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1. Introduction

In this paper we study the existence of solutions of the nonlinear fourth-order
equation

u(iv)(x) + g(u(x))= 0; x∈ (0; 1); (1)

under the asymmetric nonlinear boundary conditions

u′′(0)=−f(−u′(0));
u′′′(0)=−h(u(0));

(2)
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u′′(1)= 0;

u′′′(1)= 0;
(3)

where g is a strictly monotonous function that may have some “one-sided” discontinu-
ities and f and h exhibit some singularities.
To �x ideas, let a∈R and assume that g :R→R is strictly increasing and satis�es

(g1) g is continuous in R\{a}, for some a∈R,
(g2) g(a)= 0= g(a−) := limu→a− g(u)¡g(a

+) := limu→a+ g(u),

and also that, if −∞¡a0¡0¡b0¡+∞ and −∞¡c0¡0¡d0¡+∞, the functions f
and h satisfy

(f ) f : (a0; b0)→R and h : (c0; d0)→R are continuous; strictly increasing;

f(0)= h(0)= 0 and lims→a0 ; b0 |f(s)|=+∞ and lims→c0 ; d0 |h(s)|=+∞:
Problems of this kind appear in the classical bending theory of elastic beams. In

fact, it concerns the behaviour of an elastic beam of length 1, when a force is exerted
on it by a nonlinear elastic foundation given by the function g(u) when indented by
the displacement �eld u. The beam exhibits an asymmetric behaviour at the end points.
In fact, at the end point x=0, it rests on elastic supports, namely a vertical spring,
where the force u′′′(0) is a function of the displacement u(0) through function h and a
torsional spring whose constitutive law relates the bending moment u′′(0) to the rotation
u′(0) through function f. In the case where f and h are constants we have the classical
linear spring-type supports. But, in the present case, this dependence is nonlinear and is
characterized by the functions f and h which have a singular behaviour with respect
to the displacement u at x=0. The condition f(0)= h(0)= 0 means that the only
situation where there is no elastic response on the supports is when the displacement
is zero, i.e., u=0. At the other end point x=1, the beam is free (condition (3)).
The conditions assumed on g state that the force exerted on the beam depends in a
monotonous way on the displacement �eld u but may have an abrupt behaviour when
it attains a certain value a.
From the analytical point of view, there are various approaches to the problems

with discontinuous nonlinearities. One of them is the critical point theory for locally
Lipschitz functionals (see [5, 7]). Another one is the dual variational method, applied
by Ambrosetti and Badiale [3] to elliptic boundary value problems.
In this paper, we follow the idea of [3]. Problem (1)–(3) is solved by using Clarke’s

dual action principle. This method enables us to associate, in a sense to be precised
later, solutions of Eqs. (1)–(3) to critical points of a functional that is well de�ned and
is of class C1, in spite of the singular behaviour of f and h and of the discontinuity
of g.
Fourth-order O.D.E. have been considered by several authors and a large literature

on the subject is available. We refer to, for example [1, 11, 13, 15] and their refer-
ences. In those papers, discontinuities are not considered and the boundary conditions
are always linear. In [8], Feireisl studies a linear fourth-order time periodic equa-
tion with nonlinear boundary conditions using a Rayleigh–Ritz approximation method
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to analyse a problem that concerns the slow oscillations of beams on elastic bear-
ings. In [10], the authors use the dual action principal to study the existence of
symmetric solutions of a fourth-order O.D.E. with symmetric nonlinear boundary
conditions.
The paper is organized as follows. In Section 2, we consider the linear problem

wiv= v∈Lp(0; 1);
w′′(0)= �∈R; w′′(1)= 0;

w′′′(0)= �∈R; w′′′(1)= 0

(4)

and introduce the linear operator K , such that w=Kv is the solution of (4) that vanishes
at 0 and 1. In Section 3, we introduce a dual action functional and �nd the relation
between its critical points and solutions of Eqs. (1)–(3). In Section 4, we apply the
results of Section 3 and prove existence results for the problem (1)–(3) for di�erent
types of nonlinearities.

2. Preliminary results

Consider the Sobolev space W 4; p(0; 1), p≥ 1, with the usual norm, and let W 0

denote its subspace de�ned by

W 0 := {w∈W 4; p(0; 1): w′′(1)= 0; w′′′(1)= 0}⊂Lp(0; 1):

Lemma 1. Let L :W 0→Lp(0; 1)×R×R be the linear operator de�ned by

L(w)= (w(iv); w′′(0); w′′′(0)):

Then
(i) Ker(L) is a two-dimensional space such that Ker(L)= span{1; x};
(ii) Im(L)= {(v; �; �)∈Lp(0; 1)×R×R: �= ∫ 1

0 xv(x) dx; �=−∫ 10 v(x) dx},
(iii) Ker(L)0 = {v∈Lp(0; 1): (v; 0; 0)∈ Im(L)}; where A0 denotes the annihilator of the

set A in the duality 〈Lp; Lp′〉.

Proof. (i) It is easy to see that v∈W 0 satis�es w(iv) = 0; w′′(0)= 0 and w′′′(0)= 0 if
w= ax + b for some a; b∈R, which implies the result.
(ii) By de�nition, (v; �; �)∈ Im(L) if there exists w∈W 0 such that

w(iv) = v;

w′′(0)= �; w′′(1)= 0;

w′′′(0)= �; w′′′(1)= 0:
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So, integrating the equation, it follows that if (v; �; �)∈ Im(L) then �= ∫ 1
0 xv(x) dx and

�=−∫ 10 v(x) dx. As for the converse statement, given (v; �; �)∈Lp(0; 1)×R×R such
that �=

∫ 1
0 xv(x) dx; �=−∫ 10 v(x) dx, it is easy to see that the function

w=
1
6

∫ x

0
(x − t)3v(t) dt + �x

2

2
+ �

x3

6

satis�es the above problem, and so, (v; �; �)∈ Im(L).
(iii) It follows easily from (i) and (ii).

From Lemma 1, we have

Proposition 1. Given v∈Lp(0; 1), �, �∈R, consider the linear problem
w(iv) = v;

w′′(0)= �; w′′(1)= 0;

w′′′(0)= �; w′′′(1)= 0:

(5)

Then
(i) Problem (5) has a solution if

�=
∫ 1

0
xv(x) dx; �=−

∫ 1

0
v(x) dx: (6)

(ii) In the a�rmative case, w is a solution of problem (5) if there are a; b∈R
such that

w(x)=w0(x) + ax + b

where w0(x)= 1
6

∫ x
0 (x − t)3v(t) dt + (x2=2)

∫ 1
0 tv(t) dt − (x3=6)

∫ 1
0 v(t) dt.

(iii) If problem (5) is solvable and w(0) and w′(0) are prescribed, the solution is
unique and satis�es

w(x)=w0(x) + w′(0)x + w(0):

Proof. Associate to problem (5) the linear operator L :W 0→Lp(0; 1) de�ned before
as

L(w)= (w(iv); w′′(0); w′′′(0)):

By Lemma 1, Ker(L) consists of the linear functions ax + b; with a; b∈R. So, the
results follow easily from standard computations, Lemma 1 and arguments contained
in its proof.

De�ne the linear operator K :Lp(0; 1)→C[0; 1]

Kv=
1
6

∫ x

0
(x − t)3v(t) dt + x

2

2

∫ 1

0
tv(t) dt − x3

6

∫ 1

0
v(t) dt; (7)
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which associates to every v∈Lp(0; 1) the unique solution of (5) that satis�es the ad-
ditional conditions w(0)=w′(0)= 0: Using the de�nition of K and standard arguments
of functional analysis, we can easily derive the following result, as in [9].

Lemma 2. Consider the operator K. Then
(i) There exists k¿0 such that |Kv(x)| ≤ k‖v‖p; ∀v∈Lp(0; 1); ∀x∈ [0; 1];
(ii) 0≤ ∫ 1

0 Kv:v dx≤ k‖v‖2p,
(iii) K is completely continuous.

3. Variational formulation

Using the notation of condition (g2) put

Ia := [0; g(a+)]

and de�ne the multi-valued function

ĝ(t) := g(t) if t 6= a;
ĝ(t) := Ia if t= a:

Considering the function ĝ∗ de�ned by

ĝ∗(s) := a if s∈ Ia;
ĝ∗(s) := t with g(t)= s if s =∈ Ia

we can say that the multi-valued function ĝ admits an inverse function, ĝ∗, in the
following sense:

ĝ∗(s)= t i� s∈ ĝ(t):
It is clear that ĝ∗ ∈C(R) is increasing and its primitive G∗(v)=

∫ v
0 ĝ

∗(t) dt is a convex
function.
Consider the primitives of the strictly increasing functions f and h, respectively,

F(t)=
∫ t

0
f(s) ds; H (t)=

∫ t

0
h(s) ds:

The functions F and H are strictly convex. Let F∗ and H∗ denote their respective
Fenchel–Legendre transforms [12]. Then

F∗(s)= st − F(t); s=f(t);

H∗(s)= st − H (t); s= h(t)
(8)

and F∗(s) and H∗(s) are convex functions. By condition (f), the functions f and h
are invertible. Let f∗ and h∗ denote their respective inverse functions. It follows by
Eq. (8), and since f(0)= 0= h(0), that

F∗(t)=
∫ t

0
f∗(s) ds; H∗(t)=

∫ t

0
h∗(s) ds:
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Consider the linear functions �; � :Lp(0; 1)→R that to each v∈Lp(0; 1) associate, re-
spectively,

�v := �(v)=
∫ 1

0
xv(x) dx; �v := �(v)=−

∫ 1

0
v(x) dx

and let J ∗ be the functional de�ned in Lp(0; 1) as follows:

J ∗(v)=
1
2

∫ 1

0
Kv:v dx +

∫ 1

0
G∗(v) dx + F∗(�v) + H∗(�v):

From the de�nition of K; G∗; F∗; H∗ it follows that J ∗ is a C1 functional, weakly
lower semi-continuous and

J ∗′(v)�=
∫ 1

0
Kv� dx +

∫ 1

0
ĝ∗(v)� dx + f∗(�v)�� + h∗(�v)��

for all �∈Lp(0; 1). Then we can state the following result which relates the critical
points of J ∗ and the solutions of problem (1)–(3). By a solution of (1)–(3), we mean
a function u∈W 4;p(0; 1) that satis�es Eq. (1) a.e. in (0; 1) and the boundary conditions
(2) and (3).

Theorem 1. Let v∈Lp(0; 1) be a critical point of J ∗. Then there is l∈Ker(L) such
that u= l− Kv is a solution of problem (1)–(3).

Proof. Let v be a critical point of J ∗. Take �∈Ker(L)⊥ arbitrarily. By Lemma 1,
��= ��=0, and, so,

J ∗′(v)�=
∫ 1

0
(Kv+ ĝ∗(v))� dx=0;

which shows that Kv + ĝ∗(v)∈Ker(L). Then, by Lemma 1, there is a linear function
l such that

Kv(x) + ĝ∗(v(x))= l(x):

Put

u(x) := l(x)− Kv(x)= ĝ∗(v(x)): (9)

Then we have

v(x)∈ ĝ(u(x)): (10)

Let 
a= {x∈ [0; 1]: u(x)= a}. If x∈ [0; 1]\
a, then u(x) 6= a and by (10) one has
ĝ(u(x))= g(u(x)). This implies

−u(iv)(x)= (Kv)iv(x)= v(x)= g(u(x));
that is,

u(iv)(x) + g(u(x))= 0 if x∈ [0; 1]\
a:
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Since u∈W 4; p(0; 1); by the one-dimensional version of a theorem of Stampacchia [14],

u(iv)(x)= 0 a:e: in 
a (11)

and according to the fact that g(a)= 0 it follows

u(iv)(x) + g(u(x))= 0 for a:e: x∈
a:

Hence, u satis�es

u(iv)(x) + g(u(x))= 0 for a:e: x∈ [0; 1]:

Let us see that u also satis�es the boundary conditions (2) and (3). By de�nition of
Kv, (Kv)′′(1)= (Kv)′′′(0)= 0; and so it is clear by (9) that u satis�es (3). As for (2),
again by the de�nition of Kv, Kv(0)= (Kv)′(0)= 0; and it follows by (9) that

l(x)= u′(0)x + u(0):

Take, now, a test function �∈Lp(0; 1) such that

��=
∫ 1

0
x� dx 6=0; ��=−

∫ 1

0
� dx=0:

Then by (9)

0= J ∗′(v)�=
∫ 1

0
l(x)�(x) dx + f∗(�v)��=(u′(0) + f∗(�v))

∫ 1

0
x�(x) dx

which implies f∗(�v)=−u′(0) and therefore f(−u′(0))= �v. Since

u′′(0)= (l− Kv)′′(0)=−(Kv)′′(0)=−�v;

it follows u′′(0)=−f(−u′(0)): Finally, take a test function �∈Lp(0; 1) such that

��=
∫ 1

0
x� dx=0; ��=−

∫ 1

0
� dx 6=0:

By

0= J ∗′(v)�=
∫ 1

0
l(x)�(x) dx + h∗(�v)��=(u(0)− h∗(�v))

∫ 1

0
�(x) dx;

it follows h∗(�v)= u(0) and therefore �v= h(u(0)). On the other hand,

u′′′(0)= (l− Kv)′′′(0)=−(Kv)′′′(0)=−�v:

Then u′′′(0)=−h(u(0)). Hence, u is a solution of (1)–(3).
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4. Existence results

Lemma 3. Let g(t) be a function verifying (g1) and (g2) and let ĝ and ĝ∗ be the
functions introduced in Section 2. If G(t)=

∫ t
0 g(s) ds is such that

C1
p
|t|p − D1≤G(t)≤ C2

p
|t|p + D2;

with D1; D2 constants and p¿1, then G∗(t)=
∫ t
0 ĝ

∗(s) ds satis�es the estimates

C′
2|t|p

′ − D2 + G(a)≤G∗(t)≤C′
1|t|p

′
+ D1 + G(a): (12)

Proof. Let (�n) be a sequence of positive numbers converging to 0 and such that, for
t ∈ [a; a+ �n],

1
�n
g(a+ �n)(t − a)≤ g(t):

Consider the sequence of increasing continuous functions (gn(t)) de�ned as

gn(t)=

{
g(t); t≤ a or t≥ a+ �n;
1
�n
g(a+ �n)(t − a); a≤ t≤ a+ �n

and for each n∈N consider the respective primitive Gn(t)=
∫ t
0 g(s) ds and the corre-

sponding Legendre–Fenchel transform

G∗
n (s)= st − Gn(t); s= gn(t):

We show �rst that the following assertions hold:
(A1) Gn(t)≥G(t)− (�n=2)g(a+ 1), if a≥ 0,
(A2) Gn(t)≤G(t) + (�n=2)g(a+ 1), if a¡0,
(A3) G∗

n (s)→G∗(s)− G(a).
In fact, consider the following sets:

�n=

{
(x; y):

a≤ x≤ a+ �n;
1
�n
g(a+ �n)(x − a)≤y≤ g(x)

}
;

�n=

{
(x; y):

a≤ x≤ a+ �n;
1
�n
g(a+ �n)(x − a)≤y≤ g(a+ �n)

}
:

It is clear that �n⊂�n and, if S(�) denotes the area of �⊂R2; for n big enough

S(�n)≤ S(�n)= 1
2g(a+ �n)�n≤

�n
2
g(a+ 1):

Then, if a≥ 0,

Gn(t)=
∫ t

0
gn(s) ds≥

∫ t

0
g(s) ds− S(�n)≥G(t)− �n

2
g(a+ 1);
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and (A1) holds. If a¡0, we can argue in an analogous way and prove (A2). As for
(A3), observe that

G∗
n (0)→−G(a): (13)

In fact, G∗
n (0)=−Gn(a). If a≥ 0, then G∗

n (0)=−G(a) since Gn(a)=G(a). If a¡0,
as gn is an increasing sequence such that gn(t)→ g(t) and

∫ 0
a gn(t) ds¡

∫ 0
a g(t) ds, by

Beppo–Levi theorem,

Gn(a)=−
∫ 0

a
gn(t) dt→−

∫ 0

a
g(t) dt=G(a):

Therefore, (13) holds. Besides that, it is clear that g∗n converges to ĝ
∗ uniformly

and so∫ s

0
g∗n(�) d�→

∫ s

0
ĝ∗(�) d�: (14)

Hence, using the fact that

G∗
n (s)=

∫ s

0
g∗n(�) d�+ G

∗
n (0);

we conclude by (13) and (14) that (A3) holds.
Then, if a≥ 0, (A1) combined with the fact

Gn(t)≤G(t)≤ C2
p
|t|p + D2

implies

C1
p
|t|p − D1 − �n

2
g(a+ 1)≤Gn(t)≤ C2

p
|t|p + D2: (15)

In an analogous way, if a¡0, (A2) and the fact that

C1
p
|t|p − D1≤G(t)≤Gn(t)

imply that

C1
p
|t|p − D1≤Gn(t)≤ C2

p
|t|p + D2 + �n2 g(a+ 1): (16)

From (15) and (16) and known properties of Fenchel–Legendre transform we derive
that

C′
2|t|p

′ − D2≤G∗
n (t)≤C′

1|t|p
′
+ D1 +

�n
2
g(a+ 1); a≥ 0

or

C′
2|t|p

′ − D2 − �n
2
g(a+ 1)≤G∗

n (t)≤C′
1|t|p

′
+ D1; a¡0:
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Then, using (A3), by passing to the limit we obtain the estimate

C′
2|s|p

′ − D2 + G(a)≤G∗(s)≤C′
1|s|p

′
+ D1 + G(a)

and the proof is completed.

Theorem 2. Let g, f and h satisfy (g1), (g2) and (f ), respectively. If G(t)=
∫ t
0 g(s) ds

is such that

C1
p
|t|p − D1≤G(t)≤ C2

p
|t|p + D2; p¿1;

then problem (1)–(3) has a solution.

Proof. The result follows by minimization of the functional J ∗ as in [9]. By Lemma 3,

C′
2|v|p

′ − D2 + G(a)≤G∗(v)≤C′
1|v|p

′
+ D1 + G(a)

and, since F∗ ≥ 0, H∗ ≥ 0 and ∫ 1
0 Kv:v dx≥ 0, we derive

J ∗(v)≥C′
2‖v‖p

′

p′ − D2 + G(a):

So J ∗ is coercive on Lp(0; 1).
Moreover, by the compactness of K , the convexity and continuity of G∗ and by the

continuity of F∗ and H∗, it follows that J ∗ is weakly lower semicontinuous. So J ∗

has a critical point in Lp(0; 1), which minimizes J ∗, and by Theorem 1 we obtain a
solution of (1)–(3).

Lemma 4. Let g(t) be a function verifying (g1) and (g2) and p¿2. Let ĝ, ĝ∗,
G(t)=

∫ t
0 g(s) ds and G

∗(t)=
∫ t
0 g

∗(s) ds be the functions introduced in Section 2.
If

pG(u)≤ g(u)u+ C;

then

p′G∗(v)≥ g∗(v)v+ G(a) + C′;

where C, C′ are positive constants and p′=p=(p− 1)¡2.

Proof. Consider the sequence of increasing continuous functions gn(t) de�ned in the
proof of Lemma 3, their respective primitives Gn(t)=

∫ t
0 g(s) ds and the assertions (A1)

and (A2) proved there. Suppose that a≥ 0. If we put

�(t) := g(t)− gn(t);
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it is clear that for n large enough

�(t)t≤ g(a+ �n)�[a; a+�n](t)(a+ �n)≤ g(a+ 1)(a+ 1) :=K;
where �[a; a+�n] is the characteristic function of the set [a; a+ �n]. Then

pGn(t)≤pG(t)≤ g(t)t + C = gn(t) t + �(t)t + C ≤ gn(t) t + K + C
and using Fenchel–Legendre transform properties, we have

p′G∗
n (v)≥ g∗n(v)v+

K + C
p− 1 ; (17)

with p′=p=(p− 1)¡2.
Suppose now that a¡0. Then, by (A2),

pGn(t)≤pG(t) + p�n2 g(a+ 1)≤ g(t) t + C + p
�n
2
g(a+ 1):

Using again Fenchel–Legendre transform properties

p′G∗
n (v)≥ g∗(v)v+

C
p− 1 +

p
p− 1

�n
2
g(a+ 1); (18)

with p′=p=(p− 1)¡2. Passing to the limit either in (17) or in (18), we easily obtain

p′G∗(v)≥ g∗(v)v+ C
p− 1 + G(a); p′¡2;

which completes the proof.

We observe that if a=0 then u=0 is the unique trivial solution of problem
(1)–(3). Our next result, whose assumptions imply that a=0, establishes the exis-
tence of a nontrivial solution of (1)–(3).

Theorem 3. Let g :R→R be a decreasing function such that  :=−g satis�es the
conditions (g1) and (g2) (with g replaced by ). Suppose that

C1
p
|u|p≤−G(u)≤ C2

p
|u|p; (19)

pG(u)≥ g(u)u− C3; (20)

where C1, C2 and C3 are positive constants and p¿2. Assume that functions f and
h satisfy condition (f) and

lim
s→0

s
f(s)

= lim
s→0

s
h(s)

= 0: (21)

Then problem (1)–(3) has a nontrivial solution.
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Proof. We use arguments similar to those of Theorem 11 [9]. Take =−g and let ̂
and ̂∗ be the corresponding functions introduced in Section 2 and �∗(v)=

∫ v
0 ̂

∗(s) ds.
Then � is strictly convex and, by (19) and Lemma 3,

C′
2|v|p

′
+ �(a)≤�∗(v)≤C′

1|v|p
′
+ �(a): (22)

Consider the functional

J ∗1 (v)=
1
2

∫ 1

0
Kv:v dx −

∫ 1

0
�∗(v) dx + F∗(�v) + H∗(�v):

We will show that −J ∗1 satis�es the conditions of mountain pass lemma.
It is clear that J ∗1 (0)=�

∗(0)=�(a). By (21)

lim
s→0

f∗(s)
s

= lim
s→0

h∗(s)
s

=0:

Then, given �¿0 there exists �¿0 such that, if |s|¡�;
|f∗(s)|¡�|s|; |h∗(s)|¡�|s|;

and therefore, if |�v|¡�, |�v|¡�;

F∗(�v) + H∗(�v)¡
�
2
(|�v|2 + |�v|2)¡��2:

So, as |�v| ≤ ‖v‖1 and |�v| ≤ ‖v‖1, if we take ‖v‖1¡�,

−J ∗1 (v)≥−k‖v‖2p′ + C′
2‖v‖p

′

p′ + �(a)− ��2

and since p′¡2 we conclude that if � is small enough there is �¿0 such that if
‖v‖p′ = �¿0 then −J ∗1 (v)≥�(a) + �.
On the other hand, note that

(K1)(x)=
1
6

∫ x

0
(x − t)3 dx + x

2

2

∫ 1

0
t dt − x3

6

∫ 1

0
dt=− x

4

24
+
x2

4
− x3

6

and so∫ 1

0
(K1)(x) dx=

1
30
¿0:

Then, since F∗ ≥ 0, H∗ ≥ 0, for m∈R+,

−J ∗1 (m)≤−1
2
m2

∫ 1

0
(K1)(x) dx +

∫ 1

0
�∗(m) dx − F∗

(m
2

)
− H∗(−m)

≤−m
2

60
+ C′

1|m|p
′
+ �(a)

and therefore −J ∗1 →−∞ as m→∞.
Hence the geometrical conditions of mountain pass theorem are satis�ed.
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Now we show that the functional −J ∗1 satis�es (PS)c condition. Suppose that un ∈
Lp

′
(0; 1) is such that −J ∗1 (un)→ c and (−J ∗1 )′(un)→ 0. Denote by the same symbol

C several constants independent of n. Then

C + C‖un‖p′ ≥−J ∗1 (un) + 1
2J

∗′
1 (un)un

=
∫ 1

0
(�∗(un)− 1

2 ̂
∗(un)un) dx

− (F∗(�n)− f∗(�n)�n)− (H∗(�n)− h∗(�n)�n);
where �n := �un and �n := �un .
Since f∗ and h∗ are bounded and |�n| ≤ ‖un‖1 and |�n| ≤ ‖un‖1, we have
|F∗(�n)| ≤C‖un‖1; |H∗(�n)| ≤C‖un‖1

and

|f∗(�n)�n| ≤C‖un‖1 and |h∗(�n)�n| ≤C‖un‖1:
These facts, together with (20) and Lemma 4 (with G replaced by �), imply that(

1− p′

2

)∫ 1

0
�∗(un) dx≤Ca + C‖un‖p′ ;

where Ca depends on �(a) but is independent of n, This inequality and (22) show
that (un) is bounded, since 1¡p′¡2. Therefore, there is �u∈Lp′

such that (for a
subsequence, if necessary) un * �u weakly in Lp

′
and, by Lemma 2,

Kun→K �u in C0:

Also for subsequences �n→ � �u and �n→ � �u:
If we prove that −J ∗1 ( �u)= c and (−J ∗1 )′( �u)= 0, (PS)c condition will follow. For

that we use a standard argument that we include here briey for completeness.
Observe �rst that as for every �∈Lp′

(0; 1)∫ 1

0
̂∗(un)� dx=−J ∗′1 (un)�+

∫ 1

0
(Kun)� dx + f∗(�n)�� + h∗(�n)��;

then ̂∗(un) is weakly convergent.
Moreover, as ̂∗ is monotonous we have

−J ∗′1 (un)(un − �)

=−
∫ 1

0
Kun(un − �) dx +

∫ 1

0
̂∗(un)(un − �) dx − f∗(�n)(�n − ��)

− h∗(�n)(�n − ��)

=−
∫ 1

0
Kun(un − �) dx +

∫ 1

0
[̂∗(un)− ̂∗(�)](un − �) dx
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+
∫ 1

0
̂∗(�)(un − �) dx − f∗(�n)(�n − ��)− h∗(�n)(�n − ��)

≥−
∫ 1

0
Kun(un − �) dx +

∫ 1

0
̂∗(v)(un − �) dx − f∗(�n)(�n − ��)

− h∗(�n)(�n − ��):

As un is bounded, J ∗′1 (un)(un − �)→ 0. So, passing to the limit,

0≥−
∫ 1

0
[K �u( �u− �)− ̂∗(�)( �u− �)] dx − f∗(� �u)(� �u − ��)− h∗(� �u)(� �u − ��):

Taking arbitrarily w∈Lp′
(0; 1) and �¿0 and making �= �u + �w in the above in-

equality, we obtain, after dividing by −�,

0≤−
∫ 1

0
[(K �u)w − ̂∗( �u+ �w)w] dx − f∗(� �u)�w − h∗(� �u)�w:

Letting �→ 0 we derive by Lebesgue’s theorem

−
∫ 1

0
[(K �u)w − ̂∗( �u)w] dx − f∗(� �u)�w − h∗(� �u)�ww≥ 0

for all w∈Lp′
(0; 1). Since w was arbitrary it follows immediately that

−
∫ 1

0
[(K �u)w − ̂∗( �u)w] dx − f∗(� �u)�w − h∗(� �u)�ww=0;

that is,

J ∗′1 ( �u)= 0:

Observe also that by the convexity of �∗ we have

∫ 1

0
̂∗( �u)( �u− un) dx≥

∫ 1

0
[�∗( �u)− �∗(un)] dx≥

∫ 1

0
̂∗(un)( �u− un) dx

=−J ∗′1 (un)( �u− un) +
∫ 1

0
(Kun)( �u− un) dx

+f∗(�n)(� �u − �n) + h∗(�n)(� �u − �n):

Since the sides of the above inequalities tend to zero we conclude that

∫ 1

0
�∗(un) dx→

∫ 1

0
�∗( �u) dx

and then it follows that J ∗1 (un)→ J ∗1 ( �u)= c, which completes the proof.
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