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Abstract—Real time Ethernet (RTE) protocol suites are com-
monly operated within an exclusively allocated Ethernet based
network that is used to exchange data for a distributed real
time application. In practice, RTE protocol stack implementa-
tions interlace the maintenance of their data objects on the
(standardised and loosely coupled) application layer with the
task of traffic fitting. The latter includes the egress and ingress
of application data over the underlying layers but also the
coordination (scheduling) of the same. The set of time sensitive
networking (TSN) IEEE standards is an addendum to common
Ethernet (IEEE 802.3*). It has the aim to provide technologies
to implement deterministic Ethernet networks. In factory au-
tomation RTE, an ongoing establishment of such technologies
is observed. They lay the ground for various possibilities to
shift the mechanisms for scheduling data transmissions towards
networking juncture elements, e.g. Ethernet switch. This work
intends to fabricate a stronger separation between the application
layer and the tasks concerning traffic fitting. A demonstration
setup is developed. It consists of an Ethernet switch (partly
TSN capable), two programmable logic controllers (PLCs) and
one input/output (I/O) device. Simultaneous operation of two
unsimilar RTE protocol suites within the same network is shown.
Possible optimisations applied to RTE application components,
which target a higher level of determinism, are presented.
Measurements underpin the chosen optimisations.

Index Terms—real time Ethernet, time sensitive networking,
PROFINET, CC-Link, multi protocol stack operation

I. INTRODUCTION

For the realisation of industrial real time Ethernet (RTE)
applications, a wide selection of protocol suites is available. In
most of the cases, RTE protocol suite standards are maintained
by large based associations but often with a minor number
of main influencing companies. Market players whose core
business is the fabrication of sensor/actuator hardware, e.g. to
be used as part of industrial machinery, have an indisputable
interest in providing broad RTE protocol suite compatibility
so that their products can be integrated into various, often pre
existent, process control systems. Such device manufacturers
often rely on third-party vendors which provide the desired
bundle, in the form of a composition (platform) of components
such as RTE enabled network hardware and software in order
to hold RTE connectivity available. In the case of an already
present hardware platform, it is often decided to purchase

a RTE protocol stack, [1]–[3], which can be adopted rather
than developing a complete own implementation. Hardware
based RTE interfacing products utilise field programmable
gate array (FPGA) technology, where a subset of functionality
can be hardware offloaded through a hardware description
language (HDL) to circumvent processing overhead, caused
through e.g. a (constrained) central processing unit (CPU)
and, if present, operating system (OS) scheduling routines,
[4]–[6]. Some interface providers even take a step further and
manufacture their own application-specific integrated circuits
(ASICs), [7]–[9]. Albeit the aforementioned products offer rich
configuration possibilities for various RTE protocol suites, the
configuration sets are pinned to one particular RTE protocol
suite and have to be installed on the platform before or
during the device commissioning phase. The time sensitive
networking (TSN) addenda to standard Ethernet originate from
the audio/video domain and have been gradually extending
to additionally cover deterministic timing requirements, tar-
geted for the industrial automation domain. These addenda
are provided in the form of IEEE standards which foremost
address mixed critical data traffic organisation (shaping) on
the Ethernet media access control (MAC) layer. With the
appearance of the IEEE consortium on the scene, a global
and cross-domain operating standardisation body is raising
expectations for less proprietary implementations.

Within the scope of this present work, several RTE pro-
tocol suites are examined, commonalities are identified and
a separation of unified RTE application scheduling domains
is presented. In a next phase, a demonstrator application is
evolved with the aim to run multiple RTE protocol suites
simultaneously. The selected RTE protocol stacks are initially
commissioned and run without applying optimisations, neither
to the platforms operating system nor to the RTE protocol
stack implementations. In order to reach a higher degree of
determinism, a set of optimisations is applied, which mainly
affects the network traffic fitting mechanism and the operating
system scheduler. The impact of the various optimisations is
documented by several conducted measurement series.



II. RTE APPLICATION CORNER STONES

Typical scenarios of RTE applications involve controlling
nodes, commonly in the form of programmable logic controller
(PLC) devices, and input/output (I/O) devices. The latter serve
as network interconnectivity port. Their role is to receive data,
targeted for actuator devices and/or to transmit data which
originate from sensor devices. Actuators and sensors are either
an integral part of the I/O device or are connected to it through
e.g. peripheral interfaces or buses. The rate at which data
is packeted and transmitted over the network, respectively
its reciprocal, the “cycle time”, is an important key figure
for the conception and configuration of a RTE application.
Industrial human control1 systems operate with data refresh
cycle times ranging from the domain of several seconds down
to ≈ 8ms. Mechanical machinery process control1 commonly
operates in the range of several milliseconds with shortest data
refresh cycle times of ≈ 4ms. The sub millisecond threshold
is undercut for high precision, possible synchronous, motion
control1 applications, e.g. assembly robot coordination and
operation among a car assembly line, high grade printing
machinery, et cetera [11]. Data refresh cycle times for such
applications reach dimensions of several or even less than
100 µs. Such high data refresh frequencies usually require
tailor made hardware features as well as isochronicity. A
shared time base across a RTE application network (clock
domain) is established and maintained through high precision
time synchronisation protocols that are described in standards
such as IEEE 1588 [12], IEEE 802.1AS [13] or proprietary
derivatives of the latter. Within the scope of this work, the
main focus lies on the I/O device.

III. RTE PROTOCOL SUITES

The International Electrotechnical Commission (IEC) stan-
dards 61158 and 61784-2 include real time communication
profiles which are based on Ethernet technologies. The com-
munication profile families [10, table 21.3] (CPF) are named
by the brand name of the according practical implementation
of the RTE protocol suite. Some of these protocol suites, ref-
erenced by brand name, are briefly described in the following.

A. EtherCAT

IEC 61158-6-CPF12 (for the application layer protocol)
and in IEC 61784-2, profiles 12/1 and 12/2 [10, tab. 21.4].
The specification is maintained by the EtherCAT Technology
Group (ETG). The main protocol data unit (PDU), is a
so called “EtherCAT frame” [14]. The PDU is preferably
transported directly within the data link layer. Possibilities to
transport the main PDU with a user datagram (UDP) or even
a stream (TCP) exist [15]. Ethernet for Control Automation
Technology (EtherCAT) uses master and slave application
communication roles. The EtherCAT master node sends a
telegram which traverses through all the EtherCAT slave nodes
and then travels back to the EtherCAT master node [16],

1The terms (human control, process control and motion control) for
classifying a real time Ethernet application are derived from [10, sec. 21.3.1].
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Fig. 1: Communication methods for cyclic data exchange.

see fig. 1b. Typical physical implementations of EtherCAT
network segments use a daisy chain or a ring topology based
on switched Ethernet. From a communication point of view,
the cyclic real time data exchange is driven solely by the
master device [17, sec. II.A, para. 2]. The master sends one
frame at a given cycle time. Whilst the frame progresses
through the slave nodes, they read the master output data and
write the master input data at their a priori defined octet offset
in the frame. The application protocol layer uses methods
such as reading or writing values from/to addressable registers
which is EtherCAT specific. Another method is the use of
“CANopen over EtherCAT” (CoE) which adopts the CANopen
object dictionary [14].

B. PROFINET Input/Output

IEC 61158-6-CPF3 (for the application layer protocols) and
in IEC 61784-2, profiles 3/4, 3/5 and 3/6 [10, tab. 21.4].
The PROFINET Input/Output (PNIO) (herein after referred
to as PROFINET) real time protocol suite specification, [18],
is maintained by PROFIBUS & PROFINET International
(PI) [19]. Process Field Net (PROFINET) includes multiple
protocols in its suite which operate on different layers of
the Open Systems Interconnection (OSI) model. For setup
and configuration (non real time communication), e.g.: On
the transport layer, typically through datagrams (UDP), with
the distributed computing environment / remote procedure call
(DCE/RPC) application protocol. On the data link layer with
the discovery and basic configuration protocol (DCP). Real
time application data exchange is prevalently performed on the
data link layer. PROFINET mainly employs two application
communication roles: Controller and I/O device. A controller
(PLC) sets up an exclusive “application relation” (AR) to
each of the RTE application participating I/O devices. Dur-
ing operation, the two parties of the respective application
relation autonomously exchange their real time application
(I/O) data at an initially configured cycle time, see fig. 1a.



Typical network topologies that are used to operate real time
applications through PROFINET are daisy chain, ring, or star,
based on switched Ethernet. The application data protocol
layer is PROFIBUS Nutzer Organsiation (PNO) proprietary
and used for non Ethernet carriers as well, e.g. PROFIBUS.

C. Ethernet POWERLINK

IEC 61158-6-CPF13 (for the application layer protocol) and
in IEC 61784-2, profile 13/1 [10, tab. 21.4]. The Ethernet
POWERLINK (EPL) specification is maintained by the Eth-
ernet POWERLINK Standardization Group (EPSG). EPL was
originally designed for shared Ethernet and to be operated with
Ethernet hubs as juncture elements. Two main real time ap-
plication participating roles are distinguished: Managing node
(MN), master, and controlled node (CN), slave. EPL employs a
request-response message sequence to exchange real time ap-
plication data, which implies that, the communication schedule
is driven by the managing node only [20, sec. 4.2.4.1]. During
operation, Ethernet POWERLINK adheres to a preliminary
defined “isochronous cycle”. The cycle is sliced into the fol-
lowing phases: Start period, isochronous period, asynchronous
period and lastly an idle period [10, fig. 21.2], [20, fig. 19].
After the managing node has sent a start-of-cycle message
(multicast frame), it sequentially polls every controlled node
in order to exchange real time application data. Afterwards,
the MN sends a start-of-asynchronous message, as indication
for all the CNs that all real time application data has been
exchanged within the isochronous period of the current cycle.
EPL operates directly on the data link layer for the real
time application data exchange. Asynchronous messages are
preferably transported over IP/UDP [20, p. 28, fig. 4], [10,
sec. 21.4.2.1]. The EPL communication profile is based on
CANopen communication profiles [20, p. 26].

D. CC-Link Industrial Ethernet

IEC 61158-6-CPF8 (for the application layer protocol) and
in IEC 61784-2, profiles 8/4 and 8/5 [10, tab. 21.4]. The
CC-Link specification is maintained by the CC-Link Partner
Association (CLPA). From an application layer point of view,
Control & Communication Link (CC-Link) Industrial Ethernet
(IE) technologies abstract the distributed real time application
(participants) as “Network Shared Memory” [21]. This means
that the cyclic real time application data exchange mainly
consists of reading from and/or writing to a “memory loca-
tion”. Basically, CC-Link IE is operated directly on the data
link layer and uses master and slave application communica-
tion roles. The concrete implementation forms fundamentally
differ, depending on the technology. CC-Link IE Field, com-
monly used to operate a single assembly line, and CC-Link IE
Control adopt a token passing method, where a token is passed
from one station to the next, [22], [23]. Only the station which
currently possesses the token is allowed to transmit data, see
fig. 1c. The path of the token logically builds a ring structure.
CC-Link IE Field Control is used to operate factory backbones,
[21]. CC-Link IE Field Basic is a CC-Link variant which is
intended for the operation on top of an internet protocol (IP)

stack. Real time application data is transported within user
datagrams (IP/UDP) where the PLC (master) device cyclically
polls the slave devices through broadcast packets, see fig. 1d.
CC-Link IE technologies are designed to be used on daisy
chain, ring or star network topologies, based on switched
Ethernet. CC-Link IE Field Basic is used with daisy chain
and star topologies or a mixture of both, [24, p. 10].

E. EtherNet/IP

IEC 61158-6-CPF2 (for the application layer protocol) and
in IEC 61784-2, profiles 2/2 and 2/2.1 [10, tab. 21.4]. Ethernet
Industrial Protocol (EtherNet/IP) is defined and maintained
by the Open DeviceNet Vendors Association, Inc. (ODVA).
Typical operation for cyclic I/O data exchange takes place on
top of an internet protocol (IP) stack with the user datagram
protocol (UDP) on the transport layer. For the connection
establishment process between PLC and I/O device and for
infrequent low-priority messages, the transmission control
protocol (TCP) is used on the transport layer. EtherNet/IP uses
the object oriented common industrial protocol (CIP) on the
application layer. [25], [26]

F. Modbus/TCP

IEC 61158-6-CPF15 (for the application layer protocol) and
in IEC 61784-2, profile 15/1 [10, tab. 21.4]. Modbus/TCP is
promoted by the Modbus Organisation [11]. As the name lets
assume, during default operation, periodic data exchange is
performed on top of an IP protocol stack in a request-response
manner. Connections between application peers have the form
of a data stream, which means, using TCP on the transport
layer. The application layer is realised through the proprietary
Modbus application protocol [27]. Modbus/TCP is one of the
most widely used [10, sec. 21.4.1.1] RTE protocol suites in the
range of human control, see section II, real time applications.

IV. DOMAINS OF SCHEDULING

Despite the variation of the communication methods and
the hook-in points at different layers of the OSI model,
see section III, a unified separation of different scheduling
domains is observed across real time Ethernet protocol suites.
The common denominator of all the scheduling domains is,
that they have to adhere to the specific desired data refresh
cycle time of the distributed RTE application.
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Fig. 2: Scheduling domains applied to a RTE application.



A. User application domain

The predominant task of a user application that runs on a I/O
device is the interaction with either sensor(s) (reading) and/or
actuator(s) (writing). Besides, data pre processing steps are
sometimes necessary to be carried out before sending data over
the RTE network to the controlling node or transfer them to an
actuator unit. Usual limiting factors are interface or bus data
rates of peripheral connections (e.g.: inter-integrated circuit
(I2C), serial peripheral interface (SPI), universal asynchronous
receiver-transmitter (UART), . . . ) as well as processing re-
sources of sensor/actuator periphery.

B. Protocol data unit domain

As yielded throughout section III, RTE protocol suites
tend to utilise proprietary application protocol layers where
individual application PDUs are defined by the respective
standards. An essential task of this scheduling domain includes
the marshalling of sensor data (reading) and actuator data
(writing) into or out of PDU(s) of the actual RTE protocol
suite. From an I/O device perspective: Reading includes real
time data transition from the user application domain (e.g.:
sensor input) to the PDU domain and preparation of the
PDU(s) for the transition to the traffic fitting domain. Writing
includes PDU(s) transition from the traffic fitting domain to
the PDU domain and preparation of the real time data for
the transition to the user application domain (e.g.: actuator
output). Tasks of the PDU domain are typically performed
by the specific “real time Ethernet protocol stack”, which is a
concrete implementation of a standardised RTE protocol suite.
Limiting factors are the hardware characteristics of the I/O
device, e.g. CPU capabilities as well as the limitations of the
OS, if any, that runs on top of the hardware of the I/O device.

C. Traffic fitting domain

The term traffic fitting, as used in this present work, is
understood as the process of transmitting and receiving real
time data with an a priori known RTE application cycle time.
Fitting means the introduction of techniques which have the
aim to guarantee the adherence to the previously mentioned
data refresh cycle time. Traffic fitting techniques are manifold
and may be part of network hardware directly on the I/O device
or indirectly, provided through network juncture elements.
I.e.: Multi network port I/O devices integrally implement
an Ethernet switching MAC layer. Single port I/O devices
typically access a network through an outsourced Ethernet
switching unit and implement an Ethernet endpoint MAC
layer.

D. Inter domain transitions

If the chosen hardware platform of the I/O device allows
it to run the domains of scheduling autonomously, e.g. with
dedicated hardware units or real multithreading (threads are
capable of running concurrently on separate CPU cores),
mechanisms for synchronising data transitions between the
scheduling domains have to be used in order to maintain
data consistency. An exemplary mechanism is triple buffering,

where a data producing domain writes alternately to two back
buffers and a data consuming domain reads from one front
buffer. An advantage of this technique is, that the mutual
exclusion phase is (timely) minimised down to the rotation
of the buffer addresses2.

V. TIME SENSITIVE NETWORKING

TSN is an umbrella term for several specific standards (with
IEEE 802.1Q as base standard) which are amendments to
standard Ethernet, IEEE 802.3*. The goal of these addenda is
to provide deterministic connectivity for IEEE 802 networks
[28]. The operating range where the TSN techniques have
their main impact is on the Ethernet MAC layer. In the
context of scheduling domains, TSN mechanisms are applied
at the traffic fitting domain, see section IV-C. Techniques
described in the TSN IEEE standards enable the coincident
orchestration of “mixed critical” data traffic within one net-
work infrastructure. Data traffic characterisation classes: Best
effort, reserved (or rate constrained) and scheduled traffic [29].
One base feature introduced by IEEE 802.1Q are quality of
service (QoS) levels [30, p. 1920] which can be used to
prioritise network packets within an IEEE 802.3* network. In
order to guarantee deterministic latency along network paths,
several traffic shaping mechanisms are engineered. Some of
which are briefly touched on here: For reserved traffic, the
credit based shaper (CBS) (IEEE 802.1Qav, [31]) algorithm
allows to guarantee a certain data rate, mapped to QoS
levels. The asynchronous traffic shaper (ATS) is suited for
preferring asynchronously emerging data packet bursts, e.g.
non real time system logging (monitoring) data [32], [33].
For scheduled traffic, often required to operate e.g. motion
control RTE applications at cycle times below 1ms, the time
aware shaper (TAS) (IEEE 802.1Qbv, [34]) is a suitable choice
[35]. The TAS requires a common time base across the RTE
application participants which has to be established through a
time synchronisation protocol, e.g. IEEE 802.1AS [13].

A. IEEE standardised extended MAC layer

The TSN standards bundle a base layer of IEEE standard-
ised technologies. These are applicable to real time Ethernet
applications by providing an augmented, non-proprietary Eth-
ernet MAC layer. Before the introduction of the TSN IEEE
Ethernet amendments, specific individual amendments were
conceived, described, developed and maintained by the RTE
protocol suite committees and their affiliates. This comes
with the implication, that RTE applications which require
scheduled traffic (exclusive fixed time slice / phase allocation
per communication cycle) might require tailor made hardware
implementations that are bound to one specific RTE protocol
suite. The TSN standards on the other hand provide a more
generic approach which makes RTE hardware platforms better
portable across RTE protocol suites, if they have implemented

2The triple buffer is a last-in-first-out (LIFO) data structure with a depth
of two between two autonomously operating units of scheduling. Reference
implementations at the InES exist in a hardware description language (FPGA
entity) as well as in C for POSIX.1-2001 compliant operating systems.



the required TSN standards for the specific RTE application
use case.

B. Industry acceptance

An ongoing acceptance and partial adoption of techniques
stemming from the TSN standards bundle is observed across
RTE protocol suite maintenance organisations. PROFINET
selectively introduces a subset of TSN standards such as the
generalized precision time protocol (gPTP), IEEE 802.1AS
[13], in combination with the TAS, IEEE 802.1Qbv [34], to run
“clock-synchronous motion control applications” on the basis
of standard IEEE 802.3* (partially) TSN capable hardware.
Further, PROFINET adopts the mechanism of “frame pre-
emption”, IEEE 802.1Qbu [36], which allows high prioritised
cyclic real time Ethernet frames to preempt low prioritised best
effort Ethernet frames while they are already in the process of
transmission on a network port [37], [38]. Similarly, CC-Link
(IE TSN) introduces gPTP, IEEE 802.1AS [13], combined
with the time aware shaper, IEEE 802.1Qbv [34], in order to
carry mixed critical data traffic on top of one network hardware
infrastructure [39].

VI. DEMONSTRATOR

After an overview of different RTE protocol suites has been
gained, see section III, common scheduling domains could be
identified, see section IV. Further, the IEEE TSN standards
provide a versatile tool box to engineer a generic Ethernet
MAC layer, see section V.
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Fig. 3: Basic setup of the RTE demonstrator application.

In this section, an experimental RTE application sce-
nario is presented which consists of a single juncture el-
ement (switched Ethernet), two PLC devices, PROFINET
Input/Output and CC-Link Industrial Ethernet Field Basic and
one single I/O device. The I/O device serves both PLC devices
simultaneously by maintaining cyclic real time application
data exchange for the two unsimilar RTE protocol suites.

A. Selection of the RTE protocol suites

The choice of the two RTE protocol suites has been
made up on two major considerations: 1) PROFINET is a
Europe originating, globally accepted RTE protocol suite with
Siemens as prevailing influencer. Its interest group, PROFI-
BUS & PROFINET International, has about 1700 members
[19]. CC-Link has its origins in Asia and was introduced
by the Mitsubishi Electric Corporation. The CC-Link Partner
Association (CLPA) also spans globally and has currently over
4000 corporate members [40]. 2) The cyclic data exchange

between PLC and I/O device relies on different communication
methods – the PROFINET participants transmit autonomously,
see fig. 1a, whereas the CC-Link PLC broadcasts request
messages and expects explicit unicast response messages from
the I/O device, see fig. 1d. Further, the PNIO application pro-
tocol is transported directly within the data link layer whereas
the used CC-Link variant, CC-Link Industrial Ethernet Field
Basic, transports its application protocol on top of an IP
protocol stack with UDP as transport layer.

B. Vanilla approach

The term “vanilla” means that a hardware platform or
software is brought into operation, not (or only slightly
[41]) altered from its original form, how it was distributed
from its suppliers [42]. Applying this modus operandi to the
components of the demonstration application, as part of this
work, it is understood as using the hardware components “off-
the-shelf” as well as using them with their shipped default
OS distribution with a pre-compiled operating system kernel
image installed. All the modifications introduced are entirely
based on the available set of configuration possibilities of the
existing hardware and operating system.

C. Application scope

The emphasis of the demonstrator application lies primarily
on the protocol data unit scheduling domain, see section IV-B,
secondly with a focus on the traffic fitting scheduling domain,
see section IV-C. The user application scheduling domain,
see section IV-A, exists in a subordinate role by including
sensor(s) and actuator(s) as mock objects only. The I/O device
is equipped with a single Ethernet network port. The link
speed is limited to 100Mbit/s as requested by PROFINET
[43, p. 74] and CC-Link IE Field Basic [24, p. 10]. The chosen
data refresh cycle time is 1ms, situated at the upper bound
form a motion control application point of view and below the
lower bound from a process control application point of view,
see also in section II.

D. Hardware and operating systems

1) PLC devices: The PLC devices are treated as black
boxes within the scope of this work and are assumed to
be “golden”, meaning their operation is flawless in terms of
adhering to timing constraints (determinism).

2) I/O device: The I/O device platform was chosen upon
the consideration of providing a loose framework that relies
on a generic hardware platform which, “out of the box”,
serves broad configuration possibilities. This allows various
measurement series to be conducted and offers parameter
scalability, such as a configurable CPU clock frequency, avail-
ability of multiple operating system scheduler policies, without
the requirement of recompiling the OS kernel, et cetera.
Elaborated configuration sets can be mapped (fitted) to more
specific and constrained platforms if necessary. A suitable



platform for this framework is the Raspberry Pi (version 3,
model B+) single board computing platform3.

The operating system which runs on the I/O device plat-
form is a debian GNU/Linux derivative4. The kernel is
configured to make use of high resolution clock sources
which are available on the I/O device hardware platform
(CONFIG_SCHED_HRTICK=y). These clock sources can be
accessed through OS system calls and reach a resolution
of 1 ns the finest. The queueing discipline (qdisc) of the
Ethernet controller for transmitting data over Ethernet is
pfifo_fast5.

3) Juncture element: The NXP LS1028ARDB is a ref-
erence design board that provides Ethernet switching func-
tionality6. The Ethernet MAC layer implements a subset of
TSN IEEE standards. Some functionalities, described in the
aforementioned standards, are offloaded to dedicated hardware
units7. E.g.: The CBS algorithm (IEEE 802.1Qav) can be
offloaded to the network interface controller of the according
network switch port. The LS1028ARDB runs a Linux ker-
nel8. The queueing discipline of the Ethernet switch ports is
mqprio – Multiqueue Priority Qdisc (Offloaded Hardware
QOS) [53] – to take advantage of the hardware offloaded
priority level queues.

E. RTE protocol stack software

The PROFINET I/O device as well as the CC-Link IE Field
Basic slave device RTE protocol stack implementations are
contributed by the company RT-Labs in the form of readable

3The platform is a system on chip (SoC), Broadcom BCM2837B0, with
an Advanced RISC Machines (ARM) Cortex-A53 reduced instruction set
computer (RISC) central processing unit, a quad core CPU with variable
clock frequency, ranging from [600, . . . , 1400] MHz. It has 1GB of
main memory. The wired network connectivity is powered by a Microchip
LAN7515 Gigabit Ethernet controller (compatible with the Ethernet core
of the LAN7800 controller [44]). The controller is limited to 300Mbit/s
because it is connected to the SoC via universal serial bus (USB) version 2.0
[45]. The Ethernet controller has no hardware offloaded multi priority level
transmission queues [46].

4The OS kernel version is 5.15.61 and it is compiled for the ARM
32-bit architecture, namely armv7l, with symmetric multiprocessing (SMP)
and “voluntary preemptive” kernel code, an interstage between non and fully
preemptive kernel code. Having compiled the kernel with SMP enabled means,
that the CPU cores are treated equally and the entire available memory is
shared between the processor cores [47].

5This queueing discipline uses three priority “bands” (0, . . . , 2). Each band
has assigned a first-in-first-out (FIFO) data structure. As long as data packets
are present in band 0 to be transmitted, they are always serviced first, before
band 1. The same applies to the relationship between band 1 and band 2
[48]. The pfifo_fast algorithm takes into account the “Linux priority”
value that is assigned to the socket buffer (sk_buff) out of which a packet
originates [49]. The mapping of sk_buff priorities to the aforementioned
bands is found in [50].

6The reference design board is equipped with a dual core ARM Cortex-A72
RISC CPU. It offers 4 RJ-45 Ethernet ports with link speeds of 10/100/1000
Mbit/s, attached through a quad serial gigabit media-independent interface
(QSGMII).

7Each of the Ethernet ports offers configurability for features that are
defined within the set of TSN standards: IEEE 802.1Qbv [34], IEEE 802.1Qci
[51], IEEE 802.1Qbu [36], IEEE 802.1Qav [31], IEEE 802.1CB [52]. Each
switch port is equipped with eight hardware offloaded priority level transmis-
sion queues.

8The Linux kernel version is 5.15.5. It was compiled for the ARM 64-bit
architecture, namely aarch64, with “real time preemptive” kernel code and
symmetric multiprocessing (SMP) enabled.

program source code which can be edited. Holding on to the
vanilla approach, see section VI-B, both stacks were initially
compiled without any modification. Both RTE stacks have a
multithreaded software architecture. The source code, as deliv-
ered, offers the compilation option to use the SCHED_FIFO9

scheduling policy which was selected to compile the sources.
If the option is not selected, the threads of the RTE stacks
would just use the SCHED_OTHER10 scheduling policy.

F. Optimisations

An initial measurement series was performed whose results
are shown in section VII-A. It is noticed that, when using
the SCHED_FIFO configuration option, see section VI-E, the
on-wire network packet cycle times, originating from the I/O
device, yield a broad deviation of the expected value, 1ms.
While operating both RTE protocol stacks simultaneously,
deviations as large as 1.081ms for the PROFINET stack and
30.249ms for the CC-Link stack are observed, see fig. 4b.

Within this chapter, optimisations are presented that have
the aim of reaching a better level of determinism for operating
RTE protocol stack implementations on the given hardware
platforms, see section VI-D2 and VI-D3. Table I references the
specific optimisations and shows in which scheduling domain,
i.e. protocol data unit domain (PDU) or traffic fitting domain
(TF), it takes place and which RTE hardware components, i.e.
I/O device (IOD) or juncture element (JE), are affected by the
respective optimisation. The measurement column of table I
references the measurement results sections that substantiate
the optimisation measure.

TABLE I: Relations to scheduling domain and measurements.

Optimisation Sched. domain Components Measurements
Section VI-F1 PDU IOD VII-B, VII-C
Section VI-F2 PDU IOD VII-B, VII-C
Section VI-F3 TF IOD, JE VII-E
Section VI-F4 TF IOD, JE VII-E

1) Change of scheduling policy: Since version 3.14 of the
Linux kernel, its scheduler provides deadline task scheduling
in the form of a scheduling policy, SCHED_DEADLINE. The
deadline scheduling policy guarantees11 that during a given
time period (relative deadline), a certain task receives a specific
amount of CPU computation time (runtime). To configure time
values which go below 1ms, the scheduler must be config-
ured to use high resolution timer ticks (HRTICK) [57]. The
source code of the RTE protocol stacks was analysed. Despite
the strong differences between the two RTE protocol suite
variants, e.g. by using different communication methods, see

9SCHED_FIFO (a FIFO scheduling algorithm) is a greedy real time policy
and prohibits the preemption through tasks with lower or equal priority. The
task might be preempted by tasks with higher priority. Therefore this policy
cannot guarantee to meet a certain time deadline. [54]

10This is the default policy that a newly spawned process/thread gets on a
portable operating system interface (POSIX) compliant operating system [55].

11When setting the SCHED_DEADLINE scheduler policy through the
sched_setattr() system call [56], a so called admittance test is per-
formed by the operating system kernel. The admittance test calculates if the
scheduling policy change, with the requested runtime and deadline parameters,
is feasible. If not, the system call will fail [54].



fig. 1a and fig. 1d, or by hooking in at fundamentally different
locations of the OSI reference model, see section III-B and
III-D, both implementations have a similar software architec-
ture. The RTE protocol stack implementations use an internal
application scheduler, driven by a POSIX timer whose callback
function periodically12 sets an event. A main application thread
checks for pending events and processes them. The thread
which handles the POSIX timer and the main application
thread13 are altered to use the SCHED_DEADLINE scheduling
policy. Table II shows the configuration parameters for the
SCHED_DEADLINE policy of the affected RTE protocol stack
threads.

TABLE II: SCHED_DEADLINE configuration parameters.

Thread Runtime Deadline Period
PNIO POSIX timer 100 µs 1000 µs 1000 µs
PNIO main application thread 200 µs 1000 µs 1000 µs
CC-Link POSIX timer 100 µs 1000 µs 1000 µs
CC-Link main application thread 200 µs 1000 µs 1000 µs
Total runtime within period 600 µs – –

The guaranteed runtime parameter for the main application
thread is selected according to the results of the execution time
evaluation, see section VII-C.

2) Exclusive computing resource allocation: In order to
exclusively allocate one or more CPU cores for the dead-
line scheduling processes, see section VI-F1, “Linux control
groups” (cgroup14s) are used. For the current application
setup where two RTE protocol stacks are intended to run
simultaneously, one cgroup is created. One CPU core is
exclusively allocated to the cgroup. All the processes whose
scheduling policy was changed to SCHED_DEADLINE are
assigned to the cgroup.

3) Prioritisation of data packets: The cyclic real time
network data packets which are exchanged between the PLC
devices and the multi RTE protocol stack I/O device are ex-
tended with a IEEE 802.1Q virtual local area network (VLAN)
tag, consisting of 4 octets. The VLAN tag contains a sub field
with a width of 3 bits that represents the “priority code point”
(PCP). The priority value (QoS level) that was chosen for
the real time data packets is 6, according to [18, p. 100525].
Both RTE protocol stacks are equal in significance, therefore
both implementations use the same PCP value. Further, the
network sockets which handle the real time network packets
are configured with a Linux Priority (SO_PRIORITY) value
of 6 which stands for “Interactive” traffic and maps into

12The scheduler tick period of the current RTE protocol stack implemen-
tations is a configurable user application parameter. It was selected to be
cycle time

2
(with sched tick interval | cycle time in mind), according

to the WCET evaluation of the cyclic real time data processing times, see
section VII-C, i.e. 1ms

2
= 500 µs. Having a lower scheduler tick interval

than the actual RTE application cycle time prevents ingress packet overruns
in the case of CC-Link IE Field Basic which only transmits cyclic real time
data if a pending request packet is present, see also fig. 1d.

13Cyclic real time network data transmission (from a user space point of
view) is handled by this thread, i.e. writing to the socket buffer.

14“A cgroup is a collection of processes that are bound to a set of limits
or parameters defined via the cgroup filesystem.” [58]

the highest prioritised band of the pfifo_fast queueing
discipline, see also section VI-D2.

4) Traffic shaping on juncture element: The selected Eth-
ernet switch, see section VI-D3, provides support for the
credit based shaper (CBS) algorithm which is described in
IEEE 802.1Qav [31]. The switch ports are configured to
guarantee the required bandwidth for the prioritised real time
data packets, see above in section VI-F3 through the CBS
algorithm. During packet ingress at the switch ports, the PCP
value, carried by the IEEE 802.1Q VLAN tag, is mapped to
a Linux Priority, 6. Two traffic classes are defined (bands), 0
and 1. Band 0 is always serviced first [50]. The Linux Priority
6 is then mapped to band 0 and four hardware offloaded
transmission queues are assigned to band 0. All the other
priorities are mapped to band 1.

G. Scalability
The combined optimisations on the I/O device, namely

using deadline scheduling and exclusive CPU allocation, see
VI-F1 and VI-F2, can be described in a more generic context:

Let S be the set (cgroup) of processes (p) that take on
the scheduling policy SCHED_DEADLINE. Let c ∈ N∗ be the
number of CPU cores that are exclusively allocated for S. Let
T be the unified static period duration.∑

p∈S

p.sched runtime ≤ T × c (1)

∀p ∈ S : ( p.sched runtime > 0 ) ∧
( p.sched runtime ≤ T )

(2)

The statement in eq. (1) must hold. Otherwise the cumulated
guaranteed CPU time would exceed the effective available
computation resources of the given cgroup (S). The state-
ment in eq. (2) must hold. A single processes guaranteed
runtime must not exceed its defined period duration [54].
The scalability considerations are made mainly from a user
space perspective. If c > 1 and multiple real time data
processing cores simultaneously request data transmission over
the network, it is a matter of the queueing discipline (qdisc)
that is configured for the affected network interface. The im-
plementation of the qdisc itself depends on the capabilities
of the used Ethernet controller on the hardware platform, e.g.
offloaded packet transmission queues et cetera.

VII. MEASUREMENT RESULTS

Single stack means, a specific RTE protocol was in sole
operation on the I/O device during the measurement data were
captured. Dual stack means that both RTE protocol stacks
were in simultaneous operation on the I/O device during the
measurement data capturing.

A. Initial scatter plots
The initial scatter plots, see fig. 4, depict the network packet

intermediate times during cyclic real time data exchange. The
red line is at the theoretically perfect (expected) cycle time,
that is 1ms. The on-wire packet capture setup is according to
fig. 3, see TAP0.



(a) Single RTE stack operation.

(b) Dual RTE stack operation.

Fig. 4: Unmodified RTE stacks, on-wire cycle times.

B. Deadline scheduling and computing resource allocation

With regard to the deterministic behavior of the I/O device
platform (including its operating system), a generic system
performance evaluation (derived from [59]) series was con-
ducted. Two processes are spawned. Each process runs a
measurement loop with 1 × 106 (N ) iterations. To minimise
other influences and capturing mainly the overhead of the
OS scheduling, the body of one iteration only contains:
Suspending the process operation until an expected time
(t expn = t expn−1 + 500 µs) and, after the process is
rescheduled by the operating system kernel, retrieving the cur-
rent time (t cur). The relative error is the ∆ between the cur-
rent time and the expected time (e rel = |t cur − t expn|).
During the measurement, no computationally intensive tasks
are running, the operating system only manages its basic back-
ground tasks. The result plot, see fig. 5, shows a comparison
of different Linux scheduling policies, once performed without
exclusive CPU allocation (pinning) and once with pinning
the two concurrently running processes to one exclusively
allocated CPU core. Each graph consists of the cumulated
samples over the two processes, i.e. 2×106 samples per graph.

The probability plot (fig. 5) has to be interpreted as follows:
E.g.: Approximately 99.5% of all the captured samples of the
relative error in the case of the SCHED_DEADLINE policy
in fig. 5 are around 20 µs or lower. The earlier the graph
maxes out on the abscissa, the better degree of determinism
is reached, i.e. “SCHED_DEADLINE pinned”.

C. RTE protocol stack execution time analysis

This measurement series was performed in order to evaluate
a suitable runtime parameter for the deadline scheduling
policy. The execution times are evaluated by time stamping
the thread which is responsible for the cyclic real time data

Fig. 5: I/O device platform – scheduling evaluation.

processing. One sample is the lapsed time from the start of
the cyclic processing routine until the end of it.

0 50 100 150 200 250 300 350 400
execution time [ s]

0

50000

100000

150000

200000

250000

300000

co
un

ts

Per cycle processing time during RT data exchange:
PROFINET I/O, RTC1 (I/O device) @ 1 ms

(dual stack operation):

= 46.505 s, = 20.773 s, n= 1000000
Min: 4 s, max: 417 s

0 100 200 300 400
execution time [ s]

0

50000

100000

150000

200000

250000

co
un

ts

Per cycle processing time during RT data exchange:
CC-Link IE Field Basic (I/O device) @ 1 ms

(dual stack operation):

= 56.558 s, = 26.668 s, n= 1000000
Min: 6 s, max: 462 s

Fig. 6: RTE protocol stack cyclic processing execution times.

The two execution time evaluation histograms (fig. 6)
were captured on unchanged versions of the RTE protocol
stack implementations, compiled with the option to use the
SCHED_FIFO policy with real time priorities for its threads.
Since the demonstrator targets simultaneous RTE stack oper-
ation, the samples were captured during dual stack operation.
The execution times are not normally distributed. With the
results from the scheduling performance evaluation in mind,
see section VII-B, a significant improvement in terms of
determinism is observed, when using the SCHED_DEADLINE
policy. It was chosen to prefer an estimate for the runtime
parameter, rather than just selecting the worst case execution
time (WCET) that was yielded by the measurement series
because the WCET is a statistical outlier in each of the
captured measurements. The estimate is defined as follows:
runtime = ⌈µ + 3σ⌉ where runtime is expressed in
hundreds of µs (1×10−4 s). The ceiling function was applied
to the expression to have a safety cushion, affordable for the
current requirements. For the PROFINET RTE protocol stack,
this yields a runtime value of 200 µs, for the CC-Link RTE
protocol stack a runtime value of 200 µs.

D. Optimised dual RTE stack operation

Figure 7 depicts the scatter plots as well as the histograms
that visualise the on-wire captured samples, according to the
capture setup shown in fig. 3. All the measures that were taken,
see section VI-F, to optimise the deterministic operation of
the given demonstrator application were enabled during the
capturing of the samples.
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Fig. 7: Optimised dual RTE stack, on-wire cycle times.

Table III compares the measurement figures from the initial
situation, unmodified dual RTE protocol stack operation, with
the ones from the on-wire cycle time captures of the optimised
demonstrator. The capturing setup is depicted in fig. 3.

TABLE III: Initial vs. optimised dual RTE stack operation.

Variation Avg. [ms] σ [ms] Max. [ms] Avg. jitter [ms]
PNIO unmodified 1.000 0.045 2.081 0.021913
PNIO optimised 1.000 0.033 1.189 0.015511
CC-Link unmod. 1.197 1.103 31.249 0.356171
CC-Link opt. 1.000 0.020 1.787 0.004560

E. Robustness audits

To get an order of magnitude about the robustness of the
optimised demonstrator application, two methods are intro-
duced which have the intention to distort the cyclic real time
data exchange. The demonstrator application withstands all the
robustness tests, described in VII-E1 and VII-E2.

Distortion
Source

PROFINET
PLC

Arrows represent
Ethernet frame
capture dircetions

TAP1TAP0

netANALYZER

I/O device

CC-Link
PLC

juncture element
(switched Ethernet)

Fig. 8: Demonstrator application distorted operation setup.

1) PROFINET netload: Distortion through a test agent
device which interferes the RTE traffic of the demonstrator
application. The interfering data traffic is produced by the load
generator that is used for the “PROFINET Netload Robustness
for Security” test, formerly known as “PROFINET Security
Level 1” test. The generated load adheres to the “Netload Class

3 @ 100Mbit/s”, which is briefly described as “Advanced
robustness against netload” [60]. The PROFINET netload test
is an industry accepted robustness test for I/O devices and
serves as useful stress test during the development (continuous
integration) of an I/O device. It is also part of the PROFINET
certification process that certified PROFINET I/O devices have
to undergo.

2) iperf3: Distortion through a test agent device which
interferes the RTE traffic of the demonstrator application. The
interfering data traffic is produced by the network performance
measurement program named iperf3 [61]. In default oper-
ation of iperf3, a server program is started on one host
(e.g. I/O device) and a load generator program is started on
another host (e.g. test agent). The load generator uses the
maximum possible bandwidth of the link speed towards the
server program (IP/TCP). The intention behind the usage of
iperf3 is, that a maximum level of distortion within the
juncture element as well as on the I/O device (device under
test) is reached. In contrast to section VII-E1 above, iperf3
additionally requires the launch of a server program that has
to be installed on the I/O device.

3) Effect of the CBS algorithm: The impact of the credit
based shaper algorithm on the traffic characteristics of the
cyclic real time data packets during distorted, see VII-E2
above, operation is shown by the traffic pattern plots in fig. 915.
The packet capturing setup is according to fig. 8. The packet
schedule is in proper order despite the distortion when using
enhanced Ethernet with a TSN traffic management algorithm,
i.e. IEEE 802.1Qav.
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Sample number

Conventional Ethernet switch: IEEE 802.3.

Packet characteristics:
PNIO RTC1 @ 1 ms
CC-Link IE Field Basic @ 1 ms

1310 1320 1330 1340 1350 1360 1370
Sample number

TSN Ethernet switch: IEEE 802.3 + 802.1Qav.

Packet characteristics:
CC-Link IE Field Basic @ 1 ms
PNIO RTC1 @ 1 ms

Fig. 9: Effect of the CBS algorithm.

15The “conventional Ethernet switch” which was used for this measure-
ment series is a TP-Link TL-SG108, a 8 port store and forward unman-
aged IEEE 802.3* standard Ethernet switch that supports link speeds of
10/100/1000 Mbit/s with a switching capacity of 16Gbit/s. The switch
device is not configurable at all. [62]



VIII. CONCLUSIONS

After retaining important characteristics of a RTE appli-
cation, an inquiry was made across widely used RTE pro-
tocol suites which yielded individualities and commonalities.
Time sensitive networking IEEE standards are evolving into
a description of a RTE protocol suite independent Ethernet
MAC layer, also for high demanding timing constraints. A
demonstrator application was developed with the goal of hav-
ing a generic environment which is capable of (even simulta-
neously) running different RTE protocol stacks. Measurements
were carried out to undergird technical decisions during the
demonstrator development. Five main conclusions are drawn
and presented in the following enumeration:

1) A configurable and scalable RTE application setup can
be built to simultaneously run multiple proprietary RTE
protocol suites on one and the same I/O device. Its opera-
tion is enabled by arranging an appropriate configuration
set for the computing resources of the targeted I/O device
hardware platform.

2) Coexistence of multiple RTE protocol suites on one
device comes with a gain of flexibility and eases commis-
sioning for I/O device platform manufacturers with regard
to offer compatibility for various RTE protocol suites.

3) TSN technology provides a generic (non-proprietary),
IEEE standardised extended Ethernet MAC layer. This
entails a unification for I/O device platform manufac-
turers. By implementing a suitable subset of TSN IEEE
standards, a common base layer can be established for
taking on the tasks of network traffic fitting. Individual
RTE protocol suite implementations profit by using the
features supplied by the underlying extended media ac-
cess control layer, instead of implementing proprietary
specifications.

4) Optimising the RTE protocol stack implementations with
a focus on the scheduling policy (SCHED_DEADLINE)
and explicit processor core allocation (cgroup) raises
the level of determinism for cyclic real time network
packets. Maximum deviation values from the configured
(expected) cycle time (i.e.: 1ms) are reduced by a factor
of ≈ 5.7 for a PROFINET protocol stack and by a factor
of ≈ 38.4 for a CC-Link IE Field Basic protocol stack
during simultaneous RTE protocol stack operation.

5) Despite the individuality of different RTE protocol suites,
e.g. the usage of different communication methods and
OSI layers, three unified domains of scheduling can
be identified: The user application domain, the protocol
data unit domain and the traffic fitting domain. These
domains can be, if the target hardware platform allows
it, operated autonomously and must adhere individually
to the configured RTE application data refresh cycle time.
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