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A B S T R A C T

This work focuses on a household (or door to door) waste collection problem in the Portuguese municipality
of Seixal, which is modelled as a generalisation of a mixed capacitated arc routing problem (MCARP). The
MCARP is known to be NP-hard. The proposed methodology uses: i) a GIS (geographic information system),
for input/output and to reduce problem dimensions; ii) a matheuristic that iteratively solves a new hybrid
model; and iii) two versions of a two-phase matheuristic. The latter pursues the generation of connected and
compacted trips. During the first phase, called initial assignment, some links requiring service are assigned to
vehicle services. In the second phase, the hybrid model finishes the assignment and generates a feasible set of
trips. The quality of the generated solutions is assessed through the total time, as well as by some attractiveness
measures. These measures evaluate the adequacy of the solutions for the real case-study, a crucial aspect for
trips that need to be accepted by practitioners. With this purpose, a new attractiveness measure that introduces
space dependent penalisation of overlaps, named weighted hull overlap, is also proposed. Computational results
with 18 Seixal instances, with 265–1223 nodes and 492–2254 links, point to the good performance of the
proposed methodology.
1. Introduction

Routing waste collection vehicles is a major concern for municipal-
ities. The focus of this paper is a household waste collection problem
in the Portuguese municipality of Seixal, in the Lisbon metropolitan
area. To collect the refuse in a door-to-door system along the identified
streets, each vehicle traverses a sequence of streets (collecting waste
whenever needed), starting at the garage (or depot) and ending at the
treatment facility. Both sides of some narrow streets can be collected
(served) in just one zig-zag crossing. Each vehicle has a crew assigned
to it with a corresponding labour contract. Thus, a time limit per
day must be respected, which is represented through the vehicle time
limit. According to practitioners, this time limit makes vehicle capacity
redundant, and thus it need not be considered. In fact, when the time
limit is reached, the vehicle’s capacity is generally almost exhausted,
but never attained, hence with no need to empty the vehicle during
its service. Moreover, all vehicles need to be used, and, for fairness,
the quantity of collected refuse (service) assigned to different vehicles
must be similar, which calls for the services’ balance. Defining a trip by
a sequence of traversed links from the depot until the treatment facility,
the problem under study aims to design balanced vehicle trips within
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the time limit, minimising the total time while including characteristics
proposed by the municipality to make the solutions more adequate for
practical implementation.

In several distribution or collection problems, the activities to be
performed are spread along some predefined links (streets) of an as-
sociated undirected network, and the capacity of vehicles is relevant.
Such cases are commonly modelled using the so-called capacitated arc
routing problem (CARP). For a wide variety of applications that include
two types of required links, directed and undirected, a mixed graph is
involved. In this case, a natural option is the MCARP. The proof that
MCARP is NP-hard follows from the fact that it generalises the CARP,
which is known to be NP-hard (Golden and Wong, 1981). In books like
Corberán and Laporte (2014) and Dror (2000), or in references such as
Corberán et al. (2021), Corberán and Prins (2010), Golden et al. (2002),
Mourão and Pinto (2017), and Sniezek et al. (2002), many real-world
applications in the context of CARP or MCARP, can be found.

Arc routing problems (ARP) have been used to study household (or
door-to-door) waste collection. Pioneering mixing ARP and GIS in a
waste collection environment, Bodin et al. (1989) addressed the routing
of sanitation vehicles in Oyster Bay, New York, USA. While GIS has
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often been used in the vehicle routing problem (VRP) this is not the case
in ARP. Examples of waste collection ARP studies that use GIS include
case studies in Philadelphia, Pennsylvania, USA (Sniezek et al., 2002)
and Coimbra, Portugal (Santos et al., 2008). Malakahmad et al. (2014)
used GIS to generate kerbside waste collection routes in Ipoh, Malaysia,
and Ghiani et al. (2014) used it to produce instances for real waste
collection networks. The latter tested their methodology on instances
obtained from the Seixal municipality, Portugal, with 148 to 361 nodes
and 284 to 713 links. However, the construction of their first trial data
set suffers from some weaknesses, as it incorporates some estimates that
could be improved with better automation.

Matheuristics have also been applied to routing models in waste
collection systems, although they have been mainly developed to solve
VRP (see Archetti and Speranza (2014)). We shall now refer to a
few matheuristics that look at arc routing models in waste collection
systems. Sniezek and Bodin (2006) proposed a composite approach
which involves mixed integer programs, heuristics and a multi-criterion
function to the routing of residential sanitation collection vehicles. The
developed methodology, following the one in Sniezek et al. (2002), led
to better results. Martins et al. (2013) and Ghiani et al. (2014) adapted
the MCARP model of Gouveia et al. (2010) to the municipality of Seixal,
Portugal. They considered the crews’ working times and proposed two
matheuristics. Braier et al. (2017) applied mathematical programming
techniques to handle the recyclable waste collection problem in Morón,
Buenos Aires, Argentina, which was seen as a particular case of a gen-
eralised directed open rural postman problem. The authors claim that
the developed subtrips elimination algorithm allowed the generation
of solutions in small computing times. In the periodic CARP (PCARP)
paper of Chu et al. (2005) a two-phase heuristic starts by the clustering
of tasks followed by the resolution of a single-period CARP per cluster.
The methodology performance was assessed through adapted CARP
benchmark instances. For the PCARP with irregular services, Monroy
et al. (2013) developed a matheuristic that includes the resolution
of a proposed model in the routing phase of a cluster-first/route-
second approach. More recently, Zbib and Laporte (2020) proposed
a data-driven matheuristic for a commodity-split multi-compartment
CARP to address a real-life kerbside recyclable waste collection in
Denmark. The problem, following one of Kiilerich and Wøhlk (2018),
is defined on an undirected network, with a limited heterogeneous fleet
of multi-compartment vehicles, with compartment capacities that can
vary depending on the type of waste assigned to it and the respective
compression factor in each vehicle type. The objective is to generate
the set of least-cost routes from and back to the depot, collecting all
the refuse types in each edge, within the capacities of each vehicle’s
compartments. A three-phase matheuristic was devised: assignment,
routing, and selection phases. The computational results point to the
advantage of combining different types of waste together in vehicles
with more compartments. Finally, Tirkolaee et al. (2018) proposed
a model for the multi-trip green CARP, considering environmental
aspects. The model incorporates economic benefits, as well as the
adverse impact of the CO2 emissions in air pollution, and was validated
n 15 randomly generated undirected instances with up to 214 required
dges.

A common feature to all these matheuristics is that they provide a
ood compromise between heuristics and mathematical programming,
aking advantage of mixed integer linear programming (MILP) solvers
evelopment.

These studies frequently discuss the adequacy of solutions to be
mplemented in practice. In fact, even in the first paper of Shuster and
chur (1974), it is stated that ‘‘routes should not be fragmented or over-
apping. Each route should be compact, consisting of street segments
lustered in the same geographical area’’. However, to our knowledge,
ery few studies propose measures to assess the attractiveness of ARP
olutions (compact, connected and non overlapping routes).

Two studies that address these issues are Constantino et al. (2015)
2

nd Lum et al. (2017). Their proposed visual attractiveness measures (
are used to validate ARP solutions with multiple vehicles in terms
of their aptness for practical implementation. More specifically, Con-
stantino et al. (2015) propose three measures to assess the attractive-
ness of a given solution: the connectivity index (CI), the average task
distance (ATD), and the routes overlapping index (ROI), while Lum
et al. (2017) propose the hull overlap (HO). The actual definition and
computation of these measures are addressed in Sections 5 and 7.3.

Corberán et al. (2017), when dealing with a min–max windy rural
postman problem (RPP), incorporated some measures in their models,
which they named aesthetic measures, by either adding new constraints
or considering a multi-objective function. Clearly, assessing the at-
tractiveness of the ARP solutions is something that warrants greater
development.

This paper combines a generalisation of the MCARP, GIS, matheuris-
tics and a new attractiveness measure to study the defined household
waste collection problem. Feasible solutions are generated through the
matheuristics, which resort to the use of a MILP formulation and a
GIS (geography information system) to decrease the size of the MILP
problems to solve.

Ideally, the vehicle trips are also balanced, connected and com-
pact. We use the GIS available at the municipality, not only for the
input/output phases, but also to decrease the problem’s dimensions.
As a result, the new data set here added is more realistic than that
of Ghiani et al. (2014), with the input/output phases automatically
controlled by QGis, a well-established free GIS software even though
the municipality currently uses a proprietary software, Arcview. We also
propose three matheuristics specifically developed for the case study.
The first iteratively resorts to the resolution of a new hybrid model,
and the other two are composed of two-phases. During the first phase,
links requiring service, also named as tasks, are assigned to vehicles.
This assignment uses GIS to promote vehicle services which may be
considered attractive. The second phase calls for the resolution of the
hybrid model to also identify the vehicle trips. One of these two-phase
methods fixes all tasks to vehicles, defining zones, during the first
phase, and thus only one trip per vehicle is generated in the second
phase. In the other two-phase method, some tasks are released for
the second phase. These remaining tasks are then assigned to vehicles
within the generation of trips, through the hybrid model.

Finally, we propose a new measure to assess the attractiveness of
the solutions, and use it together with other available measures.

Highlighting the major contributions of this paper, we stress:

• the development of a new hybrid model,
• the proposal of a new attractiveness measure,
• the use of a GIS environment that automatically generates the

network, the corresponding data, and the solution presentation,
• the development of matheuristics that mix GIS, heuristic strate-

gies and the hybrid mathematical model,
• the generation of appealing solutions to be implemented by prac-

titioners.

Table 1 resumes the principal features of the referred papers, pub-
lished after 2000, clarifying the main differences between them.

This paper is organised as follows. Section 2 describes the problem
under study and presents the notation. The hybrid model is detailed
in Section 3, before the description of the matheuristics, in Section 4.
Section 5 is devoted to the new visual attractiveness measure, while
Section 6, briefly refers to the use of GIS. Next, in Section 7, the com-
putational results are presented and analysed, and Section 8 concludes
the paper.

2. Problem description and notation

The collection network is described as a mixed graph (𝑁,𝐴′ ∪ 𝐸).
𝑅 ⊆ 𝐴′ and 𝐸𝑅 ⊆ 𝐸 stand for the sets of required arcs and edges,

espectively, representing the street segments with refuse to collect
′
tasks). 𝑁 = 𝑉 ∪{0 , 0} is the set of nodes, representing street crossings
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Table 1
Referred papers in chronological order – CARP & Waste.

Paper Methods Case study & Networks Highlights

Sniezek et al. (2002) CH; GIS Philadelphia, USA Heterogeneous fleet; VSD & balanced

MN; |𝐴𝑅| = 20,000 into 100 Vehicle decomposition alg.: network
partitions (100 VSD) partitioning & routing - RouteSmart GIS

Chu et al. (2005) M; CH; Adapted CARP instances Periodic CARP: defined the no. of services
Math 7-days horizon; per link in a planning horizon

FS = 2–13 (1–4 per day); LP to define the problem & heuristics
|𝐸𝑅| = 11–55 (two insertion & a 2-Phase) to solve it

Sniezek and Bodin (2006) M; 4 VT; CARP with HF with 4 VT & VSD

Math |𝐴𝑅| = 105–220; 95–98 trips; Composite algorithm: model to generate a
|𝐴𝑅| = 1776; 94–97 trips fleet mix; measure of goodness (costs,

model compactness & overlapping) to bet-
ter routes; Sniezek et al. (2002) improved

Santos et al. (2008) CH; GIS Coimbra, Portugal Demand links & nodes; TC & capacity; HF;
DN; |𝑁𝑅| = 20; 45 turn rules; traffic rules; multi-trips; depot≠DS

FS = 5 (1–2 trips per vehicle); Spatial DSS: GIS with CH to generate data
1900 km of streets to serve & trips; easy to perform what-if analysis

and to be used by practitioners

Martins et al. (2013) M; Math Seixal, Portugal MCARP with TC, also minimising the time
FS = 2–3; |𝐴𝑅| = 10–77; difference between any two trips

|𝐸𝑅| = 70–235 Some tasks are assigned to vehicles, from
the solution of a relaxation, before solving
the valid model

Monroy et al. (2013) M; Math 14-days horizon (H); Periodic CARP with irregular services &
3 arc classes; Instances hierarchical link classes; respecting the
adapted: |𝐴𝑅| = 22–194 passage frequencies per class and day

(37–329 services in H); Algorithms: cutting plane; cluster-1st/route
New random: |𝐴𝑅| = 14–68 −2nd, using a BP model for the clustering & MILP
(30–243 services in H) for the routing

Ghiani et al. (2014) M; Math; Seixal, Portugal MCARP with TC & demand balanced trips

GIS FS = 2–5; |𝐴𝑅| = 43–99; GIS to generate real based instances;
|𝐸𝑅| = 70–291 Based on Martins et al. (2013) with a new

heuristic to assign tasks to vehicles

Malakahmad et al. (2014) GIS Malaysia: 5 routes in Buntong, Kerbside waste collection

Ipoh North, Kg Baru, Falim, GIS-ArcView; routes generation with Arc-
Menglembu, |𝐴𝑅| = 15–91 -GIS-NA & road conditions and topography

Constantino et al. (2015) M; Math CARP instances (mval, lpr) Bounded overlapping MCARP, minimising
mval: FS = 4–12; 𝐴𝑅 = 13–44; routes overlapping

𝐸𝑅=28–106; lpr: FS = 3–25; Generation of more attractive solutions with a
𝐴𝑅 = 0–387; 𝐸𝑅 = 11–748; small increase in UB values; attractiveness

proposed measures: CI,ATD,ROI

Braier et al. (2017) M; Math Morón, Argentina Open rural postman with traffic rules

|𝐴𝑅| = 17–226; Subtrips elimination algorithm resulting in
|𝐸𝑅| = 100–658 small computation times & better solutions

Lum et al. (2017) CH Real networks: Finland, UK, Min–max, windy multi-RPP, minimising the
Australasia, Turkey, USA, cost of the longest route

|𝐸| = 586–1540; FS = 3,5,10 Heuristic with compactness and overlapping
Random: |𝐸| = 420–1112 proposed measure: HO

Corberán et al. (2017) M; CH; Instances with FS = 2–4: Multi-objective, min–max, windy multi-RPP

B&C |𝐸𝑅| = 24–65; |𝐸𝑅| = 40–60; Several models & a heuristic that extends the
Paris |𝐸𝑅| = 44; one of Lum et al. (2017) by including attracti-
San-Francisco |𝐸𝑅| = 29 veness measures in the improvement phase
With FS = 2–5: |𝐸𝑅| = 100–400 and a perturbation routine

Kiilerich and Wøhlk (2018) M Denmark: 6 counties ≠wastes; HF with multi-compartment vehicles
Large instances proposed coordinated; periods; models for 5 CARP
for the CARP variants variants; no computational results

Tirkolaee et al. (2018) M; CH; |𝐸𝑅| = 6–214; Minimise CO2 emissions; multi-trips;
SA; GA 2 VT: FS = 1–13; FS = 1–11 depot≠DS; TC & capacity

Model vs. Hybrid Genetic Alg. (CH; SA; GA)

(continued on next page)
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Table 1 (continued).
Paper Methods Case study & Networks Highlights

Zbib and Laporte (2020) M; Math Denmark: 6 counties ≠wastes; HF with multi-compartment vehicles
|𝐸𝑅| = 19–3797; 4–6 VT commodity split; 3 decision levels

(1–4 compartments); FS = 16–160 Data-driven 3-phase matheuristic

This work M; Math; Seixal, Portugal General-CARP; depot≠DS; TC; balanced trips

GIS FS = 2–6; Hybrid model; 3 matheuristics: hybrid; 2-phase
|𝐴𝑅| = 119–503; |𝐸𝑅| = 138–520 (cluster-1st/route-2nd); 2-phase variant;

Attractiveness measure

Legend: |𝐴𝑅|-no of arc-tasks; B&C-branch&cut; BP-binary programming; CH-constructive heuristic; DN-directed network; DS-dump site; DSS-decision
support system; |𝐸|-no of edges; |𝐸𝑅|-no of edge-tasks; FS-fleet size; GA-genetic algorithm; HF-heterogeneous fleet; LP-linear programming; M-model;
Math-matheuristic; MILP-mixed integer LP; MN-mixed network; |𝑁𝑅|-no of demand nodes; SA-simulated annealing; TC-time constrained; UB-upper bound;
VSD-vehicle site dependencies; VT- no of vehicle types.
𝑓

𝑓

r dead-end streets (set 𝑉 ), the depot, node 0′, and the treatment
acility, node 0. No tasks are incident either in the depot or in the
reatment facility.

A directed graph 𝐺 = (𝑁,𝐴) is obtained by replacing each edge 𝑒 ∈
with two opposite linked arcs, i.e. 𝐴 = 𝐴′ ∪{(𝑖, 𝑗), (𝑗, 𝑖) ∶ (𝑖, 𝑗) ∈ 𝐸}. If

he edge 𝑒 ∈ 𝐸𝑅 is an edge-task, the edge is considered to be serviced
hen one of its two corresponding arcs is chosen to be serviced.

The set of required arcs is denoted by 𝑅 ⊆ 𝐴, with cardinality
𝑅| = |𝐴𝑅| + 2|𝐸𝑅|. Note that the number of arcs that will be serviced
emains equal to |𝐴𝑅| + |𝐸𝑅|, as edges in 𝐸𝑅 are served in only one
irection.

Each arc 𝑎 = (𝑖, 𝑗) ∈ 𝐴 has associated a deadheading time, 𝑑𝑎, that is
he time needed to traverse it without being served, and if 𝑎 = (𝑖, 𝑗) ∈ 𝑅,
𝑎 is its demand, representing the refuse to collect (service), and 𝑐𝑎
𝑐𝑎 > 𝑑𝑎) the corresponding service time.

The set of vehicles is represented by 𝐾, and 𝑘 ∈ 𝐾 denotes a
pecific vehicle. The service to be performed by each vehicle (waste to
e collected) is identified and assigned to a specific designed collecting
one. The refuse in each zone must be collected by a vehicle crew in
nly one trip, starting at the depot and ending at the treatment facility,
nd respecting the time limit, 𝐿. This value, 𝐿, represents the crew
orking time minus the dump time at the treatment facility and the

ime to return to the depot after emptying the vehicle. Again, in this
etting, vehicle capacity is redundant.

As usual, sets 𝛿+𝑋 (𝑖) and 𝛿−𝑋 (𝑖) are used to identify all arcs, in 𝑋, with
ode 𝑖 as an initial and final node, respectively.

A MILP model that will be used in the methodology to find feasible
olutions to the problem defined is formulated in the next section.

. Hybrid formulation

Gouveia et al. (2010) presented a compact formulation for the
CARP, based on flow variables, and an aggregation over the vehicles,

.e. relaxing the capacity constraints and thus only generating one giant
rip. Both the valid and the aggregated models have the same linear
elaxation bound. These authors claim that the valid model provides
ptimal solutions for medium sized instances and good lower bounds
n larger instances. Moreover, the aggregated model generates good
ower bounds in small computation times, even for the larger instances.

The aim of this paper is to generate feasible solutions by exploring
combination of these two models. The main point is then to derive
hybrid formulation that forces the identification of a chosen number

f valid trips, 𝛼, i.e. within the time limit, 𝐿, and generates only one
iant trip including all the remaining tasks. Note that this giant trip
an be much smaller than the one generated by the aggregate model of
ouveia et al. (2010).

The time allowed for this giant trip equals 𝐿 times the number of
rips aggregated in it. Set 𝑃 = {𝑝 ∶ 𝑝 = 0,… , 𝛼}, stands for the set of

trips, where 𝑝 = 0 refers to the giant trip and the remaining 𝛼 < |𝐾|

trips are the valid ones.
The motivation behind the hybrid model is to be able to solve bigger
4

instances using the methodology detailed in the next section.
Although suggested from the models in Gouveia et al. (2010), we
stress that, following the reality at the municipality of Seixal, the model
here presented aims to identify trips that are time limited instead of
considering the vehicle capacity.

In addition, a minimum number of tasks or a minimum service per
trip is also imposed to balance the service among crews. The remaining
attractiveness features desired for zones are previously tackled in the
first phase of the two-phase matheuristics, and thus not enforced by the
model.

Three sets of variables are used: (i) for each task 𝑎 ∈ 𝑅, a set of
binary variables 𝑥𝑝𝑎 identifies the trip 𝑝 that will be used to collect the
refuse on street 𝑎; (ii) for each arc 𝑎 ∈ 𝐴, integer variables 𝑦𝑝𝑎 count the
number of times arc 𝑎 = (𝑖, 𝑗) is deadheaded during trip 𝑝; and (iii) 𝑓 𝑝

𝑎
is the flow related with the remaining time to finish trip 𝑝. To simplify
the presentation of the model, we assume that 𝑥𝑝𝑎 = 0,∀𝑎 ∈ 𝐴 ⧵ 𝑅.

The hybrid model (HM) is defined as follows.

min
𝛼
∑

𝑝=0

∑

𝑎∈𝐴
(𝑑𝑎𝑦𝑝𝑎) (1)

subject to:
∑

𝑗∈𝛿+𝐴(0
′)

𝑦00′𝑗 = |𝐾| − 𝛼 (2)

∑

𝑗∈𝛿+𝐴(0
′)

𝑦𝑝0′𝑗 = 1 𝑝 = 1,… , 𝛼 (3)

∑

𝑗∈𝛿−𝐴(𝑖)
𝑓 𝑝
𝑗𝑖 −

∑

𝑗∈𝛿+𝐴(𝑖)

𝑓 𝑝
𝑖𝑗 =

∑

𝑗∈𝛿−𝑅(𝑖)
𝑐𝑗𝑖𝑥

𝑝
𝑗𝑖 +

∑

𝑗∈𝛿−𝐴(𝑖)
𝑑𝑗𝑖𝑦

𝑝
𝑗𝑖 𝑖 ∈ 𝑉 , 𝑝 ∈ 𝑃 (4)

∑

𝑗∈𝛿+𝐴(0
′)

𝑓 𝑝
0′𝑗 =

∑

𝑎∈𝑅
𝑐𝑎𝑥

𝑝
𝑎 +

∑

𝑎∈𝐴
𝑑𝑎𝑦

𝑝
𝑎 𝑝 ∈ 𝑃 (5)

∑

𝑖∈𝛿−𝐴(0)
𝑓 𝑝
𝑖0 =

∑

𝑖∈𝛿−𝐴(0)
𝑑𝑖0𝑦

𝑝
𝑖0 𝑝 ∈ 𝑃 (6)

𝑓 𝑝
𝑎 ⩽ 𝐿

(

𝑦𝑝𝑎 + 𝑥𝑝𝑎
)

𝑎 ∈ 𝐴, 𝑝 = 1,… , 𝛼
(7)

𝑓 0
𝑎 ⩽ 𝐿 (|𝐾| − 𝛼)

(

𝑦0𝑎 + 𝑥0𝑎
)

𝑎 ∈ 𝐴 (8)
𝛼
∑

𝑝=0
𝑥𝑝𝑖𝑗 = 1 (𝑖, 𝑗) ∈ 𝐴𝑅 (9)

𝛼
∑

𝑝=0

(

𝑥𝑝𝑖𝑗 + 𝑥𝑝𝑗𝑖
)

= 1 (𝑖, 𝑗) ∈ 𝐸𝑅 ∶ 𝑖 < 𝑗

(10)
∑

𝑗∈𝛿+𝐴(𝑖)

𝑦𝑝𝑖𝑗 +
∑

𝑗∈𝛿+𝑅(𝑖)

𝑥𝑝𝑖𝑗 −
∑

𝑗∈𝛿−𝐴(𝑖)
𝑦𝑝𝑗𝑖 −

∑

𝑗∈𝛿−𝑅(𝑖)
𝑥𝑝𝑗𝑖 = 0 𝑖 ∈ 𝑉 , 𝑝 ∈ 𝑃 (11)

∑

𝑗∈𝛿+𝐴(0
′)

𝑦𝑝0′𝑗 =
∑

𝑖∈𝛿−𝐴(0)
𝑦𝑝𝑖0 𝑝 ∈ 𝑃 (12)

𝑝
𝑎 ≥ 𝑐𝑎𝑥

𝑝
𝑎 + 𝑑𝑎(𝑦𝑝𝑎 − 1) 𝑎 ∈ 𝐴; 𝑝 = 1,… , 𝛼

(13)
𝑝
𝑎 ≥ 𝑐𝑎𝑥

𝑝
𝑎 𝑎 ∈ 𝑅; 𝑝 = 1,… , 𝛼
(14)
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Fig. 1. Network to apply the matheuristics.

𝑓 0
𝑎 ≥ 𝑐𝑎𝑥

0
𝑎 + 𝑑𝑎(𝑦0𝑎 − |𝐾| + 𝛼) 𝑎 ∈ 𝐴 (15)

𝑓 0
𝑎 ≥ 𝑐𝑎𝑥

0
𝑎 𝑎 ∈ 𝑅 (16)

𝑥𝑝𝑎 ∈ {0, 1} 𝑎 ∈ 𝑅, 𝑝 ∈ 𝑃 (17)

𝑦𝑝𝑎 ∈ N0; 𝑓 𝑝
𝑎 ≥ 0 𝑎 ∈ 𝐴, 𝑝 ∈ 𝑃 (18)

More precisely, the problem formulated is to find a set of 𝛼 + 1
vehicle trips (imposed by Constraints (2) and (3)), of which 𝛼 satisfy
the vehicles’ time limit of 𝐿 (Constraints (3)–(7)), and a time limit of
(|𝐾|−𝛼)𝐿 for the giant trip (𝑝 = 0) (Constraints (2), (5) and (8)), starting
at the depot, node 0′ (by Constraints (2) and (3)), and servicing all
the required links (enforced by Constraints (9) and (10)), with total
minimum time (1). Note that Constraints (10) are also used to define
the direction in which to serve an edge-task. Isolated subtrips, i.e. trips
not including nodes 0 and 0′, are prevented through the use of the flow
variables in Constraints (2)–(8). The balance at each node is forced by
Constraints (11), and Constraints (12) impose that each vehicle leaves
the depot the same number of times it arrives at the treatment facility.
Although not needed, inequalities (13)–(16) are introduced to reinforce
the model with the definition of some lower bound values on the flow
variables.

Note that this hybrid model lies between the aggregated and the
valid models from Gouveia et al. (2010). In fact, as 𝛼 goes from 1 to
|𝐾| − 1 the hybrid model approaches the valid one, and only when
𝑝 = 0 is considered (neither 𝛼 nor the related constraints, (3), (7),
(13), and (14) are included) does (HM) coincide with the aggregated
model, which generates one giant trip only. Different values of 𝛼 can
then be used to generate different solutions, as will be seen in the
matheuristics. Moreover, when 𝛼 = |𝐾| − 1 the (HM) is synonymous
with a MCARP where the time limit is replaced by the capacity. In that
case, Constraints (2) and (3) ensure that all |𝐾| vehicles leave the depot.
The flow variables and Constraints (4)–(8) impose the time limit of 𝐿
per trip and that no isolated subtrips exist. Constraints (9)–(12) have
the meaning above referred, guaranteeing the services in all tasks, the
equilibrium of the nodes, as well as the domains of variables.

To enforce balanced trips two types of constraints were tested for a
given parameter 𝛽 ∈ [0, 1], namely:

𝑚
|𝐾|

(1 − 𝛽) ≤
∑

𝑎∈𝑅
𝑥𝑝𝑎 ≤

𝑚
|𝐾|

(1 + 𝛽) 𝑝 ∈ 𝑃 ⧵ {0} (19)

𝑄𝑇
|𝐾|

(1 − 𝛽) ≤
∑

𝑎∈𝑅
𝑞𝑎𝑥

𝑝
𝑎 ≤

𝑄𝑇
|𝐾|

(1 + 𝛽) 𝑝 ∈ 𝑃 ⧵ {0} (20)

where 𝑚 = |𝐴𝑅|+ |𝐸𝑅| is the number of tasks and 𝑄𝑇 =
∑

𝑎∈𝐸𝑅∪𝐴𝑅
𝑞𝑎 is

the total demand.
While Constraints (19) assign a similar number of tasks to different

vehicles, through Constraints (20) the balance refers to the demand to
be collected by each vehicle.

4. Matheuristics

Feasible solutions are pursued by three matheuristics, one detailed
in Algorithm 1 (H1) that sequentially solves the hybrid model, and
a two–phase matheuristic as detailed in Algorithm 2 (H2). A variant
of the former is also described in Algorithm 5 (H3). The idea is to
compare methodologies supported by different reasoning. Although all
5

use (HM), (H1) iteratively identifies one valid trip, while (H2) may
be considered a cluster-first/route-second heuristic. (H3) releases some
of the assignments to try to take advantage of completing the zoning
while routing is performed. Note that even though for a particular
network one of the heuristics may perform consistently better, this is
not generally true.

Example 1. Fig. 1 depicts the network of a small example that is
used to illustrate the matheuristics. We assume three vehicles, with a
time limit of 60. For simplicity the depot and the treatment facility
coincide. Deadheading times are equal to 2, except for the links incident
in the depot/treatment facility (triangle node) which are equal to 5, as
the service times. Each task demand is near the corresponding link in
brackets.

4.1. Hybrid matheuristic (H1)

In short, in each iteration of the hybrid matheuristic the (HM) with
𝛼 = 1 is solved. Then, the valid trip that is identified is kept (the
corresponding 𝑥 variables are fixed to that vehicle trip) and the tasks it
serves are considered as deadheading links in the network for the next
iteration. It ends when the giant trip is also a feasible trip for just one
vehicle or if no feasible solution is found. Indeed, this heuristic may
end up without a set of feasible trips. This happens when the integer
solver fails to find a feasible solution for the (HM), or when in the last
iteration the giant trip is not a feasible one, i.e., it does not respect the
time limit for one vehicle, as detailed in Algorithm 1.

Algorithm 1 – H1 (Hybrid Model Matheuristic)
Require: network; |𝐾|

1: 𝑆𝑜𝑙 ← true ⊳ true if (HM) found a solution
2: 𝐺𝑖𝑎𝑛𝑡 ← false ⊳ true if the giant trip found by (HM) is feasible
3: 𝑛𝑡 ← 0 ⊳ no. of feasible trips
4: 𝐹𝑇 ← ∅ ⊳ set of feasible trips
5: while (𝑛𝑡 < |𝐾| − 1) ∧ (𝑆𝑜𝑙) do
6: 𝑆𝑜𝑙 ← false
7: 𝑛𝑘 ← |𝐾| − 𝑛𝑡 − 1 ⊳ no. of trips to consider in (HM)
8: Solve (HM) with 𝛼 = 1 and replacing |𝐾| by 𝑛𝑘
9: Update 𝑆𝑜𝑙

10: Update 𝐺𝑖𝑎𝑛𝑡
11: if 𝑆𝑜𝑙 then
12: 𝐹𝑇 ← 𝐹𝑇 ∪ {feasible trip generated by (HM)}
13: 𝑛𝑡 ← 𝑛𝑡 + 1
14: Fix 𝑥𝑛𝑡𝑖𝑗 ← 1 according to the generated feasible trip
15: if 𝐺𝑖𝑎𝑛𝑡 then
16: 𝐹𝑇 ← 𝐹𝑇 ∪ {giant trip generated by (HM)}
17: 𝑛𝑡 ← 𝑛𝑡 + 1
18: end if
19: end if
20: end while
21: if ¬(𝐺𝑖𝑎𝑛𝑡) ∨ ¬(𝑆𝑜𝑙) then
22: ‘‘The heuristic fails to find a feasible solution’’
23: end if
Ensure: 𝐹𝑇 ⊳ in case one feasible solution was found

Example 2. Considering Example 1, Fig. 2 presents the solution found
by the Hybrid Matheuristic. Fig. 2(a) shows the output of the first iter-
ation, that is: (i) one giant trip, with a total time of 85 (13 tasks and 4
deadheading arcs incident to the depot/treatment facility), greater than
the time limit of 60 (black thick lines); and (ii) a valid identified trip
with a total time of 59 (blue dashed lines, with 9 tasks, 2 deadheading
arcs and the links incident in the depot/treatment facility). Note that,
the giant trip, representing the aggregate service of two vehicles, has
two arcs out of the depot and two arcs into the treatment facility (the
same triangle node). Fig. 2(b) presents the final solution for the three
vehicles, obtained at the end of the second iteration, spending 59, 40
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Fig. 2. Hybrid model matheuristic.
and 45, respectively, which correspond to a total deadheading time of
34.

4.2. Two-phase matheuristic (H2)

The two–phase matheuristic (Algorithm 2) first assigns tasks to ve-
hicles (Algorithm 3) and then generates feasible trips (one per vehicle)
through the use of the hybrid model (HM), thus falling under the
classification of a cluster-first/route-second type heuristic.

Algorithm 2 – H2 (2–Phase Matheuristic)
Require: network; |𝐾|

//1st–phase – assignment ⊳ assign tasks to vehicles and layers
1: 𝐂𝐚𝐥𝐥 AssignZoneLayer() ⊳ Algorithm 3

//2nd–phase – routing
2: Solve (HM) with 𝛼 = |𝐾| − 1 ⊳ identify |𝐾| feasible trips
Ensure: 𝐹𝑇 ⊳ feasible solution

The first phase assigns tasks to each vehicle’s service and then
balances them. More specifically, vehicle services are augmented by
layers of adjacent links, starting from a set of fixed |𝐾| core-tasks (arc
or edge tasks). The core-tasks are fixed by practitioners, who can easily
identify tasks that should belong to different zones as well as tasks
that must belong to the same zone. Nevertheless, in order to allow a
wider variety of solutions, core-tasks are fixed among those that, once
identified as having to be in different zones, are far from each other,
as next detailed.

The algorithm starts by randomly picking one task, from those
identified, and this task represents the core of the first zone. Then, a
task that must belong to a different zone and farther from the first
core is chosen to be the core of the second zone. The third is the
farthest from the previous two, and it must also be in a different
zone, and so on and so forth. For this purpose, the distance between
two tasks 𝑎 = (𝑖, 𝑗) and 𝑏 = (𝑢, 𝑣), 𝐷𝑎𝑏, is the minimum among the
minimum distances between the corresponding ending nodes, that is,
𝐷𝑎𝑏 = min {𝐷𝑖𝑢, 𝐷𝑖𝑣, 𝐷𝑗𝑢, 𝐷𝑗𝑣, 𝐷𝑢𝑖, 𝐷𝑣𝑖, 𝐷𝑢𝑗 , 𝐷𝑣𝑗}. For instance, 𝐷𝑖𝑢 is the
minimum distance from 𝑖 ∈ 𝑉 to 𝑢 ∈ 𝑉 . Additionally, the distance
from task, 𝑎, and two other tasks, 𝑏, 𝑐, is the sum of the correspondent
distances, 𝐷𝑎,𝑏𝑐 = 𝐷𝑎,𝑏 +𝐷𝑎,𝑐 .

From the set of the |𝐾| chosen core-tasks, the aim is then to grow
each zone around its corresponding core-task respecting the vehicle
time limit, 𝐿. Each zone is first enlarged with all the links adjacent
to its core, following an increasing order of current zones’ demand.

The procedure is repeated, growing zones by layers, until every task
is assigned. The core-task is assigned to layer 0, the core of the zone,
and the layer index is increased by one each time a zone is enlarged.
Algorithm 3 details this procedure.
6

In this context, each zone is divided into layers: the core layer and
remaining layers, each containing the tasks that stand apart equally (in
number of links) from its core. Thus, after the first stage of the first
phase, the layer of a task corresponds to the number of links it is away
from its zone core (core-task) plus one.

Algorithm 3 – AssignZoneLayer
Require: network; |𝐾|; 𝐿
1: 𝑆𝑇 ← set of |𝐾| core–tasks ⊳ chosen from the ones identified by the practitioners
2: 𝑆𝐴𝐿 ← ∅ ⊳ set of assigned links
3: 𝑘 ← 1 ⊳ zone index
4: while 𝑘 ≤ |𝐾| do
5: Randomly chose a core–task 𝑠 ∈ 𝑆𝑇
6: 𝑆𝐴𝐿 ← 𝑆𝐴𝐿 ∪ {𝑠}
7: 𝑆𝑇 ← 𝑆𝑇 ⧵ {𝑠}
8: Set 𝑠 to layer 0 of zone 𝑘
9: 𝑘 ← 𝑘 + 1

10: 𝑁𝑙[𝑘] ← 0 ⊳ no. of identified layers in zone 𝑘 apart from the core
11: end while

// Define new layers until all tasks have a layer and a zone
12: while 𝑆𝐴𝐿 ≠ 𝑅 do
13: Order zones by increasing demand 𝑘1,⋯ , 𝑘

|𝐾|

14: for 𝑖 = 1,⋯ , |𝐾| do
15: Identify links in 𝐴′ ⧵𝑆𝐴𝐿 adjacent to a link in layer 𝑁𝑙[𝑘𝑖], within

𝐿
16: Enlarge zone 𝑘𝑖 with all identified links
17: 𝑁𝑙[𝑘𝑖] ← 𝑁𝑙[𝑘𝑖] + 1
18: Set all the identified tasks to layer 𝑁𝑙[𝑘𝑖] of zone 𝑘𝑖
19: Update 𝑆𝐴𝐿 with all identified tasks, and inverse tasks for edges,

if any
20: end for
21: end while
22: Call BalanceZones() ⊳ Algorithm 4
23: Fix 𝑥𝑘𝑖𝑗 ← 1 accordingly the respective zone
Ensure: A zone and a layer for each task, and 𝑥𝑘𝑖𝑗

A second stage of the first phase is then applied in order to balance
the service of the vehicles (Algorithm 4), and thus tasks assigned to ve-
hicles with larger assigned demand are moved to smaller neighbouring
zones. These services are considered balanced when the percentage of
increase in demand from the smallest zone to the largest one is less
than 1%. This procedure is repeated a predefined maximum number of
times (𝑀𝑎𝑥𝐼𝑡) if balance is not achieved.

Example 3. Considering Example 1, Fig. 3 shows the three zones. The
core of zone 1, 2, and 3 is marked as 𝑍1, 𝑍2, and 𝑍3, respectively. Val-
ues next to remaining edges represent the number of the correspondent
assigned layer. After assigning layers and zones and to balance them,
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Algorithm 4 – BalanceZones
Require: A zone and layer for each task; 𝑀𝑎𝑥𝐼𝑡 ⊳ max no. of iterations
1: 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ← 0
2: 𝑆𝑡𝑜𝑝 ← false
3: 𝐸𝑄 ← false
4: while ¬𝑆𝑡𝑜𝑝 do
5: for 𝑡 = 1,⋯ , |𝑆𝐴𝐿| do
6: 𝑛𝑣𝑒ℎ𝑖𝑐𝑙𝑒(𝑡) ← zone index of task 𝑡
7: 𝑛𝑙𝑎𝑦𝑒𝑟(𝑡) ← layer index of task 𝑡
8: Identify neighbours of 𝑡 not in 𝑛𝑣𝑒ℎ𝑖𝑐𝑙𝑒(𝑡) ∶ 𝑢1,⋯ , 𝑢𝑛𝑒𝑖
9: for 𝑗 = 1,⋯ , 𝑛𝑒𝑖 do

10: 𝑛𝑣𝑒ℎ𝑖𝑐𝑙𝑒(𝑢𝑗 ) ← zone index of task 𝑢𝑗
11: 𝑛𝑛𝑙𝑎𝑦𝑒𝑟(𝑢𝑗 ) ← layer index of task 𝑢𝑗
12: if 𝑑𝑒𝑚𝑎𝑛𝑑(𝑛𝑣𝑒ℎ𝑖𝑐𝑙𝑒(𝑢𝑗 )) > 𝑑𝑒𝑚𝑎𝑛𝑑(𝑛𝑣𝑒ℎ𝑖𝑐𝑙𝑒(𝑡)) then
13: 𝑛𝑣𝑒ℎ𝑖𝑐𝑙𝑒(𝑢𝑗 ) ← 𝑛𝑣𝑒ℎ𝑖𝑐𝑙𝑒(𝑡)
14: 𝑛𝑙𝑎𝑦𝑒𝑟(𝑢𝑗 ) ← 𝑛𝑙𝑎𝑦𝑒𝑟(𝑡) + 1
15: end if
16: end for
17: end for
18: 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ← 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 + 1
19: Verify and fix connectivity
20: if (max(𝑑𝑒𝑚𝑎𝑛𝑑) − min(𝑑𝑒𝑚𝑎𝑛𝑑))∕max(𝑑𝑒𝑚𝑎𝑛𝑑) < 1% then
21: 𝑆𝑡𝑜𝑝 ← true
22: 𝐸𝑄 ← true
23: end if
24: if 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ≥ 𝑀𝑎𝑥𝐼𝑡 then
25: 𝑆𝑡𝑜𝑝 ← true
26: end if
27: end while
28: if 𝐸𝑄 then
29: Update zones and layers
30: end if
Ensure: A zone and a layer for each task

Fig. 3. 2-phase matheuristic — 1st phase output.

the 2nd-phase calls (HM) to generate the routing solutions for the three
vehicles.

The second phase of the matheuristic (Algorithm 2) is accomplished
by the solution of the (HM) with 𝛼 = |𝐾| − 1 and considering the
assignment of tasks resulting from the first phase. More specifically, if
task (𝑖, 𝑗) is assigned to zone 𝑘, the value of the correspondent variables
must be fixed to one, that is, 𝑥𝑘𝑖𝑗 = 1 if (𝑖, 𝑗) ∈ 𝐴𝑅 and 𝑥𝑘𝑖𝑗 + 𝑥𝑘𝑗𝑖 = 1, in
case (𝑖, 𝑗) ∈ 𝐸𝑅.

Note that, because every task is fixed, (HM) only determines the
trips and the direction to service each edge task.

Alternatively, the assigned zone can be ignored for some tasks,
based for instance on the task layer. In these cases, the (HM) also selects
a vehicle to service those tasks, as next described in the two-phase
matheuristic variant.
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4.3. Two-phase matheuristic variant (H3)

Because it is a natural and easy to implement variant, this heuristic
is developed in the search for a methodology capable of generating the
best feasible solutions. The idea is to try to take advantage of some
initial assignments, leaving the choice of remaining assignments to the
(HM). This is justified for three main reasons. Firstly, by releasing only
some tasks from the initial assignment we try to give some freedom to
the model hoping that this may lead to better solutions. Secondly, since
the solver fails to produce feasible solutions when no initial assignment
is performed, the released tasks are chosen so that more feasible
solutions may be attained. Finally, the generation of zones through
Algorithm 3 may prematurely leave some zones without neighbours,
thus preventing its enlargement. This drawback may hopefully be
repaired if some assignments from the outer layers are realised. Thus,
exploring the flexibility of (HM) to also perform part of the zoning
is the purpose of the variant discussed in this section and detailed in
Algorithm 5.

Algorithm 5 – H3 (2–Phase Matheuristic Variant)
Require: network; |𝐾|; 𝛾; 𝑟𝑢𝑙𝑒

// 1st–phase – assignment
1: 𝐂𝐚𝐥𝐥 AssignZoneLayer() ⊳ Algorithm 3
2: if 𝑟𝑢𝑙𝑒 = 1 then
3: for 𝑘 = 1, |𝐾| do ⊳ release some assignments according to rule 1
4: 𝑉 𝑒ℎ𝐷𝑒𝑚𝑎𝑛𝑑 ← Total demand in zone 𝑘
5: 𝐹𝑟𝑎𝑐𝐷𝑒𝑚𝑎𝑛𝑑 ← 𝛾 × 𝑆𝑒𝑐𝐷𝑒𝑚𝑎𝑛𝑑
6: while 𝑉 𝑒ℎ𝐷𝑒𝑚𝑎𝑛𝑑 > 𝐹𝑟𝑎𝑐𝐷𝑒𝑚𝑎𝑛𝑑 do
7: Release tasks from the outer layer
8: Update VehDemand and outer layer number
9: end while

10: end for
11: end if
12: if 𝑟𝑢𝑙𝑒 = 2 then
13: for 𝑘 = 1, |𝐾| do ⊳ release some assignments according to rule 2
14: while ∃ a task not yet analysed (𝑖, 𝑗) ∈ zone 𝑘 do
15: if (𝑖, 𝑗) is in a layer > 𝛾 then
16: Release task (𝑖, 𝑗)
17: end if
18: end while
19: end for
20: end if
21: if 𝑟𝑢𝑙𝑒 = 3 then
22: for 𝑘 = 1, |𝐾| do ⊳ release some assignments according to rule 3
23: while ∃ a task not yet analysed (𝑖, 𝑗) ∈ zone 𝑘 do
24: if (𝑖, 𝑗) is in a layer > 𝑁𝑙[𝑘] − 𝛾 then
25: Release task (𝑖, 𝑗)
26: end if
27: end while
28: end for
29: end if
30: Set 𝑥𝑘𝑖𝑗 ← 0 for released tasks

// 2nd–phase – routing and complete assignment
31: Solve (HM) with 𝛼 = |𝐾|− 1 and the fixed 𝑥𝑘𝑖𝑗 values ⊳ identify |𝐾| feasible

trips
Ensure: 𝐹𝑇 ⊳ feasible solution

Tasks are released from their initially proposed zone using three
rules that take into account the task layer number. The first one is based
on demand and releases from each zone a number of outer layers (all
tasks) in such a way that a fraction 𝛾1 of the zone demand remains
assigned. The second rule releases from all zones every task with a layer
number greater than 𝛾2. The third rule releases from all zones every task
in the last 𝛾3 layers. Note that even when 𝛾2 = 𝛾3 the two last rules may
differ if zones have different numbers of layers, as next illustrated.

Example 4. Figs. 4(a), (b) and (c) show the tasks released from the
three zones (𝑍 , 𝑍 , and 𝑍 ) of Example 3, according to rule 𝑟 = 1, 2, 3,
1 2 3
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Fig. 4. 2-phase variant — 1st phase output for rule: (a) 𝑟 = 1; (b) 𝑟 = 2; (c) 𝑟 = 3.
respectively. Here we used 𝛾1 = 0.5, 𝛾2 = 𝛾3 = 1. Further discussion on
the choice of these parameters can be found in Section 7. As before,
cores (layer 0) are marked with the respective zone index. Assuming
task demands, given in brackets near the links in Fig. 4(a), keep 0.5 of
each zone demand fixed corresponds to fix 0.5(5+9+12) = 13, 0.5(7+5+
1) = 6.5, and 0.5(2+12+8+5) = 13.5, in zones 1, 2, and 3, respectively.
Thus, layers to keep fixed are 0 and 1 in zone 1 (with demand equal
to 14 > 13), 0 in zone 2 (demand equal to 7 > 6.5), and layers 0 and
1 in zone 3 (demand equal to 2 + 12 > 13.5). All tasks in a layer are
kept fixed from the core layer until the first layer which makes the total
fixed demand greater than 𝛾1. In Fig. 4(b), according to rule 2, all tasks
in layers greater than 𝛾2 = 1 are released in all zones. Thus, all zones
remain with only the tasks in layers 0 and 1 fixed. In Fig. 4(c), following
rule 3, the tasks that are released are those in layer 2 of zones 1 and
2, and those in layer 3 of zone 3, the tasks in the last layer (𝛾3 = 1). As
previously observed, 𝛾2 = 𝛾3 = 1 and the released tasks are different.
This variant ends by calling (HM) to assign the released tasks to zones
and to identify the three vehicle trips for each case ((a), (b), and (c)).

4.4. Overall procedure

To summarise the overall methodology we present a global
flowchart in Fig. 5 and display the results for the example.

Example 5. The feasible solutions generated by all algorithms for
Example 1 are compared in Table 2, showing different solutions even
for this small example. The second column, 𝐻𝑀𝐾 , presents the values
provided by the valid model (HM) with 𝛼 = |𝐾| − 1, and in third to
seventh columns are the values for the hybrid model matheuristic (H1);
for the two-phase matheuristic (H2); and for its variant with rule (𝑟)
(H3(1), H3(2), H3(3)). From upper bound values, in the second row,
we may see that the optimum was achieved by the valid model and
8

the hybrid model matheuristic as well as by the 2-phase variant when
Table 2
Example results.

𝐻𝑀𝐾 H1 H2 H3(1) H3(2) H3(3)

UB values 34a 34a 46 34a 38 40
deadheading links % 23.6 23.6 29.5 23.6 25.7 26.7
cpu time (s) 12.3 2.6 0.6 2.8 1.1 1.0

Legend:
aOptimal value.

fixing a percentage according to the demand (rule 1). Assuming all
the tasks fixed, as in the 2-phase matheuristic (column 4), proved to
be the worst option, in this small example. The third row compares
the percentage of deadheading links in each solution, with the highest
values corresponding to the worst solution values, as expected. The
computation times (last row) are very small.

5. Visual attractiveness and the weighted hull overlap

To qualify the visual attractiveness of trips (Lum et al., 2017)
propose the hull overlap (𝐻𝑂) measure. Denoting by 𝐹𝑇 = {𝑇𝑘} the
set of feasible trips and by 𝐶𝑘 the convex hull of vertices visited by trip
𝑇𝑘, the overlapping of each trip, is defined as

𝐻𝑂𝑘 =
∑

𝑘′≠𝑘

Area
(

𝐶𝑘 ∩ 𝐶𝑘′
)

Area(𝐶𝑘)
(21)

and the global attractiveness of the solution is given by the average
overlapping of the trips, that is,

𝐻𝑂 = 1
|𝐾|

|𝐾|

∑

𝑘=1
𝐻𝑂𝑘. (22)

This measure combines information on overlapping with the place-
ment of tasks relative to their ideal boundaries. In this work we
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Fig. 5. Global illustration of the methodology.

onsidered that for an easier comparison between instances it would
e more convenient to use normalised version of (21). Thus,

𝐻𝑂𝑘 = 1
|𝐾| − 1

∑

𝑘′≠𝑘

Area
(

𝐶𝑘 ∩ 𝐶𝑘′
)

Area(𝐶𝑘)
, (23)

and, consequently

HO = 1
|𝐾|

|𝐾|

∑

𝑘=1
𝐻𝑂𝑘. (24)

Thus 0 ≤ HO ≤ 1, where HO = 0 means that there is no overlapping
and HO = 1 means that there is a full overlap of the convex hulls.

We propose a new attractiveness measure, the weighted hull overlap
denoted by HO(𝜌). This new measure is a generalisation of HO, where
we introduce space dependent penalisation of overlaps. It can be argued
that HO over-penalises situations where hull overlaps occur in regions
of low interest, such as, outside the road network area, while, at the
same time, it under-penalises overlaps in sensitive regions. In order to
address this issue, a penalty function, 𝜌, that weights the severity of the
overlaps is introduced.

Let 𝛺 ⊂ R2 be a rectangle containing the network and consider an
ntegrable function 𝜌 ∶ 𝛺 → R such that ∫𝛺 𝜌(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = Area(𝛺).

Adapting (23) by computing the area of the intersections weighted by
𝜌, we can define

HO𝑘(𝜌) =
1

|𝐾| − 1
∑

𝑘′≠𝑘

𝜇(𝐶𝑘 ∩ 𝐶𝑘′ )
𝜇(𝐶𝑘)

, (25)

HO(𝜌) = 1
|𝐾|

∑

HO𝑘(𝜌) (26)
9

|𝐾| 𝑘=1
here

(𝑋) = ∫𝑋
𝜌(𝑥, 𝑦)𝑑𝑥 𝑑𝑦, 𝑋 ⊆ 𝛺.

This attractiveness indicator is an average overlap fraction, mea-
ured by 𝜇. Generally speaking, 𝜌 can be seen as a penalty function

that evaluates the impact of an overlap depending on its location. One
possible choice for 𝜌 is to define it as the characteristic function of a
certain region of interest, meaning that overlaps inside this region are
valued with respect to overlaps occurring elsewhere. The density 𝜌 can
e specified either analytically or by directly assigning an increased
eight to a set of nodes and extending it to 𝛺 using low order
iece-wise interpolation.

In general, the penalty function 𝜌 should be further adjusted to
ncorporate information on sensitive areas where the overlapping is
specially damaging. In Fig. 6 we represent three different choices of
for the same road network, and compute 𝐻𝑂(𝜌) in a small example

with two trips.

• In Fig. 6(a), we use a constant penalty function 𝜌1. The definition
of HO(𝜌) is equivalent to the one of HO, thus HO(𝜌1) = HO = 0.1.
This means that the area of overlap area is, on average, 10% of
the convex hulls’ area.

• In Fig. 6(b), we use a network density function, disregarding
regions that are not close to the road network. The shadowed blue
region, 𝐷, is composed of points within 250 m of road segments.

𝜌2(𝑥, 𝑦) =

{

𝑐𝑡𝑒, (𝑥, 𝑦) ∈ 𝐷
0, (𝑥, 𝑦) ∈ 𝛺 ⧵𝐷

In this case, we are still computing areas, but excluding the parts
of the convex hulls that fall out of 𝐷. We get HO(𝜌2) = 0.096.
This is quite similar to HO because the part of convex hulls that
is outside 𝐷 is small.

• In Fig. 6(c) we use a penalty function concentrated in two points,
(𝑥1, 𝑦1) and (𝑥2, 𝑦2), of the form

𝜌3(𝑥, 𝑦) = 𝑐1 +
2
∑

𝑖=1
𝑐𝑖 exp

(

−1
2
(𝑥 − 𝑥𝑖)2

𝜎2𝑖
− 1

2
(𝑦 − 𝑦𝑖)2

𝜎2𝑖

)

.

In this case, since the overlap in the central point is highly
penalised by 𝜌3, we obtain HO(𝜌3) = 0.685, which is much higher
than the previous ones.

So, this specific trip design would be considered appropriate when
using 𝜌1 or 𝜌2, but inadequate when using 𝜌3. Generally speaking, the
HO(𝜌) measure carries more information than HO when there is good
reason to penalise overlaps in specific parts of the road network.

Henceforward, the attractiveness of a solution is measured through
HO and HO(𝜌), in order to characterise its overlapping, as well as other
measures (see Section 7.3), to qualify its connectivity and compactness.
For the moment, the 𝐻𝑂(𝜌) index corresponds to a road network
density function.

6. Geographic information system

Nowadays, GIS are widespread over several fields of activity, allow-
ing the creation of personalised digital map layers that are essential for
the solution of real-world problems. They are a key tool in regional and
municipal planning, namely for land planning, provision of infrastruc-
ture, transportation networks design, mail distribution, and garbage
collection, among others.

In this work we use the GIS of the municipality of Seixal, namely the
layers containing road segments, traffic signs, and implanted buildings.
The road segments are used to establish the connectivity and to design
the road network, while the implanted buildings are assigned to each
link and used to estimate the demand.

The road segment layer is a collection (𝑖)𝑛𝑖=1, where each 𝑖 stores
the following information
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Fig. 6. (a) Two trips, represented by blue and red nodes and their convex hulls; (b) Network density function 𝜌1; (c) Customised space dependent penalty 𝜌2.
Fig. 7. (a) Road segment nodes (red stars) and auxiliary nodes (blue circles). (b) Geometrical representation of implanted buildings.
• seg_eixo: Unique identifier of the road segment [integer].
• toponimo: Unique identifier linking to the street name/code

[string].
• clas_rod: Type of road (local paved road, local unpaved road,

national road, highway, etc.) [string].
• clas_actual: Date of last update [string].
• shape_len: Length of segment [float].
• shape_pts: Array containing a sequence of geographical coor-

dinates that define the road segment (𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑛𝑖 , 𝑦𝑛𝑖 )
[array of float].

The connected graph is built by identifying common terminal points
between different segments (see Fig. 7a). Each road segment will result
10
in one arc (one-way street), two arcs (two-way street) or one edge
(two-way street served with a zig-zag single pass).

The demand on each arc/edge is estimated from the number of
buildings associated with that connection. Each building is assigned
to a road segment, based on the proximity of its geometric centre to
segment nodes (see Fig. 7b), and then to a street direction.

The municipality of Seixal covers 95 km2, and has a population of
over 160,000 inhabitants (see the Câmara Municipal do Seixal (CMS)
web page, www.cm-seixal.pt/territorio) A door-to-door collection sys-
tem was implemented in some districts, for both hygiene reasons and
the population’s comfort.

The full network is represented in Fig. 8, and it consists of 8909 road
segments and 32,298 buildings, resulting in a graph with 6813 nodes,
11,838 arcs and 2991 edges. It is possible to graphically select subsets

http://www.cm-seixal.pt/territorio
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Fig. 8. The full Seixal network, using a grid resolution of 100.

f this network to yield smaller instances (see Table 3), motivated by
reliminary information provided by the municipality. Once the trips
re generated, they can be visualised back in the GIS interface.

. Computational results

The performance of the proposed methodologies is analysed using
ower and upper bound values, execution times, as well as from visual
ttractiveness measures, using the instances described next.

The integer programming models were solved with the IBM®
LOG® CPLEX® 12.9.0, in an AMD Ryzen Threadripper 2950X 16-Core
rocessor (64 GB RAM).

.1. Problem instances

The instances were generated entirely and automatically using the
IS and accurately represent the current Seixal waste collection prob-

em. This work follows that of Ghiani et al. (2014). Due to inconsisten-
ies with today’s reality, instances generated in this first preliminary
roject have been dropped. Although it used GIS to generate the
etwork, namely regarding the refuse to collect, the network definition
ad an important manual part, e.g. the identification of the nodes. In
he current work, nodes are geo-referenced by GIS. Moreover, since
014, the waste system in Seixal has undergone several modifications,
rompting for this new study, and practitioners point to the need to
evelop new instances.

The data set comprises six network instances, named N1_|𝐾|–
6_|𝐾|. Thus, by varying the number of vehicles, |𝐾| in the instance
ame, and the time limit per trip, a total of 18 instances were tried,
s displayed in Table 3 (column 1). For each network a real time
imit of 25,200 s (7 h) was essayed. Two other time limit values
er instance were also considered to assess the performance of the
roposed matheuristics. The network sizes vary, from 265–1223 nodes
including the depot and the landfill), and 492–2254 links (columns
–3). The percentage of required arcs and edges is between 20%
nd 30% (columns 4 and 5). The number of vehicles, |𝐾|, and the
ime limit considered per trip, 𝐿, are depicted in columns 6 and 7,
espectively. The last two columns show the total demand, 𝑄𝑇 , and
umber of connected components, 𝐶𝐶𝑔 , of the graph induced by the
11

et of required links.
Table 3
Characteristics of the Seixal instances.

Instance |𝑉 | |𝐴′ ∪ 𝐸| |𝐴𝑅| |𝐸𝑅| |𝐾| 𝐿 𝑄𝑇 𝐶𝐶𝑔

N1_2 265 492 119 138 2 25 200 29 940 11
N1_3 3 22 200
N1_4 4 15 000

N2_2 363 722 162 163 2 25 200 34 560 38
N2_3 3 22 200
N2_4 4 15 000

N3_3 467 933 207 216 3 25 200 45 030 45
N3_4 4 22 200
N3_5 5 16 000

N4_4 539 1119 259 272 4 35 000 83 715 40
N4_5 5 28 000
N4_6 6 25 200

N5_5 899 1783 429 458 5 41 000 104 925 56
N5_6 6 33 000
N5_8 8 25 200

N6_4 1223 2254 503 520 4 37 000 97 050 152
N6_5 5 33 000
N6_6 6 25 200

Legend: 𝐶𝐶 is the number of connected components in the demand graph.

7.2. Matheuristics results

As before, in this section, 𝐻𝑀𝐾 is used for results provided by the
valid model (HM) with 𝛼 = |𝐾| − 1, and matheuristics are represented
by the acronyms: H1 designates the hybrid model matheuristic; H2
stands for the two-phase matheuristic; and H3(r) for its variant with
rule 𝑟 (𝑟 = 1, 2, 3). In the latter, parameter 𝛾 was set to 𝛾1, 𝛾2, or 𝛾3,
when 𝑟 = 1, 2, 3, respectively. Based on preliminary tests, 𝛾1 was set
to 0.9 because, among the tested values (0.9, 0.8, 0.5, 0.3 and 0.1), it
was the one providing better results: more feasible solutions (14 out
of 18), five of them optimal, with an average gap from the instance
lower bound equal to 10.02%. The results were also acceptable up to
𝛾1 = 0.5. Regarding the choice of 𝛾2, it is set in order to keep all the tasks
in the zone with the smaller number of layers fixed, since, as before, it
was the one leading to better results (12 feasible solutions, 5 optimal,
and an average gap value of 9.48%). Finally, 𝛾3 is set to half of the
difference between the maximum and the minimum number of layers in
the instance. Again, this choice proved to be the best option (11 feasible
solutions, 6 optimal ones and an average gap of 10.04%). Among values
tested for 𝛾2 and 𝛾3 the chosen ones are those that release more layers
and are still able to generate feasible solutions. Note that a smaller 𝛾2
(bigger 𝛾3) value leads to more released tasks, which increases the size
of the MILP problem to be solved.

The hybrid model (HM) was used to obtain two lower bounds per
instance. One, 𝑙𝑏𝐾 , results from the valid model. The other, 𝑙𝑏0, comes
from the aggregated model that only considers the giant trip, that is
𝑝 = 0 and no 𝛼. Thus, constraints (3), (7), (13), and (14), are eliminated.
The valid model ran in CPLEX, within a pre-defined three hours time
limit (𝑇𝐿).

Column two in Table 4 contains the gap between the two lower
bound values, that is 𝑔𝑎𝑝𝑙𝐾_𝑙0 = (𝑙𝑏𝐾 − 𝑙𝑏0)∕𝑙𝑏𝑏𝑒𝑠𝑡 × 100, with 𝑙𝑏𝑏𝑒𝑠𝑡 =
max{𝑙𝑏𝐾 ; 𝑙𝑏0}. Thus, a negative value points to a better performance of
the aggregated model. As may be observed, all values but five are neg-
ative, with zero corresponding to the smallest instance where the valid
model attains the optimal solution value, and the aggregated model
proposes that same value for lower bound. The good performance of
the aggregated model is even more impressive for the larger instances,
with the corresponding lower bound exceeding up to 20% of 𝑙𝑏𝐾 .

Columns three to eight in Table 4 depict gap values, computed by

𝑔𝑎𝑝 =
𝑣(𝐻∙) − 𝑙𝑏𝑏𝑒𝑠𝑡

× 100,
∙ 𝑙𝑏𝑏𝑒𝑠𝑡
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Table 4
Seixal results — gap values comparison.

Instance 𝑔𝑎𝑝𝑙𝐾_𝑙0 Gap values

𝐻𝑀𝐾 H1 H2 H3(1) H3(2) H3(3)

N1_2 0.00 0.00 0.00 2.96 2.50 2.96 2.96
N1_3 −0.12 0.52 0.41 5.99 5.77 5.99 5.99
N1_4 0.12 17.92 2.17 7.80 7.74 6.59 5.02

N2_2 1.14 4.57 4.57 5.23 3.92 4.95 5.23
N2_3 0.48 58.38 5.76 11.93 9.96 11.17 9.86
N2_4 1.04 – 7.52 12.26 10.39 11.74 22.14

N3_3 −0.44 – – 12.65 11.36 10.79 12.23
N3_4 −0.65 121.95 6.99 15.67 14.36 15.15 13.59
N3_5 −0.82 – 12.74 18.91 18.63 – –

N4_4 −9.83 – – 21.39 18.32 20.20 19.13
N4_5 −6.97 – 11.43 25.10 – – –
N4_6 −7.53 – 16.91 27.26 – – –

N5_5 −4.17 246.74 0.27 8.99 7.75 8.15 8.19
N5_6 −6.62 – 0.17 8.97 8.46 7.86 5.93
N5_8 −6.36 – 0.29 8.68 7.45 8.09 –

N6_4 −14.79 – – 12.20 – – –
N6_5 −20.34 – – 14.01 13.48 – –
N6_6 −17.65 – – 16.49 – – –

#FS 7 13 18 14 12 11
#Best 1 12 2 3 1 0

Legend: #FS -no. of feasible solutions; #Best - no. of best solutions.

where 𝑣(𝐻∙) is the upper bound achieved by matheuristic 𝐻∙ (∙ =
𝑀𝐾 , 1, 2, 3(𝑟)). Remember that 𝐻𝑀𝐾 are the values provided by (𝐻𝑀)
with 𝛼 = |𝐾| − 1.

Note that the valid model proved to have found the optimal solution
only once, and even for 11 out of 18 instances it did not encounter a
feasible solution. However, we should stress that the aggregated model
only identifies a giant trip so it does not provide feasible solutions for
the overall problem, only lower bounds.

The (HM) with constraints (19) or (20), to balance the number of
tasks or the served demand among zones, only achieved a few feasible
solutions. Henceforward, only (HM) is analysed. However, for these
few instances, it was noticed that zones provided by the model with
the additional balance constraints are better balanced than the ones
generated by Algorithm 3. This is due to the fact that some zones
usually get stuck without neighbours in the first iterations while there
are still a large number of free tasks, as the number of connected
components is huge (see last column in Table 3). This also justified
variant H3, where some tasks are released before the second phase.

As may be observed, the hybrid heuristic (H1) provides the best gap
values more often, with the two-phase method (H2) always generating
a feasible solution, within smaller computation times (see Table 5).
Moreover, gap values for all two-phase matheuristics (H2 and H3(r))
are very similar, leading to the conclusion that releasing some tasks
from the outer layers is not a good option. Note that the cpu times for
H1 are quite large, as in each iteration it solves a MILP problem with
a time limit of three hours. As expected, the valid model only achieves
good solutions for small networks. Even when the three-hour time limit
was increased, CPLEX did not succeed in finding feasible solutions.

Table 5 depicts the minimum, average and maximum cpu times (in
seconds) regarding the model and the matheuristics. Thus, columns two
and three present the times needed to reach valid and aggregated lower
bounds, respectively. The last six columns show the times needed to
attain the upper bounds for the correspondent matheuristic.

7.3. Attractiveness results

Attractiveness measures are useful to assess the suitability of solu-
tions to be implemented in practice. Tables 6 and 7 present the results
for the measures discussed in Section 5 as well as for the measures taken
12

from the literature, which we shall now analyse.
Table 5
Seixal results — execution times.

Seconds Lower bounds Upper bounds

𝑙𝑏𝐾 𝑙𝑏0 𝐻𝑀𝐾 H1 H2 H3(1) H3(2) H3(3)

min 227.5 6.1 227.5 227.5 4.6 67.6 4.0 24.2
average 10 213.3 1518.8 9290.3 34,459.4 7341.3 7330.2 6854.6 6647.9
max TL TL TL 64,805.3 TL TL TL TL

Table 6
Seixal results — attractiveness measures, 𝐶𝐼 and 𝐴𝑇𝐷.

#instances 𝐻𝑀𝐾 H1 H2 H3(1) H3(2) H3(3)
7 13 18 14 12 11

CI min 8.7 10.0 5.0 5.0 4.5 5.3
average 35.5 22.4 15.9 13.8 13.9 13.6
max 63.2 43.0 41.3 35.0 22.0 22.0

ATD min 106.7 81.6 40.2 40.5 56.2 55.8
aver. 128.8 116.4 70.1 71.8 77.6 78.2
max 147.0 161.3 121.1 122.0 128.4 212.1

The connectivity index (Constantino et al., 2015), 𝐶𝐼 = 𝐶𝐶∕|𝐾|,
s the average number of connected components (𝐶𝐶), and is always
reater than or equal to one, and better the smaller it is. However,
t would be unlikely for Seixal instances, with a number of connected
omponents between 11 and 152, to present solutions with 𝐶𝐼 close to
ne. Thus, the values in Table 6 indicate that solutions may generally be
onsidered as compact as possible, highlighting positively those of the
wo-phase matheuristics, particularly the variant H3(r). Recall that the
irst phase tries to join adjacent tasks in the same vehicle service (zone),
hich promotes smaller 𝐶𝐼 values. By releasing some tasks from their

ones, H3(r) is able to further improve this index value.
The average task distance (Constantino et al., 2015), 𝐴𝑇𝐷, repre-

ents the average of the shortest deadheading path distance between
asks served by the same vehicle, and is given by:

TD = 1
|𝐾|

|𝐾|

∑

𝑘=1

1
𝑡𝑝𝑎𝑖𝑟𝑠

∑

𝑎,𝑏 in 𝑘
𝐷𝑎𝑏 (27)

here 𝑡𝑝𝑎𝑖𝑟𝑠 = |𝐴𝑅 ∪ 𝐸𝑅| × (|𝐴𝑅 ∪ 𝐸𝑅| − |𝐾|)∕(2|𝐾|

2) is used as an
pproximate value for the number of task pairs per trip, 𝐷𝑎𝑏 is the mini-
um deadheading distance from task 𝑎 to task 𝑏, served in 𝑘, excluding
𝑎 and 𝑑𝑏. From Table 6 it is clear that this measure also points to
etter solutions (smaller values) for the two-phase matheuristics, with
imilar values for all variants, and H2 performing slightly better. Thus,
olutions generated by two-phase matheuristics are more compact.

The overlapping will be measured by 𝐻𝑂, HO(𝜌), previously intro-
duced, and by 𝑅𝑂𝐼 (Constantino et al., 2015), which compares the
node overlapping in the given solution with the one in an ‘‘ideal’’
solution. The attractiveness is higher the lower these measures are. 𝑅𝑂𝐼
is computed as:

ROI = NO − |𝑉 |

(
√

|𝐾| +
√

|𝑉 | − 1)2 − |𝑉 |

(28)

here 𝑁𝑂 counts the number of nodes visited by the different trips
nd is given by NO =

∑

𝑖∈𝑉
∑

|𝐾|

𝑘=1 𝑛
𝑘
𝑖 , being 𝑛𝑘𝑖 = 1 iff node 𝑖 is visited by

ehicle 𝑘.
Table 7 presents these three measures for all the methodologies and

nstances. Similar to previous measures, the two-phase matheuristics
isplay better values, keeping the H2 advantage, as H3 variants often
resent slight increases. It is interesting to note that the three measures
ften indicate the lowest values for the same methodology. Although
rdering the methodologies equally, HO(𝜌) is usually smaller than 𝐻𝑂

as it only penalises the areas of interest. Also worth noting is that for
more general penalty functions HO(𝜌) values can be greater than 𝐻𝑂.
See, for instance the shadow area in Fig. 8, which represents the road
network density function, equal to a constant value for points apart up
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Table 7
Seixal results — overlapping measures.

inst. 𝐻𝑀𝐾 H1 H2 H3(1) H3(2) H3(3)

ROI 𝐻𝑂 𝐻𝑂(𝜌) ROI 𝐻𝑂 𝐻𝑂(𝜌) ROI 𝐻𝑂 𝐻𝑂(𝜌) ROI 𝐻𝑂 𝐻𝑂(𝜌) ROI 𝐻𝑂 𝐻𝑂(𝜌) ROI 𝐻𝑂 𝐻𝑂(𝜌)

N1_2 1.06 0.57 0.26 1.06 0.57 0.26 0.23 0.01 0.01 0.15 0.01 0.01 0.23 0.04 0.02 0.23 0.04 0.02
N1_3 0.81 0.59 0.16 1.32 0.44 0.13 0.30 0.14 0.06 0.34 0.27 0.10 0.30 0.13 0.05 0.30 0.14 0.06
N1_4 2.13 0.70 0.22 1.51 0.53 0.13 0.43 0.05 0.02 0.40 0.05 0.02 0.34 0.12 0.06 0.65 0.32 0.14

N2_2 3.30 0.78 0.31 3.30 0.78 0.31 0.44 0.14 0.06 0.32 0.12 0.04 0.44 0.14 0.06 0.44 0.14 0.06
N2_3 4.27 0.71 0.34 1.03 0.35 0.12 0.28 0.13 0.05 0.21 0.14 0.06 0.46 0.16 0.07 0.21 0.08 0.03
N2_4 – – – 1.35 0.40 0.19 0.44 0.13 0.06 0.54 0.22 0.10 0.75 0.18 0.07 0.93 0.42 0.20

N3_3 – – – – – – 0.22 0.03 0.02 0.26 0.19 0.05 0.45 0.22 0.06 0.19 0.03 0.02
N3_4 4.88 0.87 0.22 1.09 0.33 0.08 0.23 0.06 0.02 0.28 0.29 0.14 0.35 0.25 0.12 0.39 0.28 0.13
N3_5 – – – 1.51 0.39 0.09 0.21 0.04 0.01 0.24 0.08 0.03 – – – – – –

N4_4 – – – – – – 0.53 0.06 0.02 0.45 0.15 0.04 0.58 0.18 0.05 0.51 0.11 0.03
N4_5 – – – 2.13 0.46 0.15 0.52 0.08 0.03 – – – – – – – – –
N4_6 – – – 2.06 0.48 0.16 0.54 0.06 0.02 – – – – – – – – –

N5_5 4.43 0.82 0.26 1.99 0.69 0.19 0.54 0.07 0.03 0.50 0.07 0.03 0.53 0.05 0.03 0.49 0.06 0.03
N5_6 – – – 1.85 0.58 0.21 0.44 0.09 0.05 0.43 0.10 0.05 1.00 0.39 0.18 1.06 0.34 0.12
N5_8 – – – 1.86 0.55 0.21 0.29 0.05 0.03 0.37 0.12 0.06 0.86 0.50 0.21 – – –

N6_4 – – – – – – 0.20 0.06 0.02 – – – – – – – – –
N6_5 – – – – – – 0.29 0.08 0.03 0.28 0.12 0.05 – – – – – –
N6_6 – – – – – – 0.28 0.06 0.02 – – – – – – – – –

Min. 0.81 0.57 0.16 1.03 0.33 0.08 0.20 0.01 0.01 0.15 0.01 0.01 0.23 0.04 0.02 0.19 0.03 0.02
Average 2.98 0.72 0.25 1.70 0.50 0.17 0.36 0.07 0.03 0.34 0.14 0.06 0.52 0.20 0.08 0.49 0.18 0.08
Max. 4.88 0.87 0.34 3.30 0.78 0.31 0.54 0.14 0.06 0.54 0.29 0.14 1.00 0.50 0.21 1.06 0.42 0.20
to 𝑑∗ = 250 m from the network, and zero otherwise. All tests were
onducted using this road network density.

Matheuristic H1, generating better gap values, performs the worst
egarding the attractiveness measures, as expected. The increase in
verage gap values from 5.3 for H1 to 13.1 for H2, corresponds to a
ecrease in average values from 22.4 to 15.9 for 𝐶𝐼 , from 116.4 to

70.1 for 𝐴𝑇𝐷, from 1.70 to 0.36 for 𝑅𝑂𝐼 , from 0.50 to 0.07 for 𝐻𝑂,
and from 0.17 to 0.03 for HO(𝜌). Thus, the best option seems to be
H2, which always finds a feasible solution, with better attractiveness
measures, competitive cpu times, and gap values that do not deteriorate
as much.

8. Conclusions

The household waste collection problem in the Portuguese munici-
pality of Seixal was modelled as a generalisation of a mixed capacitated
arc routing problem (MCARP). The proposed methodology to tackle the
identified problem, included the use of GIS in the input/output phases
and three matheuristics. All matheuristics include the resolution of a
new hybrid model. The first one (H1) iteratively solves the developed
new hybrid model. The remaining two, are versions of a two–phase
matheuristic, that also uses GIS to assign tasks to layers in zones, one
per vehicle, in the first phase. The hybrid model is then run in the
second phase, assigning tasks differently in the two matheuristics (H2
and H3).

Instances for the Seixal waste collections problem are derived from
six networks, with different dimensions. The quality of the generated
solutions was assessed through both the total time (the objective value)
and attractiveness measures, including a newly proposed one. The
developed hybrid model simultaneously provided optimal solutions for
small instances and good quality lower bounds.

Matheuristic H1, usually found better gap values sacrificing the
values of attractiveness measures, as expected. The increase in average
gap values from H1 to H2, corresponded to a decrease in average values
for all attractiveness measures. Moreover, H1 failed to find feasible
solutions for larger instances, which was not the case for H2, that was
also able to produce results for all instances in smaller computation
times.

The final option, among the two-phase matheuristics, points again
to H2. The results generated from H2 and H3(r) (r = 1, 2, 3) may
13

be considered very similar for both gap values and attractiveness
measures, within identical computation times. H3(r), using different
rules to release the assignment of some tasks for the second phase, also
failed to find feasible solutions for the larger instances.

The generated trips are still to be tested in practice, which will be
hopefully done in a restricted zone in the near future.

This work indicates the advantage of using a hybrid model embed-
ded in a two-phase matheuristic. Future research could explore how
to draw on GIS more often during the methodology, in order to not
only better repair attractiveness values but also to better explore the
hybrid model’s capabilities. Additionally, some future work relating the
attractiveness measures work could also be pursued.
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