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In this work, we analyze the long-range dependence parameter for a nucleotide sequence in several differ-
ent transformations. The long-range dependence parameter is estimated by the approximated maximum
likelihood method, by a novel estimator based on the spectral envelope theory, by a regression method
based on the periodogram function, and also by the detrended fluctuation analysis method. We study the
length distribution of coding and noncoding regions for all Homo sapiens chromosomes available from the
European Bioinformatics Institute. The parameter of the tail rate decay is estimated by the Hill estimator
α̂. We show that the tail rate decay is greater than 2 for coding regions, while for almost all noncoding
regions it is less than 2.

Keywords: long memory models; α-stable law; generalized pareto distribution; hill estimator

AMS Classification: Primary: 60G10, 62G05, 62G35, 62M10, 62M15; Secondary: 62M20

1. Introduction

The statistical properties of DNA genomes are of great interest since they reflect biological features
that are important for life [21]. One of the main recent findings is the existence of correlation
on the sequence, i.e. occurrence of a nucleotide in a specific position depends statistically on the
previous nucleotides (memory). Moreover, it has been found that the memory of genome structure
decomposition is of a particular type: the so-called long memory.

The search for intrinsic patterns, correlations, and parameters measuring self-similarity by
scaling exponents has been carried out in the past years by several statistical methods. Peng et al.
[19], Buldyrev et al. [4], Li and Kaneko [17] and Stanley et al. [24] use the detrended fluctuation
analysis (DFA) to characterize long-range correlations in both coding and noncoding regions of
DNA sequences. Karlin and Brendel [16] show the relationship between the effect of patchiness
and correlations in genome sequences. Bernardi et al. [3] show that the DNA nucleotides form a
mosaic of long homogeneous segments or ‘isochores’.
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In order to study the long-range correlations in genomes, it is necessary to transform them into
numerical sequences. There are many studies on correlations in DNA sequences using different
representations for the four nucleotides [7,13,18,22,24].

One of the most appropriated methods proposed in recent years for the study of long-range cor-
relations in genomes is the DFA [4,11,20,22]. More recently, Crato et al. [6] estimate the fractional
parameter d by considering semiparametric regression method based on the periodogram function,
in both classical and robust versions. They also use the semiparametric R/S(n) method, proposed
by Hurst [15], and the maximum likelihood method [10], with the approximation suggested by
Whittle [7].

Here we study the behavior of the long-range dependence parameter of one DNA sequence
for the most relevant transformations of the type f : {A, C, G, T} → {0, 1, 2, 3}, where A, C, G
and T are the four nucleotides, by considering the DFA and other estimation methods for the
fractional parameter d .

A common problem in analyzing long nucleotide sequence data is the proper identification
of coding (cds) regions dispersed throughout the sequence and separated by noncoding (ncds)
regions [2]. Here we are interested in analyzing the distribution of coding and noncoding regions,
based on the length distribution of these two regions [26]. From the tail rate decay estimator,
we identify differences between length distribution of coding and noncoding regions of DNA
sequences.

This paper is organized as follows. Section 2 describes the DFA and other estimation methods
for the fractional parameter d . Section 3 presents the most relevant transformations for the four
nucleotides. We study the long-range dependence for a DNA sequence numerically transformed
into several different maps. Section 4 presents the relationship between the long-range depen-
dence and the tail index parameter and also the Hill estimator α̂. Section 5 presents the discussion
of the length distribution for coding and noncoding regions for all Homo sapien chromosomes
available from the European Bioinformatics Institute (EBI, http://www.ebi.ac.uk/). Section 6
concludes the paper.

2. Estimation methods

In this section, we want to emphasize the existence of a long memory in a DNA sequence,
without separately considering its coding and noncoding regions [6]. With this purpose, we
consider the estimation of the fractional parameter d in four different methods. First, the approx-
imated maximum likelihood estimator (d̂W), proposed by Fox and Taqqu [10]; the d̂WS estimator,
obtained by using the spectral envelope theory proposed by Stoffer et al. [25]; the regres-
sion method using the periodogram function (d̂GPH), a very well-known estimator proposed
by Geweke and Porter-Hudak [12] and, finally, the DFA estimator (d̂DFA), proposed by Peng
et al. [19].

The parameter of interest is the fractional integration parameter d, which can be introduced
in the general framework of the autoregressive fractionally integrated moving average processes
(ARFIMA).

An ARFIMA(p, d, q) process is defined as follows. Let {εt }t∈Z be a white noise process with
zero mean and variance σ 2

ε > 0, let B be the backward-shift operator, that is, Bk(Xt ) = Xt−k , and
let �(·) and �(·) be polynomials of orders p and q, respectively. If

�(B)(1 − B)d(Xt − μ) = �(B)εt , t ∈ Z, (1)

where μ is the mean of the process and (1 − B)d = ∑∞
k=0

(
d
k

)
(−B)k , then {Xt }t∈Z is an

ARFIMA(p, d, q).
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If d ∈ (−0.5, 0.5) then the process {Xt }t∈Z is stationary and invertible and its spectral density
function is given by

fX(w) = fU(w)
[
2 sin

(w

2

)]−2d

, for 0 < w ≤ π, (2)

where fU(·) is the spectral density function of theARMA(p, q) process, Ut ≡ (1 − B)d(Xt − μ).
Persistence or long memory property has been observed in time series from different fields such

as meteorology, astronomy, hydrology and economy. One can characterize the persistence by two
equivalent forms:

• in the time domain, the autocorrelation function ρX(·) decays hyperbolically to zero, that is,
ρX(k) � k2d−1, when k → ∞.

• in the frequency domain, the spectral density function fX(·) is unbounded when the frequency
is near zero, that is, fX(w) � w−2d , when w → 0.

The ARFIMA(p, d, q) process exhibits the property of long memory when d ∈ (0.0, 0.5),
of intermediate memory when d ∈ (−0.5, 0.0) and of short memory when d = 0. Important
properties for ARFIMA(p, d, q) processes can be found in Beran [1].

2.1 Estimator d̂W

Let {Xt }t∈Z be an ARFIMA(p, d, q), defined in expression (1). The estimator for d, by using the
maximum likelihood method, denoted by d̂W, is the value

η = (σ 2
X, d, φ1, φ2, . . . , φp, θ1, θ2, . . . , θq) (3)

that minimizes the function

Q(η) =
[(n−1)/2]∑

j=1

(
I (wj )

fX(wj , η)

)
, (4)

where η is the vector of unknown parameters given in Equation (3), fX(·, η) is the spectral
density function of the {Xt }t∈Z, [·] is the greatest integer function, wj = 2πj/n is the j th Fourier
frequency, j ∈ {1, . . . , [n − 1/2]}, and I (·) is the periodogram function.

More details on the theory of this estimator can be found in Fox and Taqqu [10] and Beran [1].

2.2 Estimator d̂WS

Let {Xt }t∈Z be a categorical-valued process with finite state-space C = {c1, c2, . . . , ck} and pj =
P(Xt = cj ) > 0, for j = 1, 2, . . . , k. For β = (β1, β2, . . . , βk) ∈ R

k denote by {Xt(β)}t∈Z the
real-valued process corresponding to the scaling that assigns the category cj to the numerical
value βj , j = 1, 2, . . . , k. Assume {Xt(β)}t∈Z is a stationary process. Its spectral density will
be denoted by fX(ω; β). Our goal is to find scalings β in such a way that one can maximize
the power at each frequency ω, across all frequencies ω ∈ (0, π ], relative to the total power
σ 2(β) = Var(Xt(β)). That is, we choose β(ω), at each ω of interest, so that

λ(ω) = max
β

{
fX(ω; β)

σ 2(β)

}
, (5)

over all β not proportional to 1k , the k × 1 vector of ones. The function λ(·) is defined to be the
spectral envelope of the stationary categorical process {Xt }t∈Z.
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The name spectral envelope is very much appropriate since λ(·) envelopes the standardized
spectrum of any scaled process. That is, given any β normalized so that {Xt(β)}t∈Z has total power
equal to one, fX(ω; β) ≤ λ(ω), where equality holds, if and only if, β is proportional to β(ω).
For more details, we refer the reader to Stoffer et al. [25].

Here we suggest an estimator for the fractional parameter d, denoted by d̂WS, that con-
sists in replacing the periodogram function in expression (4) by the spectral envelope, given
in expression (5).

2.3 Estimator d̂GPH

Let {Xt }t∈Z be an ARFIMA(p, d, q), defined in expression (1). The first estimation method based
on the periodogram function was proposed by Geweke and Porter-Hudak [12]. These authors
obtain an estimate for d by considering ln(I (ωj )) regressed on ln(2 sin(wj/2))2. The estimator
d̂GPH is given by

d̂GPH = −
∑g(n)

j=1(xj − x̄)(yj − ȳ)∑g(n)

j=1(xj − x̄)2
, (6)

where yj = ln(I (wj )), xj = ln(2 sin(wj/2))2 and x̄ = 1/g(n)
∑g(n)

j=1 xj , with g(n) = nα , for
α ∈ (0, 1).

2.4 Estimator d̂DFA

Given a time series {Xt }nt=1, the DFA method, proposed by Peng et al. [20], has the objective of
evaluating the statistical fluctuation F(l), in order to obtain a set of measures, where l represents
the window length. By varying the length l, the fluctuation can be characterized by the scaling
exponent, that is, the slope of the line obtained by regressing ln(F (l)) on ln(l).

The estimator d̂DFA is given by

d̂DFA =
∑m

j=1(xj − x̄)yj∑m
j=1(xj − x̄)2

− 1

2
, (7)

where yj = ln(F(j + 3)), xj = ln(j + 3), x̄ = 1/m
∑m

j=1 xj and m = [g(n) − 3]. The function
F(l), for each block of size l, is the root mean square fluctuation given by

F2(l) = 1

ñ

ñ∑
t=1

Z2
t , (8)

with Zt = Yt − Y l
t , where Yt = ∑t

j=1 Xj , for each t ∈ {1, 2, · · · , n}, Y l
t is the adjusted fit on each

block and ñ = [M · l] ≤ n, with M = [n/l].
For technical details on the estimator d̂DFA we refer the reader to Crato et al. [6].

3. Transformations

A nucleotide sequence is composed by the basis A (adenine), C (cytosine), T (thymine) and
G (guanine). In order to apply numerical methods to a nucleotide sequence, it is necessary to
transform it into a numerical sequence.

From the biological point of view, it is common to apply the SW (strong-weak pairing)
rule, which maps C and G to 1 and A and T to 0. We could also try scaling according
to the purine-pyrimidine alphabet (RY rule), that is A = G = 1 and C = T = −1. This rule
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describes how purines (A and G) and pyrimidines (C and T) are distributed along the sequence.
Another interesting scaling (real rule) is the one that assigns A = −1.5, C = 0.5, G = −0.5 and
T = 1.5 [5].

Guharay et al. [13] symmetrically assign a four-dimensional vector to each of the four
bases A, C, G and T, which are equidistant from each other, and their sum is equal to
zero, that is, maps A to (0.75, −0.25, −0.25, −0.25), C to (−0.25, 0.75, −0.25, −0.25), G to
(−0.25, −0.25, 0.75, −0.25) and T to (−0.25, −0.25, −0.25, 0.75).

Cristea [7] proposes a tetrahedral representation of the nucleotides: four vectors in three dimen-
sions, symmetrically placed with respect to each other, i.e. oriented towards the corners of a
tetrahedron, are placed in correspondence with the nucleotides, in which it is emphasized that the
vertices of a regular tetrahedron are a subset of the vertices of a cube. Thus, this rule maps A to
(1, 1, 1), C to (−1, 1, −1), G to (−1, −1, −1) and T to (1, −1, −1).

Rather than choose values arbitrarily, the spectral envelope approach [25] selects scales that
help to emphasize any periodic feature that may exist in a categorical time series. This approach
can be used for any categorical time series in a quick and automated fashion.

If we consider the naive approach of arbitrarily assigning numerical values (scales) to the
categories and then proceeding with a spectral analysis, the result will depend on the particular
assignment of the numerical values. Here we consider the estimation of the fractional parameter
d, based on the four methods given in Section 2, relatively to all possible transformations f :
{A, C, G, T} → {0, 1, 2, 3}. To analyze the long-range dependence, we consider the AL163202
nucleotide sequence, corresponding to a part of the H. sapiens chromosome 21 (with 340,000 bp).

We have a total of 44 different maps. Some of these 44 transformations are equivalent for
the estimations results. For instance, the transformations (1, 0, 0, 0), (2, 0, 0, 0), (3, 0, 0, 0), and
(4, 0, 0, 0) lead necessarily to the same correlation and spectral estimates. In this regard, they
constitute a class of equivalent transformations. In Table 1, we chose one mapping representative
for each of such classes. This is what we call the set of the relevant transformations. Although
each map brings out a different property of the sequence, note that all of them display long-range
dependence. For each sequence, we test the hypothesis H0 : d = 0 versus H1 : d 	= 0, based on
the long-range dependence parameter, at 95% confidence level, for all estimators proposed.

The value for the spectral envelope estimator is d̂WS = 0.0722, calculated for all transformations
together, applied to the AL163202 nucleotide sequence. Since it is a single value, we do not report

Table 1. Estimators for the parameter d, with their respective 95% confidence levels for the AL163202
nucleotide sequence, using 30 different transformations.

(A, C, G, T ) d̂W d̂GPH d̂DFA (A,C,G,T) d̂W d̂GPH d̂DFA

(0,0,0,1) 0.0766∗ 0.4016∗ 0.1073∗ (0,1,1,1) 0.0749∗ 0.3015∗ 0.1133∗
(0,0,1,0) 0.0593∗ 0.2660∗ 0.1033∗ (0,1,1,2) 0.0923∗ 0.3665∗ 0.0872∗
(0,1,0,0) 0.0597∗ 0.2581∗ 0.0955∗ (0,1,1,3) 0.0901∗ 0.3664∗ 0.0892∗
(0,0,1,1) 0.0804∗ 0.3836∗ 0.0649∗ (0,0,2,3) 0.0823∗ 0.3980∗ 0.0744∗
(0,1,0,1) 0.0965∗ 0.3060∗ 0.0817∗ (0,2,0,3) 0.0947∗ 0.3453∗ 0.0884∗
(0,1,1,0) 0.0382∗ 0.3137∗ 0.1748∗ (0,0,3,1) 0.0652∗ 0.2613∗ 0.0776∗
(0,0,1,2) 0.0820∗ 0.4016∗ 0.0820∗ (0,0,3,2) 0.0750∗ 0.3377∗ 0.0633∗
(0,1,0,2) 0.0915∗ 0.3606∗ 0.0931∗ (0,1,2,1) 0.0559∗ 0.2988∗ 0.1247∗
(0,1,2,0) 0.0422∗ 0.3081∗ 0.1602∗ (0,1,2,2) 0.0809∗ 0.3561∗ 0.0870∗
(0,0,1,3) 0.0808∗ 0.3976∗ 0.0907∗ (0,1,2,3) 0.0880∗ 0.3875∗ 0.0812∗
(0,1,0,3) 0.0871∗ 0.3840∗ 0.0982∗ (0,1,3,1) 0.0526∗ 0.2843∗ 0.1211∗
(0,1,3,0) 0.0464∗ 0.2931∗ 0.1446∗ (0,1,3,2) 0.0696∗ 0.3180∗ 0.0908∗
(0,0,2,1) 0.0704∗ 0.2863∗ 0.0680∗ (0,1,3,3) 0.0816∗ 0.3772∗ 0.0779∗
(0,2,0,1) 0.0855∗ 0.2489∗ 0.0790∗ (0,2,1,2) 0.0907∗ 0.3066∗ 0.0951∗
(0,2,1,0) 0.0425∗ 0.3024∗ 0.1534∗ (0,2,1,3) 0.0954∗ 0.3407∗ 0.0888∗

Note: ∗The rejection of H0 hypothesis at 5% significance level.
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it in Table 1. From Table 1, one observes that the d̂GPH estimator always gives higher estimates
for the parameter d among all four methods. The estimators d̂W, d̂WS and also d̂DFA are in the
same order of magnitude. What is important is that all estimators are significantly pointing to the
direction of long memory.

4. Long-range dependence and the tail index estimator

The most important parameter to estimate on the heavy-tailed data is the tail rate of decay α which
determines the probability of occurrence of extreme values of the underlying distribution. That
is, α is the parameter such that

P(|X| > x) ∼ Cx−α, for x ∈ R,

where C is a positive constant. Our interest here lies on the probabilistic modeling and on the
inference statistics for the extreme part of the tail of the distribution of Xt for coding (cds), and
Yt for noncoding (ndcs) regions, of some DNA sequences (see Definition 5.1) by estimating the
parameter α.

Let X1, X2, . . . be i.i.d. random variables representing risks or losses with an unknown cumu-
lative distribution function (CDF) F(x) = ¶(Xi ≤ x). A loss is treated as a positive number and
extreme events occur when losses take values in the right tail of the loss distribution F(·). Define
Mn = max(X1, . . . , Xn) as the worst-case loss in a sample of n losses. An important part of the
extreme value theory focuses on the distribution of Mn. From the i.i.d. assumption, the CDF of
Mn is given by

P(Mn ≤ x) = P(X1 ≤ x, . . . , Xn ≤ x) =
n∏

i=1

F(x) = Fn(x).

Since Fn(·) is assumed to be unknown and the empirical distribution function is often a very poor
estimator for Fn(·), an asymptotic approximation to Fn(·) based on the Fisher–Tippett Theorem
[9] is used to make inferences on Mn. Furthermore, since Fn(x) → 0 or 1, as n → ∞ and x is
fixed, the asymptotic approximation is based on the standardized maximum value

Zn = Mn − μn

σn

, (9)

where σn and μn are sequences of real numbers such that σn > 0 is interpreted as a scale measure
and μn as a location measure.

A natural measure of extreme events are values of the Xi that exceed a high threshold u. Define
the excess distribution above the threshold u as the conditional probability

Fu(y) = P(X − u ≤ y|X > u) = F(y + u) − F(u)

1 − F(u)
, y > 0. (10)

It can be shown [8] that for a large enough u there exists a positive function β(u) such that the
excess distribution (10) is well approximated by the generalized Pareto distribution (GPD)

Gξ,β(u)(y) =
{

1 − (1 + ξy/β(u)), if ξ 	= 0

1 − exp(−y/β(u)), if ξ = 0,
(11)

defined for y > 0, when ξ ≥ 0, and for 0 ≤ y ≤ −β(u)/ξ , when ξ < 0, where β(u) > 0.
For more details see Embrechts et al. [8] and Samorodnitsky and Taqqu [23].
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4.1 Long-range dependence

We can define the long-range dependence in the symmetric α-stable (sαs) case [8], but certainly
not via the covariance function since the second moments for the marginal distributions do not
exist. An example of sαs H -selfsimilar process is given by the integral

X
(H)
t =

∫
R

[((t − x)+)H−1/α − ((−x)+)H−1/α]dM(x), t ∈ R, (12)

where H ∈ (0, 1) is the Hurst’s effect parameter for estimating the long-range dependence. In the
above expression, M is an sαs random measure with Lebesgue control measure. For H = 1/α the
process is formally interpreted as an sαs motion. The sαs process so defined in expression (12) is
called linear fractional stable motion. It is a process with stationary increments, but the subclass
of selfsimilar processes does not consist only of these fractional motions. The corresponding
fractional sαs noise can be defined as

Y
(H)
t = X

(H)
t+1 − X

(H)
t , t ∈ Z. (13)

When H = 1/α, in expression (13), the process is formally interpreted as a symmetric α-stable
(sαs) noise, whereas forH ∈ (1/α, 1) and 1 < α < 2, it is considered as a process with long-range
dependence, in analogy to the fractional Brownian noise.

Remark 4.1 The Hurst parameter H , in expression (12), is related to the fractional parameter d

[1] by the equation

d = H − 1

2
. (14)

Since H = 1/α, from expression (14) we obtain

d = 1

α
− 1

2
⇐⇒ α = 2

2d + 1
, (15)

that is, one has the relationship between the fractional parameter d and the tail index α.

4.2 Hill estimator for the tail index

For the GPD, the shape α may be estimated nonparametrically in quite different ways. A popular
method due to Hill [14] applies to the case where α > 0 so that the data are generated by some fat-
tailed distribution in the domain of attraction of Fréchet family or GPD distribution. To describe
the Hill estimator, let us consider a sample of losses X1, . . . , Xn and define the order statistics as

X(1) ≥ X(2) ≥ · · · ≥ X(n).

For a positive integer k, the Hill estimator for α is defined as

α̂(k) =
⎛
⎝k−1

k∑
j=1

ln(X(j)) − ln(X(k))

⎞
⎠

−1

. (16)

The Hill estimators for α depend on the integer k. It can be shown that if F(·) is in the domain of
attraction of a GPD distribution, then α̂(k) is asymptotically normally distributed with asymptotic
variance given by avar(α̂(k)) = k−1α2.
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5. Length distribution analysis in DNA sequences

In this section, we analyze the coding and noncoding length distribution by considering the Hill
estimator. This analysis will help us to identify differences between these distributions and the
existence of long memory for noncoding regions of DNA sequences.

A common problem in analyzing long nucleotide sequence data is how to identify coding
regions (cds) dispersed throughout the sequence and separated by noncoding regions (ncds).
Distinguishing the distribution for each one of these regions can help to locate both coding and
noncoding regions in DNA sequences.

Definition 5.1 Let {ni}ni=1 be any nucleotide sequence. By ordering all lengths of coding (or
noncoding) segments, according to their order in the complete genome, the obtained integer
sequence is called a coding (or noncoding) length sequence.

Remark 5.1 From Definition 5.1, one obtains the time series {Xt }nt=1 (analogously, the time
series {Yt }nt=1) derived from the coding (or noncoding) length sequence given by

Xt = the length of the coding segment at position t

Yt = the length of the noncoding segment at position t,

where the length of a coding (or noncoding) segment means the number of its bases in the segment.

Figure 1 shows the histograms of the coding and noncoding length sequences, respectively,
for the H. sapiens chromosome 21. The observed long tail in Figure 1 illustrates how difficult it
can be to attribute probabilities to extreme events using all data sets. One can note that there is a
difference between coding and noncoding length sequence histograms.

Our interest is to analyze the distribution of coding and noncoding regions, by considering,
respectively, the coding and noncoding length sequences (see Definition 5.1). Table 2 presents,

25
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Figure 1. Histogram for Coding and Noncoding Length Sequences for the H. sapiens chromosome 21.
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Table 2. Hill estimator α̂cds (α̂ncds) for coding (noncoding) length sequences for H. sapiens chromosomes,
with k = n0.5.

H. sapiens Chr. Sequence Coding’s size α̂cds Noncoding’s size α̂ncds

1 CM000252 45119 2.6216 45118 1.8538
2 CM000253 35685 2.0099 35684 1.8062
3 CM000254 27943 2.1347 27942 1.9630
4 CM000255 16325 1.9904 16324 1.8526
5 CM000256 19582 2.2984 19581 2.0941
6 CM000257 23586 2.3579 23585 1.6658
7 CM000258 22096 2.4524 22095 1.9517
8 CM000259 14854 2.3956 14853 2.0456
9 CM000260 18837 1.9965 18836 1.7615

10 CM000261 20235 2.2170 20234 1.7593
11 CM000262 25522 2.2307 25521 1.8608
12 CM000263 25970 3.0919 25969 2.2118
13 CM000264 9149 1.7409 9148 1.7010
14 CM000265 15114 2.2924 15113 1.4330
15 CM000266 15032 1.9473 15031 2.5036
16 CM000267 19098 1.9741 19097 1.7487
17 CM000268 26740 2.2214 26739 1.8042
18 CM000269 7317 2.2275 7316 2.6834
19 CM000270 23421 2.6367 23420 2.3779
20 CM000271 13203 2.4240 13202 1.6034
21 CM000272 5243 2.1805 5242 1.6884
22 CM000273 5243 2.1805 5242 1.6884
X CM000274 15604 2.3963 15603 1.5784
Y CM000275 361 2.1131 360 2.0556

respectively, the Hill estimator α̂cds for the coding and α̂ncds for the noncoding length sequences
for all H. sapiens chromosomes. This set of data is available from the EBI (http://www.ebi.ac.uk/).
Since each set of sequences begins and ends with a coding segment, we always have one more
segment for coding (column 3) than for noncoding (column 5).

The α parameter evaluates the tail rate of decay, which determines the probability of occurrence
of extreme events and the existence of moments for the underlying distribution. Here k is given
by n0.5, where n is the sample size.

From Table 2, one observes that coding regions present α estimates usually larger than those
from noncoding regions. This happens both on average and within the same chromosome. Only
in two cases (chromosomes 15 and 18) it does not happen that the first estimate is larger than the
corresponding second one. Although this needs further investigation, one may suspect that the
α parameters are generally above the α = 2 mark for coding segments and below this mark for
noncoding segments.

6. Conclusions

In this paper, we analyze the performance of the estimator d̂WS, obtained by replacing the peri-
odogram in expression (4) by the spectral envelope. Considering several different transformations,
we compare the d̂GPH estimator with d̂W, d̂WS and d̂DFA, where the first one is the well-known
estimator based on the linear regression equation, the second one is the approximated maximum
likelihood method, and the last one is the estimator obtained from the DFA method. For the
AL163202 nucleotide sequence applied to these different transformations, the estimators for the
fractional parameter d considered in Section 2 are statistically different from zero. This indicates
the existence of long-range dependence for the considered sequence when the four bases are
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numerically assigned by these maps. This type of dependence cannot be induced by the scaling;
it is a property of the sequence.

We also performed an analysis of the tail rate decay of coding and noncoding regions’ dis-
tribution, for all considered Homo sapiens chromosomes. We applied the α̂ estimator to both
coding and noncoding length sequences. Although this needs further investigation, results seem
to indicate that for most noncoding regions the length distributions tend to have finite first and
second moments (α ≥ 2), while for coding regions the length distributions tend to have no finite
second moments, being in the domain of attraction of an α-stable law, with α < 2.
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