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Abstract

Assuming that the reinsurance premium is calculated according to the expected value principle we study an upper bound for
the probability of ruin in finite horizon, as function of the excess of loss retention limit. The upper bound used is an extension
proved by Grandell [Aspects of Risk Theory, Springer, New York, 1991] of Gerber’'s bound, see Gerber [Martingales in
risk theory, Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker, 1973, pp. 205-216], for the Sparre
Anderson model [On the collective theory of risk in the case of contagious between the claims, in: Proceedings of the
Transactions on XV International Congress of Actuaries, New York, 1957].
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Centeno (2002%tudied the insurer’s adjustment coefficient as function of retention levels for combinations of
guota-share with excess of loss reinsurance in the Sparre Anderson model, generalizing some of the results of
Centeno (1986)It was shown that the insurer’'s adjustment coefficient is a unimodal function of the retention
levels when the quota-share reinsurance premium is calculated on original terms and the excess of loss premium is
calculated according to the expected value principle.

In this paper we confine the study to excess of loss reinsurance, again when the number of claims is described
by an ordinary renewal process. An upper bound for finite time ruin probability is considered as a function of the
retention, generalizing the study Benteno (1987{o the non-classical situation.

2. Assumptionsand preliminaries

We assume that the number of claif@é(r)},>o follows an ordinary renewal process, i.e. the number of claims,
N (t), that occur in the time intervaD, ¢] can be written as

N(t) =supn : S, <1} (1)
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with So = 0,8, = T1 + T2 + --- + T, for n > 1, where{T;}{2; are independent and identically distributed
non-negative random variable$,. denotes the epoch of thh claim andT7; is the time between thg — 1)th and
theith claim. Let the expected value &f be 1/y.

Let {X;}7°, be a sequence of independent and identically distributed random variables, indeperidgfit pf
where X; denotes the amount of th¢éh claim. We assume thag, the distribution function ofX;, is such that
F(0) = 0, so that negative claims are not possible; that 8(x) < 1 for 0 < x < +o0 (this assumption could be
relaxed); that & (x)/dx exists and is continuous; that the moment generating functidgiof, My (r), exists for
r € (—oo, 1) for some O< 1 < +oc0 and that

lim My (r) = lim E[e™] = 4. 2)
r—>t r—t
Let u be the expected value of;.

The risk proces$Y (¢)};>0, is defined by
N(t)

0
Y() =ct—Y X, (Z xﬁ’:efo) , (3)
i=1

i=1
wherec—the insurer’s premium income per unit of time—is a positive constant. The loss between two claims is
Y; = X; — cT;, and the relative safety loading is
(c/y)—m _ ¢
p=—""—=

e 1. 4)
We assume that > 0.
Let
g(r) = My, (r) = E[e""] = E[e*]E[e”"T], (5)

whereX andT have the same distribution thafy and 7;, respectively. The adjustment coefficieRtis, in the
renewal case, the unique positive solution of

gr) =1, (6)
when such a root exists, or zero otherwise, and the Lundberg’s inequality
Y <e R @)

is still valid (this inequality has to be modified for the stationary renewal case). Lundberg’s inequality in the ordinary
renewal case was first proved Bparre Anderson (195@nd can be found using a martingale approacariandell
(1991)

Grandell (1991, pp. 145-148Eneralizes Gerber’s upper bound for the probability of ruin in finite horizon for
the ordinary renewal case (séerber (1973br Gerber (1979, p. 139)He shows that

Y(u,t) < exp(r‘rlig(—ur + t@(r))) , (8)

whered (r) is, for eachr > 0, the solution to
E[erX]E[e—(cH-e)T] -1 (9)

Note thatd (R) = 0.

Let us consider that the insurer is willing to reinsure this risk by means of an excess of loss arrangement, with
retention limit M, i.e. when a claim of siz& occurs the insurer is responsible f&;, = min(X, M) and the
reinsurer byX — X = max(0, X — M). Hence the insurer net (of reinsurance) risk at tinse

N()
Yu(t) = (c — eyt — Y min(X;, M), (10)
i=1
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wherecy, is the excess of loss reinsurer premium. For a gierthe adjustment coefficienk,,, is now the unique
positive root of

gm(@r) =1, (11)
when such a root exists, or zero otherwise, with
gu(r) = E[e""]E[e” ()T, (12)

The upper bound for the insurer’s probability of ruin in finite horizon, after reinsurance, is

Y (u, 1) < exr>< min fa (r; u, t)) , (13)
r>Ry
where
Im(rsu, t) = —ur+ 16y (r) (14)

andéy, (r) is the only root to

E[erXM]E[e—((C—cM)r+9M(r))T] =1 (15)

The insurer’s expected net profit per period of timécis- ¢yy) — y E[ X )]. Let L be the set of points for which the
insurer’s net expected profit is positive, i.e.

L={M:M>0 and (¢c —cy) — yE[Xy] > 0}. (16)
Let

xm(r) = In E[e%] (17)
and

k(s) = In E[e™°T]. (18)
Lemma 1.

(i) The adjustment coefficient is positive if and onlyfife L.

(i) ForanyM > 0,0, (r)isaconvexfunction of6,;(0) = 0y (Ry) = 0,lim,_ oc0pr (r) = +00,1liM, ey (r) /1 =
400, (3/3r)0)(0) = y E[X ] — (¢ — cpr) @and for anyr > 0, (¢ — cp)r + 0y (r) > 0.

Proof.

(i) See Lemma 1 irCenteno (2002)
(i) (15)is equivalent to

xm(r) + k((c —cp)r +0p(r)) =0. (19)

Differentiating(19) with respect to-, and using15) we get

EZ[e—((c—c'M)r+9M (r))T]

%emr) — E[Xy "] (c — can) (20)

E[T e~ (c=ca)r+6m()T]

from where (again usin(l5))
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92 Ez[e*((C*CM)r+9M(r))T]

9 _ 2 Xy
92 Om(r)= E[XM e™M] E[T ef((cfcM)rJr@M(r))T]

E3[e—((c—em)r+0y (T

. 2 Xm
2E[Xpu € ]E[T e (e +om (7]

E4[e—((C—CM)r+9M (r))T]
E3[T e—((C—CM)r+9M (r))T]

E[e~(c=emr+0u ()] |:E[X12v1 X ] B <E[XM efXM])2:|

+E2[XM erXM] E[T2 e—((C—CM)r—i-GM(r))T]

= E[T e (c=ca)r+p ()T ] E[e™] E[e™u]

ES[ef((cfcM)H»GM (r))T]
E3[T e—((c—cm)r+6m (r))T]

+E?[ Xy €7M]

E[T?e (cmemrttu ()T (E[T e ((c=er)r+6y ()T )2 on

E[e=(c—cm)r+8u ()T E[e—{e—eam)r+0u(r)T]

which is positive, i.efy, (r) is convex, because

oo [ EIX3 @ E[Xy @]\
= | Ty~ (e )

and

(22)

2

_E[T?e"T] <E[T e—ST]> (23)

K(s) = E[eST] E[eST]

are both variances of Esscher transforms.

Noticing thatf,;(0) = 0, then(3/dr)0x(0) = y E[Xp] — (¢ — cu) (which is negative for any € L).
That lim, _ 1 500y (r) = +ooand lim._, 1 50y (r) /r = +o0 follows from the fact thafy; (0) = 0y (Ry) = 0
and tha®,, (r) is convex.

It follows from (15) that E[e~((c—em)r+0u(DT] < 1. Given the convexity ok (s) and applying Jensen’s
inequality we have

1> E[e” (0T > exp[E(—((c — cp)r +Ou(r)T)] = exp[— .

(c —cp)r + QM(”)]

which implies thatic — cp)r + 0y (r) > 0. O

As itis well known, se&Vaters (1983)the adjustment coefficient, for the classical model, is a unimodal function
of the excess of loss retention limit, when the reinsurance premium is calculated according to the expected value
principle, but this is not necessarily the case with other premium principles. Hence in what follows we will assume
that the reinsurance premium is calculated according to the expected value principle, i.e.

o0
ey = (1—|—oz)y/ (1— F(x)) dx. (24)
M
We also assume that

a>p, (25)

so that the insurer cannot reinsurer the hole risk with a certain profit. Note that under this assumptions there exists
a positiveMg such thatM < L if and only if M > M.
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Lemma?2. The adjustment coefficierRy,, is a unimodal function of the retention limior M > M. Its maximum
is attained at the uniquéinite) point satisfying

—(c—cm)RuT
Me:§£<kwl+a%+M(yE”e . M]>>. (26)

M Ez[e—(C—CM)RMT]
Proof. Consideta = 1 in part (i) of Result 1 irCenteno (2002) O

Note that in the classical model, i.e. whErs exponentially distributed

E[T e—(C—CM)RMT]

4 E2[e—C—cmRuT] =1

and(26)is equivalent ta\l = (1/R) In (1 + «), as it is well known.

3. Gerber’supper bound asa function of theretention
We shall now concentrate on the upper bound give(ill3yas a function of the retention limit.

Result 1.

(i) For eachM > 0, fy(r; u, t), defined, forr > 0, by (14), has a local minimum if and only if the expected
surplus at time is positive. In that case the minimizer is unique, let itfpe

(i) Suppose that the expected surplus at timepositive. Therty, > Ry —whereR), is the unique positive root
of (11)if M > Mg or zero otherwise—if and only if

E2[e((e=ca)Ri)T ]

;>EMM§WM (c = cm). 27)

E[T e (c—em)Ru)T] -

Proof.

(i) For M > 0, itis clear thatfy, (r; u, t) is a convex function of, for » > 0 (seeLemma J. On the other hand,
also byLemma 1

|im0fM (r;u,t)=0
and
lim fay(r;u,t) =+oo.
r—+00
Then fu (r; u, t) will have a minimum (irv) if and only if (3/9r) fy (r; u, t) is negative ag — 0. But
0 0
—fm(riut) = —u+1t—0y(r). (28)
ar ar
Hence
.0
||m05fM(r; u,t) = —u+t(yE[Xyu] — (c —cm))

from where the result follows.
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(i) 7u is the solution of

0
—fmur;u,t) =0
ar

with (8/0r) fu (r; u, t) defined by(28). Itis clear thaf,, will be greatertham®, ifand only if (3/9r) fa (r; u, t)
is negative at = Rj,. Substituting(20) into (28) and tha®, (Rys) = 0, the result follows. d

Let M, be the minimum of the values for which the expected surplus attiimaon-negative, i.e.
Mi=min{M : M >0 andu +t((c — cy) — yE[Xnm]) = 0}. (29)
Note thatM is zero if and only ifu/t > y (e — p). The following corollary follows from the previous proof.

Corollary 1. ForeachM > M,
E?[e(c=em) R T

mG i) i 4 Ry X m —(c —
ef if t>E[XMe ]E[Te—((c—CM)RM)T] (c —cm),

Vm(u,t) < , e (30)
Wi R ] Rog Xog E [e*((cfcM) M) ]
efm@tRy) jf — < E[Xy e ]

—(c—cym),

~ | =

E[T e (c—em)Ru)T]
whereRy, is the only positive solution td.1)if M > My, or zero otherwisgandr = 7y, is such thai(r, 0, (r)) is
the solution to
E[X y €Xm] E[e~((c—ea)r+0m ()T
E[eXu]E[T e (c—cp)r+u ()T

—(c—cy) = ? E[erXM]E[e—((c—cM)r+0M(r))T] =1 (31)

Hence we can conclude that for some valueafaf is possible to improve Lundberg’s inequality, which implies
that in some cases the valueMfthat minimizes the upper bound provided by Gerber’s inequality is different from
the value ofM that maximizes the adjustment coefficient. That will be the case if

%> L+ )y e R E[x ; efiXin] — (c — ey, (32)

where(M, Ry;) is the solution of
E[erXM]E[ef(cfcM)rT] — 1’ erM EZ[ef(cfcM)rT] — (1+ Ol)J/E[T ef(cfcM)l’T] (33)

(see(26)). Let us study the behavior of Gerber’s bound as a function of the retention limit.

Result 2. If u/t > yu(a — p) then the upper bound to the probability of ruin before tina¢tains its minimum at
M =0.

If u/t < yu(a — p) then the upper bound, considered as functiodgfhas an absolute minimum which is
attained at the unique point satisfying

1 E[T e (c=em)r™+0u ™) T
M = = Nnl+a)+In|y E2[e— (e r T T] ,

wheref,, (r*) is the only solution td15), andr* = max(r, R), wheref is the solution to

M
A+ a)y e ™ / A+m)eE*AL—-Fx)dx — (c —cy) = ;
0

andR is the adjustment coefficient.
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Proof. Notice that

min 1) <e min  min Tu, =€ min  min cu,t 34
leMllﬂM(u ) < Xp(leerle(M)fM(V u t)> Xp(rle(M)leleM(r u )) (34)
with

fm(ru, t) = —ur + 10y (r), (35)

wherebdy, (r) is the solution tq15).
We are now considering these functions as functions of bahd M. Calculating the derivative gf35) with
respect ta\f, we get

%fM(VQ u,t) = I%OM(V) (36)
and
0 0
W.fM(HMJ):tW@M(F)- (37)

Differentiating(15) with respect tavf, we get

d
reé™(L— F(M))E[e”CmemrtomOT] _ (y(l +a)(L— F(M)r + B—Memr))
xE[T e—((c—CM)r+9M(r))T]E[erXM] =0

from where it follows that

9 r(l— F(M)) eM E[e—((c—CM)r+0M(r))T]
WQM (r)= E[erXM]E[T e—((c—cM)r-i-@M(r))T] -1+ a)yr(l — F(M))
_ r(d— F(M)) M fa—((c—ca)r+0y ()T
= E[eXu]E[T e (@ cnr+om(T] [e™ Elem ]
-1+ oz)yE[eer]E[T e*((C*CM)r+9M(r))T]] (38)

and consideringl5), we can conclude tha®,, (r)/oM = 0 if and only if Py;(r) = 0, with
PM(F) — ™M EZ[e—((c—cM)r+9M(r))T] _ (1 + (X)]/E[T e—((c—cM)r—&-@M(r))T]’ (39)

(40)

1 E[T e (e=em)r+0m ()T
M= - NAd+a)+In|y E2[e(e—enr Tom ] .

Note that(40)is equivalent tq26) for r = Ry,.
Calculating the second derivative @&f (r), with respect taV, in the points where the first is null we obtain

2

0
WQM(V)

(8/0M)0p (r)=0
~ r(1— F(M))
B E[e™M]E[T e (c—cam)r+bu(m)T]

(r gM E[e—((C—CM)r+9M(r))T]

21+ a)yr(1 — F(M))E[T e (c=emr+0u (T
+(1+ a)?y?r (1 — F(M))E[e™M] E[T? g~ (c=emr+0u DTy
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which is, having in consideratiofi5), equivalent to

2

d
WOM(”)

- r(1—-F(M))
T E[eXM]E[T e (c—cu)r+6u ()T ]

By (r), (41)

(0/0M)6p (r)=0

where

By(r)=r(1+a)y

M
X {E[T g~ (cmemrtom (T / €XdF (x)+(1-F(M)(L+ a)y«"((c — em)r + OM(r))} (42)
0

which is positive. On the other hand, whhis zero,Xo = 0, the equation definingy(r) is E[e~((¢—c0)r+00NT] =
1, which implies thaty(r) = —(c — co)r. Hence

lim Py(r) = —«a
M—0
and for any positive,

lim Py (r) = o0.
M —+o00

Hence for fixed-, u andt, fu (r; u, t) has a local minimum, which is unique and attained at the puiat) such
that(M, 0y (r)) = (M (1), GM(r) (r)) is the solution to

erM EZ[e—((c—cM)r+6M(r))T] —(1+ O())/E[T e—((C—CM)r+9M(r))T] =0,
E[e™ ] Efe—((cmemrtomT] — 1. (43)

Let us now study the functioyfmr)(r; u, t). Using the implicit function theorem we can see that

d B
— [ ) = —u+1t—0y(r) (44)
dr "M e ! or ' (3/dM)04 (r)=0
and
d? (82/3r2)0p (r) x (92/dM>)0p (r) — ((32/3rdM)Op (r))?

= faerun =1 ;
dr2’ M) (82/8M2)9M(r) (8/8M)fy (r)=0

which has the same sign as the numerator.
Differentiating(38) with respect to- we get

2
oroM

Om (r)

(3/3M)0p (r)=0

=r(l+a)y(1—- F(M))

—((c—em)r+0p ()T 2 o= ((c—cp)r+0p ()T
| M+ B erXM]E[e—((C—CM)r+9M(r))T] Ele ((c—cp)r+0p (r)) 1E[T?e ((c—cpm)r+0p(r)) ] s
EZ[T g~ ((c=ea)r+6u ()T )
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After some tedious algebra calculations we get

2 2 2

a9()><89() °
B i x 2 gy —
ar2 M am2 M

oroM

9M(V)>

(9/0M)0pm (r)=0
2ra—((c—cp)r+0y (r))T M
e
[ ] / x2eXdF (x)
0

E[e~(c=em)r+0u )T E[ T2 g (e—ea)r+0u (DT ] )
-2

=r’1-FM)1+a)y

E[T e~ (c—cmnr+oy))T]

21— —((c=ea)r+0u ()T
+r°(1-F(M))(1+a)y E[e ]< E2[T e (c=ca)r+0u ())T]

Ez[e*((C*CM)VJr@M(r))T]

_ 2 Xy 2 Xy
X {(1 F(M))(1+ Ot)J/E[XM e+ EXu e ]E[T e*((cfcM)r+9M(r))T]

—2(1— F(M))(1 + a)yME[ X 3, €%¥] }

E2[e—(c—ca)r+0m (DT oM
=r’1 - FM)1+ o)y [ ] x2eXdF (x)

E[T e—((C—CM)V+9M(r))T] 0

Ele—(=ea)r+0u(MT] E[T2 @ (e—can)r+0y ()T
+r2(1= F (M) (Iar)y Efe™(©emr+on 7] ( : IEL 1_,

E2[T e ((c=ca)r+0u (T

2 p2[e((c=ca)r+0m ()T
E[T e (c—cx)r+0m () T]

M M
X ((1 - F(M))(1+a)y/ x2eXdF(x) + </ x e dF(x))
0 0

E3[e—((C—CM)r+0M (r))T]

=r?A— FM))(1+a)y K" ((c — cp)r + Om(r))

E[T e (c—eam)r+0u(r)T]

M
x2eXdF(x) + </ xeerF(x)>
0

E3[e~((e=em)r+0u ()T

M

2 p2le~(c—em)r+0m ()T )

x ((1 —FM)(1+a)y /O E[T e (c=cm)r+0m()T]

+r21L— F(M)(1+a)y

E[T e~ (c=cmr+om)T]

M M M 2
X {E[erXM]/ x2eXdF(x) — (1— F(M))e_rM/ x?eXdF(x) — </ xe'XdF(x)> }
0 0 0

B[e— ((c—cpm)r+0m (r))T]

=r?(1— F(M)(1+ )y K" ((c — es)r +0um(r))

E[T e (c—cnr+0y())T]

M
x2eXdF(x) + </ xeerF(x)>
0

E3[e~((e=em)r+0u ()T}

M

2 p2le~(c—em)r+0m ()T
E[T e (c=em)r+0u ()T

X ((1 - F(M))(l—i—a)y/
0

+r21— F(M)(1+a)y

E[T e (c=ar+0u()T]

M 2 M 2 x M X 2
x (/ e dF(x)) Jo 1; e arw - (fOMxer dF(X))
0 fo exdF(x) fo exXdF(x)

which is positive, implying tha}fM(r) (r; u, t) is a convex function of. Hence we can conclude that there is at
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most one solution t¢44) and that when it exists it is the global minimum ﬁ,ﬁm)(r; u, t). But we have (see
Lemma J that

rlinofﬁ;f(r)(r; u, 1) =0
and

.d
J@o&fmﬂ(“ u,t) = —u—tpup < 0.

If u/t > yu(a — p), thenM; given by(29)is zero and whe/ goes to Or given by the solution t¢40) goes to
infinity and

im i (w0 =M (=ru—rtyu(e = p)) = —oo,

r——+00

and the first part of the result is proved.
If u/t < yu(a — p), the solution irr, let it bers, of (40)for M = M is finite and

. d
lim _fM(r)(r; u,t)=—u +tE[XM1 eleMl]

EZ[e*((C*CMl)Vl+9M1 (rl))T]
r—ry dr E[T e—((C—CMl)rl-‘r@Ml(rl))T] - I(C - CMl)

E2[e~(c=cmy)ratOmy ()T
= tE[X yy, €1%M1] [ ]

BT e @ enprran oty Y ElXn]

E[XM1 erlle]E[ei((cich)rl‘l»eMl(rl))T]
= E[erlXMl]E[T e—((C—ch)r1+eMl(r1))T]

— t)/E[XMl] > 0.

1.00

0.99 -

098 -

0.97

0.96 -

T

|

|

|

i

\
\
\l\

0.95

094

093

0.92

M

=== Gerber's Bound -~ Lundberg's Bound

Fig. 1.T is y (0.5, 0.5).
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The last inequality follows becauséy,, and éXm1 are positively correlated for any > 0 and7 and €T are

negatively correlated for any > 0, and byLemma 1we have thatc — cp,)r1 + 0, (r1) is greater or equal to
zero.

Hencer exists and is smaller than and the proof is finished. O

4. An example

Let the individual claim amount distribution be Pareto (2, 1),Féx) = 1 — 1/(1+ x)%, x > 0. Lete = 1.12,

a = 0.8,u = 2 andr = 10. We consider that the inter arrival tirfleis Gamma(n, 8) distributed, i.e. with density
function given by

_ /3” —pt .n—1
p(t) = ) e Pt r>0. (45)
In this case
Om(r) = BLEXuDY" = 1] = (c — e (46)

We shall consider three different situatioiws; 8) equal respectively to (0.5, 0.5), (1, 1) (the classical model) and
(2, 2), to whichFigs. 1-3correspond, respectively. These figures show Gerber’'s and Lundberg’s upper bounds.

Tables 1-3give the values attained by these functions at the minimum of each of them, in the three inter arrival
situations.
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Table 1

Optimal XL retentions, interarrival timegs(0.5, 0.5)

M Gerber’s bound Lundberg’s bound

10.08 0.932221915 0.953787398

19.45 0.936602006 0.944148910

Table 2

Optimal XL retentions, interarrival times exponential

M Gerber’s bound Lundberg’s bound
8.185 0.914732859 0.953562132

16.98 0.922630450 0.933110799

Table 3

Optimal XL retentions, interarrival times(2, 2)

M Gerber’s bound Lundberg’s bound
7.12 0.900886417 0.960125393

15.665 0.912537080 0.925415440




M.L. Centeno/Insurance: Mathematics and Economics 31 (2002) 415-427 427
References

Centeno, M.L., 1986. Measuring the effects of reinsurance by the adjustment coefficient. Insurance: Mathematics and Economics 5, 169-182.

Centeno, M.L., 1997. Excess of loss reinsurance and the probability of ruin in finite horizon. ASTIN Bulletin 27, 59-70.

Centeno, M.L., 2002. Measuring the effects of reinsurance by the adjustment coefficient in the Sparre Anderson model. Insurance: Mathematics
and Economics 30, 37-49.

Gerber, H.U., 1973. Martingales in risk theory. Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker, pp. 205-216.

Gerber, H.U., 1979. An Introduction to Mathematical Risk Theory, S.S. Huebner Foundation Monographs. University of Pennsylvania.

Grandell, J., 1991. Aspects of Risk Theory. Springer, New York.

Sparre Anderson, E., 1957. On the collective theory of risk in the case of contagious between the claims. In: Proceedings of the Transactions on
XV International Congress of Actuaries, New York.

Waters, H., 1983. Some mathematical aspects of reinsurance. Insurance: Mathematics and Economics 2, 17-26.



	Excess of loss reinsurance and Gerber's inequality in the Sparre Anderson model
	Introduction
	Assumptions and preliminaries
	Gerber's upper bound as a function of the retention
	An example
	References


