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ABSTRACT 
Fractionally integrated autoregressive moving-average (ARFIMA) models 
have proved useful tools in the analysis of time series with long-range 
dependence. However, little is known about various practical issues 
regarding model selection and estimation methods, and the impact of 
selection and estimation methods on forecasts. By means of a large-scale 
simulation study, we compare three different estimation procedures and 
three automatic model-selection criteria on the basis of their impact on 
forecast accuracy. Our results endorse the use of both the frequency- 
domain Whittle estimation procedure and the time-domain approximate 
MLE procedure of Haslett and Raftery in conjunction with the AIC and 
SIC selection criteria, but indicate that considerable care should be 
exercised when using ARFIMA models. In general, we find that simple 
ARMA models provide competitive forecasts. Only a large number of 
observations and a strongly persistent time series seem to justify the use of 
ARFIMA models for forecasting purposes. 

KEY WORDS ARFIMA models; forecasting; long-memory; model 
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In this paper, we discuss the use of fractionally integrated autoregressive moving-average 
(ARFIMA) models for forecasting time series that present long-memory characteristics. 
Fractionally integrated models have proved useful tools in the analysis of time series with long- 
range dependence. Since their introduction by Granger and Joyeux (1980) and Hosking (1981), 
these models have been extensively used in various applications, such as the analysis of 
geophysical phenomena (e.g. Noakes et al., 1988; Bloomfield, 1992), econometric modeling 
(e.g. Diebold and Rudebush, 1989 Sowell, 1992), financial time series analysis (e.g. Shea, 
199 1; Cheung, 1993a), and long-range forecasting (e.g. Geweke and Porter-Hudak, 1993; Ray, 
1993b; Sutcliffe, 1993). However, selection and estimation of fractionally integrated models is 
more difficult than that of standard ARMA models. When both long- and short-range 
components are present in the data, their behaviour is hard to distinguish, making model 
selection difficult. Additionally, exact likelihood estimation techniques present computational 
problems in calculating the autocovariances needed to evaluate the likelihood function (Sowell, 
1992). Other ‘semi-parametric’ techniques result in significant finite sample biases and large 
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variances (see Agiakloglou, Newbold, and Wohar, 1993). Approximate likelihood techniques, 
based on the conditional sum-of-squares function or on the Whittle spectral likelihood, are 
available (see Beran, 1994) but perform well only for large sample sizes. Consequently, the use 
of fractionally integrated models can present difficulties. 

In particular, little is known about the practical usefulness of the estimated models, 
especially for forecasting: few results are available on the success of different model selection 
criteria in choosing an ARFIMA model, few studies have discussed the quality of the different 
estimation procedures in practice, and no systematic study has been conducted on the impact of 
the estimation procedures and model selection criteria on the accuracy of the predictions. The 
problems are magnified in light of theoretical results showing that the misspecification of 
fractional models can have adverse consequences for long-range forecasting (Crato, 1992; Ray, 
1993a). 

The process (X,) is said to be an ARFIMA(p, d, q )  process if it is a solution of the difference 
equations 

(1) 
where @(.) and e(.) represent the polynomials q(z)  = 1 - $J,z ... - $JgP and 
e(z) = 1 + B I Z  + + Byzq in the backwards shift operator B: B’X, =X,+ Fractional powers of 
the differencing operator are defined through its binomial expansion (1 - B ) d  = && -B)‘. 
The innovations ( E , )  are assumed to be white noise, i.e. a zero-mean uncorrelated process with 
constant variance of. 

We will assume that @ ( z >  and e(z) have all their roots outside the unit circle and no common 
roots. With these conditions, and with d E  (-1/2,1/2), the process (X,) is stationary and 
invertible. In the particular case d = 0 ,  ( X I )  is an autoregressive moving-average (ARMA) 
model. When d +  0, the autocorrelation function, p ( k ) ,  has a slow hyperbolic decay, 
p(k )  - C I k I 2 d - 1  as I k I + -. In the case 0 < d c  1/2, the autocorrelations are not summable and 
the process has long memory or persistence. In the case - 1/2 c d< 0, the process may be 
thought of as anti-persistent. See Brockwell and Davis (1991) for a general discussion of the 
properties of fractionally integrated processes. 

In this paper, we assess the effects of model selection and estimation procedures on forecasts 
of long-range dependent processes made from estimated ARMA and ARFIMA models via a 
large-scale simulation study. We simulate processes generated by various models: five different 
ARFIMA models, a Fractional Gaussian Noise (FGN) model (Mandelbrot and Van Ness, 
1968), a Fractional EXP (F-EXP) model (Beran, 1993), a long autoregressive model, and an 
ARMA( 1,l) model having the autoregressive coefficient slightly larger than the moving-average 
coefficient. All of these processes exhibit some type of long-memory characteristics. We fit 
ARMA models to the simulated series using the time-domain approximate MLE procedure of 
conditional least-squares, and ARFIMA models to the simulated series using three estimation 
procedures: the frequency domain Whittle-type approximate maximum likelihood procedure 
developed by Fox and Taqqu (1986)-FT, the periodogram regression procedure suggested by 
Geweke and Porter-Hudak (1983)-GPH, and the time-domain approximate MLE procedure of 
Haslett and Raftery (1989)-HR. No simulation studies that we are aware of have assessed the 
performance of the HR procedure, and we believe the results we have obtained in this regard are 
of interest in their own right. 

We select a model using three automatic selection criteria and assess the performance of the 
selection criteria in the presence of long memory. Criteria such as the Akaike Information 
Criterion (AIC) and the information criterion of Schwarz (SIC), have been used in various 
applications for the selection of ARFIMA models (e.g. Hosking, 1984; Sowell, 1992; Cheung, 

,#@)(I - B ) ~ x ,  = e(s)&, 
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1993a). However, no theoretical results have been derived concerning the efficiency and/or bias 
of these criteria when applied to long-memory processes. Recently, Schmidt and Tschemig 
(1993) conducted a small simulation study to investigate the performance of these criteria, 
along with the bias-corrected version of AIC (AICc) of Hurvich and Tsai (1989), the BIC 
criterion, and the Hannan-Quinn (HQ) criterion, in selecting the true generating model in the 
particular case of AFWIMA(0, d,  0) processes. They found that the BIC criterion performed 
poorly compared to the other criteria, and that the HQ criterion performed slightly worse than 
the SIC criterion. For details concerning these criteria, see Brockwell and Davis (1991) or de 
Gooijer et al. (1985). Only the Whittle procedure was used for model estimation. In our study, 
we investigate the performance of the AIC, AICc and the SIC criteria. The AIC and SIC are 
included because of their common use in practice. The AICc is included to investigate whether 
it performs better in small samples than AIC for long memory processes. 

Specifically, we address the following issues. First, we investigate the number of times the 
selected model matches the generating model. This allows an evaluation of the success of the 
different criteria, used with different estimation procedures, in the detection of the generating 
model. Note that the set of generating models is larger than the set of fitted models. Thus this 
exercise in simulation also provides information regarding another, more practical, issue: which 
AFWIMA models are likely to be selected for general long-memory alternatives. This situation 
more closely approximates actual practice; in real situations, the time series do not usually 
present the exact characteristics of the estimated models. 

Second, we evaluate the performance of the selection criteria on the basis of the selected 
model’s forecasts. As is well known in applied work, the model that provides the best fit is not 
necessarily the one that yields the best multi-step-ahead forecasts. Previous studies concerning 
long-range dependent processes have not addressed the model selection issue from the standpoint 
of forecasting. It is not known which criteria, if any, should be used for the selection of a model 
for forecasting and under what conditions the different criteria can be expected to perform well. 

Third, we investigate the use of ARMA models for forecasting long-memory processes. As 
we have noted, it has been shown theoretically that this type of misspecification can induce 
large forecasting errors in the long run. However, since the detection of long memory is 
difficult, a question of practical interest is the likelihood of selecting an ARMA model in the 
presence of long-memory behaviour. Additionally, the computational problems associated with 
estimation of fractional models make it of practical interest to know how well the estimated 
ARMA models compare with estimated ARFIMA models in terms of forecast accuracy. 

The remainder of the paper is organized as follows. The next section briefly describes the 
design of the simulation study. The third section discusses the performance of the model 
selection criteria in terms of their ability to select the generating model, or an approximating 
model having long-range dependence if the true model is outside the selection set. The fourth 
section discusses the performance of the model-selection criteria in terms of the selected 
model’s forecast accuracy. The fifth section discusses the selection and forecast accuracy of 
ARMA models. A final section presents conclusions. 

A complete presentation of the all simulation results is available as a working paper (Ray and 
Crato, 1994) and can be accessed via the World Wide Web at http://chaos.njit.edu/-borayx/ 
1rdfore.ps. 

THE LAYOUT OF THE SIMULATION STUDY 

We have generated time series driven by nine different models as follows. In all cases, the 
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simulated generating noise was standard Gaussian: 

Vol. 15, Iss. No. 2 

ARFIMA(0, -0.3,O). which is an anti-persistent simple fractional noise with all 
autocorrelation coefficients negative for lags k + 0. 
ARFIMA(O,O.l, 0), which is a persistent fractional noise with all autocorrelation 
coefficients positive. The autocorrelations decay at a slow hyperbolic rate but are all 
relatively small, thus the long-memory properties are not very prominent. 
ARFIMA (0,0.4,0), which is a persistent fractional noise with all autocorrelation 
coefficients positive. The autocorrelation function displays positive and relatively large 
values, even for large lags. The long-memory properties are very prominent. 
ARFIMA(1,0.3,0) with $ = 0.65, a process with persistent long-memory and a short- 
memory autoregressive component. The combination of a large AR component with a 
long-memory component is notoriously hard to estimate (see, for example, Agiakloglou, 
Newbold, and Wohar, 1993). In the autoregressive representation of the process, the first 
AR coefficient is ( d +  $) = 1. Thus estimation of an AR(I) model may point towards a 
near unit root. 
ARFIMA(O,O.3,1) with 6 = -0.65, a process with persistent long-memory and a short- 
memory moving-average component. In the moving-average representation of the process, 
the first MA coefficient is ( d  i 6 )  = -0.35 and all the other coefficients have very small 
values. Thus, the estimation may point towards an MA(1) model. 
ARMA(1,l) with $ = 0.87 and 6 = -0.59, a short-memory process that displays 
properties similar to persistence when the autoregressive coefficient is slightly larger than 
the moving-average component (O'Connell, 1974). 
ARMA( 10, 0), a long autoregression capable of displaying some type of persistence. The 
coefficients in the polynomial $ ( B )  were set as those resulting from the AR(10) 
estimation of a single simulated ARFIMA(O.O.4,O) process. 
Fractional Gaussian Noise (FGN) with H = 0.9. The value of the self-similarity parameter 
makes the asymptotic behaviour of the autocorrelation function of the process similac to 
that of a fractional noise with d = 0.4. 
F-EXP model, defined by the spectral density function 

f ( A )  = 1 1 - e-jn I -2x0.39's exp(-1.343 -2.856 1 1 I -0.428 I 1 I ') (2) 
This model cannot be represented as a finitely parameterized ARFIMA. The particular 
parameters are taken from Beran (1993). It is a persistent long-memory model, since its 
spectrum diverges at the zero frequency, displaying the following behaviour: 

as A+O (3) f ( 1 )  - c I 1 I -2X0.39 '5  

Series from Models (1)-(7) were generated using the algorithm of Hosking (1984) as 
implemented in the Haslett and Raftery (1989) FORTRAN subroutines (these programs are 
available via anonymous ftp from statlib.cmu.edu), with modification to allow - 1 /2 < d < 0. 
Series from Model (8) were generated using the Cholesky decomposition of the exact 
covariance matrix for the process. Series from Model (9) were generated using the discrete 
inverse Fourier transform of the spectral density given in equation (2). For each model, we 
generated 500 time series, each having length N = 396, and estimated models for two different 
samples sizes n: (1) n = 120, which corresponds to 10 years of monthly observations, and (2) 
IZ = 360, which corresponds to 30 years of monthly observations. These sample sizes are similar 
to the ones used in other simulation studies (e.g. Cheung and Diebold, 1994) and are most 
common with business and economic data. In each case, we used 36 additional data points for 
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out-of-sample forecast assessment. This allows us to see how modeling the long-memory 
characteristic aids in long-term forecasting. 

(1) GPH-Geweke and Porter-Hudak (1983) periodogram regression method. This is a two- 
step procedure. First, the parameter d is estimated by a regression based on the following 
relation, which holds with uj approximately i.i.d. for low-order Fourier frequencies 
oj=2njjln: 

We used the following estimation procedures for the ARFIMA models: 

In Zn(wj) = a - 2d In 2 sin 2 + uj ( 3 j =  1,2, ..., [n''*l (4) 

where Zn(.) denotes the periodogram of the series. Second, the series is approximately 
fractionally differenced using d  ̂ and the ARMA coefficients estimated by approximate 
time-domain maximum likelihood. The mean of the process, used in forecasting, is 
estimated as the average of the series. Details about the GPH procedure can be found in 
Geweke and Porter-Hudak (1983) or in Brockwell and Davis (1991). It is well known that 
this two-step method may yield large finite sample biases when short-memory ARMA 
components are also present (Agiakloglou, Newbold, and Wohar, 1993). Cheung (1993b) 
shows that the GPH procedure may also yield positively biased estimates of d when the 
underlying process has infrequent shifts in mean, but is robust to ARCH effects. It 
continues to be widely used in applied work, as in Diebold and Rudebush (1989), Baillie 
and Pecchenino (1991), Cheung (1993a), Cheung and Lai (1993), and Hassler and 
Wolters (1995). 

(2) HR-Haslett and Raftery (1 989) approximate time-domain maximum likelihood 
procedure. This procedure uses the Durbin-Levinson algorithm with approximate partial 
autocorrelation coefficients to evaluate the conditional means and variances of an 
ARFIMA process, which are then used to calculate the one-step-ahead predictors needed 
in the innovations representation of the likelihood function. A mean term is estimated 
explicitly as the solution of the log-likelihood normal equations with estimated ARFIMA 
parameters. The partial autocorrelation coefficients are calculated exactly up to lag L and 
then are approximated. In our study, we set L = min( n ,  200). This technique essentially 
corresponds to minimization of the squared residuals of the process (see Beran, 1992, 
p. 409). The original Haslett and Raftery algorithm maximizes the log-likelihood in the 
range 0 < d < 1 /2 using a grid search. We modified the algorithm to maximize the log- 
likelihood in the range - 112 < d < 1/2. The modified algorithm can be obtained from the 
authors upon request. 

(3) FT -Fox and Taqqu (1986) frequency-domain approximate maximum likelihood 
method. Using a Whittle approximation to the log-llkelihood function (Brockwell and 
Davis, 1991, p. 529, equation (13.2.26)), the function 

is minimized, where f ( w j )  is the spectrum of the ARFIMA model being estimated and 
Z n ( w j )  is the periodogram of the series. The mean of the process is estimated as the 
average of the series. 

We did not use exact maximum likelihood estimation due to its large computational burden. 
The autocovariance function for the estimated model must be computed and the variance- 

 1099131x, 1996, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/(SIC

I)1099-131X
(199603)15:2<

107::A
ID

-FO
R

612>
3.0.C

O
;2-D

 by U
niversidade D

e L
isboa, W

iley O
nline L

ibrary on [26/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



112 Journal of Forecasting Vol. 15, Iss. No. 2 

covariance matrix inverted at each iteration. Moreover, evidence suggests that Sowell’s exact 
maximum likelihood and the FT approximate procedure yield very similar results in the realistic 
case of unknown mean. See Cheung and Diebold (1994) for a comparison of exact and Whittle 
approximate maximum likelihood estimation methods for ARFIMA (0, d, 0) processes with 
estimated mean term. 

All ARh4A models were estimated using only one method-the time-domain method of 
Haslett and Raftery modified so that d is restricted to be zero. Again, this essentially 
corresponds to minimizing the sum of squared residuals, a standard technique for ARMA model 
estimation. In this case, the estimation of p reduces to p = R. We set L = min( n, 2001, as for the 
ARFIMA models. 

For each series, we estimated nine ARMA(p, q )  models with p,  q = 0, 1,2 and nine 
ARFIMA(p, d, q )  models with - 1/2 < d < 1/2 and p, q = 0, 1,2. Optimal models were selected 
using three common automatic selection criteria, the AIC, the AICc, and the SIC. We also look 
at one other statistic relevant to the model selection, that denoted by All. This represents the 
intersection of all three criteria. We think it is important to know to what extent the three criteria 
choose the same model. The small range of p and q values reflects the range of ARMA models 
usually estimated in practice. Additionally, results in Ray (1991) concerning the use of AR 
models for modeling long-memory processes indicate that the AIC criterion generally selects 
low-order AR models ( ~ 6 4 )  for long-range dependent processes, even when the amount of 
persistence is strong and p is allowed to range up to 20. Longer AR models or higher-order 
ARMA models do a reasonable job of emulating long-memory behaviour, but can produce 
unstable parameter estimates, which may affect the model’s forecast accuracy. For a very few of 
the generated series, one (or more) of the estimation methods did not converge or gave 
estimated parameters outside the stationarity/invertibility range for some models. We report 
results only for series in which all models were successfully estimated by all estimation 
methods. 

Exact k-step-ahead out-of-sample forecasts were computed using the innovations algorithm 
(Brockwell and Davis, 1991, p. 171). The autocovariances needed for the algorithm were 
computed using the method of Sowell (1992). 

To compare the forecasting performance of the selected models for the different estimation 
procedures, we computed the MSE (h,  - h 2 )  statistic-the comparative Mean Square Error 
statistic defined over the forecast horizon n + h,,  n + h ,  + 1, . .., n + h, for various values of h, ,  
h,  and with reference to the forecasts obtained by the true model with known parameters. This 
allows for comparisons across different estimation procedures: 

where Xn+; represents the ith out-of-sample observation after the last observation (nth) used for 
estimation, XIn+; I represents the forecast made by the estimated model for time n + i with the 
knowledge of observations up to time n, and g;+; I represents the same forecast but made by 
using the generating model with the generating parameters. This statistic is obviously zero when 
the generating model with known parameters is used, is positive when the estimated model 
behaves worse than the generating model, and is negative in the opposite case. 

We also computed a similar statistic with reference to the forecasts made using the true model 
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with estimated parameters. This allows for comparisons across different selection criteria within 
the same estimation method. The corresponding results are presented in the working paper (Ray 
and Crato, 1994) and they essentially corroborate the conclusions extracted from the MSE 
(hi - h2). 

CAN AUTOMATIC SELECTION CRITERIA FIND THE GENERATING LONG-MEMORY 
MODEL? 

We will divide our discussion regarding the performance results of the different criteria 
according to the three main types of simulated models. 

Fractional noise models 
For the generated models and sample sizes considered, we find that the SIC criterion performs 
considerably better than any of the other criteria. This confirms results reported in Schmidt and 
Tschernig (1993) based only on the Whittle estimation method. 

Figure 1 shows the results for the fractional noise model with d = 0.4. AIC and AICc almost 
always choose the same model, and are less successful in selecting the generating ARFIMA 
(0,0.4,0) model. AIC and AICc correctly selected models are essentially a subset of the 
correctly selected models by application of SIC, as can be seen from the bars labelled ‘All’ in 

Generating Process 3: ARFIMA(0,.4,0) 

HR Pmcedure GPH Procedure FT Procedure 

.. 
UC AKe SC 1 L  Y ACr I C  111 uc 1 L I  sc UL 

Figure 1. Percentage of times a model was selected using the different selection criteria. The models 
selected most often are read from horrotn to top above each bar, with the model selected the most listed 
directly above each bar, the second most selected model listed second from each bar and the third most 
selected model listed third from each bar. 
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Figure 1. Successful model selection was relatively low for all estimation procedure and 
selection combinations, in general below 80% when n = 120. For the larger sample size, 
n = 360, the percentage of cases in which the SIC chose the correct model increased. However, 
the performances of the AIC and AICc were only slightly better than when n = 120, with the 
most improvement coming in conjunction with the FT estimation procedure. 

The most difficult process to identify was the ARFIMA(0,0.1,0). This is not surprising, 
considering that the autocorrelations are all very small. A white-noise model was the model most 
frequently chosen. Interestingly, the anti-persistent fractional noise ( d  = -0.3) was easier to 
identify than the persistent one ( d  = 0.4) with each criterion. 

Mixed ARFIMA models 
For both generated ARFIMA processes, and for each estimation procedure and automatic 
selection criterion, the percentage of successful identifications was extremely small. 
Overwhelmingly, short-memory ARMA models were selected when n = 120, indicating that a 
short-memory component and long-range dependence are very difficult to distinguish in small 
samples. 

With the two mixed ARFIMA processes, AIC and AICc performed better than the SIC and 
yielded better results when the FT estimation procedure was used. In all cases, a criterion’s 
performance increased with the sample size. The SIC performed worse than AIC and AICc in 
these models because it more heavily penalizes the parameterization, pointing towards a single- 

Generating Process 4: ARFIMA( 1 ,.3.0) 

HR Procedure GPH Procedure FT Procedure 

l K  LKc S r  1.. lC LlCc SK 111 LK AIC‘ W Ui 

Figure 2. Percentage of times a model was selected using the different selection criteria. The models 
selected most often are read from bottom to fop above each bar, with the model selected most listed 
directly above each bar, the second most selected model listed second from each bar and the third most 
selected model listed third from each bar 
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parameter model, either an AR(1) or an MA(1). The fact that none of the criteria chose the 
correct model in most cases further suggests that, in small samples, the selection criteria are 
biased in the choice between short- and long-memory models. 

Figure 2 shows the results for Model 4, the ARFIMA (1,0.3,0). 

Non- ARFIMA long-memory models 
The results for processes in this category were very disappointing. For the FGN and the F-EXP 
processes studied here, we found that a long-memory model is not likely to be selected from 
among ARMA-ARFIMA models. Roughly, only about 20% of the time was a fractionally 
integrated model selected for the FGN process, with a fractionally integrated model selected for 
the F-EXP process only about 10% of the time. ARMA models were overwhelmingly chosen. 
Figure 3 shows the results for the FGN (Model (8)). 

For the long autoregression, however, the selection of an ARFIMA model, in particular the 
pure fractional noise, occurred quite frequently. The result is not surprising, since this model 
can match well the autocorrelation structure using a very parsimonious model. 

The analysis of the different selection criteria does not point in a clear direction regarding 
which selection criterion to use. However, it provides an indication that selection criteria may 
behave differently with different estimation procedures. For a more complete picture of the 
results for all the generated processes included in the selection set, Table I shows the percentage 
of times each criteria selected the correct model for each generating process. 

Generating Process 8: FGN. H = .9 

HR Procedure GPH Procedure FT Procedure 

Figure 3. Percentage of times a model was selected using the different selection criteria. The models 
selected most often are read from bottom to top above each bar, with the model selected the most listed 
directly above each bar, the second most selected model listed second from each bar and the third most 
selected model listed third from each bar 
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Table I. Correct (%) model selection table for all generating processes in the selection set 

HR procedure GPH procedure FT procedure 
Generating processes 
and sample sizes AIC AICc SIC AIC AICc SIC AIC AICc SIC 

ARFIMA(0, -0.3,0), n =  120 69.0 69.6 86.0 35.4 37.8 48.0 49.2 52.2 78.4 
ARFIMA(0, -0.3,0), 1 1 ~ 3 6 0  64.4 65.4 94.8 29.2 29.6 55.8 48.0 49.6 87.4 

ARFIMA(O,O.l,O), n =  120 16.4 16.6 9.6 4.4 4.2 2.6 19.8 21.0 13.6 
ARFIMA(O,O.I,O), n=360 36.6 37.0 31.6 9.4 9.6 11.4 35.8 36.6 38.0 

ARFIMA(0,0.4,0), n =  120 51.8 53.2 73.6 17.4 18.0 42.2 30.0 32.2 53.4 
ARFIMA(O,0.4,0), n=360 57.6 58.0 92.2 15.6 15.8 55.4 39.0 39.8 78.8 

ARFIMA(1,0.3,0), n =  120 3.0 2.8 0.2 2.2 2.4 0.2 8.6 8.4 4.0 
ARFIMA(1,0.3,0), n=360 16.0 16.2 9.2 10.0 10.0 6.4 21.8 21.8 11.6 

ARFIMA(O,0.3, l), n = 120 2.0 2.0 0.4 2.8 2.8 1.4 11.8 12.0 3.6 
ARFIMA(0,0.3, l), n=360 24.2 24.4 21.8 20.8 21.2 17.6 43.4 43.6 32.6 

ARMA(1,1), n =  120 13.2 12.8 7.2 34.0 34.2 25.8 14.8 14.8 10.4 
ARMA(1,1), n=360 19.6 19.4 25.0 55.8 56.6 63.6 32.8 34.2 32.2 

For each process and sample size, the table shows the percentage of times the correct model was chosen by the 
particular selection criteria. 

The table clearly singles out the HR and the FT procedures as more likely to lead to a 
correctly selected model, with the best procedure dependent on the generating process. The GPH 
trailed the other procedures for the pure fractional noise processes, but was competitive with the 
HR procedure for the mixed ARFIMA models. The differences in the number of correct 
selections for HR, GPH, and FT are most likely attributable to differences in the performance of 
the estimation techniques in estimating the parameters of the model. Looking at equation (4), 
we see that GPH is at a disadvantage from a parameter efficiency standpoint, in that only [n ' /*]  
points are used to estimate d ,  while the other methods use all n data points. However, GPH was 
designed as a semi-parametric procedure of estimating d without knowledge of the form of the 
spectral density except at frequencies close to zero. Thus it should not be expected that GPH 
perform as well as the HR and FT methods for parameter estimation and, consequently, model 
selection. The performance of the GPH procedure for forecasting is discussed in the next 
section. As an example of the estimation performance of each method, the average parameter 
values and standard errors of the averages for the ARFIMA(O,O.4,0) and ARFIMA( 1,0.3,0) 
models are given in the Appendix. 

As to how the different procedures perform for different models, Table I shows HR working 
better for pure fractional noise processes, with FT working better for mixed ARFIMA. Thus a 
general recommendation regarding model identification is difficult to formulate. GPH yields the 
worst results, in general, for samples of the sizes studied here. The HR and FT procedures 
performed similarly, perhaps with some global advantage for the FT, especially for mixed 
models. Moreover, the IT is a very straightforward method, which can be implemented quite 
easily. 

Regarding the selection criteria, we suggest SIC and AIC (or AICc) should be used 
simultaneously. In the presence of a pure fractional noise, SIC seems preferable. In case of a 
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Nuno Crato and Bonnie K.  Ray Model Selection and Forecasting 117 

mixed ARFIMA model, AIC seems superior. Since, in practice, it is not possible to know in 
advance whether a pure fractional noise or a mixed ARFIMA is present, this recommendation 
of using both criteria has a limited utility. However, as SIC and AIC seem to overlap for the 
correct identification, if both criteria point in one particular direction-an ARFIMA(0, d ,  0) or 
some ARFIMA(p, d, q)-that result can be taken as a relatively reliable indication of the 
plausibility of a class of models. 

It is interesting to note that for the ARMA(1,l) model, a short-memory model, both the HR 
and FT procedures preferred ARFIMA models over ARMA models. This example points out the 
dangers of including ARFIMA models in the selection set by default. Crato and Ray (1995) 
provide an additional discussion of this point. The GPH procedure selected the correct model 
more often in this case, perhaps due to the extremely poor fit obtained when ARFIMA (0, d ,  0) 
models were estimated using GPH. 

WHEN IS THE SELECTED MODEL THE BEST FORECASTING MODEL? 

Forecasting is an important component of time series analysis, and the forecasting performance 
of a selection criterion or an estimation procedure needs to be assessed independently of other 
characteristics of the criterion and the estimation method. Table I1 indicates the average value 
of the comparative MSE statistic over all models for each estimation method and selection 
criterion. 

Since the MSE statistic is computed relative to the forecasts obtained using the true model 
with known parameters, we can compare the forecasting accuracy across estimation methods. 

There are a few aspects that deserve to be treated separately. 

Estimation procedures 
As far as forecasting performance is concerned, the global results shown in Table I1 indicate that 
all methods perform similarly. HR produced lower mean-squared errors in the first steps when 
n = 120 but higher for long-range forecasts and higher at all forecast steps when n = 360. This 
might indicate that HR produces worse estimates of the processes’ mean. GPH and FT 
performed very similarly at all steps. 

Globally, all procedures are in a virtual tie, including GPH. Even when ARMA components 
are present-models (4), (5 ) ,  (6), and (7)-the GPH procedure performed very competitively 

Table II. Comparative MSE (%) for all generating processes 

HR procedure GPH procedure FT procedure 
Sample Steps 
size ahead AIC AICc SIC AIC AICc SIC AIC AICc SIC 

n =  120 1-6 19.73 19.56 19.56 26.93 26.90 30.02 28.33 28.27 28.77 
7-12 28.98 28.61 27.87 19.31 13.23 19.76 19.18 19.13 19.44 

13-24 15.77 15.72 15.97 11.78 11.80 12.19 11.84 11.79 12.09 
25-36 16.15 16.13 16.16 11.75 11.74 11.92 10.93 10.90 10.75 

~~~ ~~~ ~ ~ 

n=360 1-6 12.08 12.11 18.36 7.35 7.31 14.08 6.84 6.78 11.41 
7-12 28.76 28.78 28.43 16.16 16.11 16.59 16.46 16.41 16.63 

13-24 13.28 13.33 13.34 8.01 8.04 8.43 9.40 9.36 9.35 
24-36 13.12 13.20 12.89 10.74 10.67 10.15 10.66 10.65 10.45 
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in terms of forecast accuracy. For the non-ARFIMA long-memory models studied here, GPH 
was, for the most part, the best procedure to use. This fact is somewhat surprising, since GPH 
has been shown to present significant biases in parameter estimation. However, it could be 
explained by considering the autoregressive forecasting equations for the estimated model. If 
the biased parameter estimates combine to give an autoregressive representation with 
approximately unbiased AR coefficients, then the resulting forecasts will be competitive with the 
forecasts obtained using the correct model. 

Selection criteria 
Based on the aggregate results, the MSE performances of all three criteria are rather similar 
when n = 120. When n = 360, SIC appears to perform better for longer forecasting horizons 
(seven to twenty-four steps ahead), and AIC and AICc appear to perform better than SIC at one 
to six steps ahead. However, when the forecast results are examined for each model 
individually, we find that results from model (5 ) ,  the ARFIMA(O,O.3,1) process, unduly 
influence the aggregate results. The SIC criterion tends to choose (incorrectly) an MA(1) model 
for this process, whereas the AIC and AICc tend to choose higher-order ARMA models or 
ARFIMA models, although not necessarily the correct model. The forecasts resulting from the 
SIC selected model are very poor relative to those of the true model, especially for one to six 
steps ahead. At larger forecast horizons, neither the selected model or the true model produce 
very accurate forecasts, thus the relative difference in forecast performance of the two models is 
small. Exceptions to these generalizations were found for some processes, but the essential 
conclusion of the study is that the selection criteria are generally equivalent in terms of long- 
range forecast performance. As examples, Tables I11 and IV show the results for model (2), the 
weakly persistent ARFIMA(0, 0.1,O) process, and model (4), the strongly persistent ARFIMA 
(1,0.3,0) process. 

As mentioned in the section describing the layout of the simulation study, the MSE statistic 
was also computed relative to the forecasts obtained using the true model with estimated 
parameters although those results are not reported here. The conclusions drawn concerning 
model selection for forecasting were essentially the same, although the relative MSE values 
were, on average, 1-2% smaller. An exception occurred for processes having short-range 
dependent components and small sample sizes. For these models, the relative MSE computed 
using the correct model with estimated parameters was significantly smaller than the relative 

Table III. Comparative MSE (%) for generating process 2: ARFIMA(0, 0.1,O); ARFIMA/ARMA 
estimated models 

HR procedure GPH procedure FT procedure 
Sample Steps 
size ahead AIC AICc SIC AIC AICc SIC AIC AICc SIC 

n =  120 1-6 3.83 3.76 2.59 3.71 3.71 6.16 5.79 5.46 2.79 
7-12 3.28 3.25 2.81 3.25 3.24 2.72 3.47 3.27 2.91 

13-24 2.80 2.81 2.47 2.47 2.46 2.38 2.71 2.55 2.50 
25-36 1.65 1.65 1.48 1.49 1.48 1.42 1.55 1.53 1.51 

n=360 1-6 2.56 2.48 1.15 1.57 1.54 1.35 2.46 2.37 1.07 
7-12 1.25 1.27 0.96 1.32 1.32 0.95 1.69 1.68 1.08 

13-24 0.73 0.71 0.56 0.66 0.66 0.55 0.83 0.82 0.54 
25-36 0.54 0.54 0.46 0.55 0.55 0.51 0.69 0.69 0.51 
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Table IV. Comparative MSE (a) for generating process 4: ARFIMA( 1,0.3,0); ARFIMA/ARMA 
estimated models 

HR procedure GPH procedure FT procedure 
Sample Steps 
size ahead AIC AICc SIC AIC AICc SIC AIC AICc SIC 

n =  120 1-6 19.44 18.95 14.49 16.67 16.69 13.18 17.81 17.72 14.11 
7-12 32.40 31.75 22.05 26.75 26.91 20.69 24.40 24.32 20.09 

13-24 23.25 23.00 20.63 23.02 23.13 21.20 18.97 18.81 19.78 
25-36 12.54 12.45 11.47 13.32 13.35 10.83 10.84 11.02 9.85 

n=360 1-6 7.58 7.63 5.43 6.61 6.62 6.20 5.22 5.07 5.93 
7-12 18.76 18.66 13.65 13.61 13.59 10.80 10.08 9.84 10.86 

13-24 10.19 10.15 8.23 10.90 10.88 9.96 10.41 10.16 9.88 
25-36 12.32 12.36 9.87 12.84 12.83 11.98 10.63 10.53 11.23 

MSE computed using the correct model with known parameters. Additionally, the relative MSE 
values for the GPH estimated models were smaller using the estimated correct model. This result 
reflects the larger finite sample bias of the GPH estimates. 

To obtain information about the precision of our forecast results, we used the technique of 
Lewis and Orav (1989, Ch. 9). We divided the 500 forecast MSE values into 10 sections of 50 
replications each and found the standard error of the average forecast MSE value for each of the 
10 sections. This value is different for each sample size, estimation procedure, selection 
criterion, and forecast step range, but in general, we found that the standard error was less than 
4% when n = 120 and less than 1% or 2% (sometimes as low as 0.5%) when n = 360. An 
exception to this general rule occurred for model (3, the ARFIMA(O,O.3,1) model, when the 
SIC was used for model selection and forecast errors from one to six steps ahead were of 
interest. As mentioned above, the SIC tended to select an MA(1) model in that case, leading to 
poor forecasts and large variability in forecast MSE. 

HOW WELL DO ARMA MODELS PREDICT LONG-MEMORY PROCESSES? 

The theoretical disadvantages of misspecifying long-memory processes as regular ARMA 
models have been pointed out by various authors, such as Brockwell and Davis (1991) and Ray 
(1993a). Other studies, such as Byers and Peel (1993) and Tiao and Tsay (1994), have 
suggested that, in practice, estimated ARMA models may perform competitively with estimated 
ARFIMA models. Our simulation study substantially bolsters this claim. Additionally, ARMA 
models have significant advantages in the estimation process, although Beran (1994) shows that 
when estimation of d is taken into account for standard ARIMA models, precision of the 
parameter estimates is the same as for ARFIMA models. 

For each process, sample size, and replication, we recorded the models selected in the 
restricted set of ARMA ( p ,  q )  processes and their out-of-sample forecasting performance. For 
ARFIMA processes, the forecasts from the ARMA models chosen by the three selection criteria 
are competitive for the first forecasting steps (one to six) in most cases, with an exception being 
the non-persistent ARFIMA model (model (1)) when n = 120, for which an MA(1) was often 
selected from among ARMA models. For larger forecasting horizons, the ARMA models 
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remain competitive when n = 120 but tend to perform slightly worse than the true model at long 
forecast horizons when n = 360 and the amount of persistence is strong. 

Tables V and VI exemplify the typical findings, showing results for model (2), the weakly 
persistent ARFIMA (O,O.l, 0) process, and model (4), the strongly persistent ARFIMA(I,0.3,0) 
process. 

In all the other cases, ARMA forecasts are equivalent or better than the best results attained 
by ARFIMA models with all selection criteria and for all forecasting horizons. The best 
procedure/criteria combination among ARMA/ARFIMA choices varies substantially according 
to the generating model and the sample size, leading to the dominance of the HR/SIC or the 
HR/AIC combinations in many cases and to the dominance of the FT/SIC combination in many 
others. Combinations that in certain cases are very successful, perform very poorly in certain 
other circumstances. The ARMA forecasts, however, always perform very competitively with 
the best ARMA/ARFIMA selection-estimation combination. 

Concerning the converse question, the accuracy of forecasts generated from ARFIMA 
models when the generating process is ARMA, results for model (6), the ARMA(1,l) model, 

Table V. Comparative MSE (%) for generating process 
2: ARFIMA (0,O. 1,O); ARMA estimated models 

Sample Steps 
size ahead AIC AICC SIC 

n =  120 1-6 3.24 3.23 6.29 
7-12 3.01 3.00 2.74 

13-24 2.55 2.54 2.44 
25-36 1.50 1 .so 1.45 

n = 360 1-6 1.31 1.27 1.59 
7- 12 1.17 1.17 0.98 

13-24 0.65 0.65 0.57 
25-56 0.54 0.54 0.52 

Table VI. Comparative MSE (%) for generating process 
4: ARFIMA (1,0.3,0); ARMA estimated models 

Sample Steps 
size ahead AIC AICc SIC 

n =  120 1-6 16.6 1 16.43 13.26 
7-12 25.46 25.43 20.75 

13-24 21.07 21.07 20.27 
25-36 11.23 11.30 11.27 

n = 360 1-6 6.70 6.43 6.52 
7- 12 14.10 13.91 12.45 

13-24 10.87 10.99 10.56 
25-36 12.88 12.93 13.36 
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supply a partial answer. From Table I, we see that the correct ARMA (1,l) model is selected 
less than 15% of the time when n = 120 and less than 35% of the time when n = 360 and the 
HR or FT methods are used for estimation. In fact, ARFIMA (p, d ,  4 )  models were chosen in 
the majority of cases. From Tables VII and VIII, we see that the relative forecast errors are 
about I-2% higher when ARFIMA models are included in the selection set than when the 
selection set is restricted to ARMA models. This indicates that using ARFIMA models to predict 
ARMA processes results in a small loss of forecast accuracy. We note, however, that the 
particular ARMA (1,l) model investigated in our study was chosen to emulate the behavior of 
a long memory process. Forecast performance of ARFIMA models for other ARh4A processes 
may be worse than that represented here. 

We believe that our results strongly endorse the use of ARMA models for forecasting 
possible ARFIMA processes of the length normally found in business and economic 
applications and recommend the use of ARFIMA forecasting models only for clearly persistent 
time series and when a relatively large number of observations is available. 

Table W. Comparative MSE (a) for generating process 6 ARMA( 1,l); ARFIMA/ARMA estimated 
models 

HR procedure GPH procedure FT procedure 
Sample Steps 
size ahead AIC AICc SIC AIC AICc SIC AIC AICc SIC 

n =  120 1-6 10.10 9.85 9.11 11.05 11.07 11.92 11.59 11.76 10.37 
7-12 11.11 10.58 10.19 12.06 11.90 12.40 11.53 11.20 10.43 

13-24 11.21 11.24 10.76 11.69 11.78 12.74 12.02 11.88 10.85 
25-36 8.82 8.73 8.63 10.06 10.15 10.39 8.95 8.82 8.62 

n=360 1-6 3.65 3.64 3.73 2.17 2.23 2.75 4.61 4.53 3.50 
7-12 5.12 5.17 4.69 2.74 2.76 3.74 5.43 5.41 3.79 

13-24 3.25 3.30 4.05 2.35 2.32 2.62 3.76 3.58 3.30 
25-36 4.18 4.27 4.45 3.76 3.76 3.63 4.36 4.33 4.11 

Table VIII. Comparative MSE (%) for generating 
process 6: ARMA (1,l);  ARMA estimated models 

Sample Steps 
size ahead AIC AICc SIC 
~- ~ 

n =  120 1-6 9.42 9.62 12.74 
7-12 8.90 8.74 9.26 

13-24 9.36 9.33 9.68 
25-36 7.29 7.30 7.40 

n = 360 1-6 2.14 2.09 2.39 
7-12 3.25 3.26 3.40 

13-24 2.64 2.65 2.73 
25-36 2.84 2.84 2.84 
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CONCLUSIONS 

Vol. 15, Iss. No. 2 

By means of a simulation study, we have assessed various issues related to the practical use of 
long-memory fractionally integrated models. First, our results indicate that the selection of an 
ARFIMA model is not an easy task. Automatic selection criteria were very unreliable in 
distinguishing between long and short memory and in choosing the correct model. In the 
presence of ARFIMA processes, AIC and AICc behaved very similarly and frequently chose 
ARMA or overparameterized ARFIMA models, and the SIC criteria frequently chose ARMA 
models. In the presence of non-ARFIMA persistent models all criteria tended to overlook the 
presence of long memory and to point in the direction of ARMA processes. 

When a pure fractional noise was present-ARFIMA(0, d ,  0)-SIC could be recom- 
mended; when a mixed model was present-ARFIMA(p, d ,  9)-all criteria had a very low 
success rate. However, inside each class of models the success rate of the criteria was 
relatively encouraging. AIC and AICc performed better than SIC for a mixed ARFIMA model 
and SIC performed much better than both AIC and AICc for a pure fractional noise. Thus, 
when both type of criteria point either in the direction of the ARMA class of short-memory 
models or in the direction of the ARFIMA class of long-memory models, the resulting 
selected model should be reasonably plausible. This conclusion suggests that the most difficult 
problem in this model identification setting is the choice between short-memory ARMA 
models and long-memory ARFIMA models and not an order identification inside each type of 
models. 

Second, our results show that success in the use of selection criteria is not independent of 
the estimation procedure. On the whole, the HR procedure-the time-domain maximum 
likelihood method of Haslett and Raftery (1989)-and the FT procedure-spectral domain 
Whittle likelihood method suggested by Fox and Taqqu (1986)-performed similarly. But the 
success of the different combinations of the estimation procedures with the selection criteria 
varied according to the type of process. In case of pure fractional noise models, the HR/SIC 
combination yielded the best results. In the case of mixed ARFIMA models, the FT/AIC 
combination provided the best results. The GPH procedure has been shown to present 
significant estimation biases and our simulation results confirm these results for model 
identification. 

Third, our results suggest that the selection of a model for forecasting purposes can be 
different from the selection and estimation of a model for analytic purposes. GPH emerged as a 
very reasonable estimation procedure and no one method systematically dominated for 
forecasting, especially at long lead times. 

Fourth, our results indicate that estimated ARFIMA models do not perform well in 
forecasting. In general, estimated ARMA models, even for long-memory processes, outperform 
or have a competitive performance. This seems to caution against the use of ARFIMA 
forecasting models. Theoretically, ARFIMA models should give the best forecasts for ARFIMA 
processes. However, the low success rate in the selection of the right ARFIMA model, along 
with the large variance in the estimation of the parameters, seem to indicate that ARFIMA 
models should only be used when strong persistence is present and when a large number of 
observations allows, in principle, reliable estimates. 

Future research will focus on a theoretical investigation of why the standard automatic model 
selection criteria do not perform well for long-memory processes and development of an 
improved model selection tool when the goal is long-range forecasting. However the results 
presented here, found via simulation, can be of immediate use to practitioners involved in 
modeling and forecasting data displaying long-range dependent behaviour. 
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The tables below give the average estimated parameter values for the ARFIMA (0,0.4,0) 
process and the ARFIMA (1,0.3,0) process. The standard error of the average is given in 
parentheses. For the ARFIMA (0,0.4,0) model, the FT estimate of d has a smaller bias and 
standard error than the other estimates when n = 120. For n = 360, the GPH estimate is slightly 
less biased than the FT estimate, but has a larger standard error, as can be expected from the 
method's use of only [ r ~ ' / ~ ]  sample points for estimation of d. The standard errors of the 
averages of the 500 HR and FT estimates of d are close to the asymptotic standard error of 
(6/500x2n) 

For the ARFIMA (1,0.3,0) model with @ = 0.65, the HR method results in extremely poor 
estimates, with d underestimated and @ overestimated. The two-step GPH procedure also 
performs poorly, with d overestimated at the first step and @ consequently underestimated at the 
second step. The FT procedure performs the best in terms of bias for both small and large 
sample sizes. Thus from both an estimation standpoint, as well as a model selection and 
forecasting standpoint, the FT estimation merhod is recommended. 

Mean and standard error of the estimated ARFlMA 
(0,0.4,0) model parameter 

d = 0.40 
~ 

Method n =  120 n = 360 

HR 0.3754 (0.0035) 0.4302 (0.0022) 
GPH 0.3610 (0.0079) 0.3812 (0.0055) 
FT 0.4130 (0.0037) 0.4217 (0.0026) 

__ ~~ ~ __ 

Mean and standard error of the estimated ARFIMA (1.0.3,O) model parameters 
~ 

d = 0.30 q5 = 0.65 

Method I1 = 120 17 = 360 I 1  = 120 11 = 360 

HR 0.1046 (0.0055) 0.1917 (0.0050) 0.7720 (0.0040) 0.7258 (0.0043) 
GPH 0.4255 (0.0059) 0.3879 (0.0055) 0.4999 (0.0098) 0.55 19 (0.0050) 
FT 0.3360 (0.0072) 0.3094 (0.0060) 0.5827 (0.0069) 0.6247 (0.0058) 
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