − 1

1TC−1Y

1TC−11

)
.

However, in our context, the activation maps Y are observed on a predefined

set of V voxels (s1, . . . , sv)
T , the warped images Y(T) at the set of locations T(V )
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are acquired through spatial interpolation. Here, T(V ) = (T (s1), ..., T (sV ))
T . This

means we need to estimate several new points jointly rather than a single point above.

Hence, based on Rodolphe (2014)[29], for the joined prediction at many points, we

can use similar formulas but make some changes. First, we should note Y1 now

change to (Y (T (s1)), ..., Y (T (sV )))
T (the new points we need to obtain via inter-

polation) and Y2 = (Y (s1), . . . , Y (sv))
T . Second, Σ12 = C(T (si), sj) = KT , (i =

1, ..., V, j = 1, ..., V ), is a V × V dimensional matrix. Third, we need to assume we

have actually observed the covariate values X0 = (x(T (s1)), ..., x(T (sV ))) at new sites

(T (s1), ..., T (sV ))
T . Then based on these changes, we can obtain E [Y1 | Y2] as

E [Y1 | Y2] = XT
0 β̂ +KTC−1(Y −Xβ̂). (2.12)

As in Banerjee et al. (2014)[19] and Wang et al. (2021)[3], XT
0 and X are two V × 1

dimensional vectors of ones. β̂ =
(
XTC−1X

)−1
XT C−1Y , is still a scalar. C and K

are V ×V matrices with (i, j)th entries C(si, sj) and C(si, T (sj)) respectively. Finally,

by replacing the β̂, X0 and X in (2.12), we can get the kriging interpolator as below:

Ŷ(T ) =
1TC−1Y

1TC−11
1+KTC−1

(
Y − 1TC−1Y

1TC−11
1

)
(2.13)

Because we choose the exponential covariance kernel, i.e., C(si, sj) = σ2 exp{−ρ∥si−

sj∥}, the spatial parameters ρ and σ in the covariance kernel can be estimated with

other parameters together via the Bayesian framework.
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2.3 Transformation Operator

In general, affine transformations include, for instance, translation, scaling, homoth-

ety, similarity, reflection, rotation, shear mapping, and compositions of them in any

order or combination. Following Cederberg (2001)[30], we apply a similarity trans-

formation operator T to the generic framework for Bayesian registration suggested

by the loss function (2.4). As a special case of the general 2D affine transformation,

transformation operator T can be expressed as T (s) = As + θ, where s = (sx, sy)
T ,

θ = (θx, θy)
T ∈ R2. Matrix A in the transformation operator T relates to rotation

and scaling. In addition, A can be expressed in several ways as following proposition.

Proposition 2.3.1. If A =
(
A11 A12
A21 A22

)
, then under the constraint A11A12+A21A22 = 0,

matrix A can also be written as:

A =


cos(ω) − sin(ω)

sin(ω) cos(ω)




sign(A11)

√
A2

11 + A2
21 0

0 A22/ cos(ω)

 (2.14)

where ω = arctan (A21/A11).

Proof. In general, for the case of 2D images, matrix A can be expressed in the fol-

lowing form that is related to rotation and scaling (Wang et al., 2021)[3].

A =


cos(ω) − sin(ω)

sin(ω) cos(ω)

×


σx 0

0 σy

 ,
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where ω ∈
(
−π

2
, π
2

)
, σx > 0, σy > 0. Hence, we first rewrite the transformation matrix

A as below:

A =


A11 A12

A21 A22

 =


cosω − sinω

sinω cosω




a b

c d

 ,



a cosω − c sinω = A11 1⃝

b cosω − d sinω = A12 2⃝

a sinω + c cosω = A21 3⃝

b sinω + d cosω = A22 4⃝

From equations 1⃝ and 3⃝, we could get
c sinω = a cosω − A11

c cosω = A21 − a sinω


1⃝ × cosω = a cos2(ω)− c sinω cosω = A11 cosω

3⃝ × sinω = a sin2(ω) + c sinω cosω = A21 sinω

⇒ a = A11 cosω + A21 sinω (2.15)
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Similarly from equations 2⃝ and 4⃝, we could get
d sinω = b cosω − A12

d cosω = A22 − b sinω


2⃝ × cosω = b cos2(ω)− d sinω cosω = A12 cosω

4⃝ × sinω = b sin2(ω) + d sinω cosω = A22 sinω

⇒ b = A12 cosω + A22 sinω (2.16)

Since A =


cosω − sinω

sinω cosω

×


σx 0

0 σy

 , ω ∈
(
−π

2
, π
2

)
, then b = c = 0.

When c = 0, 
a cosω − A11 = 0 ⇒ a = A11

cosω

A21 − a sinω = 0 ⇒ sinω = A21

a

⇒ sinω =
A21

A11

cosω

⇒ tanω =
A21

A11

⇒ 1 + tan2(ω) =
A2

11 + A2
21

A2
11

=
1

cos2(ω)

⇒ cos2(ω) =
A2

11

A2
11 + A2

21

⇒ cosω =
sign (A11)A11√

A2
11 + A2

21

, sinω =
A21

A11

cosω =
sign (A11)A21√

A2
11 + A2

21

(2.17)
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When b = 0, we could obtain:

b = A12 cosω + A22 sinω =
sign (A11) (A11A12 + A22A21)√

A2
11 + A2

21

= 0

A11A12 + A22A21 = 0

(2.18)

For a, replace cosω and sinω with (2.17):

a = A11 cosω + A21 sinω =
sign (A11)A

2
11 + sign (A11)A

2
21√

A2
11 + A2

21

= sign (A11)
√

A2
11 + A2

21

(2.19)

For d, since d cosω = A22 − b sinω(cosω ̸= 0), we then replace b with (2.16):

d =
A22 − (A12 cosω + A22 sinω) sinω

cosω

=
A22

(
1− sin2 ω

)
− A12 cosω sinω

cosω
= A22 cosω − A12 sinω

(2.20)

Then, b = c = 0, a = sign (A11)
√

A2
11 + A2

21, d = A22 cosω − A12 sinω,

A =


cosω − sinω

sinω cosω




sign (A11)

√
A2

11 + A2
21 0

0 A22 cosω − A12 sinω


(2.21)

If we also replace cosω and sinω with (2.17), under the constraint we obtained from

(2.18), we will get:

A22 cosω − A12 sinω =
A22 sign (A11)A11 − A12 sign (A11)A21√

A2
11 + A2

21

=
sign (A11) [A22A11 − A12A21]√

A2
11 + A2

21

=
sign (A11)

[
A22A11 +

A2
21A22

A11

]
A11

√
A2

11 + A2
21
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=
sign (A11) · A22 · (A2

11 + A2
21)

A11

√
A2

11 + A2
21

=
A22 ·

√
(A2

11 + A2
21)

sign (A11)A11

= A22/ cosω

(2.22)

Hence,

A22 cosω − A12 sinω = A22/ cosω.

Then the decomposition of the matrix A can also be simplified as

A =


A11 A12

A21 A22

 =


cosω − sinω

sinω cosω




sign (A11)

√
A2

11 +A2
21 0

0 A22/ cosω

 .

(2.23)

We note that the expression above is the result of the QR decomposition (Wang

et al., 2021)[3]. The first term is the rotation matrix, followed by the scaling matrix.

Hence, under the constraint, we obtained from (2.18): A11A12 + A21A22 = 0, there

exists a bijection mapping between (σx, σy, ω)
T and vec(A). In addition, according

to (2.23), we can obtain positive scalings (σx > 0, σy > 0) by setting A11 > 0

and A22 > 0. In the next section, we will use this relationship to formulate the prior

for the transformation parameters.

2.4 Regularization of Prior

In the general registration problem, optimizing for transformation parameters faces

several problems. Firstly, Fischer and Modersitzki (2008)[31] highlighted a typical in-
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stance where two different registration procedures might produce the same outcome.

In this case, they subtly illustrated how either translation or rotation could produce

the same optimum. Secondly, it can be challenging to steer clear of undesirable lo-

cal optima. However, these issues can be resolved by incorporating a regularization

or penalty term. To efficiently address this problem, this idea is modified follow-

ing the method of Wang et al. (2021)[3]. In practice, the method is based on the

regularization of priors of the generalized Bayes framework.

The regularization of T is denoted by Reg(T ). Reg(T ) is used to calculate how

far the proposed T ’s transformed coordinates are from an initial warping map T0,

which is determined by the hyperparameters A0 and θ0. As in Wang et al. (2021)[3],

we consider that Reg(T ) has the following representation:

Reg(T ) =
∑
s∈R

||T (s)− T0(s)||2L2
=

∑
s∈R

||(A− A0)s+ θ − θ0||2L2
. (2.24)

Then, the regularization of T above can also be simplified as:

Reg(T ) =
∑
s∈R

[(A− A0)s+ θ − θ0][(A− A0)s+ θ − θ0]
T .

Since θ = (θx, θy)
T , s = (sx, sy)

T , then we have:

Reg(T ) = trace

(
[(A− A0)s+ θ − θ0][(A− A0)s+ θ − θ0]

T

)
.

Then

Reg(T ) = trace

(
[sx, sy,1]([A, θ]

T − [A0 , θ]
T )([sx , sy ,1]([A, θ]

T − [A0 , θ0 ]
T ))T

)
,

and then

Reg(T ) = trace

(
[sx, sy,1][M −M0 ][M −M0 ]

T [sx , sy ,1]
T

)
,



CHAPTER 2. METHODS 24

this gives

Reg(T ) = trace

(
[M −M0]

TΣs[M −M0]

)
,

where

M = [A, θ]T =


A11 A12 θx

A21 A22 θy



T

, M0 = [A0, θ0]
T , and Σs =



sTx sx sTx sy sTx1

sTx sy sTy sy sTy 1

sTx1 sTy 1 1T1


.

In addition, M0 is the prior transformation parameters of T . Similarly, the regular-

ization of Trv can also be written as:

Reg(Trv) = trace

(
[M ′ −M ′

0]
TΣs[M

′ −M ′
0]

)
,

with M ′ = [A′, θ′]T , Trv = A′s+ θ′, M ′
0 is the prior transformation parameters of Trv.

At the same time, to satisfy the inverse-consistency rules, we have A′
0(A0s+θ0)+θ′0 =

s, so that Trv0 is constrained to its inverse T0. We introduce how to apply Reg(T )

and Reg(Trv) in the generalized Bayes framework in the rest of this section.

Based on the loss function (2.4), and as in Wang et al. (2021)[3], the warped

parameters’ generalized (Gibbs) posterior distribution has the following form:

p(T, Trv, ϕ, b, b
′|Y,R) ∝ exp{−ℓic(Y,R, b, b ′, ϕ,w ,w ′)}π(T ,Trv , ϕ, b, b

′), (2.25)

where π(T, Trv, ϕ, b, b
′) = π(T |ϕ)π(Trv|ϕ)π(b′|ϕ)π(b|ϕ)π(ϕ), is the regularised prior.

Therefore, the posterior takes the form:

p(T, Trv, ϕ, b, b
′|Y,R) ∝ exp {−ℓic(Y,R, b, b ′, ϕ,w ,w ′)} · exp {log[π(T,Trv, ϕ, b, b

′)]}

= exp {−ℓic(Y,R, b, b ′, ϕ,w ,w ′) + log[π(T ,Trv , ϕ, b, b
′)]} .
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In order to apply Reg(T ) and Reg(Trv), we need to select proper priors for

T and Trv. The proper priors for T and Trv can lead the posterior include terms

related to Reg(T ) and Reg(Trv). At the same time, as in Wang et al. (2021)[3],

the intensity-correction terms are regularized by the factor (log(b) − log(b0))
2 and

(log(b′) − log(b′0))
2 in the regularization part. Without penalizing the values of b

away from some b0, the MCMC may become caught in loss function valleys centred

on a local minimum. For instance, for b = 0, the loss function will be flat for all values

of the transformation parameters w. Hence, we also need to select proper priors for b

and b′ so that the posterior includes regularization terms related to (log(b)− log(b0))
2

and (log(b′)− log(b′0))
2. The term b0 and b′0 are two hyper-parameters whose selection

will be discussed in the next section.

As in Wang et al. (2021)[3], the prior for b leading to a relation with (log(b) −

log(b0))
2, is given by log(b)|ϕ ∼ N (log(b0),

ϕ2

λb
). The prior for b′ is similar to the prior

for b. Hence, we can first obtain the priors for b and b′ as below:

π(b|ϕ) ∝ exp

{
− λb

2ϕ2
(log(b)− log(b0))

2

}
,

π(b′|ϕ) ∝ exp

{
− λ′

b

2ϕ2
(log(b′)− log(b′0))

2

}
.

The prior for M leading to a relation with Reg(T) is given by vec(M)|ϕ ∼ N2(

vec(M0),
ϕ2

λT
I ⊗Σ−1

s ), where ⊗ denotes the Kronecker product and I ∈ R2×2, is the

identity matrix. The prior for M ′ is similar to the prior M . As we mentioned above,

the priors forM andM ′ with parametersM0 andM ′
0 are used to ensure that the Gibbs

posterior distribution include Reg(T ) and Reg(Trv). Therefore, we first rewrite
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matrix M as (M1,M2), where M1 = (A11, A12, θx)
T ,M2 = (A21, A22, θy)

T . Then we

rewrite matrix M0 as (M01,M02), where M01 = (A0
11, A

0
12, θ

0
x)

T ,M02 = (A0
21, A

0
22, θ

0
y)

T .

We can then obtain the prior for the transformation parameters of T as below:

π(T |ϕ) ∝ exp

{
− λT

2ϕ2

2∑
r=1

(Mr −M0r)
TΣs(Mr −M0r)

}

= exp

{
− λT

2ϕ2
trace{(M −M0)

TΣs(M −M0)}

}

= exp

{
− λT

2ϕ2
Reg(T )

}
.

Similarly,

π(Trv|ϕ) ∝ exp

{
− λTrv

2ϕ2
trace{(M ′ −M ′

0)
TΣs(M

′ −M ′
0)}

}

= exp

{
− λTrv

2ϕ2
Reg(Trv)

}
.

Then we combine all the results above and obtain the term π(T |ϕ)π(Trvϕ)π(b
′|ϕ)π(b|ϕ)

of the Gibbs posterior distribution (2.25) as below:

π(T |ϕ)π(Trvϕ)π(b
′|ϕ)π(b|ϕ) ∝

exp

{
− λb

2ϕ2
(log(b)− log(b0))

2 − λT

2ϕ2
trace{(M −M0)

TΣs(M −M0)}

− λ′
b

2ϕ2
(log(b′)− log(b′0))

2 − λTrv

2ϕ2
trace{(M ′ −M ′

0)
TΣs(M

′ −M ′
0)}

}
.

(2.26)

As in Wang et al. (2021)[3], the terms λb, λ
′
b, λT and λTrv are the tuning parameters

used to control the trade-off between the fitting of the registration likelihood and the

regularization priors.

Finally, as in Wang et al., 2021[3], by using the standard reference prior for the

scale parameter ϕ, π ∝ 1/ϕ2, we can obtain the full Gibbs posterior distribution of the
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warping parameters by combining all the pieces in the generalized Bayes framework

as below:

p(θ, σ, w) ∝ ϕ−2V−14 exp

{
− 1

2ϕ2
∥R− bY(T )∥2L2

− 1

2ϕ2
∥Y − b′R(Tic)∥2L2

− λb

2ϕ2
((log(b)− log(b0))

2)− λT

2ϕ2
trace{(M −M0)

TΣs(M −M0)}

− λb′

2ϕ2
((log(b′)− log(b′0))

2)− λTrv

2ϕ2
trace{(M ′ −M ′

0)
TΣs(M

′ −M ′
0)}

}
.

(2.27)

We should note that by using the priors given by Wang et al. (2021)[3], the full Gibbs

posterior distribution has the terms related to the regularization of T, Trv, b, b
′. At the

same time, the explicit penalty for inverse consistency has been removed because it

is already incorporated within the selection of prior transformations.

The choice of hyperparameters like A0 and θ0 is important since it relates to the

identifiability of the registration. We show the detail about how to select proper hy-

perparameters in Section 2.5. Note here, M has 6 parameters (A11, A12, A21, A22, θx

and θy) but our transformation is defined by 5 parameters w, σx, σy, θx, θy with corre-

spond to rotation, scaling and translation. This is because the general 2D affine trans-

formation which parametrized by M is under the restriction A11A12 + A21A22 = 0.

This restriction has a one-to-one relationship between (σx, σy, ω)
T (3 parameters) and

vec(A) (4 parameters), as stated at the end of Section 2.3. Thus, as in Wang et al.

(2021)[3], we only use the multivariate normal prior for the 3-dimensional subset of

A along with θ to correspond to the priors on transformation parameters.
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2.5 Corresponding Feature-based Prior Estimation

In order to ensure the registration problem is identified, it is essential to choose

the regularization hyper-parameters b0 and M0 correctly. This section will discuss

how to estimate prior (hyper-parameters) based on corresponding features. Loss

functions (2.2) and (2.3) are solely based on the intensity information of the images

and do not use landmark information from activation maps in image registration. By

considering the landmark data, the prior (hyper-parameters) of the transformation

can be estimated. The landmark is defined as a cluster’s local maximum (maxima),

including eight neighbouring voxels (Wang et al., 2021)[3].

Let PR = {sRi ∈ R2 |i = 1 , ...,NR} and PY = {sYi ∈ R2 |i = 1 , ...,NY } denote

the landmarks of reference map and floating map, respectively. NR and NY are the

number of landmarks in the reference map and floating map. As the first step, the

coarse subregion of interest is manually determined by scientific principles. This sub-

region contains a subset of landmarks, P̂R ⊂ PR, of size denoted by N̂R. We aim to

find the corresponding subset of the landmarks p̂Y from pY . For point set matching,

many traditional methods are effective, such as Geometric Hashing (Mian et al.,

2006)[32] and Iterative Nearest Point (Yang and Medioni, 1992; Besl and McKay,

1992)[33][34]. However, these approaches fail to capture the intensity properties of

the maps. Because the size of the set of landmarks is somewhat tiny (i.e., NY < 20

and N̂R < 5), it allows us to apply the Brute Force Search approach. The Brute Force

Search method will traverse all possible subsets of pY with N̂R elements to find the
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matching landmarks.

The Procrustes analysis can be used to estimate the similarity transformation

between the landmarks. Here, we use the ABC Procrustean Algorithm, a modified

form of Procrustes analysis (Awange et al., 2008)[35], which is presented in Figure

2.1.

Figure 2.1: Procrustean 9-parameter transformation algorithm

To state this algorithm specifically, let us consider two coordinate configurations

A ∈ Rn×m and B ∈ Rn×m consisting of n points in anm-dimensional Euclidean space.
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In our context, A is the reference map, and B is the floating map. The 9-parameter

transformation problem is defined by Awange et al.(2008)[35] as below:

A = BRS+ vTT , (2.28)

where the scalar parameter S is a diagonal matrix. The diagonal corresponding

elements of S are sx, sy, sz, where si ∈ R with i = (x, y, z) being the X,Y, Z scales

in the directions, respectively. The solution of (2.28) includes nine parameters, i.e.,

three scales S ∈ R3×3, three rotations elements of R ∈ R3×3 and three translation

parameters T ∈ R3×1.

The ABC Procrustean transformation algorithm introduced by Awange et al.

(2008)[35] is presented in Figure 2.1. Before this algorithm is implemented, we must

first calculate the rotation matrix R as step 1. Following the work by Awange et

al. (2008)[35], the rotation matrix R can be obtained by using the Singular Value

Decomposition(SVD) of BTA, which is denoted as UΣVT = BTA. Then, we can

successfully calculate the rotation matrix R as step 1 using the matrix U and V

which are obtained from the SVD of BTA.

Secondly, as described in Awange et al. (2008)[35], a0 and b0 in step 3 are supposed

to be the center of mass (centroid) of the two coordinate configurations.

a0 =
1

n

n∑
i=1

ai, b0 =
1

n

n∑
i=1

bi. (2.29)

Finally, this algorithm will output all the transformation matrix R,S,T. We selected

this modified ABC Procrustean Algorithm because it can determine the specific scale

parameters in each axial direction (Wang et al., 2021)[3].
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As in Wang et al. (2021)[3], in order to search the correspondence between the

landmarks in reference and floating maps, we use the squared sum of the distance

between the query landmarks and the converted candidates. As mentioned at the

beginning of this section, we must include a constraint term to deal with the problem

of ill-posed registration to satisfy the inverse consistency. The mechanism can be

expressed in formal terms as follows:

||p̂R − Tα(p̂
Y )||2 + ||p̂Y − T−1

α (p̂R)||2 ≤ 2d (2.30)

subject to S(p̂Y − Tα(p̂
Y )) + S(p̂R − T−1

α (p̂R)) < α, where Tα is the transformation

operator which has been introduced in Section 2.3. We should note that the activation

maps are discrete realizations of continuous maps. Hence, it is proposed to choose

the distance less than the threshold d rather than minimizing the distance between

landmarks. This is because the unit of the activation map is a voxel, not a single

point. In addition, because the points within a pixel are not unique, a landmark’s

actual location may be anywhere inside a pixel. The discreteness may lead to a bias

in the coordinates of landmarks. Hence, as in Wang et al. (2021)[3], we relax the

landmark within a voxel using d = N̂R. According to the objective function (2.30), we

create a set of correspondence candidates, and based on the intensity loss, we select

the optimal correspondence.

The constraint S above is motivated by diffusion registration (Fischer and Mod-

ersitzki, 2003)[36]. Fischer and Modersitzki chose the following diffusive regularize.

This type of regularize has been applied to affine models by Chumchob and Chen

(2009)[37]. As in Wang et al. (2021)[3], it can be stated by defining a function
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D : R2 → R2 with D(p) = (D1(p), D2(p))
T = p− T (p), then

S(p− T (p)) =
1

2

∫
(|∇D1(p)|2 + |∇D2(p)|2)dp = ∥I−A||2F , (2.31)

where ∥ · ∥F denotes the Frobenius norm, I is the identity matrix, A is defined in

(2.14). The restriction specified in (2.31) is also used to determine the orientation of

p̂Y . For instance, in the case of N̂R = 3, p̂Y = {sY1 , sY2 , sY3 }, there are six potential

correspondences to p̂R, and the transformation could be calculated for each of them.

Mismatched correspondence may lead to excessive transformation, which would cause

repetitive rotation and scaling. Hence, the one minimizing S(p̂Y − Tα(p̂
Y )) is used

to determine the orientation of p̂R.

The Photometric Error Criterion (PEC) (Brunet et al., 2010)[38] is used to auto-

matically select the threshold α in (2.30). For each α, the optimization problem in

(2.30) would be implemented to determine the corresponding features and the appro-

priate transformation. The criterion fully takes advantage of intensity information

to evaluate the hyper-parameter α, which is stated as follows:

C(α) = 1

|G|
∑
p∈G

||R(p)− bY(Tα(p))||2 +
1

|G ′|
∑
p∈G′

||Y(p)− b′R(T−1
α (p))||2. (2.32)

Here, G and G ′ are the regions of interest in R and Y respectively, | · | means the

sizes of the region. We should note that (2.32) is the summation of the mean squared

error of regressing R against Y(Tα) and Y against R(T−1
α ). The scaling factor b and

b′ correct the scale difference between the target and reference maps. In addition,

b can be evaluated as the regression coefficients of R(p) against Y(Tα(p)), b′ can

be evaluated as the regression coefficients of Y(p) against R(T−1
α )(p) without an
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intercept respectively. The estimators of regression coefficients are denoted as b0 and

b′0, and they can be used as a hyper-parameter in the prior of b and b′ in Section 2.5.

By assuming a heavy-tailed distribution on the residuals, such as the Student

T distribution with a small degree of freedom, we can further construct the robust

Photometric Error Criteria (RPEC). Using RPEC, we can successfully select the

proper threshold α. Finally, the chosen α can minimize the criterion (2.32) and

create the feature correspondence. At the same time, the selected α also provides

the estimation of transformation as M0 and M ′
0. The estimators of M0 and M ′

0 will

be used as the hyper-parameters in the prior for M and M ′, respectively, defined in

Section 2.4. We can then summarize the full steps of prior estimation in the algorithm

in Figure 2.2.

Figure 2.2: Corresponding Feature-based Prior (hyper-parameter) Estimation
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2.6 Choice of Reference Map.

Selecting a suitable reference map is essential while performing image registration.

Using the group mean map as a reference across all floating maps is an option. How-

ever, this method usually makes the reference map blurry and the estimated trans-

formation much variant. The reference subject of our application is selected using

scientific information. For instance, researchers may select the functional map that

best represents the areas of interest as the reference map. We concentrate on estimat-

ing the transformation concerning discrete regions of interest rather than aligning the

full functional map. This specifically selected reference map prevents other nuisance

regions without a signal of interest from overly influencing estimation.

2.7 Model Fitting.

The draws from the posterior distribution are used to infer the parameters. Under

the default settings, we apply the Markov Chain Monte Carlo (MCMC) algorithm in

R-Stan software (Carpenter et al., 2017)[21] to simulate the posterior distributions.

R-Stan is implemented with No-U-Turn sampler (NUTS) (Hoffman and Gelman,

2014)[39]. We refer readers interested in the algorithm’s details to the original work in

Carpenter et al. 2017[21]. In addition, three different chains are fitted and initialized

at values close to the prior estimates to speed up the model fitting.

Only the regularization-controlling hyperparameters λb, λT , λb′ and λTrv are not
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determined in Section 2.5. Cross-validation is a kind of method frequently used

to select such hyper-parameters. However, using this approach incorporated into

MCMC runs is computationally intensive and needs a substantial amount of parallel

computation processing to cover all potential splits of the data. Pareto smoothed im-

portance sampling (PSIS-LOO), suggested by Vehtari et al. (2017)[40], is more sim-

ple to compute as a method for approximating leave-one-out cross-validation. Fur-

thermore, compared to Watanabe-Akaike information (WAIC; Watanabe (2010))[41],

PSIS-LOO is more robust in the finite case with weak priors or influential observa-

tions.

The Kriging interpolation, discussed in Section 2.2, is the primary source of com-

putational complexity. The order of computational complexity is O(V 3). Due to

the relatively small V in our experiment, it is computationally manageable. Nev-

ertheless, for a large V , the computation may be intractable. It is parallelizable

across subjects because we register each map independently. Parallel fitting is done

on the models using different regularization values. The convergence is assessed us-

ing internal diagnostics provided by R-STAN, such as the Gelman-Rubin potential

scale reduction factor. The full software implementation of our method is based on

https : //github.com/gqwang1001/BayesianFunctionalRegistrationOfFMRIMaps.

https://github.com/gqwang1001/BayesianFunctionalRegistrationOfFMRIMaps
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Practical Application and Analysis

of Real Dataset

3.1 Introduction of Data Set

The data are from an fMRI study of the correspondence of categorical and feature-

based representations of music in the human brain; see Nakai et al. (2021)[22] for an

in-depth discussion. In the MRI and behavioural studies, five healthy participants

with normal hearing (ID01-05; age range 23–33; 2 females; music experience, 4–

15 years) complete the study. Each participant provided informed consent before

participating in the study. This experiment is approved by the National Institute of

Information and Communications Technology ethics and safety committee in Osaka,

Japan.

There are 18 runs conducted for each experiment, 12 of which are regarded as

36
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training runs and 6 as test runs. During our analysis, the runs are concatenated and

analyzed together. There are 480 music clips used in the training runs, while 60 clips

are used in the test runs. A set of 10 music clips is presented four times in the same

order during each test run to ensure data repeatability. The order of the clips is ran-

domized throughout the experiment. The participants are instructed to listen to the

music clips using MRI-compatible insert headphones while focusing on a fixation cross

(Model S14, Sensimetrics) in the center of the screen. This model has been widely

applied in earlier MRI research using auditory stimuli and can reduce scanner noise.

The duration of all stimuli is 15s. For each clip, 2s of fade-in and fade-out effects

are applied, and the overall signal intensity is normalized in terms of the root mean

square. For the training runs, the first stimulus (0-15s) is the same as the last stimulus

of the previous run (600-615s). For the test runs, the first stimulus (0-15s) is the same

as the last stimulus of the same run (600-615s). The original music stimuli (GTZAN

dataset) can be found here: http : //marsyas.info/downloads/datasets.html. Accord-

ing to their self-reports, nobody slept during the experiments. The experiment is

executed for three days, with six runs performed each day.

Scanning is performed using a 3.0 T MRI scanner (TIM Trio; Siemens, Erlangen,

Germany) equipped with a 32-channel head coil. For functional scanning, they scan

68 interleaved axial slices with a thickness of 2.0 mm without a gap using a T2*-

weighted gradient echo multi-band echo-planar imaging (MB-EPI) sequence (Moeller

et al., 2010) (repetition time (TR) = 1,500 ms, echo time (TE) = 30 ms, flip angle

(FA) = 62°, field of view (FOV) = 192 × 192mm2 , voxel size = 2 × 2 × 2mm3,multi-

http://marsyas.info/downloads/datasets.html
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band factor = 4). A total of 410 volumes are obtained for each run. For anatomical

reference, we acquire high-resolution T1-weighted images of the whole brain from all

participants using a magnetization-prepared rapid acquisition gradient echo sequence

(MPRAGE, TR = 2,530 ms, TE = 3.26 ms, FA = 9°, FOV = 256 × 256 mm2 , voxel

size = 1 × 1 × 1 mm3 ).

3.2 Data preprocessing

We apply SPM8 to preprocess the data and take subject1 for example to describe all

the steps. The functional images are first corrected differences in image acquisition

time between slices using slice-timing. Below are the functional maps pre and post

slice-timing.

(a) Original Functional Map (b) Functional Map after Slice-

timing

Figure 3.1: Functional Images Pre and Post Slice-Timing.

After slice-timing, we realign (motion correct) the functional images. This rou-

tine removes movement artifacts in fMRI and PET time series (or, more generally,

https://www.fil.ion.ucl.ac.uk/spm/
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longitudinal studies) (J. Ashburner et al.,1997)[23]. The transformation details are

displayed below as plots of translation and rotation.

Figure 3.2: Details of Transformation

Figure 3.3: Functional Map after Realign

Then the structural images are co-registered to the mean functional image using

the iterative mutual information-based algorithm. At the end of co-registration, the

voxel-to-voxel affine transformation matrix and histograms for the images in the orig-

inal and final orientations are displayed. The co-registered images are displayed in

Figure 3.4.
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Figure 3.4: Normalised Mutual Information Coregistration

To match the subject’s structural image to the functional image, it is necessary to

segment the structural image. The structural image is generally segmented into gray

matter, white matter and cerebrospinal fluid. Thereafter, images are normalized to

Montreal Neurological Institute (MNI) space using SPM8’s generative segment-and-

normalize algorithm, registered images are displayed below:

Figure 3.5: Functional Images after Normalization
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Finally, these images are warped to SPM’s normative atlas using warping param-

eters estimated from co-registered high-resolution structural images and smoothed

with an 8mm full width at half maximum (FWHM) Gaussian kernel. A high-pass

filter of 180s is applied to the time series data, and the result is given in Figure 3.6.

This step suppresses the noise and effects of residual differences in functional and

gyral anatomy during inter-subject averaging.

Figure 3.6: Functional Images after Smooth

A voxel-wise general linear model (GLM) analysis is performed for each subject

using SPM8. For each music genre, boxcar regressors convolved with the canonical

hemodynamic response function (Lindquist et al., 2009)[24] are constructed to model

periods corresponding to the 15s music stimulation. Other regressors of non-interest

(i.e., nuisance variables) include (a) a run-specific intercept; (b) linear drift across

time within each run; (c) the six estimated head movement parameters (x, y, z, roll,

pitch, and yaw), their mean-centred squares, their derivatives, and squared derivative

for each run; (d) indicator vectors for outlier time points identified based on their

multivariate distance from the other images in the sample; (e) indicator vectors for
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the first two images in each run; (f) signals from white matter and ventricle (Wang et

al., 2021). For each music genre, the estimated regression coefficients corresponding to

that genre-specific regressor at each voxel are combined into a single activation map.

Hence, for each subject, we have ten different brain maps depicting the functional

response across the brain to each of the music genres. The GLM analysis result is

shown below:

Figure 3.7: GLM Analysis Result
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This work primarily focuses on the subject-specific mean across the ten different

brain maps to analyze the inter-subject variability. We use this data to perform the

functional alignment. In particular, we focus the analysis on the brain’s superior

temporal gyrus region. According to Alluri et al. (2012)[42], a strong association

exists between timbre, harmony, and rhythmic characteristics and bilateral superior

temporal gyrus (STG) activity. Additionally, Toiviainen et al. (2014)[43] found that

the bilateral STG is involved in decoding timbral characteristics. Figure 3.8 shows

a square region with sides of 30 voxels across subjects, and there exists substantial

inter-subject variability in their exact location. The superior temporal gyrus region

of the brain is explicitly chosen based on the coordinates offered by meta-analyses of

neuroimaging music studies (see, for example, NeuroSynth (Yarkoni et al., 2011)[44]).

3.3 Analysis of Real Dataset

To perform functional alignment, we use the data prepossessed in Section 3.2. Fig-

ure 3.8 below shows the region of interest of functional activation maps for all 5

participants.

Figure 3.8: Subject-specific activation maps of the region of interest across the 5

subjects. Note the differences in the location of peaks across subjects, indicating

significant inter-subject differences.
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As in Wang et al. (2021)[3], these functional activation maps are then processed

using Bradley and Roth’s adaptive thresholding (2007)[45]. The regional maxima of

the neighbourhood of eight nearby locations are then determined as landmarks which

are shown in Figure 3.9.

Figure 3.9: The features (local peaks) are circled.

The left panel of Figure 3.10(a) shows the reference functional activation map

based on Section 2.6. The query part of the map is manually cropped and shown

within the dashed rectangle and in Panel (b).

(a) Activation Map (b) Query Map

Figure 3.10: (a) An example of a functional activation map. A query map indicating

landmarks of interest is manually determined and shown within the dashed rectangle

when used as a reference map. (b) The query map extracted from the reference map.

The subject-specific maps are shown in Figure 3.11, and the estimated correspond-
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ing areas based on prior information obtained from Section 2.5 are indicated using

the dashed boxes.

Figure 3.11: The corresponding cropped area (bounding box) based on prior infor-

mation in each subject-specific map. The features (local peaks) are circled.

Figure 3.12 shows the matching area warped by the posterior mean of transfor-

mation, along with the 95% credible region of the transformations superimposed in

the gray-shaded region.

Figure 3.12: The warped bounding box using the transformation computed with the

posterior mean is shown in the solid line. The 95% credible interval of the transfor-

mation map is illustrated in the shaded area.

The density-based clustering algorithm (DBSCAN), developed by Ester et al.(1996)[46],

is used to identify the credible region of transformation (Wang et al., 2021)[3]. The

DBSCAN algorithm is an unsupervised clustering method that divides clusters ac-

cording to their densities. We specify the epsilon region with at least five samples

to apply DBSCAN and use a grid search of the size of the epsilon neighbourhood to

ensure that the only cluster captures approximately 95% of the posterior samples.
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Each posterior sample of the transformation then warps the searching box and gen-

erates the shaded area in Figure 3.12. The estimated credible regions can be used to

display the inter-subject variation in registration. For instance, subject 01 exhibits a

high degree of uncertainty, while subject 02 exhibits relatively low uncertainty.

We contrast the results to those obtained by the general standard method us-

ing Registration Estimator in the image processing toolbox in MATLAB (version

R2021a). After that, we conduct a second-level (across-subjects) study to test for

significant music-related effects to evaluate the performance of the functional align-

ment process. Results are displayed in Figure 3.13. Note that all methods should first

perform an initial anatomical registration into a standard anatomical space which has

been discussed in Section 3.2.

The proposed method shows increased similarity in the activation profiles across

subjects by studying the voxel-wise group means, standard deviations and t-statistics

from the two methods. In addition, from the standard deviation of (c) and (d)

in Figure 3.13, the lighter colour in (d) means by using the proposed method, the

variation between subjects is decreased. At the same time, we can find that (d) is

more concentrated on the regions of interest compared with (c). It means while the

locations of the peaks are now consistent across subjects, the inter-subject differences

in intensity remain. This is important for testing for brain-behaviour correlations

across subjects because we want to increase the similarity between different subjects

but keep the large difference within each subject. The difference within a subject

usually relates to different brain functions.
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In general, the specific part of the brain shows more sensitivity (higher voxel

value) when the stimuli it receives are related to the function of that part. Hence, the

deeper colour in (f) compared with (e) represents the proposed method has higher

t-statistic values than the standard method, indicating increased sensitivity for group-

level inference. The full t-statistic values are shown in Appendix B. The standard

registration method results show a similar pattern to the proposed approach. How-

ever, the t-statistic is significantly lower, indicating a lower sensitivity for group-level

inference. Together, the results show the benefits of the proposed functional registra-

tion approach.
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(a) Mean-Standard (b) Mean-Proposed

(c) SD-Standard (d) SD-Proposed

(e) T Statistics-Standard (f) T Statistics-Proposed

Figure 3.13: A comparison between the standard approach (left column) and our

proposed approach (right column). Group-level statistics (t-statistics, group means,

group standard deviations) are calculated for both.
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Discussion

In this study, we apply a Bayesian framework based on a methodology developed by

Wang et al. (2021)[3] to minimize misalignment between people in functional brain

systems. The generalized Bayes framework combines feature-based information from

the prior estimation with intensity-based information from the loss function to enable

inference on the transformation using the posterior samples. When using fMRI data

from a study of brain activity under discrete music stimuli, the proposed registration

method increases the sensitivity for group-level inference.

However, a major shortcoming of the proposed approach is that we need to pre-

specify the template map, which may generate potential bias estimation. In addition,

the cropping box selection can impact the performance of registration. For instance,

the performance of the proposed methodology may degrade because of the outlier re-

gion when the cropping box covers redundant space (Wang et al., 2021)[3]. Finally,

in this work, we have implemented the proposed method in the two-dimensional brain

49
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map. We start with the 2D version because it enables us to give a simplified expla-

nation of the methodology. However, a three-dimensional version might be created

similarly. Hence, this proposed method has great potential to be applied to three-

dimensional brain maps. Furthermore, implementing the proposed approach in 3D

brain maps will have more practical meaning than the 2D version.

In future work, we will explore how functional registration can help us to study

based on much more subjects rather than single people. Specifically, we will examine

how functional brain representation can be used to predict behaviour, performance,

clinical status, and prognosis more accurately. One common problem within this

procedure is functional misalignment. Hence, the features used in predictive models

need to be aligned as precisely as possible to avoid impacting the accuracy of pre-

diction. Comparing the two approaches mentioned in Chapter 3, we find that the

proposed method can better correct this shortcoming than the standard method as

an initial feature alignment step. Using the proposed approach as a preliminary fea-

ture alignment step will potentially rectify the shortcoming mentioned above. At the

same time, the proposed approach allows for population-level inference to improve

the efficiency of relevant studies and expand the reference base of research subjects.

These are all the potential benefits of the proposed Bayesian functional registration.
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Appendix A: Definition of

Stationary

Definition 1. The process is said to be strictly stationary (sometimes strong sta-

tionarity) if, for any given n ≥ 1, any set of n sites {s1, . . . , sn} and any h ∈ ℜr, the

distribution of (Y (s1) , . . . , Y (sn)) is the same as that of (Y (s1 + h) , . . . , Y (sn + h))

(Banerjee et al., 2014)[19].

Definition 2. A spatial process is called weakly stationary if µ (s) ≡ µ � (i.e., it has

a constant mean) and Cov (Y (s) , Y (s+ h)) = C (h) for all h ∈ Rr(Banerjee et al.,

2014)[19].
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Appendix B: T-statistic

Table 1: T-statistic values of Standard Method and Proposed Method
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