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Abstract

Assuming that the reinsurance premium is calculated according to the expected value principle we study an upper bound for
the probability of ruin in finite horizon, as function of the excess of loss retention limit. The upper bound used is an extension
proved by Grandell [Aspects of Risk Theory, Springer, New York, 1991] of Gerber’s bound, see Gerber [Martingales in
risk theory, Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker, 1973, pp. 205–216], for the Sparre
Anderson model [On the collective theory of risk in the case of contagious between the claims, in: Proceedings of the
Transactions on XV International Congress of Actuaries, New York, 1957].
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1. Introduction

Centeno (2002)studied the insurer’s adjustment coefficient as function of retention levels for combinations of
quota-share with excess of loss reinsurance in the Sparre Anderson model, generalizing some of the results of
Centeno (1986). It was shown that the insurer’s adjustment coefficient is a unimodal function of the retention
levels when the quota-share reinsurance premium is calculated on original terms and the excess of loss premium is
calculated according to the expected value principle.

In this paper we confine the study to excess of loss reinsurance, again when the number of claims is described
by an ordinary renewal process. An upper bound for finite time ruin probability is considered as a function of the
retention, generalizing the study byCenteno (1987)to the non-classical situation.

2. Assumptions and preliminaries

We assume that the number of claims{N(t)}t≥0 follows an ordinary renewal process, i.e. the number of claims,
N(t), that occur in the time interval(0, t ] can be written as

N(t) = sup{n : Sn ≤ t} (1)
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with S0 = 0, Sn = T1 + T2 + · · · + Tn for n ≥ 1, where{Ti}∞i=1 are independent and identically distributed
non-negative random variables.Sn denotes the epoch of thenth claim andTi is the time between the(i − 1)th and
theith claim. Let the expected value ofTi be 1/γ .

Let {Xi}∞i=1 be a sequence of independent and identically distributed random variables, independent of{Ti}∞i=1,
whereXi denotes the amount of theith claim. We assume thatF , the distribution function ofXi , is such that
F(0) = 0, so that negative claims are not possible; that 0< F(x) < 1 for 0< x < +∞ (this assumption could be
relaxed); that dF(x)/dx exists and is continuous; that the moment generating function ofF(x),MX(r), exists for
r ∈ (−∞, τ ) for some 0< τ ≤ +∞ and that

lim
r→τ

MX(r) = lim
r→τ

E[erX] = +∞. (2)

Letµ be the expected value ofXi .
The risk process{Y (t)}t≥0, is defined by

Y (t) = ct −
N(t)∑
i=1

Xi,

(
0∑
i=1

Xi
def=0

)
, (3)

wherec—the insurer’s premium income per unit of time—is a positive constant. The loss between two claims is
Yi = Xi − cTi , and the relative safety loading is

ρ = (c/γ )− µ

µ
= c

γµ
− 1. (4)

We assume thatρ > 0.
Let

g(r) = MYi (r) = E[erYi ] = E[erX]E[e−rcT], (5)

whereX andT have the same distribution thanXi andTi , respectively. The adjustment coefficientR is, in the
renewal case, the unique positive solution of

g(r) = 1, (6)

when such a root exists, or zero otherwise, and the Lundberg’s inequality

ψ(u) ≤ e−Ru (7)

is still valid (this inequality has to be modified for the stationary renewal case). Lundberg’s inequality in the ordinary
renewal case was first proved bySparre Anderson (1957)and can be found using a martingale approach inGrandell
(1991).

Grandell (1991, pp. 145–148)generalizes Gerber’s upper bound for the probability of ruin in finite horizon for
the ordinary renewal case (seeGerber (1973)or Gerber (1979, p. 139)). He shows that

ψ(u, t) ≤ exp

(
min
r≥R

(−ur + tθ(r))

)
, (8)

whereθ(r) is, for eachr ≥ 0, the solution to

E[erX]E[e−(cr+θ)T ] = 1. (9)

Note thatθ(R) = 0.
Let us consider that the insurer is willing to reinsure this risk by means of an excess of loss arrangement, with

retention limitM, i.e. when a claim of sizeX occurs the insurer is responsible forXM = min(X,M) and the
reinsurer byX −XM = max(0, X −M). Hence the insurer net (of reinsurance) risk at timet is

YM(t) = (c − cM)t −
N(t)∑
i=1

min(Xi,M), (10)
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wherecM is the excess of loss reinsurer premium. For a givenM, the adjustment coefficient,RM , is now the unique
positive root of

gM(r) = 1, (11)

when such a root exists, or zero otherwise, with

gM(r) = E[erXM ]E[e−(c−cM)rT]. (12)

The upper bound for the insurer’s probability of ruin in finite horizon, after reinsurance, is

ψM(u, t) ≤ exp

(
min
r≥RM

fM(r; u, t)
)
, (13)

where

fM(r; u, t) = −ur + tθM(r) (14)

andθM(r) is the only root to

E[erXM ]E[e−((c−cM)r+θM(r))T ] = 1. (15)

The insurer’s expected net profit per period of time is(c− cM)− γE[XM ]. LetL be the set of points for which the
insurer’s net expected profit is positive, i.e.

L = {M : M ≥ 0 and (c − cM)− γE[XM ] > 0}. (16)

Let

χM(r) = ln E[erXM ] (17)

and

κ(s) = ln E[e−sT]. (18)

Lemma 1.

(i) The adjustment coefficient is positive if and only ifM ∈ L.
(ii) For anyM > 0,θM(r) is a convex function of r,θM(0) = θM(RM) = 0, limr→∞θM(r) = +∞, limr→∞θM(r)/r =

+∞, (∂/∂r)θM(0) = γE[XM ] − (c − cM) and for anyr ≥ 0, (c − cM)r + θM(r) ≥ 0.

Proof.

(i) See Lemma 1 inCenteno (2002).
(ii) (15) is equivalent to

χM(r)+ κ((c − cM)r + θM(r)) = 0. (19)

Differentiating(19)with respect tor, and using(15)we get

∂

∂r
θM(r) = E[XM erXM ]

E2[e−((c−cM)r+θM(r))T ]

E[T e−((c−cM)r+θM(r))T ]
− (c − cM) (20)

from where (again using(15))
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∂2

∂r2
θM(r)=E[X2

M erXM ]
E2[e−((c−cM)r+θM(r))T ]

E[T e−((c−cM)r+θM(r))T ]
− 2E2[XM erXM ]

E3[e−((c−cM)r+θM(r))T ]

E[T e−((c−cM)r+θM(r))T ]

+E2[XM erXM ]
E4[e−((c−cM)r+θM(r))T ]

E3[T e−((c−cM)r+θM(r))T ]
E[T 2 e−((c−cM)r+θM(r))T ]

= E[e−((c−cM)r+θM(r))T ]

E[T e−((c−cM)r+θM(r))T ]

[
E[X2

M erXM ]

E[erXM ]
−
(
E[XM erXM ]

E[erXM ]

)2
]

+E2[XM erXM ]
E5[e−((c−cM)r+θM(r))T ]

E3[T e−((c−cM)r+θM(r))T ]

×

E[T 2 e−((c−cM)r+θM(r))T ]

E[e−((c−cM)r+θM(r))T ]
−
(
E[T e−((c−cM)r+θM(r))T ]

E[e−((c−cM)r+θM(r))T ]

)2

 (21)

which is positive, i.e.θM(r) is convex, because

χ ′′
M(r) =

[
E[X2

M erXM ]

E[erXM ]
−
(
E[XM erXM ]

E[erXM ]

)2
]

(22)

and

κ ′′(s) = E[T 2 e−sT]

E[e−sT]
−
(
E[T e−sT]

E[e−sT]

)2

(23)

are both variances of Esscher transforms.
Noticing thatθM(0) = 0, then(∂/∂r)θM(0) = γE[XM ] − (c − cM) (which is negative for anyM ∈ L).

That limr→+∞θM(r) = +∞ and limr→+∞θM(r)/r = +∞ follows from the fact thatθM(0) = θM(RM) = 0
and thatθM(r) is convex.

It follows from (15) thatE[e−((c−cM)r+θM(r))T ] ≤ 1. Given the convexity ofκ(s) and applying Jensen’s
inequality we have

1 ≥ E[e−((c−cM)r+θM(r))T ] ≥ exp[E(−((c − cM)r + θM(r))T )] = exp

[
− (c − cM)r + θM(r)

γ

]

which implies that(c − cM)r + θM(r) ≥ 0. �

As it is well known, seeWaters (1983), the adjustment coefficient, for the classical model, is a unimodal function
of the excess of loss retention limit, when the reinsurance premium is calculated according to the expected value
principle, but this is not necessarily the case with other premium principles. Hence in what follows we will assume
that the reinsurance premium is calculated according to the expected value principle, i.e.

cM = (1 + α)γ

∫ ∞

M

(1 − F(x))dx. (24)

We also assume that

α > ρ, (25)

so that the insurer cannot reinsurer the hole risk with a certain profit. Note that under this assumptions there exists
a positiveM0 such thatM ∈ L if and only ifM > M0.
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Lemma 2. The adjustment coefficient,RM , is a unimodal function of the retention limit, forM > M0. Its maximum
is attained at the unique(finite) point satisfying

M = 1

RM

(
ln (1 + α)+ ln

(
γ
E[T e−(c−cM)RMT ]

E2[e−(c−cM)RMT ]

))
. (26)

Proof. Considera = 1 in part (i) of Result 1 inCenteno (2002). �

Note that in the classical model, i.e. whenT is exponentially distributed

γ
E[T e−(c−cM)RMT ]

E2[e−(c−cM)RMT ]
= 1

and(26) is equivalent toM = (1/R) ln (1 + α), as it is well known.

3. Gerber’s upper bound as a function of the retention

We shall now concentrate on the upper bound given by(13)as a function of the retention limit.

Result 1.

(i) For eachM > 0, fM(r; u, t), defined, forr > 0, by (14), has a local minimum if and only if the expected
surplus at timet is positive. In that case the minimizer is unique, let it ber̂M .

(ii) Suppose that the expected surplus at timet is positive. Then̂rM > RM—whereRM is the unique positive root
of (11) if M > M0 or zero otherwise—if and only if

u

t
> E[XM eRMXM ]

E2[e−((c−cM)RM)T ]

E[T e−((c−cM)RM)T ]
− (c − cM). (27)

Proof.

(i) ForM > 0, it is clear thatfM(r; u, t) is a convex function ofr, for r > 0 (seeLemma 1). On the other hand,
also byLemma 1

lim
r→0

fM(r; u, t) = 0

and

lim
r→+∞fM(r; u, t) = +∞.

ThenfM(r; u, t) will have a minimum (inr) if and only if (∂/∂r)fM(r; u, t) is negative asr → 0. But

∂

∂r
fM(r; u, t) = −u+ t

∂

∂r
θM(r). (28)

Hence

lim
r→0

∂

∂r
fM(r; u, t) = −u+ t (γE[XM ] − (c − cM))

from where the result follows.
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(ii) r̂M is the solution of

∂

∂r
fM(r; u, t) = 0

with (∂/∂r)fM(r; u, t)defined by(28). It is clear that̂rM will be greater thanRM if and only if(∂/∂r)fM(r; u, t)
is negative atr = RM . Substituting(20) into (28)and thatθM(RM) = 0, the result follows. �

LetM1 be the minimum of the values for which the expected surplus at timet is non-negative, i.e.

M1 = min{M : M ≥ 0 and u+ t ((c − cM)− γE[XM ]) ≥ 0}. (29)

Note thatM1 is zero if and only ifu/t ≥ γµ(α − ρ). The following corollary follows from the previous proof.

Corollary 1. For eachM > M1

ψM(u, t) ≤




efM(u,t,r̂M) if
u

t
> E[XM eRMXM ]

E2[e−((c−cM)RM)T ]

E[T e−((c−cM)RM)T ]
− (c − cM),

efM(u,t,RM) if
u

t
≤ E[XM eRMXM ]

E2[e−((c−cM)RM)T ]

E[T e−((c−cM)RM)T ]
− (c − cM),

(30)

whereRM is the only positive solution to(11) if M > M0, or zero otherwise, andr = r̂M is such that(r, θM(r)) is
the solution to

E[XM erXM ]E[e−((c−cM)r+θM(r))T ]

E[erXM ]E[T e−((c−cM)r+θM(r))T ]
− (c − cM) = u

t
, E[erXM ]E[e−((c−cM)r+θM(r))T ] = 1. (31)

Hence we can conclude that for some values ofM it is possible to improve Lundberg’s inequality, which implies
that in some cases the value ofM that minimizes the upper bound provided by Gerber’s inequality is different from
the value ofM that maximizes the adjustment coefficient. That will be the case if

u

t
> (1 + α)γ e−R̂

M̂
M̂E[X

M̂
eR̂M̂XM̂ ] − (c − c

M̂
), (32)

where(M̂, R̂
M̂
) is the solution of

E[erXM ]E[e−(c−cM)rT] = 1, erME2[e−(c−cM)rT] = (1 + α)γE[T e−(c−cM)rT] (33)

(see(26)). Let us study the behavior of Gerber’s bound as a function of the retention limit.

Result 2. If u/t ≥ γµ(α − ρ) then the upper bound to the probability of ruin before timet attains its minimum at
M = 0.

If u/t < γµ(α − ρ) then the upper bound, considered as function ofM, has an absolute minimum which is
attained at the unique point satisfying

M = 1

r∗

(
ln (1 + α)+ ln

(
γ
E[T e−((c−cM)r∗+θM(r∗))T ]

E2[e−((c−cM)r∗+θM(r∗))T ]

))
,

whereθM(r∗) is the only solution to(15), andr∗ = max(r̂, R̂), wherer̂ is the solution to

(1 + α)γ e−rM
∫ M

0
(1 + rx)erx(1 − F(x))dx − (c − cM) = u

t

andR̂ is the adjustment coefficient.
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Proof. Notice that

min
M≥M1

ψM(u, t) ≤ exp

(
min
M≥M1

min
r≥R(M)

fM(r; u, t)
)

= exp

(
min

r≥R(M)
min
M≥M1

fM(r; u, t)
)

(34)

with

fM(r; u, t) = −ur + tθM(r), (35)

whereθM(r) is the solution to(15).
We are now considering these functions as functions of bothr andM. Calculating the derivative of(35) with

respect toM, we get

∂

∂M
fM(r; u, t) = t

∂

∂M
θM(r) (36)

and
∂

∂M2
fM(r; u, t) = t

∂

∂M2
θM(r). (37)

Differentiating(15)with respect toM, we get

r erM(1 − F(M))E[e−((c−cM)r+θM(r))T ] −
(
γ (1 + α)(1 − F(M))r + ∂

∂M
θM(r)

)
×E[T e−((c−cM)r+θM(r))T ]E[erXM ] = 0

from where it follows that

∂

∂M
θM(r)= r(1 − F(M))erME[e−((c−cM)r+θM(r))T ]

E[erXM ]E[T e−((c−cM)r+θM(r))T ]
− (1 + α)γ r(1 − F(M))

= r(1 − F(M))

E[erXM ]E[T e−((c−cM)r+θM(r))T ]
[erME[e−((c−cM)r+θM(r))T ]

−(1 + α)γE[erXM ]E[T e−((c−cM)r+θM(r))T ]] (38)

and considering(15), we can conclude that∂θM(r)/∂M = 0 if and only ifPM(r) = 0, with

PM(r) = erME2[e−((c−cM)r+θM(r))T ] − (1 + α)γE[T e−((c−cM)r+θM(r))T ], (39)

i.e.

M = 1

r

(
ln (1 + α)+ ln

(
γ
E[T e−((c−cM)r+θM(r))T ]

E2[e−((c−cM)r+θM(r))T ]

))
. (40)

Note that(40) is equivalent to(26) for r = RM .
Calculating the second derivative ofθM(r), with respect toM, in the points where the first is null we obtain

∂2

∂M2
θM(r)

∣∣∣∣
(∂/∂M)θM(r)=0

= r(1 − F(M))

E[erXM ]E[T e−((c−cM)r+θM(r))T ]
{r erME[e−((c−cM)r+θM(r))T ]

−2 erM(1 + α)γ r(1 − F(M))E[T e−((c−cM)r+θM(r))T ]

+(1 + α)2γ 2r(1 − F(M))E[erXM ]E[T 2 e−((c−cM)r+θM(r))T ]}
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which is, having in consideration(15), equivalent to

∂2

∂M2
θM(r)

∣∣∣∣
(∂/∂M)θM(r)=0

= r(1 − F(M))

E[erXM ]E[T e−((c−cM)r+θM(r))T ]
BM(r), (41)

where

BM(r)= r(1 + α)γ

×
{
E[T e−((c−cM)r+θM(r))T ]

∫ M

0
erx dF(x)+(1−F(M))(1 + α)γ κ ′′((c − cM)r + θM(r))

}
(42)

which is positive. On the other hand, whenM is zero,X0 ≡ 0, the equation definingθ0(r) isE[e−((c−c0)r+θ0(r))T ] =
1, which implies thatθ0(r) = −(c − c0)r. Hence

lim
M→0

PM(r) = −α

and for any positiver,

lim
M→+∞

PM(r) = +∞.

Hence for fixedr, u andt , fM(r; u, t) has a local minimum, which is unique and attained at the pointM̂(r) such
that(M, θM(r)) = (M̂(r), θ

M̂(r)
(r)) is the solution to

erME2[e−((c−cM)r+θM(r))T ] − (1 + α)γE[T e−((c−cM)r+θM(r))T ] = 0,

E[erXM ]E[e−((c−cM)r+θM(r))T ] = 1. (43)

Let us now study the functionf
M̂(r)

(r; u, t). Using the implicit function theorem we can see that

d

dr
f
M̂(r)

(r; u, t) = −u+ t
∂

∂r
θM(r)

∣∣∣∣
(∂/∂M)θM(r)=0

(44)

and

d2

dr2
f
M̂(r)

(r; u, t) = t
(∂2/∂r2)θM(r)× (∂2/∂M2)θM(r)− ((∂2/∂r∂M)θM(r))

2

(∂2/∂M2)θM(r)

∣∣∣∣
(∂/∂M)θM(r)=0

,

which has the same sign as the numerator.
Differentiating(38)with respect tor we get

∂2

∂r∂M
θM(r)

∣∣∣∣
(∂/∂M)θM(r)=0

= r(1 + α)γ (1 − F(M))

×
[
M + E[XM erXM ]E[e−((c−cM)r+θM(r))T ]

(
E[e−((c−cM)r+θM(r))T ]E[T 2 e−((c−cM)r+θM(r))T ]

E2[T e−((c−cM)r+θM(r))T ]
− 2

)]
.
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After some tedious algebra calculations we get

∂2

∂r2
θM(r)× ∂2

∂M2
θM(r)−

(
∂2

∂r∂M
θM(r)

)2
∣∣∣∣∣
(∂/∂M)θM(r)=0

= r2(1 − F(M))(1 + α)γ
E2[e−((c−cM)r+θM(r))T ]

E[T e−((c−cM)r+θM(r))T ]

∫ M

0
x2 erx dF(x)

+ r2(1−F(M))(1+α)γE[e−((c−cM)r+θM(r))T ]

(
E[e−((c−cM)r+θM(r))T ]E[T 2 e−((c−cM)r+θM(r))T ]

E2[T e−((c−cM)r+θM(r))T ]
− 2

)

×
{
(1 − F(M))(1 + α)γE[X2

M erXM ] + E2[XM erXM ]
E2[e−((c−cM)r+θM(r))T ]

E[T e−((c−cM)r+θM(r))T ]

− 2(1 − F(M))(1 + α)γME[XM erXM ]

}

= r2(1 − F(M))(1 + α)γ
E2[e−((c−cM)r+θM(r))T ]

E[T e−((c−cM)r+θM(r))T ]

∫ M

0
x2 erx dF(x)

+ r2(1−F(M))(1+α)γE[e−((c−cM)r+θM(r))T ]

(
E[e−((c−cM)r+θM(r))T ]E[T 2 e−((c−cM)r+θM(r))T ]

E2[T e−((c−cM)r+θM(r))T ]
− 2

)

×
(
(1 − F(M))(1 + α)γ

∫ M

0
x2 erx dF(x)+

(∫ M

0
x erx dF(x)

)2
E2[e−((c−cM)r+θM(r))T ]

E[T e−((c−cM)r+θM(r))T ]

)

= r2(1 − F(M))(1 + α)γ
E3[e−((c−cM)r+θM(r))T ]

E[T e−((c−cM)r+θM(r))T ]
κ ′′((c − cM)r + θM(r))

×
(
(1 − F(M))(1 + α)γ

∫ M

0
x2 erx dF(x)+

(∫ M

0
x erx dF(x)

)2
E2[e−((c−cM)r+θM(r))T ]

E[T e−((c−cM)r+θM(r))T ]

)

+ r2(1 − F(M))(1 + α)γ
E3[e−((c−cM)r+θM(r))T ]

E[T e−((c−cM)r+θM(r))T ]

×
{
E[erXM ]

∫ M

0
x2 erx dF(x)− (1 − F(M))e−rM

∫ M

0
x2 erx dF(x)−

(∫ M

0
x erx dF(x)

)2}

= r2(1 − F(M))(1 + α)γ
E3[e−((c−cM)r+θM(r))T ]

E[T e−((c−cM)r+θM(r))T ]
κ ′′((c − cM)r + θM(r))

×
(
(1 − F(M))(1 + α)γ

∫ M

0
x2 erx dF(x)+

(∫ M

0
x erx dF(x)

)2
E2[e−((c−cM)r+θM(r))T ]

E[T e−((c−cM)r+θM(r))T ]

)

+ r2(1 − F(M))(1 + α)γ
E3[e−((c−cM)r+θM(r))T ]

E[T e−((c−M)r+θM(r))T ]

×
(∫ M

0
erx dF(x)

)2

∫M0 x2 erx dF(x)∫M

0 erx dF(x)
−
(∫M

0 x erx dF(x)∫M
0 erx dF(x)

)2

 ,

which is positive, implying thatf
M̂(r)

(r; u, t) is a convex function ofr. Hence we can conclude that there is at
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most one solution to(44) and that when it exists it is the global minimum off
M̂(r)

(r; u, t). But we have (see
Lemma 1) that

lim
r→0

f
M̂(r)

(r; u, t) = 0

and

lim
r→0

d

dr
f
M̂(r)

(r; u, t) = −u− tµρ < 0.

If u/t ≥ γµ(α − ρ), thenM1 given by(29) is zero and whenM goes to 0,r given by the solution to(40) goes to
infinity and

lim
r→+∞fM̂(r)(r; u, t) = lim

r→+∞(−ru − rtγµ(α − ρ)) = −∞,

and the first part of the result is proved.
If u/t < γµ(α − ρ), the solution inr, let it ber1, of (40) for M = M1 is finite and

lim
r→r1

d

dr
f
M̂(r)

(r; u, t)= −u+ tE[XM1 er1XM1 ]
E2[e−((c−cM1)r1+θM1(r1))T ]

E[T e−((c−cM1)r1+θM1(r1))T ]
− t (c − cM1)

= tE[XM1 er1XM1 ]
E2[e−((c−cM1)r1+θM1(r1))T ]

E[T e−((c−cM1)r1+θM1(r1))T ]
− tγE[XM1]

= t
E[XM1 er1XM1 ]E[e−((c−cM1)r1+θM1(r1))T ]

E[er1XM1 ]E[T e−((c−cM1)r1+θM1(r1))T ]
− tγE[XM1] ≥ 0.

Fig. 1.T is γ (0.5,0.5).



M.L. Centeno / Insurance: Mathematics and Economics 31 (2002) 415–427 425

The last inequality follows becauseXM1 and er1XM1 are positively correlated for anyr > 0 andT and e−sT are
negatively correlated for anys > 0, and byLemma 1we have that(c − cM1)r1 + θM1(r1) is greater or equal to
zero.

Hencer̂ exists and is smaller thanr1 and the proof is finished. �

4. An example

Let the individual claim amount distribution be Pareto (2, 1), i.e.F(x) = 1 − 1/(1 + x)2, x > 0. Letc = 1.12,
α = 0.8,u = 2 andt = 10. We consider that the inter arrival timeT is Gamma(n, β) distributed, i.e. with density
function given by

p(t) = βn

Γ (n)
e−βt tn−1, t > 0. (45)

In this case

θM(r) = β[(E[XM ])1/n − 1] − (c − cM)r. (46)

We shall consider three different situations:(n, β) equal respectively to (0.5, 0.5), (1, 1) (the classical model) and
(2, 2), to whichFigs. 1–3correspond, respectively. These figures show Gerber’s and Lundberg’s upper bounds.
Tables 1–3give the values attained by these functions at the minimum of each of them, in the three inter arrival
situations.

Fig. 2.T is exponential.
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Fig. 3.T is γ (2,2).

Table 1
Optimal XL retentions, interarrival timesγ (0.5,0.5)

M Gerber’s bound Lundberg’s bound

10.08 0.932221915 0.953787398
19.45 0.936602006 0.944148910

Table 2
Optimal XL retentions, interarrival times exponential

M Gerber’s bound Lundberg’s bound

8.185 0.914732859 0.953562132
16.98 0.922630450 0.933110799

Table 3
Optimal XL retentions, interarrival timesγ (2,2)

M Gerber’s bound Lundberg’s bound

7.12 0.900886417 0.960125393
15.665 0.912537080 0.925415440
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