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Abstract

We study the insurer’s adjustment coefficient as a function of retention levels for combinations of quota-share with excess of
loss reinsurance in the Sparre Anderson model [In: Transactions of the XV International Congress of Actuaries]. We show that
the insurer’s adjustment coefficient is a unimodal function of the retention levels when the quota-share reinsurance premium
is calculated on original terms and when the excess of loss premium is calculated according to the expected value principle.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Several studies about the effect of reinsurance on the ultimate probability of ruin (for example Waters, 1979;
Gerber, 1979; Waters, 1983; Centeno, 1986; Hesselager, 1990) have concentrated their attention on the effect of
reinsurance on the adjustment coefficient (or Lundberg exponent).

Waters (1983) proved that the adjustment coefficient is a unimodal function of the retention level in case of
proportional reinsurance, without any restrictive assumptions on the distribution of the annual claims. He also
investigated non-proportional reinsurance. He proved that the adjustment coefficient is a unimodal function of the
retention limit for excess of loss reinsurance, assuming that the reinsurance premium calculation principle is the
expected value principle, and that the annual claims have a compound Poisson distribution. These two assumptions
are also assumed in the other cited papers, namely in Centeno (1986), where combinations of quota-share with
excess of loss were considered.

In this paper, we study the adjustment coefficient as a function of the retention levels for combinations of
quota-share with excess of loss reinsurance, generalising some of the results of Centeno (1986), when the number
of claims are described by an ordinary renewal process. We prove that the adjustment coefficient is a unimodal
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function of the retention levels when the quota-share premium is calculated on original terms with a commission
and the excess of loss premium calculation principle used is the expected value principle.

2. Assumptions and preliminaries

We assume that the number of claims{N(t)}t≥0 follows an ordinary renewal process, i.e. the number of claims,
N(t), that occur in the time interval(0, t ] can be written as

N(t) = sup{n : Sn ≤ t} (1)

with S0 = 0, Sn = T1 + T2 + · · · + Tn for n ≥ 1, where{Ti}∞i=1 are independent and identically distributed
non-negative random variables.Sn denotes the epoch of thenth claim andTi is the time between thei − 1th and
theith claim. Let the expected value ofTi be 1/γ .

Let {Xi}∞i=1 be a sequence of independent and identically distributed random variables, independent of{Ti}∞i=1,
whereXi denotes the amount of theith claim. We assume that:F , the distribution function ofXi , is such that
F(0) = 0, so that negative claims are not possible; 0< F(x) < 1 for 0 < x < +∞ (these assumptions
could be relaxed); dF(x)/dx exists and is continuous; the moment generating function ofF(x), MX(r), exists for
r ∈ (−∞, τ ) for some 0< τ ≤ +∞ and

lim
r→τ

MX(r) = lim
r→τ

E[erX] = +∞. (2)

Letµ be the expected value ofXi .
The risk process{Y (t)}t≥0 is defined by

Y (t) = (1 − e)Pt −
N(t)∑
i=1

Xi

(
0∑

i=1

Xi
def=0

)
, (3)

whereP is the insurer’s premium income per unit of time andeP is the amount used to cover the insurer’s
expenses.

Yi = −[Y (Si) − Y (Si−1)] = Xi − (1 − e)PTi . (4)

Obviously,{Yi}∞i=1 is a sequence of independent and identically distributed random variables. The expected loss
between two claims is

E[Yi ] = E[Xi ] − (1 − e)PE[Ti ] = µ − (1 − e)P

γ
, (5)

and it is natural to define the relative safety loading by

ρ = ((1 − e)P/γ ) − µ

µ
= (1 − e)P

γµ
− 1. (6)

We assume thatρ > 0. LetZ0 = 0 andZn = ∑n
i=1Yi , be the loss immediately after thenth claim. As ruin can

only occur at claim epochs the ultimate ruin probabilityψ(u), for initial surplusu ≥ 0, is

ψ(u) = Pr{u + Y (t) < 0 for some t > 0} = Pr

{
max
n≥1

Zn > u

}
. (7)

Let

g(r) = MYi (r) = E[erYi ] = E[er(Xi−(1−e)PTi )] = E[erX]E[e−r(1−e)PT], (8)
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whereX andT have the same distribution asXi andTi , respectively. The adjustment coefficientR is, in the renewal
case, the unique positive solution of

g(r) = 1, (9)

when such a root exists, or zero otherwise, and Lundberg’s inequality

ψ(u) ≤ e−Ru (10)

is still valid (note that this inequality has to be modified for the stationary renewal case). Lundberg’s inequality
in the ordinary renewal case was first proved by Sparre Anderson (1957) and can be proved using a martingale
approach. See Grandell (1991).

Let us consider that the insurer has a choice of reinsuring this risk either by a pure quota-share treaty, or
by a pure excess of loss treaty or by any combination of quota-share with excess of loss formed, as follows.
First, the insurer chooses a quota-share retention level, which we denotea, paying a premium calculated on
a proportional basis with a commission payment (see Carter, 1979, p. 87). More precisely, for retention level
a, the insurer pays the reinsurance premium(1 − a)P less a commissionc(1 − a)P . Secondly, the insurer
chooses an excess of loss retention limitM, so that, when a claim of sizeX occurs, the insurer retains
Xa,M = min(aX,M) and transfers to the reinsurer through this arrangementX − Xa,M = max
(0,aX − M). In return for this arrangement the insurer pays a reinsurance premium, which we assume to be
calculated according to the expected value principle, with loading coefficientα > 0. We assume that

e > c, (11)

(1 − e)P − (1 + α)γµ < 0, (12)

which implies that the insurer cannot reinsurer the whole risk with a certain profit.
After this reinsurance arrangement the insurer’s net (of expenses and reinsurance) risk at timet is

Ya,M(t) = ((1 − e)P − Pa,M)t −
N(t)∑
i=1

min(aXi ,M), (13)

wherePa,M , the reinsurance premium, is

Pa,M = (1 − c)(1 − a)P + (1 + α)γ

∫ ∞

M/a

(ax− M)dF(x). (14)

For given(a,M), the adjustment coefficient,Ra,M , is now the unique positive root of

ga,M(r) = 1, (15)

when such a root exists, or zero otherwise, with

ga,M(r) = E[erXa,M ]E[e−((1−e)P−Pa,M)rT]. (16)

Let E[W(a,M)] denote the insurer’s expected net profit per period of time, after reinsurance and expenses,
i.e.

E[W(a,M)] = (1 − e)P − Pa,M − γE[Xa,M ].

LetL be the set of points for which the insurer’s net expected profit is positive, i.e.

L = {(a,M) : 0 ≤ a ≤ 1,M ≥ 0 and E[W(a,M)] > 0}, (17)
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and let

χa,M(r) = lnE[erXa,M ], κ(r) = lnE[e−rT],

Ha,M(r) = ln(ga,M(r)) = χa,M(r) + κ(((1 − e)P − Pa,M)r). (18)

Lemma 1.

1. The adjustment coefficient is positive if and only if(a,M) ∈ L.
2. For any(a,M) ∈ L, H ′

a,M(r) is positive atr = Ra,M .

Proof.

1. Let us consider that(a,M) is fixed. Differentiatingχa,M(r) andκ(r), we get

χ ′
a,M(r) = E[Xa,M erXa,M ]

E[erXa,M ]
, (19)

χ ′′
a,M(r) = E[X2

a,M erXa,M ]

E[erXa,M ]
−
(
E[Xa,M erXa,M ]

E[erXa,M ]

)2

, (20)

κ ′(r) = −E[T e−rT]

E[e−rT]
, (21)

κ ′′(r) = E[T 2 e−rT]

E[e−rT]
−
(
E[T e−rT]

E[e−rT]

)2

. (22)

The functionsχa,M(r) andκ(r) are both convex functions ofr. This follows becauseχ ′′
a,M(r) andκ ′′(r) are the

variances of two Esscher transforms (the Esscher transforms of the distributions of the random variablesXa,M

andT , respectively). Hence for fixed(a,M), Ha,M(r) is a convex function ofr and

H ′
a,M(r)= χ ′

a,M(r) + ((1 − e)P − Pa,M)κ ′(((1 − e)P − Pa,M)r)

= E[Xa,M erXa,M ]

E[erXa,M ]
− ((1 − e)P − Pa,M)E[T e−r((1−e)P−Pa,M)T ]

E[e−r((1−e)P−Pa,M)T ]
. (23)

Let

ξ =
{+∞ if M < +∞,

τ if M = +∞,

whereM = +∞ means no excess of loss reinsurance. Noticing that

Ha,M(0) = 0,

lim
r→ξ

Ha,M(r) = +∞, (24)

and given the convexity ofHa,M(r) we can say that the adjustment coefficient is positive if and only if

H ′
a,M(0) < 0. (25)
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But by calculating (23) atr = 0, we get that (25) is equivalent to

E[Xa,M ] − (1 − e)P − Pa,M

γ
< 0, (26)

and the first part of the lemma is proved.
2. The second part of the lemma follows from the proof of 1. �
Note that the above proof does not depend on the reinsurance premium calculation principles used for both the
arrangements.

Let

a0 = (e − c)P

(1 − c)P − γE[X]
, (27)

A = {a : 0 < a ≤ 1 and there exists anM such thatE[W(a,M)] = 0}. (28)

The proof of the following lemma can be seen in Centeno (1985).

Lemma 2. Under our assumptions on the reinsurance premiumPa,M ,

1. A = (a0,1].
2. For eacha ∈ A there is a unique M such thatE[W(a,M)] = 0, i.e. there is a functionΦ mapping A into(0,∞)

such thatM = Φ(a) is equivalent toE[W(a,M)] = 0.
3. Φ(a) is convex.
4. Lima→a0Φ(a) = +∞.

Hence the first part of Lemma 1 is equivalent to saying that the adjustment coefficient is positive if and only if
a > a0 andM > Φ(a).

3. The adjustment coefficient as a function of the retention levels

Result 1.

1. For a fixed value ofa ∈ (a0,1], Ra,M is a unimodal function ofM, attaining its maximum value at the only
point satisfying

M = 1

Ra,M

(
ln(1 + α) + ln

(
γ
E[T e−Ra,M((1−e)P−Pa,M)T ]

E2[e−Ra,M((1−e)P−Pa,M)T ]

))
, (29)

whereRa,M is the only positive solution of (15). Let̂Ra be the maximum ofRa,M .
2. R̂a is a unimodal function ofa, for a ∈ (a0,1], attaining its maximum value ata = 1, if and only if

lim
a→1−

d

da
R̂a ≥ 0.

Proof.

1. The adjustment coefficient,Ra,M , is, for fixeda ∈ (a0,1] andM > Φ(a), the only positive root of (15) or in an
equivalent way the only positive root of

Ha,M(r) = 0. (30)
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Let us consider nowRa,M as a function of(a,M) ∈ L. From the implicit function theorem it follows that

∂

∂M
Ra,M = − (∂/∂M)Ha,M(r)

(∂/∂r)Ha,M(r)

∣∣∣∣
r=Ra,M

. (31)

By Lemma 1 we know that the denominator of the right-hand side of (31) is positive, so∂Ra,M/∂M = 0 if and
only if ∂HM(r)/∂M|r=Ra,M

= 0.
Considering that

∂

∂M
E[erXa,M ] = r erM

(
1 − F

(
M

a

))
(32)

and that

∂

∂M
E[e−((1−e)P−Pa,M)rT] = −r(1 + α)γ

(
1 − F

(
M

a

))
E[T e−((1−e)P−Pa,M)rT], (33)

it follows that

∂Ha,M(r)

∂M
= r(1 − F(M/a))

E[erXa,M ]E[e−((1−e)P−Pa,M)rT]

×{erME[e−((1−e)P−Pa,M)rT] − (1 + α)γE[T e−((1−e)P−Pa,M)rT]E[erXa,M ]}. (34)

Hence∂Ha,M(r)/∂M|r=Ra,M
= 0 is equivalent, for finiteM, to

eRa,MME[e−((1−e)P−Pa,M)Ra,MT ] = (1 + α)γE[T e−((1−e)P−Pa,M)Ra,MT ]E[eRa,MXa,M ], (35)

which is, given the definition ofRa,M equivalent to

eRa,MME2[e−((1−e)P−Pa,M)Ra,MT ] = (1 + α)γE[T e−((1−e)P−Pa,M)Ra,MT ] (36)

from where (29) follows.
Calculating the second derivative with respect toM of Ra,M , at the points where the first derivative is null,

we get

∂2

∂M2
Ra,M

∣∣∣∣
(∂/∂M)Ra,M=0

= − (∂2/∂M2)Ha,M(r)

(∂/∂r)Ha,M(r)

∣∣∣∣
r=Ra,M,(∂/∂M)Ra,M=0

. (37)

But the denominator in (37) is positive by Lemma 1, and (note that the denominator of (34) is 1 forr = Ra,M)

∂2

∂M2
Ha,M(r)

∣∣∣∣
r=Ra,M,(∂/∂M)Ra,M=0

= R2
a,M

(
1 − F

(
M

a

))
AM(Ra,M)

∣∣∣∣
(∂/∂M)Ra,M=0

, (38)

where

AM(Ra,M)

= eRa,MM

{
E[e−((1−e)P−Pa,M)Ra,MT ] − 2(1 + α)γ

(
1 − F

(
M

a

))
E[T e−((1−e)P−Pa,M)Ra,MT ]

}

+(1 + α)2γ 2
(

1 − F

(
M

a

))
E[T 2 e−((1−e)P−Pa,M)Ra,MT ]E[eRa,MXa,M ].
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But considering that(∂/∂M)Ra,M = 0 whenever (35) holds we get

AM(Ra,M)|(∂/∂M)Ra,M=0 = (1 + α)γE[T e−((1−e)P−Pa,M)Ra,MT ]
∫ M/a

0
eRa,Max dF(x)

+(1 + α)2γ 2
(

1 − F

(
M

a

))
κ ′′(((1 − e)P − Pa,M)Ra,M) (39)

with κ ′′ given by (22) (which is strictly positive as we have seen), and hence (39) is strictly positive. Hence
the second derivative with respect toM of Ra,M is negative whenever the first derivative is zero, which im-
plies that for fixeda ∈ (a0,1], Ra,M has at most one turning point, and that when such a point exists it is a
maximum. The maximum will exist (and it will be finite) if we can guarantee that there is a finite solution to
Eq. (36).

For fixeda ∈ (a0,1], let

Da,M(Ra,M) = eRa,MME2[e−((1−e)P−Pa,M)Ra,MT ] − (1 + α)γE[T e−((1−e)P−Pa,M)Ra,MT ]. (40)

Noticing that limM→Φ(a)Ra,M = 0 (the expected profit is zero at(a,Φ(a))), we get

lim
M→Φ(a),Ra,M→0

Da,M(Ra,M) = −α,

which is negative, and

lim
M→+∞,R→Ra,+∞

Da,M(Ra,M) = +∞,

becauseRa,+∞ exists given our assumptions (it is the adjustment coefficient before the excess of loss reinsurance
takes place). Hence, for fixeda ∈ (a0,1], there must exist at least one solution to (36). But we have already
proved that if such a root exists it must be unique.

Note that in the classical model, i.e. whenT has an exponential distribution,

γ
E[T e−((1−e)P−Pa,M)Ra,MT ]

E2[e−((1−e)P−Pa,M)Ra,MT ]
= 1,

and (29) is equivalent toM = (1/Ra,M) ln(1 + α), as is well known.
We have proved that, for fixeda ∈ (a0,1], Ra,M , is a unimodal function ofM, and that the maximum is

attained at the unique finite solution of

Da,M(Ra,M) = 0 (41)

with Da,M(Ra,M) given by (40). Eq. (41) definesM as a function ofa. Let it beΥ (a). Let R̂a = Ra,Υ (a).
2. Calculating the derivative of both sides of (30) atM = Υ (a) andr = R̂a we get

d

da
R̂a = − (∂Ha,M(r)/∂a)

(∂Ha,M(r)/∂r)

∣∣∣∣
M=Υ (a);r=R̂a

(42)

d2

da2
R̂a

∣∣∣∣
(d/da)R̂a=0

= − (∂2Ha,M(r)/∂a2)(∂2Ha,M(r)/∂M2) − (∂2Ha,M(r)/∂a∂M)2

(∂2Ha,M(r)/∂M2)(∂Ha,M(r)/∂r)

∣∣∣∣
M=Υ (a);r=R̂a;(d/da)R̂a=0

. (43)
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We have already shown in part 1 that∂2Ha,M(r)/∂M2 calculated atM = Υ (a) andr = R̂a is positive and
by Lemma 1,∂Ha,M(r)/∂r calculated at the same point is also positive. Hence, we can conclude that (43) is
negative, if and only if

∂2Ha,M(r)

∂a2

∂2Ha,M(r)

∂M2
−
(
∂2Ha,M(r)

∂a∂M

)2
∣∣∣∣∣
r=Ra,M ;(∂/∂a)Ha,M(r)=0;(∂/∂M)Ha,M(r)=0

(44)

is positive.
Noticing that

∂

∂a
E[erXa,M ] = r

∫ M/a

0
x erax dF(x) (45)

and that
∂

∂a
E[e−((1−e)P−Pa,M)rT] = r

[
−(1 − c)P + (1 + α)γ

∫ ∞

M/a

x dF(x)

]
E[T e−((1−e)P−Pa,M)rT], (46)

we can say that (42) is zero, if and only if

∂

∂a
Ha,M(r)

∣∣∣∣
r=Ra,M ;(∂/∂M)Ha,M(r)=0

= E[e−((1−e)P−Pa,M)rT]
∂

∂a
E[erXa,M ] + E[erXa,M ]

∂

∂a
E[e−((1−e)P−Pa,M)rT]

∣∣∣∣
r=Ra,M ;(∂/∂M)Ha,M(r)=0

(47)

is zero, which is to say that

∂

∂a
E[e−((1−e)P−Pa,M)rT] = −E2[e−((1−e)P−Pa,M)rT]

∂

∂a
E[erXa,M ]

∣∣∣∣
r=Ra,M ;(∂/∂M)Ha,M(r)=0

. (48)

Calculating

∂2

∂a2
E[erXa,M ] = r2

∫ M/a

0
x2 erax dF(x) − r

M2

a3
erMf

(
M

a

)
, (49)

wheref (x) = dF(x)/dx, and

∂2

∂a2
E[e−((1−e)P−Pa,M)rT] = r2E[T 2 e−((1−e)P−Pa,M)rT]

[
−(1 − c)P + (1 + α)γ

∫ ∞

M/a

x dF(x)

]2

+ r(1 + α)γ
M2

a3
f

(
M

a

)
E[T e−((1−e)P−Pa,M)rT], (50)

we get that (considering (48))

∂2

∂a2
Ha,M(r)

∣∣∣∣
r=Ra,M ;(∂/∂a)Ha,M(r)=0;(∂/∂M)Ha,M(r)=0

= r2E[e−((1−e)P−Pa,M)rT]
∫ M/a

0
x2 erax dF(x) + r2

[
−(1 − c)P + (1 + α)γ

∫ ∞

M/a

x dF(x)

]2

×E[T 2 e−((1−e)P−Pa,M)rT]E[erXa,M ] − 2r2E2[e−((1−e)P−Pa,M)rT]

×
(∫ M/a

0
x erax dF(x)

)2
∣∣∣∣∣
r=Ra,M ;(∂/∂a)Ha,M(r)=0;(∂/∂M)Ha,M(r)=0

(51)
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which having in mind (48) and after some manipulation is equivalent to

∂2

∂a2
Ha,M(r)

∣∣∣∣
r=Ra,M ;(∂/∂a)Ha,M(r)=0;(∂/∂M)Ha,M(r)=0

= r2E2[e−((1−e)P−Pa,M)rT] erM
(

1 − F

(
M

a

))∫ M/a

0
x2 erax dF(x)

+ r2 E4[e−((1−e)P−Pa,M)rT]

E2[T e−((1−e)P−Pa,M)rT]

(∫ M/a

0
x erax dF(x)

)2

κ ′′(((1 − e)P − Pa,M)r)

+ r2E2[e−((1−e)P−Pa,M)rT]

(∫ M/a

0
erax dF(x)

)2

κa,M(r)

∣∣∣∣∣
r=Ra,M ;(∂/∂a)Ha,M(r)=0;(∂/∂M)Ha,M(r)=0

(52)

with κ ′′ given by (22) and

κa,M(r) =
∫M/a

0 x2 erax dF(x)∫M/a

0 erax dF(x)
−
(∫M/a

0 x erax dF(x)∫M/a

0 erax dF(x)

)2

, (53)

which are positive (they are both the variances of Esscher transforms), and hence (52) is positive.
Differentiating now∂Ha,M(r)/∂M with respect toa, at the points where the first derivatives are zero, we

get

∂2

∂a∂M
Ha,M(r)

∣∣∣∣
r=Ra,M ;(∂/∂a)Ha,M(r)=0;(∂/∂M)Ha,M(r)=0

= r2(1 + α)γ (1 − F(M/a))
∫M/a

0 x erax dF(x)

E[T e−((1−e)P−Pa,M)rT]
{E[e−((1−e)P−Pa,M)rT]E[T 2 e−((1−e)P−Pa,M)rT]

− 2E2[T e−((1−e)P−Pa,M)rT]}
∣∣∣
r=Ra,M ;(∂/∂a)Ha,M(r)=0;(∂/∂M)Ha,M(r)=0

= r2(1 + α)γ

(
1 − F

(
M

a

))
E2[e−((1−e)P−Pa,M)rT]

E[T e−((1−e)P−Pa,M)rT]

∫ M/a

0
x erax dF(x)κ ′′(((1 − e)P − Pa,M)r)

− r2(1 + α)γ

(
1 − F

(
M

a

))
E[T e−((1−e)P−Pa,M)rT]

×
∫ M/a

0
x erax dF(x)

∣∣∣∣
r=Ra,M ;(∂/∂a)Ha,M(r)=0;(∂/∂M)Ha,M(r)=0

. (54)



46 M.L. Centeno / Insurance: Mathematics and Economics 30 (2002) 37–49

Hence

∂2Ha,M(r)

∂a2

∂2Ha,M(r)

∂M2
−
(
∂2Ha,M(r)

∂a∂M

)2
∣∣∣∣∣
r=Ra,M ;(∂/∂a)Ha,M(r)=0;(∂/∂M)Ha,M(r)=0

=
{
r2
(

1 − F

(
M

a

))
erME2[e−((1−e)P−Pa,M)rT]

∫ M/a

0
x2 erax dF(x)

+ r2 E4[e−((1−e)P−Pa,M)rT]

E2[T e−((1−e)P−Pa,M)rT]

(∫ M/a

0
x erax dF(x)

)2

κ ′′(((1 − e)P − Pa,M)r)

× + r2E2[e−((1−e)P−Pa,M)rT]

(∫ M/a

0
erax dF(x)

)2

κa,M(r)

}

×
{
r2(1 + α)γ

(
1 − F

(
M

a

))
E[T e−((1−e)P−Pa,M)rT]

∫ M/a

0
erax dF(x)

+ r2(1 + α)2γ 2
(

1 − F

(
M

a

))2

κ ′′(((1 − e)P − Pa,M)r)

}
− r4(1 + α)2γ 2

(
1 − F

(
M

a

))2

×
(

E2[e−((1−e)P−Pa,M)rT]

E[T e−((1−e)P−Pa,M)rT]

∫ M/a

0
x erax dF(x)κ ′′(((1 − e)P − Pa,M)r)

− E[T e−((1−e)P−Pa,M)rT]
∫ M/a

0
x erax dF(x)

)2
∣∣∣∣∣
r=Ra,M ;(∂/∂a)Ha,M(r)=0;(∂/∂M)Ha,M(r)=0

. (55)

Note that there are only two negative terms in the development of (55). The terms in(κ ′′)2 cancel, and the sum
of the first with the last term, having (36) in consideration, is equal to

r4(1 + α)2γ 2
(

1 − F

(
M

a

))2

E2[T e−((1−e)P−Pa,M)rT]

[∫ M/a

0
x2 erax dF(x)

∫ M/a

0
erax dF(x)

−
(∫ M/a

0
x erax dF(x)

)2]∣∣∣∣∣
r=Ra,M ;(∂/∂a)Ha,M(r)=0;(∂/∂M)Ha,M(r)=0

= r4(1 + α)2γ 2
(

1 − F

(
M

a

))2

E2[T e−((1−e)P−Pa,M)rT]

×
(∫ M/a

0
erax dF(x)

)2

κa,M(r)

∣∣∣∣∣
r=Ra,M ;(∂/∂a)Ha,M(r)=0;(∂/∂M)Ha,M(r)=0

, (56)

with κa,M(r) given by (53), which is positive. Hence (55) is positive.
On the other hand, whena → a0, R̂a goes to zero and we can say that the maximum ofR̂a is 1, if and only if

lim
a→1−

d

da
R̂a ≥ 0,

and the Result is proved. �
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Corollary 1.

1. If

(1 − c)P ≥ (1 + α)γ

(∫ ∞

Υ (1)
x dF(x) +

∫ Υ (1)

0
x eR1,Υ (1)(x−Υ (1)) dF(x)

)
, (57)

where(r,M) = (R1,Υ (1), Υ (1)) is the only solution to

E[erX1,M ]E[e−((1−e)P−P1,M)rT] = 1, M = 1

r

(
ln(1 + α) + ln

(
γ
E[T e−r((1−e)P−P1,M)T ]

E2[e−r((1−e)P−P1,M)T ]

))
, (58)

Ra,M attains its maximum value at(a∗,M∗) = (1, Υ (1)).
2. If (57)does not hold, then the pair(a∗,M∗) which maximisesRa,M is such that(r, a,M) is the solution to

E[erXa,M ]E[e−((1−e)P−Pa,M)rT] = 1, M = 1

r

(
ln(1 + α) + ln

(
γ
E[T e−r((1−e)P−Pa,M)T ]

E2[e−r((1−e)P−Pa,M)T ]

))
,

(1 + α)γ

(∫ ∞

M/a

x dF(x) +
∫ M/a

0
x eRa,M(ax−M) dF(x)

)
= (1 − c)P . (59)

Proof. We only have to consider (42) and (47) and thatM = Υ (a) satisfies (29). �

Corollary 2. If (1 − c)P ≥ (1 + α)γE[X], thenRa,M attains its maximum value at(a∗,M∗) = (1, Υ (1)).

Proof. We only have to notice that in that case

(1 − c)P − (1 + α)γ

(∫ ∞

Υ (1)
x dF(x) +

∫ Υ (1)

0
x eR1,Υ (1)(x−Υ (1)) dF(x)

)

≥ (1 + α)γ

(∫ Υ (1)

0
x(1 − eR1,Υ (1)(x−Υ (1)))dF(x)

)
≥ 0. �

Note that this corollary just means that if quota-share is at least as expensive as excess of loss (for the reinsurance
of the whole risk), then excess of loss is optimal.

4. Examples

Example 1. Let the individual claim amount distribution be Pareto(2,1), i.e.F(x) = 1−1/(1+x)2, x > 0, so that
E[X] = 1. Let P = 1.6, e = 0.3, c = 0.2 andα = 0.8. We shall consider that the inter arrival times have mean 1,
i.e. γ = 1. For these data the condition in Corollary 2 is not satisfied, i.e. quota-share is not, in the obvious sense,
cheaper than excess of loss. We consider that the inter arrival timeT is Gamma(n, β) distributed, i.e. with density
function given by

p(t) = βn

Γ (n)
e−βt tn−1, t > 0.

For a Gamma(n, β) we have,

γ
E[T e−sT]

E2[e−sT]
=
(
β + s

β

)n−1

,
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Fig. 1.R as a function of(a, Υ (a)); c = 0.2; α = 0.8.

and hence (29) is equivalent to

M = 1

Ra,M

(
ln(1 + α) + (n − 1) ln

(
β + ((1 − e)P − Pa,M)Ra,M

β

))
. (60)

We shall consider three different situations:(n, β) equal, respectively, to (0.5,0.5), (1,1) (the classical model)
and (2,2). Fig. 1 shows the adjustment coefficient as a function of the retention levela, and the excess of loss

Fig. 2.R as a function ofM for a = 1.
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Fig. 3.R as a function of(a, Υ (a)); c = 0.25;α = 1.2.

limit M calculated according to (60). As we can see the optimal quota-share level isa = 1, for the three sit-
uations. The optimal excess of loss retention limit is 19.4524, 16.9804 and 15.6673 for the Gamma(0.5,0.5),
Gamma(1,1) and Gamma(2,2), respectively, and the adjustment coefficient is equal to 0.0287357, 0.0346157
and 0.0387563, respectively. Fig. 2 shows the adjustment coefficient as a function ofM when
a = 1.

Example 2. All the information as in the previous example, with the following two exceptions:c = 0.25 and
α = 1.2.

Fig. 3 is the analogue to Fig. 1. In this case, the optimum is a mixture of quota-share with excess of loss,
namely(a,M) equal to (0.90215, 31.18843), (0.92791, 27.66260) and (0.94610, 25.82807) for the Gamma(0.5,0.5),
Gamma(1,1) and Gamma(2,2), respectively.

As we would expect, for both examples, from the three inter arrival time distributions, the Gamma(0.5,0.5) induces
smaller values for the adjustment coefficient, followed by the exponential.
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