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Summary. We analyze and calculate the early exercise boundary for a class of stationary generalized Black-
Scholes equations in which the volatility function depends on the second derivative of the option price itself.
A motivation for studying the nonlinear Black Scholes equation with a nonlinear volatility arises from option
pricing models including, e.g., non-zero transaction costs, investors preferences, feedback and illiquid markets
effects and risk from unprotected portfolio. We present a method how to transform the problem of American style
of perpetual put options into a solution of an ordinary differential equation and implicit equation for the free
boundary position. We finally present results of numerical approximation of the early exercise boundary, option
price and their dependence on model parameters.
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1 Introduction

In this paper, we are concerned with a financial option with no fixed maturity and no exercise limit, called
the perpetual option. This type of an option, which can be exercised at any time, can be considered as
the American style of an option. However, in this case, the time to maturity has no impact on the price
of the option. From the mathematical point of view, this leads to a solution of the stationary Black–
Scholes problem. More precisely, the valuation problem is transformed into the free boundary problem
that consists of the construction of the function V (S) together with the early exercise boundary point %
satisfying the following conditions:

1

2
σ2S2∂2SV + rS∂SV − rV = 0, S > %,

and
V (%) = E − %, ∂SV (%) = −1, V (+∞) = 0

(c.f. [DH93],[H05], [SSM11]). The function V is defined in the domain S > %, where % is the free boundary
position. If the diffusion coefficient σ > 0 is constant then we are, in fact, considering stationary solutions
of the classical linear Black–Scholes parabolic equation. However, we suppose that σ depends on the
asset price S and the product of the asset price S and the second derivative (Gamma) of the option price
H = S∂2SV , i.e.

σ = σ(S,H) = σ(S, S∂2SV ). (1)

Let us mention our motivation for studying a nonlinear volatility of the form (1). As it is known, the
classical linear Black Scholes model (c.f [JS05],[Kw98]) was derived under several restrictive assumptions
that did not reflect the real market. In fact, no transaction costs were considered, the volatility was
supposed to be constant, only liquid and complete markets were considered. Since then, several results
have appeared in the literature relaxing these assumptions in order to overcome some drawbacks they
created in practice. Regarding the volatility, it has been justified in practice that it is not constant and it
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may depend on the asset price itself. With this volatility function (1), the classical model is generalized
in such a way that it allows to consider non-zero transaction costs, market feedback and illiquid market
effects due to large trading volumes, risk from investors preferences, etc. Mathematically, the problem
will lose its linear feature, since the equation becomes a nonlinear partial differential equation (see e.g.
[SSM11]).

One of the first nonlinear models taking into account non-trivial transaction costs was proposed by
Leland [L85] for put or call options, later extended for more general types of option by Hoggard, Whalley
and Wilmott [SW00]. Avellaneda and Paras [AP94] proposed the jumping volatility model in which the
volatility changes with respect to the sign of the Gamma of the option. Frey and Patie [FP02], Frey and
Stremme [FS97] developed models dealing with feedback and illiquid market impact due to large trading
(see also [SW00]). We also mention the so-called the Risk adjusted pricing model (RAPM) derived by
Kratka [Kr98] and Jandačka and Ševčovič [JS05] in which both the transaction costs as well as the risk
from unprotected portfolio are taken into account. In the RAPM model the volatility function depends
on H = S∂2SV only, and it has the form:

σ(H)2 = σ2
0(1 + λH

1
3 ) = σ2

0(1 + λ(S∂2SV )
1
3 ), (2)

where σ0 > 0 is the constant historical volatility of the underlying asset and λ is a model parameter
depending on the transaction cost rate and the unprotected portfolio risk exposure. Recently, explicit
solutions to European style of options described by the nonlinear Black–Scholes equation with varying
volatility have been derived by Bordag et al. [BC07] for the Frey and Patie as well as the RAPM models.

Barnes and Soner [BS98] proposed a model assuming that investor’s preferences are shown by an
exponential utility function. In this model, the volatility function depends on H = S∂2SV as well as S,
and it has the following form:

σ(S,H)2 = σ2
0

(
1 + Ψ(a2SH)

)
= σ2

0

(
1 + Ψ(a2S2∂2SV )

)
, (3)

where the function Ψ is the unique solution to the ODE: Ψ ′(x) = (Ψ(x) + 1)/(2
√
xΨ(x) − x), Ψ(0) = 0

and a ≥ 0 is a constant depending transaction costs and investor’s risk aversion parameter (see [BS98]

for details). Notice that Ψ(x) ≥ 0 for all x ≥ 0 and it has the following asymptotic: Ψ(x) = O(x
1
3 ) for

x→ 0 and Ψ(x) = O(x) for x→∞.
Finally, we also mention the nonlinear volatility model developed by Mariani and Rial, Amster,

Averbuj [AM05], where transaction costs depend on the volume of trading assets in a linear decreasing
way. Recently, it was generalized for arbitrary transaction cost functions by Ševčovič and Žitňanská in
the paper [SZ16].

The paper is organized as follows. In the next section, we recall the mathematical formulation of the
perpetual American put option pricing model. Furthermore, we prove the existence and uniqueness of
a solution to the free boundary problem. We derive a formula for the option price and a single implicit
equation for the free boundary position %. In Section 3 we construct suitable sub– and supper–solutions
based on Merton’s explicit solutions with constant volatility. Finally, in Section 4, we present compu-
tational results of the free boundary position %, the option price V (S) and their dependence on model
parameters.

2 Perpetual American Put Option

In this section we analyze the problem of the American style of perpetual put options. As referred
previously, perpetual options are financial options with no fixed maturity and no exercise limit. As they
can be exercised at any time, they have infinite maturity T = +∞.

Consider the American style of a put option with the volatility σ of the form (1). Suppose that
there exist a limit of the solution V and an early exercise boundary position Sf for the maturity T →
∞. The pair consisting of the limiting price V = V (S) = limT−t→∞ V (S, t) and the limiting early
exercise boundary position % = limT−t→∞ Sf (t) of the perpetual put option is a solution to the stationary
nonlinear Black–Scholes problem (c.f. [GM09]):

1

2
σ(S, S∂2SV )S2∂2SV + rS∂SV − rV = 0, S > %, (4)
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and
V (%) = E − %, ∂SV (%) = −1, V (+∞) = 0 (5)

(c.f. [Kw98], [SSM11], [LS11]). We shall prove that under certain assumptions made on the volatility
function the perpetual American put option problem (4)–(5) has the unique solution (V (.), %). We will
present its explicit formula for the case when σ = σ(H), i.e. the volatility depends on the term H =
S∂2SV only. Furthermore, we will also present comparison results with explicit Merton’s solutions recently
obtained by the authors in [GFS16].

Throughout the paper we will assume that the volatility function σ = σ(S,H) fulfills the following
assumption:

Assumption 1. The volatility function σ = σ(S,H) in (4) is assumed to be a C1 smooth nondecreasing
function in the H > 0 variable and σ(S,H) ≥ σ0 > 0 for any S > 0 and H ≥ 0 where σ0 is a positive
constant.

If we extend the volatility function σ(S,H) by σ(S, 0) for negative values of H, i.e. σ(S,H) = σ(S, 0)
for H ≤ 0 then the function

R 3 H 7−→ 1

2
σ(S,H)2H ∈ R

is strictly increasing and therefore there exists the unique inverse function β : R→ R such that

1

2
σ(S,H)2H = w if and only if H = β(x,w), where S = ex. (6)

Notice that the function β is a continuous and increasing function such that β(0) = 0.

Concerning the inverse function we have the following useful lemma:

Lemma 1. Assume the volatility function σ(S,H) satisfies Assumption 1. Then the inverse function β
has the following properties:

1. β(x, 0) = 0 and β(x,w)
w ≤ 2

σ2
0

for all x,w ∈ R;

2. β′w(x,w) ≤ 2
σ2
0

for all x ∈ R and w > 0.

Proof. Clearly, β(x, 0) = 0. For w > 0 we have β(x,w) > 0 and w = 1
2σ(ex, β(x,w))2β(x,w) ≥ σ2

0

2 β(x,w)

and so β(x,w)
w ≤ 2

σ2
0
. If w < 0 then β(x,w) < 0 and we can proceed similarly as before.

Differentiating the equality w = 1
2σ(ex, β(x,w))2β(x,w) ≥ σ2

0

2 β(x,w) with respect to w > 0 yields:

1 =
1

2
σ2(ex, β(x,w))β′w(x,w) + ∂H

(
1

2
σ(ex, H)2

)
H ≥ 1

2
σ2
0β
′
w(x,w)

for H = β(x,w) > 0 and the proof of the second statement of Lemma follows.

The key step how to solve the perpetual American put option problem (4)–(5) consists in introduction
of the following variable:

W (x) =
r

S
(V (S)− S∂SV (S)) where S = ex. (7)

Lemma 2. Let x0 ∈ R be given. The function V (S) is a solution to equation (4) for S > % = ex0

satisfying the boundary condition:

V (S)− S∂SV (S) = E, at S = %,

iff and only if the transformed function W (x) is a solution to the initial value problem for the ODE:

∂xW (x) = −W (x)− rβ(x,W (x)), x > x0, (8)

W (x0) = rEe−x0 .
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Proof. As ∂x = S∂S we obtain

∂xW (x) = rS∂S(S−1V (S)− ∂SV (S)) = rSS−1∂SV (S)− rS−1V (S)− rS∂2SV (S)

= −W (x)− rS∂2SV (S) = −W (x)− rβ(x,W (x)),

because β(x,W (x)) = H ≡ S∂2SV (S) if and only if 1
2σ(S,H)2H = W (x) and V solves (4), i.e.

1

2
σ(S,H)2H +

r

S
(S∂SV (S)− V (S)) = 0.

Finally, W (x0) = r
S (V (S)− S∂SV (S)) = rEe−x0 where S = % = ex0 , as claimed.

Notice the equivalence of conditions:

V (S)− S∂SV (S) = E and V (S) = E − S ⇐⇒ ∂SV (S) = −1 and V (S) = E − S. (9)

Concerning the solution W of the ODE (8) we have the following auxiliary result:

Lemma 3. Assume x0 ∈ R. Let W = Wx0
(x) be the unique solution to the ODE (8) for x ∈ R satisfying

the boundary condition W (x0) = rEe−x0 at the initial point x0. Then

1. Wx0
(x) > 0 for any x ∈ R,

2. the function x0 7→Wx0
(x) is increasing in the x0 variable for any x ∈ R,

3. if the volatility function depends on H = S∂2SV only, i.e. σ = σ(H), then

Wx0
(x) = F−1(x0 − x) where F (W ) =

∫ W

W0

1

w + rβ(w)
dw, W0 = W (x0) = rEe−x0 .

Proof. According to Lemma 1 we have β(x,w)/w ≤ 2/σ2
0 for any x ∈ R and w 6= 0. Hence

∂x| ln(W (x)| = −
(

1 + r
β(x,W (x))

W (x)

)
≥ −(1 + γ)

where γ = 2r/σ2
0 . Therefore

|W (x)| ≥ |W (x0)|e−(1+γ)(x−x0) > 0,

and this is why the function W (x) does not change the sign. As W (x0) = rEe−x0 > 0 we have Wx0
(x) > 0

as well.
The solution Wx0(x) to the ODE (8) can be expressed in the form

Wx0
(x) = Wx0

(x0)−
∫ x

x0

(Wx0
(ξ) + rβ(ξ,Wx0

(ξ)))dξ. = rEe−x0 −
∫ x

x0

(Wx0
(ξ) + rβ(ξ,Wx0

(ξ))) dξ.

Let us introduce the auxiliary function

y(x) = ∂x0
Wx0

(x).

Then

y(x) = −rEe−x0 +Wx0(x0) + rβ(x0,Wx0(x0))−
∫ x

x0

(1 + rβ′w(ξ,Wx0(ξ))) y(ξ)dξ

= rβ(x0,Wx0
(x0))−

∫ x

x0

(1 + rβ′w(ξ,Wx0
(ξ))) y(ξ)dξ.

Hence y is a solution to the ODE:

∂xy(x) = − (1 + rβ′w(x,Wx0
(x))) y(x), x ∈ R, (10)

y(x0) = rβ(x0, rEe
−x0) > 0.

With regard to Lemma 1 we have β′w(x,Wx0
(x)) ≤ 2/σ2

0 . Therefore the function y is a solution to the
differential inequality:
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∂xy(x) ≥ −(1 + γ)y(x), x ∈ R,

where γ = 2r/σ2
0 . As a consequence we obtain

|y(x)| ≥ |y(x0)|e−(1+γ)(x−x0) > 0 (11)

and this is why the function y(x) does not change the sign. Therefore ∂x0
Wx0

(x) = y(x) > 0 and the
proof of the statement 2) follows.

Finally, if σ = σ(H) we have β = β(w) and so

∂xF (W (x)) =
1

W (x) + rβ(W (x))
∂xW (x) = −1.

Hence F (W (x)) = F (W (x0))− (x− x0) = x0 − x and the statement 3) follows.

Lemma 4. Under Assumption 1, there exists the unique root x0 ∈ R of the implicit equation∫ ∞
x0

β(x,Wx0(x))dx = 1. (12)

Proof. Denote φ(x0) =
∫∞
x0
β(x,Wx0

(x))dx. Then φ(∞) = 0 and

φ′(x0) = −β(x0,Wx0(x0)) +

∫ ∞
x0

β′w(x,Wx0(x))y(x)dx

where y(x) = ∂x0Wx0(x) is the solution to (10). That is ∂xy(x) = − (1 + rβ′w(x,Wx0(x))) y(x) and
y(x0) = rβ(x0,Wx0

(x0)) = rβ(x0, rEe
−x0). Therefore

φ′(x0) = −β(x0,Wx0(x0))− 1

r

∫ ∞
x0

∂xy(x) + y(x)dx = −1

r
y(∞)− 1

r

∫ ∞
x0

y(x)dx ≤ −1

r

∫ ∞
x0

y(x)dx.

As y(x) = ∂x0Wx0(x) ≥ y(x0)e−(1+γ)(x−x0) we have

φ′(x0) ≤ −1

r

y(x0)

1 + γ
= −β(x0,Wx0

(x0))

1 + γ
.

It means that the function φ is strictly decreasing. Since

1

2
σ(ex0 , β(x0,Wx0(x0)))2β(x0,Wx0(x0)) = Wx0(x0) = rEe−x0 → +∞ as x0 → −∞,

we have limx0→−∞ β(x0,Wx0
(x0)) = ∞ and therefore limx0→−∞ φ′(x0) = −∞. Therefore φ(−∞) = ∞.

In summary, there exists the unique root x0 of the equation φ(x0) = 1, as claimed.

Now we are in a position to state our main result on unique solvability of the perpetual American put
option problem (4)–(5).

Theorem 1. Assume the volatility function σ satisfies Assumption 1. Then there exists the unique solu-
tion (V (.), %) to the perpetual American put option problem (4)–(5). The function V (S) is given by

V (S) =
S

r

∫ ∞
lnS

Wx0
(x)dx, for S ≥ % = ex0 ,

where Wx0
(x) is the solution to the ODE (8) and x0 is the unique root of the implicit equation (12).

Proof. Differentiating the above expression for V (S) we obtain

∂SV (S) =
1

r

∫ ∞
lnS

Wx0(x)dx− 1

r
Wx0(lnS)

S∂2SV (S) = −1

r
(Wx0

(x) + ∂xWx0
(x)) = β(x,Wx0

(x)),
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where x = lnS. Hence

1

2
σ(S, S∂2SV )2S2∂2SV + rS∂SV − rV = S

(
1

2
σ(ex, β(x,Wx0(x)))2β(x,Wx0(x))−Wx0(x)

)
= 0,

i.e. V (S) is the solution to (4) for S > % = ex0 .
Furthermore,

[V (S)− S∂SV (S)]S=% = V (%)− %

r

∫ ∞
ln %

Wx0(x)dx+
%

r
Wx0(ln %) = E%e− ln % = E,

and,

V (%) =
%

r

∫ ∞
ln %

Wx0(x)dx =
%

r

∫ ∞
ln %

−∂xWx0(x)− rβ(x,Wx0(x))dx

=
%

r
Wx0

(ln %)− %
∫ ∞
ln %

β(x,Wx0
(x))dx = E − %

because x0 is the unique solution to (12). With regard to the equivalence (9) we have ∂SV (S) = −1
at S = %. In summary, (V (.), %) is the unique solution to the perpetual American put option problem
(4)–(5).

Remark 1. In the case the volatility function depends on H = S∂2SV only, i.e. σ = σ(H), then equation
(12) can be simplified by introducing the change of variables w = Wx0

(x). Indeed, β = β(w) and
dw = ∂xWx0

(x)dx = −(Wx0
(x) + rβ(Wx0

(x)))dx. Therefore∫ ∞
x0

β(Wx0
(x))dx = −

∫ 0

Wx0
(x0)

β(w)

w + rβ(w)
dw =

∫ rE
%

0

β(w)

w + rβ(w)
dw.

Equation (12) can be rewritten in the following form∫ rE
%

0

β(w)

w + rβ(w)
dw = 1. (13)

This is the condition for the free boundary position % recently derived by the authors in [GFS16].

3 The Merton explicit solution, sub and super solutions

In this section we recall recent results due to the authors [GFS16] dealing with comparison of the solution
(V (.), %) to the perpetual American put option problem (4)–(5) for the case when the volatility function
depends on H = S∂2SV only, i.e. σ = σ(H).

Suppose that the volatility σ ≡ σ0 is constant, then for the function V (S) and the limiting early
exercise boundary position % the free boundary value problem (4)–(5) has the explicit solution presented
by Merton (c.f. [Kw98],[SSM11]), which has the closed form:

Vγ(S) =

{
E − S, 0 < S ≤ %γ ,
E

1+γ

(
S
%γ

)−γ
, S > %γ ,

(14)

where

%γ = E
γ

1 + γ
, γ =

2r

σ2
0

. (15)

Our next goal is to establish sub– and super–solutions to the perpetual American put option pricing
problem. Let γ > 0 is a positive constant and denote by Vγ the explicit Merton solution defined before.
It is clear that the pair (Vγ(·), %γ) is the explicit Merton solution with constant volatility σ2

0 = 2r/γ.
Then, for the transformed function Wγ(x) we have
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Wγ(x) = rE%γγe
−(1+γ)x, for x = lnS > x0γ = ln %γ .

Furthermore Wγ is a solution to the ODE:

∂xWγ +Wγ + γWγ = 0. (16)

Applying the equation (16) we can construct a super-solution Wγ+ and a sub-solution Wγ− to the solution
W of the equation:

∂xW = −W − rβ(W )

using the Merton solution Wγ . Here γ+ is the unique root of the equation

γ+σ(1 + γ+)2 = 2r

and γ− satisfies
γ−σ(0)2 = 2r.

As a consequence, the following inequalities hold. For more details, we refer to [GFS16].∂xWγ+(x) ≥ −Wγ+(x)− rβ(Wγ+(x)), for x > x0γ+ = ln %γ+ ,

∂xWγ−(x) ≤ −Wγ−(x)− rβ(Wγ−(x)), for x > x0γ− = ln %γ− .
(17)

Moreover, it can be proved that
%γ+ ≤ % ≤ %γ− .

Since, for initial conditions we have Wγ±(x0γ± ) = rE
%γ±

and W (x0) = rE
% and so

Wγ−(x0γ− ) ≤W (x0) ≤Wγ+(x0γ+ ).

Using the comparison principle for solutions of ordinary differential inequalities in (17) we conclude

Wγ−(x) ≤W (x) ≤Wγ+(x).

Then taking into account the explicit solution of the function V (S) from Theorem 1 we present the
following result:

Theorem 2. [GFS16, Theorem 3] Let (V (·), %) be the solution to the perpetual American pricing problem
(4)–(5). Then for any S ≥ 0 we have

Vγ−(S) ≤ V (S) ≤ Vγ+(S)

and
%γ+ ≤ % ≤ %γ−

where (Vγ±(.), %γ±) are explicit Merton’s solutions with constant volatilities.

4 Numerical approximation scheme and results

In the last section, our aim is to present an efficient numerical scheme for constructing a solution to the
perpetual American put option problem (4)–(5) for the case when the volatility function has the form:
σ = σ(H) where H = S∂2SV . The numerical results were obtained by the authors in [GFS16].

Our scheme is based on transformation H = β(w), i.e. w = 1
2σ(H)2H and dw = 1

2∂H(σ(H)2H)dH
by using this we can rewrite the equation (13) for the free boundary position % as follows:∫ β(rE/%)

0

H
1
2σ(H)2H + rH

1

2
∂H(σ(H)2H)dH = 1. (18)

Similarly, the expression (see Theorem 1) for the price of the option can be rewritten in terms of the H
variable as follows:
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V (S) =
S

r

∫ β(F−1(ln(%/S)))

0

1
2σ(H)2H

1
2σ(H)2H + rH

1

2
∂H(σ(H)2H)dH. (19)

When the inverse function β(w) is not given by a closed form formula by applying this transformation
we can avoid computational complexity.

In what follows we recall numerical results of computation of the solution to the perpetual American
put option problem (4)–(5) for the RAPM model with the nonlinear volatility function of the form:

σ(H)2 = σ2
0

(
1 + λH

1
3

)
, (20)

We propose the results of numerical calculation for the Risk adjusted pricing methodology model (RAPM).
We would like to show the position of the free boundary % and the value of the perpetual option V
evaluated at exercise price S = E. The option values are computed for various values of the model
λ ∈ [0, 2] for the RAPM model. The rest of the model parameters were chosen as: r = 0.1, E = 100
and σ0 = 0.3. In computations shown in Tab. 1 we present results of the free boundary position and the
perpetual American put option price V (E) for the RAPM model.

Table 1. The perpetual put option free boundary position % and the option price V (S) evaluated at S = E for
various values of the model parameter λ ≥ 0 for the RAPM model (Source [GFS16]).

λ 0.00 0.20 0.40 0.60 1.20 1.60 2.00

% 68.9655 64.7181 61.2252 58.2647 51.1474 47.2975 44.5433
V (E) 13.5909 15.4853 17.1580 18.6669 22.5461 24.7444 26.6804

50 75 100 125 150 175 200

S

0

10

20

30

40

50

60

V
HS
L

Fig. 1. Solid curve represents a graph of a perpetual American put option V (S) for the RAPM model with λ = 1.
Sub- and super- solutions Vγ− and Vγ+ are depicted by dashed curves. The model parameters: r = 0.1, E = 100
and σ0 = 0.3 (Source [GFS16]).

Finally, in Fig. 1 we show the option price V (S) for the Risk adjusted pricing methodology model
with closed form explicit Merton’s solutions with constant volatility.

5 Conclusions

In this paper we analyzed the problem of American style perpetual options when the nonlinear volatility
is a function of the second derivative. We studied the free boundary problem that models this type of
options, by transforming it into a single implicit equation for the free boundary position and explicit
integral expression for the option price.

Acknowledgements:



Analytical and numerical results for American style of perpetual put options 9

This research was supported by the European Union in the FP7-PEOPLE-2012-ITN project STRIKE -
Novel Methods in Computational Finance (304617), the project CEMAPRE MULTI/00491 financed by
FCT/MEC through national funds and the Slovak research Agency Project VEGA 1/0780/15.

References

[AM05] Amster, P., Averbuj, C. G., Mariani, M. C., and Rial, D.: A Black–Scholes option pricing model with
transaction costs. J. Math. Anal. Appl., 303, 688–695 (2005)

[AP94] Avellaneda, M., and Paras, A.: Dynamic Hedging Portfolios for Derivative Securities in the Presence of
Large Transaction Costs. Applied Mathematical Finance., 1, 165–193 (1994)

[BS98] Barles, G., and Soner, H. M.: Option Pricing with transaction costs and a nonlinear Black–Scholes
equation. Finance Stochast., 2, 369-397 (1998)

[BS73] Black, F., and Scholes, M.: The pricing of options and corporate liabilities. J. Political Economy., 81,
637–654 (1973)

[BC07] Bordag, L. A., and Chmakova, A. Y.: Explicit solutions for a nonlinear model of financial derivatives.
Int. J. Theor. Appl. Finance., 10(1), 1–21 (2007)

[DH93] Dewynne, J. N., Howison, S. D., Rupf, J., and Wilmott, P.: Some mathematical results in the pricing of
American options. Euro. J. Appl. Math., 4, 381–398 (1993)

[F98] Frey, R.: Perfect option hedging for a large trader. Finance and Stochastics., 2, 115–142 (1998)
[FP02] Frey, R., and Patie, P.: Risk Management for Derivatives in Illiquid Markets: A Simulation Study.

Advances in Finance and Stochastics, Springer, Berlin, (2002)
[FS97] Frey, R., and Stremme, A.: Market Volatility and Feedback Effects from Dynamic Hedging. Mathematical

Finance., 4, 351–374 (1997)
[GM09] Grossinho, M. R., and Morais, E.: A note on a stationary problem for a Black-Scholes equation with

transaction costs. International Journal of Pure and Applied Mathematics., 51, 557–565 (2009)
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