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A B S T R A C T

Background: Most computed tomography (CT) denoising algorithms have been evaluated using image quality
analysis (IQA) methods developed for natural image, which do not adequately capture the texture details
in medical imaging. Radiomics is an emerging image analysis technique that extracts texture information to
provide a more objective basis for medical imaging diagnostics, overcoming the subjective nature of traditional
methods. By utilizing the difficulty of reproducing radiomics features under different imaging protocols, we
can more accurately evaluate the performance of CT denoising algorithms.
Method: We introduced radiomic feature reproducibility analysis as an evaluation metric for a denoising
algorithm. Also, we proposed a low-dose CT denoising method based on a generative adversarial network
(GAN), which outperformed well-known CT denoising methods.
Results: Although the proposed model produced excellent results visually, the traditional image assessment
metrics such as peak signal-to-noise ratio and structural similarity failed to show distinctive performance dif-
ferences between the proposed method and the conventional ones. However, radiomic feature reproducibility
analysis provided a distinctive assessment of the CT denoising performance. Furthermore, radiomic feature
reproducibility analysis allowed fine-tuning of the hyper-parameters of the GAN.
Conclusion: We demonstrated that the well-tuned GAN architecture outperforms the well-known CT denoising
methods. Our study is the first to introduce radiomics reproducibility analysis as an evaluation metric for CT
denoising. We look forward that the study may bridge the gap between traditional objective and subjective
evaluations in the clinical medical imaging field.
1. Introduction

Computed tomography (CT) is a reliable imaging test for diagnosing
diseases. The quality of CT images is affected by various scanning
parameters such as tube voltage and current. X-ray dose is directly
related to image quality [1]; a high dose allows high-quality images
to be acquired, but it can cause DNA damage and cell deformity [2].
Therefore, reconstruction algorithms try to improve the quality of
CT images acquired at low-dose parameters. The iterative reconstruc-
tion algorithm [3] is a well-known technique for reducing radiation
dose and improving image quality in CT. Recently, deep learning
has shown promising performances in the field of computer vision
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and medical image processing [4,5]. Generative adversarial networks
(GANs) [6], which are unsupervised learning networks, show excellent
performance in CT image reconstruction with low noise [7,8]. Although
GAN-based post-processing algorithms have been validated in objective
and subjective analysis, their clinical adoption is still limited.

Peak signal-to-noise ratio (PSNR) [9], structural similarity index
measure (SSIM) [10] and noise of the region of interest (ROI) are the
most widely used objective image quality metrics. They are based on
a pixel-wise difference, but the human visual system is not based on
pixel-wise perception. Thus, the evaluation results do not correlate well
with perceptual satisfaction. However, most CT denoising algorithms
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have been evaluated using PSNR, SSIM, and noise level [7,11–24].
Prior works [7,12,15,16,22,24] have shown superior performance with
subjective analysis to that with objective analyses based on PSNR
and SSIM. Since these metrics insufficiently represent texture details,
subjective analysis is necessary. Qingsong et al. [7] evaluated the
proposed CT denoising algorithm with subjective analysis regarding the
noise suppression, artifact reduction, and overall quality. It is important
to note that artifact reduction and the overall quality scores of their
method were superior to the compared methods, but the PSNR and
SSIM were not. Chenyu et al. [16] also demonstrated the performance
superiority of the CycleGAN-based CT super-resolution algorithm with
a subjective analysis based on the five aspects of image sharpness,
image noise, contrast resolution, diagnostic acceptance, and overall
quality. Their method scored higher points than the compared methods
except for the image noise score, even though the PSNR and SSIM of
the proposed method were not superior, which means a discrepancy
between the subjective and objective evaluations.

Radiomics is an emerging image analysis technique used to extract
sets of multiple features from radiographic images [25,26]. It encodes
pixel relationships in the ROI (e.g., tumor) using a variety of matrices.
Radiomics is increasingly used in diagnosis, treatment planning, and
outcome prediction [25,26]. However, lack of feature reproducibility is
its major limitation [27], mainly because radiomic features depend on
imaging protocols. In prior works [28,29], reproducibility analysis was
performed to explore robust features that do not rely on the imaging
protocols.

In this study, we introduced radiomic feature reproducibility anal-
ysis as an assessment metric for post-processed images. The repro-
ducibility of radiomics feature represents how similar the feature from
the post-processed image is to that of the target image. Thus, we can
evaluate the similarity of a texture feature of the denoised CT image to
the that of target image. We designed a GAN-based CT image denoising
algorithm and tuned the hyperparameter, considering radiomic feature
reproducibility analysis results. The architecture of the denoising model
was inspired by the Enhanced Super-Resolution Generative Adversarial
Network (ESRGAN) [30]. We replaced the residual scaling parameters
of ESRGAN with spatial and channel attention modules to improve
the model performance. Furthermore, we added a dropout layer to
the generator network and experimentally defined the dropout rate.
Since the PSNR and SSIM are not sensitive to present detailed texture
differences [31], they are not suitable for selecting the optimal dropout
rate. We demonstrated that the radiomic feature reproducibility analy-
sis enables efficient tuning of the dropout rate and a well-tuned dropout
rate improves denoising performances. The overall workflow is shown
in Fig. 1

In summary, objective texture evaluation is critical for develop-
ing CT denoising methods, but existing image quality analysis meth-
ods are inadequate for evaluating these algorithms. Our experiments
showed that the proposed method is more effective for evaluating and
configuring efficient CT denoising methods.

The remainder of this paper is organized as follows. Section 2
discusses related works on GAN for CT denoising and radiomic feature
reproducibility analysis; Section 3 presents the experimental design;
and Section 4 shows the experimental results. Finally, relevant issues
and future research plans are discussed in Section 5.

The main contributions of this study are summarized as follows:

• The radiomic feature reproducibility analysis enables evaluation
of texture details to overcome the shortcomings of traditional
image evaluation metrics such as PSNR and SSIM for CT image
denoising algorithms.

• The proposed model tuned with radiomic feature reproducibility
analysis outperformed other well-known CT denoising methods
2

2. Related work

2.1. GAN based CT denoising studies

As research on medical image processing using GAN has recently in-
creased, several GAN-based models have been proposed for the denois-
ing problem of CT images. Pixel-wisely paired CT images are necessary
for the denoising studies to translate texture patterns without struc-
tural changes. Thus, most CT denoising studies are performed using
2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand Challenge (AAPM-
Mayo) datasets comprising standard-dose CT images and pixel-wise
corresponding quarter-dose CT images. Xin Yi et al. [14] conducted a
CT denoising study using a conditional GAN with a sharpness detection
network that had a constraint function to measure the sharpness of the
generated CT image. They successfully demonstrated the effectiveness
of the sharpness loss function, but the evaluation metrics were not
enough to explicitly tell the differences. Wasserstein GAN with a gra-
dient penalty and perceptual loss (WGAN-VGG) [7], which employed a
pretrained convolutional network named as VGG, was used to measure
the perceptual difference. VGG encodes images into low-dimensional
representations using pretrained convolutional kernels, enabling com-
parison of perceptual features. The concept was excellent on improving
denoising performance, but the traditional metrics could not evaluate
perceptual quality properly. They also performed subjective analysis to
support their denoising results. You et al. [12] proposed a structurally
sensitive multi-scale GAN (SMGAN) to capture subtle structural features
while maintaining visual sensitivity by employing SSIM as a perceptual
constraint. The quantitative denoising performance of SMGAN was
not superior to those of other methods, and a subjective analysis in
terms of sharpness, noise suppression, diagnostic acceptability, con-
trast retention, and overall quality was performed by three radiologist
readers. However, the noise suppression did not outperform the L2
objective-oriented convolutional neural network (CNN) method. This
result shows that the traditional metrics are insufficient to evaluate
denoising performance appropriately. Ma et al. [20] proposed a least
squares GAN with SSIM and L1 objective functions. However, the
translated image was still blurry, and the structure did not match well
the input low-dose noisy CT. They calculated uniformity and entropy
to evaluate the texture statistics. They employed the texture evaluation
metrics; however, these were insufficient for proper comparison of
denoising performances. Objective texture evaluation is important in
developing CT denoising methods.

2.2. Radiomic feature reproducibility analysis

Machine learning has facilitated use of radiomics in diagnosing
and predicting diseases using medical images [32–34]. Since radiomics
is greatly dependent on imaging protocols, segmentation rule, and
scan-rescan robustness, all the imaging parameters and analysis pro-
tocols need to be defined in advance of the radiomics study [27].
For this reason, radiomic features in CT may not be reproducible
unless the imaging settings are pre-defined [35]. The lack of repro-
ducibility can be mitigated using deep learning-based post-processing
algorithms [36]. Recently, Lee et al. [37] proposed that deep learning-
based image conversion methods improve the reproducibility of CT
radiomic features. They converted CT images acquired with eight proto-
cols to a reference protocol CT image and evaluated the reproducibility
of radiomic features of the converted images. Choe et al. [38] investi-
gated the effect of different reconstruction kernels on radiomic features,
and the reproducibility of the radiomic feature was improved by using
the CNN. In addition, some studies [39–41] reported improvements
in radiomics feature reproducibility on well-processed CT images with
postprocessing algorithms, especially generative adversarial networks.
In this study, we propose to employ radiomic feature reproducibility
analysis as an evaluation metric for CT image denoising performance.
Furthermore, we employ radiomics feature reproducibility analysis
for the network architecture configuration and hyperparameter tuning
(dropout rate). To the best of our knowledge, this is the first attempt

in this direction.
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Fig. 1. Flow diagram of the overall workflow.
Fig. 2. Overall architecture of the proposed network. 𝑘 stands for the size of the convolutional kernel, 𝑛 stands for the number of the kernel, and 𝑠 stands for the size of the
convolutional stride. sSE stands for channel squeeze and spatial excitation module.
3. Proposed method

3.1. Problem statement for CT denoising

Assuming that 𝑥 ∈ R𝐻×𝑊 ×𝐷 denotes low-dose CT (LDCT) and
𝑦 ∈ R𝐻×𝑊 ×𝐷 denotes the corresponding standard-dose CT (SDCT), the
relationship between the two can be defined as follows:

𝑦 = 𝑇 (𝑥), (1)

where 𝑇 is a translation function that converts 𝑥 to 𝑦. 𝐻 , 𝑊 , 𝐷 denotes
height, width and depth respectively. In general, the noise distribution
3

of CT images is modeled as a complex synthesis of Poisson quantum
noise and Gaussian electronic noise [42]. Since the relationship 𝑇
between LDCT and SDCT could not be accurately established, previous
traditional denoising methods [43,44] had limited performances for
CT denoising. Our network is trained to solve the inverse problem to
produce the image �̃�. It can be expressed as:

𝑇 −1(𝑦) = �̃� ≈ 𝑥, (2)

while the network learns high-dimensional features using a non-linear
function. Consequently, it is possible to generate a denoised image
which is close to 𝑥.
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Fig. 3. Summary of the proposed network framework. G denotes the generator network, and D denotes the discriminator network. LDCT is low-dose computed tomography, SDCT
is standard-dose computed tomography, and FSDCT is fake SDCT.
3.2. Network architecture

In previous studies [7,14,24], the generator network was a fully
convolutional architecture; therefore, convolutional kernels could be
trained with images of an arbitrary size. They used sampled patches to
train the convolutional kernels in the generator network. However, we
trained the convolutional kernels with images of 512 × 512 pixels orig-
inally to generate the output images of same size. The main reason for
this approach is to measure perceptual differences between standard-
dose CT (SDCT) and fake SDCT (FSDCT) over the original dimension,
not over the locally sampled dimension. Meanwhile, the discriminator
network was trained with randomly sampled local patches to distin-
guish the local textures of SDCT and FSDCT. The overall network
architecture is depicted in Fig. 2 (see Fig. 3).

3.2.1. Discriminator network
The discriminator network D was trained to distinguish local

patches of SDCT and those of FSDCT. We randomly sampled 64 × 64
local patches five times from SDCT and at the same location from
FSDCT. D had four convolutional blocks and one convolutional layer. In
the convolutional block, the first layer had 3 × 3 convolutional kernels
with one stride and the second layer had a 3 × 3 convolutional kernel
with two strides to reduce the dimension. These two convolutional
layers had zero padding and were activated with a leaky ReLU [45]
activation. This activation had a negative slope coefficient of 0.2.
The number of convolutional feature maps was doubled through the
next convolutional block. The last convolutional layer had a 4 × 4
convolutional kernel with one stride, and it had a single probability
output.

3.2.2. Generator network
The generator network G took a 512 × 512 LDCT image as the input

and produced the same size of FSDCT as the output. The input LDCT
images were encoded to 32 feature maps through 3 × 3 convolutional
kernels with a leaky ReLU [45] activation. The encoded feature map
was fed to a dense residual block with dropout (DRBD). DRBD consisted
of three consecutive convolution layers with a leaky ReLU activation
and was connected by a residual operation. All leaky ReLU activations
had 0.3 of the negative slope coefficients. A dropout operation [46]
was applied after the block with a dropout rate of 0.5. We tested the
impact of the dropout layer and explored for the optimal dropout rate.
The experimental results could show the optimal dropout rate after the
radiomic feature reproducibility analysis.
4

In ESRGAN, the residual scaling parameter was used to prevent
unstable training caused by the large scale of residual features. We
replaced this scaling factor with the attention module to apply a train-
able discounting scale parameter. We employed Squeeze-and-Excitation
(SE) module [47] and Channel Squeeze and Spatial Excitation (sSE)
module [48] as an attention module. The SE module enhances the
feature maps with a squeeze operation that summarizes the entire
information about the feature map and an excitation operation that
scales the importance of each feature map through this. In the sSE
module, we first passed the input through a 1 × 1 convolutional
layer with a sigmoid activation to obtain squeezed information. The
weights and biases of this layer were initialized using Xavier uniform
initialization [49]. We then multiplied the squeezed information with
the original input to obtain a spatially re-calibrated feature map.

For all convolutional layers, except the last one, we used 3 × 3
convolutional kernels, and initialized their weights and biases using He
normal initialization [50]. The last convolutional layer had a kernel
size of 9 × 9, which facilitated faster learning with hyperbolic tangent
activation [51]. We initialized the weights and biases of the last layer
using Xavier uniform initialization. To preserve the dimension of the
feature map, we applied zero-padding to all the convolutional layers.

3.3. Objective functions for noise reduction

3.3.1. Adversarial loss
We employed WGAN objective losses to translate the given LDCT to

SDCT using the WGAN-GP framework [52]. The discriminator loss was
defined as:

𝐿𝐷 = −E[𝐷(𝑦)] + E[𝐷(𝐺(𝑥))] + E[(∥ ▿�̂�𝐷(�̂�) ∥2 −1)2], (3)

where E(⋅) stands for the expected value operator, 𝑦 denotes the given
SDCT, 𝑥 denotes the given LDCT, and �̂� is a randomly sampled 2D
Gaussian point on the straight line between 𝑦 and 𝐺(𝑥). The first two
terms are the discriminator loss using Wasserstein distance, and the last
term is the gradient penalty. According to [52], the adversarial loss for
the generator is defined as:

𝐿𝑎𝑑𝑣 = −E[𝐷(𝐺(𝑥))] (4)

3.3.2. Similarity loss
We adopted a multi-scale structural similarity index measure (MS-

SSIM), for more flexibility in analysis [53] as a similarity loss to
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Table 1
Objective evaluation results (mean ± standard deviation) on the test and cross-validation sets. Red and Blue indicate the best and second-best performance,
respectively.

Model Test set Cross-Validation Model parameters

PSNR (dB) SSIM PSNR (dB) SSIM

SDCT – 1.000±0.000 – 1.000±0.000 –
LDCT 27.19±1.604* 0.948±0.019* 27.595±1.041 0.946±0.012 –
BM3D 28.961±0.906* 0.949±0.016* 30.474±1.042 0.962±0.012 –
RED-CNN 30.771±1.279* 0.965±0.013* 31.156±0.741 0.966±0.008 1,848,865
AAPM Net 29.076±0.738* 0.960±0.011* 29.600±0.628 0.960±0.008 4,166,272
Framelet 30.937±1.479* 0.966±0.014 31.399±0.971 0.966±0.010 4,166,272
WGAN-VGG 27.479±0.911* 0.955±0.016* 28.530±0.345 0.960±0.005 7,756,002
Proposed 30.341±1.604 0.966±0.019 30.049±1.519 0.966±0.009 331,379

*Indicated statistical significance (p < 0.05).
obtain visually more perceptible images than a regular SSIM [10]. The
MS-SSIM was formulated as:

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇2
𝑥 + 𝜇2

𝑦 + 𝐶1)(𝜎2𝑥 + 𝜎2𝑦 + 𝐶2)
, (5)

𝑀𝑆_𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
𝑀
∏

𝑗=1
𝑆𝑆𝐼𝑀(𝑥𝑗 , 𝑦𝑗 ), (6)

where 𝐶1, 𝐶2 are constant; 𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝜎𝑦, 𝜎𝑥𝑦 denote means, standard
deviations, and cross-covariance of the given image pair (𝑥, 𝑦); 𝑥𝑗 , 𝑦𝑗 are
the given local image content at the 𝑗th level, and 𝑀 is the number of
scale levels. The MS-SSIM values are in the range of [0, 1]. The closer
the source 𝑥 is to the target 𝑦, the closer the MS-SSIM value is to 1.
The optimizer acts to minimize the cost; therefore, the dissimilarity by
MS-SSIM is the cost for the optimization, and it is expressed as follows:

𝐿𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 1 −𝑀𝑆_𝑆𝑆𝐼𝑀(𝑥, 𝑦). (7)

3.3.3. Generator loss
The generator network was trained by combining the generator

adversarial loss 𝐿𝑎𝑑𝑣 and similarity loss 𝐿𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦. In summary, the
overall generator loss was defined as:

𝐿𝐺 = 𝐿𝑎𝑑𝑣 + 𝛼𝐿𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦, (8)

where 𝛼 is the coefficient of the similarity loss term. We experimentally
set 𝛼 to 1.0 on the generative loss function.

3.4. Radiomics feature reproducibility analysis

We utilized an open-source python package, Pyradiomics [54],
to extract the radiomic features. The first step of radiomic feature
extraction is the discretization of gray values. We used 25 as the bin-
width value for features from the original intensity and 10 as the
bin-width value for features from wavelet signals, for discretization
from the given local patch. The size of the local patch was 64 × 64,
and ten patches were randomly sampled from the given FSDCT and
SDCT. We extracted 836 radiomic features, subdivided into first-order
statistics, texture features, and wavelet features. The details of em-
ployed radiomic features are as follows: 18 first-order statistics features,
24 gray-level co-occurrence matrix (GLCM), 16 gray-level run-length
matrix (GLRLM), 16 gray-level size zone matrix (GLSZM), 14 gray-level
dependence matrix (GLDM), and 5 neighboring gray-tone difference
matrix (NGTDM). The other 743 features were obtained from 8 of
the wavelet decomposition derived images. For the reproducibility
analysis, we calculated concordance correlation coefficients (CCCs),
defined by Lin [55] as a measure of the similarity of a data set 𝑌 is
to a ‘‘golden standard’’ 𝑋. We calculated the CCCs of the extracted
836 radiomic features from the patches of the denoised FSDCT image
against target SDCT images. We considered a radiomic feature with
CCC ≥ 0.85 as a significantly reproduced feature [56]. Following a
previous study [38], we counted the significantly reproduced features
(CCC ≥ 0.85) to present the denoising results effectively (see Fig. 8).
5

4. Experiments

4.1. Data sources

The dataset is ‘‘2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand
Challenge’’, containing fully anonymized patient data approved by
Mayo Clinic. It consisted of contrast-enhanced abdominal CT images
with a thickness of 3 mm and a 2-D size of 512 × 512. The quarter
dose CT was simulated with a noise level corresponding to 25% of the
full dose by adding Poisson noise before image reconstruction. In this
study, we used 2254 CT slices as training data and 224 CT slices as test
data.

4.2. Network training

In our experiments, according to the WGAN-GP, we trained the
generator and discriminator in a ratio of 5:1. We employed the adam
optimization algorithm [57] for our network training with a learning
rate = 1 × 10−4, 𝛽1 = 0, and 𝛽2 = 0.9. We trained the proposed network
using a batch size of 3 for 2000 epochs. We implemented the network
in TensorFlow 2.0.0 using an NVIDIA GeForce RTX 2080 Ti GPU.

4.3. Quantitative evaluation of denoising performance

For the denoising performance comparison, we employed one
filtering-based method and four deep learning models. The block
matching 3D (BM3D) algorithm [43] is a representative filtering-
based method that has shown good denoising performance in medi-
cal imaging fields [18,44,58]. Residual encoder–decoder CNN (RED-
CNN) [12] is a deep learning model that incorporates an auto encoder–
decoder network architecture. Deep network in wavelet domain (AAPM
Net) [11] suppresses CT-specific noise using the directional wavelet
transform coefficient of an image. Deep Convolutional Framelet
WavResNet (Framelet) [17] is an extension of AAPM Net. The model
measures residual wavelet coefficients for all sub-band decompositions.
WGAN-VGG [7] is a Wasserstein GAN-based model with a percep-
tual loss. We performed a qualitative comparison using representative
abdominal CT images from the test data (Figs. 4, 6).

We conducted hyperparameter (dropout rate) tuning and ablation
studies with a test set from a single patient to optimize the proposed
model. To ensure the reliability of the results, we performed patient-
level cross-validation with ten patients. We measured the PSNR and
SSIM of the FSDCT. Furthermore, we employed multiscale SSIM to
obtain a more accurate evaluation. Table 1 summarizes all the objective
evaluation results. The PSNR of the proposed model was 30.341 dB,
showing a difference of 0.596 dB against the Framelet, which had the
best PSNR with 30.937 dB. The SSIM of the proposed model showed a
mean value of 0.966, which is equivalent to that of the best-performing
models. The results from the cross-validation were similar to those from
the test set. In addition, the proposed model’s inspected number of
model parameters was 331,379, which is significantly lower than that

of other models. For a more detailed insight into the results obtained
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Table 2
Statistical properties of the ROI in Figs. 4 and 6.

Model Fig. 4 Fig. 6

Mean SD Mean SD

SDCT 102.847 164.666 125.667 139.928
LDCT 102.129 169.141 123.798 143.137
BM3D 101.994 161.767 123.790 136.075
RED-CNN 102.399 161.986 123.666 134.096
AAPM Net 101.876 158.104 123.986 131.759
Framelet 100.465 163.068 122.493 137.212
WGAN-VGG 98.276 165.154 120.156 137.645
Proposed 102.327 165.029 124.977 138.339

Table 3
Denoising performance evaluation with radiomic feature reproducibility analysis.

Model Intensity Wavelet Total Reproducibility

LDCT 22 135 157 18.7%
BM3D 27 177 204 24.4%
RED-CNN 27 178 205 24.5%
AAPM Net 18 140 158 18.9%
Framelet 32 170 202 24.1%
WGAN-VGG 52 230 282 33.7%
Proposed 67 313 380 45.4%
SDCT 92 744 836 100.0%

Table 4
Radiomic feature reproducibility analysis for the dropout rate tuning.

Dropout rate Intensity Wavelet Total Reproducibility

0.0 56 251 307 36.7%
0.25 52 296 348 42.4%
0.50 (Proposed) 67 313 380 45.4%
0.75 42 268 311 37.2%

by different methods, we inspected the statistical properties (mean and
standard deviations of CT intensity) from the selected regions as shown
in Figs. 4 and 6 (Table 2).

Although the proposed model achieved excellent overall perfor-
mance, the performances were not distinct from the compared methods.
The zoomed view of the ROIs in Figs. 4 and 6 are presented in Figs. 5
and 7. From the zoomed views, we recognize that the objective evalu-
ation results did not match well with the visual perception of denoised
images. This result indicates that the traditional objective metrics are
not sensitive to detect detailed perceptual differences. In addition,
we presented the absolute difference maps to visualize the denoising
results in Fig. 9. The difference maps showed that the comparison
methods reduce the noise heterogeneously or at the out of the field
of organ.

4.4. Results of radiomic feature reproducibility analysis

BM3D showed the best PSNR (Table 1). The number of significantly
reproduced radiomic features using BM3D was 204 (24.4%). How-
ever, the significantly reproduced radiomic features using the proposed
method were 380 (45.4%). All the SSIM results were not distinct but
the number of significantly reproduced radiomic features show that
the proposed method outperformed the other methods. The number of
significantly reproduced radiomic features is summarized in Table 3.
The radiomic feature reproducibility analysis results are presented in
Fig. 10. Fig. 10-(a) shows that the radiomic features of the LDCT are
not well correlated with those of SDCT. However, Fig. 10-(h) is self-
comparison and shows a complete correlation with SDCT. The feature
reproducibility of LDCT Fig. 10-(a) can be regarded as a baseline. The
proposed method showed the best feature reproducibility even though
6

some radiomic features did not meet the criteria (CCC ≥ 0.85).
4.5. Dropout rate tuning

Hinton [59] suggested preventing overfitting in neural networks,
which requires a grid-search over the dropout probabilities [60]. How-
ever, it is difficult to tune the dropout rate because denoising perfor-
mance evaluation using SSIM and PSNR are often indistinguishable
across different models. We implemented a detailed search space as
a grid of dropout rates and found out that the best dropout rate
was 0.50 in our experiments. We showed that the radiomic feature
reproducibility analysis allows us to tune the dropout rate. In Table 4,
setting the dropout rate to 0.25, 0.50, and 0.75 revealed performance
differences clearly. We selected and used a dropout rate of 0.50, which
showed the best performance in our experimental setting. We evalu-
ated the effect of dropout with PSNR, SSIM, mean, SD, and radiomic
feature reproducibility analysis. The evaluation results are summarized
in Table 5. The effect of dropout is not distinct with PSNR, SSIM, mean,
and SD, but the number of significantly reproduced radiomic features is
distinct (without dropout vs. with dropout: 36.7% vs. 45.4%). We can
confirm the improvement of denoising performance with the calibrated
dropout regularization technique.

4.6. Ablation study on model architecture

We performed ablation studies to demonstrate the effectiveness of
the network architecture design. We tested four model architectures:
one DRDB with attention, one DRDB without attention, two DRDBs
with attention, and three DRDBs with attention. The experiments were
performed with fixed seeds to have deterministic results. We compared
the performances by measuring PSNR and SSIM for all slices in the test
patient set and radiomic feature reproducibility analysis for the same
patches in Fig. 10. The one DRDB with attention module had 45.4%
of significantly reproduced radiomic features while one DRDB without
attention had 41.7% of significantly reproduced radiomic features.
When the effect of the attention module was compared using PSNR,
SSIM, mean, and SD, the effect was not distinct (with attention vs.
without attention, PSNR: 30.082 vs. 29.932, SSIM: 0.961 vs. 0.960,
mean: 124.977 vs. 125.703, SD: 138.339 vs. 137.465). This result
indicates that the attention module contributes to better denoising and
texture feature recovery. The two and three DRDBs with attention
had 20.1% and 22.6% of significantly reproduced radiomic features,
respectively. The two deeper models showed a decrease not only in
quantitative and statistical measures but also in a number of signif-
icantly reproduced radiomic features. The ablation study results are
summarized in Table 6.

4.7. Qualitative analysis

The visual assessment was performed in a blind manner by two
invited radiologists: H.J.B. with 17 years of experience and E.C. with
12 years of experience. The radiologists evaluated the image sharpness,
noise suppression, structure preservation, and overall quality using a
five-point scale, 1: non-diagnostics, 2: bad, 3: acceptable, 4: good, and
5: excellent. We provided the test cases that were processed by different
denoising methods. The scores are presented as the mean (average score
of two radiologists) ±standard deviation (SD) and are summarized in
Table 7. The results in Table 7 show that our proposed method and
LDCT obtained the highest average sharpness score of 3.5 from the
two radiologists. Our proposed method achieved the highest average
score of 3.5 for noise suppression. LDCT obtained the highest score
for structure preservation among the compared methods. However,
our proposed method obtained good scores from both radiologists for
structure preservation. The proposed method and LDCT also obtained
the highest overall quality scores among the compared methods.

These results indicate that the proposed method performs well in
terms of sharpness, noise suppression, and overall quality. Although
LDCT was evaluated slightly better in the structure preservation cat-
egory, the proposed method still scored well in this aspect.
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Fig. 4. Results from the test data sets: (a) SDCT; (b) LDCT; (c) BM3D; (d) RED-CNN; (e) AAPM Net; (f) Framelet; (g) WGAN-VGG; and (h) Proposed. The display window is [−160,
240] HU.
Fig. 5. The leftmost zoomed ROI in Fig. 4 for comparison: (a) SDCT; (b) LDCT; (c) BM3D; (d) RED-CNN; (e) AAPM Net; (f) Framelet; (g) WGAN-VGG; and (h) Proposed. The
display window is [−160, 240] HU.
Table 5
Significance of dropout layer with quantitative, statistical and radiomic feature reproducibility analysis in Fig. 4.

Model Quantitative analysis Statistical analysis Radiomic feature reproducibility analysis

PSNR SSIM Mean SD Intensity Wavelet Total Reproducibility

LDCT 26.715 0.939 123.798 143.137 22 135 157 18.7%
Proposed w/o dropout 29.981 0.961 124.766 137.697 56 251 307 36.7%
Proposed w dropout 30.082 0.961 124.977 138.339 67 313 380 45.4%
SDCT (reference) – – 125.667 139.928 92 744 836 100.0%
Table 6
Ablation study for the model architecture configuration.

Module Quantitative analysis Statistical analysis Radiomic feature reproducibility analysis

DRBD Attention PSNR SSIM Mean SD Intensity Wavelet Total Reproducibility

1 O 30.082 0.961 124.977 138.339 67 313 380 45.4%
1 X 29.932 0.960 125.703 137.465 64 285 349 41.7%
2 O 30.374 0.961 121.789 133.817 23 145 168 20.1%
3 O 27.168 0.927 128.163 133.728 22 167 189 22.6%
SDCT (reference) – – 125.667 139.928 92 744 836 100.0%
7
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Fig. 6. Results from the test data sets: (a) SDCT; (b) LDCT; (c) BM3D; (d) RED-CNN; (e) AAPM Net; (f) Framelet; (g) WGAN-VGG; and (h) Proposed. The display window is [−160,
240] HU.

Fig. 7. The rightmost zoomed ROI in Fig. 6 for comparison: (a) SDCT; (b) LDCT; (c) BM3D; (d ) RED-CNN; (e) AAPM Net; (f) Framelet; (g) WGAN-VGG; and (h) Proposed. The
display window is [−160, 240] HU.

Fig. 8. Comparison of the denoising results of the vessel region from the test data slide (a) SDCT whole image and ROI; (b) SDCT; (c) LDCT; (d) BM3D; (e) RED-CNN; (f) AAPM
Net; (g) Framelet; (h) WGAN-VGG; and (h) Proposed. The display window is [−160, 240] HU.
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Fig. 9. Absolute difference images of Fig. 6: (a) LDCT; (b) BM3D; (c) RED-CNN; (d) AAPM Net; (e) Framelet; (f) WGAN-VGG; and (g) Proposed.

Fig. 10. Results of radiomic feature reproducibility analysis with concordance correlation coefficient on Fig. 4: (a) LDCT; (b) BM3D; (c) RED-CNN; (d) AAPM Net; (e) Framelet;
(f) WGAN-VGG; (g) Proposed; and (h) SDCT.
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Table 7
Visual assessment scores by two radiologist readers.

Model Sharpness Noise
suppression

Structure
preservation

Overall quality

SDCT 5.0 ± 0.00 5.0 ± 0.00 5.0 ± 0.00 5.0 ± 0.00
LDCT 3.5 ± 0.71 3.0 ± 1.41 4.5 ± 0.71 3.5 ± 0.71
BM3D 2.5 ± 0.71 1.0 ± 0.00 2.5 ± 0.71 1.5 ± 0.71
RED-CNN 2.5 ± 0.71 2.0 ± 0.00 3.0 ± 0.00 2.0 ± 0.00
AAPM Net 2.0 ± 0.00 2.0 ± 0.00 3.0 ± 0.00 2.0 ± 0.00
Framelet 2.5 ± 0.71 1.0 ± 0.00 2.0 ± 0.00 1.0 ± 0.00
WGAN-VGG 3.0 ± 0.00 2.5 ± 0.71 3.0 ± 0.00 3.0 ± 0.00
Proposed 3.5 ± 0.71 3.5 ± 0.71 4.0 ± 0.00 3.5 ± 0.71

5. Discussion

In this study, we proposed a GAN-based low-dose CT denoising
method, which outperformed well-known CT denoising methods. It
is difficult to determine the optimal hyperparameters of GAN with
traditional image quality assessment metrics (Table 1); however, ra-
diomic feature reproducibility analysis allows the sophisticated tuning
of the hyper-parameters of GAN. This was possible since reproducibility
analysis supports in-depth texture analysis of the CT image.

The traditional image quality assessment metrics such as PSNR
and SSIM do not fully reflect perceptual difference since they are
dependent on the per-pixel differences. For example, Fig. 4 shows a
significant visual difference, but difference in evaluation metrics values
is insignificant. However, radiomic feature reproducibility analysis dis-
tinctly shows the performance difference between the compared models
(Table 3). The denoising performance evaluated using radiomic feature
reproducibility analysis was distinct, and the proposed model explicitly
showed the best denoising performance. The hypothesis that radiomics
reproducibility analysis accurately reflects perceptual differences in
image quality is supported by the qualitative analysis of radiologists
in Table 7. Among the denoising methods, the proposed method rated
the highest score in the overall quality category of visual assessment
and showed the highest reproducibility in radiomics analysis. In con-
trast, RED-CNN and Framelet, which were highly rated in PSNR and
SSIM, were evaluated as ‘‘unacceptable’’ by the radiologist. The results
support that the traditional image quality evaluation methods may not
fully capture perceptual differences. Furthermore, we explicitly showed
that radiomic feature reproducibility analysis could allow accurate con-
figuration of the network architecture and hyper-parameter setting. In
addition, we performed patient-level cross-validation with ten patients.
Table 1 presents the test set and cross-validation results. The difference
between test set evaluation and cross-validation was 0.292 dB for
PSNR, and there is no difference for SSIM. Thus, we experimentally
confirmed that our model was optimized well.

We evaluated the effect of the dropout layer using radiomic feature
reproducibility analysis. The proposed model showed similar denoising
performance based on PSNR, SSIM, mean, and noise (SD) with and
without dropout. It means that the traditional methods could not
demonstrate the effect of the dropout. However, the results of repro-
ducibility analysis were significantly different. The proposed model had
reproducibility of 36.7% without the dropout layer and 45.4% with
the dropout layer. In addition, we explored the optimal dropout rate
for the proposed model. The results of the dropout rate tuning are
shown in Table 4. The dropout of 0.50 was experimentally determined
as optimal.

Recently, Gal and Ghahramani [61] showed that Monte-Carlo
dropout (MC dropout) can be utilized as a Bayesian inference over a
neural network’s weights. This Bayesian inference can measure the un-
certainty of the neural network [62]. Several works have used Bayesian
uncertainty from MC dropout for denoising/image synthesis in CT. For
example, [63] employed Bayesian inference to prevent overfitting in
Deep Image Prior [64] and validate the estimated uncertainty using
the uncertainty calibration error (UCE) metric. [65] used Bayesian
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epistemic uncertainty to integrate the physical model and deep learning
synthetic images in the CT reconstruction method. Our result shows
that radiomics reproducibility analysis enables the dropout rate tuning
to improve denoising performance. In future, we plan to leverage the
tuned dropout rate for MC dropout to obtain Bayesian uncertainty and
to validate whether the estimated uncertainty can tackle the problem
of hallucinations and artifacts in medical images [63].

The proposed network architecture was not based on the latest
deep convolutional technique, but we demonstrated that the well-tuned
GAN architecture outperformed well-known CT denoising methods. We
explored the network architecture configuration with radiomic feature
reproducibility analysis. We tested the effect of the attention module
and the number of proposed DRBD modules. We adopted sSE attention
modules to replace the residual scaling parameter of ESRGAN.

Table 7 shows that LDCT received generally favorable scores from
the radiologists. This may be attributed to radiologists’ prior famil-
iarity with conventional CT reconstruction methods like filtered back-
projection [66]. As a result, the radiologists may have been biased
against artificial characteristics such as smoothing, which could have
led to the undervaluation of the post-processed images, even if the
objective analysis performance was high. To overcome this limitation
and obtain a more reliable measure of denoising effectiveness, future
research could use objective analysis methods that investigate the
relationship between radiomics features and lesions in CT images. Such
methods could provide an unbiased evaluation of denoising techniques,
which may be particularly important given the potential for subjective
bias in radiologist evaluations.

The proposed method may open the possibility of making an accu-
rate diagnosis even with a low-dose CT image. Furthermore, radiomic
feature reproducibility can be applied to any medical imaging modality
such as magnetic resonance images, ultrasound images, and chest
radiographs. Thus, our approach can be applied to any medical imaging
processing algorithm development.

Although our proposed model demonstrated promising denoising
performance, there are limitations to be addressed. First, all radiomic
features were set to the same importance to evaluate the model perfor-
mance. Radiomic features are prone to redundancy, so many radiomics
studies try to screen redundant features and define a few important
features. This study uses radiomic feature reproducibility to support in-
depth image texture assessment, not to determine feature importance.
Our future study will narrow down the number of radiomic features
for the robust reproducibility analysis. Second, the radiomic feature
reproducibility analysis cannot be employed as an objective function,
because the texture matrix in the radiomic feature is not differentiable.
For example, a gray-level zone matrix quantifies gray-level zones in
an image. A gray-level zone is simply derived based on the number
of connected voxels that share the same gray level intensity. We plan
to develop differentiable texture matrices to employ radiomics analysis
as an objective function in future work. Furthermore, we will validate
the generalizability of radiomics analysis as an imaging performance
evaluation method by performing the analysis on all other medical
imaging tasks. Lastly, the denoising model should be trained on real
clinical images to learn various noise patterns. Because it is challenging
to create a simulated dataset with all the noise that actually occurs in
real world, re-training or re-tuning for other noise properties is essen-
tial to using a model trained with the simulated paired datasets [7].
Recently, several denoising models have been released for unpaired
datasets [67]. In future we aim to solve the denoising problem with
an unpaired dataset obtained from actual clinical settings for various
noise patterns.

6. Conclusion

In this study, we tuned hyperparameters of GAN with radiomic
feature reproducibility analysis, and the tuned GAN-based denoising
model outperformed well-known other CT denoising methods. Since the



Computers in Biology and Medicine 159 (2023) 106931J. Lee et al.
texture assessment is an unmet need in medical image assessment, we
believe that radiomic feature reproducibility analysis bridges the gap
between the shortfalls of traditional objective evaluation and subjec-
tive evaluation. It may substitute subjective analysis on post-processed
medical images.
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