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Abstract

Standard quality control chart interpretation assumes that the observed data are uncorrelated. The presence of
autocorrelation in process data has adverse effects on the performance of control charts. The objective of this paper is to
assess the behavior of moving average forecast-based control charts on data having correlation that is persistent over very
long time horizons, i.e., long-range dependent. We show that charts based on exponentially weighted moving average
(EWMA) prediction do not perform well at detecting process shifts in long-range dependent data. We then introduce a new
type of control chart, the hyperbolically weighted moving average (HWMA) chart, designed specifically for long-range
dependent data. The HWMA charts perform better than the EWMA charts at detecting changes in the level of a
long-memory process and also provide competitive performance for process data having only short-range dependence.
 2002 International Institute of Forecasters. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction Much research has been conducted concerning
the performance of control charts applied to

Statistical quality control has been an active correlated data following stationary autoregres-
field of research since the beginning of the 20th sive moving average (ARMA) or nonstationary
century. Standard statistical process control autoregressive integrated moving average
(SPC) methods assume that the observed data (ARIMA) models. Modified versions of
represent independent realizations of the ob- Shewhart, EWMA and CUSUM charts have
served process. The presence of autocorrelation been found to be very effective for monitoring
has an adverse effect on control charts de- stationary processes in which the correlation
veloped under the assumption of independence. between observations decays to zero in a suitab-

ly fast manner. See, for example, Montgomery
and Mastrangelo (1991) and Wardell, Mos-*Corresponding author. Tel.: 1351-91-873-5759.
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However, many empirically observed time ability run length (PRL), the probability that an
series have been found to have correlation out-of-control signal occurs within k time
between distant observations that decays to zero periods. Small ARL values and high PRL values
very slowly. Such processes are termed long- for small k are desirable when a mean shift
range dependent or persistent. These processes exists, indicating that the control chart method
may be stationary even while exhibiting appar- detects the shift quickly. We find that charts
ent nonstationary behavior in short periods. based on errors from EWMA forecasts do not
Thus they provide a bridge between ARMA and perform well at detecting shifts in the level of a
ARIMA processes. The class of autoregressive long-range dependent process, even when the
fractionally integrated moving average (AR- theoretically optimal smoothing constant is
FIMA) processes having fractional differencing used.
parameter d is commonly used to characterize Given the poor performance of the EWMA
long-range dependent behavior. An ARFIMA error charts, we propose a new type of chart, the
process is stationary and invertible for values of hyperbolically weighted moving average
d between 2 0.5 and 0.5. See Beran (1994) for (HWMA) chart, designed specifically for pro-
additional details concerning ARFIMA pro- cess data having long-range dependence. The
cesses. performance of HWMA charts for detecting

In the statistical quality control literature, level shifts in long-range dependent data is
procedures for dealing with stationary correlated analyzed by simulation. We find that the
processes with short-memory of the ARMA HWMA error charts perform better than
type have been extensively studied (see, e.g., EWMA error charts at detecting changes in the
Montgomery & Mastrangelo, 1991; Wardell et level of a long memory process and also
al., 1992, 1994). More recently, Vander Wiel provide competitive performance for process
(1996) has studied control charts for nonstation- data having only short-range dependence, such
ary ARIMA processes. He has argued persua- as ARMA processes. Additionally, we investi-
sively for the existence of these types of pro- gate the impact of constructing HWMA charts
cesses in practice. Since ARFIMA processes based on an incorrect value of the long-range
bridge the gap between ARMA and ARIMA dependence parameter. This provides a more
types, they are of natural interest in quality realistic assessment of how the HWMA chart
control research. can be expected to perform in practice.

In this paper, we investigate the performance
of control charts based on exponentially weight-

2. Control charts based on EWMAed moving average (EWMA) forecasts for de-
forecasts and prediction errorstecting level shifts in long-range dependent

processes. The theoretically optimal smoothing
2.1. EWMA forecastingconstant, l , for exponentially weighted fore-o

casts of long-range dependent data is derived.
Let hX j denote a time series. The EWMAtThe performance of this smoothing constant

forecast of X based on data observed up tot11relative to other values of l for EWMA-based
time t is given bycontrol charts is studied via simulation. The

relative effectiveness of the charts is measured ˆ ˆX 5 1 2 l X 1 lX , 0 , l , 1. (1)s dt11ut t t ut21
using the average run length (ARL), i.e. the
average number of observations required before Thus 1 2 l denotes the weight given to the most
an out-of-control signal occurs, and the prob- recently observed data point, with more distant
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observations receiving exponentially decreasing zero and standard deviation one using the
weight. The smaller the value of l, the more method of Davies and Hart (1987). Mean shifts
weight is given to more recent observations, as were introduced at time period t 5 501. The
might be desirable for a strongly positively mean shift values were set at 0.5, 1.0, 1.5, 2.0,
correlated process. The one-step-ahead predic- 2.5 and 3.0. Shewhart methods were applied to
tion error is given by the EWMA forecasts and to the prediction

errors from the EWMA forecasts, as discussed
ˆe 5 X 2 X .t11 t11 t11ut above.

The EWMA forecasts were first constructed
2.2. Construction of EWMA charts using l 5 0.9. This value of l is commonly

used for EWMA charts applied to short-range
To construct an EWMA chart, the original

dependent processes. See, for instance, Crowder
observations and the EWMA forecasts are

(1989) and Lucas and Saccucci (1990). The
charted on the same graph, along with appro-

ARL and PRL values were recorded for each
priate control limits. Alternatively, the chart can

repetition and the average of 100 repetitions
be constructed using the EWMA prediction

was obtained. As an example, the ARL values
errors. Assuming that the one-step ahead predic-

when d 5 0.4 are shown in columns 2 and 4 of
tion errors are normally distributed, the control

Table 1. From the table, we observe that the
chart limits on these errors are given by

EWMA chart on the forecasts performs much
Pr 2 z s # e # z s 5 1 2 a, (2)f g better than the EWMA chart on the errors, i.e.a / 2 e t11 a / 2 e

the ARL values are smaller.where z is the upper 1 2 a /2 quantile of thea / 2 Wardell et al. (1992) show that for an AR(1)unit normal distribution and the estimator for se process, the best conditions for quick detection2 n 2ˆis usually taken from s 5 (o e ) /n. We cane t51 t of shifts in the mean using the EWMA chart arerewrite (2) as
when the process is highly negatively autocorre-

ˆPr 2 z s # X 2 X # z s 5 1 2 a.f g lated. Columns 6 and 8 of Table 1 give the ARLa / 2 e t11 t11 / t a / 2 e

and PRL values for an ARFIMA process having
Then, if the EWMA is a suitable one-step-ahead

d 5 2 0.3, which has negative correlations.
predictor, the centerline on the control chart on

Again, the EWMA chart on the forecasts per-ˆpredictions for period t 1 1 is X and thet11ut forms better than the chart based on EWMA
upper and lower control limits are

errors for all size mean shifts and detects a shift
more quickly than in the positively correlatedˆUCL 5 X 1 z st11 t11ut a / 2 e

(3) d 5 0.4 case.ˆLCL 5 X 2 z s .t11 t11ut a / 2 e Given that l 5 0.9 is not a good choice for all
types of correlation, we investigate an alter-See Montgomery and Mastrangelo (1991) for
native method for selecting an optimal value ofadditional discussion.
l in the next section.

2.3. Simulation study

We conducted a simulation study to assess 3. Optimal value of l for a long memory
the behavior of EWMA charts for a long-range process
dependent process in the presence of mean
shifts. Two thousand data points were generated It is well known that the EWMA is a
from an ARFIMA 0, d, 0 process with mean minimum mean squared error predictor whens d
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Table 1
aARL values for EWMA and HWMA charts applied to an ARFIMA(0, d, 0) process

Mean shift d 5 0.4 d 5 2 0.3

EWMA HWMA EWMA HWMA EWMA HWMA EWMA HWMA
forecasts forecasts errors errors forecasts forecasts errors errors

0.0 369.96 368.37 369.57 380.02 369.73 372.19 377.42 363.21
0.5 56.41 69.97 363.59 194.93 9.19 13.69 363.43 28.07
1.0 15.03 20.41 335.92 107.85 3.99 6.79 350.75 8.36
1.5 6.90 8.16 318.00 53.20 2.26 4.20 320.84 4.18
2.0 4.41 5.03 282.62 22.68 1.57 3.42 298.36 2.33
2.5 3.12 3.28 188.02 5.08 1.01 2.91 217.89 1.42
3.0 2.39 2.50 112.03 0.76 0.85 2.66 86.27 0.67

a EWMA charts constructed using l 5 0.9. HWMA charts constructed using true value of d.

2 2 `the true data generating process is an 2s 2s 1 2 ls d r11
]] ]]]]ARIMA(0, 1, 1). However, the EWMA can also D h; l 5 1 O l rs de r111 1 l 1 1 ls d r50provide simple, yet useful, forecasts for pro-

`
cesses of other types. Cox (1961) derived the 2 r

2 2s 1 2 l O l r . (4)s d r1hoptimal value of l, i.e., that value which r50

minimizes the one-step ahead mean squared
For predicting one-step ahead, substitutingprediction errors (MSPE) from EWMA fore-

h 5 1 in (4) givescasts, for series following an AR(1) model. By
means of simulation, Montgomery and Mas- 2 2 `2s 2s 1 2 ls d r11trangelo (1991) found the optimal value of l for ]] ]]]]D 1; l 5 1 O l rs de r111 1 l 1 1 ls d r50general correlated data. Following Cox’s meth-

`od, we derive the optimal value of l for an 2 r
2 2s 1 2 l O l r .s d r11ARFIMA process. r50

Let X t be a stationary process withh s d j
For an ARFIMA(0, d, 0) process,

E X t 5 m,h s d j k 1 dS]]]Dr 5 r .k11 k2 2 k 1 1 2 dVar X t 5 s , Cov X t , X t 1 k 5 r s .h s d j s d s dh j k

Simplifying, we have
For a long-range dependent process, which has 22san AR ` representation, the h-step aheads d ]]D 1; l 5s de 1 1 lMSPE is given by

2 `2s 1 2 l r 1 ds d r
]]]] S]]]D2 O l r .` 2 r1 1 l r 1 1 2 ds d2 r r502D h; l 5 s 1 1 2 l E O l Xs ds d S De t2r

r50 Using the hypergeometric series,
`

` n2 r a bs d s d z2 2 1 2 l s O l r .s d n nr1h ]]] ]F a, b; c; z 5 F b, a; c; z 5O ,s d s dr50 c n!s dnn50

Simplifying further gives we obtain the one-step ahead prediction error as
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2 designed specifically for processes having long-2s
]]D 1; l 5 range dependence.s de 1 1 l

22s 1 2 l ds d
]]]] ]]]2 F d 1 1, 1; 2s1 1 l 1 2 ds d s d 4. Analysis of long-range dependent data

using hyperbolically weighted moving2 d; l , d . 0. (5)d
average charts

We differentiate (5) with respect to l and
Given the poor performance of the EWMAequate the resulting value to zero to find the

error charts for detecting level changes for long-optimal value of l, obtaining
range dependent time series, we propose a new

d 1 1s d2 type of chart, the hyperbolic weighted moving]]]s d1 2 l F d 1 2, 2; 3 2 d; ls d2 2 ds d average (HWMA) chart. The autocorrelation
1 2 ds d function of a long memory process follows a
]]]2 2F d 1 1, 1; 2 2 d; l 1 5 0. (6)s d d hyperbolic decay as opposed to an exponential

decay. Thus we propose to forecast futureThe optimum value of l is the root of (6). For
values by applying hyperbolically decayingexample, the optimal values of l for d 5 0.1 and
weights to the process data as opposed tod 5 0.4 are 0.9871 and 0.6631 respectively. As
exponentially decaying weights. The hyperbolicd increases, the positive autocorrelation in the
weights are a function of the parameter d, whichseries increases. Therefore, in forecasting more
characterizes the rate of decay in the correlationweight is given to the most recent value,
of the process.resulting in a smaller value of l.

To investigate whether the performance of
4.1. Constructing HWMA chartsEWMA charts can be improved by forecasting

with the optimal l value, we conducted a Like the EWMA, the HWMA is a moving
second simulation study, analogous to the first. average of past data where each data point is
As the above analysis holds only for positive assigned a weight. Unlike the EWMA, however,
values of d, the ARL and PRL values for where the weights decrease exponentially, the
negative d were not calculated in the second HWMA weights decrease hyperbolically.
study. The ARL and PRL values for the EWMA Let hX j denote an ARFIMA 0, d, 0 processs dtcharts on the forecasts and errors were com- with mean zero. The minimum mean squared
puted just as before. There was no significant error forecast for X is:timprovement in the performance of the EWMA

d d 1 2 ds dcharts using the optimal value of l. See Ramjee ˆ ] ]]]X 5 X 1 Xt t21 t221! 2!(2000) for more detailed results.
In summary, the EWMA forecast charts are d 1 2 d 2 2 ds ds d

]]]]]1 X 1 ? ? ?t23capable of determining out-of-control values 3!
when there are moderately large shifts in the G 1 2 d G 2 2 ds d s d

]]]] ]]]]5 2 X 2 Xmean of a long-range dependent process, but the t21 t22G 2 G 2 d G 3 G 2 ds d s d s d s d
charts on the EWMA forecast errors do not

G 3 2 ds d
perform well at detecting shifts of any size. ]]]]2 X 2 ? ? ? ,t23G 4 G 2 ds d s dThese results are analogous to those for pro-
cesses following ARMA models. In the next where G( ? ) denotes the gamma function.
section, we investigate a new type of chart By Shepard’s formula, which states that
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from HWMA forecasts perform much better
G j 2 ds d 2d21
]]] | j as j → `, than those based on EWMA prediction errors,
G j 1 1s d however.
we have the following approximation:

4.3. Impact of unknown d1 1ˆ ]]]] ]]]]X . 2 X 2 Xt 11d t21 11d t221 G 2 d 2 G 2 ds d s d For industrial practice, the true value of d for
1 constructing a HWMA-based chart will not be]]]]2 X 2 ? ? ? .11d t233 G 2 ds d known. We thus investigated by simulation the

impact of using a value d* different from theThus
true d. The values of d for the data generating

t21 1 process were fixed at d 5 0.1, 0.3, 0.4 andˆ ]]]]X 5 2O X . (7)t 11d t2i 0.475. The values of d* used to construct thei G 2 ds di51

hyperbolic weights were set at 0.1, 0.2, 0.3 and
For computation of the weights, it is useful to 0.4. The ARL values for the HWMA forecast-

use the identity dG 2 d 5 2 G 1 2 d , giving as d s d based charts for all of the above combinations
positive argument for the gamma function. were then computed. When d* 5 0.3, the
Thus, we propose the HWMA forecast of Xt11 HWMA charts were found to perform well for
given information up to time t: each of the true d values investigated. Thus, in

t practice, given a series with unknown d, ad 1ˆ ]]] ]]X 5 O X . (8) robust method for constructing HWMA fore-t11ut 11d t112iG 1 2 ds d ii51 casts is to use d 5 0.3. Complete simulation
results for this study can be found in RamjeeThe one-step-ahead prediction errors are given
(2000).by

ˆe 5 X 2 X . (9)t11 t11 t11ut 4.4. Impact of using HWMA charts on short-
range dependent processesControl charts based on HWMA forecasts are

constructed analogously to those based on
Given that the HWMA-based charts are to beEWMA forecasts, but using (8) and (9) with

preferred over the EWMA charts for detectingspecified d.
changes in the mean of a long-memory process,
it is reasonable to investigate how the HWMA4.2. Simulation results for HWMA-forecast
charts perform when applied to short-memoryand HWMA-error charts
processes. To see whether the HWMA charts

The performance of the HWMA charts for provide competitive performance for process
detecting mean shifts is analyzed by calculating data having standard short-range dependence,
the ARL and PRL values. The ARL values for AR(1) processes with f 5 0.9 and MA(1)
d 5 0.4 for the HWMA forecast and prediction processes with u 5 0.9 were generated. Simula-
error charts are given in columns 3, 5, 7, and 9 tion results indicated no significant differences
of Table 1. Comparing the results for the in ARL and PRL values for charts based on
HWMA forecast-based charts with those based EWMA and HWMA forecasts. Hence the
on EWMA forecasts, we see that for smaller HWMA charts provide competitive performance
mean shifts, the two types of charts perform for process data having standard short-range
similarly. The charts based on prediction errors dependence correlation structure. Again, de-
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Cox, D. R. (1961). Prediction by exponentially weightedtailed simulation results can be found in Ramjee
moving averages and related methods. Journal of the(2000).
Royal Statistical Society B, 23, 414–442.

Crowder, S. V. (1989). Design of exponentially weighted
moving average schemes. Journal of Quality Technolo-

5. Summary gy, 21, 155–162.
Davies, R. B., & Harte, D. S. (1987). Tests for Hurst

Comparing the performance of control charts effect. Biometrika, 74(1), 95–101.
based on EWMA and HWMA forecasts and Lucas, J. M., & Saccucci, M. S. (1990). Exponentially

weighted moving average and control schemes: prop-forecast errors, we find that the EWMA-based
erties and enhancements. Technometrics, 32, 1–12.charts tend to detect larger shifts in the mean

Montgomery, D. C., & Mastrangelo, C. M. (1991). Someslightly faster than the HWMA charts. How- statistical process control methods for autocorrelated
ever, charts based on EWMA forecast errors do data. Journal of Quality Technology, 23, 179–193.
not perform well for mean shifts of any size in Ramjee, R. (2000). Ph.D. thesis Quality control charts and

persistent processes. Department of Mathematical Sci-positively correlated processes. The HWMA-
ences, Stevens Institute of Technology.based charts perform fairly well on both the

Vander Wiel, S. A. (1996). Monitoring processes thatforecasts and errors, although they work best for
wander using integrated moving average models. Tech-

negatively correlated data. Thus we recommend nometrics, 38, 139–151.
using HWMA-based charts over EWMA-based Wardell, D. G., Moskowitz, H., & Plante, R. D. (1992).
charts for long-range dependent data. Control charts in the presence of data correlation.

Management Science, 38, 1084–1105.Future research will focus on the performance
Wardell, D. G., Moskowitz, H., & Plante, R. D. (1994).of EWMA and HWMA forecast-based control

Run length distributions of special-cause control chartscharts for nonstationary ARFIMA processes. for correlated processes. Technometrics, 36, 3–17.
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