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Simple Summary: O6-methylguanine-DNA methyl transferase (MGMT) methylation in glioblastoma
is an important prognostic and predictive factor that requires an invasive surgical procedure for
identification. In several recent studies, MGMT methylation prediction models were developed using
MR images, and good diagnostic performance was achieved, which seems to indicate a promising
future for radiogenomics. However, the diagnostic performance was not reproducible for numerous
research teams when using a larger dataset in the RSNA-MICCAI Brain Tumor Radiogenomic
Classification 2021 challenge. To our knowledge, there has been no study regarding the external
validation of MGMT prediction models using large-scale multicenter datasets. We tested recent CNN
architectures via extensive experiments to investigate whether MGMT methylation in gliomas can be
predicted using MRI. With unexpected negative results, approximately 80% of the developed models
showed no significant difference with the chance level of 50% in terms of external validation accuracy.
In conclusion, MGMT methylation status of gliomas may not be predictable with preoperative MRI,
even using deep learning.

Abstract: O6-methylguanine-DNA methyl transferase (MGMT) methylation prediction models
were developed using only small datasets without proper external validation and achieved good
diagnostic performance, which seems to indicate a promising future for radiogenomics. However,
the diagnostic performance was not reproducible for numerous research teams when using a larger
dataset in the RSNA-MICCAI Brain Tumor Radiogenomic Classification 2021 challenge. To our
knowledge, there has been no study regarding the external validation of MGMT prediction models
using large-scale multicenter datasets. We tested recent CNN architectures via extensive experiments
to investigate whether MGMT methylation in gliomas can be predicted using MR images. Specifically,
prediction models were developed and validated with different training datasets: (1) the merged
(SNUH + BraTS) (n = 985); (2) SNUH (n = 400); and (3) BraTS datasets (n = 585). A total of 420
training and validation experiments were performed on combinations of datasets, convolutional
neural network (CNN) architectures, MRI sequences, and random seed numbers. The first-place
solution of the RSNA-MICCAI radiogenomic challenge was also validated using the external test set
(SNUH). For model evaluation, the area under the receiver operating characteristic curve (AUROC),
accuracy, precision, and recall were obtained. With unexpected negative results, 80.2% (337/420) and
60.0% (252/420) of the 420 developed models showed no significant difference with a chance level of
50% in terms of test accuracy and test AUROC, respectively. The test AUROC and accuracy of the
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first-place solution of the BraTS 2021 challenge were 56.2% and 54.8%, respectively, as validated on
the SNUH dataset. In conclusion, MGMT methylation status of gliomas may not be predictable with
preoperative MR images even using deep learning.

Keywords: gliomas; neural network; MRI; O6-methylguanine-DNA methyl transferase; radiogenomics

1. Introduction

Glioblastoma is the most common primary central nervous system malignancy, with a
devastating median survival of 14.6 months even after operation followed by concurrent
chemoradiation therapy (CCRT) with adjuvant temozolomide (TMZ) [1]. Stupp et al.
showed that patients with O6-methylguanine-DNA methyl transferase (MGMT) silencing
by methylation have a survival benefit when treated with temozolomide. Their median
survival was 21.7 months compared with 12.7 months for those who were not treated [2],
even with long-term follow-up [3]. MGMT antagonizes the lethal effect of alkylating agents
by removing the alkyl adduct at the O6 position of guanine at the DNA level, decreasing
the cytotoxic effect of TMZ, which is an alkylating agent. During the repair process,
the methylation of MGMT induces irreversible inhibition of MGMT function, leading to
inadequate DNA repair [4]. Thus, MGMT methylation is a crucial treatment-predictive
factor in glioblastoma, which increases the chemosensitivity of TMZ [4,5]. Moreover,
MGMT methylation is prognostic, and showed longer median overall survival in the
methylated group than in the unmethylated group in a randomized controlled study.
During follow-ups, pseudoprogression after CCRT was more common in tumors with
MGMT promoter methylation in GBM, and methylation of the MGMT promoter should be
considered when interpreting follow-up MRI.

In some previous works, it was reported that glioblastoma with MGMT methyla-
tion showed mass-like edema with nodular enhancement, whereas glioblastoma without
MGMT methylation showed infiltrative edema with thick enhancement [6]. Based on these
radiological features of conventional MRI, for over a decade, many researchers developed
models to predict MGMT, including radiomics approaches using high-throughput quantita-
tive imaging features [7]. However, in most of these studies, only a small dataset was used,
or external validation was not performed, which is insufficient to report generalizability.
Moreover, performance has also been inconsistent. Han et al. [8] demonstrated a validation
accuracy of 67%, and Wei et al. showed a validation accuracy of 77% (n = 31). Finally,
the RSNA-MICCAI Brain Tumor Segmentation (BraTS) 2021 Radiogenomic Classification
challenge, or task 2 of the BraTS 2021 challenge, was held [9], and the first place solution
showed a test AUROC of 0.62, which showed a large discrepancy in performance when
compared with another previous study that reported a three-fold cross-validation accuracy
of 94.73% [8,10–12], even using a subset of the same TCIA dataset (n = 247).

The generalization of models to different datasets is one of the biggest challenges
for the application of artificial intelligence techniques in clinical radiology practice [13].
However, to our knowledge, there have been few previous reports regarding large-scale
datasets of MGMT methylation as well as external validation. The aim of our study was to
determine whether mpMRI can be used to predict MGMT promoter methylation status
using the largest dataset (n = 985). We performed extensive validation of CNN-based
prediction models with large-scale public and independent private datasets.

2. Methods and Materials
2.1. Datasets

The Institutional Review Board of Seoul National University Hospital (SNUH) ap-
proved this retrospective study with a waiver of informed consent, and this study was
carried out in accordance with the Declaration of Helsinki. From November 2014 to January
2019, 434 patients over 18 years old were consecutively and retrospectively enrolled in
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this study according to the following inclusion criteria: (1) histopathologic diagnostic
confirmation of diffuse gliomas (i.e., WHO grade II-IV astrocytoma, oligodendroglioma,
and glioblastoma) based on 2016 WHO CNS tumor classification at the initial operation;
(2) treatment-naïve MRI, and (3) underwent standard treatment, including surgery or stereo-
tactic biopsy. A total of 34 patients were excluded because of the following: (1) missing
sequences (n = 7); (2) suboptimal image quality and consequent poor coregistration (n = 8),
and (3) unavailable initial MGMT promoter methylation status (n = 19) (Figure 1). Finally,
a total of 400 patients who underwent all four conventional MRI scans were enrolled in
the study. Because the WHO classification system was changed in 2021, which was the
time after the pathologic diagnosis was made, the pathologic diagnosis of the tumors was
re-classified after enrollment. Detailed information regarding tissue diagnosis and genetic
analysis is provided in the Supplementary Material.

Figure 1. Patient inclusion and exclusion criteria. Abbreviations: T1w, T1-weighted imaging; T2w,
T2-weighted imaging; T1wCE, contrast-enhanced T1-weighted imaging; FLAIR, fluid-attenuated
inversion recovery.

To alleviate the small training dataset size, we combined the dataset from our institu-
tion, SNUH, with the BraTS 2021 training dataset (n = 585), which is a multicentered
dataset from the RSNA-MICCAI Brain Tumor Radiogenomic Classification challenge
(BraTS 2021 challenge) [9]. The BraTS dataset, one of the largest benchmarks of brain
tumor, is a retrospectively collected dataset of brain tumor and mpMRI scans acquired
from multiple institutions under standard clinical conditions. Inclusion criteria comprised
pathologically confirmed diagnosis of diffuse gliomas and available MGMT promoter
methylation status [9]. For both the BraTS and SNUH datasets, mpMRI sequences of the
brain were obtained including fast spin-echo T1-weighted imaging (T1w), T2-weighted
imaging (T2w), T2-weighted fluid-attenuated inversion recovery (FLAIR), and contrast-
enhanced T1-weighted imaging (T1wCE). For the SNUH dataset, each T1wCE experiment
was performed using a three-dimensional magnetization prepared rapid gradient echo (3D
MPRAGE) sequence before and after the administration of gadobutrol (Gadovist; Bayer,
Berlin, Germany; at a dose of 0.1 mmol/kg of body weight) in the enrolled patients. The
MR scan parameters are detailed in Supplementary Table S1.

2.2. Data Preprocessing and Model Implementation

All datasets were preprocessed using skull-stripping, coregistration, and intensity
rescaling, in an identical manner (Supplementary Figure S1). For the model architectures,
we utilized four representative convolutional neural network (CNN) architectures: Efficient-
Net [14], squeeze-and-excitation networks [15], aggregated residual transformations [16]
(i.e., SEResNet and SEResNeXt), and DenseNet [17], which are known to show robust
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performance to medical image classification tasks. The models were originally developed
for 2D images; however, they were reconstructed as 3D CNNs to efficiently take and
process the input 3D MR images. All the details on the data preprocessing and model
implementation are provided in the Supplementary material.

2.3. Experiments

To examine the effect of datasets on model performance, a total of three kinds of
experiments were performed based on different datasets (d = 3). We (1) trained the model
using the SNUH dataset and validated the model using the BraTS 2021 dataset (Experiment
1); (2) trained the model using the BraTS 2021 dataset and validated the model using the
SNUH dataset (Experiment 2), and (3) trained and validated the model using the merged
(SNUH + BraTS) dataset (Experiment 3). When using the merged dataset, we randomly
split it into training, validation and test sets using an 8:1:1 ratio.

For each experiment, we validated (1) four representative convolutional neural net-
work (CNN) architecture-based models (m = 4), and (2) seven combinations of sequences
(s = 7) as input channels to examine the effect of model architectures and input MRI se-
quences on the model performance. Thus, a total of 28 combinations were validated in each
experiment. Specifically, we tested (1) EfficientNetB0; (2) SEResNet50; (3) SEResNeXt50;
and (4) DenseNet121. The model architecture is detailed in the Supplementary material.
For seven combinations of sequences, we chose the following sequences as input features,
based on previous studies, concatenated to the channel axis: (1) FLAIR only; (2) T1w only;
(3) T1wCE only; (4) T2w only; (5) FLAIR and T1wCE; (6) FLAIR, T1wCE, and T2w; and
(7) FLAIR, T1wCE, T2w, and T1w, or all the sequences. Thus, a total of 420 (d × m × s × r)
experiments were performed. To ensure the robustness of the results, each experiment was
repeated five times using different seed numbers (i.e., 0, 42, 1234, 1000 and 9999) in each run.
The area under the receiver operating characteristic curve (AUROC), accuracy, precision,
and recall were assessed for model evaluation. The best models were selected based on
the highest AUROC. In addition, the reproducibility of the BraTS 2021 challenge first and
second place solutions were externally validated using the SNUH dataset (Experiment 4).

Statistical analysis is detailed in the Supplementary material.

3. Results
3.1. Patient Characteristics

In the SNUH dataset (n = 400; 240 (60%) men, mean age, 52.3 ± 15.2 years old), age
was not significantly different between methylation groups (p = 0.655) (Table 1). According
to WHO CNS tumor classification 2021, patients with adult-type diffuse gliomas were
enrolled in the study: astrocytoma, IDH-mutant (n = 63); oligodendroglioma, IDH-mutant,
1p/19q-codeleted (n = 33); and glioblastoma, IDH-wildtype (n = 304). MGMT methylation
occurred in (1) 307 out of 585 patients (52.5%) in the BraTS dataset (n = 585); (2) 197 out
of 400 patients (49.3%) in the SNUH dataset, and (3) 504 out of 985 patients (51.2%) in the
merged dataset. The proportion of methylation was not significantly different between
the two datasets (p = 0.319). Progression-free survival (PFS) was significantly longer
(median, 396 days (95% confidence interval (CI), 328–526 days)) vs. 974 days (95% CI,
698–1302 days)) in the methylated group than in the unmethylated group (p < 0.0001)
(Supplementary Figure S2). Patients with methylated MGMT showed a hazard ratio (HR)
of 0.50 (95% CI, 0.37–0.67). In subgroup analysis of glioblastoma, IDH-wildtype according
to WHO CNS tumor classification 2021, PFS was significantly longer (median, 514 days
(95% CI, 438–676 days) vs. median, 328 days (95% CI, 285–387 days)) in the methylated
group than in the unmethylated group (p = 0.0001) (Supplementary Figure S2), and patients
with methylated MGMT showed a HR of 0.51 (95% CI, 0.36–0.72). However, PFS showed
no difference between the MGMT methylated and unmethylated groups in the IDH-mutant
subgroup: mean, 1949 (95% CI, 1722–2177) vs. 1650 (95% CI, 1263–2037) days (p = 0.871);
HR, 0.91 (95% CI, 0.30–2.76). Detailed patient characteristics for the SNUH dataset are
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summarized in Table 1. Patient characteristics for the BraTS dataset are available by the
BraTS 2021 challenge [9].

Table 1. Patient demographics and genetic information.

Number of
Patients

Age, Mean ±
SD (Years)

PFS, Median
(95% CI) (Days) p Value

Sex
Male 240 (60%) 52.6 ± 15.7 327 (287–372)

0.655Female 160 (40%) 51.9 ± 14.7 362 (301–481)

MGMT
Unmethylated 203 (50.8%) 52.6 ± 15.6 396 (328–526)

<0.0001 *Methylated 197 (49.2%) 52.0 ± 14.9 974 (698–1302)
Abbreviations: SD = standard deviation; CI = confidence interval; MGMT = O6-methylguanine-DNA methyl-
transferase; PFS= progression-free survival. * indicates the p value for a significant difference in PFS using the
log-rank test.

3.2. Model Performance

According to seven articles searched from PubMed, the mean dataset size was 155.4 ± 84.6
(range, 59–262), and the diagnostic performance was representing by an accuracy of
62–94.7% (Table 2). Specifically, the validation dataset showed variable sizes ranging
from 20 to 82. Cross-validation was performed in two out of seven studies (3 and 10-fold)
and externally validation was performed. Three out of seven models had 3D input. A deep
learning approach was used in two out of seven studies (3D-DenseUNet and 2D-CNN with
slice-direction RNN). All the studies used either T2w or T2 FLAIR images. All the studies
used only part of all four MR sequences (i.e., 1–3 out of 4 sequences), except for one study.

Table 2. Comparison of previous prediction models of MGMT methylation.

Previous Study Dataset MR Sequence Input Feature Model
Architecture Dimension Diagnostic

Performance

Han et al. [8]
TCIA (n = 262):

Grade IV
glioblastoma

T1w, T2w, FLAIR Raw images CRNN

2D axial CNN
with RNN in
slice-direction

(z-axis)

Acc 67%
(validation), 62%
(test), precision

(67%), recall
(67%)

Sasaki et al. [11]

Osaka
International

Cancer Institute
(n = 201): Grade
IV glioblastoma

T1w, T2w, FLAIR,
T1wCE Radiomics

Supervised
principal

component
analysis

3D VOI of 1 mm
isotropic

resampled image

Acc 67% (mean
by 10-fold

cross-validation)

Levner et al. [10]

Tom Baker
Cancer Centre

(n = 59): Grade IV
glioblastoma

T2w, FLAIR,
T1wCE Texture analysis L1-regularized

neural network 2D axial Acc 87.7%

Drabycz et al. [18]

Tom Baker
Cancer Centre

(n = 59): Grade IV
glioblastoma

T2w, FLAIR,
T1wCE Texture analysis

Linear
discriminant

analysis
2D axial Acc 71%

Yogananda et al.
[12]

TCIA (n = 247);
Grade II-IV

gliomas
T2w Raw images 3D-DenseUNet 3D patch

Acc 94.7% (mean
by 3-fold

cross-validation)

Wei et al. [19]

Shanxi Medical
University

(n = 105); Grade
II-IV astrocytoma

T1wCE, FLAIR,
ADC Radiomics Logistic

regression 3D VOI
Acc 77%

(validation;
n = 31)

Korfiatis et al.
[20]

Mayo Clinic
(n = 155); Grade
IV glioblastoma

T2w, T1wCE Texture analysis

Support vector
machines,

random forest
classifiers

2D ROI AUC 0.85
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In our experiments, only 43.8% (184/420) and 39.8% (167/420) of the 420 developed
models showed better performance than chance level (50%) in terms of test accuracy and
test AUROC, respectively. In the one proportion z-test, 80.2% (337/420) and 60.0% (252/420)
of the developed models showed no significant difference with chance level (50%) in terms
of test accuracy and test AUROC (p > 0.05), respectively.

In Experiment 1, the best neural network model among 140 models achieved the
best AUROC, accuracy, precision, and recall of (1) 46.8% (mean, 46.4 ± 4.7%; range,
39.1–52.0%), 55.9% (mean, 55.9 ± 1.2%; range, 54.2–57.6%), 56.1% (mean, 55.9 ± 2.8%;
range, 53.4–60.7%), and 74.2% (mean, 83.2 ± 18.7%; range, 54.8–100.0%) on the validation
set (Table 3 and Figure 2a); and (2) 57.2% (mean, 51.6 ± 3.8%; range, 47.0–57.2%), 50.8%
(mean, 49.8 ± 1.3%; range, 48.5–51.5%), 50.0% (mean, 49.0 ± 1.8%; range, 45.9–50.5%), and
96.4% (mean, 80.4 ± 31.5%; range, 25.9–100.0%) on the test set using the BraTS dataset for
training. The best CNN architecture was EfficientNet-B0 using FLAIR-T1wCE-T2w-T1w
(all four sequences) as input sequences (Table 4 and Figure 2b).

Table 3. Comparison of model performance using different models and sequences in validation sets.

Dataset CNN
Architecture

MR Sequence
Metrics †

Best AUROC (%) Accuracy (%) Precision (%) Recall (%)

Experiment 1
(Train/valid
BraTS, Test

SNUH)

EfficientNet-B0 FLAIR-T1wCE-
T2w-T1w

46.4 ± 4.7
(39.1–52.0)

55.9 ± 1.2
(54.2–57.6)

55.9 ± 2.8
(53.4–60.7)

83.2 ± 18.7
(54.8–100.0)

Experiment 2
(Train/valid
SNUH, Test

BraTS)

SEResNeXt50 FLAIR-T1wCE 57.8 ± 8.3
(46.0–67.5)

55.5 ± 5.4
(50.0–62.5)

36.6 ± 34.0
(0.0–71.4)

44.0 ± 49.9
(0.0–100.0)

Experiment 3
(Train/valid

SNUH + BraTS,
Test SNUH +

BraTS)

SEResNet50 T2w 54.9 ± 5.4
(48.8–63.1)

57.1 ± 3.1
(53.9–61.8)

61.6 ± 10.3
(53.2–75.0)

68.7 ± 33.4
(26.1–97.8)

† Metrics were calculated using the validation set for each experiment. The mean and standard deviation were
obtained from five different models of the same CNN architectures and MR sequences trained using five different
seed numbers. Data are given as the mean ± standard deviation (range).

Table 4. Comparison of model performance using different models and sequences in test sets.

Dataset CNN
Architecture

MR Sequence
Metrics †

Best AUROC (%) Accuracy (%) Precision (%) Recall (%)

Experiment 1
(Train/valid BraTS, Test

SNUH)
EfficientNet-B0 FLAIR-T1wCE-

T2w-T1w
51.6 ± 3.8
(47.0–57.2)

49.8 ± 1.3
(48.5–51.5)

49.0 ± 1.8
(45.9–50.5)

80.4 ± 31.5
(25.9–100.0)

Experiment 2
(Train/valid SNUH,

Test BraTS)
SEResNeXt50 FLAIR-T1wCE 51.7 ± 7.7

(45.9–64.5)
51.9 ± 3.4
(47.5–55.6)

54.6 ± 5.7
(49.4–64.3)

62.0 ± 36.5
(17.6–94.1)

Experiment 3
(Train/valid SNUH +
BraTS, Test SNUH +

BraTS)

SEResNet50 T2w 51.5 ± 2.7
(48.5–55.5)

50.4 ± 3.3
(47.3–54.6)

32.6 ± 29.8
(0–55.6)

38.2 ± 43.7
(0–90.2)

Experiment 4
(BraTS winner codes,

Test SNUH)
3D-ResNet T1wCE 56.2 54.8 53.6 59.9

† Metrics were calculated using the test set for each experiment. The mean and standard deviation were obtained
from five different models of the same CNN architectures and MR sequences trained using five different seed
numbers. Data are given as the mean ± standard deviation (range).
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Figure 2. Model performance in the (a) validation (or tuning) and (b) test sets. For each of the experi-
ments, both accuracy and AUROC are shown to report the model performance in the (a) validation
(i.e., tuning) and (b) test sets. Note that the dashed red lines are the chance level (50%). The horizontal
axis is the dataset on which the model was trained/validated (i.e., trained/tuned): “Public” indicates
that the model was trained/validated on the BraTS dataset and tested on the SNUH dataset. “SNUH”
indicates that the model was trained/validated on the SNUH dataset and tested on the BraTS dataset.
“Merged” indicates that the model was trained/validated and tested with a randomly split SNUH
+ BraTS dataset. Error bars indicate the standard deviation of the metrics. Note that the validation
metrics are better than the test metrics because the model training was stopped early according to the
high validation accuracy. The red dotted lines indicate the chance level. Abbreviations: AUROC, area
under the receiver operating characteristic curve.

In Experiment 2, the best neural network model among 140 (m × s × r) models
achieved AUROC, accuracy, precision, and recall of (1) 67.5% (mean, 57.8 ± 8.3%; range,
46.0–67.5%), 62.5% (mean, 55.5 ± 5.4%; range, 50.0–62.5%), 57.1% (mean, 36.6 ± 34.0%;
range, 0.0–71.4%), and 100.0% (mean, 44.0 ± 49.9%; range, 0.0–100.0%) on the validation
set (Table 3 and Figure 2a); and (2) 52.8% (mean, 51.5 ± 2.7%; range, 48.5–55.5%), 54.6%
(mean, 50.4 ± 3.3%; range, 47.3–54.6%), 54.1% (mean, 32.6 ± 5.7%; range, 49.4–64.3%),
and 90.2% (mean, 38.2 ± 43.7%; range, 0.0–90.2%) on the test set using the SNUH dataset
for training/validation, and the BraTS dataset for testing, respectively. The best CNN
architecture was SEResNet50 using T2w as the input sequence (Table 4 and Figure 2b).

In Experiment 3, the best neural network model among 140 (m × s × r) models
achieved AUROC, accuracy, precision, and recall of (1) 48.8% (mean, 54.9 ± 5.4%; range,
48.8–63.1%), 55.1% (mean, 57.1 ± 3.1%; range, 53.9–61.8%), 53.8% (mean, 61.6 ± 10.3%;
range, 53.2–75.0%), and 91.3% (mean, 68.7 ± 33.4%; range, 26.1–97.8%) on the validation
set (Table 3 and Figure 2a); and (2) 64.5% (mean, 51.7 ± 7.7%; range, 45.9–64.5%), 55.6%
(mean, 51.7 ± 7.7%; range, 45.9–64.5%), 54.1% (mean, 54.6 ± 5.7%; range, 49.4–64.3%),
and 90.2% (mean, 62.0 ± 36.5%; range, 17.6–94.1%) on the test set using the merged
dataset to randomly split into training, validation and test sets, respectively. The best
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CNN architecture was SEResNext50 using FLAIR-T1wCE as input sequences (Table 4 and
Figure 2b).

In Experiment 4 or the validation on the BraTS 2021 challenge, the first and second
place solutions achieved AUROC, accuracy, precision, and recall of (1) 56.2, 54.8, 53.6, and
59.9% using 3D-ResNet and T1wCE only as the input sequence; and (2) 51.2, 51.3, 51.4, and
18.3% using EfficientNetB0-LSTM and FLAIR-T1wCE-T2w-T1w (all the four sequences) as
input sequences, respectively, as validated on the SNUH dataset (Table 4). We could not
validate the third place solution, which was an ensemble model with different combinations
of input MRI sequences, based on EfficientNetB3.

Comparing the test AUROC among different trained datasets, the best models trained/validated
on the BraTS dataset and tested on the SNUH dataset showed better validation AUROC
and accuracy; however, there were no significant differences (all p > 0.05 in pairwise
comparison) (Figure 2). The best models trained/validated on the merged dataset and
tested on the merged dataset showed better test AUROC and accuracy, which was also
not significant (Figure 2). Comparing the performance among different combinations
of MRI sequences, combinations including the T2 FLAIR sequence showed better test
AUROC and accuracy than others; however, there was no significant difference (all p > 0.05
in pairwise comparison) (Figure 2). The best models among the 420 models regarding
AUROC are listed in Tables 3 and 4 to show the model performance. The distribution of
data points according to the MGMT labels, specifically the probability scores predicted
from the best models of each experiment, are provided in a swarm plot (Figure 3). Full
metrics are detailed in the Supplementary material. Only AUROCs over 0.5 are listed
because an AUROC under 0.5 indicates that the model performance is worse than that of
the chance level.

Figure 3. Probability score distribution according to the MGMT labels. The probability scores were
predicted from the best model of each experiment (specified in Table 4) and obtained using the test
set specific to each experiment. Note that there is no noticeable boundary in the distribution of data
points between the groups with high and low probability scores, according to MGMT labels, which
are indicated as different colors. MGMT+ (blue) indicates the methylated MGMT promotor group,
and MGMT- (orange) indicates the unmethylated MGMT promotor group. The red dotted lines
indicate chance level. Abbreviations: MGMT, O6-methylguanine-DNA methyltransferase.

4. Discussion

MGMT methylation is an important predictive factor in glioblastoma, increasing the
chemosensitivity of TMZ [4,5], playing a role as a prognostic factor and showing longer
median overall survival than that of unmethylated groups [21]. As a result, previous
attempts have been made to predict MGMT methylation in gliomas using MRI in various
approaches. However, the diagnostic performances of these approaches were inconsistent,
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yielding large variance [8,10–12,18–20]. To our knowledge, this study is the first large-scale
multicenter validation study to investigate the generalizability of MGMT methylation
prediction using MRI in a deep learning approach.

In conventional MRI findings, nodular enhancement, ill-defined enhancing tumor mar-
gins, and mass-like edema have been reported to be associated with MGMT methylation.
In contrast, infiltrative edema and thick enhancement have been reported to be associated
with unmethylated MGMT status [6,18,22]. Based on these MRI findings, several prediction
models using radiomics, textural analysis, and neural networks have been developed in the
past decade. However, in most of the previous studies, only small-sized datasets (range,
59~264 cases) were used, and external validation using an independent dataset was not
performed [8,10–12], discouraging the deployment of the developed models in clinical
practice. Specifically, large variance was observed with respect to diagnostic performance,
with a range of 62–96% accuracy (Table 2). While most studies showed validation perfor-
mance of less than 70% accuracy [8], one study showed approximately 95% accuracy [12].
Although the diagnostic performance is variable and the dataset size is too small (smaller
than n = 262 patients; because of the rarity of the disease), which increases the risk of
overfitting, external validation has rarely been performed. Moreover, because the predic-
tion models have variable validation dataset sizes, their predictive performance are highly
dependent on the variable validation method used (i.e., cross-validation, random split
internal validation, or external validation)3, 4 [23,24]. Thus, comparing the performance
of models based on metric figures without specifying them may yield unreliable results.
In this context, new reporting standards, such as TRIPOD [13], are required and should
be validated carefully by a more thorough external dataset, especially when the training
dataset is small (n < 1000) [25].

We developed and validated MGMT methylation prediction models in conjunction
with the BraTS 2021 dataset, comprising the largest dataset (n = 985) of nearly one thousand
patients, and meticulously tested various combinations of models, input sequences, and
datasets. The seed number for randomness was also changed and compared because chang-
ing the seed number should not significantly affect model performance. As a result, in more
than 80% and 60% of the developed models, we did not see a significant difference in terms
of test AUROC and accuracy (p > 0.05), respectively, compared with the chance level of 50%
in the one proportion z-test for the prediction of MGMT methylation (Figure 2). In addition,
the first place solution of the BraTS challenge was the best model among all experiments
and showed values of 56.2, 54.8, 53.6, and 59.9% for AUROC, accuracy, precision, and
recall, respectively (Table 4). However, there were no significant differences in diagnostic
performance among the different prediction models from Experiments 1–4 (all p > 0.05).
In summary, comparing the test AUROC among different trained datasets, different CNN
architectures, and different combinations of MRI sequences, there were no significant differ-
ences in diagnostic performances in the test sets (all p > 0.05). Interestingly, the best models
in Experiment 1 (i.e., training/validation on the BraTS dataset and testing on the SNUH
dataset) showed high mean test recall (mean, 80.4 ± 31.5%) using EfficientNet-B0 and all
the MRI sequences. However, they also showed large variance in test recall, ranging from
25.9% to 100.0%, which indicates unstable performance of the prediction models. Finally,
the validation metrics were generally better than the test metrics (Figure 2a,b) because
model training was stopped early according to the high validation accuracy.

In the BraTS 2021 challenge, given the large amount of data (n = 585) with multi-
parametric inputs, none of the participants among 1555 worldwide teams, including the
first place team (AUROC, 0.62), could discover reliable MR imaging features that corre-
late with MGMT methylation in gliomas. Further analysis of the BraTS 2021 challenge
is detailed in the Supplementary material (Supplementary Figures S3 and S4). The test
AUROC and accuracy of the first place solution of the BraTS 2021 challenge were 56.2%
and 54.8%, respectively, when externally validated on the SNUH dataset, which is not
sufficient performance for clinical application. Even combining an additional dataset from
our institution, which comprises the largest (n = 985) dataset in total, the best model among
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the 420 developed models showed an AUROC and accuracy of 64.5% (mean, 51.7 ± 7.7%)
and 55.6% (mean, 51.9 ± 3.4%), respectively, on the test set using the merged dataset.
In our study, it is not yet clear what causes the poor performance. This may be caused
by (1) overfitting due to the small dataset size, and (2) different data distributions from
different hospitals. However, considering that the prediction of IDH mutation in gliomas
has shown better performance, achieving 87–92% accuracy in distinguishing IDH mutant
gliomas from IDH wild-type tumors using only conventional MRI [26,27], although this
classification task is a more difficult task than MGMT methylation prediction because of
the class imbalance of IDH mutation, it might be more plausible that MGMT mutations
may not actually be reflected by a noticeable change in mpMRI.

Conflicting results have also been reported, in that none of the conventional MRI
features showed significant differences between the two groups with or without MGMT
methylation [23,28–33]. Moreover, as frequent epigenetic changes, MGMT methylation
status changed by approximately 15% over the course of treatment 35. This may support
the idea that methylation of the MGMT promotor is not well reflected by conventional
mpMRI, and conventional imaging findings may be nonspecific except for less edema.
Interestingly, methylation of the MGMT promotor has a low extent of edema, low apparent
diffusion coefficient (ADC), and low relative cerebral blood volume (rCBV) [7].

The imaging phenotype of gliomas in multiparametric MRI is largely dependent on
genetic features other than MGMT methylation, such as IDH mutation. There appear to
be far more clinical and genetic features that more strongly determine the morphology of
gliomas in conventional MRI, and the methylation status of the MGMT promotor is only
one of the “weak” features in determining the imaging phenotype. Thus, incorporating
other genotypic information as well as advanced MR sequences, such as diffusion-weighted
and perfusion-weighted imaging, which can provide cellularity and angiogenesis for tumor
characteristics in gliomas [31,34,35], may aid in the discovery of “strong” imaging features
with higher correlations than conventional MR sequences to improve the predictive power
of MGMT methylation [36]. In summary, using a larger dataset of only conventional MRI
sequences may not significantly improve the diagnostic performance, which suggests that
additional information is required for improvement, hopefully in a prospective study in
the future.

There are several limitations to this study. (1) We cannot conclude that MGMT pre-
diction is “impossible” using conventional mpMRI. However, it was not achievable with
a dataset size of nearly 1000 via thorough experiments, including the external validation
of the first place solution of the BraTS 2021 challenge. (2) The risk of overfitting may be
alleviated by increasing the number of datasets (n = 985) to a relatively small dataset using
modern “heavy” neural network architectures with a large number (i.e., tens of millions)
of parameters, which can be used to extract good latent features compared with previous
models. (3) The prediction model did not consider IDH status because the BraTS dataset
did not have labels of IDH status for training. This warrants further investigation because
IDH status is crucial in the new WHO CNS tumor classification 2021. For future studies,
we can incorporate the IDH status to the prediction model for the MGMT methylation
in diffuse gliomas because IDH-wildtype and IDH-mutant group shows different tumor
biology, although they are classified as adult-type diffuse gliomas, which might lead to
different diagnostic performance of MGMT methylation.

5. Conclusions

In conclusion, contrary to expectations, MGMT methylation cannot be predicted using
only conventional structural MRI, even in a deep learning approach with a large-scale
multicenter dataset. Although radiogenomics has the capacity to alter how patients with
brain tumors are managed in the future, additional tumor characteristics from advanced
MRI, such as cellularity and angiogenesis, should be pursued to improve the noninvasive
diagnostic performance of MGMT methylation.
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Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/cancers14194827/s1. Figure S1: MRI preprocessing pipeline.
All 3D volume multiparametric MR images, including T1w, T2w, T1wCE, and T2 FLAIR sequences,
were skull stripped, centered, reoriented, resampled to isotropic 1mm, rigidly registered, rescaled
intensity to [0, 1], and finally resized to the same size. All the preprocessing pipeline was uniformly
applied to both BraTS and SNUH dataset. Figure S2: Progression free survival (PFS) curves accord-
ing to the methylation status of MGMT promotor in SNUH dataset (n = 400). Note that PFS was
significantly longer (median, 396 vs. 974 days) in methylated than unmethylated group (p < 0.0001).
Figure S3: The distribution of (a) randomly generated prediction AUROC scores, and (b) private
LB scores. Note that there is no difference between the two distributions, and AUROC of 1st place
solution (0.621) can be reached in top 0.13% in the distribution of the randomly generated predictions
(adopted from the BraTS 2021 challenge forum [37]). Figure S4: Shakeup plots of (a) ranks and
(b) AUROCs obtained from public vs. private leader board of the BraTS 2021 challenge. Note that
none of the submitted models show good ranks and AUROCs in both the public and private LB, but
only in either one of public or private LB (Adopted from the BraTS 2021 challenge forum [38–42]).
Table S1: MRI scan parameters.
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