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Abstract 

 

A SUSTAINABLE ULTRAFILTRATION OF SUB-20 NM NANOPARTICLES IN WATER AND 

ISOPROPANOL: EXPERIMENTS, THEORY AND MACHINE LEARNING 

 

By Jie Z McAtee 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at Virginia Commonwealth University 

Virginia Commonwealth University, 2023  

Advisor: Dr. Sheng-Chieh Chen 

Assistant Professor, Department of Mechanical and Nuclear Engineering 

 

This research focused on ultrafiltration (UF) for particles down to 2 nm against membranes 

with pore sizes larger than 100 nm in water and IPA. Unlike the use of nanofiltration (NF) 

membranes (small pore sizes of 2, 5, and 10 nm) that remove nanoparticles through sieving, which 

results in high energy consumption, ultrafiltration (UF) with a high ratio of pore size to particle 

size has the potential to save up to 90% of energy. Considering the widespread use of NF 

membranes in various industries, such as pharmaceuticals, biochemistry, food, and water treatment, 

it is essential and urgent to investigate the potential of energy-efficient filtration methods.  

To study the UF under large pore to particle diameter ratio (PPDR) condition, a measurement 

method capable of effectively measuring nanoparticles down to several nanometers in size needed 
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to be developed. Most of the measurement methods are either time consuming or incapable of 

measuring particles down to 2 nm. This study combined electrospray (ES) with scanning mobility 

particle sizer (SMPS) to measure the small particles. The ES was able to aerosolize colloids from 

water and IPA with minimal loss and no measurement interference, allowing the SMPS to measure 

the aerosols accurately down to 2 nm. This fast and effective method provides timely and precise 

data. To further verify the measurement results, the collected particles were observed by scanning 

electron microscope (SEM). The images showed that individual particles were successfully 

generated by the ES and the size measured by SMPS matched with the size provided by the 

manufacturer. The ES-SMPS system was used to obtain the retention efficiency for different sizes 

of ZnS, Au and PSL challenged on different pore sizes of polytetrafluoroethylene (PTFE), 

polyvinylidene fluoride (PVDF) and polycarbonate (PCTE) membranes. Results showed that the 

retention efficiencies in IPA were higher than that of water for all three membranes. The surface 

electrical enhanced PTFE had a comparable or greater efficiency for all four sizes of NPs than the 

PCTE. In addition, the highest efficiency was found to be ~80% with 10 nm Au nanoparticle 

challenged on 100 nm rated PTFE membrane among all the available experimental conditions, 

which demonstrated the feasibility of the proposed sustainable UF.  

In order to gain a deeper understanding of the experimental results, theoretical calculations 

were required. However, there has been a lack of models that can accurately predict the retention 

efficiency of small particles in medium-polarity organic solvents. While Derjaguin, Landau, 

Verwey and Overbeek (DLVO) models are commonly used to qualitatively predict the deposition 

of colloidal particles, a quantitative model was needed in this case. To achieve this, transport 

models were incorporated, the DLVO models were modified for the organic solvent, and a 

Maxwell model was added. The new models were validated by comparing the experimental data 
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with the calculated data, and the filtration efficiencies were explained using the validated model. 

This study found that the use of IPA led to higher retention efficiency mainly due to the change of 

AB interaction from repulsion to attraction. Enhancing the electric attraction could form a 

secondary minimum, which promoted the deposition of nanoparticles. These findings suggest that 

the 80% efficiency observed in the experiments, though surprising, can still be improved. Further 

optimization is needed to achieve satisfactory results.  

It is not practical to use experimental method to find the optimal solution, and numerous trail 

and error cases need to be run to obtain the approximately optimal condition by theoretical 

calculation. In order to provide a convenient and effective method to obtain the best solution, 

machine learning was applied in our research. Although machine learning models have been 

widely used to study fouling and membrane fabrications, no model has been built for optimizing 

filtration conditions for UF. In this study, the UF performance was optimized by combining a 

multilayer perceptron artificial neural network (MLP-ANN) with a particle swarm optimization 

algorithm (PSO). The inputs included membrane zeta potential, pore size, particle size, particle 

zeta potential, and Hamaker constant, while the output was the retention efficiency. The model 

was trained, tested, and validated using data obtained from experiments, as well as calculated 

retention efficiencies for various nanoparticles (Au, ZnS, SiO2, Al2O3, Si3N4, and PSL) with sizes 

ranging from 5-100 nm against PTFE, PVDF, and PCTE membranes with sizes ranging from 50-

200 nm. The ANN model provided highly correlated predicted values with target values, as 

indicated by R2 values of 0.996, 0.992, and 0.962 for the training, validation, and test datasets, 

respectively. The PSO model was then used to find the optimized combination of inputs that would 

result in the highest retention efficiency and lowest energy use. The results showed that a filtration 

efficiency of 99.9% could be achieved by using 3.4 nm Si3N4 (with a zeta potential of 36.5 mV) 
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on the PCTE membrane and 28.4 nm ZnS (with a zeta potential of -20.8 mV) on the PTFE 

membrane. If the membrane or particle type was not pre-determined, the conditions to achieve a 

filtration efficiency of 99.9% were a 52.2 nm filter with a -20.3 mV zeta potential, 5.5 nm 

nanoparticles with a 41.4 mV zeta potential, and a combined Hamaker constant. The model can be 

extended to predict and optimize most of the UF applied in pharmaceutical, biochemical, food, 

and water treatment industries.  

This research utilized experimental method to verify feasibility of using large pore size 

membrane to filter small particles. Theoretical models for deposition of small NPs in organic 

solvent were developed and applied to explain the mechanisms. By establishing PSO and ANN 

models, the filtration conditions were optimized to attain a retention efficiency of 99.9%, resulting 

in the attainment of a sustainable design. 
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Chapter 1. Introduction 
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1.1 Sustainability of liquid filtration  

Liquid filtration is a contamination control method for process liquids. Filtration 

membranes are applied to remove particle, gel, agglomerate and metal ion contamination in 

chemicals, water and other process materials. Based on the pore size or operation pressure (or 

transmembrane pressure, TMP), liquid filtration can be categorized into microfiltration (MF), 

ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) (Fig.1.1) [1].  

 

 

Figure 1.1 Pressure-driven membrane filtration. The red dash line means the proposed method 

of using 100 nm pore size membrane to filter 0.7-10 nm particles, which is energy efficient 

 

For liquid filtration, sieving, diffusion, interception, impaction and electric exclusion are 

the main removal mechanisms. Among them, sieving is very important for MF, UF and NF, and 

electric exclusion is essential for NF and RO. By sieving, MF is usually used to remove bacteria, 
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turbidity and fine particles in sizes > 100 nm (Fig.1.1). UF is usually for the removal of viruses, 

endotoxins, proteins and silica, which have sizes of > 20 nm. As NF uses both sieving and electric 

exclusion mechanisms for solutes removal, its applications are more widely including industries 

of drinking water and wastewater treatment, oil and petroleum, food, pharmaceutical, textile, 

biomedical, semiconductor, etc.[2]. NF shares many similar characteristics with RO but requires 

a lower TMP than RO, thus, it is capable to retain small substance such as ions but more energy 

efficient. Encouraged by this idea and noticed that UF also shares the sieving characteristics with 

NF but requires lower TMP, researchers consider using UF to substitute NF to remove sub-10 nm 

particles using the mechanism of electric exclusion rather than sieving exclusion to save energy 

(Red dash line in Fig.1.1).  

A potential application for this is in semiconductor manufacturing. Tons of water or 

processing liquids are used in daily current integrated circuit (IC) production [3] and the particle 

level in the water or chemicals is required to be less than 30 particles/ml of size greater than the 

6.5 nm in 2022 according to the international technology roadmap for semiconductors (ITRS) [4]. 

Generally, the dead-end filtration uses NF (typically pore sizes 1~10 nm) membranes with very 

small pores, e.g., 2, 5 and 10 nm rated, to remove the nanoparticles by sieving, which results in 

high energy consumption (Top left figure in Fig.1.2). Hu et al. [5] and Lee [6] reported that 

approximately 60,000 megawatt-hour energy was used just for performing the liquid filtrations. 

The use of energy is expecting to further increase with decreasing feature (node) sizes because the 

critical particle size, defined as the size above which a particle presented in cleanroom air, 

processing gases and processing liquids, is shirking. For saving energy, the feasibility of using 

large-pored membranes (Top right figure in Fig.1.2), i.e., ultrafiltration (UF, membrane pore sizes 

10~100 nm), to collect small nanoparticles (NPs) with 1.7, 5, 6.6 and 10 nm in aqueous systems 
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was first reported by Chen et al. [7] and Lee et al. [8]. Their studies showed that the TMP was 

reduced to 0.2-0.3 bar when filtering water with 2-10 nm particles by membranes with pore sizes 

of 25~100 nm compared to 1-20 bars by membranes with 1-10 nm pores. This means the energy 

consumption can be reduced by more than 90%, around 54 GWh (gigawatt-hour) and saving 

$378M per year assuming having 100 of 3-5 nm Fabs in the US in the near future (Fig.1.2). 

However, it should be noted that the processing liquid used in semiconductor factories include 

other chemical liquids (acid, base and IPA etc.) than water [9], thus the performance of UF in non-

aqueous system still needs to be studied.  

  

 

Figure 1.2 Potential energy savings by using UF membrane with large pore size to filter small 

particles 
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1.2 Methods to measure small nanoparticles in different liquids 

Membrane ultrafiltration has been widely studied in aqueous system including particle 

removal in municipal water and wastewater treatments [10-13] as well as process liquids in various 

industries such as semiconductor [14], pharmaceuticals [15], food and beverage [16]. Different 

from aqueous solution, IPA is a slight polar organic solvent which can change the performance of 

UF. For example, the dielectric constant and zeta potential can be changed when IPA solution is 

used instead of water [17]. For liquid filtration, electric exclusion is a crucial removal mechanism 

and affected by the dielectric constant and zeta potential. Therefore, the retention efficiency would 

be significantly varied [18]. However, studies on UF in IPA are limited. To our best knowledge, 

there is only one literature [19]reported retention efficiency when 10 nm nanoparticles were 

challenged on 10 nm pore size different membranes in IPA. The major mechanism for UL of this 

paper was still sieving. As mentioned in the introduction part, this is not energy efficient and 

different from our research goal, so it is necessary to perform more studies on UL in IPA with 

small ratio of particle size to pore size (PPD). 

Measuring small particles (down to 2 nm) in IPA is also a challenge. Methods that can 

measure small particles include using dynamic light scattering (DLS), transmission and scanning 

electron microscopy (TEM/SEM), UV/vis or fluorescence spectroscopy, inductively coupled 

plasma-mass spectrometry (ICP-MS), nanoparticle tracking analysis (NTA), electrospray-

scanning mobility particle sizer (ES-SMPS), as shown in Table 1.1. However, most of these 

methods have drawbacks. For example, DLS is sensitive to the particle diameter because it 

analyzes the particle speed by measuring the rate at which the intensity of the scattered light 

fluctuates and the intensity is proportional to the sixth power of the particle diameter[20]; 

TEM/SEM are time-consuming and not cost-effective [21]; UV/vis requires relatively high feed 
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concentrations due to their low sensitivity [7]. Lee et al. [22] applied ICP-MS, NTA and ES-SMPS 

system to measure particles down to 2 nm in water. Their results showed that ICP-MS had high 

sensitivity to a wide range of elements and had a broad analytical working concentration range as 

long as samples meet the mass requirement. In addition, they reported that both NTA and ES-

SMPS had good performance in measuring size and count of particles. However, the particles they 

used were gold NPs in their paper with high refractive index, which is a requirement for applying 

NTA. It is very difficult to measure particles with low refractive index using NTA and the 

operation is very complicated. For ES-SMPS, it can be applied to measure particles down to 1 nm 

and is not sensitive to the material of the particle. However, the liquid medium is an essential factor 

that determines if the whole system will work [23]. For most of the published literatures used ES-

SMPS system, the liquid was water, including Lee’s study. When the liquid changes, special 

treatment or setup needs to apply. A short summary about the characteristics of different 

measurement methods in measuring small nanoparticles is shown in Table 1.1. 

Table 1.1 Features of prevalent measurement methods for particles with sizes below 20 nm 

Measurement method Feature 

Liquid particle counter (LPC) Lower limit size is 20 - 30 nm 

Dynamic light scattering (DLS) 
Sensitive to the present of small amount of large 

particles 

Nanoparticle tracking analysis (NTA) Selective to particle material (high refractive index) 

TEM/SEM Time consuming and results could be not representative 

ICP-MS Time consuming and expensive 

Electrospray-SMPS (ES-SMPS) 

o Size 1 nm to 1000 nm 

o Economically acceptable 

o Low sample concentration 

o Steady cone-jet shape needs to be formed 
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1.3 Theories for predicting retention efficiency  

To explain the experimental results, theoretic models need to be introduced. Unlike air 

filtration, liquid filtration includes two main processes, i.e., transport and interaction [24]. First of 

all, particles are transported to the vicinity of the filter (membrane) surface by convection and/or 

diffusion. To calculation the efficiency due to the transportation, classic air filtration models or 

capillary tube models can be used depending on if the filter is fibrous membrane or capillary pore 

membranes (Fig.1.3). The main mechanisms are diffusion and interception. Impaction and settling 

on the filter surface were not considered due to the negligible inertia and gravity of NPs.  

The second process is the interaction between the particles and the membranes (Fig.1.3). The 

well-known DLVO theory was established by Derjaguin, Landau, Verwey, and Overbeek in the 

1940s (Derjaguin and Landau 1941, Verwey and Overbeek 1948) and describes stabilization of 

charged surfaces interacting through a liquid medium [25]. The DLVO theory explains particle 

interactions by combining electrostatic potential due to repulsive electrostatic double layer, and 

attractive London–van der Waals interactions. Although the DLVO theory is often in a good 

estimate for intersurface forces for surface separations down to about 5 nm [26], researchers also 

found that classical DLVO theory have some discrepancies when describing many 

deposition/filtration processes, such as membrane fouling and organic solvent liquid filtration [27]. 

It is believed that additional interactions existed between the particles and membranes but not 

being considered is the problem. Brant and Childress [28] demonstrated that acid–base (AB) (polar) 

interactions was the main reason that resulted the discrepancy between the experimental results 

and DLVO prediction result. Lee et al. [24] noticed that Born repulsion should be introduced to 

allows a better description of the interactions when the particles come close to the collector surface 

with distances of a few nanometers and less. Wijenayaka et al. [29] and Fjordbøge et al. [30] 
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demonstrated that steric interactions are not unneglectable if the surfaces of the particles are 

functionalized. Yin et al. [18] found that the interfacial forces predicted by xDLVO approach 

appeared to be more consistent to the force curves measured by the atomic force microscopy, 

especially in strongly hydrophilic systems. Trinh et al. [31] and Tanudjaja and Chew [32] applied 

xDLVO models to predict membrane fouling in organic liquids. Therefore, extended DLVO theory 

(xDLVO) with all possible interactions should be applied[29, 30, 33, 34].  

If the DLVO/ xDLVO predict the total interaction to be strong attractive energy, the particles 

will deposit on the surface of the membrane. No further detachment will happen for this case. If 

the total interaction is repulsion, it is most likely that most of the particles will not be captured by 

the membrane. If the interaction energy is shallow attractive or repulsion, detachment also needs 

to be considered. However, the possibility of the particles detached from the membrane is also not 

well studied. Lee et al. [24] considered an additional hydrodynamic force that can induce the 

detachment of colloids from the membrane. However, hydrodynamic force usually applies to 

bigger particles [35]. For particles less than 10 nm, thermal rebound (kinetic energy) plays the 

most important role. The Maxwell-Boltzmann equation, which forms the basis of the kinetic theory 

of gases, defines the distribution of speeds for a particle at a certain temperature. The area under 

the distribution curve represents the total number of the particles. Hahn and O’Melia [36] used 

Maxwell approach to estimate particle collision efficiencies. Although there are several other 

methods to predict possibility of particle deposition, such as Monte Carlo model [37-39], three-

dimensional particle tracking model [40] and dual deposition model [41], Maxwell approach is 

considered as the most computer cost-effective and direct method. In addition, Shen et al. [42] 

found that Maxwell model provides much more accurate estimations of collision efficiencies for 

the small colloid. However, 1.5 orders of magnitude deviation in estimation collision efficiencies 
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for larger particles. Therefore, more studies are needed to further validate the model in predicting 

the detachment.  

 

Figure 1.3 Theories to explain deposition of colloidal particles. Reproduced from Ref [25] 

with permission from ScienceDirect 

Literatures discussed the accuracy about DLVO/xDLVO theories are commonly seen, but 

limited studies reported applying all the theoretical models to explain filtration phenomenon [24]. 

And to our best knowledge, there is no study investigated the appropriate models for non-aqueous 

system for particles down to 2 nm. 
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1.4 Machine learning Techniques  

ML techniques are generally categorized into 4 groups: supervised learning, unsupervised 

learning, semi-supervised learning, and reinforced learning [43]. Unsupervised learning or semi-

supervised learning is very useful when user does not know what to extract from the data [44]. 

Reinforced learning can greatly improve the learning performance when a small amount of labelled 

data is provided [45]. For UF problems, the learning goals are usually known and the training data 

can be obtained, so supervised learning is the most commonly used algorithm [46-48].  

Among the supervised algorithms, ANN model with different algorithms, including 

feedforward neural network [49], radial basis function (RBF) [50-52], self-organizing map (SOM) 

[53], recurrent neural network (RNN) [54], convolutional neural network (CNN) [55], Hybrid 

neural network [56]etc. (Fig.1.4), have been widely applied to UF processes. Bowen et al. [57, 58] 

successfully applied BP-ANN to predict membrane fouling during ultrafiltration and 

microfiltration of proteins and colloids. Zhao et al. [59] developed BP-ANN and RBF-ANN 

models to predict permeate water total dissolved solids (TDS,) and showed that the ANN models 

were more accurate than the traditional diffusion based models. Alizadeh and Kavianpour [60] 

developed wavelet ANN to predict water quality. Curcio et al. [61] used a classic ANN for 

prediction and control of flux decline in a cross-flow membrane process. However, the accuracy 

of an ANN prediction is greatly affected by the ANN structure, which depends on the task to be 

performed. Therefore, appropriate ANN models for our cases are still needed to be developed. 
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Figure 1.4 State-of-the-art artificial neural networks and optimization algorithms 

After running the ANN models, predication results can be provided. To further optimize 

the results, an optimization method needs to be determined. In general, optimization algorithm 

includes direct algorithm, stochastic algorithm, and population algorithm (Fig. 1.4) [62-64]. 

Among these algorithms, population algorithm has advantages over the other algorithms [65, 66]. 

It has been reported that population algorithms have a high probability of converging to the optimal 

solution as they explore a wide search space and maintain a diverse population of solutions, and it 

is highly scalable and can handle problems with a large number of variables and constraints. In 

addition, population algorithms are robust to changes in problem parameters and constraints, 

making them suitable for dynamic environments [67]. Moreover, population algorithms strike a 

balance between exploration and exploitation, which enables them to avoid getting stuck in local 

optima and discover new promising solutions. Therefore, this research chose this algorithm to 

perform the optimization.  In this category, PSO is considered as the most promising method.   

PSO is an optimization algorithm that can use a complex, multi-variable cost function to 

predict the inputs at the extrema value [68, 69]. In PSO, the particles, or output of different input 
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combinations, are randomly distributed in the initial state and move according to a set of rules, 

including direction and velocity, based on reported results of the previous move [70-72]. After 

iterations, all particles are likely to fall into the global extrema, and the value at that point would 

be reported alongside the parameters of the particles, offering a combination of input and output 

at the global extrema value. The number of particles is determined manually. If the number of 

particles is small, there is a chance that all particles will eventually fall into a local extremum. To 

avoid this from happening, results with various number of particles should be tested to select the 

best balance between the computing complexity and the accuracy of the model. For the 

applications on membrane filtration, PSO model were mostly used to tune the hyper parameters in 

ANN models. Fetimi et al. [70] applied PSO to optimize the ANN parameters for better predicting 

the removal of the cationic dye safranin-O from an aqueous solution. Yusuf et al. [73] utilized 

three different PSO models to train the neural network and found that the combined model could 

predict the dynamic behavior of filtration process. PSO was also proved to be a good tool in tuning 

proportional integral derivative (PID) controller in RO system [74]. However, there is a scarcity 

of literature that utilizes PSO to enhance the performance of UF although it is a very promising 

method. 
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1.5 Objectives and Arrangement of the Dissertation  

      Based on the review for the ultrafiltration shown from section 1.1-1.4, it is very necessary 

to develop sustainable filtration system and understand its performance from experimental and 

theoretical aspects. Machine learning technique should also be utilized to facilitate researchers or 

engineers to choose filtration conditions that can have high filtration performance. Therefore, there 

are three objectives in my study.  

To begin with, measuring particles down to 1.7 nm in liquid is a great challenge so far [7, 8]. 

The current available methods are either having high requirements for the sample (DLS, NTA, 

ICP-MS) [20, 22] or time consuming and cost-ineffective (TEM/SEM, ICP-MS) [21, 22]. In 

addition, no study has found measuring retention efficiencies for particles down to 1.7 nm in IPA. 

Therefore, it is very necessary to build a new measuring system that can effectively and accurately 

measure particle characterizations in IPA. In chapter 2, a measurement method for characterizing 

particles down to 2.8 nm in water and IPA was developed.  

In addition, the theoretical models to explain the phenomena in liquid filtration are very 

complicated. As particles will experience transportation, interaction (deposition) and detachment, 

three corresponding sets of models should be considered [24]. In general, air filtration models can 

elucidate the particle transportation very well. However, DLVO/xDLVO models used to describe 

the interactions between particles and membranes still have noticeable discrepancies when applied 

to membrane filtration especially in non-aqueous system [18, 31, 32]. Moreover, there are limited 

studies discussed the detachment [24, 42]. One of the possible reasons is that particles can usually 

tightly deposit on the surface of the membrane if the capture mechanism is sieving. However, our 

research is intending to use large pore size membranes to capture small particles to achieve energy 

conversation. Thus, the detachment is likely to occur and the models that can predict the 
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detachment are also needed to be discussed. Therefore, chapter 3 elucidated the models developed 

for the filtration in IPA with small NPs. 

Lastly, it has been demonstrated that ANNs are effective methods to model non-linear 

multifactor problems. Successful applications include predicting membrane fouling [57, 58], 

calculating of permeate flux decline [59], and optimizing membrane fabrication [75]. An essential 

factor that determines the predict accuracy of the models is matching of ANN architecture to the 

target [76]. For our research, it is expected to predict the retention efficiency when different 

operation conditions are given, such as different membranes and particles. An appropriate model 

for this purpose has not been developed yet. In addition to prediction, it is very useful to provide 

the optimized operation condition that the UF can have high retention efficiency but low energy 

consumption. Therefore, in Chapter 4, ANN and PSO models were built and their performances 

were evaluated. These models can help the operators to better understand the performance of the 

filtration system and choose the best operation conditions.   
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Chapter 2. Experimental retentions of sub-10 nm colloidal nanoparticles by 

large-pore ultrafiltration membranes in isopropanol and water 
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Abstract 

Effective removal of small colloidal nanoparticles (NPs, e.g., < 20 nm), including rigid 

particles, macromolecules, organics, viruses, antibiotics, hormones, etc., by dead-end filtration, is 

very important in drinking water, chemical, biopharmaceutical, and semiconductor factories. Most 

existing operations focused on sieving mechanism-based filtration with small-pore membranes 

(e.g., < 20 nm) to capture these tiny NPs, which unfortunately leads to high energy consumption. 

This study proposed an emerging method that is to use large pore membranes (i.e., ~100 nm) to 

capture NPs down to 2.8 nm. The ultimate goal is to address the grand challenge presented in the 

United Nations Sustainable Development Goal 12 on energy saving. To capture (or adhere) small 

NPs by large-pore membranes, the surface electrostatic interactions between NP and membrane 

should be considered in addition to the sieving mechanism. To examine the feasibility of the 

proposed method, the retention efficiency of ~100 nm rated polyvinylidene fluoride (PVDF), 

polytetrafluoroethylene (PTFE), and polycarbonate track-etched (PCTE) (as a model filter) 

membranes against 2.8 nm ZnS quantum dot (QD), 5 and 10 nm Au and 100 nm PSL in water and 

isopropanol (IPA) (a representative organic solvent) were studied experimentally. The 

electrospray-scanning mobility particle sizer (ES-SMPS) was extended to measure the size 

distribution of these nanosized colloids before and after the membrane to determine the retention 

efficiency in IPA. Results showed that ES-SMPS system successfully measured particles down to 

2.8 nm in water and IPA and the requirement for the concentration limit was as low as 1 x 107 

particles/mL for 5 nm Au NP and 5 x 108 particles/mL for 2.8 nm ZnS QDs. 
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2.1 Introduction 

Dead end ultrafiltration (UF, membrane pore sizes between 10~100 nm) and nanofiltration 

(NF, membrane pore sizes between 1~10 nm) are pressure-driven membrane separation 

technologies widely applied in food [77], biomedical [78], biopharmaceutical [79], chemical [80], 

drinking water [81], wastewater [82], and semiconductor industries [14, 19, 83]. For example, the 

biopharmaceutical industry removes viruses as small as 20 nm by NF in the production of 

mammalian derived biotherapeutics [79]. Water and wastewater plants need to filter out colloidal 

particles smaller than 20 nm (~1-20 nm), such as amino acids, antibiotics, and hormones [82]. In 

semiconductor fabrication plants (Fabs), which manufacture 10 nm or larger node chips, UF is 

typically used to remove particles in process liquids, including massively used ultrapure water 

(UPW) and isopropanol (IPA) [3, 9]. However, the critical particle size, the diameter above which 

a liquid-borne particle becomes a “killer defect” affecting the functionality of the device, is 

currently reduced to as small as 3 nm in state-of-the-art 3 and 5 nm node Fabs[84]. Therefore, NF 

membranes are used instead to remove these tiny nanoparticles (NPs) by the sieving mechanism. 

However, NF is operated at lower flux and higher back pressure of 1 to 20 bars compared to UF, 

which leads to the total energy consumption of ~30 gigawatt-hours a year for operating the NF in 

a typical 3 nm Fab [5, 6]. 

To address the grand challenge presented in the United Nations Sustainable Development 

Goal 12 which intends to reduce the ecological footprint by changing the way of producing and 

consuming goods and resources, it is desirable to use UF membranes to remove sub-20 nm NPs 

(particle to pore diameter ratio, PPDR<<1) if the retention can be improved to be as high as that 

of NF. With UF, the flux rate can also be increased to shorten the manufacturing time. To capture 

small NPs by large pore membranes when the sieving mechanism is diminished, the collection will 
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rely on electrostatic and van der Waal attractions, thus the surface interactions between NP and 

membrane should be considered. Chen et al. [7] and Lee et al. [8] reported that retention 

efficiencies can reach 40-50% when challenging 50 and 100 nm rated polycarbonate track-etched 

(PCTE) membranes with 1.7 nm NPs (PPDR=0.017-0.034) due to overall negative interaction 

energy. However, their filtrations were only performed in the aqueous system, besides, no 

theoretical results for particles smaller than 60 nm were shown.  

IPA is a representative organic solvent and one of the major chemicals used in silicon chip 

fabrications [3]. Different from aqueous solutions, IPA is a slightly polar organic solvent that can 

change the performance of UF from the surface electrostatic interactions. Park et al. [17] showed 

that adding IPA to water changes the electrokinetic (e.g., dielectric constant and zeta potential) 

and interfacial characterization of the solution (e.g., viscosity). Yin et al. [18] conducted UF in 

different organic solvents and found that the zeta potentials of SiO2 particles and polyacrylonitrile 

membranes became less negative as the dielectric constant of the solvent increased. Li et al. [85] 

and Kochan et al. [86] found that the IPA increased the permeability of the polymeric membranes. 

These changes affect the physicochemical interactions between the colloids and membranes, 

which are the main filtration mechanisms for UF with PPDR<<1, and thus influence the 

performance of the UF. However, there are very limited studies that have reported UF for small 

NPs conducted in IPA. Tsuzuki [83] and Takakura and Tsuzuki [19] did measure the retention of 

10 and 30 nm NPs in IPA and sulfuric acid, but the influence of liquid on the surface interaction 

and retention efficiency was not studied because the major mechanism of their UF was sieving 

(PPDR>1). 

To study UF, especially in IPA for such small NPs, an appropriate and efficient measurement 

method needs to be developed. There are seven measurement technologies for sizing and counting 
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colloidal particles, including liquid particle counter (LPC) [87], dynamic light scattering (DLS) 

[88], nanoparticle tracking analysis (NTA)[89], scanning electron microscopy (SEM) or 

transmission electron microscopy (TEM) [21, 90], ultraviolet-visible spectroscopy (UV/vis) [91-

93], inductively coupled plasma-mass spectrometry (ICP-MS) [22, 94], and electrospray-scanning 

mobility particle sizer (ES-SMPS) [22]. Among these methods, ES-SMPS is a very promising 

method to measure particles in the liquid. Unlike other measurement methods which have general 

issues of sizing accuracies and detection limitations for sub-20 nm NPs, ES-SMPS has a detection 

capability of NPs down to 1.1 nm (using Nano Enhancer 3757, TSI Inc., Shoreview, MN), low 

interference, particle material independent feature, fast and nearly real-time registration, relatively 

low sample concentration requirement (i.e., 1 x 107 particles/mL, ~13 ng/L or ~13 ppt for 5 nm 

Au NP and 5 x 108 particles/mL, ~23 ppt for 2.8 nm ZnS QDs), and economically efficient. 

However, a limitation is that a stable Taylor Cone needs to be formed at the tip of the capillary for 

the ES to successfully aerosolize particles, which limits the application to liquids with an 

appropriate conductivity and viscosity [23, 95]. No study has successfully applied the ES-SMPS 

system to high-concentration IPA, to our best knowledge.  

Therefore, the objective of this study is to investigate a reliable method to measure the 

retention efficiency of colloids down to 2.8 nm in IPA solution for large pore membranes. 

 

 



34 

 

2.2 Methods 

2.2.1. Challenging particles and solutions 

To investigate the mechanisms of retention efficiency of different NPs in UFs, this study used 

2.8 nm ZnS quantum dots (QDs), 5 and 10 nm Au NPs and 100 nm PSL as the challenging particles. 

The ZnS QDs were synthesized according to Komada et al. [96] and Segets et al. [97]. The mean 

number weighted particle size was 2.8 nm by SMPS and TEM (refer to SI D in Supporting 

Information). The ZnS QD powder was dispersed in Milli-Q water (EMD Millipore Corp., 

Billerica, MA) with a concentration of 2 μg/mL. The original concentration of the ZnS suspension 

was 4.2×1013 particles/mL based on a density of 4.09 g/cm3 of ZnS QDs. The ZnS suspension was 

ultrasonicated for 10 min and then diluted 500 times with IPA (99.5% electronic grade solution, 

Thermo Fisher Scientific Inc. Waltham, MA) as the challenging suspension. 

For the Au NPs, both the 5 nm Au (Nanopartz Inc., Loveland, CO, USA) and 10 nm Au NPs 

(Ted Pella Inc., Redding, CA, USA) are stabilized by tannic acid. The original concentrations were 

provided by the manufacturers with 4.76 x 1013 p/mL and 1.47 x 1012 p/mL, respectively. The 5 

nm Au NPs were diluted 500 times while the 10 nm Au NPs were diluted 100 times by IPA. The 

100 nm PSL particles were purchased from Thermo Fisher Scientific (Thermo Fisher Scientific 

Inc. Waltham, MA). Taking the density of 1.05 g/cm3 and the concentration of 1%, the original 

concentration of PSL particles was 1.8 x 1013 p/mL. Approximately 500 times dilution was 

prepared as upstream suspension.  

Based on 100-500 times dilutions by the 99.5% IPA for these colloidal suspensions, the 

challenging suspensions remained at concentrations of IPA higher than 98-99%. Thus, the liquid 

system of the current UF was considered to be pure IPA in the theoretical modeling. For the 

filtrations under aqueous conditions, challenging particles were suspended and diluted in Milli-Q 
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water. The zeta potentials for all the NPs in IPA and water were measured by a Zetasizer Nano ZS 

(Malvern Instruments, Malvern, UK). The measurement conditions were the same to the filtration 

experiments. The summary of the particle information is listed in Table 2.1. 

Table 2.1. Summary of the nanoparticle characterizations 

Nanoparticles Size (nm) 
Zeta potential (mV) 

Upstream concentration (p/mL) 
IPA Water 

ZnS 2.8 -0.7 -15 8.5 x 1010 

Au 5 -1.0 -31 9.5 x 1010 

Au 10 -2.1 -32 1.5 x 1010 

PSL 100 -* - 3.6 x 1010 

* zeta potentials for PSL were not measured as the main removal mechanism for the 100 nm PSL 

was sieving. 

2.2.2 Membranes 

The membranes examined in this study include a PTFE (W.L. Gore & Associates Inc., 

Newark, DE), a PVDF (EMD Millipore Inc., Darmstadt, Germany), and a PCTE (GE Healthcare 

Biosciences, Pittsburgh, PA) membrane and their information is summarized in Table 2.2. The 

pore sizes for the PVDF and PCTE are both 100 nm while that of the PTFE is 130 nm. Therefore, 

the PPDRs were all less than 0.1, except for the 100 nm PSL. The use of the PCTE as the model 

filter was due to its relatively simple structure and frequently studied. The use of PSL was intended 

to show the dominance of the sieving mechanism compared with other UFs under small PPDRs. 

The PTFE and PVDF are fibrous-like and sponge-like, respectively, and PCTE is a capillary tube 

membrane. The PTFE was modified to be positively charged while PVDF and PCTE were kept 

being inherently negatively charged. The zeta potentials were measured by a surface zeta potential 

cell (ZEN1020, Malvern Instruments, Malvern, UK). Water or IPA were added to the cuvette to 

make the measuring conditions as close as the filtration conditions. Results are shown in Table 2.2. 
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Table 2.2. Summary of membrane information 

Membrane Material 

Pore size 

(nm) 

Zeta potential 

(mV) 

IPA Water 

PCTE Polycarbonate track-etched (Hydrophilic) 100 -7.1 -11.0 

PTFE Polytetrafluoroethylene (Hydrophilic) 130 7.0 14.0 

PVDF Polyvinylidene fluoride (Hydrophilic) 100 -8.0 -12.2 

 

2.2.3. Experimental systems and retention efficiency measurement 

A peristaltic pump (Model 77252-72, Masterflex L/S, Radnor, PA), as shown in Fig. 2.1, was 

applied to run the UF. The filter holder is a 47 mm diameter metal holder (Toyo Roshi Kaisha Ltd., 

Tochigi, Japan). To study the effect of filtration velocity on filtration retention efficiency, two flow 

fluxes of 1.8 and 10.8 mL/min (~0.0018 and 0.01 cm/s) were applied. The influents were prepared 

to be 50 mL to ensure the liquid fills the entire tube when performing the UF. About 5 mL effluent 

was collected in consideration of the total feed less than a monolayer of NP deposition on the 

membranes. A transmission electron microscopy (TEM, JEM-F200, Tokyo, Japan) was used to 

confirm the sizes and deposition of the 2.8 nm ZnS QDs and 5 nm Au NPs on UF membranes. 

In this study, the ES-SMPS (TSI model 3480, 3085, and 3776, TSI Inc., Shoreview, MN), as 

shown in Fig. 2.1, was used to measure the upstream and downstream particle concentration of the 

membrane. The chamber pressure was 4 psi. The applied voltages for IPA and water were from 

2.2-2.8 kV and 3.0-3.3 kV, respectively. The aerosol flow through the DMA (or nano-DMA) was 

1.5 L/min. 
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The ES generates particles based on the electrostatic separation of the highly charged droplets 

containing particles. Conductive solutions of colloids were placed in a pressure chamber and then 

delivered to the end of a capillary (0.04 mm inner diameter and 24 cm in length, TSI Inc., 

Shoreview, MN). An electrical field was exerted at the exit of the capillary tube, which induced a 

surface charge on the liquid. By adjusting the voltage, a cone-jet mode was formed, and fine-

charged droplets containing the NPs were sprayed out. The liquid from the droplet evaporated in 

the ionization chamber and airborne NPs remained. The NPs were then introduced into SMPS for 

particle size and concentration measurement. To obtain the colloidal particle concentration in the 

liquid before and after the filtration, the correlation between prepared colloidal concentration and 

aerosolized particle concentration by ES-SMPS should be built (results are shown in Fig. 2.5 in 

section 2.3.1). Once the relationship is determined, the retention efficiency, Er, can be calculated 

as: 

 inf1r

eff

C
E

C
= −  (2.1) 

where Cinf is the particle concentration in the influent, #/mL, and Ceff is the particle concentration 

in the effluent, #/mL. 

 

 

Figure 2.1. Schematic diagram of the ultrafiltration colloids measuring system. 
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2.3 Results and Discussions 

2.3.1. Measuring colloidal particles in IPA using ES-SMPS 

For the electrospray, the presence of salts or surfactants typically added to stabilize the colloid, 

can result in the formation of salt particles during evaporation and then interfere with the SMPS 

measurement. To avoid interference with seeding particles in the suspension, the droplet size needs 

to be controlled by adjusting the chamber pressure or the conductivity of the solution to separate 

the residues from the seeding particles [22, 95] As the presence of high concentration of IPA 

significantly decreased the conductivity of the suspension, which could cause an instability (i.e., 

agglomeration) of the colloids, only the chamber pressure was adjusted to separate residues from 

seeding particles. For the colloids used in our study, ZnS does not have residues, but Au and PSL 

NP suspensions had residues due to the use of stabilizers. The SMPS measurement results of 10 

nm Au and 2.8 nm ZnS NPs are shown in Fig. 2.2 as examples to confirm the separation and size 

of seeding particles.  

Figs. 2.2 (a-c) show that the size distribution of the seeding particles remained (peaking at 

14.9 nm) while the distribution of the residues changed when different chamber pressures were 

applied. It is seen the best operation condition was 4 psi because the size distributions could be 

totally separated from the residues and the spraying was most stable (not shown). The reason for 

seeing the peak value of 14.9 nm instead of 10 nm as provided by the vendor was due to the tannic 

acid cap and the attachments of impurities and surfactants during the evaporation process. 

Similarly, the size of the 5 nm Au NPs was measured as 7.5 nm. There was no residue effect for 

the 2.8 nm ZnS QDs (Fig. 2.2d) as no stabilizer was used. The effect was negligible for the PSL 

due to its large size. To approve the size, TEM images of 2.8 nm NP from the upstream suspension 
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and 5 nm NPs collected on the PCTE were shown in Fig. 2.3. The images show that the sizes of 

the 2.8 and 5 nm NPs were approximately 2.8±0.2 and 7.5±1 nm, respectively.  

  

 

Figure 2.2. Particle size distribution for 10 nm Au NPs under: (a) 3, (b) 4 and (c) 5 psi, and 2.8 

nm ZnS NPs under 4 psi (d).  
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(a)                                                       (b) 

Figure 2.3. TEM images for a) 2.8 nm ZnS QDs and b) 5 nm Au NPs. 

Besides, it was confirmed that the sizes of the ZnS before and after passing through the 

membrane remained unchanged (Figs. 2.4a and 2.4b), therefore, the obtained retention efficiency 

is reliable. Same results were seen for other three NPs (not shown). 

 

(a) 

5 nm

2.5~3.1 nm

20 nm 
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(b) 

Figure 2.4. Upstream (a) and downstream (b) size distribution of 2.8 nm ZnS NPs of the 

membrane. 

Fig. 2.5 shows the correlations of normalized concentration of prepared liquid-borne 

particles and aerosolized particles (by ES-SMPS). All the colloidal suspensions were diluted by 2 

to 1000 times from their original concentrations to cover the potential low particle concentrations 

measured after the filter. It is seen that all the relationships are nearly linear with R-squared values 

at least 0.97. As the relationships are linear without an interception, the liquid-borne particle 

concentration can be simply obtained by directly using the measured airborne particle 

concentration to determine the retention efficiency using Eq. (1). The results also indicated that 

each droplet sprayed from the electrospray contained one seeding particle in it. Therefore, the 

particle size and concentration kept the same as the particles were in the liquid. 
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Figure 2.5. Relationship between liquid-borne and aerosolized number concentrations (a) 2.8 nm 

QDs, (b) 5 nm Au NPs, (c) 10 nm Au NPs, and (d) 100 nm PSL. 

 

The above results show that ES-SMPS is a very reliable and fast method to measure 

particles down to 2.8 nm in liquid independent on the types of the particles. In addition, the ES-

SMPS can detect relatively low colloidal concentration (~108 #/mL or ~23 ppt for the 2.8 nm ZnS) 

and show the results nearly in real-time. 

2.3.2. Influence of IPA on NP retention efficiency 

In order to understand the effect of liquid on retention efficiency, the retention efficiencies 

of the three membranes against 10 nm Au NPs (taken 10 nm Au NPs for example) in IPA and 
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water were summarized in Table 2.3. It should be noted that the structures of the membranes were 

assumed to be the same after feeding by IPA because of the short filtration time (2-6 minutes) for 

initial filtration. It is clearly seen that the efficiencies in IPA were higher than that in water 

regardless the types of the membrane. A theoretical explanation can be found in the next Chapter.  

Table 2.3. Retention efficiency for 10 nm Au NPs by different membranes in IPA and water 

 Water IPA 

PCTE 0.32±0.052 0.72±0.052 

PTFE 0.35±0.035 0.76±0.035 

PVDF 0.31±0.041 0.36±0.046 

 

2.3.3 Effects of NP sizes and materials on retention in IPA 

It is energy efficient to remove particles using membranes with PPDR<<1 if the retention 

efficiency is sufficient high. To investigate the filtration performance with PPDR<<1, this study 

challenged the three membranes with NPs of 2.8, 5 and 10 nm. For comparison purpose, the 

retention efficiency for 100 nm PSL NPs was also measured. 

Table 2.4 listed the experimental retention efficiencies of different sizes NPs by the three 

membranes in IPA. It is seen the retention of the 100 nm PSL (PPDR ≈ 1) in the three membranes 

were mainly by sieving as ~100% of efficiency was obtained by the PCTE and PTFE and ~70% 

for the PVDF. The ~100% retention by PCTE was due to its majority of ~100 nm pores. For 

fibrous- and sponge-like membranes, i.e., PTFE and PVDF, there are many pores larger than their 

rated pore sizes. The presence of electrical attraction in PTFE (positively charged) facilitated the 

~100% retention, however, the retention was only ~70% for the PVDF due to the lack of electrical 

attraction [7]. 
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The sieving mechanism can be largely reduced when the particle size is very small, i.e., 2.8 

nm (PPDR=0.028) and 5 nm (PPDR=0.05), and their efficiencies are expected to be extremely 

low, i.e., < 5% for PPDR of 0.028 and < 10% for PPDR of 0.05. Surprisingly, the experimental 

efficiencies reached up to 35% (PVDF) for the 2.8 nm ZnS QDs and 67% (PCTE) for the 5 nm Au 

NPs in IPA. It is believed that diffusion largely enhanced the transport coefficient and contributed 

to these efficiencies. A lower efficiency, reduced to 23% (PVDF vs. 2.8 nm ZnS) and 25% (PCTE 

vs. 5 nm Au), respectively, under ~10 times of higher flux (0.01 cm/s) proved the assumption. The 

diffusion efficiencies (or transport coefficients) based on the filtration models were higher than 

85% for the 2.8 and 5 nm NPs in all three membranes. However, the experimental retentions yet 

showed lower values, which indicated that interactions between particles and membranes should 

be considered for small PPDR UF (see chapter 3). 

Table 2.4. Retention efficiencies of different sizes NPs by the three membranes in IPA 

Particles 
PCTE PTFE PVDF 

Low flux High flux Low flux High flux Low flux High flux 

2.8 nm ZnS 0.31±0.047 0.13±0.043 0.29±0.055 0.12±0.006 0.35±0.012 0.23±0.025 

5 nm Au 0.67±0.039 0.25±0.022 0.56±0.031 0.24±0.024 0.24±0.052 0.07±0.039 

10 nm Au 0.72±0.052 0.53±0.006 0.76±0.035 0.59±0.013 0.36±0.046 0.15±0.041 

100 nm PSL 0.99±0.006 0.99±0.004 0.99±0.015 0.98±0.021 0.74±0.025 0.60±0.005 

 

2.4 Conclusions 

This study experimentally investigated the retention of 2.8, 5 and 10 nm nanoparticles in 

Milli-Q water and IPA by large-pored ultrafiltration (UF) membranes, including 100 nm rated 

PCTE and PVDF and 130 nm rated PTFE. The ES-SMPS successfully determined the retention 
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efficiency of NPs down to 2.8 nm (confirmed by TEM imaging) under an extremely low 

challenging concentration of 5x108 p/mL or ~23 ppt.  

It was found that the retention efficiencies in IPA were higher than that of water for all three 

membranes. The PTFE with 130 nm pore size had a comparable or greater efficiency for all four 

sizes of NPs than the PCTE. Unexpected but surprisingly high retentions were seen, up to 30, 60 

and 75% for 2.8, 5 and 10 nm NPs, respectively, by the 130 nm rated PTFE. This indicated that 

UF under small PPDR (0.022~0.077) is feasible, and thereby the operation energy can be greatly 

reduced for future NF and UF related industries. 
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Chapter 3. Theoretical development for calculating retentions of sub-10 nm 

colloidal nanoparticles by large-pore ultrafiltration membranes in isopropanol 

and water  
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Abstract: 

Ultrafiltration (UF) of very small particles in non-aqueous system is widely applied in 

many chemical, biopharmaceutical, food and manufacturing industries and it is very essential to 

build theoretical models to understand its performance. This study combined the hydrodynamic 

particle transport, extended Derjaguin-Landau-Verwey-Overbeek (xDLVO), and Maxwell models 

to calculate the NP retention. To verify the model results, the retention efficiencies of ~100 nm 

rated polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and polycarbonate track-

etched (PCTE) (as a model filter) membranes against 2.8 nm ZnS quantum dot (QD), 5 and 10 nm 

Au and 100 nm PSL in water and isopropanol (IPA) were obtained using previously developed 

electrospray-scanning mobility particle sizer (ES-SMPS) method. Results showed that the data 

agreed with the theoretical model very well, and the NP retentions in IPA were higher than that in 

water due to a significant change of acid-base interaction from repulsion to attraction. The 

retention of the 10 nm Au NPs reached ~80% and the 2.8 nm NPs could be attained by ~35% in 

IPA by the PTFE. This study was the first to show the combined theoretical model can accurately 

predict the retention of sub-10 nm NPs by different membranes in an organic solvent and water. 

The model predicts the retention of 5 nm Au NPs can be increased to higher than 99% by increasing 

the zeta potential of the PTFE about 5 times, thus a sustainable UF cutting significant carbon 

footprint is foreseeable in near future. 
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3.1 Introduction 

The pressure-driven membrane process is one of important separation processes in 

wastewater treatment [98-100], oil and petroleum [101], food [102], pharmaceutical [103, 104], 

biomedical [105], semiconductor [14, 19, 83, 106] etc., There are four main filtration processes, 

i.e., microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), which 

are categorized based on the operation pressure (or transmembrane pressure, TMP) [107, 108]. 

Typically, the TMP for MF, UF, NF and RO are 1-10, 1-10, 10-30 and 35-100 bars, respectively 

[107]. It can be seen that the NF and RO is high pressure filtration and thus have high energy 

consumption. In order to achieve sustainable filtration, our previous research proposed to use UF 

replace NF. Experimental results demonstrated that efficiency could reach as high as ~80% when 

certain filtration conditions were chosen (Chapter 2). Although the result is very positive and the 

method is promising, a higher efficiency should be achieved for the proposed method to be 

applicable in industrial settings. In order to improve the efficiency, theoretical study to reveal the 

filtration mechanism and influencing factors is very important. 

Challenges existed in developing the models that can quantitatively explain the filtration. The 

theoretical explanation of the UF for NPs down to 2~3 nm in IPA has not been elaborated and 

validated with experimental data. In liquid filtration, NPs experience two processes to result in the 

final attach or detach: transport to the vicinity of the membrane, surface interaction with the 

membrane and possibly detachment from the surface due to high kinetic energy or hydrodynamic 

drag [109]. Many studies ignored the transport and detachment, and just used Derjaguin-Landau-

Verwey-Overbeek (DLVO)/extended DLVO (xDLVO) to explain the deposition of colloids onto 

the surfaces of porous media [110]. Consequently, their calculation results can only qualitatively 

agree with the experimental results [90, 91]. To be able to quantitatively predict retention 
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efficiency, filtration and Maxwell models need to be included [24, 42, 111]. In addition, the 

DLVO/xDLVO models need to be further modified for the non-aqueous system. 

The DLVO or extended DLVO (xDLVO) models describe the total interaction energy 

between particles and collector surfaces as a function of separation distance [109, 110]. DLVO 

considers the superposition of van der Waals (VDW) and electrical double layer (EDL) interaction 

while xDLVO model includes additional non-DLVO effects, such as born repulsion and acid-base 

(AB) interaction compared to the DLVO model [109, 110]. In aqueous media (polar solvent), the 

xDLVO model with the consideration of AB interaction is usually used due to its higher qualitative 

agreements with the deposition behavior [28, 110, 111]. However, in organic solvents, which have 

vastly different properties than water, such as polarity and zeta potentials, the interactions between 

the colloids and the membranes can vary greatly. Therefore, the contributions of the constitutive 

interaction terms in the x-DLVO model are not clear. Yin et al. [18] studied the fouling behavior 

of colloidal particles in organic solvents and found that EDL interaction in apolar solvents was 

very low, but AB interaction was very important. Tanudjaja and Chew [32] and Trinh et al. [31] 

also reported that AB interactions are important. However, He et al. [112] stated that AB 

interaction was negligible due to the apolarity of crude oil. These differences indicate that models 

used to describe the behavior of colloidal particles in organic solvent systems need to be further 

studied and validated by experimental data. Moreover, the existing studies about theoretical 

colloidal particle deposition all focused on particles larger than 60 nm [18, 24, 31, 32, 112, 113]. 

The deposition behaviors for small NPs (< 10 nm) have not been elucidated. 

Therefore, the aim of this study is to develop theoretical models that can quantitatively predict 

the retention efficiency for small nanoparticles in water and IPA.  
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3.2 Methods 

3.1.1 Experiments 

This study used the experimental data from chapter 2.  The properties for the 2.8 nm ZnS 

quantum dot (QD), 5 and 10 nm Au and 100 nm PSL and PCTE, PTFE and PVDF membrane can 

be found in section 2.2.1 and 2.2.2. The description of the experimental system is shown in section 

2.2.3. Electrospray-scanning mobility particle sizer (ES-SMPS) was used to measure the size 

distribution of these nanosized colloids before and after the membrane to determine the retention 

efficiency. 

3.1.2 Filtration mechanisms 

For liquid filtration, the filtration process includes two parts, i.e., transport and interaction 

(Fig.3.1). The transport is the basic for the filtration and the interaction between the particles and 

the membrane in boundary layer is essential to determine the efficiency. Transport refers that the 

particles are approaching the membrane surface. The mechanisms for this stage are similar to air 

filtration, mainly including interception, impaction, and diffusion (Fig.3.1). For fibrous 

membranes, single fiber theory can be applied. 

For particle transport mechanisms for PTFE and PVDF membrane [114] 

Diffusion  
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where 
cC  is the slip correction factor,   is the mean free path of the medium; d  is the particle 

diameter, D is the particle diffusivity, k  is Boltzmann constant, T is absolute temperature,   is the 

fluid viscosity, Pe  is the Peclet number, fd  is the fiber diameter, U0 is the face velocity; 
DE  is 

the single fiber efficiency due to diffusion. 

Interception 
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where R  is ratio of particle diameter to fiber diameter Ku  is the Kuwabara factor;   is the fiber 

solidity, 
RE  is the single fiber efficiency due to interception. 

Total single fiber efficiency 

 1 (1 )(1 )D RE E E = − − −  (3.8) 

where E
 is total single fiber efficiency 

The overall filter efficiency 
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where fE  is the overall filter efficiency for PTFE and PVDF, t  is the filter thickness.  

For PCTE membranes, the capillary tube model should be used.  

Particle t ransport mechanisms for PCTE membrane:  

Diffusion on the front surface of the PCTE membrane [115] 
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                      (a1 = 4.57-6.46P+4.58P2, a2 = 4.5, Ψ = DP1/2/aporeU, and D = kT/6πηax) 

Interception efficiency on pore openings [116] 

 ( )2  for N 1R R R RE N N= −   (3.11) 

 1 for N 1R RE =   (3.12) 

(NR = ax/apore) 

Diffusion efficiency on pore walls [116, 117] 
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where P [-] is the porosity of the filter, apore is the pore radius, ax is the particle radius, L is the 

thickness of the filter. 

The overall filter efficiency 

 ( )c DS R DPE E E fE= + +  (3.15) 

Where cE  is the overall filter efficiency for PCTE, f is the fraction of the particles that can pass 

the surface of the membrane [24]. 

After the particles are successfully transported to the vicinity of the membrane surface (only 

a certain fraction), different from air filtration, the surface interaction between the particles and 

the membrane takes place. The xDLVO theory was used to calculate the total interaction energy 

(Fig.3.1) (shown in section 3.1.3). The total energy combines particle Brownian kinetic energy 

(for particles less than 10 nm) determines the attachment/detachment (Fig.3.1). If the total energy 

is repulsive (positive value), colloidal particles must overcome an energy barrier to attach. The 

kinetic energy of the particles will determine if the particles can cross over the energy barrier. If 

the total energy is attractive (negative value), the depth of potential well indicates the strength of 

the attraction. When the kinetic energy of the particle is higher than the depth of the potential well, 

detachment can happen.  
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* Ef is the overall filter efficiency for PTFE and PVDF, α is the fiber solidity, EΣ is total single fiber efficiency, t is the filter 

thickness, df is the fiber diameter; Ec is the overall filter efficiency for PCTE, EDS Diffusion on the front surface of the PCTE 

membrane, ER is the interception efficiency on pore openings, EDP is Diffusion efficiency on pore walls, f is the fraction of the 

particles that can pass the surface of the membrane 

Figure 3.1. Schematic diagram of the liquid filtration processes and calculation models 

Maxwell model describes the velocity distribution of the colloids in the energy well and has 

been validated to predict the probability of deposition [42]. The Maxwell approach can be applied 

to calculate the kinetic energy of particles so that the probability of the particles either overcoming 

the energy barrier or escaping from the potential well can be evaluated. The cumulative velocity 

distribution of the colloids in the primary or secondary minimum is:  
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where erf is the error function, /a kT m= , m is the particle mass. 

Define the dimensionless kinetic energy of the colloid at the primary or secondary minimum 

as: 
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Therefore, the fraction of colloids that possibly overcome the energy barrier is: 
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The fraction of the colloids that possibly deposit at the primary minimum is: 

 ( )
24
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−
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And the fraction of the colloids that possibly deposit at the secondary minimum is: 

 ( )
24

( 2 ) wsx

ws ws ws wsP f ax erf x x e


−
= = −  (3.20) 

The hydrodynamic drag causing the detachment was not considered as it was negligible for 

sub-10 nm NPs [8]. 

3.1.3. The xDLVO theory 

The DLVO theory expresses total interaction energy between a colloid and a membrane as 

the summation of VDW and EDL interaction energies. However, the superposition of VDW and 
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the EDL energies gives rise to an infinitely deep primary minimum which is physically unrealistic. 

To obtain a finite potential at the primary minimum, Elimelech et al., [109] indicated that a short-

ranged born repulsion, B, should be incorporated. Ruckenstein and Prieve [118] showed that Born 

repulsion severely influences the primary minimum and developed a widely used formula. Lee et 

al., [24] and Fan et al., [111] also their formula and demonstrated that Born repulsion is very 

important for expressing the value of the primary minimum. In addition to Born repulsion, it has 

been suggested by van Oss [110] that energy balances performed must also include the AB 

interaction energy, especially for aqueous systems. Adding B and AB interaction energies to 

DLVO theory results in the xDLVO theory [110]: 

 _ /total Water IPA VDW EDL B ABV V V V V= + + +  (3.21)                        

where 
_ /total Water IPAV  is the total interaction energy in water or IPA, J, 

VDWV  is the van der Waal 

interaction energy, J, 
EDLV  is the electrostatic double layer interaction energy, J, 

BV  is the born 

repulsion interaction energy, J, 
ABV  is the AB interaction energy, J. 

For the van der Waal interaction energy, a sphere-plane Hamaker approximate expression for 

the retarded VDW energy was used [119]: 
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= −  

+ 
 (3.22)                                 

where A  is the Hamaker constant, a  is the radius of the sphere, m, h  is the separation distance, 

m,   is the wavelength, 100 nm. 

The Hamaker constant can be calculated using the following expression for colloids and 

membrane, 1 and 2, interacting across the liquid, 3 [120]: 
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where k  is Boltzmann constant, T  is the absolute temperature, 298K, kT  is 4.11 x 10-21 J,   is 

dielectric permittivity, 
ph  is Plank constant, 6.626 x 10-34 J·s, 

e is electronic absorption frequency, 

3 x 1015 s-1, n  is the refractive index. 

For the electrostatic double-layer interaction energy, this study applied the constant potential 

approximation method because the potentials in IPA were very low [31, 109]: 
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where 
0  is the relative permittivity of vacuum, 8.854 x 10-12 C2/(J ·m), 

l  is the relative 

permittivity of IPA or water, 19.92 or 80 at 25 °C,   is the inverse of Debye length, 
m  is the 

surface potential of the membranes, 
c  is the surface potential of the colloids. In our study, the 

zeta potentials (Table 1 for the colloids and Table 2 for the membranes) were used as 

approximations for surface potentials. 

For the born repulsion, the sphere-plate born repulsion developed by Ruckenstein and Prieve 

[118] is: 
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where 
c  is the collision diameter, typically 0.5 nm. 
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For the AB interaction energy, the expression for the interaction of a membrane and a colloid 

in an aqueous environment as a function of separation distance is [28, 31]: 

 
0

02 expAB

AB AB h
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h h
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 −
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 (3.26) 

where 
AB  is the characteristic decay length of AB interactions in water, whose value is between 

0.2 and 1.0 nm [110]. A commonly used value for aqueous system is 0.6 nm [121, 122]. 
0h  is the 

minimum equilibrium cut off distance and is usually assigned a value of 0.158 nm [121, 123].

0

AB

hG  is the AB free energy at the minimum distance, which can be determined by [124]: 

 ( ) ( ) ( )0

_ _ _2 2 2AB

h l m c l l m c l m c m cG            + − + + + + − − + = + − + + − − +  (3.27) 

where the subscripts l, m and c represent liquid, membrane and colloid respectively,  + and  - are 

the electron acceptor component and electron donor component of polar AB surface tension. The 

values for the membranes, colloids and liquids used in our study are listed in Table 3.1. 

Table 3.1. Surface tension components for membranes, colloids and liquids. 

  γ+ γ -  

Liquid 
Watera 25.5 25.5 

IPA 0 0 

Membrane 

PCTEb 0.1 5.8 

PTFEb 0 0.9 

PVDFb 0 0.1 

Colloid Au NPc 0.58 25.7 

a Data taken from Brant and Childress [28], b Data taken from Cornelissen et al. [125], c Data 

taken Sood et al. [126]. 
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As IPA is a weak polar solvent, this study assumed it as an apolar solvent. Therefore, the 

surface tension components are zero for IPA. For colloids, the surface tension decreases 

significantly as the particle size decreases [127]. This study assumed the surface tension 

components for 1.7 nm ZnS were negligible.  

3.1.4 Total retention efficiency 

Considering all three stages in liquid filtration, the total retention (deposition) efficiency, ET, 

can be calculated as follows: 

 T b wp wsE EP P EP= +  (3.28) 

where E is the transport coefficient calculated based on filtration models [114-117] (Eq.3.1-3.15) 

as explained in Fig.3.1, Pb is the fraction of the colloids that can overcome the energy barrier if it 

applies [24, 42] (Eq.3.16-3.20) as explained in Fig.3.1. Pwp is the fraction of the colloids that can 

stably deposit at the primary minimum potential well [24, 42], Pws is the fraction of the colloids 

that can stably deposit at the secondary minimum potential well if it applies (Pwp and Pws are also 

called collision efficiency, refer to Eq.3.16-3.20) as explained in Fig.3.1. Therefore, when only the 

primary minimum exists, the total retention efficiency equals to the fraction of particles deposits 

at the primary minimum. When a secondary minimum potential coexists with the primary 

minimum, the total retention efficiency equals to the fraction of particles deposits at the secondary 

minimum and the fraction of particles that overcomes the energy barrier and deposits at the primary 

minimum. 
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3.3 Results and Discussions 

3.3.1 Retention efficiency in IPA and water 

Fig. 3.2 compares the experimental and theoretical efficiencies of the three membranes against 

10 nm Au NPs (taken 10 nm Au NPs for example) in IPA and water. It shows that the calculation 

results agreed with the experimental results except the one for PTFE in water. Theoretical 

explanations for efficiency on each membrane are as follows.  

 

Figure 3.2. Retention efficiency for 10 nm Au NPs by different membranes in IPA and water. 

For the PCTE membrane, the transport coefficient of 10 nm Au was 78.8% and 86.7% in IPA 

and water, respectively. However, due to the interactions between the 10 nm Au and PCTE after 

they transported to the vicinity of the membrane, the efficiency in IPA could maintain around 70% 

while that in water dropped significantly to 32%. Fig. 3.3 shows the comparison of xDLVO 

profiles between IPA and water for the 10 nm Au NPs. It is seen the VDW and AB interactions 

dominated the total energy. The IPA slightly decreased the VDW interaction energy compared to 

water (Fig. 3.3a), but totally changed the AB interaction (Fig. 3.3c). It is concluded that the 

difference of liquids can cause an opposite result of the overall interaction energy (Fig. 3.3d). That 

is, a deep primary minimum (-41 kT) in IPA and a high barrier (37 kT) in water was obtained. The 
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deep primary minimum for IPA could completely trap the particles that were transported to the 

surface of the membrane, and no particles could further detach from the PCTE due to the deep 

well. Therefore, the retention efficiency in IPA was close to the transport coefficient (calculation 

from the filtration model) as the collision efficiency was unity (Eq. 3.28). 

However, when the UF was performed in water, other than the high energy barrier, a shallow 

secondary minimum of -1.2 kT existed (Fig. 3.3d) due to the EDL interaction (Fig. 3.3b), which 

resulted in a long-range attraction interaction. Different from primary minimum for IPA, the 

collision efficiency at this secondary minimum was less than unity as the attraction energy was 

very weak (1.2 kT). Based on the Maxwell velocity distribution (refer to Eq.3.16-3.20), 60% of 10 

nm Au NPs would have a higher kinetic energy than the secondary minimum energy of 1.2 kT, 

which means these NPs were capable to escape from the weak attraction by the secondary 

minimum. Besides, due to the high energy barrier, there were no chances for these NPs to 

overcome and get deposited. Therefore, the overall retention efficiency was calculated to be ~40% 

which was in good agreement with the data (Fig. 3.2). 
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Figure 3.3. xDLVO energy profiles for 10 nm Au NP on PCTE membrane in water and IPA: (a) 

VDW, (b) EDL, (c) AB, and (d) total interaction energy. 

For the PTFE, both experimental and calculation results showed that the NP retention 

efficiency in IPA was higher than that of water (Fig. 3.2) due to the same reason as PCTE (mainly 

because of the higher AB attraction energy in IPA, Fig 3.4 (a-c) and Fig 3.5 (a-c). However, an 

obvious discrepancy between the experiment and calculation in water existed. Fig. 3.4 (d) 

illustrates the total energy for the PTFE membrane, and it shows a deep secondary minimum (-23 

kT) in water because the PTFE membrane has been modified to be positively charged to enhance 

its attraction to negatively charged NPs (Fig.3.4(b) shows deeper attraction than Fig. 3.3(b)). This 

deep well having a strong attractive energy should result in a decent deposition efficiency. 

However, the deposition by this deep secondary minimum (Fig. 3.4d vs. Fig. 3.3d) was not as 

significant as expected. As the surface of the PTFE is specially treated according to the 

manufacturer, it is likely that other repulsive forces, e.g., steric repulsive force, exist on the surface 

typically in water. Further analysis of interaction forces using an atomic force microscope (AFM) 

to confirm this speculation is needed in the future [128, 129]. 
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For the PVDF membrane, when the UF was performed in water, the result was similar to that 

of PCTE (refer to the solid lines as the VDW, EDL and AB interaction energy profiles in water in 

Fig. 3.4 (a-c) and Fig. 3.5 (a-c)), i.e., the shallow secondary minimum (Fig.3.4d) resulting in a 36% 

deposition. However, a significantly lower retention efficiency compared to PCTE and PTFE was 

seen when it was in IPA although the transport coefficient (83.1%) in PVDF membrane was as 

high as that of the PCTE (78.8%) and PTFE (80.8%). Fig. 7 (b) reveals that the lower retention 

efficiency for PVDF was due to a small energy barrier (0.3 kT, the enlarged figure in Fig. 3.5d) 

which repulsed ~10% (Pb=0.9) of the transported particles and then the shallow primary minimum 

(caused by AB interaction, refer to Fig.3.5(c)) resulted in a ~60% of deposition (Maxwell models 

in Eq. 3.16-3.20) of the 90% particles reached the energy well. Therefore, the total estimated 

deposition was ~45% (0.83x0.6x0.9), slightly higher than the experimental result of ~36%. It 

should be noted that the secondary minimum was ignored as the depth was very small. 
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Figure 3.4. xDLVO energy profiles for 10 nm Au NP on PTFE membrane in water and IPA: (a) 

VDW, (b) EDL, (c) AB and (d) total interaction energy. 

 

  

Figure 3.5. xDLVO energy profiles for 10 nm Au NP on PVDF membrane in water and IPA: (a) 

VDW, (b) EDL, (c) AB, and (d) total interaction energy.  



65 

 

 These findings indicate apolar or low polar liquid can change the AB interaction and increase 

attraction greatly if there is no long-range repulsion. To weaken the long-range repulsion, 

enhancing the electric attraction is an option. In addition, the material of the membrane and the 

surface treatment can also largely affect the UF performance.  

3.3.2 Retention efficiency for different particles and membranes in IPA 

Fig. 3.6 compares the experimental and theoretical retention efficiencies of different sizes 

NPs by the three membranes in IPA. It clearly shows that the model had a good performance in 

predicting the retention efficiency for different sizes of particles on different type of membranes 

in IPA. The theoretical explanations are discussed as follows. 

 

Figure 3.6. Experimental and theoretical retention efficiency of different sizes NPs by the PCTE, 

PTFE and PVDF membranes in IPA at low flow flux (1.8 mL/min, or 0.0018 cm/s). 

Fig. 3.7 depicts the interaction energy curves for the 2.8, 5 and 10 nm NPs against the PCTE 

in IPA. Fig. 3.7 (d) clearly shows that no energy barriers existed for all three sizes of NPs in the 

PCTE membrane. However, the depth of the primary minimum for 5 nm Au and 2.8 nm ZnS was 

much shallower compared to that of the 10 nm Au NPs. This was attributed to the decline of all 
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attractions, i.e., VDW, EDL, and AB, with decreasing particle sizes (refer to Fig.3.7 (a-c)). The 

VDW is proportionally associated with Hamaker constant which has been reported to reduce with 

decreasing particle sizes [130]. EDL was weakened because smaller particles can carry less 

charges. For AB attraction in IPA, particle size is also an essential factor that significantly 

influences the strength of the attraction [127, 131]. As a result, the depth of the primary minimum 

for the 2.8 nm ZnS and 5 nm Au NPs were only 1.0 and 2.9 kT respectively. However, a 5 kT 

energy is required for the 2.8 and 5 nm NPs to stay deposited on the PCTE membrane. Therefore, 

the 1.0 and 2.9 kT resulted in the 40 and 76% deposition for the 2.8 nm ZnS and 5 nm Au based 

on the Maxwell model. If the particle size increased to 10 nm, the attractive energy was calculated 

to be 41.8 kT and the retention reached 78%. In comparison with the theoretical retentions of 40, 

76 and 78% for the 2.8, 5 and 10 nm NPs, respectively, through the PCTE in IPA, the experimental 

efficiencies were about 31, 67 and 72% (Fig.3.6). The calculated efficiencies were close to the 

experimental results, where the Maxwell models slightly overestimating the detachment [42]. 
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Figure 3.7.  xDLVO energy profiles for different sizes of NPs on PCTE in IPA (a) VDW, (b)EDL, 

(c) AB and (d) total interaction energy. 

The trend of the curves and the mechanisms for the PTFE were similar to that of PCTE 

(Fig.3.8) but with a little shallower primary minimum well (Fig.3.8(d)). The depth of the primary 

minimum for the 2.8 nm ZnS, 5 and 10 nm Au NPs were 0.8, 1.8 and 30 kT respectively, which 

resulted in a theoretical retention of 33, 64 and 80% respectively. The experimental efficiencies 

were about 28, 56 and 76% (Fig.3.6). Maxwell models slightly overestimating the detach ratio 

[42]. 
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Figure 3.8.  xDLVO energy profiles for different sizes of NPs on PTFE  in IPA (a) VDW, 

(b)EDL, (c) AB and (d) total interaction energy. 

For the PVDF, the efficiencies were lower than that of PTFE due to different features of the 

membrane, such as different Hamaker constants (Fig.3.9(a)) and surface tension components 

(Fig.3.9(c)). The energy wells for the 5 nm Au NPs (0.6 kT) were shallower than the 2.8 nm ZnS 

QDs (0.7 kT) due to material features. Moreover, a minor energy barrier for the 5 nm Au NPs 

presented, which further decreased the deposition for the 5 nm Au NPs. Nevertheless, the 

retentions were still 35% and 24% for the 2.8 nm QDs and 5 nm NPs, respectively. Calculation 

results also show the same trend (Fig. 3.6).  
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Figure 3.9.  xDLVO energy profiles for different sizes of NPs on PVDF  in IPA (a) VDW, (b)EDL, 

(c) AB and (d) total interaction energy. 

These findings indicated changing membrane material, particle size and material, and charges 

on the particles and membranes all possibly can increase the retention efficiency for filtration under 

PPDR<<1 condition. The highest retention in our study was 76% for 10 nm Au NPs through 130 

nm positively charged PTFE (PPDR=0.1). It is very promising to obtain higher retention by using 

a membrane material with a high Hamaker constant, opposite charges, or changing the polarity of 

the membrane. Based on the current theoretical model, for example, the retention efficiency can 

be increased to more than 99% by tripling the thickness of the current PTFE membrane 

(transmembrane pressure, TMP, ~0.15 bar only) for the 10 nm NPs or by increasing the zeta 

potential of the PTFE to ~5 and ~10 times for the 2.8 and 5 nm NPs, respectively. In conclusion, 

it is feasible to use UF membrane to effectively collect sub-10 nm NPs to achieve an energy-

efficient and sustainable liquid filtration.   

3.4 Conclusions 

This study investigated the retention of 2.8, 5 and 10 nm nanoparticles in Milli-Q water and 

IPA by large-pored ultrafiltration (UF) membranes, including 100 nm rated PCTE and PVDF and 
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130 nm rated PTFE. xDLVO theory was modified for calculating the interaction energies between 

the three sizes NPs and different membranes in IPA and water. Combining the filtration models, 

modified xDLVO theory and Maxwell model, the theoretical retention efficiencies were in good 

agreement with the experimental data.  

It was found that the change of AB interaction from repulsion to attraction resulted in higher 

retention efficiencies in IPA than that of water for all three membranes. A modification of positive 

charge on the membrane surface could also contribute to a higher efficiency, i.e., the PTFE with 

130 nm pore size had a comparable or greater efficiency for all four sizes of NPs than the PCTE. 

In addition, enhancing electric attraction could form a secondary minimum which promoted the 

NP deposition (PCTE and PVDF for 10 nm Au NPs in water). Although efficiencies up to 30, 60 

and 75% for 2.8, 5 and 10 nm NPs, respectively, by the 130 nm rated PTFE were observed, further 

improvement is needed based on the restrict removal requirements. According to the developed 

models, the retentions of 2.8 and 5 nm NPs can be further increased to 99% by increasing the zeta 

potential of the PTFE about 10 times for the 2.8 nm NPs and about 5 times for the 5 nm NPs 

without changing the pore size, which remains a need for future study on modifying the membranes.   
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Chapter 4. Modeling and optimizing for sustainable design of ultrafiltration 

system using artificial neural network and particle swarm optimization 
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Ultrafiltration (UF) or nanofiltration (NF) are important processes in many industries for various 

purposes such as separation, concentration, purification, and waste treatment. As both UF and NF 

are pressure-driven filtration, a large amount of energy was consumed annually. One potential 

solution to reduce energy consumption is to use membranes with large pores to filter smaller 

particles. However, retention efficiency for this type of filtration needs to be increased. This study 

combined artificial neuron network (ANN) model with particle swarm optimization (PSO) 

algorithm to optimize filtration conditions for achieving sustainable and high efficiency UF. The 

optimal parameters included membrane zeta potential, pore size, particle size, particle zeta 

potential and Hamaker constant which can further determine the type of membrane or particle. 

Three cases were performed with predetermined input parameters of polycarbonate (PCTE) or 

polytetrafluoroethylene (PTFE) and without any predetermined parameters. Both Experimental 

and validated theoretical data were used to train the model. Results showed that ANN models using 

Levenberg–Marquardt algorithm had best performance, with R2 higher than 0.96. PSO integrated 

data from ANN and indicated that 45.2 nm PCTE (-14 mV) combined with 3.4 nm Si3N4 (36.5 

mV), or 100 nm PTFE (-40 mV) combined with 28.4 nm ZnS (-20.8 mV) can result in a retention 

efficiency of 99.9%. If membrane type was not predetermined, 52.2 nm fibrous filter with -20.3 

mV zeta potential, 5.5 nm nanoparticles with 41.4 mV zeta potential, and a combined Hamaker 

constant of 0.09 should be chosen. These optimized results were validated by theoretical 

calculation, providing an effective method to achieve sustainable UF. 

 

4.1 Introduction 

Membrane filtration technology is an essential technology that has increasingly been 

employed in various industries including wastewater treatment plant [132, 133], water desalination 
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and purification [134, 135], food [136], pharmaceutical [137] and semiconductor manufacturing 

[14, 19, 83, 138]. Membranes with small pore size are usually applied to filter larger particles to 

obtain a high filter efficiency. However, although this sieving effect can achieve the high efficiency, 

the pressure drop is normally very high (1-20 bars for ultrafiltration (UF) and 20-100 bars for 

nanofiltration (NF), which are two commonly used filtrations in those industries) and significant 

of energy is needed to drive the pumps [107].  

In order to reduce the energy consumption, our previous research proposed to use large pore 

size membranes to filter small particles [111, 139]. The highest retention efficiency based on the 

available experimental conditions in our lab was up to ~80%. The theoretical analysis indicated 

that it is possible to improve the retention efficiency to 99.99%. However, it is very difficult to use 

the theoretical models to determine the precise filtration conditions that can have a 99.99% 

retention. To begin with, detailed physicochemical properties for particles, membranes, and liquids 

are needed to run the model. Since many of the parameters are not available from literatures, 

extensive experimental measurements are still not avoidable (such as fiber diameter, membrane 

roughness, steric feature of particles, Debye length, zeta potential for particles and membranes, 

and electron acceptor and electron donor component of surface tension for particles, membranes, 

and liquids). Second, interrelated relationships exist between different parameters, so it is 

inappropriate to obtain the filtration conditions for 99.99% retention by changing one parameter 

while maintaining the same for others, which results in failure of finding the best filtration 

conditions via theoretical models. Third, a good understanding of filtration process is required to 

use the model correctly. Three sets of models, i.e., transport models, xDLVO models and Maxwell 

models, need to be combined to calculate overall the retention efficiency. Appropriate formulas in 

transport and xDLVO models need to be chosen based on the physical filtration processes.  In 
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general, the theoretical models were demonstrated as a very useful method to predict the retention 

efficiency when all the parameters were known, however, a better and easier method needs to be 

developed for determining the filtration conditions that can lead to 99.99% retention efficiency. 

Machine learning has been applied progressively during the years for simulation and 

optimization of membrane separation processes [47, 140, 141]. One such example is the use of 

artificial neural network (ANN), which is a data-driven method and can predict outputs without 

the need for knowing detail information of each input (detailed features for particles, membranes, 

and liquids) or a comprehensive understanding of filtration mechanisms [142-144].  Dornier et al. 

[145] introduced multilayer perceptron (MLP) ANN to dynamically model membrane fouling in 

a crossflow microfiltration (MF) system for the first time in 1995. Results showed that the MPL 

ANN model had a satisfactory prediction of the evolution of the total hydraulic resistance during 

filtration for both constant and variable operating conditions. Inspired by this successful case, a 

growing number of studies have applied ANNs for predicting and better control membrane fouling 

for different pressure driven membrane filtrations. Researchers applied different ANN models to 

study transmembrane pressure, hydraulic resistance or permeate flux for UF [146-148]. The ANN 

models were demonstrated to have good performance in predicting the parameters and 

outperformed other conventional models. ANN models were also utilized to predict ion rejections 

for NF [149-151]. Results showed that the models were able to accurately compute the rejections 

with the absolute deviation less than 5%. For RO process, the ANN models were relatively more 

complicated than that of MF, UF and NF [152-154]. However, the prediction results still showed 

good agreement with experimental results. Moreover, in the analysis of the application of ANN on 

membrane filtration, it was discovered that the majority of the studies (9 out of 10, 18 out of 19, 

10 out of 12, and 18 out of 20 for MF [155-164], UF [51, 52, 54, 56, 58, 165-175], NF [55, 59, 
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176-182], and RO [183-199] applications, respectively) utilized MLPANN, which proved to be 

effective in producing accurate outcomes. However, most of these studies focused on predicting 

the filtration performance, limited studies extended their research to optimize performance [56, 

154, 175]. 

To conduct optimization, an appropriate optimization algorithm needs to be chosen. It has 

been reported that meta-heuristic algorithms are widely used to handle real-life and hard nonlinear 

engineering problems [200, 201]. Meta-heuristic algorithms are population-based artificial 

methods that have many advantages compared with the conventional methods, such as their ability 

to handle complex problems, shorter running time, reduced susceptibility to local optima and 

minimal tuning requirements [202]. Among heuristic algorithms, particle swarm optimization 

(PSO) algorithm and genetic algorithm (GA) were most popular. A common application is to 

employ the algorithms to optimize architecture of ANNs, with the aim of achieving higher 

prediction accuracy [52, 203, 204]. PSO model was also found to be used as an intelligent 

controller to monitor permeate flux in preventing flux decline from membrane fouling [74, 205]. 

For performance optimization, Soleimani et al. [175] coupled ANN with GA to optimize TMP, 

cross-flow velocity, feed temperature and PH to obtain maximum permeation flux and minimum 

fouling resistance for oily wastewater treatment.  Badrnezhad and mirza [56] did a follow up 

research by adding filtration time as fifth optimization parameter and using maximum permeation 

flux as the optimization objective. In addition, Madaeni and Kurdian [154] applied ANN-GA 

model to optimize control strategies for a water treatment plant with RO filtration. These three 

literatures are the only ones that studied optimum operating parameters for membrane filtration 

using optimization algorithms so far. To our best knowledge, PSO has not been used to investigate 

optimized filtration conditions. It was observed that PSO has a very high computational speed 
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compared to GA, which have relatively complicated algorithmic structures and should activate so 

many exploration/exploitation operators at each iteration. In addition, PSO showed much robust 

optimization results, and was easier to converge [67]. Therefore, studies using PSO method to 

optimize the operation conditions are needed. 

In this study, a hybrid machine learning model, ANN-PSO model, will be established to 

predict the retention efficiency and optimize the operation conditions for the sustainable 

ultrafiltration. This model is to provide a convenient and effective method for researchers or 

engineers to design sustainable filtration. 

4.2 Methods 

4.2.1 Filtration mechanisms  

This study focused on filtering NPs using ultrafiltration membranes with pore size at least 5 

times larger than the particle size. The initial retention efficiency was studied by a dead-end 

filtration system (left side of Fig.4.1). The influent with the colloidal particles were pumped 

through the peristaltic pump to the filter holder where an ultrafiltration membrane was fixed inside. 

With a constant filtration velocity of 0.0018 m/s, the NPs were filtered by the membrane and the 

effluents were collected. The filtration happened in the filter holder is illustrated in the right side 

of Fig.4.1. It can be considered as two stages. First, the NPs were transported to the vicinity of the 

membrane. Due to the small size (smaller than 10 nm), the main transport mechanism is diffusion. 

After the NPs reach the surface of the membrane, the interactions between the particle and the 

membrane will occur due to Van del Waals force, electrostatic force, and other physicochemical 

forces (such as acid base interaction force). Based on the total interaction energy, particles with 

lower energy will attach to the membrane while some other particle with higher energy will escape. 
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Retention efficiency is defined as the ratio of particles that are not penetrated to the total particles.

 

Figure 4.1. Schematic of ultrafiltration for nanoparticles smaller than 10 mn. VDW is the Van del 

Waals interaction, which is cause by correlations in the fluctuating polarizations of nearby particles. 

EDL is the electrostatic double layer interaction. The blue dots and the green dots in the figures 

represent the first and the second electric layer respectively. AB is the acid base interaction, which 

is caused by the hydrophilic/hydrophobic groups. 

4.2.2 Measurement method 

To obtain the penetrated and original concentrations, ES-SMPS system was extended to use 

to measure particle size distribution and concentration in both influent and effluent. The schematic 

of measuring system and a detailed description can be found from Chapter 2. It has demonstrated 

that this method can effectively measure particles down to 2.8 nm and has low requirement on 

colloidal concertation (107 p/ml) in the liquid [22, 139]. 
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In this study, the ES-SMPS was applied to measure the retention efficiency for Au and PSL 

NPs on PCTE, PTFE and PVDF membranes respectively in water. The properties can be found 

from chapter 2 [139]. 

4.2.3 Theoretical models 

To explain the retention efficiency, theoretical models need to be developed. It has been 

reported that DLVO/xDLVO theory can predict the deposition trend for either particle-particle or 

particle-surface problems. However, one theory alone is not capable of predicting the efficiency 

quantitatively. Lee et al. [24] and Fan et al., [111] added transport functions and hydration 

equations to calculate the retention efficiency for particles larger than 40 nm in water. Results 

showed that their models agreed with the experimental data very well. However, the properties of 

IPA differ from those of water, including electrokinetic properties that can substantially impact 

particle-membrane interactions and, consequently, alter retention efficiency. In addition, very 

small particles (down to 2.8 nm) needed to be considered in our study, which might be beyond the 

applicable range for some equations in the xDLVO theory. Therefore, a modified set of the models 

were developed (Chapter 3). Overall, three models were integrated to cover the entirety of the 

filtration processes. To account for the transport process, capillary tube models and single fiber 

theory were utilized for PCTE and fibrous membranes, respectively. In the interactions process, 

xDLVO models were employed, using a modified Hamaker constant and a constant potential EDL 

equation, found to be appropriate for small particles and organic solvents, respectively. Lastly, to 

calculate detachment ratio, the Maxwell model was applied since high kinetic energy is the primary 

reason for small particles to escape from the membrane.  

After the models are validated by experimental results, they are further used to predict the 

retention efficiency for other particles (ZnS, SiO2, Al2O3, and Si3N4) which are most used in 
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semiconductor factories (Table 4.1) [9]. The combined experimental and calculation data were 

used as the input for the ANN model due to limited experimental condition. It is worth noting that 

a total of 24 parameters (Table 4.2) needs to be known to obtain the retention efficiency from the 

models.  

Table 4.1 Summary of experimental and calculation conditions 

  Experiment Calculation 

Membrane type PCTE, PTFE, PVDF PCTE, PTFE, PVDF 

Pore size 100 50, 100, 150, 200 

Particle type Au, PSL ZnS, SiO2, Al2O3, Si3N4 

Particle size 5,10,30,50 for Au; 100 for PSL 5, 10, 30, 50,100 

 

Table 4.2. Input parameters for theoretical models 

  Input for the theoretical model 

Particle 

Diameter 

Zeta potential 

Dielectric permittivity 

Refractive index 

Electron acceptor component surface tension 

Electron donor component surface tension 

Membrane 

Fiber diameter 

Solidity 

Thickness 

Zeta potential 

Dielectric permittivity 

Refractive index 

Electron acceptor component surface tension 

Electron donor component surface tension 

Pore radius 
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Porosity 

liquid 

Viscosity 

Dielectric permittivity 

Refractive index 

Electron acceptor component surface tension 

Electron donor component surface tension 

Debye length 

Temperature Temperature 

Face velocity Face velocity 

 

4.2.4 ANN model 

Although the theoretical model can predict the retention, it requires the information for a lot 

of parameters in the models and the calculation process is very complicated and tedious. In contrast, 

ANN can map and predict continuous relationship between inputs and outputs by developing a 

gain term to connect target variables with necessary sets of input variables. Physical–chemical 

relationships between input variables and output variables are not necessarily known.  

Multilayer perceptron (MLP) is the most common type of neural network used for supervised 

prediction. The MLP-ANN consisted of three layers including input layer, hidden layer, and output 

layer. Each input parameter is represented as a neuron in the input layer. In order to increase the 

model's applicability in selecting different types of membranes or particles, this study employed 

the Hamaker constant as one input instead of membrane type and particle type. Hamaker constant 

is determined together by material properties of membrane and particle in water system, therefore, 

a determined Hamaker constant allows optimizers to choose any kind of membrane or particle 

based on the available information, such as pre-determined membrane or particle or neither. To 

explain the application, this study run three cases: predetermined PCTE, predetermined PTFE and 
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non-predetermined parameter cases, respectively. As the principles are the same but with less input 

paraments for the predetermined cases, the elaboration is focused on the last case. However, the 

results from PSO optimization included all the three cases. 

In addition to Hamaker constant, pore size, particle size, and zeta potentials for the 

membranes and particles, respectively, are independent other input parameters that optimizers can 

chose to achieve their optimization objective. Therefore, the input layer comprised five neurons 

with detailed information listed in Table 4.3. In the hidden layer, the number of neurons was 

determined by minimum error value to obtain the best performance of the model. This study only 

set one output neuron (retention efficiency) in the output layer. The structure of the developed 

ANN used for prediction of the efficiency is shown in Fig. 4.2. 

Table 4.3. Summary of input parameters 

Input parameter Range 

Membrane zeta potential (mv) (-40)-(-14) 

Hammaker constant 0.02-4.77 

Pore size (nm) 50-200 

Particle size (nm) 5-100 

Particle zeta potential (mv) (-63.5)-(42) 
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Figure 4.2. Architecture of the multilayer perceptron artificial neural network (MLP-ANN) 

model 

The MLP-ANN needs to be trained and validated. The training process includes three stages:  

(i) Feedforward of the input training pattern.  

The data flows in the forward direction from input to output layer. In the input layer, the 

numerical parameters were normalized to the range of (-1,1), which is good for stability and 

convergence of the ANN model. The normalization method is as follow [46]: 

 ( )max min
min min

max min

M M
M X X M

X X

−
=  − +

−
 (4.1) 
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where M is the normalized input vector, X is the original input vector, Mmax is the set to +1 and 

Mmin is the set to -1, Xmax is the maximum value of the input, Xmin is the minimum value of the input. 

(ii) Calculation and back propagation of the associated error 

The neurons in the MLP are trained with the back propagation learning algorithm. All the 

neurons were summed up with weights and bias. Transfer function determines the input–output 

behavior and adds nonlinearity and stability to the network [206]. Hyperbolic tangent sigmoid 

activation function was employed in both the hidden and output layers respectively. Assume there 

are two neurons in the hidden layer, the calculation can be expressed through eq. (4.2) - (4.5) 

( )11 11 11 12 13 14 15tanh h h m h h m h p h pH b Z H P S V    = + + + + +  (4.2) 

( )12 12 21 22 23 24 25tanh h h m h h m h p h pH b Z H P S V    = + + + + +  (4.3) 

 tanh( )
x x

x x

e e
x

e e

−

−

−
=

+
 (4.4) 

 ( )1

0 1 11 2 12o o og E b H H − = + +  (4.5) 

Where H11 and H12 are the neurons in the hidden layer. bh11, bh12 are the bias in hidden layer, and 

bo is the bias in the output layer. ωh11, ωh12, ωh13, ωh14, ωh15 are the weights in the hidden layer, and 

ωo1 and ωo2 are the weights in the output layer. Zm, H, Pm, Sp and Vp are the input parameters. g0(E) 

is the transformation of the expected target (E, efficiency) as the inverse of output transfer function. 

The model was trained by different learning algorithms (gradient descent algorithm GDA, 

incremental back propagation, IBP, Levenberg–Marquardt algorithm, LM)   

(iii) The adjustment of weights.  
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The weights were initialized with random values and then the ANN output corresponding to 

the input patterns were compared with the target values and the weights were adjusted to minimum 

the errors. root mean squared error (RMSE) and coefficient of determination (R2) were used. Each 

network was trained until the network average RMSE was minimum and R2 was close enough to 

1. Other parameters for network were chosen as the default values of the software (learning rate = 

0.1 and momentum = 0.4). 
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where i

cx  is the predicted value of the output, i

tx  is the target value of the output, 
mx  is the mean 

value of all of the output, and n is the number of data points in the training or validation data set.  

After the model was trained, a second set of validation data was used to evaluate the quality 

of the network during training. This study used 6-fold cross validation. Five folds as the training 

set and the rest one-fold as the testing set to validate the model. An additional unseen dataset of 

used to test the validated model. A set of 360 of experimental data and theoretical calculation data 

were used for the network. ANN modeling was performed using the neural network toolbox of 

Matlab 2021b (Mathworks Inc., USA).   

4.2.5 PSO model 

The PSO algorithm is a population-based search algorithm, which has been prevalently 

applied to solve engineering optimization problems. This algorithm is inspired by the behavior of 
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a swarm of ants, a flock of birds, or a school of fish when they are finding food or encountering 

danger. The evolutionary algorithm was developed by Kennedy and Eberhart [207] in 1995 and 

they mentioned that when birds are searching randomly for food in a flock, all birds in the flock 

can share their discovery and help the entire flock get the best hunt. This process is called 

exploration and exploitation. 

In PSO algorithm, ants/birds/fish are represented by volume-less particles in the optimization 

algorithm. A swarm of particles located randomly in the searching domain is initially selected. 

These particles update their position with some velocity (movement of the ants/birds/fish) until 

the best position (best hunt) is found. For computationally implement, each particle is presented 

by its position vector as: 

 1, 2,( ) [ ..., ], 1,2,...i i i iDX t x x x i N= =  (4.8) 

where t is the generation time, N is the swarm size, and D is the dimension of the searching domain. 

xi(t) is the solution of the optimization problem, and the swarm is a set of swarm = {x1, x2, . . ., 

xN}. 

To formulate the evolutionary mechanism, a velocity vector is assigned to each particle as 

follows: 

 1, 2,( ) [ ..., ], 1,2,...i i i iDV t v v v i N= =  (4.9) 

where vi(t) is the velocity of the ith particle.  

In a classic variant of the PSO, the updating rule is mathematically expressed as follows: 

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))i i i i g iv t w v t c r p t x t c r p t x t+ =  +   − +   −  (4.10) 
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where w is the inertia weight constant. Higher values of w result in more exploration behavior, 

whereas a lower value increases the exploitation performance. c1 and c2 are the cognitive and the 

social acceleration coefficients, respectively, and r1 and r2 are the two random numbers uniformly 

distributed within [0,1]. Pi(t) is the best previous position of particle i, and Pg(t) is the best position 

of all the particles. Pg(t) is called the global best solution of the minimization/maximation problem, 

the position of Pg(t) has the lowest fitness function value. 

After updating the velocity of the particle, each particle adjusts its current position using the 

following relation: 

 ( ) ( ) ( )1 1 , 1,2,...i i ix t x t v t i N+ = + + =  (4.11) 

The particles will move iteratively to update the position until the optimal solution is found.  

In this study, the ANN output (filter efficiency) is the particles in the PSO model. The 

flowchart is shown as Fig. 4.3.  
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Figure 4.3. Flowchart of the PSO algorithm 
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4.3 Results  

4.3.1 Experimental and theoretical results 

This study used experimental data combined with theoretical calculation data to train the 

ANN model. To ensure the data is reliable, the theoretical models need to be validated. After the 

validation, the theoretical models were used to generate more data.  

4.3.1.1 Validation of theoretical models 

Experimental data were compared with theoretical data in Fig.4.4. The experimental data 

covers a wide range of efficiency from 3% to 98.5% and experimental conditions included various 

influencing factors, including different kinds of membranes, different sizes of particles and 

different kinds of particles. As shown in Fig.4.4, the calculated data agreed with all the 

experimental data satisfactorily. Although some of the calculated results were slightly higher than 

experimental results, it attributed to overestimation of deposition ratio from Maxwell model. As 

the deviations were acceptable, the models were considered to have good performance and further 

used to generate more input data. It should be noted that the pore sizes of the membranes were 100 

nm, so the retention efficiencies for the 100 nm PSL were mainly due to sieving, which was not 

included in the input dataset. 
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Figure 4.4. Experimental and theoretical retention efficiencies of different sizes NPs by the 

PCTE, PTFE and PVDF membranes in water 

4.3.1.2 Influencing factors on retention efficiency 

Based on the model, retention efficiencies for the other particles (Table 4.1) were calculated. 

In Fig.4.5(a) and Fig.4.5(c), there are overlapped points, i.e., points represented SiO2 and Al2O3 

particles are overlapped with points represented Si3N4. This is because the overall interactions 

were all strong attractive and thus the total retention efficiency was the transport efficiency which 

is independent with particle material.   

Compare the retention efficiencies on three membranes, Fig.4.5 shows that PCTE and PTFE 

membrane had more high efficiency points. Two possible reasons can be: the transport efficiency 

for PCTE and PTFE membrane were higher than that of the PVDF when the total interaction was 

attractive, or repulsive interactions between the particles and PVDF occurred and stronger than the 

other two membranes. Therefore, in order to obtain high retention efficiency for the particles in 

Table 4.1, it is suggested to use PCTE or PTFE membrane. For PCTE membrane, the high 
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efficiency happened when Si3N4 nanoparticles were used. For PTFE membrane, the high 

efficiency could be obtained when ZnS nanoparticles were challenged.   
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Figure 4.5. Distribution of retention efficiencies under different input parameters for (a) PCTE, 

(b) PTFE and (c) PVDF membrane 

4.3.2 Performance of ANN model 

In order to accurately predict the retention efficiency, different ANN structures were applied.  

It was found that one hidden layer was sufficient which agrees with the universal approximation 

theory [208]. The neurons in the hidden layer were determined by the RMSE value. As depicted 

in Fig. 4.6, the error initially decreased due to increasing number of weights and later increased 

probably because of overfitting. When the number of neurons were 18, the RMSE values for all 

datasets were the lowest. Therefore, the architecture of the ANN model was chosen to be 5-18-1. 

The learning algorithm were determined through trial-and-error method, and LM was found to 

have the best performance. 
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Figure 4.6. Effect of number of neurons in the hidden layer on predicting accuracy of retention 

efficiency 

Fig. 4.7 illustrates the regression plots of normalized predicted value against normalized 

target value. The lines in the figures have an intersection of 0 and a slope of 1. If the datapoint lies 

on the line, it means the predicted value exactly equals to the target value. R2 would be 1 if all the 

datapoints lie on the line, which is the ideal result. It can be observed from Fig. 4.7 that the R2 

values for training and validation datasets were both higher than 0.99 and the R2 value for test 

dataset was also as high as 0.96. The results indicate that the model had good performance in 

predicting the retention efficiency.  

It should be mentioned that a high ratio of extreme values (0 and values near to 1) exists in 

the input data and predictive performance for all models decreases when attempting to predict 

extreme values [209, 210]. Kovacs et al. [211] compared the model performance in predicting 

extreme values for random forest (RF), ANN and long short-term memory (LSTM) models. They 

reported that ANN model predicted higher values than the experimental values. In Fig.4.7, the 
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outliers near to 0 and 1 were all higher above the fitting line, which agrees with results from other 

researchers [211]. 

   

 

Figure 4.7.  Comparison of normalized ANN predicted values and normalized target values for 

(a) training, (b) validation, (c) test and (d) total dataset 

4.3.3 Optimization of filtration condition 

After the ANN model was well trained, this study integrated the results to PSO model to find 

the filtration condition that has highest retention efficiency. ANN-PSO were run for three cases: 

one was to find the best filtration condition for PCTE membrane (case 1); the second was to find 
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the best filtration condition for PTFE membrane (case 2); the last one was to find the optimal 

condition for all five inputs without restrictions (case 3). Table 4.4 listed the optimized results. 

Table 4.4 Optimal solutions for highest retention efficiency 

  Membrane 

type (Zeta 

potential, 

mV) 

Pore 

size 

(nm) 

Zeta potential 

for the 

particle (mV) 

Particle 

size 

(nm) 

Particle  

type 

(Hamaker) 

Efficiency 

from 

theory 

Efficiency 

from PSO 

Case 1 PCTE 45.2 36.5 3.4 Zi3N4 (2.386) 99.5% 99.9% 

Case 2 PTFE 100 -20.8 28.4 ZnS (0.086) 99.7% 99.9% 

Case 3 Fibrous  

(-20.3) 

52.2 41.4 5.5 0.09 99.9% 99.9% 

 

In Table 4.4, when the membrane was PCTE, a 45.2 nm pore size and 3.4 nm Zi3N4 NPs with 

zeta potential of 36.5 should be chosen to reach an efficiency of 99.9%. Compared with the results 

in Fig.4.5(a), it can be observed that optimized the condition lies within the high efficiency region 

(top green points). In fact, theoretical calculation result indicated that the efficiency was 99.5% 

under this condition, which was very close to the result optimized by PSO. Similarly, when the 

membrane was PTFE, the chosen condition is in the high efficiency region (top red points) based 

on Fig. 4.5(b) and the theoretical result (99.7%) was very close to 99.9%. For the third case, the 

optimal solution is more unrestrained. To reach a retention efficiency of 99.9%, the designer can 

choose a fibrous filter with -20.3 mV zeta potential and 52.2 nm pore size and particles with 5.5 

nm in size and 41.4 mV zeta potential as long as their Hamaker constant is 0.09. 

The result of the ANN-PSO models showed that machine learning method is an effective 

method to estimate retention efficiency with great accuracy and generalization ability. The models 

can provide an ultrafiltration strategy with high filter efficiency but low energy consumption. The 
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simple input parameters facilitate researchers to design sustainable ultrafiltration system without 

using the complicated theoretical models.  

4.4 Conclusions 

This study proposed optimal strategy for designing energy saving ultrafiltration system using 

machine learning technique. Filter efficiencies were experimentally and theoretically collected as 

input data for ANN-PSO model. Input parameters included zeta potential for the membrane, 

Hamaker constant, pore size, particle size and zeta potential for the particles. ANN model with an 

architecture of 5-18-4 and LM learning algorithm was found to have the best performance. The 

predicted values were highly correlated with the target values, with R2 of 0.996, 0.992 and 0.962 

for training, validation, and test dataset, respectively. ANN was also further applied to calculate 

filter efficiency when the membrane type (PCTE or PTFE was chosen) was predetermined. 

Based on the ANN results, PSO showed that high retention efficiency ultrafiltration could be 

achieved with the following filtration conditions: a 45.2 nm PCTE membrane combined with 3.4 

nm Zi3N4 with 36.5 mV zeta potential; a 100 nm PTFE membrane combined with 28.4 nm ZnS 

with -20.8 mV zeta potential; a 52.2 nm fibrous filter with -20.3 mV zeta potential, 5.5 nm 

nanoparticles with 41.4 mV zeta potential, and a combined Hamaker constant of 0.09. 
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Chapter 5. Conclusions and Future Directions 
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5.1 Conclusions 

This research proposed a sustainable filtration strategy to mitigate the high energy 

consumption from UF system in various industries such as water treatment, food, biomedicine, 

pharmaceutical, and semiconductor manufacturing. To verify the feasibility, ES-SMPS method 

was extended to measuring retention efficiency for small nanoparticles in IPA. Theoretical models 

were then developed to understand ultrafiltration with nanoparticles down to 2.8 nm in organic 

solvent. The theoretical models were verified by experimental results and could predict retention 

efficiency very well. Furthermore, to optimize the filtration conditions to obtain the highest 

efficiency, ANN combined with PSO models were established. The model provides a convenient 

and effective way for researchers or engineers to design the sustainable filtration system. The 

detailed conclusions from this dissertation are listed below. 

5.1.1 Experimental results   

The ES-SMPS system was then used to measure the retention efficiency of ZnS, Au, and PSL 

particles challenged on different pore sizes of PTFE, PVDF, and PCTE membranes. According to 

the findings, the retention efficiencies of all three membranes were greater in IPA than in water. 

Furthermore, the surface electrical enhancement of PTFE demonstrated a comparable or greater 

efficiency for all four nanoparticle sizes compared to PCTE. Additionally, under all experimental 

conditions, the highest efficiency was observed with 10 nm Au nanoparticles challenged on a 100 

nm rated PTFE membrane, demonstrating the feasibility of the proposed sustainable UF. 

5.1.2 Theoretical development 

Modifications were made to the filtration models for each specific process. To consider 

transport efficiency, air filtration models were added. In xDLVO models, Hamaker constant was 

adjusted to be appropriate for small particles, and the electrical double layer equation suitable for 
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organic solvents was applied. Additionally, the Maxwell model was used to account for 

detachment due to the high kinetic energy of small particles. 

The new models provided insights into the reasons behind the experimental results. Based on 

the calculation results, it was found that the high efficiency was due to membrane surface electrical 

enhancement, or an alteration of AB interaction caused by changes of liquid. These findings 

suggest a potential direction for increasing the retention efficiency. 

5.1.3 Machine learning models 

This study combined multilayer perceptron artificial neural network (MLP-ANN) with 

particle swarm optimization algorithm (PSO) to optimize the UF performance. Membrane zeta 

potential, pore size, particle size and particle zeta potential and Hamaker constant were inputs, and 

retention efficiency was the output. In addition to the data obtained from the experiments, retention 

efficiencies for Au, ZnS, SiO2, Al2O3, Si3N4, and PSL NPs (Particles commonly found in 

semiconductor factories) with 5-100 nm in size against 50-200 nm PTFE, PVDF and PCTE 

membranes were also calculated and used to train, teste and validate the model. The predicted 

values from ANN model were highly correlated to the target values with R2 values for training, 

validation and test dataset were 0.996, 0.992 and 0.962 respectively. PSO model then applied the 

ANN results to find the optimized combination of the inputs that has highest retention efficiency 

and lowest energy use. Results showed that an efficiency of 99.9% could achieve by using 3.4 nm 

Si3N4 (36.5 mV) on the PCTE membrane and 28.4 nm ZnS (-20.8 mV) on the PTFE membrane, 

respectively. If the membrane or particle type is not pre-determined, the conditions to have a 

filtration efficiency of 99.9% were 52.2 nm filter with -20.3 mV zeta potential, 5.5 nm 

nanoparticles with 41.4 mV zeta potential, and a combined Hamaker constant. 
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5.2 Future Directions 

Despite the demonstrated breakthroughs and the contributive work reported in peer-reviewed 

journals, further work is required with respect to the following aspects: 

5.2.1 Fouling experiment   

Initial filtration can remove a significant portion of the contaminants, the remaining particles 

can accumulate on the membrane surface over time, leading to fouling. Membrane fouling is a 

challenge in the operation and maintenance of membrane-based filtration systems. It has a 

significant impact on the performance and longevity of the filtration system. Therefore, it is 

important to study membrane fouling in addition to initial filtration. By understanding the causes 

and mechanisms of membrane fouling, effective mitigation strategies can be developed to prolong 

the life of the membrane and improve the efficiency of the filtration process. 

Although this research focused on initial filtration, the methodology is very easy to extend to 

membrane fouling. For the experiment part, it just requires running the experiment longer to ensure 

particles are loaded on the membrane. For the theories, the interactions will be between particles 

to particles in the fouling stage instead of particles to membrane in the initial stage. Modifying the 

parameters of the membrane to the particles can result in changes to the fouling models. With the 

data from fouling experiments or models, the ANN and PSO models are readily to perform 

prediction and optimization.  

5.2.2 UF in other liquids than water and IPA   

Although UF is widely used for water treatment IPA purification applications, it can also be 

applied to other liquids. For example, in the electronics industry, UF has been used for the recovery 

of acids and bases from etching solutions, which contain metal ions and other impurities that can 
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negatively affect the performance of electronic components. By removing the impurities and metal 

ions, the recovered acids and bases can be reused, reducing waste and cost. However, studies on 

the retention efficiency of UF under such conditions are relatively scarce. It is relatively 

straightforward to extend our theoretical or machine learning models to apply to acid or base 

filtration by utilizing the relevant parameters of the acid or base. The main challenge lies in 

conducting the necessary experiments to validate the models. Although UF membranes with acid- 

and base-resistant properties have been developed to withstand the harsh conditions of these 

solutions. However, the performance of the UF membranes can still be affected by the high acidity 

or alkalinity of the solutions, and careful consideration must be given to the selection of other 

experimental components to ensure stability of the UF system. 
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Appendix Ι. Additional research on indoor air quality control – Emissions 

from 3D printing 
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Chapter A1 A Review of Emission Characteristics and Control Strategies for 

Particles Emitted from 3D Fused Deposition Modeling (FDM) Printing 
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A1.1 Introduction 

Due to the increasing cost of making protypes (primarily on labor cost) in traditional machine 

shops, three-dimensional (3D) printing is being considered to be an alternative to fulfill the task in 

the consumer and industrial settings [212-215]. The market value for 3D printers has been 

increased from $4.4B USD in 2013 to ~$15B USD in 2021 [216] and is estimated to achieve 

$63.46B USD by 2026 [217]. Among various types of 3D printing technology, fused deposition 

modeling (FDM) owns a lion’s share of 3D printing market [218, 219]. FDM 3D printers melt a 

solid thermoplastic filament by passing it through a heated nozzle and deposit melted filament 

layer by layer to form a 3D object [220]. During the heating and extrusion, particles in ultrafine (< 

100 nm) and fine (< 2.5 μm) sizes and vapors (e.g., semi-volatile organic compounds, SVOCs, and 

VOCs) are emitted as byproducts [221-223]. The quantity of vapor and particle emissions are 

depended on the printing conditions and filament materials. The most common filament materials 

are acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA). Additives are also blended 

into raw filaments in order either to equip new functions or to enhance the functionality of final 

objects. Examples of additives include dyes, plasticizers, stabilizers, carbon allotropes, woods, 

metals, and many others. For instance, metal particles are added in filaments for aesthetic and 

practical purposes. However, transition metals, e.g., copper and iron, could catalyze the thermal 

degradation of organic compounds during the printing which contributes to the emission of VOCs 

and SVOCs [224, 225]. It has been reported that the primary nanoparticles are formed due to 

homogenous nucleation of the SVOCs and then grow into larger particles through agglomeration 

and/or the condensation of SVOCs on the surface of primary particles [226, 227]. Therefore, the 

amount of emitted SVOCs play an essential role in the particle emission of 3D printing. 
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Particles and VOCs produced in the 3D FDM printing could potentially cause adverse effects 

on respiratory systems [228-232], stimulate acute hypertension and microvascular dysfunction 

[233], affect neuroendocrine function [234] and induce toxicological effects of the cells [235]. For 

example, House et al. [228] reported that a worker experienced heavy chest, shortage of breath 

and coughing after working with 10 FDM 3D printers in a limited work area of around 3,000 m3 

for 10 days. Farcas et al. [235] found that several serum biomarkers of hepatic and kidney functions 

in the rats were significantly higher at Day 1 after 4 hours of exposure to ABS-emission. Joob and 

Wiwanitkit [236] indicated that the risk for carcinogenesis due to the exposure to the emission of 

3D FDM printers would be 3.44 times higher than the exposure to urban air pollution. Moreover, 

Byrley et al. [223] evaluated the deposition of inhaled particles in different regions of the 

respiratory tract for people at the ages ranging from 3 months to 18 years. Their result suggested 

that 9-years-old children had an overlap of the highest exposure risk considering total mass 

deposition and surface deposition by pulmonary surface area. Azimi et al. [221] studied the impact 

of the emitted VOCs to human health and reported that high lifetime cancer risks could be yielded 

from the exposure to styrene which was emitted largely by all ABS filaments and the HIPS 

filament. Davis et al. [222] identified 216 individual VOCs emitted from different filaments 

including some possible carcinogenic VOCs, such as formaldehyde, styrene, methylene, 

acetaldehyde and ethylbenzene, reproductive toxic VOC, toluene, respiratory toxic VOCs, such as 

caprolactam, acetic acid, lactide and methyl methacrylate. 

Despite potential evidence of adverse health effects of emitted particles and VOCs during the 

3D FDM printing, conclusive solutions to effectively remove the emissions and reduce the 

emission exposure remain at large. One of the reasons is due to the inconsistency and uncertainty 

of the emission data reported in literatures. Nevertheless, researchers have all agreed cautions 
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should be paid to the emission from the 3D printing. Since the first publication revealing that 

nonnegligible amount of particles and VOCs could emit from the 3D printing in 2013 [237], 

researchers have been using various methods to characterize the total concentration and size 

distribution of particles, and concentration and species of VOCs emitted from the 3D FDM printing 

[238-242]. 

Up to the present, there are more than one hundred journal articles have mentioned the 

emissions of the 3D FDM printing. The key words to search these literatures include 3D printing, 

particle emission from 3D printing, characterizations of particles and VOCs from 3D printing, and 

exposure from 3D printing. These journal papers were published by Elsevier, ACS publications, 

Taylor and Francis, Wiley online library, Procedia manufacturing, Springer, Royal society of 

chemistry, Emerald insight, MDPI, and Bioresources. As our research objectives are to investigate 

the emission characteristics and effective control methods, seventy-three peer-reviewed papers 

focused on these two objectives that have reliable measurement results and detailed analysis in 

major journals were finally chosen. 

Fig. A1.1 shows the number of publications by years. The number was increasing from 2013 

to 2017 with a short decrease in 2018, but the number was rapidly picking up again after 2018 

(Data for 2021 was summarized by August). It is found that studies done prior to 2018 were 

primarily showing their data using their own measurement methods (i.e., not paying much 

attention on the standardization of the characterization methods). The intercomparison of reported 

emission data from different research groups was not possible without having a standard method 

for the emission characterization. Starting from 2019, researchers realized the above issues and 

paid their attentions on the development of standard characterization methods (triangle symbol in 

Fig. A1.1 represents the number of papers) [239-242]. The Underwriters' Laboratories (UL) 
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published the standard method for assessing particle and vapor emissions from 3D Printers in 2019 

[239]. In addition, Chýlek et al. [240] and Sittichompoo et al. [241] proposed the 

thermogravimetric analysis (TGA) method to characterize the original emission from the filament 

attempting to validate the data obtained by the conventional chamber methods. Ding et al. [242] 

noticed the occurrence of measurement error in the chamber measurement was due to the heat 

accumulation in test chambers and proposed conducting the emission measurement in flow tunnels 

(overcoming the heat accumulation issue by significantly increasing the air change rate). 

Unfortunately, these newly proposed methods remain unable to regulate researchers to normalize 

their measurement data due to built-in variables. For example, the UL standard allows the 

differences on multiple environmental factors. The measurement by the TGA method cannot 

represent the emission in real printing. The tunnel method ignored the effect of temperature 

distribution around a printing nozzle on the emissions.  

 

Figure A1.1. Number of publications on the emission of 3D FDM printing. 

Not only is a standard emission characterization method/guideline essential to survey the real 

emission characteristics of 3D FDM printing but also to investigate the factors influencing the 
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emission level. To have effective control strategies, the identification of influencing factors on the 

emission from 3D FDM printers at the source level is crucial. Several studies had explained the 

emission from the source [238, 243-245]. Zhang et al. [238] illustrated the emission process 

focused on the aerosol dynamics and indicated that factors including filament color, filament brand 

and filament material may affect the particle emission. Vance et al. [243] and Gu et al. [244] 

performed various of experiments validating their assumptions on the consistent compositions of 

emitted particles, filaments, and printed objects. Potter et al. [245] demonstrated the variation of 

particle emission caused by different filament materials (from the chemical reaction viewpoint). 

Their investigation contributed to the understanding of the emission characteristic for filaments in 

raw materials. Unfortunately, the above understanding could not be generalized to the cases using 

advanced filaments, especially for metal-additive ones. Metal-additive filaments have been found 

to emit particles in concentration several orders of magnitude higher than non-metal additive 

filaments. Further investigation of the emission mechanisms in the cases of additive filaments is 

very desirable. In addition to controlling the influencing factors for reducing the emission at the 

source level, engineering solutions to trap particles after formed are also important. Control 

strategies by changing the printing parameters [224, 246, 247], including the ventilation and 

filtration [248, 249] and controlling the environmental variables [250, 251] have been studied. 

However, it is challenging from these studies to reach final conclusions guiding end users to select 

the most effective control method (due to the difference in the evaluation methods). A large amount 

of emission data obtained from the same experimental setup are required to achieve the above 

objective. However, it is very costly and time-consuming to obtain all the required emission data 

by experiments.  
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Prediction models are alternatives to resolve the above concerns. Zhang et al. [226] developed 

a lognormal moment model to predict the particle formulation and transient size distributions of 

formed particles. Zontek [252] combined the eddy diffusion model and Monte Carlo simulation 

(as shown in Fig. A1.1) to predict the particle emission. Their results showed good performance 

of the models and perceptive insights of the emission characteristics. Taking a different route, the 

models developed by the machine learning have also been explored to effectively resolve the time-

consuming issues encountered in the prediction and optimization via mechanistic models [253-

255] if enough data with high quality are available. Many studies have been applying the machine 

learning in additive manufacturing [256-261], but limited ones have focused on the relationship 

between the emission and printing conditions.  

Up to the present, many studies regarding the emission characteristics of 3D FDM printers 

have been published. A comprehensive review of these existing studies would be very desirable to 

provide journal readers/researchers a clear picture on the status of current study on the emission 

from 3D FDM printers and to identify the areas/directions required for further studies. Various 

emission characterization methods, emission mechanisms, and control strategy as well as on the 

optimization of printing parameters targeting on the emission control are reviewed and discussed 

in the following sections. Table A1.1 summarizes the experimental setups, measurement 

conditions and emissions of a 3D FDM printer reported by the existing publications. 
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Table A1.1 Summary of measurement methods and data from different references 

  Study 

Measure

-ment 

place 

Volume 

(m3) 

Ventilat

ion (h-

1) 

Main 

measurement 

equipment 

Sampling 

point 

Filament 

material 

Filament 

brand 

Filament color Printer 

Printing 

temp (°C) 

Bed 

temp 

(°C) 

 

Printing 

object 

Printing 

time 

Emission 

rate 

(#/min) 

Geo 

Mean 

1 

Kim et 

al., 

2015 

[262] 

Chamber 1 0.561 

SMPS, 10-

420 nm 

Upper 

part of 

the 

chamber 

PLA-1 - Brown Cube, 3D System 210-220 -  Bobbin 2h 30 min 4.89 x 108 27.9 

PLA-2 - - 3DISON Plus, Rokit 210-220 -  Bobbin 1h 55 min 4.27 x 108 188.2 

ABS Rokit Red Cube, 3D System 250 -  Bobbin 2h 50 min 1.61 x 1010 32.6 

2 

Azimi 

et al., 

2016 

[221] 

Chamber 3.6 1 

CPC, 10-

1000 nm 

Exhaust 

port 

PLA - Red FlashForge Creator 200 110  NISTpart 3h 42 min 1.05 x 108 - 

PLA - White Dremel 3D Idea Builder 230 -  NISTpart 2h 49 min 1.10 x 108 - 

PLA - Red LulzBot Mini 190 45  NISTpart 3h 25 min 1.00 x 108 - 

ABS - White FlashForge Creator 200 110  NISTpart 3h 42 min 4.00 x 1010 - 

ABS - Blue 

XYZprinting da Vinci 

1.0 

230 100  NISTpart 2h 26 min 1.10 x 1010 - 

ABS - Red LulzBot Mini 240 110  NISTpart 2h 33 min 9.00 x 1010 - 

ABS - Red LulzBot Mini 240 110  Cube 2h 42 min 8.90 x 1010 - 
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ABS - White MakerBot Replicator 2X 230 110  NISTpart 

2 h 38 

min 

8.00 x 1010 - 

HIPS - Black LulzBot Mini 240 100  NISTpart 

2 h 28 

min 

4.00 x 109 - 

Nylon  - 

Bridge 

semitransparent 

LulzBot Mini 230 65  NISTpart 

2 h 55 

min 

2.00 x 108 - 

Laybrick - White LulzBot Mini 200 65  NISTpart 3 h 0 min 6.00 x 107 - 

Laywood - Brown LulzBot Mini 200 65  NISTpart 3 h 2 min 8.00 x 107 - 

Polycarb

onate 

- Transparent LulzBot Mini 270 110  NISTpart 

2 h 38 

min 

4.00 x 1010 - 

PCTPE - 

Semitransparen

t 

LulzBot Mini 235 65  NISTpart 3 h 2 min 2.00 x 1010 - 

T-Glase - Transparent red LulzBot Mini 240 60  NISTpart 3 h 2 min 5.00 x 109 - 

3 

Yi et 

al., 

2016 

Chamber 

(a small 

room) 

0.5 3 

SMPS, 10-

360 nm 

10 cm 

from the 

printer 

PLA - Army green 

Replicator 2x 

215 off  

Comb 

14 min 1.28 x 1010 32.4 

PLA - True red 215 off  14 min 1.25 x 1010 28.3 

PLA - Ocean blue 215 off  14 min 1.13 x 1010 27.5 
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[263] 
PLA - 

Transparent 

blue 

215 off  14 min 1.56 x 1010 30.1 

ABS - Natural 230 110  14 min 1.62 x 1010 70.1 

ABS - Red 230 110  14 min 1.35 x 1010 70.2 

ABS - Blue 230 110  14 min 7.43 x 109 78.9 

ABS - Black 230 110  14 min 1.05 x 1010 44.6 

4 

Floyd 

et al., 

2017 

[264] 

Chamber 0.0248 16.2 

SMPS, 16.8-

532.8 nm 

right side 

the 

printer 

PLA - Yellow 

Aworldnet A600 210 70 

 

University 

of 

Oklahom

a Logo 

1h 15 min 

0.10 x 108 - 

ABS - Red  2.70 x 108 - 

PVA - -  1.20 x 1010 - 

HIPS - White  0.50 x 108 - 

PCABS - White  6.00 x 108 - 

Nylon - -  1.20 x 108 - 

Bronze-

PLA 

- -  3.90 x 109 - 

PET - -  2.60 x 108 - 

5 Chamber 1 1 PLA b Red, white A 210 -  - -  16.8 



112 

 

Zhang 

et al., 

2017 

[238] 

SMPS, 7-

300 nm 

10–20 

cm 

from the 

printer. 

PLA c Red, white A 210  

Extrusio

n 

-  38.9 

PLA f Red, white A 210  -  63.2 

PLA b Red, white B 215  -  50.6 

PLA c Red, white B 215  -  49.5 

PLA f Red, white B 215  -  35.4 

PLA b Red, white C 230  -  27.9 

PLA c Red, white C 230  -  31.2 

PLA f Red, white C 230  -  28.1 

ABS a Red, white A 270  -  98.6 

ABS c Red, white A 270  -  90.4 

ABS d Red, white A 270  -  40.7 

ABS f Red, white A 270  -  103.0 

ABS a Red, white C 260  -  92.0 

ABS c Red, white C 260  -  118.3 

ABS d Red, white C 260  -  66.0 

ABS f Red, white C 260  -  99.2 
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Nylon e Nature A 243  -  129.4 

6   

Kwon 

et al., 

2017 

[248] 

Chamber 2.5 Vary 

SMPS, 10-

420 nm 

2.3 m 

from the 

printer 

PLA - Red 

3DISON multi 2 

220 60  

Cylindric

al object 

65 min 3.61 x 108 57.2 

ABS1 - light gray 230 120  78 min 3.28 x 1010 45.6 

ABS2 - dark gray 240 110  73 min 2.14 x 1010 58.0 

PVA - yellow-brown 190 60  64 min 8.12 x 108 68.0 

Laywood - brown 215 60  64 min 4.65 x 108 59.4 

HIPS - white 265 90  70 min 3.37 x 1011 31.5 

Nylon - semitransparent 265 90  70 min 3.27 x 1011 21.8 

ABS1 - light gray 

 
265 90 

 

70 min 

1.98 x 1011 43.0 

ABS2 - dark gray  1.89 x 1011 45.2 

PLA - Red  6.82 x 1010 27.2 

PVA - yellow-brown  1.42 x 1011 85.2 

Laywood - brown  6.93 x 1011 30.0 

7 Chamber 0.52 - PLA  Light blue Afinia 3D 200-210 50  63min 1.48 x 1010 22.0 
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Vance 

et al., 

2017 

[243] 

2.45/0.

18 

SMPS, 14.6-

680 nm 

Copper-

infused 

PLA  

Afinia 

3D 

- 190-240 50  

NIST 

artifact, 

scaled 

50% size 

63min 1.10 x 108 28.0 

Wood-

infused 

PLA  

- 190-240 50  63min 1.58 x 108 470 

Value-

line ABS 

Orange 210-250 90  63min 1.08 x 1011 51.0 

Premium 

ABS  

Yellow 260-270 90  67min 1.25 x 1010 51.0 

8 

Mende

s et al., 

2017 

[246] 

Chamber 

(a test 

room) 

0.18 280 

SMPS 2-350 

nm 

outlet of 

the 

chamber 

PLA-1 

- - 

Mini 

Factory Oy 

200 70  

a small 

object 

60 min 

6.00 x 108 - 

PLA-2 230 70  3.12 x 1011 7.9 

ABS-2 230 90  8.40 x 1010 7.9 

ABS-4 250 90  1.32 x 1012 10.5 

ABS-1a 230 90  2.22 x 1010 8.8 

ABS-1b 230 90  - - 3.72 x 1011 15.5 
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9 

Cheng 

et al., 

2018 

[247] 

Chamber 0.366 - 

HPC 300-

2500 nm 

air outlet ABS Voltivo Red 

Flash 

Forge 

240 110  

elephant, 

hemisphe

re, and 

pyramid 

models, 

rectangula

r blocks 

- - - 

10 

Stefani

ak et 

al., 

2017 

[265] 

Chamber 12.85 1 

FMPS, 5.6-

560 nm 

mixing 

well 

PLA 

3DXStat 

ESD 

black  

LulzBot 

220 65  

NIST 

model 

- 

8.07 x 109 21.6 

PLA-

CNT 

F-

Electric  

black  220 65  4.90 x 109 21.7 

ABS 3DXTech black  240 110  7.60 x 1011 22.7 

ABS-

CNT 

3DXTech black  240 110  3.66 x 1010 32.8 

PC 

Gizmo 

Dorks  

black  290 100  2.96 x 1011 47.5 

PC-CNT 

3DX 

Tech  

black  290 100  3.26 x 1011 25.2 

11 Chamber 3 1/1.5 ABS Blue Zortrax 275 80  4 h 3.80 x 1010 27.0 



116 

 

Gu et 

al., 

2019a 

[222] 

FMPS, 5.6-

560 nm 

mixing 

well 

ABS 

Zortrax/3

Dmensio

nals/Pont

ialis 

GmbH 

Green 275 80  

90% 

NIST 

4 h 4.30 x 1010 30.0 

ABS Grey 275 80  4 h 6.50 x 1010 27.0 

ABS Red 275 80  4 h 4.10 x 1010 28.0 

ABS Red 275 80  4 h 4.50 x 1010 30.0 

ABS Red_230 230 80  4 h 4.20 x 109 31.0 

ABS Red_240 240 80  4 h 8.30 x 109 29.0 

ABS Red_250 260 80  4 h 2.30 x 1010 29.0 

ABS Red_260 260 80  4 h 1.30 x 1011 24.0 

ABS White 275 80  4 h 2.90 x 1010 27.0 

Ultra-T Ivory 260 80  4 h 6 min 1.40 x 1011 24.0 

ASA Blue 254 90  

4 h 18 

min 

1.70 x 1011 24.0 

PETG Black 254 30  

4 h 18 

min 

9.70 x 109 59.0 

ESD Black 280 70  

3 h 30 

min 

6.50 x 1010 30.0 
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GLASS Transparent 254 30  4 h 2.00 x 109 82.0 

HIPS Yellow 255 80  4 h 6 min 3.30 x 109 41.0 

PCABS Ivory 290 105  

3 h 54 

min 

7.03 x 1010 32.0 

12 

Chýlek 

et al., 

2019 

[240] 

Chamber 0.0577 0.3 

SMPS, 16.5-

583 nm 

10 cm 

away 

from the 

nozzle 

PLA  

- 

Green 

Ultimaker 3 Extended 

200 

- 

 

A simple 

cylindrical 

geometry 

60 min 1.08 x 106 - 

PLA 

polyplus 

True green 200  60 min 1.53 x 106 - 

PLA 

Silver 

Silver metallic 200  60 min 3.8 x 106 - 

ABS Traffic red 230  60 min 1.13 x 109 - 

Polywoo

d 

Light Wood 200  60 min 1.53 x 106 - 

PVA Natural 215  60 min 3.25 x 106 - 

Breakaw

ay 

White 225  60 min 7.17 x 106 - 

Polyflex Black 223  60 min 8.41x 106 - 

CPE Light grey 240  60 min 3.26 x 108 - 
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PC Black 260  60 min 1.84 x 109 - 

Nylon Black 245  60 min 3.46 x 109 - 

ASA Green grass 250  60 min 5.89 x 109 - 

13 

Ding et 

al., 

2019 

[227] 

Chamber 0.384 - 

SMPS, 10-

420 nm 

- 

PLA2 

- - - 

200 

- 

 

Extrusio

n 

30 min 4.70 x 109 - 

ABS1 220  50 min 2.50 x 109 - 

ABS1 240  45 min 1.25 x 1010 - 

ABS1 260  48 min 4.75 x 1010 - 

PVA2 220  10 min 3.90 x 1010 - 

14 

Gu et 

al., 

2019b 

[266] 

Chamber 30 0.5 

FMPS, 5.6-

560 nm 

- ABS - Red Zortrax 275 80  

90% 

NIST 

4 h - - 

15 

Jeon et 

al., 

2020 

[267] 

Chamber 2.5 36 

SMPS, 10-

420 nm 

Outlet 

PLA 

- 

Snow-white 

3DISON Multi 

215 

90 

 

a cube 

136 min 3.40 x 108 - 

ABS Snow-white 245  134 min 1.50 x 1010 - 

Laywood Brown 215  135 min 2.40 x 109 - 

Nylon Snow-white 245 -  135 min 4.01 x 109 - 
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16 

Poikki

mäki et 

al., 

2019 

[224] 

Chamber 0.3 20 

SMPS, 4-

573 nm 

Right 

side of 

the 

chamber 

PLA 

Ultimake

r 

Ultimate Blue 

Ultimaker B.V. 

210 60  

A frog 

36 min 4.75 x 109 13.4 

PLA 

colorFab

b 

woodFill 210 60  36 min 8.86 x 1011 23.8 

PLA 

colorFab

b 

copperFill 220 60  36 min 1.73 x1012 9.8 

ABS 

Ultimake

r 

Red 240 90  36 min 1.17 x 1010 13.3 

nGEN 

colorFab

b 

- 220 80  36 min 1.61 x 1010 13.35 

17 

Dunn 

et al., 

2020a 

[268] 

Chamber 0.34 - 

SMPS, 10-

420 

nm/FMPS, 

5.6-560 nm 

exhuast 

duct 

CNT25 

- 

25% CNT 

- - - 

 

- - - - 

1KHFC3

0 

30% CNF  

1KHFZ 10% CNF  

1AR2 

proprietary 

filament 
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PEEK 

unfilled 

polyetheretherk

etone 

 

18 

Byrley 

et al., 

2020 

[223] 

Chamber 2 1 

SMPS, from 

15.1 

20 cm 

from the 

chamber 

wall and 

20 cm 

from the 

extruder 

head 

pulverize

d PLA 

- 

White - 180 -  - 40 min 5.60 x 1010 - 

PLA 

pellets 

Semitransparen

t 

 180    51 min 1.70 x 109 - 

ABS 

pellets 

Semitransparen

t 

 180    51 min 3.50 x 1011 - 

19 

Dunn 

et al., 

2020b 

[269] 

Chamber 

0.22 

322 

SMPS, 10-

420 nm 

outlet of 

the 

chamber 

PLA 

- 

True orange Replicator+ 

- - 

 

- 

2 h 7.10 x 106 62.3 

IMPLA 

Slate Gray 

impact resistant 

Replicator+  2 h 8.17 x 109 45.6 

ABS True yellow Replicator 2X  2 h 2.83 x 109 53.6 

0.45 IMPLA Slate Gray Replicator Z18  - 1.40 x 1010 49.6 

20 Chamber - 1 - ABS - White - 230 110  - - 4.80 x 108 36 
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Sitticho

mpoo 

et al., 

2020 

[241] 

SMPS, 7.77-

273 nm 

ABS Orange 230 110  9.00 x 108 36 

21 

Alberts 

et al., 

2021 

[225] 

Chamber 0.028 0 

FMPS, 5.6-

560 nm 

30 cm 

from the 

top of the 

chamber 

PLA IGN White 

Type A 

Machines 

220 50  

Puck - 

1.64 × 106 57.2 

PLA-Cu 

ColorFab

b 

Cu-additive 220 50  4.43 × 107 22.7 

ABS Verbatim transparent 240 80  2.06 × 107 29.7 

ABS-W 

Tuner 

MedTech 

GMASS 

tungsten-

additive 

240 80  3.05 × 108 26.7 

22 

Ding et 

al., 

2020 

[242] 

Chamber 

1900/1/

1 

3 (1,5) 

SMPS, 10-

420 nm 

0.5 m 

from the 

printer 

PLA1 

Ecomayl

ene 

Natural 

UP Plus 2 

220 50  

Cube - 

- - 

ABS1 Esun natural 260 90  4.00 x 109 35.0 

ABS2 

Polymak

er 

white 260 90  7.00 x 109 39.0 

ABS5 Esun white 260 90  1.90 x 1010 30.2 
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ABS6 

Ecomayl

ene 

white 260 90  2.90 x 1010 29.3 

ABS7 

Ecomayl

ene 

black 260 90  2.50 x 1010 25.0 

PVA1 OEM yellow 220 50  8.50 x 1010 - 

23 

Bernati

kova et 

al., 

2021 

[270] 

Chamber 0.29 0 

SMPS, 10-

420 nm 

next to 

the 3D 

printer 

PETG 

Filament 

PM 

orange 

PRUSA i3 

245 75  

cube-

shaped 

block 

1 h - 86.4 

NGEN 

Prusa 

Research 

orange  230 85  

1 h 21 

min 

- 115.5 

24 

Wojno

wski et 

al., 

2021 

[271] 

Chamber 0.13 - CPC >2 nm - 

PLA 

standard 

Print-Me natural 

Prusa i3 

220 60  

Cube 

5 min - - 

PLA 

premium 

Nebula           natural 220 60  5 min - - 

ABS Nebula           natural 235 60  5 min - - 

PETG Print-Me natural 235 60  5 min - - 
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25 

Stephe

ns et 

al., 

2013 

[237] 

Office 45 - 

SMPS, 10-

420 nm 

2 m away 

from the 

nearest 

printer 

PLA - - - 200 18  

Frog and 

chain 

link  

20 min 2.00 x 1010 - 

ABS - - - 220 118  
 

20 min 1.90 x 1011 - 

26 

Stabile 

et al., 

2017 

[272] 

Room 40 0.22 

SMPS 6-220 

nm 

2 m from 

the 

printer 

PLA 

- - 

Prusa i3 220 

- 

 

Minion 

Dave 

40 min 

6.78 x 109 - 

PLA 

wood 1 

Prusa i3 220  5.77 x 1010 - 

PLA 

wood 2 

Prusa i3 230  1.91 x 1012 - 

PLA 

copper 

Prusa i3 220  1.98 x 1012 - 

PLA 

bamboo 

Prusa i3 220   1.47 x 1011 - 

PLA felx Prusa i3 240  4.18 x 1010 - 

CP Prusa i3 220  1.68 x 1011 - 
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CP-

carbon 

fiber 

Prusa i3 220   2.31 x 1011 - 

Nylon Prusa i3 220  - - 

Ninjaflex Prusa i3 220  - - 

27 

Katz et 

al., 

2019 

[273] 

Small 

office 

46.4 1.9-4 

SMPS, 14.6-

685.4 nm 

1.5 m 

from the 

printer 

PLA 

- - AFINIA-H800 

210 50  

Block 

3h 30 min 3.67 x 109 - 

ABS 260 90  5h 18 min 6.92 x 1010 - 

28 

Viitane

n et al., 

2021 

[249] 

Office 

room 

48.3 vary 

SMPS, 10-

420 nm 

Vary ABS - Red miniFactory Oy 240 95  - 

24-54 

min 

- - 

29 

Zhou et 

al., 

2015 

[274] 

A ten 

thousand 

clean 

room 

60 - 

Grimm 

1109, 250-

32000 nm 

Vary ABS - Green/White - 220 -  Robbot 

60-117 

min 

- - 
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30 

Steinle, 

2016 

[275] 

Chamber

/(large 

lab, 

small 

office) 

0.85 16 

ASM, 180-

20000 

nm/EDB) 

and 

miniDiSC, 

7-400 nm 

On the 

top of the 

chamber 

PLA - Yellow 

Cube 2nd generation, 

3DSystems 

- -  

Boiled 

egg cup 

with 

chicken 

feet 

2h 45 min - - 

ABS - Yellow - -  2h 45 min - - 

31 

Deng et 

al., 

2016 

[276] 

Clean 

room  

8 60 

CPC (2.5 -

1000 nm) 

- 

PLA - Black 

FlashForge Creator 

200 60  

Make 

robot 

- - - 

ABS - Red 220 110  - - - 

32 

McDon

nell et 

al., 

2017 

[277] 

Office/3

D 

Printing 

Club 

Space/Li

brary/ 

Dorm 

Room/L

ab  

vary vary 

P-trak 20-

1000 nm 

Close to 

the 

printing 

bed 

PLA 

- - - - - 

 

- - - - 

ABS  

Nylon  

Polycarb

onate 
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33 

Bharti 

and 

Singh, 

2017 

[278] 

Library - - 

P-trak 

20-1000 

nm 

- 

PL

A 

- - - 210-215 -  - 

at least 10 

min 

- - 

34 

Preez 

et al., 

2017 

[279] 

Two 

different 

rooms 

66/40 no 

P-trak 7-

1000 nm 

less than 

10 cm 

from the 

printers 

ABS - 

Stratasys/3D 

Printing 

Systems 

(industrial 

scale) 

- - 

 

- - - - - 

PC -  

PLA -  

ultem -  

35 

Youn 

et al., 

2019 

[280] 

3D 

printing 

center 

126 no 

SMPS, 11-

350 nm 

- - - white FINTBOT Z420 230 80  - - - - 

36 

Setyaw

ati et 

al., 

Six 

printing 

centers 

56-

666.4 

135-

613 

SMPS, 10-

420 

nm/FMPS, 

5.6-560 nm 

Close to 

the 

printer or 

Vary - - - - -  - - - - 
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2020 

[281] 

in the 

office 

37 

Chan et 

al., 

2020 

[282] 

universit

y 3D 

printing 

facility 

13.824 - 

SMPS, 10-

420 nm 

in the 

room or 

adjoining 

hallway 

of the 3D 

printers 

PLA - - 

MakerBot 

Replicator 2 

- -  

A small 

objects 

< 3 h - - 

38 

Khaki 

et al., 

2021 

[283] 

family 

sized 

living 

room 

41 - 

OPS <300 

nm 

1 m away 

from the 

printer 

PLA - Black 

Creality Ender-3 

235 80  

Cube 

~15 min - - 

ABS - Black 205 50  ~20 min - - 

39 

Ding 

and 

Ng, 

2021 

[284] 

An 

office/3

D 

printing 

laborator

ies 

15 - 

SMPS, 10-

420 nm 

0.5 m 

away 

from the 

printer 

PLA 

- - MEX 

220 

- 

 

- 

25 min 

- - 

ABS 260  25 min 

PVA 260  25 min 

* The emission rates were captured from the graphs using GetData 2.5 for paper of Azimi et al., 2016 [10], Sittichompoo et al.,2020 [30] and Ding et al., 2020 [31]  
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A1.2 Formation and dynamic processes of particles 

Fig. A1.2 illustrates the mechanisms involved in the particle formation and growth during 

the 3D printing. Due to the heating of filaments, condensable vapors are generated through the 

vaporization of filament materials. In this stage, a significant amount of VOCs including 

condensable SVOCs are emitted. When these SVOCs travel away from the heated printing 

head, the particle nucleation occurs once the temperature drops and SVOCs become 

supersaturated [285]. Both homogeneous and heterogeneous nucleation are possible, 

depending on the additives in the filaments and existence of background particles. At a high 

concentration of SVOC vapors, particles are nucleated first as a cluster with the sizes exceeding 

critical values. They then grow sizes by both the vapor condensation and particle coagulation. 

By the condensation, the rate of particle size growth depends on the vapor saturation condition, 

chemical composition, and production rate of SVOC, and nucleated particle sizes (relative to 

the mean free path of ambient air, i.e., the average distance traveled by a molecule between 

successive collisions) [286]. When nucleated particles are smaller than the mean free path, the 

size growth is by random collisions of SVOC molecules. The growth of nucleated particles 

bigger than the mean free path depends on the rate of diffusion of SVOC molecules to the 

particle surface. In addition to the vapor condensation, the coagulation among particles is also 

an important mechanism to grow the particle sizes. It should be noted that there is no clear time 

boundary for condensation and coagulation. Condensation can happen once the size of the 

nuclei reach the critical size and coagulation happens all the time as it is essentially caused by 

the particle Brownian motion.  
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Figure A1.2. Schematic of particle formation and growth process during the 3D printing. 

A1.3. Particle measurement methods  

A1.3.1. Traditional methods 

The characterization of the emission from a 3D FDM printer was performed using test 

chambers in three different scales: one type of test chambers was in a small scale, i.e., enclosing 

a printer in a down-sized chamber (Ref. No. 1-24 in Table A1.1); another type was in a single 

real room (No. 25-28); the last was either in a large space or in multiple real rooms (No. 29-

39). Small test chambers were popularly utilized for the emission studies because of its 

relatively low cost, easy installation, and small footprint in the laboratory settings [287]. For 

example, down-sized chambers were recommended in the standard to measure particle 

emissions from a laser printer [288]. However, a standard for characterizing the emission from 

3D FDM printers was not found. In the literature, the air change rate, sampling instruments and 

location were varied in different studies. Unfortunately, the above variables have influential 

effects on the measured emission data for a 3D FDM printer. For the air change rate, it affects 

both the flow and temperature fields inside test chambers, resulting in the spatial variation of 

the particle formation and transport in chambers. The variation of temperature distribution in a 

test chamber directly influences the emission types and amount of SVOCs, which can be 
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condensed on particles, thus contributing to the spatial variation of total concentration and size 

distribution of particles. Low air change rates would minimize the temperature decrease in the 

proximity to the printing nozzle. The accumulation of emitted particles in a small test chamber 

was however found by Ding et al. [242] when the air change flow rate was set low. Thus, the 

authors took the emission measurement by placing a 3D FDM printer in a flow tunnel with an 

increased airflow around the printing nozzle to eliminate the heat accumulation [242]. However, 

the temperature change due to the change of air flow rate was not considered. To be able to 

obtain more realistic emission data, the above study proposed to apply a unit-specific air change 

rate, which is an equivalent air flow rate ensuring an approximate temperature gradient around 

the nozzle as that in the real printing condition. 

For the sampling instruments, Scanning Mobility Particle Sizers (i.e., SMPSs equipped 

with a long differential mobility analyzer, DMA, TSI Inc., Shoreview, MN) having the 

scanning size range from 10 to 700 nm, and Fast Mobility Particle Sizers (FMPSs, TSI Inc., 

Shoreview, MN) having the measurable size range from 5.6 to 560 nm were widely used for 

characterizing the size distributions of emitted particles. However, Poikkimäki et al. [224] 

pointed out that the 3D FDM printing also emitted a large amount of nanocluster particles (< 3 

nm). Therefore, the data obtained by SMPSs/FMPSs could underestimate the total 

concentration of emission particles. Nano SMPS (equipped with nano-DMA) can scan the size 

of particles from 2 to 150 nm, but the upper size limit is too low to capture the peak size of 

emitted particles after they grow at a later stage of printing [262]. Obviously, two sets of SMPSs 

(one set equipped with a long DMA and the other set with Nan-DMA) are required to cover a 

wide size range encountered in the characterization of particles emitted from a 3D FDM printer. 

The measuring cycle of a SMPS is also a concern for the characterization of emitted particles 

in the size range of 10 - 420 nm (~ 1 minute) comparing the dynamic change of particles emitted 

from filaments of some kinds, which is estimated within 10-15 seconds (according to the 
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natural convective flow driven by the high temperature of nozzle and heating elements). The 

measuring time is not a concern for a FMPS because of the use of multiple electrodes in the 

sizing column providing a size distribution in a second. However, the data collected by a FMPS 

has found to underestimate the concentration of particles with the sizes greater than 200 nm 

and overestimate the concentration of particles with the size less than 10 nm [289, 290]. Thus, 

multiple instruments covering different size ranges and sizing resolutions shall be applied to 

better characterize the particle emission from a 3D FDM printing. Data collected under 

different sizing resolutions can also be analyzed to accurately capture the particle dynamics. 

The variation of the sampling locations selected in different studies is also contributing to 

the discrepancy of data. The sampling location would not affect the measurement data if 

particles and air were well mixed. However, when the sampling location is adjacent to the 

nozzle, the movement of the nozzle and cooling fan could disturb the surrounding airflow, 

resulting in spatial variation of temperature and flow around the sampling probe. Cheng et al. 

[247] found that disturbed air flow next to the sample probe contributes to the fluctuation of 

measured data. The above issue could be resolved by locating the sampling location away from 

the printing nozzle. Unfortunately, newly formed particles would not be detectable in the above 

sampling location.  

A1.3.2. Proposed new sampling inlet and measurement criteria 

In the consideration of the printing assembly as a point heat source, a conceptual annular 

sampler as shown in Fig. A1.3 could be a good candidate for the emission measurement. 

Usually, a cooling fan blowing ambient air (with lower temperature than that near the nozzle) 

on the nozzle is equipped with the printer to protect the nozzle from overheating. Thus, this 

flow serves as a trigger for particle nucleation and condensation. If the sampler encloses the 

cooling fan, which is not only beneficial to have instantaneous and evenly distributed particle 
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sampling but also remaining a realistic condition. In addition, with an annular inlet of the 

sampler spatially uniform sampling can be achieved reducing the variability of the particle 

samples. 

 

Figure A1.3. Schematic diagram of an annular sampling probe. 

In addition to the concerns discussed above, the characterization of particles emitted from 

a 3D FDM printer shall also satisfy the basic requirements listed in the following: 

⚫ 1 m3 of the test chamber volume is suggested because it is the most used to test the 

emission from laser printers (for the purpose comparing with laser printer data) [288, 

291, 292]. 

⚫ The material of the chamber should be conductive to minimizing the particle loss due to 

the electrostatic effect [238, 275, 286, 293]. Frequently cleaning the chamber wall to 

remove the deposited particles and SVOCs is also required to minimize the outgassing 

[265, 275]. 

⚫ The sealing of the test chamber shall be examined. The concentration of background 

particles should be controlled at the level as low as possible, e.g., less than 200 #/m3, for 

minimizing its influence on the particle formation and emission [242, 266].  

⚫ The temperature and humidity in the test chamber should be kept at 20-25 °C and 40-
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50%, respectively (close to that of a typical indoor environment) [288]. 

⚫ Sampling tubes should also be conductive and kept as short as possible to reduce the 

particle loss due to the diffusion [238, 275, 286, 293].  

⚫ Type, color, brand, composition (if possible) of filaments should be specified [294]. 

⚫ For a 3D FDM printer, the printing nozzle assembly design, printing temperature, 

filament feeding speed, infill percentage, cooling fan speed, printing time and printed 

objects should be documented [293]. 

A1.4. Particle emission characteristics  

A1.4.1. Emission rate and geometrical mean diameter of common filaments 

PLA and ABS filaments are the most used feedstock in the 3D FDM printing. Studies 

have extensively investigated the particle emission from the 3D printing using filaments of 

these materials (under various printing conditions). Fig. A1.4 graphically summarized the 

emission rate and geometrical mean diameters (GMDs) of particles emitted from the printing 

using PLA and ABS filaments in all chamber experiments. For comparison, the same figure 

also includes the emission data averaged from the printing using filaments of other 20 kinds. 

 

         (a)      (b) 

Figure A1.4. Emission rate (a) and geometric mean diameter (b) of particles emitted from the 

3D FDM printing with different filaments. The maximum of the box is 1.5 times of interquartile 

range (IQR), the minimum of the box is -1.5 times of the IQR, the top line of the box is the 
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75th percentile, middle line is the median and the bottom line is the 25th percentile. The 

rhombus represents outliers. PLA stands for polylactic acid, ABS stands for acrylonitrile 

butadiene styrene, Others include high impact polystyrene (HIPS), Nylon, Laybrick, Laywood, 

Polycarbonate, plasticized copolyamide thermoplastic elastomer (PCTPE), transparent 

polyester resin (T-Glase), Polyethylene terephthalate (PET), PolyVinyl Alcohol (PVA), 

Acrylonitrile butadiene styrene+0–3% polycarbonate (ULTRAT), Acrylonitrile styrene 

acrylate (ASA), Polyethylene terephthalate glycol (PETG), PETG+carbon-based conductive 

additives (ESD), 80% PETG+8–12% fiber glass filings (GLASS), Polywood, Breakaway, 

Thermoplastic Polyurethane (TPU), Copolyester (CPE), Acrylonitrile Styrene Acrylate (ASA), 

nGEN (a polyester filament), carbon fiber-filled styrene-free copolyster (CP-carbon fiber). 

As evidenced in Fig. A1.4a, many outliers are shown in the cases of different filaments 

(i.e., PLA, ABS or Others), which could be the data obtained under significantly different 

measurement conditions. For all the feedstocks, the printing with ABS filaments emitted the 

highest number of particles per unit time while the printing with PLA filaments emitted least 

number of particles per unit time. The median emission rates in the cases printing with ABS, 

PLA and other filaments were 2.2 x 1010, 6.0 x 108 and 3.9 x 109 #/min, respectively. The 

values of reported emission rate were mostly within the 25th percentile and median value for 

all kinds of filaments, i.e., from 8.3 x 109 to 2.2 x 1010 #/min for ABS, from 1.0 x 108 to 6.0 x 

108 #/min for PLA and from 3.3 x 108 to 3.9 x 109 #/min for other filaments. 

Figure 4b illustrates the GMDs of particles emitted from the printing with different 

filaments. The IQRs of GMD are wider than that of emission rates, indicating that the size 

distributions of emitted particles are very dispersive. The largest median GMD was 35.0 nm 

and found in the cases with ABS filaments. Particles with GMDs of 31.8 and 29.2 nm were 

found in the cases printing other and PLA filaments, respectively. The majority of collected 
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GMD data were in the range between the 25th percentile and median, i.e., from 28.0 to 35.0 

nm for ABS, from 23.8 to 29.2 nm for PLA and from 24.9 to 31.8 nm for other filaments. 

A1.4.2. Emission characteristics of metal-additive filaments 

It should be noted that the data for the cases printing with metal-additive PLA and ABS 

filaments are not included in Fig. A1.4. The emission rates in the cases printing with metal-

additive filaments were at least one order of magnitude higher than those from the printing with 

original or other additive filaments. Poikkimäki et al. [224] showed that the emission rate for 

PLA Cu additive and PLA original filaments was 1.7 x 1012 and 4.8 x 109 #/min, respectively. 

Alberts et al. [225] reported that PLA Cu additive filaments emitted 4.4 × 107 #/min compared 

to 1.6 x 106 #/min in the cases of PLA original. The printing with ABS W (Tungsten) additive 

filaments emitted 3.1 x 108 #/min compared to 2.1 x 107 #/min in the printing with ABS original 

filaments. Even without metal additives in the filaments, the reported emission rates shown in 

Fig. 4a are all considerably high and may have adverse effect to the public health [295-303]. 

Because of no existing regulation to limit the particle concentration [294], the high emission 

rates have attracted investigators’ attentions to build the emission database and establish a 

standard for future control measures. 

The GMDs of metal additive filaments were less than those in the cases with nonmetallic 

additive ones. For copper additive PLA filaments [224], the GMD was 9.8 nm compared to 

13.4 nm to the nonmetallic additive one. Alberts et al. [225] found that the GMD for PLA Cu 

additive and ABS tungsten additive was 22.7 and 26.7 nm, respectively, while the original one 

was 57.2 and 29.7 nm, respectively. It has been shown that particles in the size range from 10 

to 30 nm where the mean sizes of particles emitted from a 3D printing were, are most likely 

depositing in deep lung area and causing inflammation and possible cancer [286].  
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A1.5. Reduction of particle emissions  

Because a 3D printing typically emits small particles in high concentration during the 

change of operational conditions, especially when printing with metal-additive filaments, it is 

necessary to reduce the particle emission for a healthy indoor quality. Blocking the formation 

of emitted particles (i.e., at the source) is a radical approach for the particle emission control 

but it may not be always applicable in practice. Engineering control to reduce the emission (i.e., 

post-process) is the alternatives to the source control. In the following sections, we discuss the 

emission control strategies from these two aspects.  

A1.5.1 Controlling particle emission from the source 

It has been shown that 3D printing emits significant VOCs and particles. It is because the 

heating of filaments was above 200 °C, resulting in the decomposition of some ingredients, 

typically volatile and semi-volatile organic compounds. According to literatures, the primary 

SVOCs emitted from commonly used filaments, such as PLA, ABS, Nylon, etc., include lactide, 

styrene, acetaldehyde, caprolactam, benzaldehyde, ethyl benzene and formaldehyde [221, 222, 

240, 268, 287, 304]. The emission concentration for individual SVOCs varies from less than 

one to hundreds of micrograms per cubic meter depending on printing conditions and the 

TVOC (including VOCs and SVOCs) is usually in the range of several to ten thousand of 

micrograms per cubic meter, e.g., 3-11000 mg/m3 for PLA and ~13.2-9000 mg/m3 for ABS 

[300, 301]. Based on the ANSI/CAN/UL 2904 [239] and the Leadership in Energy and 

Environmental Design [305], the upper limit for indoor TVOC is 500 mg/m3. For the primary 

SVOCs, Occupational Safety and Health Administration (OSHA) {OSHA,  June 1st 2021 #238} 

has the 8-hour time-weighted average (TWA) exposure limit and short-term exposure limits 

(STEL) for different VOCs based on the hazardous level. For example, they are 50 ppm TWA 

and 100 ppm STEL for styrene, 25 ppm TWA for acetaldehyde, 5 ppm TWA and 10 ppm STEL 

for caprolactam, 5 ppm TWA and 30 ppm STEL for ethyl benzene, and 0.75 ppm TWA and 2 
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ppm STEL formaldehyde. For the benzaldehyde, it is not listed in OSHA exposure table, but 

Australian Inventory of Chemical Substances (IMAP) [306] suggests 2 ppm TWA and 4 ppm 

STEL respectively. For the lactide, as there is still a lack of sufficient evidence for health effects, 

the exposure limits are not determined yet. However, considering most of the VOCs or SVOCs 

have adverse health effects [221, 273, 296], mitigation methods should be applied to control 

the emissions below the limits.  

As explained in Section A1.2, the particle formation is closely related to the amount and 

type of condensable SVOCs released from heated filaments. If the chemical compositions of 

SVOCs are known, the ingredients of filaments can always be redesigned (either by altering 

the percentages of ingredients or replacing some ingredients) to minimize the SVOC emission. 

Researchers analyzed the compositions in filaments, which contribute to the SVOC emission. 

Vance et al. [243] studied the Raman spectra of the compositions of SVOCs released from raw 

ABS and PLA filaments, printed objects and emitted particles. In the case of raw ABS filaments, 

they found that the spectra agreed well for raw ABS filaments and printed object, but the 

spectra of emitted particles did not show main peaks indicating the existence of styrene and 

acrylonitrile, which are two major components in ABS filaments. In the case of PLA filaments, 

their results showed that the spectra of printed object differed from that of raw filaments, and 

the spectra of emitted particles presented broad Raman peaks at ~1300 and ~1600 cm-1. The 

above observations indicated that condensed particles were not from the ABS or PLA polymer 

itself and they hypothesized that the condensed components were from the chemical additives 

in the filaments. Research by Bai et al. [285] proved the above hypothesis by finding that the 

commonly used antioxidants and lubricants oxidize and volatilize at the printing temperature 

ranges of 230−270 °C. Gu et al. [244] also evidenced that the compositions of the condensed 

particles were from additives such as retardants. They also studied the particle volatility by 

heating emitted particles at different temperatures and found that emitted particles started to 
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evaporate at 150 °C and a certain percentage of particles remained even at 300 °C, which 

provided additional evidence regarding the particle formation of SVOC-involved nucleation 

and condensation. In addition, Ding et al. [227] revealed that the main VOCs released were 

light components of low molecular weight and the depolymerization products of 

macromolecules, and the percentage of condensable SVOC mass in total VOC (TVOC) were 

less than 5% for all filaments studied in their investigation.  

Metal additive filaments usually emit particles in the concentration 1-2 orders of 

magnitude higher than those emitted by raw or other additive filaments. Researchers revealed 

the role of metal additives played in the particle emission. One of the hypotheses was that, after 

they were released, metal particles, which are blended in filaments, served as nuclei for the 

heterogeneous nucleation [225, 243, 245]. However, Vance et al. [243] and Alberts et al. [225] 

did not identify any metals from the filter sampling using the SEM/EDS (energy dispersive X-

ray spectrometry) characterization. They thus assumed the presence of metal particles in 

filaments were not released and unbounded during the heating although it affects the particle 

emission. Potter et al. [245] hypothesized the effect of metal additives on particle emission 

from the chemical reaction perspective. They indicated that the catalytic activity of iron and its 

ability to bind the organic oxygen contributes to low temperature degradation and the formation 

of lactide, thus this kind of filaments could emit more SVOCs. No experimental evidence was 

provided to evidence the above hypothesis.  

Although the progress has been making on the characterization of chemical compositions 

of particles emitted from the heating of filaments, the role of additives on the formation of 

emitted particles remains at large. For example, pigments and dyes are commonly used 

additives in ABS filaments, but the thermal degradation of pigments and dyes present in ABS 

plastics has not been carefully studied. In addition, due to the limitation of measurement 

methods, the reported data on the chemical composition and amount of released SVOCs are in 
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question. The SVOC concentrations were usually several hundreds of ppb [222, 244, 265], thus 

an accurately sampling SVOC particles is very challenging. First, the sampling time needs to 

be long enough to reach the minimal detectable quantity of emitted particles. However, the 

SVOC particles collected on filter media could evaporate during the long sampling period. An 

annual denuder to collect gas and particle phases of SVOC separately should be applied [286, 

307]. Secondly, different sampling locations in a test chamber can significantly vary the data 

because of the spatial distribution of SVOC in the chamber. Lastly, the analytical procedures 

such as SEM analysis cannot detect SVOC particles which may evaporate under the vacuum 

and bombardment of a high-energy electron beam. A sophisticated thermal carbon analysis is 

required for the above characterization [307].  

A1.5.2. Controlling emitted particles by engineering solutions 

 The engineering control methods were primarily based on the factors influencing the 

emission, including the nozzle temperature, fan speed, infill setup, ventilation and enclosure, 

filtration, and humidity. The detailed discussions on these factors are given in the following. 

A1.5.2.1 Functional and operational conditions of printing 

It has been reported that the nozzle malfunction, e.g., nozzle clogging and print aborted, 

could increase the particle emission in an FDM printing. As shown by Yi et al. [263], the 

particle emission by the nozzle malfunction when printing with a PLA filament could increase 

the concentration of emitted particles by a factor of 3.3 compared to that under a normal 

operation condition. Mendes et al. [246] also found that because of the nozzle malfunction, the 

particle concentration increased by 16.76 times when printing with an ABS filament. For the 

reference, the data reported by the above two studies are reproduced and shown in Fig. A1.5. 

From the data presented by Poikkimaki et al. [224], it is found that the increase of particle 

emission was associated with the printing temperature. Although it is difficult to directly 
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compare the results among different studies owing to different experimental setups, conditions, 

and filaments used, it is generally believed that operators should avoid the nozzle malfunctions, 

especially printing with ABS filaments at high temperatures. 

The nozzle temperature is a very important parameter that could significantly influence 

the particle emission in a FDM printing. Researchers have found that the particle emission 

would be elevated by increasing the nozzle temperature [224, 225, 238, 241, 246, 267, 272]. 

Fig. A1.6 summarizes the increase ratio of the particle emission from the low to elevated 

printing temperatures. 

 

Figure A1.5. Increase ratio of particle emission due to malfunction. Data for Yi et al. [263] 

are peak values and others are average. PLA-W is PLA filaments with wood additives. 

 

     (a)               (b) 
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   (c)        (d) 

Figure A1.6. Relationship of increase ratio of particle emission with nozzle temperature: (a) 

from Sittichompoo et al. [241], (b) from Zhang et al. [238], (c) from Stabile et al. [272] and (d) 

from Jeon et al. [267]. CP stands for copolyster. 

Although the data were from four different studies, an exponential growth of the emission 

ratio with the printing temperature was evident for both PLA (except the wood additive one) 

and ABS filaments. The above indicated that the particle emission from an FDM printing 

increases considerably when printing at the temperature higher than the recommended one for 

these two filaments. In comparison, the wood additive PLA filament (Fig. A1.6c) showed a 

correlation of linear regression, and the copper additive PLA filament had no clear correlation. 

Researchers also investigated several other kinds of filaments, for examples, CP, CP-carbon, 

laywood and nylon [267, 272]. The increase ratios of particles emission for all these filaments 

were relatively low compared to ABS and PLA under the same measuring condition. A possible 

reason was that the amount of condensable SVOCs contained in these filaments were low.  

Another significant setting that could affect the particle emission was the filament infill 

parameters, e.g., infill density and height which are the density and height of the non-solid 

portion inside the outer shell of an object. Cheng et al. [247], Sittichompoo et al. [241] and 

Khaki et al. [283] found that they had significant influence on the particle emission although 
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there was inconsistency on the findings of their influence to the particle emission. Fig. A1.7 

reproduces the data reported by Chen et al. [247] and Sittichompoo et al. [241]. Based on the 

data shown in Fig. A1.7, the increase of infill density could exponentially increase the particle 

emission while the increase of infill height would linearly increase the particle emission. The 

maximum ratio increase due to the infill density could be as high as 41 times [247], but also 

could be as low as 1.05 [283]. In comparison, it could reach 16 times [241] and 9 times [247] 

when increasing the infill height of filaments. The above difference might be caused by 

different operational settings such as the feeding speed, different printing temperatures, 

printing objects and cooling fan speeds. The effects of infill parameters on the particle emission 

from a FDM printing could only be better understood through parametric studies. 

    

(a)              (b) 

Figure A1.7. Relationship of the increase of particle emission ratio to (a) infill density and 

(b) infill height. 

A1.5.2.2. Effective ventilation and filtration 

Local exhaust ventilation (LEV) is considered as a very effective ventilation method [308, 

309] because it can directly remove the pollutants from the emitting source. However, its 

efficiency highly depends on if the printer is enclosed by the LEV. In 3D FDM printing, high 

particle removal efficiency by using a LEV (highest as 98.3%) is usually achieved by enclosing 
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the LEV system around the printer, either by adding an enclosure to cover the whole printer 

[248, 249] or attaching an effective LEV system very close to the nozzle [269], shown as the 

Enclosure+LEV in Fig. A1.8. In comparison, using the enclosure or LEV alone usually had 

very low particle removal efficiency unless the enclosure was sealed tightly [249]. Therefore, 

it is encouraged to combine the LEV with the enclosure. The low efficiency for the LEV case 

was because the hood of the LEV was too far from the nozzle, which weakened the 

effectiveness of the LEV [249]. Azimi et al., [310] showed that increasing air change rate was 

an option to increase removal efficiency for this scenario. Their results illustrated that 

increasing the air change rate from 25 L/s to 100 L/s could increase the ventilation efficiency 

from 2% to 80%. Therefore, appropriately increasing air change rate of the ventilation system 

can also be an effective method. 

 

Figure A1.8. Reported particle removal efficiency using the ventilation with or without the 

enclosure for different studies. *LEV stands for local exhaust ventilation.  

The enhancement of particle removal efficiency could be achieved by installing a high 

efficiency filter at the outlet of the enclosure chamber. As shown in Fig. A1.9, most of the 

removal efficiencies were higher than 90% [248, 266, 273]. The lowest efficiency was found 
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when using an electret filter if its minimum efficiency reporting value (MERV) value is lower 

than 11, which was designed to remove particles in the sizes from 1 to 10 μm with the particle 

collection efficiency of 60% - 80% for 1 μm particles [248]. Particles emitted from the 3D 

FDM printing were mainly less than 1 μm in size. Nonetheless, the particle exposure outside 

the enclosure chamber can be significantly reduced by using HEPA (High Efficiency 

Particulate Air) filters. 

 

Figure A1.9. Particle removal efficiency using different filters for different studies. ACF 

stands for active carbon filter.[248, 266, 273]  

A1.5.2.3 Environmental factors: chamber humidity and temperature 

The increase of the chamber relative humidity (RH) by releasing mists from a humidifier 

could be a promising method to reduce the concentration of nanoparticles. It is because under 

a high RH, nanoparticles could grow to larger sizes to be less harmful or being easily removed. 

The potential particle growth dynamics is that the primary particles collide with the fine 

droplets or absorb water molecules, even the occurrence of deliquesces, at a high RH [311, 

312]. This phenomenon is referred to as the nucleation scavenging, i.e., an aerosol (cloud 

condensation nuclei) inducing formation of a cloud droplet in supersaturated water vapor. As 
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mentioned in Section A1.2, the 3D printing emits variety of VOCs and SVOCs, in which the 

SVOCs condense to from primary particles and serve as the nuclei for more SVOCs to 

condense on. Many 3D printing SVOCs, such as lactide, acetone and ethanol etc., are water 

soluble enhancing their growth at high RHs. Rao et al. [250] and Zhu et al. [251] used cool 

mist humidifiers to increase the RH in the enclosure chamber and found that PM2.5 mass 

concentration increased due to the particle growth when the chamber humidity was higher than 

70%. Although the authors explained their observations with the effects of coalescence under 

the abundant of water molecules, no further data was shown to prove the decrease of 

nanoparticle concentration. Therefore, more research is needed to confirm the hypothesis. To 

be noted, the method of increasing humidity should not be applied to some types of filaments, 

i.e., wood powder added filament, which can lower the elasticity and cause swelling of the 

modulus at high RH [313].  

The chamber temperature should also be important on the control of particle formation 

and growth because it affects the super-saturation ratio of SVOC vapors. Unfortunately, most 

of the reported research only focused on the change of the printing nozzle temperature. It is 

simply because the heating feature was not built in the enclosed chambers in previous studies. 

A1.6 Optimization of printing parameters to reduce particle emission  

Various factors have been found to have their own effects on the formulation and growth 

of particles from a 3D FDM printing. The collective effect by all the influencing factors on the 

particle emission has not been accomplished. It is because that the data reported by different 

research groups were done by different methods and setups. It is not realistic to perform all the 

experiments considering all the influencing factors by one single research group. To identify 

all influencing factors on the emission of particles from a FDM printing, an advanced 

modelling method for the evaluation is necessary.  
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Regarding to applying modeling method to estimate 3D printing emissions, we found only 

a few literatures. Zontek [252] first applied the eddy diffusion model to calculate the spatial 

and temporal concentration of emitted particles in a test chamber, and then based on the 

calculated data to evaluate the distribution variation of emitted particles due to the variation of 

the filament extrusion rate and temperature, printing time, the distance of observers from the 

source, and diffusivity variables via a Monte Carlo simulation. Zhang et al. [226] developed a 

lognormal moment model to predict the formation and subsequent evolution of emitted 

particles. They compared the calculation result with the experimental result to validate their 

modeling. However, these models were used to predict the emission only and not able to 

optimize the printing parameters to minimize the emission. 

Different from the above numerical modeling, machine learning is also a very effective 

tool for building a model to deal with multi-dimensional influencing factors without the need 

to scientifically understand the mechanisms involved in the formation and growth of emitted 

particles [253, 284, 314-316]. Researchers have been applying the machine learning to the 3D 

printing, including the printing design [254, 256], process optimization [257, 258], in-site 

monitor for the product quality control [259, 260] and the security of attack detection [261]. 

However, very few studies were found to improve the particle emission control. Only one study 

intended to build a complex model to include the exposure variable, yet no practical strategies 

were actually reported [255]. However, the experience of applying the machine learning 

models on different aspects about 3D printing can be referred. It was found that artificial neural 

network (ANN) model had good performance in multi-objective optimization. It is found that 

31 papers have used machine learning to optimize operation parameters for 3D printing and 25 

of these 31 [43] successfully used single ANN or combined ANN model to conduct the 

optimization [67]. Results showed that ANN can predict complex relationships between inputs 

and outputs which cannot be easily recognized by numerical methods and a basic 3-layer ANN 
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is sufficient to achieve an accuracy of prediction as high as 98% [317, 318]. Our research team 

also successfully applied ANN model to predict nanoparticle retention efficiency in membranes 

under different conditions which is a multifactorial nonlinear case and has demonstrated the 

good performance of the ANN modeling [111]. 

A1.7 Conclusion and future research 

This review summarized the published studies related to the emission of particles from 

the 3D FDM printing, including the mechanisms for the formation and growth of emitted 

particles, particle characterization methods, influencing factors for the particle emission, 

control strategy and modeling. The research gaps in each above-listed area were also discussed. 

The information given in this review could serve as the foundation for the future research on 

the topic of the particle emission from a 3D FDM printing.  

The main issues for the characterization of emitted particles are on the setting of air change 

rate, the selection of measurement instrument, and the sampling method and location. A unit-

specific air exchange rate should consider both the air mixing condition and the temperature 

distribution in a test chamber. For the fast and accurate capture of the characteristics of particle 

formulation and evolution, multiple instruments covering a wide size range and having fine 

sizing resolutions should be utilized at the same time. The sampling points should be evenly 

distributed around the printing nozzle to avoid the interference from the spatial variation of 

particle size and concentration, as well as the temperature in a test chamber.  

Due to the lack of a standardized measurement method, noticeable inconsistency on the 

data of particle concentration and size distribution was found. In the cases of the most used 

PLA and ABS filaments, the particle emission rate at the 25% and 75% percentiles ranged from 

1.0 x 108 #/min to 1.1 x 1010 #/min and 3.3 x 108 #/min to 4.0 x 1010 #/min, respectively; ranged 

from 23.8 nm to 46.6 nm and 28 nm to 53.6 nm, respectively, for the particle size. Compared 
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to the cases of non-metal filaments, the emission rate could be at least one order of magnitude 

higher and the emitted particle sizes were smaller in the cases of metal additive filaments. 

Future research on the filament material under the consideration of minimizing the particle 

emission during the 3D FDM printing is required. The observation of high emission rate and 

small sizes of emitted particles during the 3D FDM printing raises the health concerns, 

requiring effective control strategies to reduce their exposure.  

The radical emission control is based on the blocking of emission source. Its success 

depends on the understanding of influencing factors on the particle emission and mechanisms 

of emitted particle formation and growth. Although the scientific knowledge of aerosol 

dynamics has been applied to explain some experimental observations, uncertainties due to the 

complex environmental and printing conditions, as well as the filament composition, such as 

blended pigments and metal additives, remains existed. 

For the engineering solution to the emission control, we found that the printing nozzle 

temperature exponentially influenced the particle emission in the cases of printing PLA and 

ABS filaments, which can emit more condensable SVOCs. For the filaments that emit lower 

amount of SVOCs, such as CP, CP-carbon, laywood and nylon, the increase ratios of particles 

emission were relatively low. For additive filaments, it is only found that particle emission 

increased linearly with elevated temperature for wood-additive PLA. More research is needed 

for metal-additive filaments in the near future. We further found that the infill parameters, e.g., 

infill density and height, significantly affect the particle emission rate, which were ignored in 

the previous studies. In addition, the local ventilation and application of HEPA filters at the 

enclosure chamber outlet would offer good efficiencies for the particle removal. The change of 

chamber environment parameters such as humidity and temperature were potential methods to 

reduce the emission of particles from a 3D FDM printing. Although these findings were useful 
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in guiding the design of emission control, a comprehensive strategy requires to be developed 

by linking all existing control knowledge.  

The modeling of the formulation and growth of emitted particles is an area which has been 

the least focused by researchers. The numerical modeling of the particle formulation and 

dynamics using the general particle dynamic equations has been applied with some success. 

Alternatively, the machine learning has been very successful in the prediction of the 

manufacturing outcomes which are affected by multiple factors (without the scientific 

understanding of the process mechanisms involved) when numerous data sets taken under a 

standard method are available. It could be applied herein to resolve the difficulty encountered 

in the phenomenological modeling. Unfortunately, very limited studies have been reported to 

apply the machine learning for modeling the particle emission from a 3D FDM printing.    
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Chapter A2 Sampling and Characterization of Particle Emission from the 

3D FDM printing 

  



151 

 

A2.1 Introduction 

The fused deposition modeling (FDM) 3D printing technology has been increasingly 

utilized in various places to fulfill different job tasks, for example, for the model printing in 

offices and schools, cloth printing in fashion companies, surgical product printing in hospitals 

and prototype printing in car manufactories [213-215]. Its increasing popularity is due to the 

time- and cost-efficiency and convenience of prototyping a model. For the FDM printing, a 

filament is heated to ~200 ◦C and then extruded out of a nozzle. A model prototype is printed 

layer-by- layer based on a programming code. When the heating temperature is higher than a 

certain value, the chemical components in the filaments can decompose and vaporize, resulting 

in the emission of volatile organic compounds (VOCs) and semi-volatile organic compounds 

(SVOCs) [222]. The emitted SVOCs could form particles via nucleation and condensation as 

the ambient temperature is reduced [237, 303]. The produced nanoparticles could potentially 

cause the increase of adiposity and insulin resistance [319], lower the level of sex hormones 

[320], and many respiratory diseases [228, 229, 321]. It is thus very important to characterize 

the particle formation and emission, and to propose an effective engineering solution to reduce 

the human exposure within the building environments. 

To investigate the particle emission from 3D FDM printers, researchers have been 

measuring the total concentration and size distribution of particles, and VOC concentration and 

composition in test chambers [225, 238, 244, 262], in office spaces or at industrial sites [281, 

284]. Some researchers followed the protocol for laser printers [238] and others conducted the 

measurement using the approaches based on other similar protocols [225, 244, 262]. As a result, 

significant inconsistency among the reported data sets is observed. It is very challenging to 
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compare those results to derive the major finding. For example, the particle concentration 

emitted from printing the same type of filament was found to vary from 105 to 108 #/m3 for 

poly-lactic acid (PLA) filaments, and 106 to 108 p/m3 for acrylonitrile butadiene styrene (ABS) 

filaments [322]. The concentration and major species of VOCs were also greatly varied [222, 

244, 245, 296, 304]. To provide better characterization of the emission from 3D printing, the 

UL published ANSI/CAN/UL 2904 Standard in 2019 [239]. The guideline however allows 

users to determine experimental variables, e.g., sampling at different locations, printing 

different objects, different printing parameters and air change rates, etc. It is known that all the 

above factors can affect the measurement results [267, 272, 276]. Therefore, it remains 

challenging to compare the data reported by researchers [242, 322]. To exclude the 

interferences from experimental variables, typically on the temperature distribution, Chýlek et 

al. [240] and Sittichompoo et al. [241] proposed to use the thermogravimetric analysis (TGA) 

method. It is only required to put a piece of testing filament, e.g., 2.85 mm in diameter and 10 

mm long, in a ceramic tube in a high-temperature furnace and heat the filament to the same 

temperature as that used in a 3D FDM printer. However, the particle generation rates between 

the TGA and conventional chamber method may have quantitative differences. For example, 

the TGA heated the entire 10 mm long filament in the furnace at ~200 ◦C, and evaporation 

mass transfer occurred at the whole filament surface area which was about 0.9 cm2 (=3.14 × 

0.285 cm × 1 cm). In comparison, the area taking place evaporation in a real 3D printing was 

only ~0.06 cm2 (=3.14/4 × 0.285 cm × 0.285 cm). There is about a 15 times of difference. 

Besides, the SVOCs of TGA remained in tube at much higher temperature (~200 ◦C inside the 

furnace tube) and longer time than the real printing where the temperature of SVOCs reduced 
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to air temperature of chamber instantly. Therefore, although the TGA method simplifies the 

sample preparation and measurement, the obtained particle emissions may not be 

representative for a real FDM printing. It is thus crucial to develop a simple and effective 

method that can capture the representative particle emission from a FDM printing. 

The nanoparticle formation and growth during the 3D FDM printing include 

homogeneous and heterogeneous nucleation, condensation, and coagulation. The particle 

formulation and dynamics are very complicated, which depend on the source and yield of 

SVOC, e.g., filament material, printing temperature, feeding speed, etc., and environmental 

conditions, e.g., chamber size, air change rate, temperature and flow distribution, etc. Therefore, 

printing with different conditions and sampling at different locations would lead to different 

results. The existing metrics, e.g., the emission rate [227, 238, 244, 248, 275], total particle 

concentration and particle yield [238], only describe the stationary status of the particle 

emission which cannot reflect a moment of dynamic change of the emission during the printing. 

When evaluating emissions with fast size change and high emission concentration, such as 

printing additive filaments [224, 225, 245, 264], the existing metrics may be insufficient to 

explain the emission characteristics, especially when the sampling is conducted a distance away 

from the source. 

To address the aforementioned issues, a new sampling method to instantly measure the 

size distribution of emitted particles from the 3D FDM printing was proposed. A new metric, 

dynamic emission index (DEI), was proposed to better characterize the dynamics of particle 

formation and growth in 3D printing. The ultimate goals of this study are to prove the feasibility 
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and advantage of the new sampling method, and to validate the new metric for better 

characterizing the particle emission. 

A2.2. Materials and Methods 

A2.2.1 3D printer and filaments 

A widely used mini Lulzbot 3D printer (Fargo Additive Manufacturing Equipment 3D, 

LLC, Fargo, SD) was selected for this study [221, 321]. The printing head is made of a 

hardened steel with a convergent nozzle having a 1.2 mm exit diameter. The recommended 

filament diameter is 2.85 mm. During printing, a cooling fan was running at 50% speed to 

protect the nozzle from overheating. The operational parameters, including the printing time, 

printing speed (60 mm/s), printing temperature (210 ◦C) and bed/substrate temperature (70 ◦C), 

were kept constant in the printing with different filaments. The investigated filaments include 

two basic filaments, i.e., original PLA (PLA-O) and ABS in white color (ABS-W), and four 

filaments with functional additives, i.e., carbon-fiber PLA (PLA-C), iron PLA (PLA-Fe), 

fluorescent ABS (ABS-F) and glow-in-dark ABS (ABS-G). Note that the particle emission 

from the printing of ABS-F and ABS-G have not been reported. The PLAs were from 

Polymaker (Polymaker LLC., Shanghai, CN) and the ABSs were from Gizmo Dorks (Gizmo 

Dorks LLC., Temple City, CA). The color and composition of tested filaments are given in 

Table A2.1. For additive ABS filaments, detailed chemical compositions are not available from 

the vendor. Based on their features, it is assumed the fluorescent filament contains fluorescent 

pigments and the glow-in-dark filament contains strontium aluminate (or zinc sulfide and 

calcium sulfide). The suggested printing temperatures for PLAs and ABSs are 205 ◦C and 220–
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225 ◦C, respectively. Then 210 ◦C was selected in all the printings to keep the operating 

parameters constant in this study. 

Table A2.1. Description for different filaments  

Material Description 

PLA-Original (PLA-O) 

Polyactide resin (weight > 92%), polymer (weight <7%), 

transparent, melting point 195 -225 °C, decomposition point 

250 °C 

PLA-Carbon fiber (PLA-C),  

Polyactide resin (weight > 85%), carbon fiber, (weight 

<14.25%), dark grey, melting point 195 -225 °C, 

decomposition point 250 °C 

PLA-iron additive (PLA-Fe) 
Polyactide resin (weight > 55%), iron (weight < 45%), black, 

melting point 185 -215 °C, decomposition point 250 °C 

ABS-White (ABS-W) Polymer, white 

ABS-Fluorescent (ABS-F) Polymer (UV activated), blue 

ABS-Glow (ABS-G) Polymer, white 

 

A2.2.2 Experimental chamber and instruments 

Fig. A2.1 shows the schematic diagram of the experimental system for characterizing the 

particle emission from the 3D printing. A testing chamber with a dimension of 1 m × 0.6 m x 

0.5 m was used to house the printer sitting at the center of the chamber. Filtered air was 

introduced into the chamber from its front side through an air manifold. The outlet located on 

the top of the chamber equipped with an activated carbon (AC) filter and a HEPA filter in series. 

To instantly characterize emitted particles from the printing nozzle, a rectangular aluminum 

cup sampler was designed and fabricated (as shown on the left side of Fig. A2.1). The cup 

sampler enclosing both nozzle and cooling fan was attached to the printing head assembly. 

After attached, the upper surfaces of the sampler walls were sealed by the extending surface of 
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the printing head. The bottom surface remained open. The sampling was through four circular 

ports (one on each side of the sampler) which are aligned with the height of the printing nozzle. 

Thus, the instantaneous emission from the printing nozzle was quickly sampled from all 

directions of the sampler and combined into one stream to achieve a uniform sampling. Notice 

that the inlet of the cooling fan was not enclosed in the sampler, but its four outlets located on 

the corners of the printing head assembly were enclosed in the sampler (bottom view of Fig. 

A2.1). Thus, the cooling air was directly shooting at the nozzle to promote the gas to particle 

nucleation and condensation of SVOCs. From above, it is concluded that the use of the new 

sampler allows fast capturing realistic characteristics of emitted particles from the 3D printing. 

A Scanning Mobility Particle Sizer (SMPS, equipped with the Differential Mobility 

Analyzer, DMA, Model 3081 or Nano-DMA Model 3085, and the Ultrafine Condensation 

Particle Counter, UCPC, Model 3776, TSI Inc., Shoreview, MN) was used to measure the size 

distribution of particles from 10 nm to 500 nm or 5 nm–170 nm. The length of the sampling 

tubing was kept as short as possible to minimize the diffusion loss of sampled particles. 

According to the work of Gormley and Kennedy [323], the diffusion loss for particles in the 

sizes larger than 5 nm in the sampling tube is negligible. A thermometer was placed in the 

chamber to monitor both temperature and RH, which were kept within 22–24 ◦C and 15–20%, 

respectively. 
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Figure A2.1. The schematic diagram of the experimental system, including the 3D printer, 

ventilation, flow control and particle measurement instrumentations  

A2.2.3 Experimental procedures and conditions 

To better understand the particle emission characteristics, three experimental procedures 

were designed and compared. As shown in Table A2.2, the procedures include the implement 

of newly designed sampler (Case 1), direct sampling in the chamber at 10 cm away from the 

nozzle (Case 2) [221, 238, 244], and direct sampling in the chamber with forced convective 

flow (Case 3). The air change rate was 0.3 h-1 1 for Cases 1 and 2, and 1 h-1 1 for Case 3. Note 

that, for the sampling through the sampler (Case 1), the effect of air change rate on 

measurement results should be minimized. In the printing of each filament (no actual object 

was printed, just extruding), all three procedures were conducted and repeated for at least 4 

times to obtain a representative result. The printing time was 155 mins (including 5 mins of 

preheating) in order to have sufficient time for the emission to reach equilibrium if applies. The 
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post printing period was also set at 150 mins so the particle concentration could return to near-

background level. 

Prior to each experiment run, all surfaces in the chamber were cleaned by alcohol wipes 

for minimizing the influence of outgassing from previously deposited particles or VOCs and 

the chamber was ventilated with filtered air for at least 20 mins. After the cleaning and 

ventilation, the chamber was sealed and purged with filtered air again for another 20 mins until 

the background particle concentration was less than 50 p/cm3 [242]. The measurement was 

conducted continuously along the air purging, preheating, printing and post-printing (i.e., stop 

printing). Thus, the particle size distribution was available during the entire printing process. 

Table A2.2. Case conditions and descriptions. 

Case 

number and 

short name 

Case description 
Auxiliary 

devices 

Sampling 

points 

Air 

change 

rate (h-1) 

Preheating/printing/ 

printing off (min) 

1. New 

sampler 

Sampled using the cup 

sampler  
The sampler 

4 sides of 

the 

sampler 

0.3 5/150/150 

2. Chamber 

Sampled in the 

chamber without the 

sampler  

None 

10 cm 

away 

from the 

nozzle 

0.3 5/150/150 

3. Forced 

convection 

Sampled in the 

chamber and mixed 

the air with the fans 

Axial fans 

10 cm 

away 

from the 

nozzle 

1 5/150/150 

 

A2.2.4 Data Analysis 

A2.2.4.1 Emission rate 
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To evaluate the particle emission level, we calculated the emission rate based on the mass 

balance as [244]:  

( ) 1
( )

dc t
R kc t

dt V
= −           (A2.1) 

where c (t) is particle concentration, p/cm3, R is particle emission rate, p/s, V is the volume, m3, 

and k is total loss coefficient which can be calculated as: 

1 2

2 1

ln lnc c
k

t t

−
=

−
                      (A2.2) 

where c1 is the particle concentration at least 5 minutes after printing to exclude the unstable 

period, p/cm3, c2 is the particle concentration after the selected time for c1, p/cm3, t1 and t2 is 

the time for c1 and c2, s, respectively. 

Particle emission rate as a function of time can be obtained by solving Eq. (A2.1) as [324]: 

( )

( )

( ) ( )exp

exp

c t c t t k t
R V

t k t

 − −  − 
=    −  

                               (A2.3) 

where t is time between two data points, s. 

Total particle emission, TP, can be obtained by integrating Eq. (3) over time as: 

( )p

av s b

s b

c
TP V kc t t

t t

 
= + − 

− 
                                     (A2.4) 

where tb is the time when printing started, s, ts is the time when particle concentration becomes 

steady, s, cp is the difference of the particle concentrations between tb and ts, p/cm3; cav is the 

arithmetic mean of particle concentrations between tb and ts, p/cm3. 



160 

 

A2.2.4.2 Dynamic emission index 

In addition to the total particle emission, it is desired to have a metric to illustrate the 

emission at different time moment during the printing in consideration of dynamic size changes 

of the emitted particles. Therefore, we propose a new metric, i.e., the dynamic emission index 

(DEI), as:  

1 0

( ) ( )

( ) ( )
z

p p

n t

t p

C t C t
DEI

C t C t

= 

 
            (A2.5) 

where Cp(t) is the particle concentration in a size range (interval) during the printing, #/cm3, 

Ct(t) is the total particle concentration at time t, #/cm3, n is the number of size bins, tz is the 

total printing time, minute. This metric shows the time dependent most dominant particle sizes 

during the entire printing process. The metric refers not only size interval with high 

concentrations but also provides the variation of emission intensity for each size interval. The 

value is always less than 1 and the greater the number is, the emission intensity from that 

particle size range is stronger.  

A2.3. Result and Discussion 

A2.3.1 Comparison of the particle emission measured by different methods 

To investigate the variation among different emission data reported by researchers using 

different setups and experimental conditions, the maximum number concentration of emitted 

particles reported in eight literatures and by this study are compared in Table A2.3. The 

information of the experimental setups and conditions of the eight studies could be found in 



161 

 

Table A2.S1 of Support Information (SI). Among them, Byrley et al. [304] and Ding et al. [242] 

followed the ANSI/CAN/UL 2904 method and studies from Chylek et al. [240] and 

Sittichompoo et al. [241] were the only two works using the TGA method. The others used the 

conventional method (similar to that used in Case 2). 

Table A2.3 Comparison of maximum concentration of emitted particles measured in the 

current and previous studies in the 3D printing of original PLA and ABS filaments. 

 Particle concentration (#/cm3) 

 
PLA-

Chamber 

ABS-

Chamber  

PLA-

Sampler/TGA 

ABS-

Sampler/TGA 

Kim et al. [262] 5.20 x 104 1.74 x 106 - - 

Stabile et al. [272] 5.15 x 103 - - - 

Zhang et al. [238] 4.20 x 102 1.10 x 106 - - 

Ding et al. [242] - 3.52 x 105 - - 

Alberts et al. [225] 4.00 x 105 8.50 x 105 - - 

Byrley et al. [304] 7.73 x 105 3.32 x 106 - - 

Chylek et al. [240] 1.28 x 103 6.80 x 105 1.69 x 107 1.66 x 107 

Sittichompoo et al. 

[241] 
- 1.30 x 105 - 3.07 x 105 

This study 8.99 x 104 1.02 x 106 5.22 x 104 8.97 x 105 

 

As shown in Table A2.3, the differences of the maximum particle concentrations 

measured in the chamber are with 3 (7.73 × 105 vs. 4.2 × 102) and 1 (3.32 × 106 vs. 1.30 × 105) 

orders of magnitude for PLA and ABS, respectively. Note that both Byrley et al. [304] and 

Ding et al. [242] applied the ANSI/CAN/UL 2904 standard method for the measurement, but 

their results did not agree with each other due to the adoption of different experimental 

conditions. To minimize the effects of the printing variables on the measurement result, Chylek 
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et al. [240] and Sittichompoo et al. [241] both utilized the TGA method to directly measure 

emitted particles from a heated and melted filament in a tube furnace. However, the particle 

concentration measured by Chylek et al. [240] was significantly higher than that of 

Sittichompoo et al. [241] because of the use of much high carrier air flowrates by the latter. 

The measured particle geometric mean diameter (GMD) from the TGA method was also found 

to be smaller than those in most chamber studies (not shown in Table 3), which was attributed 

to the low level of particle condensation and coagulation (due to the reduced particle residence 

time in tube furnace) when using the TGA method [241]. Furthermore, the temperature in the 

heating tube was kept at the printing temperature for an entire tested filament sample, which 

reduces the particle condensation in the tube [240]. Note that the final size distribution of 

emitted particles by the TGA method highly depends on the heating uniformity in the tube 

furnace and the temperature gradient in the regions near the furnace outlet and sampling port 

[325, 326]. It is concluded that the measurement results can be significantly varied because of 

the difference on sampling methods and locations, air change rate, printing objects and filament 

features (Table A2.S1).  

Different from the chamber sampling, this study used the developed sampler with multiple 

ports to uniformly sample particles emitted from the printing nozzle. To be mentioned that, 

both the printing head and cooling fan (except the fan inlet) were enclosed by the sampler, thus 

quickly capturing the characteristics of emitted particles (taking into the consideration of the 

aerosol dilution due to the cooling flow). In addition, for our investigation, the printing head 

was kept stationary (instead of moving) and the printing operation variables were kept constant 

for the printing with all the filaments. Uncertainties caused by the printing parameters and the 
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movement of the printing head were thus excluded. The obtained maximum concentrations of 

emitted particles from printing original PLA and white ABS were in the low and middle ranges, 

respectively, compared with that reported in the chamber studies. The above observation could 

be attributed to the accumulation of SVOC in the chamber studies. In addition to the maximum 

concentration, the time dependent concentrations, and GMDs of emitted particles from 

different experimental methods are discussed in next section. 

A2.3.2 Particle emission characteristics 

Fig. A2.2 compares the particle emission characteristics, variation of particle 

concentrations and GMDs, from printing original color PLA (PLA-O), iron-additive PLA 

(PLA-Fe) and white ABS (ABS-W) filaments by different measurement methods, i.e., by the 

designed sampler (case 1), in the chamber without (case 2) and with forced convection (case3). 

The measurement results for the carbon fiber PLA (PLA-C), fluorescent ABS (ABS-F) and 

glow in dark ABS (ABS-G) filaments are shown in Fig. A2.S1. The results in 5 mins of 

preheating and the initial 25 mins of printing were shown as they represented the major 

characteristics of the emission. 

For the preheating, small particles with GMDs of 10–40 nm were measured after ~2 mins 

by all three methods with variations. Among the three methods, the sampler method first 

detected the presence of particle emissions for all three filaments while the chamber method 

with forced convection was the latest, indicating the high sensitivity of the sampler method. 

The particle emission during the preheating was resulted from the rapid heating (from room 

temperature to 210 ◦C in 5 mins) of residual filaments in the printing nozzle, leading to SVOC 
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emission and particle formation. Within 1 min, the nozzle temperature was raised from the 

room temperature to ~80 ◦C. Ding et al. [227] observed part of tested filaments began melting 

when the temperature reached 75 ◦C. The filament residues in the printing nozzle were 

activated after the first minute. No filament was extruding until the temperature reached ~180 

◦C after 2 mins (when a high level of SVOCs was readily to release). As the heat accumulated 

in the nozzle head, the overheated filament released SVOCs and particles in high concentration 

after the filament was flowed (dripped) out of the head. After 5 mins, the head was kept at 210 

◦C and the filament started to be extruded. Under the above printing condition, the effect of 

heat accumulation on the emission was no longer observed once a stable operation was reached, 

and the particle concentration and diameter were reduced to a low level. Notes that, only the 

sampler method was able to observe the stop of heat accumulation (concentration rise and 

reduction in the preheating) for all filaments. The chamber without forced convection can only 

observe the above dynamics for ABS-W filaments which released a relatively high 

concentration of SVOCs (compared with that releasing from the PLA filaments). 
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Figure A2.2 Total particle concentration before and during printing process: (a) PLA original 

filament, (b) PLA iron additive filament and (c) ABS original white filament. 

At the beginning of the printing, the particle emission was increased again because of the 

filament extrusion. Based on measured time-dependent particle concentrations, it is found that 

not only measurement methods do cause the data variation but also different filaments. The 

chamber methods basically measured an increased particle concentration and reached the 

maximum at ~10–15 mins for three filaments. In comparison, the sampler method quickly 

reached the maximum concentration at the beginning of printing for the two PLAs. Between 

the two tested PLAs, the Fe additive obviously facilitated the particle formation [225, 243]. 

For ABS-W filament, it reached the maximum at ~15 mins. The above observation indicated 

the difference caused by the different properties of filaments where ABS emitted much higher 

quantities of SVOCs and formed more particles [221, 238]. As the particle concentration 

emitted by ABS-W was higher, the concentration gradient between nozzle head and the 

ambient was larger, causing stronger particle diffusion to the sampling area. Therefore, the 
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trend of the particle concentration for sampler and chamber method were similar. Moreover, 

due to the dilution effect from the cooling fan enclosed in the cup sampler, the particle 

concentration measured by the sampler method was lower than the chamber method. 

By the chamber method with forced convection, it is found that the additional air flow 

effectively mixed with emitted particles and reduced the emitted particle concentration (except 

for ABS-G, to be discussed later). The GMD of measured size distributions were relatively 

constant during the printing. A similar trend was observed by the sampler method, i.e., the 

maximum concentration occurred at the beginning of printing for the PLAs and at ~10 mins 

for the ABS-W. Besides, the result measured by the chamber method with convection agreed 

with that obtained by the flow tube experiment designed to remove the heat accumulation 

around the printing head [227]. Different air change rates however could change the amount of 

accumulated heat around the nozzle, which changes the rate of SVOC condensation and 

particle formation, resulting in different concentration and mean size of particles. It is thus very 

challenging to find out a universal air change rate to characterize nucleation events for printing 

different filaments. 

In the print of three other filaments (carbon PLA, fluorescent ABS and glow in dark ABS, 

Fig. A2.S1), similar trends with variations among three methods and with higher concentrations 

for ABSs than PLAs were observed. One exception was the glow in dark ABS (ABS-G) that 

started emitting particles from the beginning of preheating, which was detected by both sampler 

method and the chamber method with forced convection. The maximum concentration 

occurred relatively early indicating an early emission of high concentration and low vapor 
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pressure SVOCs from the residual filament. Low vapor pressure of SVOCs quickly formed 

nuclei and particles, thus a special caution should be taken when printing the ABS-G. The 

reason why the chamber method without convection could not detect the early particle emission 

under the above condition was unclear to the authors at this point and further investigation is 

required. A speculation was due to the missing of capturing the emission plume (without the 

mixing of additional air flow) by the chamber method without convection.  

During the post printing period (not shown), the particle concentration quickly reduced 

due to the absence of SVOC sources and continuous coagulation. In general, the particle 

concentration reached the background level after ~30 mins. Also, different measurement 

methods resulted in different emission data. The measured particle emission concentrations 

were the highest by the chamber method without convection, and the lowest by the chamber 

method with convection. In terms of the GMDs of measured size distributions, a slight increase 

of the particle size for both sampler and chamber method without convection while it was 

relatively stable for the chamber method with convection. To reduce the measurement 

uncertainty, the sampler method should be more reliable than the other methods. The particle 

concentration, GMD and emission rate determined by the sampler method are summarized in 

Table A2.S2 of SI. 

A2.3.3 Emission evaluation 

Fig. A2.3 shows the emission rates (#/g) of different filaments based on the measurements 

by the sampler method. It is found the ABS filaments emitted more particles than PLA 

filaments, which is consistent with the finding of previous studies [221, 225, 238, 276]. In the 



169 

 

cases of PLA filaments, the one with the Fe additive emitted two orders of magnitude higher 

in concentration than the original PLA. The lowest emission is found in the case of PLA-C 

filament. The possible reason for the high emission rate of PLA-Fe filaments could be because 

the Fe promoted the decomposition of the feedstock, thus releasing more SVOCs [225, 243]. 

The relative low emission in the case of PLA-C was due to the low ratio of the polyactide resin 

(85% compared to the 92% to the PLA-O) in the filaments. In the cases with ABS filaments, 

the ABS-W generated more particles than the other two additive ones. As the chemical 

compositions of ABS filaments were not provided by the manufacture, we could not 

hypothesize possible reasons. However, it is anticipated that the additives in newly developed 

filaments suppress the release of SVOCs [245]. 

 

Figure A2.3. Total emission rate from different tested filaments measured by the sampler 

method. 
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Fig.A2.4 shows the size-resolved total particle number emitted in the 155 mins (including 

in the 5 mins of preheating) for different filaments. It shows the size ranges having the highest 

particle number were 10–50 nm and 70–100 nm for PLA and ABS filaments, respectively, 

revealing the substantial difference of two types of filaments. 

 

Figure A2.4. Size-resolved, total number of particles emitted in the printing of tested filaments 

for the first 150 minutes. The numerical data can be found in Table S2. Note that the measured 

size ranges of emitted particles were different in printing different filaments. 

The stationary/stable emission level during the 3D printing of different filaments could be 

characterized by both total particle emission rate and size-resolved particle number, which have 

been applied in previous studies. To characterize the dynamics of emitted particles during the 

3D printing, we proposed the dynamic emission index (DEI) defined by Eq. (A2.5). Not only 

does the DEI uncover the size interval having a high concentration but also provide the time 

dependent changes of size-dependent emission intensity during the 3D printing. More 

specifically, the increase of the DEI (growth of the curve) for a size interval indicates a net 

increase rate of smaller particles growing into this size interval due to condensation and/or 
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coagulation. On the other hand, the decline of the curve reveals a net loss rate of particles in 

this size interval due to their joining to larger particles. Comparing the DEI for different size 

intervals amongst different filaments, one can clearly see the different characteristics of 

different filaments. Fig. A2.5 shows the DEI of PLA-Fe and ABS-G filaments in the initial 30 

mins of the printing (the major change in the emitted particle size distributions happened during 

this period). The result for other tested filaments can be found in Fig. A2.S2. 

It is seen from Fig. A2.5 (a) that during the first 5 mins of pre-heating, the particles with 

the highest intensity were <10 nm and 11–20 nm for the PLA-Fe. Between 5 and 20 mins, the 

most dominant particles were in 11–20 nm, while the intensities of sub-10 nm, 21–30 nm and 

31–50 nm particles were also high. It becomes clear that in the first 20 mins, the major sizes of 

produced particles by the PLA-Fe were sub-50 nm particles and caution should be paid as they 

have high deposition rate in deeper lung. During this time interval, modal distributions were 

seen for particles below 30 nm (<10, 11–20 and 21–30 nm), indicating these particles were 

experiencing condensation and/or coagulation to grow into the size interval where the DEI 

shows a growing trend. When the DEI was declining, particles in this size interval collided 

with other particles then reducing its intensity (concentration). For example, the DEI kept 

increasing from 5 to ~10 mins for the 11–20 nm particles, indicating its concentration was 

increasing due to ongoing condensation and/or coagulation of sub-10 nm to grow into 11–20 

nm. Meanwhile, that rate was higher than that of 11–20 nm to join larger size intervals. In 

comparison, a clear increasing trend of DEI for 31–50 and 51–70 nm particles were seen, which 

indicates they were formed from smaller particles, meanwhile their rate to collide other 
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particles was low. Again, with the presentation of DEI, detailed information of emitted particles 

from the 3D printer can be easily and clearly identified. 

Quite different results for ABS-G (Fig. A2.5b) compared with that of PLA-Fe were seen. 

It reveals the inherent difference between the two filaments. The major difference was that 

particles as large as 100 nm can be formed during the pre-heating for the ABS-G, suspecting 

there were unbounded solid particles (additives) released during the printing for the ABS-G. 

After the pre-heating, DEI of particles smaller than 70 nm continued reducing while it was 

increasing for particles larger than 70 nm. A similar trend for PLA-O and PLA-C and ABS-F 

can be seen from Fig. A2.S2. It is worth to note that particle size change for ABS-W mainly 

happened in the first ~10 mins of printing and then the particle sizes became stable. 

  

Figure A2.5. Dynamic emission index (DEI) as a function of printing time for (a) Fe-additive 

PLA filaments, and (b) glow-in-dark ABS filaments. 

A2.4 Conclusion 

This study proposed a new approach to characterize the instant and original emitted 

particles from 3D FDM printing. Particle emissions from printing six different filaments, i.e., 
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the PLA original, PLA carbon-fiber, PLA iron additive, ABS white, ABS fluorescent and ABS 

glow-in-dark filaments were measured by the new method and the chamber methods (with and 

without forced convection). Results showed that the new method had the highest sensitivity 

and capability to characterize particle emissions. The same base material (ABS or PLA) but 

with different functionalities (additives) can lead to a large difference of characteristics of 

emitted particles. 

Among the six different filaments, the emission rate of PLA-Fe filaments was two orders 

of magnitude higher than that of other two PLA filaments. The case with ABS-W filaments 

emitted 6–7 times more particles than those with ABS-F and ABS-G filaments. Our study also 

found that most particles released in the printing with PLA filaments were in the size range of 

10–50 nm, while the modal sizes of particles emitted from the printing with ABS filaments 

were 70–100 nm. The developed new metric, dynamic emission index (DEI), allows one 

clearly to identify the change of emission intensity of different size intervals with time. The 

increase of the DEI for a certain size interval indicates a net increase rate of smaller particles 

growing into this size interval due to condensation and/or coagulation. On the other hand, the 

decline of the curve reveals a net loss rate of particles in this size interval due to their joining 

to larger particles. 
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A2.5 Support information 
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Table A2. S1. Summary of measurement conditions for different studies 

  Sampling point 
Air change rate 

(h-1) 
Printing object 

Measurement 

equipment and size 

range 

PLA printing 

temperature, brand and 

color 

ABS printing 

temperature, brand and 

color 

Kim et al. [262] - 0.56 
Bobbin  

(5 x 5 x 3 cm) 
SMPS, 10-420 nm 210-220 °C 250 °C 

Stabile et al. [272] 
2 m from the 

printer 
- 

Minion Dave  

(2.38 x 2.27 x3.58 

cm) 

SMPS, 6-220 nm 220 °C - 

Zhang et al. [238] 
10 cm away 

from the nozzle 
1 Extrusion SMPS, 7-300 nm 210 °C, white 270 °C, green 

Ding et al. [242] 
0.5 m from the 

printer 
3 Cube SMPS, 10-420 nm  - 

260 °C, Ecomaylene, 

white 

Alberts et al. [225] 

30 cm from the 

top of the 

chamber 

0 
Puck  

(5.08x 0.52 cm) 
FMPS, 5.6-560 nm 220 °C, white 240 °C, transparent 

Byrley et al. [304] 

20 cm from the 

center of the 

printer 

1 
Standard NIST test 

object 
SMPS, from 15.1 nm 220 °C 240 °C 

Chylek et al. [240]  
10 cm away 

from the nozzle 

0.3 

(chamber)/300 

cm3/min (TGA) 

Cylinder  

(2 x1 cm) 
SMPS, 16-583 nm 

200 °C, Polymaker, 

green 

230 °C, Filamentum, 

red 

Sittichompoo et 

al. [241] 
- 

1 (chamber) 

/127(TGA) 
Flat SMPS, 7.77-273 nm - 230 °C white 

This study 
10 cm away 

from the nozzle 
0.3 Extrusion 

SMPS, 9.65-305.1 

nm 

210 °C, Polymaker, 

white 

210 °C Gizmodorks, 

white 
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Figure A2.S1. Total particle concentration before and during printing process: (a) PLA carbon 

fiber filament, (b) ABS fluorescent filament and (c) ABS glow in dark filament.
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Table A2.S2. Summary of particle measurements and emissions for different filaments (Case 2) 

  Measurement equipment and size range Average concentration (p/cm3) Average geo mean diameter (nm) Emission rate (#/g) 

PLA-O SMPS (9.65-305.1 nm) 4.84 x 103 57.3 4.46 x 107 

PLA-C SMPS (9.65-305.1 nm) 4.34 x 103 70.0 3.22 x 107 

PLA-Fe SMPS (5.05-171.5 nm) 6.15 x 104 51.6 1.28 x 109 

ABS-W SMPS (9.65-305.1 nm) 9.39 x 105 87.6  4.32 x 1010 

ABS-F SMPS (16-469.8 nm) 3.29 x 105 95.3 7.10 x 109 

ABS-G SMPS (9.65-305.1 nm) 2.98 x 105 94.2 6.35 x 109 



178 

 

 

 

Figure A2.S2. Dynamic emission index for (a) PLA-O, (b) PLA-C, (c) ABS-W and (d) ABS-

F. 
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