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a b s t r a c t

Time series displaying long-range correlations have been observed in numerous fields, such
as biology, psychology, hydrology, and economics, among others. For rhythmicmovements
such as tapping tasks, the Wing–Kristofferson model offers a decomposition of the
inter-response intervals based on a cognitive component and on a motor component.
It has been suggested that the cognitive component should be modeled as a long-
memory process and the motor component should be treated as a white noise process.
Some probabilistic explanations for long-range dependences have been proposed, such
as the aggregation of short-memory processes, the renewal-reward processes, and the
error-durationprocesses. A newapproach to theWing–Kristoffersonmodelwhichprovides
insights into the origin of long memory based on regime-switching processes is proposed.
Under some assumptions, the autocorrelation function and the spectral density function
of the model are obtained. Furthermore, an estimator of the parameters based on
the maximization of the frequency-domain representation of the likelihood function
is proposed. A simulation study evaluating the sample properties of this estimator
is performed. Finally, an experimental study involving tapping tasks with two target
frequencies is presented.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Time series exhibiting long-range correlations have been observed in various fields, such as biology, psychology,
hydrology, and economics, among others. Intuitively, this kind of pattern reflects the fact that the current value of the
series depends on all the preceding values of the series. The presence of this particular type of structure in a wide range
of phenomena seems to reveal its ubiquity. In biology, long-range dependences were found for instance in heartbeat
series (Hausdorff and Peng, 1996; Peng et al., 1993) and in stride series (Hausdorff et al., 1996, 1999). In psychology, such
fluctuations were observed in cognitive performances, including mental rotation or visual search (Gilden, 2001; Gilden
et al., 1995). Other studies reported long-term memory in simple reaction times (Van Orden et al., 2003; Wagenmakers
et al., 2004), tapping tasks (Chen et al., 1997; Ding et al., 2002), forearm oscillations (Delignières et al., 2004, 2008), or force
production (Pressing, 1999; Wing et al., 2004).

The wide occurrence of long-range correlations in a number of biological and non-biological systems poses some
challenging questions, in particular the origin of this type of phenomenon. In the humanmovement research, some physical
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mechanisms have been proffered to explain these fluctuations, namely from the so-called nomothetic and mechanistic
perspectives (Kello et al., 2007; Torre andWagenmakers, 2009). In the theoretical statistical literature, the list of probabilistic
explanations for long-memory processes includes essentially the aggregation of short-memory processes (Granger, 1980),
the renewal-reward processes (Taqqu and Levy, 1986), the error-duration processes (Parke, 1999), and the regime-switching
processes (Liu, 2000). Someof these statistical solutions have beenused in recent papers (Beran et al., 2010; Lux andMorales-
Arias, 2010).

Among all these lines of research, the production of rhythmic movements such as repetitive finger tapping tasks and
the corresponding long-range correlations have been an issue of great interest. Tapping tasks are useful motor tasks to
investigate the perception of time in humans. More precisely, these tasks open a window to the regulation processes
of voluntary rhythmic behavior, with important implications for the understanding of rhythm problems, coordination
disorders, musical performances, etc. Tapping tasks are very attractive because of the tasks’ simplicity and the instrumental
parsimony. In fact, these tasks can be performed by children, adults, or subjects with impairments, and they allow for
obtaining precise measures with simple equipments. Tapping tasks lead to the production of serial inter-response intervals,
which follow long-range dependence patterns. However, the existing studies on this theme are mainly of empirical nature
and the corresponding methodologies still need major refinements.

This study is based on tapping tasks and set in a framework inspired by the Wing–Kristofferson model, which offers a
decomposition of the inter-response intervals based on a cognitive component and on a motor component. We present a
new model with a new long-memory cognitive component and a white noise motor component. The proposed cognitive
component is a regime-switching process with added noise, which is capable of producing long memory and providing
a biological interpretation of the phenomenon. The starting point for our model is the successive alternation of cognitive
strategies to establish the link between the behavioral and the theoretical properties. We also propose an estimator of the
parameters based on the maximization of the frequency-domain representation of the likelihood function. In the end, we
illustrate the model with a set of experimental series.

The remainder of the paper is organized as follows. Section 2 describes the Wing–Kristofferson model for tapping tasks
and introduces two approaches to this model. Section 3 discusses the origin of long memory in cognitive-motor systems.
Section 4 proposes a new representation of the Wing–Kristofferson model, as well as an estimator of the parameters.
Section 5 presents an experimental study with tapping tasks. Section 6 shows some comments on the results and some
ideas for future research.

2. Tapping tasks and the Wing–Kristofferson model

In the human movement science, long-range correlations are typically observed in repeated performances of a given
system, facing the same task in stable conditions for a prolonged period. An interesting problemwithin this general scenario
is the realization of repetitive finger tapping tasks with a fixed target time interval. In fact, tapping tasks are widely used
motor tasks as an experimental solution to understand the temporal structure of human behavior. This kind of task leads to
serial time interval production, which exhibits inherent variability.

In his early experimental research on repetitive movements, Stevens (1886) developed a basic experimental design
called synchronization–continuation in which the participant has to tap continuously at a given rate. In the first phase
(synchronization), the subject has to synchronize his or her taps with a sequence of acoustic periodic signals; in the second
phase (continuation), the subject has to try to continue to tap regularly at the same rate but without the information from
the external pacer. He also proposed two factors to explain the inter-response intervals variability—long-term fluctuations
as a possible consequence of cognitive processes and short-term fluctuations related tomotor limitations. Later, the additive
structure of two components for repetitive movements was formally described by Wing and Kristofferson (1973a,b), who
offered a model repeatedly investigated from that time on. More precisely, the Wing–Kristofferson model is a stochastic
hierarchical two-level model that explains the variability of inter-response intervals. This model is based on a cognitive
component generating time intervals Ct and on a motor component, responsible for the execution of the task at the end of
Ct , providing delay intervalsMt . In terms of these components, the inter-response intervals It are written as

It = Ct + Mt − Mt−1, t ∈ N.

In this two-level formulation, the ratio of themotor standard deviation to the cognitive standard deviation is very important.
From a theoretical point of view, this ratio represents a ‘noise-to-signal’ ratio and, from an empirical point of view, the ratio
expresses the numeric relation between the variability of the two processes. Note that, in the study of stochastic signals with
added noise, a keymeasure is the ‘signal-to-noise’ ratio, which equals the ratio of the signal variance (or standard deviation)
to the noise variance (or standard deviation). In this work, the ‘noise-to-signal’ ratio (i.e., the inverse of that quantity) was
used, as it has been proposed in other works (Crato and Ray, 2002).

In the original approach, based on experiments with short continuation phases, namely no more than 50 continuous
taps, the cognitive and the motor components were regarded as independent white noise sources (e.g., Wing and
Kristofferson, 1973a,b; Vorberg andWing, 1996).More recently, experimentswith long continuation phases, namely around
1000 continuous taps, revealed that fluctuations typical of long-memory processes may be embedded in tapping series
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(e.g., Madison, 2004; Lemoine et al., 2006). In fact, long series of inter-response intervals seem to display long non-periodic
oscillations around a mean value reasonably close to the target interval. Diniz et al. (2010) suggested a theoretical and fully
parametric approach, based on experiments with long continuation phases, in which the cognitive component is modeled
as a long-memory process (namely a fractionally integrated noise) and the motor component is treated as a white noise
process, mutually independent. They also provided the autocorrelation function and the spectral density function of the
model, as well as an estimator of the parameters.

Formally, a stationary process is said to have long memory if its autocorrelation function ρ(.) satisfies the power law

ρ(k) ∼ c k−(1−2d), k → ∞,

where c and d are two constants such that c ≠ 0, d ≠ 0, and d < 0.5, and k is the lag. This means that the function
ρ(.) decays to zero very slowly with a hyperbolic decay. Moreover, the process is said to have persistent long memory if
0 < d < 0.5, so that


k ρ(k) = ∞, reflecting the fact that the remote past has a strong influence into the present. In

the frequency domain, a long-memory process can be defined as a process whose spectral density function f (.) satisfies the
power law

f (λ) ∼ cλ−2d, λ → 0,

where c and d are two constants such that c ≠ 0, d ≠ 0, and d < 0.5, and λ is the frequency. This means that the function
f (.) has a pole at zero if 0 < d < 0.5, that is f (0) = ∞, signifying that low frequencies predominate and long-term
oscillations are expected.

A basic long-memory process {Xt} is the ARFIMA(p, d, q) process with d ∈ (−0.5, 0.5), which is defined as the unique
stationary solution of the difference equations

φ(B)(1 − B)d(Xt − µ) = θ(B)Zt , {Zt} ∼ WN(0, σ 2
Z ),

where B is the backshift operator given by BjXt = Xt−j, j = 0, 1, . . . , (1−B)d is a differencing operator defined through the
gamma function Γ (.), φ(B) and θ(B) are two polynomials of degrees p and q, respectively (e.g., Brockwell and Davis, 1991).

In the above mentioned study and with the particular time series recorded, an ARFIMA(0, d, 0) process (fractionally
integrated noise process) proved to be advisable and sufficient. So, if the inter-response intervals {It} are corrected for the
mean, the cognitive component {Ct} is a fractionally integrated noise process, and the motor component {Mt} is a white
noise process, independent of each other, viz.

{Ct : (1 − B)d Ct = Zt}, {Zt} ∼ WN(0, σ 2
C ),

and {Mt} ∼ WN(0, σ 2
M),

it can be proven that the process {It} has an autocovariance function γI(.) of the form

γI(k) =



Γ (1 − 2d)
Γ 2(1 − d)

σ 2
C + 2σ 2

M , k = 0,

(−1)Γ (1 − 2d)
Γ (2 − d)Γ (−d)

σ 2
C − σ 2

M , |k| = 1,

(−1)|k|Γ (1 − 2d)
Γ (1 + |k| − d)Γ (1 − |k| − d)

σ 2
C , |k| ≥ 2,

and a spectral density function fI(.) of the form

fI(λ) = |1 − e−iλ
|
−2d σ 2

C

2π
+ |1 − e−iλ

|
2 σ 2

M

2π
, |λ| ≤ π.

Note that the process {It} has long memory and the autocovariance function at lags zero and one depends on both the
cognitive and the motor processes; at lag one the values can be negative or positive (Diniz et al., 2010).

3. Where does long memory come from?

The source of longmemory in a variety of systems has been an issue of intense debate and interdisciplinary interest. In the
humanmovement, long-memory fluctuations have been linked to somephysicalmechanisms, both from thenomothetic and
the mechanistic perspectives. The nomothetic perspective focuses on the ubiquity of long-memory processes and searches
for general principles that explain their presence. The mechanistic perspective looks at the singularity of each particular
system and proposes a different explanation for each situation (Diniz et al., 2011). In the statistical literature, long-memory
fluctuations have been understood to occur, for example, from the aggregation of short-memory processes, the renewal-
reward processes, the error-duration processes, and the regime-switching processes. Each of these processes displays long
memory as a theoretical result of specific properties of its structural components. Moreover, these processes can provide
valuable help in the search for physical interpretations of the empirical fluctuations.
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For rhythmic movements such as tapping tasks, Diniz et al. (2010) suggested a theoretical representation of the
Wing–Kristofferson model, in which the cognitive component is a fractionally integrated noise process and the motor
component is a white noise process. This parametric model exhibits long memory and seems to reproduce relatively well
the observed fluctuations. However, this model does not provide an easy explanation for the phenomenon in biological
terms. A parsimonious model that could be sustained by physical mechanisms that generate the empirical values would
surely be preferable. Such a model would give more useful information to the applied scientists and would make it easier
to analyze the observed values. Therefore, it is vital to find alternative representations of the proposed model that generate
long memory in a way that may plausibly be part of a biological process. In the past decade, a few interesting solutions have
been proposed in terms of physical underlying mechanisms.

Two of the most relevant explanations for long memory in cognitive systems are the multiscaled randomness and the
regime switching (Wagenmakers et al., 2004; Delignières et al., 2008). Themultiscaled-randomness solution is based on the
idea that the sum of short-memory processes with different time scales can generate long memory. For example, consider a
behavioral time series Yt given by Yt = S1t + · · · + Skt , where each series Sit is a switching series with probability of switch
pi = 1− e−(1/τi). The switching series may correspond to fluctuations in attention, variations in motivation, etc. Performing
simulation studies for Yt with sample size n = 1024, parcels number k = 3, and relaxation rates τ1 = 1, τ2 = 10, τ3 = 100,
it can be seen that the simulated series, the autocorrelation functions, and the normalized periodograms seem to have long-
memory patterns (Wagenmakers et al., 2004). The regime-switching solution is based on the idea that regime-switching
processes with specific properties can produce long memory. For instance, consider a time series Yt related to a time
estimation task and assume that different cognitive strategies are used throughout the task. Suppose further that each
strategy is used for a time period Pt sampled from a uniform distribution on S = {a, . . . , b}, each strategy has a temporal
threshold Lt sampled from a uniform distribution on I = [c, d], and the process reaches the threshold with a speed
Vt = V1 + φ1(Vt−1 − V1) + Zt , {Zt} ∼ WN(0, σ 2

Z ). The time series Yt is then given by Yt = Lt/Vt . Through simulation
studies for Yt with sample size n = 1024, distribution supports S = {1, . . . , 100}, I = [250, 350], and parameter values
V1 = 2, φ1 = 0.5, σZ = 0.1, among others, it can be observed that the simulated series, the autocorrelation functions, and
the normalized periodograms suggest the presence of long-memory processes (Wagenmakers et al., 2004; Delignières et al.,
2008). The main disadvantage of the referred solutions is the large number of parameters involved, leading to difficult-to-
handle models. Moreover, these solutions still lack a full treatment in mathematical terms and do not include an estimation
procedure for observed series.

4. A new representation of the Wing–Kristofferson model

In tapping tasks, long series of inter-response intervals exhibit fluctuations typical of long memory, namely long
non-periodic waves around a mean value reasonably close to the target interval. Intuitively, this implies that the subjects
successively decrease and increase the rhythm of execution, keeping the inter-tap intervals between some stationary
bounds. However, how tomodel and explain this intriguing phenomenonwith a biological meaning? As previously referred,
a few solutions have been suggested in cognitive systems. Nevertheless, these solutions still need major refinements.
Next, a new representation of the Wing–Kristofferson model is presented, in which the cognitive component is a regime-
switching process with added noise and the motor component is a white noise process. Under some assumptions, namely a
heavy-tail stationary distribution for the regimes’ durations, it is shown that this newmodel can generate longmemory and
may provide a biological interpretation of the phenomenon. Furthermore, an estimator of the parameters is proposed, based
on the maximization of the frequency-domain representation of the likelihood function.

4.1. Equation of the model

Any simple coordinated movement pattern requires the regulation of a large number of components (e.g., neural,
muscular). In cognitive experiments, a possible source of stability patterns in observed responses is the successive adoption
of cognitive strategies (such as counting numbers or pronouncing words). For tapping tasks, consider that such a solution is
plausible and suppose that each cognitive strategy is employed in a time period Tk (number of taps) and is associated to a
time level Lk (latent variable). Recall that, in the Wing–Kristofferson model, the inter-response intervals It are written as

It = Ct + Mt − Mt−1, t ∈ N. (1)

Suppose that the time intervals {It} are corrected for the mean, the cognitive component {Ct} is a regime-switching process
with added noise, and the motor component {Mt} is a white noise process, independent of each other, viz.

{Ct : Ct = Wt + Zt}, {Wt} ∼ RS, {Zt} ∼ WN(0, 1), (2)

and {Mt} ∼ WN(0, σ 2
M). (3)

The above process {Wt} is a regime-switching process given by

Wt = Lk, t ∈ (Sk−1, Sk] and Tk = Sk − Sk−1, t, k ∈ N, (4)
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where the sequences {Tk} and {Lk} represent the regimes’ durations and the corresponding levels, respectively. Suppose that
each of these sequences is composed of independent and identically distributed random variables such that

(i) P(Tk ∈ N) = 1, E(Tk) = µT < ∞, k ∈ N;
(ii) P(Lk ∈ R) = 1, E(Lk) = µL = 0, E(L2k) = σ 2

L < ∞, k ∈ N;
(iii) {Tk} and {Lk} are independent of each other.

In the following text, T will denote a generic variable Tk. According to these conditions, it can be seen that the process {Wt}

is stationary with a mean value µW equal to 0 and an autocovariance function γW (.) given by

γW (k) = Σ∞

t=|k| P(T > t) µ−1
T σ 2

L , |k| = 0, 1, . . . , (5)

where the last expression comes from a result obtained by Liu (2000). Suppose further that the variables Tk have a heavy-tail
stationary distribution of the form

P(T > t) = P(T ≥ t + 1) = (t + 1)−α, t ∈ N, 1 < α < 2. (6)

Note that, according to this condition, the mean value µT exists and is finite, since

µT = Σ∞

t=1 P(T ≥ t) = Σ∞

t=1 t−α
= ζ (α), 1 < α < 2, (7)

where ζ (.) denotes the Riemann’s zeta function. From Eq. (6), it follows that

P(T > t) ∼ t−α, t → ∞, 1 < α < 2.

By Eq. (5) and Karamata’s Theorem, this implies that

γW (k) ∼ µ−1
T σ 2

L (α − 1)−1k−(α−1), k → ∞, 1 < α < 2,

which means that the process {Wt} has long memory with parameter

d = 1 − α/2.

This relation implies that the memory parameter (d) increases as the tail parameter (α) decreases.
The following proposition shows the analytical expressions of the autocovariance function γW (.) and of the spectral

density function fW (.).

Proposition. Under the above hypothesis, the process {Wt} given by Eq. (4) has an autocovariance function γW (.) given by

γW (k) =

ζ (α) −

|k|
t=1

t−α

ζ (α)
σ 2
L , |k| = 0, 1, . . . ,

where ζ (.) denotes the Riemann’s zeta function defined by ζ (α) = Σ∞

t=11/t
α and a sum Σ0

t=1xt is considered to be equal to 0;
the spectral density function fW (.) is given by

fW (λ) =
(1 − e−iλ)−1

ζ (α)
[ e−iλLiα(eiλ) − Liα(e−iλ)]

σ 2
L

2π
, |λ| ≤ π,

where Liα(.) denotes the Jonquière’s function defined by Liα(z) = Σ∞

t=1 zt/tα .
The proof of this proposition is presented in Appendix after Section 6.
Now, from Eqs. (1)–(3), it can be proven that the process {It} has an autocovariance function γI(.) of the form

γI(k) =



σ 2
L + 1 + 2σ 2

M , k = 0,
ζ (α) − 1

ζ (α)
σ 2
L − σ 2

M , |k| = 1,

ζ (α) −

|k|
t=1

t−α

ζ (α)
σ 2
L , |k| ≥ 2,

and a spectral density function fI(.) of the form

fI(λ) =
(1 − e−iλ)−1

ζ (α)
[ e−iλLiα(eiλ) − Liα(e−iλ)]

σ 2
L

2π
+

1
2π

+ |1 − e−iλ
|
2 σ 2

M

2π
, |λ| ≤ π.

Note that the process {It} has long memory with parameter d = 1 − α/2, since its autocovariance function γI(.) satisfies

γI(k) ∼ γW (k), k → ∞ and γW (k) ∼ ck−(α−1), k → ∞;
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therefore, its spectral density function fI(.), which is the Fourier transform of the autocovariance function, satisfies

fI(λ) ∼ fW (λ), λ → 0 and fW (λ) ∼ cλ−2(1−α/2), λ → 0.

Finally, observe that the autocovariance function at lags zero and one depends on both the cognitive and the motor processes; at
lag one the values can be negative or positive.

4.2. Estimation of the model

The estimation of the parameters of the proposed model can be quite complex, since the model is defined as the sum
of two processes (mutually independent). A well-known method for estimating the parameters of time series models is to
maximize the likelihood or quasi-likelihood function of the parameter vector. In the context of long-memory processes,
and especially for long time series, the exact evaluation of the likelihood function poses convergence problems. An efficient
alternative is to maximize the frequency-domain representation of the likelihood function.

Assume that {Yt} is a Gaussian process with mean µ = 0 and autocovariance function γ (.). Suppose that Yn =

(Y1, . . . , Yn)’ is a realization of the process. Let f (.; β)be the spectral density function of the process,whereβ is the parameter
vector, and let In(.) be the normalized periodogram of the realization, viz.

In(λj) =
1

2πn

 n
t=1

Yt e−itλj


2

, λj =
2π j
n

,

where j = 1 . . . , [n/2] and [.] represents the integer part. Using two approximations due toWhittle (1953) and some simple
Riemann’s sums, it follows that the negative of the log-likelihood function can be approximated by the functionLn(.)defined
by

Ln(β) =
1
π


[n/2]
j=1

log f (λj; β)
2π
n

+

[n/2]
j=1

In(λj)

f (λj; β)

2π
n


.

An estimator for β, usually denoted by β̂, is obtained byminimizingLn(.)with respect to β (e.g., Beran, 1994). This estimator
is consistent and asymptotically normal with covariance matrix 4πn−1W−1(β), where W is a matrix whose (j, k) entry is
given by

wjk(β) =

 π

−π

f (λ; β)
∂2

∂βj∂βk
f −1(λ; β) dλ.

The standard errors of the estimator are given by the square root of the variances on the main diagonal of the covariance
matrix (e.g., Fox and Taqqu, 1986).

For the proposed model, the spectral density function f (.; β) is established in the preceding section and the parameter
vector β is given by β = (α, σL, σM).

Next, a simulation study is presented to evaluate the sample properties of the spectral estimator in the proposed model.
The sample size consideredwas n = 1000 because it resembles themaximum size of the experimental series. The parameter
values selected were α = 1.2, 1.4, 1.6 (which imply long memory with d = 0.4, 0.3, 0.2, respectively), σL = 1.0, 2.0, 3.0,
and σM = 1.0 (which lead to ratios σM/σL = 1.0, 0.5, 0.3, respectively). Fig. 1 presents an example of a simulated process
with α = 1.2, σL = 1.0, and σM = 1.0. It also shows the sample and the theoretical autocorrelation functions, as well as
the normalized periodogram and the spectral density function in log–log scale. It is clear that the time series has long non-
periodic waves, as was postulated in the proposed theoretical model. The autocorrelation function and the periodogram
exhibit behaviors similar to those of the proposed theoretical functions.

The estimation results for each model were obtained from 1000 replications. Table 1 provides simulation means and
standard deviations for the estimates of the parameters. The overall performance of the spectral-likelihood estimator
seems to be very good. Some general observations are (i) the tail parameter (α), the scale parameters (σL and σM ), and
the corresponding ratios (σM/σL) are estimated with high accuracy; (ii) the observed standard deviations of the estimator
(within parentheses) are relatively small compared with the corresponding parameter values; (iii) when the tail parameter
increases and approaches the non-stationarity barrier (α = 1.0), the bias of the estimator increases slightly, as it was
expected and has been observed in other works (Crato and Ray, 2002). These results seem reassuring for the possibility of
reliably estimating the parameters and testing for the parameters.

5. An experimental study

Ten students (two males and eight females, aged 19–20 years) from the Faculty of Human Kinetics of the Technical
University of Lisbon participated in two tapping experiments. None of the subjects had extensive practice in rhythmical
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a

b

c

Fig. 1. Graphical representations of simulated series. (a) Simulated series of regime switching process with added noise + differenced white noise with
α = 1.2, σL = 1.0, σM = 1.0. (b) Sample autocorrelation function (gray bars) and theoretical autocorrelation function (black line). (c) Normalized
periodogram (gray line) and spectral density function (black line) in log–log scale.

Table 1
Results of the spectral-likelihood estimator in 1000 simulated series. The values in the first column are the model parameters. The values in the other
columns are the means and standard deviations (in parentheses) of the estimated parameters.

(α, σL, σM , σM/σL) α̂ σ̂L σ̂M σ̂M/σ̂L

(1.2, 1.0, 1.0, 1.0) 1.228 1.100 1.080 1.088
(0.112) (0.109) (0.102) (0.125)

(1.2, 2.0, 1.0, 0.5) 1.220 1.964 1.086 0.515
(0.119) (0.115) (0.108) (0.126)

(1.2, 3.0, 1.0, 0.3) 1.226 2.986 0.968 0.333
(0.093) (0.148) (0.170) (0.114)

(1.4, 1.0, 1.0, 1.0) 1.418 1.004 1.006 1.055
(0.061) (0.102) (0.103) (0.130)

(1.4, 2.0, 1.0, 0.5) 1.415 1.986 1.002 0.508
(0.073) (0.105) (0.099) (0.096)

(1.4, 3.0, 1.0, 0.3) 1.412 2.982 0.986 0.336
(0.082) (0.091) (0.114) (0.124)

(1.6, 1.0, 1.0, 1.0) 1.608 0.999 1.003 1.004
(0.042) (0.099) (0.095) (0.112)

(1.6, 2.0, 1.0, 0.5) 1.605 1.988 0.985 0.495
(0.080) (0.085) (0.052) (0.042)

(1.6, 3.0, 1.0, 0.3) 1.609 2.986 0.959 0.312
(0.041) (0.050) (0.040) (0.048)

activities. Each subject was instructed to press a finger switch with his or her index finger in synchrony with periodic
auditory signals emitted by a metronome. After 10 signals, the metronome was turned off and the subject tried to continue
to tap regularly at the same rate. The task was pursued up to the recording of around 1000 continuous taps. Two target
frequencies, F1 = 1.250 Hz (i.e., T1 = 800 ms) and F2 = 0.625 Hz (i.e., T2 = 1600 ms), were studied. Each student
performed the task successfully under the two conditions, in a random order, and in separate days.
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Fig. 2. Graphical representations of experimental series with target 800 ms. (a) Time series of inter-response intervals for Subject A and target interval
T1 = 800 ms. (b) Sample autocorrelation function (gray bars) and theoretical autocorrelation function (black line). (c) Normalized periodogram (gray line)
and spectral density function (black line) in log–log scale.

The computer program AcqKnowledge by BIOPAC Systems was used to identify the time Rt of each tap and to determine
the time intervals It between successive taps

It = Rt − Rt−1, t = 1, . . . , n.

In order to avoid the initial transient, the first 30 points of each time series were eliminated (Delignières et al., 2004).
Figs. 2 and 3 present examples of two time series of inter-response intervals with target intervals of 800 ms and
1600 ms, respectively. They also show the sample and the theoretical autocorrelation functions, as well as the normalized
periodograms and the spectral density functions in log–log scale. It is evident that the time series have non-periodic waves,
which aremore visible in the series with the larger target interval. The autocorrelation functions and the periodograms bear
a close resemblance to those of the simulated processes.

In order to estimate the proposed model, each time series was subjected to some operations. First, the series was
submitted to a method for detecting and removing the outliers (mainly observational errors). Second, the series was
corrected for themean. The proposedmodelwas then fitted to the series. Table 2 provides the results for the estimates of the
parameters and the standard errors. Some interesting remarks are (i) the estimates of the tail parameter (α) are in the range
specified for persistent processes (α ∈ (1.0, 2.0)); the estimates of this parameter decrease as the target intervals increase, for
most of the subjects; (ii) the estimates of the cognitive standard deviation (σL) are larger than the corresponding estimates
of the motor standard deviation (σM); both estimates increase as the target intervals increase, for most of the subjects; (iii)
the estimates of the ratio of the components’ standard deviations (σM/σL) are all smaller than one; the estimates decrease as
the target intervals increase, except for subject H; (iv) the observed standard errors of the estimator (within parentheses) are
relatively small compared with the parameter estimates, which reinforces the significance of the estimates. These results
show that the memory and the variance tend to increase as the target intervals increase, as it has been stated in other
works (Madison, 2004; Stevens, 1886). The t-tests for the difference between the mean values with targets 800 ms and
1600 ms were inconclusive for remark (i) and consistent with remarks (ii) and (iii). As the number of observations is small
and the normality assumption is questionable, the non-parametric Wilcoxon tests were also performed and the outputs
were similar.
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Fig. 3. Graphical representations of experimental series with target 1600 ms. (a) Time series of inter-response intervals for Subject A and target interval
T2 = 1600 ms. (b) Sample autocorrelation function (gray bars) and theoretical autocorrelation function (black line). (c) Normalized periodogram (gray
line) and spectral density function (black line) in log–log scale.

6. Conclusions

The Wing–Kristofferson model provides an understanding of the inter-response intervals in tapping tasks, based on a
cognitive component and on a motor component. Previous works revealed that the first component can be regarded as a
long-memory process and the second component as awhite noise process.We suggest a newparametricmodel inwhich the
cognitive component is a regime-switching process with added noise. The autocorrelation function of this model exhibits a
hyperbolic decay and the spectral density functionhas a pole at the zero frequency. This supports thehypothesis of long-term
oscillations in the series. The spectral-likelihood estimator proposed for this model is a consistent estimator. The simulation
results show small biases and small variances.

The proposed model seems to offer a suitable explanation for the variability of the inter-response intervals in tapping
tasks. In spite of the natural differences, the estimated parameters reveal some stability across individuals. The estimates of
the tail parameter are always larger than one and, in some cases, close to one, which provides strong evidence for a long-
memory cognitive process. The estimates of the ratio of the standard deviations are always smaller than one, which stresses
the predominance of the cognitive part. The estimates of the tail parameter are usually smaller in the series of the larger
target interval, while the estimates of the scale parameters are usually larger in those series. This offers strong support for
the hypothesis that the memory and the variance increase when the difficulty of the task increases. Cognitive and motor
processes seem to objectively reflect the complexity of the task, exhibiting additional variation in the realization of more
difficult tasks.

The present results may be very helpful for studying the timing structures in this sort of task. The proposed model,
based on a regime-switching process, provides a way of searching for an intuitively appealing biological interpretation. The
latent level switchesmay be understood as level switches of a cognitive or neurological variable responsible for maintaining
the rhythm in these tasks. This may be very useful for neuroscience analysis of time control, particularly in conditions of
progressive deterioration of nervous structures (Ivry and Keele, 1989; Ivry and Spencer, 2004).

Further research is required to understand the underlying mechanisms of the variability of inter-response intervals and
its dependence on interval duration. It is important to find alternative representations that generate long memory in a way
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Table 2
Results of the spectral-likelihood estimator in experimental series. The letters in the first column represent the subjects. The values in the second column
are the target intervals. The values in the other columns are the estimated parameters and standard errors (in parentheses).

Subject Target α̂ σ̂L σ̂M σ̂M/σ̂L

A 800 1.447 42.357 18.162 0.429
(0.107) (3.230) (0.962)

1600 1.089 72.294 28.308 0.392
(0.037) (12.981) (0.931)

B 800 1.172 79.262 20.757 0.262
(0.059) (10.312) (1.357)

1600 1.315 138.040 16.277 0.118
(0.065) (11.548) (3.887)

C 800 1.081 58.194 34.788 0.598
(0.022) (6.696) (1.199)

1600 1.515 163.683 0.359 0.002
(0.100) (11.217) (8.339)

D 800 1.656 110.259 37.852 0.342
(0.099) (5.411) (2.660)

1600 1.334 109.419 37.030 0.338
(0.077) (8.518) (1.998)

E 800 1.119 28.402 16.718 0.589
(0.040) (3.768) (0.443)

1600 1.102 172.803 88.374 0.511
(0.049) (33.820) (3.132)

F 800 1.039 36.170 22.730 0.620
(0.014) (5.475) (0.542)

1600 1.182 179.111 61.077 0.341
(0.065) (26.706) (3.430)

G 800 1.471 67.061 16.110 0.240
(0.104) (5.607) (1.968)

1600 1.372 136.677 31.734 0.230
(0.100) (14.370) (3.303)

H 800 1.348 37.192 13.462 0.363
(0.074) (2.584) (0.610)

1600 1.172 112.996 53.644 0.475
(0.044) (11.112) (1.756)

I 800 1.227 111.520 38.343 0.344
(0.109) (20.723) (2.289)

1600 1.174 202.051 53.447 0.265
(0.044) (21.325) (3.533)

J 800 1.202 26.884 23.675 0.881
(0.082) (3.773) (0.673)

1600 1.170 179.925 54.342 0.302
(0.098) (43.705) (3.255)

Mean 800 1.276 59.730 24.260 0.467
1600 1.243 146.700 42.459 0.297

t-stata – 0.455 −5.401 −1.977 2.211
p-valueb – 0.330 0.000 0.039 0.027
a t-statistic for the difference between the mean values.
b p-value for the one-sided test.

that may plausibly be part of a biological process. These models may provide other insights into the nature and the origin of
the observed patterns. More specifically, this may shed some light on how current movements strongly depend on previous
movements, which is a key feature in structured sequences of rhythmical movements.

Appendix. Proof of the proposition of Section 4

Proof. From Eqs. (5)–(7), and using somemathematical simplifications, it follows that the autocovariance function γW (.) is
given by

γW (k) =

∞
t=|k|+1

P(T ≥ t)

∞
t=1

P(T ≥ t)
σ 2
L =

ζ (α) −

|k|
t=1

t−α

ζ (α)
σ 2
L , |k| = 0, 1, . . . ,

where ζ (.) denotes the Riemann’s zeta function defined by ζ (α) = Σ∞

t=11/t
α and a sum Σ0

t=1xt is considered to be equal to
0. Thus, the spectral density function fW (.) satisfies
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fW (λ) =
1
2π

∞
k=−∞

γW (k) e−ikλ
=

∞
k=−∞

ζ (α) −

|k|
t=1

t−α

ζ (α)
e−ikλ σ 2

L

2π
, |λ| ≤ π.

Through some simple mathematical operations, it can be seen that

fW (λ) = −
σ 2
L

2π
+

∞
k=0

ζ (α) −

k
t=1

t−α

ζ (α)
eikλ

σ 2
L

2π
+

∞
k=0

ζ (α) −

k
t=1

t−α

ζ (α)
e−ikλ σ 2

L

2π
. (8)

In the above expression, let S be the series given by

S =

∞
k=0

ζ (α) −

k
t=1

t−α

ζ (α)
e−ikλ.

From some properties of numerical series, it follows that

S =

∞
k=0

e−ikλ
−

1
ζ (α)

∞
k=0


e−ikλ

k
t=1

t−α


=

∞
k=0

e−ikλ
−

1
ζ (α)

∞
t=1


t−α

∞
k=t

e−ikλ



=
1

1 − e−iλ
−

1
ζ (α)

∞
t=1


t−α e−itλ

1 − e−iλ


=

1
1 − e−iλ

−
1

1 − e−iλ

1
ζ (α)

∞
t=1

e−itλ

tα
.

In sum, the series S can be written as

S =
1

1 − e−iλ


1 −

Liα(e−iλ)

ζ (α)


, (9)

where Liα(.) denotes the Jonquière’s function defined by Liα(z) = Σ∞

t=1 zt/tα .
From Eqs. (8) and (9), it follows that the spectral density function fW (.) satisfies

fW (λ) = −
σ 2
L

2π
+

1
1 − eiλ


1 −

Liα(eiλ)
ζ (α)


σ 2
L

2π
+

1
1 − e−iλ


1 −

Liα(e−iλ)

ζ (α)


σ 2
L

2π

=
(1 − e−iλ)−1

ζ (α)
[ e−iλLiα(eiλ) − Liα(e−iλ)]

σ 2
L

2π
. �
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