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 Abstract 
 

In the last years, data has grown at a fast rate. Not only growing in size, data is also 

becoming far more complex then what it used to be. As companies are shifting to data-driven 

environments, this complexity dificults the analysis and extraction of value from the data. As a 

result traditional methods are becoming obsolete as their performance is decreasing and 

machine learning and deep learning models are becoming more complex so the desirable 

accuracy scores can be achieved.  

 This work proposes an approach that is capable of recognizing complex relationships 

and identifies groups that are not visible at first glance while providing a full interpretability of 

the methods used. It combines a black-box model with SHAP values to generate clusters from 

the explanations that were previously unknown. The clusters obtained are a combination of 

multiple local explanations that SHAP values offer and are easily interpretable since the 

feature values correspond to the feature importance assigned by the model.  

 To implement this approach, a dataset containing the properties of benign and 

malware samples, designed for malware detection tasks, was used. It is shown that by 

combining SHAP values with XGBoost it is possible to generate new clusters, that were 

previously hidden and unobtainable with traditional approaches. This clusters are highly 

interpretable as they derive from SHAP values and have the support of a supervised 

environment. 

KEYWORDS: SHAP values; Black-Box models; Interpretability; Supervised Clustering, XGBoost  
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1  Introduction 

 

 The cybersecurity industry is growing at a fast pace and as companies grow and open 

themselves to the IoT and cloud environments, they also create a window for cyberattacks, 

which are getting more frequent and sophisticated. One particular concern is the rising of 

malware attacks that spread and causes harm and losses to new companies every day. As a 

response to these attacks, cybersecurity strategies pass by techniques and tools such as 

antivirus, firewalls, detection systems and one method that has been rising, machine learning. 

Machine learning allows the companies to detect and eliminate threats, providing a more 

accurate and real-time analysis, resulting in a powerful and essential tool in the cybersecurity 

industry. In this fast-moving environment it is essential to keep the models up to date to 

efficiently fight the online threats as they are always changing and exploring new gaps. This can 

prove to be quite challenging and some models end up failing or becoming too complex to use. 

For instance, clustering is a very well-known unsupervised machine learning technique that has 

been used for a long time, through different algorithms, it allocates data points that are 

somehow similar to each other into distinct groups. However, grouping malware data into 

meaningful clusters can sometimes be quite challenging, from selecting the most suitable 

algorithm to the ongoing increase of the data’s complexity itself, the clusters found may not 

produce the best results. On the other hand, when dealing with detection problems with 

supervised learning approaches, models can become very complex and, therefore, hard to 

interpret. They also do not account for the differences among the samples of the same classes, 

neglecting the existence of subgroups among those classes. Finding these groups can reveal to 

be even more tricky as the classification models do not consider them directly and labelling the 

samples correctly, prior to the application of a model, is very costly to achieve. 

This thesis explores a different approach, Supervised Clustering with SHAP values (Aidan 

Cooper et al., 2021), it consists of guiding the cluster algorithms (unsupervised) with the help of 

classification models (supervised) to overcome the problems previously identified. To be able to 

do this it uses an explainable artificial intelligence (XAI) tool, Shapley Additive exPlanations 

(SHAP), as a pre-processing step. SHAP values (Lundberg and Lee, 2017) are an adaptation of the 

Shapley values (Shapley, 1953) to the machine learning framework, instead of having games and 

players, it is focused on models and features. It explains the output of a machine learning model 

by calculating the importance of the features locally and globally, contributing to the 

interpretability and transparency of black-box models. SHAP values can be thought as a second 

way for when the characteristics of the data itself are not enough, it can complement the 

clustering and classification models analysis by giving a different insight of the data, especially 

on the local level. The conjunction of this approaches generates new clusters that can be easily 

interpretable and allow transparent analysis. Instead of finding clusters based on the raw 

characteristics of the data itself, this method consists of finding clusters based on how a 

classification model attributes data points to a class, more precisely, it creates clusters around 

data points where the features share the same importance in a certain classification model.  

The objective of this study is to compare the clusters produced by this approach against 

the traditional methods, using a malware dataset, and show how this methodology not only 

performs better at producing clusters but also has a strong interpretability to support the 

analysis and use of classification models.
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The development of the work is divided into the following sections; the next section 

consists of a literature review regarding the problems identified and techniques addressed. The 

third section presents the methodology of the approach taken, explaining all the processes used 

and how the results are going to be accessed. Section 4 explains the data that was used for the 

work, followed by section 5, where the results obtained will be covered and analysed. The last 

session will consist of the conclusions and discussion of the project. 

 

2  Literature Review 
 

2.1  Machine learning in Cybersecurity 
 

The idea of implementing machine learning to the cybersecurity industry goes back to 

the 1980s where intrusion detection systems (IDS) (D. E. Denning, 1987) based on anomaly 

detection are implemented. DARPA researchers also created benchmarks datasets to train 

machine learning methods (Lippmann et al., 1999). However, these applications were still very 

primitive, the biggest problems faced had to do with the low accuracy on the detection rates, 

resulting in a large rate of false alarms and failing to detect new attacks. The training data was 

hard to obtain and its quality was not the best. With the lack of resources such as computational 

power, available data and efficient techniques, this field only started to see some progress again 

with the introduction of big data.  

Big Data leveraged the use of Artificial Intelligence and machine learning for 

cybersecurity. With the companies becoming data-driven and the processes automatized, the 

risk of cyber attacks increased with millions of malware attacks every day, but the 

implementation of more sophisticated and accurate models was also made possible. Fraley and 

Cannady(2017) explain how Big Data is affecting the business with threats every hour and how 

the analysts cannot deal with all the problems in feasible time. They proceed to explain how 

machine learning can leverage the cybersecurity industry from the possible tasks and datasets 

to the model development and evaluation. Since then, researchers took focus on this topic, with 

special attention in the last years, and have been improving and discovering effective 

techniques. From the implementation of simple supervised methods like Support Vector 

Machine (SVM) and decision trees to complex neural networks, Yang et al. (2018) summarize 

the methods used through the years as well as the public datasets that were made available to 

train the models.  

Regarding the current state and challenges of machine learning, three main problems 

are identified by Gibert et al. (2020). The first problem, concept drift, takes in consideration the 

fast pace of this industry and how malware evolves over time. The models need to have in 

consideration that the historical data is different from the future data and the relations keep 

changing. The second problem is about the adversarial learning and how reverse machine 

learning can be used to fool the detection models by alternating the feature space in the 

malwares favour, making it seem like a benign sample. The last problem relies on the 

interpretability of the models. With the use of black box models being more common and 

essential in the detection of malware, analysts can have a hard time understanding the model’s 

decision. This compromises the black-box models utility because despite proving to be efficient 

in detecting, analysts cannot properly explain the model decision. This may lead to analysts 
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preferring simpler models, they might have lower accuracy rates but it allows the analysts to 

have full control on the model decisions. 

 

2.2  Clustering in cybersecurity 
 

Cluster algorithms are usually implemented in the process of intrusion detection 

systems, and its application are mainly focused on two areas. The first area has a greater 

search and is related with the implementation of clusters as a pre-processing step, the data is 

divided according to the cluster algorithm and then the models are applied separately to each 

cluster.  Khorolska et al. (2022) explain how the evolution and increase complexity of AI 

technology has lead cluster algorithms to help in the decision making. Furthermore, Rathore et 

al. (2021) show how combining the cluster algorithms with other machine learning and deep 

learning models improves the classification tasks. The other use case has to do with the 

identification of clusters that can represent the different malwares and create distinct groups. 

Generally, the works on this topic show that finding meaningful clusters is often a challenge as 

the malware data is too complex and the results end up not being good enough to be used 

compared to other techniques. Renato and Carlos (2021) show the problems of finding 

meaningful clusters in malware data and explains that the patterns of this type of data makes 

it hard for distance-based cluster algorithms to divide the data properly. Other problem is the 

fact that the data normalisation breaks the relevancy of the features, which brings a negative 

effect as features have different importance. To solve this problem, they implement a method 

that calculates the degree of relevance of the features, which in some way is similar to the 

SHAP values, and show that the clusters perform better. In Basole and Stamp, (2021) while 

trying to find a relation between malware categories and their families they notice that while 

some clusters capture distinct malware families, others could not capture information due to 

the complex relationship. Nevertheless, they found out that some families within the same 

category are more similar to each other while others are completely different. 

2.3  SHAP Values in Cybersecurity 
 

Interpretability and XAI are two very sensitive topics that have gained importance over 

the last years across a wide range of industries. The use of black-box models is becoming 

necessary for machine learning and deep learning models to be efficient, however, it comes with 

a cost of human interpretation. Cybersecurity industry is no exception and, as Charmet et al. 

(2022) mention, XAI brings multiple advantages that are indispensable to analysts in the 

cybersecurity industry, it supports the complex model’s decisions and can be used for different 

applications. One new XAI tool that has raised some attention is the SHAP values. SHAP values 

are being used to improve intrusion detection systems and other tasks that involve machine 

learning and deep learning models by combining local and global explanations to interpret the 

different complex models used.  

Researchers are using new frameworks for IDS that include SHAP values to explain the 

predictions of different classifiers and how they differ (Wang et al., 2020) and (Alenezi and 

Ludwig, 2021). With SHAP values, analysts can have a better understanding of what features are 

having more impact on the decision, both at the global model view and sample view, guiding 

them on the alerts and the model overall behaviour for future improvements and modifications.  
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Figure 3.1: Scheme of the methodology’s processes 

This work focuses on a framework that tries to take the most of the feature’s importance 

values of SHAP’s local importance, which is not taken in consideration on other works. By 

exploring the potential of finding unknown groups of samples with different behaviours with 

cluster analysis, it provides a global view of that cluster that is unique in the model. This can help 

analysts identifying subgroups of samples across the same malware categories whose behaviour 

is distinct. 

3  Methodology 
 

The supervised clustering with SHAP values approach requires pre-processing 

procedures so that the clustering algorithms can be applied efficiently. In this section, it is 

carefully explained the multiple steps of the approach, the pre-processing techniques and how 

the results are measured, all detailed in the order which they were implemented as it can be 

seen in the Figure 3.1. This approach is similar to the traditional clustering approaches with the 

exception that it includes a new pre-processing step using the SHAP values to generate a new 

dataset. It also has a different cluster analysis and evaluation as the true label values are known.  

 

 

 

 

 

 

 

3.1  Pre-Processing techniques 
 

 There are multiple types of pre-processing techniques that can be considered before 

applying a machine learning algorithm, however, their implementation often depends on the 

characteristics of the data and the current problem. In this section, the main pre-processing 

steps that are indispensable to this work are carefully explained, from their advantages to the 

reasons that they were chosen. 

 

3.1.1  Feature Selection 
 

The quantity of features varies according to the domains and models analysed, often 

datasets come with a reasonable large number of features, including features that are 

considered noise. As these features end up being irrelevant to the machine learning models, 

feature selection focus on only retaining the relevant features to be used by the models.  

Among the feature selection techniques, the Pearson correlation coefficient was 

chosen. It measures the strength of the linear relationship between the features assigning a 
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(3.1) 

correlation value to each pair of features. A threshold value is selected, eliminating all the 

features with an absolute correlation above the threshold settled. 

𝑅𝑥𝑖𝑦𝑘
=

∑ (𝑥𝑖𝑧 − 𝑥�̅�). (𝑦𝑘𝑧 − 𝑦𝑘̅̅ ̅)𝑛
𝑧=1

√∑ (𝑥𝑖𝑧 − 𝑥�̅�)
2𝑛

𝑧=1  . √∑ (𝑦𝑘𝑧 − 𝑦𝑘̅̅ ̅)2𝑛
𝑧=1

, 

 

where 𝛼 is the number of features of the correspondent dataset, 𝑛 is the number of samples of  

the dataset,  𝑥𝑖 /𝑦𝑘 are the feature 𝑖 and the feature  𝑘 respectively, 𝑥𝑖𝑧 correspond to the 

sample 𝑧 of the feature 𝑥𝑖 and the same reasoning is applied for 𝑦𝑘𝑧. �̅�𝑖/𝑦𝑘̅̅ ̅ corresponds to the 

sample mean for the respective feature. 𝑅𝑥𝑖𝑦𝑘
 is the correlation between each feature pair  

𝑥𝑖 /𝑦𝑘  and can take a value between -1 and 1, where the larger the absolute value is, the 

stronger is the relation between the two features. 

The Pearson correlation coefficient was selected since it is an efficient technique to 

eliminate features that do not give any new contribution to the models and it aligns with the 

SHAP values methodology, that will be explained further bellow in this section, as they cannot 

deal perfectly with correlated features. Python has a built-in function that makes the Pearson 

correlation formula easy to apply. 

3.1.2  SHAP Values 
 

For each feature, SHAP values measure the contribution to the model output by doing a 

weighted summation average of all possible features subsets and calculating the marginal 

contribution of that feature to the model. The SHAP values is a local method, which means that 

for every row/instance in the dataset, it calculates the SHAP values for the feature 𝑖 , given a 

model 𝑓 and a vector 𝑥 of features to be explained; 

 

∅𝑖(𝑓, 𝑥) = ∑
|𝑆|! (𝑁 − |𝑆| − 1)!

𝑁!
(𝑓𝑥(𝑆 ∪ {𝑖}) − 𝑓𝑥(𝑆)

𝑆⊆𝑁\{𝑖}

), 

 

where 𝑆 is a subset of the features used in the model and 𝑁 the total set of the features in 𝑥, 

having 𝑆 ⊆ 𝑁\{𝑖} as all the possible subsets excluding the feature 𝑖,  𝑓𝑥(𝑆 ∪ {𝑖}) and 𝑓𝑥(𝑆) 

corresponds to the predictions of the model  𝑓𝑥, given a set of features 𝑆, with and without the 

feature 𝑖, respectively, marginalized over the feature that is not included in that set 𝑆. 

 SHAP values can also serve as a global method, calculating the feature importance for 

each feature in the model by doing an absolute average of the Shapley values: 

𝐼𝑗 =
1

𝑛
∑ |∅𝑗

(𝑧)
| ,

𝑛

𝑧=1
 

where 𝑗 represents each feature and 𝑧 each observation. 

SHAP values are model agnostic, supporting any machine learning model, however they 

have some problems. The first problem is the most relevant, the fact that it requires a big 

computational complexity, 2𝑛 − 1 steps (exponential growth), where n is the number of 

features used to calculate the Shapley values, this will consume a lot of time as the rows and 

(3.2) 

(3.3) 
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features of the datasets increase. To address this problem, explainers were implemented to be 

more time efficient, in particular, the TreeExplainer (Ludenberg et al., 2020).  

The TreeExplainer method is a tree-based model exclusively that allows the calculation 

of Shapley values in polynomial time, it does not require a background dataset to sample from 

and calculates the exact Shapley values. It does so by only computing the values for the relevant 

nodes of the given instance of a tree. The second problem is related to the correlation between 

features, as the features are correlated and pass the same information to the model’s output, 

when calculating SHAP values, the difficulty of assigning the correct feature importance to each 

feature is raised which might result on different solutions since the same feature importance is 

split between the correlated features. This can lead to possible miss interpretation of the SHAP 

values as the true feature importance is not explicit and different SHAP values can be obtained. 

Implementing a pre-processing step that deals with correlated features attenuates the problem. 

SHAP values act as a pre-processing step in the way that a new dataset is created where 

the original data points are replaced with the corresponding SHAP values. The new dataset 

maintains the same shape/structure of the original one (number of samples and features) and 

the data points do not represent the original characteristics of the data, instead they represent 

the contributions of the features of each sample given a model. Also, it is important to take in 

consideration that the SHAP values act based on the model’s predicted value which can be 

different from the true label if the sample was misclassified. 

 

3.1.3  Classification Model 
 

 SHAP values require a base model to infer on. Given SHAP’s characteristics and the 

problem that this work addresses, any classification model can be used, however, due to the use 

of TreeExplainer, it shrinks the classification models to tree-based only.  

Taking in consideration the classification tree models available, the eXtreme Gradient 

Boosting algorithm (XGBoost) was chosen as the input model. Since its introduction (Chen and 

Guestrin, 2016), XGBoost has gained popularity against other classification models as it provides 

greater efficiency and accuracy, proving to be one of the strongest supervised machine learning 

models. XGBoost is a tree-based ensemble algorithm that uses a combination of gradient 

descending with boosting, gradient boosting, by combining multiple small trees, also called weak 

learners.  

�̂�𝑖 =  ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝐹

𝐾

𝑘=1

, 

the prediction of each tree is summed up and complemented by each other, where 𝐾 is 

the number of trees, 𝑓𝑘 corresponds to a tree with its own structure and weights and 𝐹 

corresponds to the set of possible classification trees. Using a gradient descent, a loss function 

is calculated in each tree and the model trains on the residuals, giving more importance to 

misclassified observations and, consequently, the next weak learners act on where the existing 

trees are failing. The objective is to minimize the loss function to a point that it cannot decrease 

anymore, meaning that no more trees are created and the algorithm stops. The objective 

function can be written as, 

(3.4) 
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(3.5) ℒ (𝑡) =  ∑ 𝑙 (𝑦𝑖, �̂�𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡),

𝑛

𝑖=1

 

where the first term is a loss function that depends on the trees created up to the iteration 𝑡, 𝑦𝑖  

is the real label value from the dataset and �̂�𝑖
(𝑡−1)

 is the value predicted from the previous trees 

plus the prediction of the current tree 𝑓𝑡. The second term is a regularization parameter that 

prevents the current tree from overfitting by penalizing the complexity. Combining all these 

methods makes XGBoost a powerful tool, however, like any boosting algorithm it can overfit the 

data quickly, resulting in adequate models. 

 

 In this methodology, the goal is to analyse a dataset by fitting a model and deducing the 

SHAP values from the model. In the process of fitting the appropriate weights and parameters 

for the data, the model needs to be trained. To ensure that the models do not overfit, XGBoost 

has a wide range of hyperparameters that regularize the model and make it more conservative 

while maintaining its potential. Since the learning process for these parameters is not automatic, 

the Grid search methodology is used to find the best values for the parameters. It combines a 

set of possible values and creates multiple models with different sets. Through cross validation, 

the values of the hyperparameters for the model that performed best are given as the optimal 

solution. For this work, the following parameters were tunned: n_estimators, min_child_weight, 

max_depth, learning_rate, gamma, early_stopping_rounds and colsample_bytree. Table 3.1 

gives a brief description of how the hyperparameters affect the model. 

Hyperparameter Definition 

n_estimators Number of trees(estimators) built by the model. Has the value 
grows, the complexity of the model increases. 

min_child_weight Minimum sum of samples weight needed in a child to split. 

Higher values reduce the overfitting by limiting the size of the 

trees. 

max_depth Determines the maximum depth that the trees can go to. The 
more complex the trees are, more is the risk of overfit. 

learning_rate Sets the weight at which the model updates in each interaction. 
Large value leads to a faster convergence but less accurate 
model. 

gamma Determines the minimum loss reduction to split the tree.  

Increasing the value of gamma helps controlling the overfit. 
 

early_stopping_rounds Sets a number of rounds that the model is going to stop if no 

improvement is detected, preventing excessive training time. 
 

Colsample_bytree  Determines the fraction of columns sampled for each tree. 
Increasing the values improves the training process and 
reducing the overfit 

Table 3.1: XGBoost hyperparameters 

3.1.4  Dimensionality Reduction 
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With big amounts of features to deal with, some machine learning algorithms struggle 

in processing all the information properly, making it harder to find a solution in a feasible 

amount of time (curse of dimensionality). On the other hand, it is hard for humans to interpret 

graphs above 3 dimensions. To produce meaningful visualisations of data and for machine 

learning algorithms to be efficient, it is necessary to reduce the dimension of the features to a 

lower dimensional space that can be projected. 

This technique plays an important role when it comes to clustering algorithms. First, it 

allows the algorithm to overcome the curse of dimensionality. Second, it allows the visualization 

of the data in two- or three-dimension graphs that humans can extract information off.  

Essentially, the Dimensionality reduction algorithms fall in two categories; matrix 

factorization or neighbour graphs. The first category tends to preserve more the global structure 

of the data while the second category prioritizes the preservation of the local structure of the 

data. Therefore, these algorithms play a trade-off of trying to keep the maximum structure of 

the data while reducing its dimension.  

Uniform Manifold Approximation and projection (UMAP) was the algorithm chosen for 

this approach. This algorithm belongs to the neighbour graphs category and can separate 

clusters on higher dimensions, reducing it to low dimensions while maintaining the local 

structure of the data and preserving part of the global structure. Leland and John (2018), the 

authors of UMAP, carefully explain all the mathematical assumptions and foundations behind it 

but the main idea is that it constructs a high dimensional graph of the data with wedges and 

weights that represent the likelihood of points being connected and then tries to replicate the 

same structure but in a lower dimension level. 

This approach holds some advantages against other widely used dimension reduction 

algorithms, like Principal Component Analysis (PCA) and t-distributed stochastic neighbour 

embedding (t-SNE). PCA sometimes is not able to reduce the data to a low dimension at the cost 

of losing most of the data structure and it can only preserve the global structure of the data. 

UMAP also tends to outperform t-distributed stochastic neighbour embedding (t-SNE) when it 

comes to scalability, achieving results much faster, and on preserving the global structure of the 

data, which is very important when it comes to inter-cluster analysis. 

Like XGBoost, UMAP has two hyperparameters that have a significant impact on the 

result, n_neighbors and min_dist. These parameters represent the trade-off that exists between 

the global and local view, so the way to optimize these parameters depends on how we want to 

visualize the data and based on trial error. Table 3.2 describes the hyperparameters. 

Hyperparameter Definition 

n_neighbors Sets the number of neighbours used in the construction of the 

neighbourhood graph, high values result on preserving the global 

view and higher computational costs. 
 

min_dist  Sets the minimum distance between points in the low dimension 
defined, increasing the value leads to more separation at the cost 
of loss of the local view. 

Table 3.2: UMAP hyperparameters 
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3.2  Cluster techniques 
  

 After applying all the pre-processing procedures, a cluster algorithm needs to be 

selected. As it was mentioned before, cluster techniques can be used to serve multiple 

purposes in machine learning. Along with this, there are several different clustering algorithms 

that one can use, each producing their own clusters and results. Therefore, in this section, the 

cluster algorithms that were tested are presented. The objective is to choose the algorithm 

that can better fit the problem identified. 

 

3.2.1  K-Means 

 
 The k-means is a simple and widely used iterative algorithm. It groups the data, based 

on its similarity, into a predefined number of clusters. These clusters initialize randomly but 

are updated on each iteration, they start being built around their centroids, minimizing the 

distance of the data points to that center until the clusters stabilize. The distance measure 

used will depend on the type of the data used. The next table represents the pseudocode of 

this iterative process. 

 

Input:   

   Data 

   K number of clusters 

Process: 

   Randomly initialize k centroids 

   Assign each data point to the closest centroid 

   Update the centroid to the mean of data points to the cluster 

Output:   

   Final centroids and the assignment of each data point to the cluster 

Table 3.3: K-Means pseudocode 

 

Due to its simplicity, this algorithm is very efficient and most of the times can produce 

meaningful clusters. On the other hand, it requires some prior knowledge of the data or the 

resort of techniques (Ex: Elbow Method)  to find the optimal amount of clusters. K-means is also 

sensitive to noisy data, which can affect the clusters creation. 

 

3.2.2  DBSCAN (Density-Based Spatial Clustering of Applications with Noise) 
 

 DBSCAN is another cluster algorithm that groups the data based on its density. High-

density regions of data will be clustered together while low-density regions will be marked as 

noise. It does not need to have a predefined number of clusters to act like K-means. DBSCAN 

will define the clusters based on two parameters: Eps and MinPts. Eps consists of the maximum 
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distance between two data points so the data point can be considered on the same cluster and 

MinPts is a minimum number of data points that a cluster needs to have.  DBSCAN is also a 

relatively efficient algorithm that overcomes two of the k-means problems. It does not require 

the user to specify a number of clusters and is able to identify noise with ease. It can also capture 

arbitrary shapes easily but it is very sensitive to the values of the parameters Eps and MinPts, 

becoming a challenge to select the correct values. The following table displays the process: 

  

Input:   

  Data 

  Eps 

  MintPts   

Process: 

   If data point is not visited, mark it as visited 

     If the point is a core point, initialize a new cluster 

       add all the points within the Eps distance to the cluster 
       repeat the process for all points in the cluster until no more points can be 

added 

     If the point is a border point, add it to the nearest cluster 

Output: 

  The assignment of each data point to the cluster 

Table 3.4: DBSCAN pseudocode 

 

3.2.3  Gaussian mixture model/ Expectation-Maximization 
 

Gaussian Mixture Models (GMM) assume that the data is generated by different 

gaussian distributions. Each cluster will have its own gaussian distribution with a mean and 

covariance parameter. To find the optimal parameters, it will resort to an iterative process with 

the Expectation Maximization (EM) algorithm until the convergence is met. This algorithm works 

by applying two steps iteratively, first, it estimates the probability of a data point belonging to a 

cluster through the empirical probability density function and, on the second step, it updates 

the parameter of the gaussian distribution for the clusters according to the probabilities 

observed on the first step. GMM can handle complex data with missing values at the cost of 

computer complexity but, like K-means, it requires the user to specify a number of clusters a 

priori.  

 

3.3  Choosing the cluster algorithm 
  

 When it comes to identifying which algorithm to choose, it is clear that there is not a 

straightforward answer. As it was seen in this section, each algorithm has its own strengths and 

weakness and its fitness will depend on the problem faced. Overall, there is not a best cluster 

algorithm to choose, it will be necessary to consider the characteristics of the data, the problem 

that is faced and to have the awareness of the capability of the different algorithms. Only by 
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trying the different algorithms and having in consideration the different assumptions it will be 

able to select a proper cluster algorithm to work with. 

3.4  Cluster Analysis 
 

This cluster analysis differs from the traditional unsupervised methods since the true 

labels are known. Instead of evaluating the clusters with methods that measure distances and 

similarity (Within-Cluster sum of squares or Silhouette Score), the clusters are assessed based 

on two steps. First, the classes off the samples that belongs to the clusters are taken in 

consideration, identifying the different classes contained in the cluster. Having different classes 

in the same cluster does not necessarily mean that the cluster is not viable. In SHAP values 

perspective, it informs that, despite the samples belonging to different classes, they present the 

same behaviour for the input model, being, therefore, grouped together. Secondly, it is used 

one of the SHAP values properties to get the global view of the variables for each cluster. By 

calculating the mean of the SHAP values variables for each cluster, it can be seen how the 

different variables are affecting different clusters. Ideally the clusters identified will have 

different SHAP values leading to samples with a different order of feature importance values. 

This clusters will give extra information that the global view and local view of SHAP 

values cannot give and will boost the decision making of analysts. From this point on, the 

analysts can interpret the results with different perspectives, according to their objectives and 

focus. The clusters can be filtered according to the different classes, being able to focus on only 

one class or multiple classes at the same time. They can also focus on the samples that were 

misclassified, viewing the clusters that contain them and to which samples the model is 

associating them. 

 

4  Data 
 

4.1  CIC-MalMem-2022 
 

To support this work, it was used a publicly available dataset, provided by the Canadian 

Institute for Cybersecurity (CIC), the CIC-MalMem-2022 dataset. This dataset was developed by 

Carrier et al. (2022) and serves as a benchmark model that tries to represent the real-world 

situation incorporating malware and benign samples captured from a computer environment 

and then transformed into variables to construct the dataset.  

This dataset was created with the intuit of testing detection models through memory 

analysis consisting of 58.596 samples evenly balanced between benign and malware instances 

as it can be seen in Figure 4.2. 
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Figure 4.2: Samples distribution among the Benign and 
malware classes 

Figure 4.3: Malware samples distribution among the different categories and families 

 

 

 

 

 

 

 

 

 

 

 

Inside the Malware class, the dataset contains three different malware categories, 

Ransomware, Spyware and Trojan and each category contains five different families, 

maintaining the balance between each category and family, like Figure 4.3 shows.  

 

 

 

 

 

 

 

 

 

4.1.2  Variables 
 

The dataset contains fifty-eight features extracted from memory dump files using an 

open source tool. Three of them identify the class, category and family of the correspondent 

sample, while the other features are split between features that focus on general characteristics 

of memory and others that target specifically hidden malware. The features can be divided into 

five categories, Malfind which focus on malware associated with trojan malware behaviour, 

Ldrmodule looks for injected code, mostly related with spyware, Process View category looks 

into the process lists of the system to find malicious processes, API hook looks to the API 

(Application Programming Interface) calls and searches for modifications and the last category, 

Handle, monitors the Handles of the computer system. 
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Figure 4.5: Correlation matrix between the features 

Figure 4.4: Descriptive statistics of the features eliminates 

4.1.3  Transformations 
 

This section covers all the transformations done to the data to prepare it for the 

implementation of XGBoost, SHAP values and Cluster algorithms. After looking at the descriptive 

statistics of the data, three variables were eliminated as they only contained zeros and would 

not pass information to the models as it can be seen in Figure 4.4. 

 

 

 

 

 

 

 

 

 

The next step was to look at the correlation between the variables, in this dataset, as 

we can see in Figure 4.5, correspondent with the dark green and dark red colours, there are 

quite a few features that show high correlation in between them.  
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Since the SHAP values are very sensitive to the correlation between variables, a 

threshold of 0.7 was selected. This will ensure that the SHAP values will keep their consistency 

and produce trustworthy values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                           Figure 4.6: Samples values for the final feature set 
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Figure 5.7:  Confusion Matrix for the XGBoost model implemented 

 

 As a result, out of the fifty-two variables, thirty-eight were removed. The final                   
dataset consists of fourteen independent features and three target labels, Figure 4.6 shows the 
behaviour of the different variables for each category. For the purpose of this work, the target   
label considered by the models will be the category label while the other labels will serve to          
complement the analysis. 

5  Results 
 

5.1  SHAP Values- Classification model 
 

The first step to create the SHAP values dataframe is to define a model, since XGBoost 

was the chosen model, we need to ensure that it performs well and does not overfit the data. 

For this purpose, the hyperparameters were optimized according to the grid search technique 

by obtaining the lowest log-loss score out-of-sample. Table 5.5 shows the values proposed and 

selected for the hyperparameters. 

Hyperparameter Value Proposed Value Selected 

n_estimators [100,200,500] 500 

min_child_weight [1,3,5,7] 1 

max_depth [10,15,20,30,50] 10 

learning_rate [0.05, 0.1, 0.15, 0.2, 0.25, 0.3] 0.15 

gamma [0.0, 0.1, 0.2, 0.3, 0.4] 0.4 

early_stopping_rounds [25,50,100] 100 

Colsample_bytree [0.3, 0.4, 0.5, 0.6, 0.7] 0.7 

Table 5.5: XGBoost hyperparameters optimized with grid search and the selected values 

 The model obtained an accuracy of 94,11% with a validation score of 0.17801, as we 
can see in the confusion matrix below it distinguished the benign from the malware samples       
easily, only misclassifying two benign samples. However, when it comes to identify the                      
different malware categories, the model struggles to find the difference between some                      
samples, being this the main cause for the decreasing of the model accuracy. The following             
confusion matrix  displays the output of the model. 
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Figure 5.8: SHAP global feature importance of the XGBoost model for the diferent categories 

 

5.1.1  Computing SHAP values 
 

Once the model is prepared, the SHAP values are deducted. Given the use of the of the 

TreeExplainer and the reduction of the feature space, the complexity and computational power 

of this task is reduced to a computing time of 1 minute and 49 seconds. To have a general view 

of the values obtained, Figure 5.8 shows the mean absolute SHAP values for each feature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At a global view level, the features that have bigger impact to the model are the 

svscan.nservices, pslist.avg_handler and dillist_ndills, on the other hand, callbacks.nanonymous, 

psxview._not_in_eprocess_pool and callbacks.negeneric are the features with less relevant 

impact. To complement this analysis, we also need to look at the local view, beeswarm plots 

allow us to see how each sample, represented by a dot, is allocated across the features. 

 

Looking at Figure 5.9 and 5.10, it is possible to identify that each sample has its unique 

feature importance and behaviour. Furthermore, we can see that for each category, the order 

of the most important features is different. It is also important to note that besides the 

callbacks.ngeneric feature, which brings no importance to the model as the SHAP values are 0 

for all the categories, the features with the lowest mean importance, are relevant for particular 

samples meaning that they provide important information to the model decision. 
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Figure 5.9: Beeswarm plots for the 3 malware categories, Ransomware, Spyware 
and Trojan from top to bottom 
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Figure 5.10 : Beeswarm plots for the Benign samples 

Figure 5.11: UMAP 2D visualisation for both the original data and the SHAP values data 

 

 

 

 

 

 

 

 

 

Although the beeswarm plots give us information about the local importance for the 

samples, having many samples makes it hard to analyse them. To better understand the values 

obtained, cluster algorithms can be put up to use to retrieve the maximum information from the 

local importance.  

5.1.2  Creating a new dataframe 
 

To continue the SHAP values analysis, we need to transform the SHAP values in a new 

dataset while maintaining the original structure. The SHAP and Pandas libraries makes it easy to 

manipulate the results obtained and adding them to the dataframe. An advantage of this new 

dataframe is the fact that all variables come in the same measure, feature importance, so we do 

not need another step to standardize the data. 

5.1.3  Reducing to two dimensions 
To get a better interpretation of the values obtained for the cluster algorithms and 

visualisation purposes, we use UMAP to reduce the feature space into 2 variables. In comparison 

we can look at the differences of the original dataframe and the SHAP values dataframe. The 

hyperparameters selected were 10 for n_neighbors and 0.1 for min_dist. 
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Figure 5.12: UMAP 2D visualization for the malware SHAP values 

Looking at both graphs, the differences are clear. In Figure 5.11, left graph, it is hard to 

extract useful information as the malware category samples tend to overlap and there is no clear 

separation between benign and malware samples. On the other hand, the feature space on 

Figure 5.11, right graph, is arranged according to the interpretation and classification of the 

model (SHAP values). There is a clear boundary between benign and malware samples.  

Other important aspect to note is that the malware samples got divided into subgroups, 

noting a distinct behaviour between the different categories and among the categories 

themselves. Furthermore, we can turn our focus into one particular category or class. 

 

 

 

 

 

 

 

 

 

 

 

 

Analysing the malware samples has a greater importance in Cybersecurity and since 

benign samples do not present significant groups, we can highlight the malware samples and 

have a better view of the behaviour of the samples.  

Figure 5.12 provides an amplified view of the malware samples. It is possible to see the 

different groups that emerged with more ease. Both Ransomware and Trojan categories present 

tight groups while Spyware groups tend to be more louse and disperse. It is also possible to see 

that the misclassification samples create small groups around the corrected classified groups. 

Although having missclafied samples might seem a bad indicator at first glance, if the model 

used is trustworthy enough, this reveals very important information to analysts as they can not 

only understand the features that lead to that choice but also understand to which samples the 

model is associating them.  

This view allows us to compare the position of the different malware categories but we 

can also focus the analysis to each malware category and their respective families, taking the 

maximum advantage of the known labels, Figures 5.13, 5.14 and 5.15 shows exactly that. 
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Figure 5.13: Ransomware category and its family’s visualisation 

Figure 5.14: Spyware category and its family’s visualisation 

Figure 5.15: Spyware category and its family’s visualisation 
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Figure 5.16: BIC criteria to select the number of EM clusters 

We can have an exclusive view for each category and its families. It is possible to observe 

that despite the model not receiving any information about the types of families within each 

category, it still groups parts of them together. When looking at each category we also need to 

have in consideration that some samples are misclassified and the model is seeing them as a 

different category and as a result they end up becoming looser from the visual groups. 

Having confirmed that there are distinct groups with their own properties we can 

proceed with finding the cluster algorithm that better capture the groups visible on the 2D 

graphs. 

5.2 Applying Cluster algorithms 
 

The previous visualisation graphs give us an idea of how the clusters should be formed. 

Given the information acquired and the cluster algorithms that we have available it is 

predictable that K-Means will not have a good performance compared to DBSCAN and EM 

clustering. The reasoning behind this has to do with the fact that K-Means assumes equal 

spherical clusters and in the 2D visualisations, multiple groups with different shapes and sizes 

can be drawn. Besides it is likely that the algorithm would get stuck in local optimum as it is 

sensitive to the cluster’s initialization.  

DBSCAN and EM clustering identify arbitrary shapes with more ease, however both have 

their downsides. While DBSCAN is highly sensitive to the hyperparameters, small changes in its 

values will have great impact on the cluster’s creation, EM clustering requires more computer 

power and suffers the same problems as K-Means as it can be negatively affected by the 

initialization of the gaussian parameters. Only by applying both cluster algorithms and 

comparing the output we will be able to determine which one to choose. EM clustering requires 

the specification of the number of gaussian distributions (clusters), for this purpose the Bayesian 

information criterion (BIC) was selected to find the optimal value. 

 

 

 

 

 

 

 

 

 

 

According to BIC, Figure 5.16, the number of clusters that optimize the EM clustering 

algorithm is 25 clusters. Lower BIC values could be achieved with the increase of the clusters 

however it would lead to overfit and extra computational power, so the number of clusters 

chosen to apply was 20.  
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Figure 5.17: DBSCAN clusters 

Figure 5.18: EM clusters 
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DBSCAN algorithm, with the parameters 1 for eps and 300 for min_sample, identified 21 

clusters, as we can see in Figure 5.17, the clusters obtained fit perfectly the groups identified 

previously. It also tags samples that do not belong to a specific group into a noise cluster, which 

can be useful for the analysis. 

Regarding the EM clustering, the biggest challenge is to select an appropriate number 

of clusters, with the help of BIC we can have an idea of the number to choose but it is only by 

looking at the 2D visualisation that we can clarify the number to use. As we see in the Figure 

5.18, the EM cluster produced results similar of DBSCAN.  

Comparing the clusters algorithms, both capture distinct groups, constructing them in a 

similar way to the ones visible in the 2D graph. While DBSCAN can identify a clear noise cluster, 

EM is only capable of associating those samples to the closest cluster which can be useful for 

interpretation but can also interfere with the cluster quality. The analysts are the ones that will 

have to make the assumption of analysing the cluster or considering it a noise cluster, with the 

respective care. Other problem has to do with the fact that while DBSCAN fits the number of 

clusters automatically, EM clustering requires the prior knowledge of the users to input a specific 

number of clusters which can reveal to be tricky for analysts to find an optimum. It is also visible 

that DBSCAN clusters are more compressed to the samples that are close and EM clusters tend 

to absorb samples that distance from the main group.  

The visualization of the clusters suggest that EM is better to analyse anomalies and 

misclassified samples while DBSCAN can better differentiate the behaviour among the malware 

samples. 

EM cluster 6 absorb all the samples belonging to the spyware groups while DBSCAN 

divides it into two different clusters, 8 and 9. EM clusters 14 and 15 end up integrating samples 

that are dispersed across the visualization and that association might disturb the analysis of the 

feature importance. EM clusters 3 and 12 as associate other samples that are relatively close to 

the main group, which can facilitate on understanding the behaviour of the outlier samples. 

It is hard to choose which cluster is better or not, both can be applied to tackle different 

problems, so ultimately, the choice of the algorithm cluster will depend on the analyst’s goal. 

For the purpose of this work we are going to use DBSCAN to highlight the different clusters 

across the categories. 

5.3 Cluster Analysis 
 

As it was mentioned previously, knowing the true labels and predicted labels of the data 

and the model gives the analysts a unique and diverse way of analysing the clusters. For this 

case we can start by analysing the clusters size and different categories that they include to have 

an idea of how the samples are divided through the clusters. Then we can focus on the results 

of Figure 5.17 and analyse the mean SHAP values of each cluster to find the differences of each 

cluster for the malware class. This view can be drilled down to focus on the clusters for a 

particular category or respective families of each category. 
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Figure 5.19: Cluster composition according to the different malware categories 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 allows us to see the composition of the clusters according to the predicted 

categories. Clusters range in size from 360 samples to 1834 samples. Although presenting a 

dominant category, clusters 2, 3 and 19 have two categories, which has to do with the fact that 

the category in minority is misclassified. Cluster 14 is the smallest cluster and contains 2 different 

categories that are not misclassified. Clusters from 0 to 4 and 18 mainly represent Ransomware 

samples, 5 to 12 spyware samples and 13 to 19, Trojan samples. 

The most important step of the cluster analysis it to understand the differences between 

the clusters and if, in fact, they present different SHAP values and therefore, different feature 

importance for the model.  

To do this analysis we create a second mean global view for each cluster. This will allow 

us to identify the behaviour of the samples of each cluster and identify the possible differences. 

The next set of figures shows the different mean SHAP values for each cluster with the objective 

of comparing them and analysing their differences.  
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Figure 5.20: Mean SHAP value of each future for the different Ransomware clusters 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Focusing first on the clusters that contain the Ransomware samples, it is possible to see 

that the order of the SHAP values slightly changes across the first four clusters. 

Ldrmodules.not_in_load_avg was the feature with most impact for the clusters apart from 

cluster 4 and 18. It was also the feature with the most differences between each cluster. 

Pslist.avg_handlers, dlllist.ndlls and svcscan.nservices, were the following features that more 

contributed to the model decision making. Cluster 18 stands out as a contrast to the other 

ransomware clusters, it has a negative value for ldrmodules.not_in_load_avg which is the 

complete opposite of the other clusters and it also has lower values for all the features that 

stand out on the other clusters. The remaining ransomware clusters accumulate small 

differences that can also be relevant to the analysis, for instance, cluster 4 and 1 have the biggest 

values for psxview.not_in_pslist, cluster 0 has bigger values for malfind.commitCharge and 

cluster 3 has the biggest values for pslist.avg_handlers.   
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Moving to the Spyware clusters, 5 to 12, we can see that unlike the Ransomware 

clusters, the differences in these ones are more noticeable. Cluster 8 has the feature 

ldrmodules.not_in_load_avg with the highest feature importance value across all clusters 

achieving a value over 1.4 while the other clusters do not go beyond 0.5. Cluster 11 and 6 have 

malfind.commitCharge has the highest feature importance, distancing themselves of the other 

clusters by a large margin. The other spyware clusters present similar feature importance values. 

They compensate the difference between the spyware clusters previously mentioned by 

accumulating small differences on the remaining features. Svscan.nservices and 

pslist.avg_handlers represent the higher feature importance for this group. 

 

 

 

 

 

Figure 5.21: Mean SHAP value of each future for the different Spyware clusters 
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Figure 5.22: Mean SHAP value of each future for the different Trojan clusters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The last set of clusters, from 13 to 19, are composed by samples from the Trojan 

category with the exception of cluster 18. Cluster 14, which is composed of trojan and spyware 

samples, stands out for having the highest feature importance for ldrmodules.not_in_load_avg. 

Cluster 16 has a higher value for both malfind.ninjections  and malfind.commitCharge compared 

to the other clusters. Cluster 13 and 15 are pretty much identical, the only exception has to do 

with the feature ldrmodules.not_in_load_avg that stands out the most for cluster 15 and 

pslist.avg_handlers that stands more for the cluster 13. Clusters 17 and 19 almost have a stair 

shape, they focus on the same features but each has considerable differences that distincts 

them. 

Recalling the figures 5.9 and 5.10 we can see that this cluster analysis is extremely useful 

to complement both global and local importance that the SHAP values offer. As it was seen, each 

cluster has its unique properties that differ from the global view of the model. It was possible to 

observe the different categories and their unique feature importance as well as it was possible 

to identify the differences inside each category. This can help analysts understanding how 
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specific samples from the same category differ from each other and how the model is 

interpreting those differences. 

 Furthermore, the supervised environment gives room to maneuver according to the 

target of the analysts, being able to change the analysis focus into a particular set of samples 

and observing their clusters or creating new clusters just for that set. For instance, the analysis 

can be focused on the misclassified samples and how they position themselves against the 

correctly classified samples.  

 

6  Conclusion 
 

This work takes advantage of the local properties of SHAP values to search for different 

patterns in samples that belong to the same class. Often researchers only use the local 

properties to explore isolated cases and most of the times act based on the global feature 

importance. As it was observed it could not be possible to find reliable clusters within the original 

data as samples from the different categories and families were overlapping, however, the 

clusters found using SHAP values are reliable and have different feature importance levels which 

can complement and bring further interpretation to the model decision as well as helping 

analysts with the decision-making process, especially on understanding patterns and 

misclassifications of the model. This methodology can help on facing some current problems on 

the cybersecurity industry related with the interpretability and adversarial learning of the 

models. It can boost the interpretation of black-box models making them more desirable to use 

as the analysis becomes more reliable and complete. This interpretability will also contribute to 

the adversarial learning problem since it gives extra vision to the analysts as they are able to 

have more control on the possible modified samples, allowing to know to which samples they 

are grouped with. 

Although SHAP values and supervised clustering can prove to be very helpful, they 

present some relevant issues. They are highly reliable on the model deployed, so it is crucial to 

assure that the model is well defined and it is maintained once in a time so the SHAP values 

produced are trustworthy to analyse. For this work, the computation cost was optimized by 

reducing the feature space and applying the TreeExplainer, however this is not always possible 

to keep under control and the SHAP values might take a lot of resources to be computed, 

especially if we are not dealing with tree models and have complex feature spaces, 

compromising the analysis in feasible time. 

Regarding further work opportunities, although this work focuses on a narrow scope, it 

is possible to implement this idea on different problems of other industries, where samples from 

the same classes might present different behaviours such as credit scoring and medicine field. 

With the raising of Deep Learning models, which are more accurate but also harder to 

implement and interpret, and the fact that SHAP Values can be used on these types of models 

such as neural networks. It can be interesting to apply this methodology on Deep learning 

models to understand if it can contribute to the model interpretability, taking in consideration 

the extra computation power that it would require compared to other simpler models. Finally, 

it would also be interesting to apply this methodology in time series data and study how the 

model decision and interpretation was changing through the time. 
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