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1. I N T R O D U C T I O N  

This paper is devoted to existence results for one-dimensional parabolic and telegraph 
equations 

and 

ut - Uxx = nZu + g(x,  u) + h(x,  t) 

u(O, t) = u(n ,  t) = 0 

u(x,  O) = u(x,  2n) 

a.e. in Q, 

on [0, 2hi, 

on [0, n], 

a u  t .-}- utt  - Uxx : n 2 u  + g ( x ,  u)  + h(x, t) a . e .  i n  Q, 

u(O, t) = u(n,  t) = 0 on [0, 2n], 

u(x,  O) = u(x,  2n), ut(x,  O) = ut(x,  2n) on [0, n], 

with asymmetric nonlinearities g(x,  u) and forcing term h(x,  t), where a • ~\{0}, n e N, 
Q = [0, n] x [0, 2n]. Second-order and higher-order mul t i -d imens iona l  equations also 
will be considered. 

By asymmetric nonlinearities we mean that the asymptotic behavior of  u - l g ( x ,  u) 
when u ~ ~ may be different f rom what it is when u --, - ~ .  Moreover,  by jumping 
nonlinearities, we mean that one of  the afore-mentioned quantities may lie above one or 
more (real) eigenvalues of  the corresponding linear part,  while the other lies below those 
same eigenvalues. 

In recent years much work has been devoted to existence results for second-order scalar 
ordinary differential equations, in the nonresonance or resonance case, when the non- 
linear term is a jumping nonlinearity in the sense described above; we refer to the papers 
[1-11] and references therein. 

As for partial differential equations we refer, e.g. to the papers by Dancer [2], Fu6ik 
and Mawhin [12], Gallou~t and Kavian [13], S[astnov~i and Fu~ik [14], which are more or 
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less concerned with existence results, in the nonresonance or resonance situation, for 
problems with jumping nonlinearities in the framework of partial differential equations. 
(A telegraph equation without jumping is considered in [15].) 

Nevertheless, in [13], the linear part of  the partial differential equations must be self- 
adj oint and the range of  u- lg(x ,  u) must contain only one eigenvalue of s imple  multiplicity. 
Moreover, in [2], there is no explicit crossing of  eigenvalues at higher eigenvalues in the 
multi-dimensional case. In [16-18] and references therein, elliptic problems with jumping 
nonlinearities at consecutive (possibly multiple) eigenvalues are studied. The authors take 
advantage of  the variational structure of  the problems and apply critical point theory to 
obtain more or less multiplicity results. 

The evolution equations considered in this paper have nonself-adjoint linear parts, 
and the range of  u- lg (x ,  u) may include one or more (not necessarily simple) eigenvalues 
of the corresponding linear parts. Moreover, we do not require that the quantities 
limu~o u- lg (x ,  u) and limu~_= u-~g(x,  u) exist, as is required in [2, 12-14]. We work, 
instead, with the quantities lim inf,~ += u- lg(x ,  u) and lim supu~ e o o  u-lg(x, u). This allows 
us to consider oscillatory nonlinearities with possibly different and (asymptotically) large 
amplitudes. In this paper, we shall concentrate on the situation concerning resonance 
results; the nonresonance case follows along similar lines (see e.g. [5, 7, 19-23] for 
additional references on nonresonance and resonance problems). 

Let. us also mention that the evolution equations considered need not be dissipative 
(see e.g. [24]) in the sense that the corresponding initial-boundary value problems do not 
necessarily have (local) attractors. Indeed, the initial-boundary value problem 

ut(x,  t) - u~(x ,  t) = (n 2 + ll)U(X, t) in (0, n) × (0, oD), 

(resp. 

u(0, t) = u(n, t) = 0 on [0, oo), 

u(x, O) = r sin nx  on [0, 7r], 

au t + utt --  ~lxx = (n 2 + a~ + f l 2 ) U  in (0, lr) x (0, oo), a > 0, 

u(O, t) = u(n, t) = 0 on [0, oo), 

u(x, O) = r sin nx  on [0, n], 

ut(x,  0) =/~r  sin nx  on [0, hi) 

has a unique unbounded solution given by u(x, t) = r sin nx  e " '  for ~, r ~ R with p > 0 
and r ;~ 0. Note however that, for 0 </~ < 2n + 1 (resp. 0 < a~ + / t  2 < 2n + 1), the 
only (bounded) time-periodic solution to the above equation(s) is the trivial solution 
u = 0. Thus, the zero solution is not (asymptotically) stable as t ~ oo. 

This paper is organized as follows. In Section 2, we collect the notation and basic 
assumptions that we shall suppose fulfilled throughout this paper. Section 3 is devoted to 
second order nonlinear one-dimensional parabolic and (linearly) damped hyperbolic 
equations. We compare, in some sense, the nonlinearity g(x, u) with the FuEik spectrum 
of the corresponding piecewise linear differential equations with homogeneous Dirichlet 
boundary conditions, and a resonance condition of  Landesman-Lazer  type with respect 
to the forcing term h(x, t). More specifically, we assume that (the asymptotic behavior of)  
u- lg (x ,  u) lies in a rectangle located in what we should call the Fu~ik-Landesman-Lazer 
"resolvent"  set. In Section 4, we take up the case of  second-order multi-dimensional 
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equations, and we prove results on crossing at not necessarily simple (higher) eigenvalues. 
Finally, in Section 5 we indicate the conditions under which one can extend our results to 
higher-order multi-dimensional equations. 

2. P R E L I M I N A R I E S  

Let Q = ~ x [0, 2rt] where ~ C •N is a bounded domain whose boundary 0f~ is of  
class C 2. Throughout  this paper we shall make use of  the anisotropic Sobolev spaces 
H P ' q ( Q )  = Hq( [0 ,  2~z]; HP(~)) where p and q are nonnegative integers (see e.g. [6, 12, 
25-27] for definitions and properties). Here H k are the classical Sobolev spaces with the 
usual Hilbert space structure. (Of course, H ° = L 2 the classical Lebesgue space, and 
HmP(Q) = HP(Q).) H~(~) denotes the subspace of all functions in H I ( ~ )  which vanish on 
0f~ in the sense of  trace. 

Let u • L2([0, 2~z]; HI(0 ,  ~z)). I f  u(x, t) = ~ = l  bg(t) sin kx is an eigenfunction expansion 
of u(x, t), then we shall set 

n-1 o0 

t~(x, t) = ~ bk(t) sin kx, u°(x, t) = bn(t) sin nx, fi(x, t) = ~ bk(t) sin kx 
k = l  k = n + l  

and u ± = a + ~. For a.e. t • [0, 2n], the notation a ( ' ,  t), u°( ., t) and ~(. ,  t) has an 
obvious meaning. Similar notation will also be used for multi-dimensional expansions and 
we shall make it more precise in Section 4. 

We shall always assume that the (nonlinear) function g: t ) ×  ~ ~ R satisfies 
Carath6odory conditions and that it grows at most  linearly, that is, g( . ,  u) is measurable 
for all u • ~, g(x, .) is continuous for a.e. x • ~ ,  and there exist a constant c > 0 and a 
function b • L2(O) such that 

Ig(x, u)l <- clul + b(x) (1) 

for a.e. x • ~ and all u • R. The expressions g+(x) will denote the quantities 

g+(x) = lim infg(x,  u) and g_(x) = lim sup g(x, u). (2) 
U ~  U---~ --oo 

Finally, the forcing term h(x, t) will be assumed to be such that h • L2(Q). 
However,  in the case of  the telegraph equation, slightly stronger regularity conditions 

on the forcing term h and the (nonlinear) function g will be assumed throughout  this 
paper. More precisely, we shall assume that, in addition to the above conditions, 
h • H ° ' l ( o )  and (for a.e. x • ~ )  the function g(x, -): IR ~ R is differentiable (a.e.) in u 
with bounded and measurable (partial) derivative; that is, there exists a constant C > 0 
such that for a.e. x • ~ ,  

C. (3) < 

Note that inequalities (1) and (3) ensure that g( . ,  u ( ' ,  ")) • H °' I(Q) if u • H °' ~(Q); which 
implies that generalized solutions to the telegraph equation belong to H2(Q). We refer to 
Vejvoda et al. [27, Chapter II, Section 2 and Chapter  IV]. (It is known that generalized 
solutions to the telegraph equation belong to H~(Q), see e.g. Br6zis and Nirenberg 
[28, pp. 308-309].) 
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3. O N E - D I M E N S I O N A L  E Q U A T I O N S  

Let n ~ llq and ~ = (0, n). We shall consider the one-dimensional heat and telegraph 
problems 

ut (x ,  t) - Uxx(X, t) = nZu(x,  t) + g(x ,  u(x ,  t))  + h(x ,  t) a.e. in Q, 

u(O, t) = u(n ,  t) = 0 on [0, 2hi, (4) 

u(x ,  O) = u(x ,  2n) on [0, hi, 

and 

au t + u n - Uxx = nZu + g(x ,  u) + h(x ,  t) a.e. in Q, 

u(0, t) = u(n, t) = 0 on [0, 27r], (5) 

u(x ,  O) = u(x ,  2n), ut (x ,  O) = u t (x ,  2n) on [0, n], 

where a ~ R with a ~ 0 and compare, in some sense, the nonlinearity g(x ,  u) with the Fu~ik 
spectrum of the corresponding piecewise problem. A resonance condition of  Landesman- 
Lazer type with respect to the forcing term h(x ,  t) is also assumed. 

For (p, v) e ~2, let us consider the (positively homogeneous) piecewise linear problems 

ut - Uxx = p u  + -  v u -  i n O  

u(0, t) = u(rt, t) = 0 on [0, 2rt], 

u(x ,  O) = u(x ,  2n) on [0, n], 

and 

a u  t + u t t  - Uxx ~- f l u  + - v u -  in Q, 

u(0, t) = u(rt, t) = 0 on [0, 2r0, 

u(x ,  O) = u(x ,  2n), u t (x ,  O) = u t (x ,  2n) on [0, n], 

where u+(x, t) = max[u(x, t), 0} and u - ( x ,  t) = maxl -u (x ,  t), 01. Multiplying both sides 
of  these equations by ut and using Fubini's theorem, integration by parts and the 
boundary and periodicity conditions, it follows that each term is equal to zero with the 
exception of  the first one, so that lu,122@ = 0 (resp. alu, l~(Q) = 0). 

Therefore, these piecewise linear equations have a nontrivial solution if and only if the 
piecewise linear scalar second order Dirichlet problem 

v"(x )  + pv+(x)  - v v - ( x )  = 0 in (0, 7r), v(0) = v(n) = 0, (6) 

has a nontrivial solution. 
It is well known (see e.g. Fu~ik [6]) that, for (/.t, v) e ~z, the piecewise linear scalar 

second order Dirichlet problem (6) has a nontrivial solution if and only if the pair 
(In , v) ~ Yi~= 1 Ci where 

C 1 = {(Jl, v)  E R 2 -" (]./ - 1 ) (v  - 1) = 0] ,  

+ = 1  , 

= + + ~ = 1  

for j ~ IN. 

or d + + ~ =  1 
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We recall that the set of  (/~, v) e [~2 such that (/~, v) e Ui~= 1 Ci is called the Fu~ik 
spectrum of  the above second-order differential equations and that it reduces to the usual 
spectrum when/~ = v. 

We shall consider nonlinearities g(x, u) such that the asymptotic behaviour of  
U-lg(x, U) lies in a rectangle located in what we should call the Fu~ik-Landesman-Lazer 
"resolvent"  set; the eigenvalue pair (//2, /72) ~ [RE is a vertex of this rectangle, whereas the 
opposite vertex is located on the consecutive Fu~ik eigenvalue curve. 

We state the main result of  this section. 

THEOREM 1. Suppose that there exist a real number r > 0 and a function B e L2([0, re]) 
such that 

(sgn u)g(x, u) >_ B(x) (7) 

for a.e. x e [0, re] and all u e R with luJ -> r. 
Moreover, assume that 

g(x, u) 
lira sup - -  _< fl+(x) (8) 

u --* _+ao U 

uniformly for a.e. x e [0, re] with fl_+ e LZ([0, red such that 

fl+(X) <-- lln+ 1 -- n 2 and fl_(x) <_ Vn+ 1 - n 2 (9) 

for a.e. x e [0, re] with strict inequalities on subsets of  [0, re] of positive measure, where 
either the pair (Pn+l, vn+0 ~ Cn+l (the upper Fu~ik eigenvalue curve) if n is odd or the 

2 co (open) rectangle ]n 2, ] '/n+l[ X ]//2, Vn+ 1[ C [R \ U r n  = 1 C m  i f  n is e v e n .  

Then equation (4) (resp. equation (5)) has at least one solution u e HE'I(Q) (resp. 
u e HE(Q)) provided 

l" g + ( x ) v + ( x ) d x d t -  g _ ( x ) v - ( x ) d x d t  + I h ( x , t ) v ( x ) d x d t  > O (10) 
Q (2 

for all v ~ Spanlsin nx}\[0]. 

In order to prove this theorem, we shall establish some auxiliary results. We define 

t2u = ut - uxx - nZu (respectively (~u = au t + utt -- Uxx --  nZu) 

with Dom(~) = H2~([0, 2re]; Ho~(0, re) n H2(0, re)) (respectively HZ,([0, 2re]; Hd(0, re) n 
/-/2(0, re))) where the subscript 2re indicates that the involved functions are 2re-periodic in 
the variable t and consider Gu(t,  x) = g(x, u(t, x)) to be the Nemytskii operator associated 
with g. 

We shall prove the existence of  at least one solution to the above problem by applying 
:legree theory arguments to the study of  the operator equation 

O~u = Gu + h. 

Fhroughout this section, we shall set 

£ u ( . ,  t) := - u x x ( ' ,  t) - nZu( ., t), 

."or u ~ Dom(t~) and denote by (-, -) the usual inner product in L2(Q). 
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LEMMA 1. There exists a constant ~1 > 0 such that 

a) >__ 611a1 ,1.0. 

Proof .  For a.e. t ~ [0, 2rt], the function a(. ,  t) ~ HE(O, 7r) fq Hi (o ,  n) fq LZ(O, zr). 
Then it follows from Lemma 1 in [29] that 

, t ) lu~(o ,~)  - ( £ a ( ' ,  t), a ( . ,  t))L2(0,~r) --> ~ l a ( "  2 

for a.e. t E [0, 2zr], where the constant ~1 > 0 is given in [29]. Therefore, taking the inner 
product of  -Rt7 with a in i f (Q) ,  the conclusion of  the lemma follows since HI"°(Q) = 
/.2([0, 2~]; Hi(0,  r0). The proof  is complete. 

LEMMA 2. There exists a constant ~2 > 0 such that 

a)  >_ 6 lal ,, o 

for the heat operator,  and 

( a a ,  _> 6 [a1 ,1.o - la, l 2(Q) 
for the telegraph operator.  

Proof .  For a.e. t e [0, 2n] the function ti(., t) e H2(0,  7~) (q Hd(0, 70 O L-Z(0, 70. 
It follows from Lemma 2 in [29] that 

(£ t i ( ' ,  t), a ( ' ,  t))L2(o,~ ) -> Ozlt~(', t)l~,(0,~) 
for a.e. t ~ [0, 2n], where the constant ~2 > 0 is given in [29]. Therefore, taking the inner 
product of  ~2~ with ~ in LZ(Q), the conclusion of  the lemma follows since HI '°(Q) = 
L2([0, 2zr]; Hi(0 ,  70). The proof  is complete. • 

LEMMA 3. Let (urn) C Dom((~) and (Pro) C L2(Q) be sequences, and let C ~ L2(Q) be a 
nonnegative function such that 

0 <_ pro(x, t) <- C(x, t) a.e. on Q for all m e N, 

Pm ~ 0 in L2(Q) as m ---, oo,  

[(Um)tlL2(Q) <-- Pl for all m ~ N, 

where Px > 0 is a constant. 
Then, there are (common) subsequences, relabeled (Urn), (Pro), satisfying the above 

conditions such that one has 

±2 
0 am) >-- ~lUmlU 1'° Pl  ( ( ~ U m  - -  Pm urn, ~tm - u m  - 

for the heat operator and 

±2 o am) >- OlUmlH'.o 2p] (~Um -- PmUm,  ~m -- l~m - -  

for the telegraph operator,  where ~ = min[dil, ~2/21 > 0. 
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P r o o f .  By the definition of  u °, we have (6tu °, u °) = 0. Therefore, applying Lemmas 1 
and 2, we easily derive, in the case of  the parabolic operator,  that 

0 am) -> '~ll~TmlZ'.o +  zlaml ,,,o (PmUm, am) ([~Um -- P m U m ,  am -- llm -- 

If lamlH,,O is bounded (independently of  m), it follows from our assumptions that 
[amJn',' is also bounded and (for a subsequence) a m ~ a in L°(Q) .  Then, sincepm ~ 0, we 
have that, for m sufficiently large, 

(Pro am, am) ----- P l ,  

given that (PmUm, am) ~ 0 as m ~ oo. This implies that, for m sufficiently large, 

0 /~m) --> 61lUml 2''° + d~zlUm[ 2''° Pl ((~Um -- Pm l'gm, am -- lgm -- -- • 

Thus, the conclusion of  the lemma holds. 
If laml,, ,  0 is not bounded, then there is a subsequence similarly relabeled such that 

]amlHl,O ~ oo. Setting 

am 
)7 m - - lamlHl .O,  

it follows that lYm[H,.1 is bounded. Therefore, one can proceed as before and obtain 

6z 
( P m Y m ,  Ym)  <~ - - "  

2 

Multiplying by [am[2Hl,O we get 

laml ,, o, (Pro am,  a m) ~ - ~  

which, as above, clearly implies the conclusion of  the lemma. The case of  the telegraph 
operator is analogous. The proof  is complete. 

P r o o f  o f  T h e o r e m  1. To prove the existence of  at least one solution to the above 
problem(s) is equivalent to solving the respective operator equation(s) 

O~u = G u  + h 

or equivalently 

u - (Og - & I ) - l ( G u  - &u + h) = O, 

with & e ~ such that 0 < c~ < min[pn+ ~ - n 2, Vn+ t - rt21/2. 
The linear operator ( 6 t -  &i)- l :  H O ( Q ) ~  HO(Q)  is compact (see [27, 28] for the 

regularity of  the heat and telegraph operators, respectively). Therefore, if we show that 
Lhere is a constant p > 0 such that for every possible solution u e Dom(6t) of  the 
homotopy of problems 

H ( z ,  u) := u - r(Og - ~ I ) - l ( G u  - &u + h) = O, r ~ [0, 1], 

~¢e have 

lulH,.* < P, (11) 
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then the result follows directly from topological degree theory (see e.g. [20]). Rewriting 
the homotopy 

H(r ,  u) = 0 

in the equivalent form 

~u  = rGu + (1 - r)&u + rh, 

and multiplying both sides by u t and using Fubini's theorem, integration by parts and the 
boundary and periodicity conditions, it follows that each term on the left-hand side is 
equal to zero except the first one, so that (~u,  ut) = ]ut122(Q) (resp. ((~u, ut) = alut[~2(Q)). 
Moreover, by using the same argument in the right-hand side and the fact that 

(g(x, u(x, t)), u,) = g(x, u(x, t))lo2~ dx 
0 

= [g(x, u(x, 2~r))  - g(x, u(x, 0 ) ) l  d x  = 0 
0 

by 2rr-periodicity, where g(x, u ) =  I".g(x, s )ds  is an antiderivative (the potential) of 
g(x, u) with respect to u, it follows that 

(au, ut) = [u,l~2(e> = r(h, u,). (12) 

Therefore, by Cauchy-Schwarz inequality, one has that there is a constant Px > 0, 
depending only on h (resp. on h and la[), such that 

lutb(O) < Pl (13) 

for all possible solutions u ~ Dom(60 to the above homotopy of  problems. Hence, it 
remains to show that there exists a constant PE > 0 such that 

lU[H ',° < Pz. (14) 

Now, suppose that the claim (14) does not hold. Then, one can find sequences 
(rm) C (0, 1] and (urn) C Dom(6t) with lumIH,,o > m ~ N such that 

H('rm, Um)= O. 

For each m ~ N, let us set 

U m 

V m -  I"ml."o" 

Then IVmIH'.O : 1. Moreover, by (13), IVmlH': is bounded and [vm, lL z "* 0 as m --* oo. 
Dividing the equation H(rm,  Urn) = 0 by lu,nlH',O, one gets 

Vm-- rm(~- -  6d) -1 ~ ~ ~Vm + = 0 .  \l.=l.,.o luj.,.o 
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Since (Vm) is bounded  in H 1'1 (for a subsequence),  (Vm) converges strongly to some 
v e i f (Q) .  Since g has linear growth  and ((~ - &I ) - I  is compact ,  passing to the limit in the 
above equat ion and applying (A - ~ I )  to bo th  sides, we get 

6iv = r*)~ + (1 - r*)c~v, 

where r* e [0, 11 and X denotes the weak limit in L2(Q) o f  the sequence aum/[UmlitI,o. 
An analysis o f  this equat ion will show that  

v e Span[sin nxl\[0} and X = 0 a.e. in Q; 

that  is, v e N(60\[0},  where N(6t) denotes the nullspace o f  6t. 
First o f  all we decompose  the (nonlinear) funct ion g. Let 0 > 0. By (8), we can deduce 

(see the p r o o f  o f  Theorem 1 of  [30]) that  there exists R 1 = Rx(O ) > 0 such that  for a.e. 
x e ~ and all u e R with lul >-- R1 

Ig(x, ul <- [flu(x) + (O/2)]lul (15) 

where 

( f l+(x)  if u > 0 
 u(X) 

fl_(x) if u < 0 

Wi thou t  loss o f  generality we may  assume that  the constant  r > 0 given in assumpt ion (7) 
is such that  r _> max[ l ,  R1]. By L e m m a  2 in [30] (also see Lemmas  3 and 4 in [31]), it 
follows that  we can write 

g(x, U) = ql(X, U) + gl(X, l,i) 

where ql and gl are Cara th6odory  funct ions such that,  for  a.e. x e f2 and all u e ~, 

0 < uql(x,  u) 

and,  for  a.e. x e f2 and all u e ~ with lul >-- r 

Iql(x, u)l -< [/?,(x) + (o/2)]lul + 1. 

Therefore ,  if we put  f > max[r ,  2/~1, it follows that,  for  a.e. x e f2 and all u e N with 

lul > r 

ql(X, U) 
O <- - -  <- B,(x)  + & 

U 

Moreover ,  there is a funct ion o" 1 ~ L2(~')) such that  

Igl(x, u)l <- trl(x) 

for  a.e. x e f2 and all u e ~. Therefore ,  by setting 

for I"1 r, 

f o r 0 <  ]ul < r, 

for  u = 0, 
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it follows that  ~ is a Cara th60dory  funct ion such that  

o <_ y(x, u) <_ Bu(X) + ~ (~L=([0, hi) 

for  a.e. x ~ f2 and all u e ~. Also 

lim y(x, u) = 0 
U--*0 

for  a.e. x e f L  
Then we can write the funct ion g as 

g(x, u) = y(x, u)u +f(x ,  u), (16) 

w h e r e f ( x ,  u) = g(x, u) - y(x, u)u. It is clear t h a t f  is a Cara th6odory  funct ion such that  
there exists a funct ion a e L2(f~) with 

If(x, u)l ~ a(x) 

for  a.e. x e f2 and all u e E. Note  that,  by the above decomposi t ion  o f  g, the funct ion Z, 
which is the weak limit o f  the sequence ((Gum)/JUm[HI,O(Q)) in L2(Q), is also the weak limit 
o f  the sequence (y( . ,  un( ' ,  "))vn) and, if we denote  by Zv the weak limit o f  (y(-,  u~(.,  .))), 
then 

;~(x, t) = :~o(x, t)v(x, t) a.e. in Q. 

Therefore ,  by  using the growth  condit ions derived for the funct ion y(x, u) on [0, n] x •, 
the properties o f  lim inf and lim sup and Fa tou ' s  lemma as for  instance in [7], it follows 
that  

g(x, u) 
0 _< Z~(x, t) _< lim sup - -  _< fl+(x) a.e. on [(x, t) : v(x, t) > 0], 

g(x, u) 
0 _< Zo(x, t) _< lim s u p -  _< fl_(x) 

u--* - ¢ o  U 
a.e. on {(x, t) : v(x, t) < 0}, 

As observed above,  [lJmlnl,l is bounded  and (Vm,) converges to zero in LZ(Q). Therefore  
(vt) = 0 (and hence (vtt) = 0), which shows that  v is independent  o f  t. 

Setting v(x) :=  v(x, t), we have that  the funct ion v is a solution to the second order  
O D E  (with " p a r a m e t e r "  t) 

v"(x) + nZv(x) + r*Zv(x, t)v(x) + (1 - r*)fiv(x) = 0 a.e. in Q, 

For  a.e. t ~ [0, 2n], let us set 

and 

Z+(x, t) :=  

z_(x ,  t ) : =  

v(O) = v(n) = O. 

I r*zv(x, t) + (1 - r*)c) 

c) 

I : * Z o ( x , t ) + ( 1 - r * ) ~  

on [x:  v(x) > 0}, 

otherwise, 

on Ix :  v(x) < 0}, 

otherwise, 
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It follows that  v is also a solution to 

v"(x) + n2v(x) + Z+(x, t)v+(x) - Z_(x,  t )v-(x)  = 0 a.e. in Q, 

v(O) = v ( n )  = O. 

I f  v does not  change sign in (0, 7r), then it follows f rom the Fredholm alternative and the 
unique cont inuat ion  proper ty  (of  v) that  n = 1, z* = 1 and Zo = 0 a.e. in [0, lr]; that  is, 
v e Spanlsin x}\{0J. (In this case, one can finish the p r o o f  o f  the theorem as in [32] (also 
see [33]), provided b, h • LP(Q) with p > 3. However ,  the arguments  developed below 
allow to treat the weaker case h 

Otherwise, it follows f rom the 
o f  second-order  ODEs  that  v(x) 
which are complement  o f  each 
nonzero  derivative in (0, ~r).) 

• L2(Q) for  the heat equation.)  
unique cont inuat ion proper ty  (or oscillatory properties) 
> 0 and v(x) < 0 on subsets o f  [0, ~z] positive measure 
other.  (Actually, v has only finitely many  zeros with 

Note  that  if 0 < r* < 1, then the functions [rt 2 + X_+(', t)] satisfy the assumptions o f  a 
lemma due to Invernizzi (see e.g. [3, p. 198; 4, p. 645 or  10, p. 287]) for  a.e. t • [0, 2n], 
which implies that v = 0 on [0, n]. This is a contradict ion.  

Therefore ,  r* = 1. In this case, if Zv( ' ,  t) # 0 on a subset o f  (0, n) o f  positive measure 
for  some t • [0, 2~] (note that  the O D E  holds for at least all t in a subset o f  [0, 2rt] o f  
positive measure),  then it again follows that  the functions [n z + Z_+(', t)] satisfy the 
assumptions o f  the a forement ioned lemma (see e.g. [3, 4, 10]), which implies that  v = 0 
on [0, zt]. This is also a contradict ion.  

Hence,  we have r* = 1 and Zv( ' ,  t) = 0 a.e. on [0, re] for  all t • [0, 2n] for  which the 
O D E  holds; that  is for  a.e. t • [0, 2~z]. This, o f  course, means that  r* = 1 and Zo = 0 
a.e. in Q, which implies that  v • Span[sin nxj\{0} and Pm : =  "(mY(', Urn) + (1 -- rm)~ ~ 0 
in L2(Q). 

We shall reach a contradict ion by applying Fa tou ' s  lemma. Let us show that  we can use 
that argument .  Observe that  in the eigenfunction expansion o f  Um we have u°(x, t) = 
bin(t) sin mx. Since bm(t) can be written as bin(t) = am + Cm(t), where am • • and Cm(t ) 

o has mean value zero, that  is, SZo ~ Cm(t) dt = 0, we can rewrite Um as 

uO(x ,  t )  = (tim(X) + IpCm(X , t)  

where ~0m (x) = am sin nx and ~Vm(X, t) = Cm(t) sin nx. Set 

*m(X) 
Zm(X) . -  l~Pmlnl.O ( =  tPm(X) .~ 

2nl(f fmlHl(o, lr) /  " 

Taking the inner p roduc t  in LZ(Q) o f  

~ U  m = 7:mOU m + (1 -- Tm)6t l  m + *m h (17)  

with Zm and using the fact that  *m # 0 and (urn, Z.,) = I~m12~2[~ml;,~o, we get 

>-- I g(x, Um(X, t))Zm(X) + h(x, t)Zm(X) 0 dx dt. (18) 
J 

We claim that  there exists a funct ion l • LI(Q) such that,  for  m sufficiently large, 

g(x, Um(X , t))zm(x) >- l(x, t). 



198 M . R .  G R O S S I N H O  a n d  M .  N .  N K A S H A M A  

Let us assume for the moment  that this claim holds and finish the proof.  Since 
urn(x, t) = Vm(X, t)]UmlH,.O and (Vm(X, t)) converges to v(x, t) a.e. in Q, then as m --, oo, 

urn(x, t) ~ oo if v(x) > O, 

Urn(X, t) ~ - - ~  if V(X) < O. 

SO, passing to the lim inf as m ~ oo in (18), by Fa tou ' s  lemma we get 

>- f g+(x)v+(x) - g-(x)v+(x)  + h(x, t)v(x) 0 dx  dt. 
J Q 

This is a contradiction with the condition (10). 
In order to complete the proof  of  Theorem 1, it remains to prove the above claim. In 

what follows we shall denote by the same symbol C several constants independent of  urn. 
0 Multiplying equation (17) by 5m - Um -- am and using the decomposition of  g given in 

(16), we get 

0 /gm)  ((~gl  m - -  T m ~ ( "  , U m ) U  m - -  (1 - Zm)KUm, Um- Um - 

0 l~m)" = (1"m f ( "  , l l m )  + Vm h ,  ~l m - -  Urn - -  

Therefore, by Lemma 3 with Pm := ZmY(', Urn) + (l -- Vm)5~ ~ 0 in LZ(Q), we have 

J_2  0 
O[UmlH'.O -< ([f[Lz(Q) + [h[Lz(Q))(lamlLz(Q) + ]UmlLZ(Q) + lam[L2(Q)) + Pl, 

where p~ > 0 is given in (13). Hence, 

5[UmlH,,O ± 2 _< c(lu~l. , ,o + lumlHl.O),° 

which obviously implies that 

± 0 1 /2  lUmlH',o <-- C + (C + ClUml.,.o) • (19) 

Furthermore; f rom the equality U°m(X, t ) =  ~Pm(X)+ q/m(X, t) and the fact that,  by 
Wirtinger's inequality, 

I~UmlL2 --< Cl~,m, lL= --- Clum, lL= <- C, 
it fo l lows that 

Iq/mlHi,, ~ C. (20) 
Hence, by (19) 

1 
+ lu lH',O C + (C + Cl~OmIH,,O) '/2, 

which immediately implies that 

and 

lePm[HLo ~ 0% 

± 
[~mlH'.' + lUmlH',o 

[~0mlHl.O ~ O, 
a s  m --* o o .  

Therefore, taking the limit in L2(Q), we easily derive that 

v = lim u m = lim Um - -  
. . . . . .  l U m I H ' , 0  

l i m  ~ m  - l i m  Z m .  
m ~ o o  I (,0m IHl,O m ~ o ~  
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Now, observe that, by (19) and (20) and the fact that lum, lL2 is bounded, we also have 

z 
[~mlnl,' + lUmlH,.l 

1/2 "~ C .  
~0m H1,0 

Thus, by the Sobolev imbedding theorem (see e.g. [26, 27]), there is a function d ~ LZ(Q) 
such that a.e. (x, t) ~ Q, 

I~'m(X, t) + U~(X, t)[ 
<_ d(x, t). 1/2 

(,0m Hl(0,~r) 

Therefore, 
1 (u z + ~o z -  ( u r n -  q~m) 2) 

~)(' ,  Um)UmZm = 2 ~ ( ' '  him) I(Pm[Hl, 1 

1 . (U~m + q/m) 2 1 
> - - Y ( "  urn) > + b(x) + 1)(d(x, t)) z. 
- 2 ' [~0mlnl,l _ - ~ ( c  

Moreover, there is a function e e LZ([0, n]) such that, for a.e. x e [0, n], 

which implies that 

Therefore, defining 

IZm(X)I < e(x), 

f ( ' ,  um)Zm >- -a (x )e (x )  a.e. on Q. 

1 
I(x, t ) : =  - z ( c  + b(x) + 1)(d(x, t)) z - a(x)e(x), 

Z 

and using the decomposition of g given in (16), it follows that 

g(x, urn(x, t))Zm(X) -- y(x, Urn(X, t))Um(X, t)Zm(X, t) + f ( x ,  Urn(X, t))Zm(X) 

> l(x,  t), 

which concludes the proof of the above claim. The proof of Theorem 1 is complete. 
We derive many results in [1, 3, 14, 31, 34] as special cases. 

COROLLARY 

h E L2(0, n). Then the second order ordinary differential equation 

-uxx(x)  = nZu(x) + g(x, u(x)) + h(x) a.e. in (0, n), 

u(O) = u(n) = O, 

has a solution u ~ Hz(O, n) provided 

t S l g+ (x)v+(x) dx - g_(x)v- (x)  dx + h(x)v(x) dx  > 0 
0 0 0 

for all v e Span[sin nx]\[0}. 

1. Assume that conditions (7), (8) and (9) of Theorem 1 hold, and let 

(21) 

(22) 



200 M.R.  GROSSINHO and M. N. NKASHAMA 

Proof .  Let us consider equation (4) with h(x, t) = h(x), independent of  t. Since (22) 
implies (I0), it follows from Theorem 1 that equation (4) has a solution u ~ H2'~(Q). 
If we multiply both sides of  the equation 

u,(x,  t) - Uxx(X, t) = nZu(x, t) + g(x, u(x, t)) + h(x) 

by ut and integrate by parts, we get, as in (12), that lu,]~2¢o)= (h, ut). Since h is 
independent of  t, it follows that (h, ut) = 0. Hence u t = 0; that is u is also independent 
of  t. Thus, u is a solution of  equation (21). The proof  is complete. 

4. M U L T I - D I M E N S I O N A L  E Q U A T I O N S  

Next, we shall look into extending our results to the more general multi-dimensional 
parabolic and telegraph equations 

ut - div(A(x) Vu) = 2nu + g(x, u) + h(x,  t) a.e. in Q, 

u(x, t) = 0 on af2 x [0, 2~], (23) 

u(x, o) = u(x, 2n) on ~ ,  

and 

aut + utt - div(A(x) Vu) = ,),,u + g(x, u) + h(x,  t) 

u(x, t) = 0 

u(x, O) = u(x, 2r0, ut(x, O) = ut(x, 2~z) 

First we compare the nonlinearity (at double resonance) 
eigenvalues, and then we present results on crossing of  not necessarily simple (higher) 
eigenvalue(s); it should be remembered that a complete description of  the Fu~ik spectrum 
is not available for multi-dimensional equations. 

Here the differential operator 

~ ( x ,  D)u  = -div(A(x) Vu) 

is uniformly (strongly) elliptic and symmetric, with Lipschitz continuous entries on ~;  
that is, the matrix A ( x )  is symmetric and 

(~, A(x )~)  > 0 for all x ~ ~ and all ~ ~ [R:V\10]. 

Throughout  this paper Vu denotes the gradient of  u with respect to the space variable 
x e R N only. As notation, let 

12u := u t + ~ ( x ,  D)u,  

and, respectively, 

a.e. in Q 

on af~ × [0, 2n], (24) 

o n  ~ .  

with two consecutive 

~u  := au t + utt + ~(x ,D)u ,  

with the following domains Dom(~)=H~,~([O, 2rr];Hd(fI) NHZ( f~) )  (respectively 
Dom(60 = H~([0 ,2zr ] ;Hl ( f~)NHZ(O)) ) ,  where the subscript 2n indicates that the 
involved functions are 2n-periodic in the variable t. As before, Gu(t,  x)  = g(x,  u(t, x)) is 
the Nemytskii operator associated with g. 
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If we consider the linear problems 

u, - div(A(x) Vu) = 2u a.e. in Q, 

and 

u(x, t) = 0 on 0f] × [0, 2n], 

u(x, O) = u(x, 2r0 on ~ ,  

aut + utt - div(A(x)Vu) = 2u a.e. in Q 

(25) 

u(x, t) = 0 on OO × [0, 2n], 

u(x, O) = u(x, 2n) on (~, 

(26) 

and multiply both sides of  the respective equations by ut, then by Fubini's theorem, 
integration by parts and boundary and periodicity conditions, it follows, as previously, 
that lutlZ2(Q) = 0, that is, ut = 0 (respectively, ut = 0 and utt = 0). This means that the 
eigenvalues and the eigenfunctions related to (25) and (26) are the same as those of  the 
Dirichlet problem 

-div(A(x) Vu) = 2u a.e. in ¢), 
(27) 

u(x) = 0 on O~. 

More precisely, there is a countable set of eigenvalues tending to 0% and each eigenvalue 
is positive and has finite multiplicity. Writing the (distinct) eigenvalues in,increasing order, 
we have 

21 < /]'2 < " '" < /~k < " ' ' ,  

and the corresponding orthogonal system of  eigenfunctions of (27) is a basis of  L2(¢)). 
We recall that these eigenfunctions enjoy the unique continuation property. 

Let u e L2([0, 2n]; H](~)) .  Then u has an eigenfunction expansion 

u ( ' , t ) =  ~ Pku ( ' , t ) ,  
k = l  

where, for (a.e.) t e [0, 2n], Pku( ' ,  t) is the orthogonal projection onto the eigenspace 
N ( £  - AkI). As in Section 2, for u ~ LZ(Q), we shall set u(x, t) = ~(x, t) + u°(x, t) + 
~(x, t), where 

t t - - 1  

a ( ' , t ) =  ~ P k U ( ' , t ) , u 0 ( " , t )  = P ,u ( ' ,  t), a ( ' ,  t) = E Pku( ' , t ) ,  
k = l  k = n + l  

a n d u  ± =  O + t i .  
Furthermore,  as notation, let 

A = 2n+  1 -- 2 n .  
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LEMMA 4. Let fie (x) e L~°(f2) he functions such that  

0 <_ f l + ( x )  _< A a.e. in g2 (28) 

and 

f(A-fl+)w2+l(A-fl-)w2~Ow>o w<o (29) 

for  all w e N(6t - 2,+1I)\{0} = N ( ~  - 2,+1I)\{01. 
Then there exist constants  J = 8 ( f l e ( X ) ) >  0 and r/ = rl(fl+_(x)) such that  for  all 

Z e  ~ L ~ ( Q )  satisfying 

0 <_ )~+_(x, t )  <_ f i e ( X )  + c~ a.e. on Q (30) 

and all u ~ Dom(~) ,  we have 

( ~ u  - 2 , u  + Z _ u -  - Z + u  +, u - ~ - u °) > r/lu±[2~,0 (31) 

for the heat opera tor  and 

( ~ u  - 2 . u  + z _ u -  - z + u  +,  ~ - ~ - u °) -> ~ l u ' l ~ r  o - I ~ , l ~  + la~l~= + l u ° l ~  (32) 

for  the telegraph equation.  

P r o o f .  Let u e D o m ( ~ )  and X+ satisfy (30). For  a.e. t e [0, 2n], the funct ion u( . ,  t) 
H2(~) {"1 H01(~) and Z+( ' ,  t ) ~  L=(f~). Then it follows f rom L e m m a  1 in [30] (with 
F+ = fl+) that  there exist constant  J = t~(fl+) > 0, r/ = r/(fl+) ( independent o f  t) such that  

( ~ u  - 2 , u  + X - ( ' ,  t ) u -  - 2~+(', t ) u  +, ~ - ~ - u°)L2(n) >- 

for a.e. t ~ [0, 2n]. 
Therefore,  taking the inner p roduc t  o f  (~u - 2nU + Z - u -  - g + u  + with ~ - ~ - u ° in 

L 2 ( Q ) ,  the conclusion follows easily since ( u t ,  ~ - fi - u °) = 0 and H I ' ° ( Q )  = L2([0, 2rt]; 
HI (~ ) ) .  The p r o o f  is complete.  

LEMMA 5. Assume that  the condit ions (28) and (29) hold. Then there exists a constant  
J = J(fl±) > 0 such that  for  all ,~+ e L°°(Q) and all v ~ Dom(60,  with vt = 0, satisfying 

0 <_ X+(X, t) < fl+(x) + J a.e. on Q 

~ v  - 2. v + X _ ( x ,  t ) v -  - X+(x, t ) v  + = 0 a.e. on Q, 
(33) 

one has that  v ~ N(6~ - 2 ,1 )  = N(~3 - 2 ,1) .  

P r o o f .  We apply L e m m a  4 which implies, by (33) and (31) in the case o f  the heat 
equation,  and by (33), (32) and the fact that  vt = 0 in the case o f  the telegraph equat ion,  
that  v ± = 0, that  is, v = v °. Since v is independent  o f  t, then v(.) = P n v ( ' ) ,  that  is, 
v ~ N ( ( ~  - 2 h i  ) = N ( ~  - 2 , 1 ) .  The p r o o f  is complete.  
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THEOREM 2. Suppose that  there exist a real number  r > 0 and a funct ion B e i f( t2)  
such that  

(sgn u)g(x, u) >_ B(x) (34) 

for  a.e. x ~ f2 and all u e ~ with [u[ ~ r. 
Moreover ,  assume that  

g(x, u) g(x, u) 
0 --< lim i n f - -  < lim s u p - -  < fl±(x) _< A (35) 

u~±oo U u~±oo /./ 

uni formly  for  a.e. x ~ ~ with fl_+ ~ if(g))  such that  

t' ( A  - f l+)w2 + l ( A  - f l - ) W 2  > w<o (36) 

for  all w e N(6t - 2n+~I)\[0].  Then equat ion (23) (resp. equat ion (24)) has at least one 
solution u e Dom02)  provided 

Q Q Q 

for  all v e N((~ - 2f l ) \{01.  

Proof. The p r o o f  is very similar to the p r o o f  o f  Theorem 1 o f  Section 3. Therefore  we 
shall only sketch the main arguments  and indicate the differences that  appear  in this case. 
We refer to the p r o o f  o f  Theorem 1 for  details. 

We prove the existence o f  a solution to the above problem(s) using again topological  
degree theory.  Choose  & e ~ such that  0 < & < A. So, since (6t - &i ) - l :  H(Q) ~ H(Q) 
is a compact  opera tor  (see [27]), it suffices to show that  there is a constant  p > 0 such that  
for  every possible solution u ~ Dom(6~) o f  the h o m o t o p y  of  problems 

H(z, u) :=  u - r(6g - ~I)-l(Gu - ~u + h) = 0, r ~ [0, 1], 

we have 

l u l . ,  0 < p.  

Arguing by way of  contradict ion,  we can assume that  there exist sequences (r m) C (0, 1] 
and (urn) C Dom(60  with [UmlHl,O --> m ~ N such that  h(rm, Urn) = 0. Also,  if we set 
Vm := Um/lUm[I-Ii,O, then (Vm) is bounded  in HI'I(Q) and,  for  a subsequence, it converges 
in LE(Q) to some funct ion v independent  o f  t. Using the decomposi t ion  o f  g given in (16), 
(Vm) satisfies 

g(x, u.) h 
(~Urn -- )gnu m -- (1 - Z'm)~Vm - "(m [UmlH,,O rm lUm[H,,o 

: ( ~ U  m - -  ~ n U m  - -  (1 - T m ) ~ U  m - "Cm~( X  , 1.,lm)U m 

f ( x ,  urn) h 
- o .  ( 3 8 )  

-- T m [Um[nl,O Tm [lim[Hl, 0 
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Taking the (weak) limit, we have 

- a v ( x )  + 2,v(x) + X+(x, t)v+(x) - X_(x, t)v-(x) = 0 
with 

g(x, u) 
0 -< Z+(X, t) -< lim s u p - -  < fl+(x) 

u~+oo  U 

g(x,u) 
0 --< Z-(X, t) --< lim s u p -  _< fl_(X) 

u ~ - ~  U 

a.e. in Q, (39) 

a.e. on [(x, t) : v(x) > O] 

a.e. on [(x, t) : v(x) < 0]. 

(40) 

COROLLARY 2. Assume that conditions (34), (35) and (36) of  Theorem 2 hold, and let 
h e L2(~). Then the elliptic partial differential equation 

-div(A(x) Vu) = 2nu + g(x, u) + h(x) a.e. in f], 
(43) 

u(x) = 0 on 0~,  

has a solution u e H2(f~) provided 

l g+(x)v+(x)dx-  ~ g_ (x )v - ( x )dx+ f ~ h(x)v(x)dx>O 

for all v ~ NO3 - 2,I)k[0}. 

Taking the inner product in L2(Q) of  (38) with Zm, and using the fact that rm ;~ 0 and 
(Urn, Zm) = I~ml~2l~mlhl,o, we get 

> t g(x, Um(X , t))Zm(X) + h(x, t)Zm(X) dx dt. (42) 0 
J Q 

Proceeding as in the proof  of  Theorem 1 (with obvious modifications) we can show, using 
Lemma 4 instead of  Lemma 3, that an estimate analogous to (19) holds, that is, 

lull.,,0 <- c + ( c  + C I u ° l . , o )  'j2 

and we can also prove that there exists a function I e LI(Q) such that, for m sufficiently 
large, 

g(x, Um(X , t))Zm(X) >-- I(x, t). 

Taking the lim inf as m ~ ao i n  (42), and using Fatou's  lemma and (35) we get a 
contradiction with the condition (37). The proof  is complete. 1 

We derive results of  [33] (also [15] in the autonomous case), [14, 30, 32, 34] as special 
cases. 

(41) 

v e N(6~ - 2nI)\[0}. As before, we use the notation 

U°m(X, t) = ~Om(X) + ~Um(X, t), 
and we set 

Z m (X) • --  ~0m (X) ~0 m ( X ) l ) .  

At this point we apply Lemma 5. In fact, by the above asssumptions, the inequalities (28) 
and (29) are satisfied. Also, by (40), it follows that (30) is trivially satisfied. Therefore, 
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P r o o f .  The p r o o f  is similar to the p r o o f  o f  Corol lary  1 o f  Section 3, using, at the 
appropr ia te  step, equat ion (23) and Theorem 2 instead o f  equat ion (4) and Theorem 1. 
The p r o o f  is complete.  

Now,  we shall prove results on  the crossing of  (not necessarily s imple)  eigenvalue(s). 
The following lemma will be useful in obtaining these results. 

LEMMA 6. Let 0 E C°(t)) be a funct ion such that  0 <_ O(x) < A a.e. on f~. Then,  there 
exists a constant  x = x(0, 60 > A such that  for all Z_+ e C°(Q)  and all v e D o m  t2, with 
vt = 0, satisfying 

0 _< X_(x, t) _< 0(x), 0 < Z+(x, t) ___ x 

- ( ~ u  q- •n v q- X+(X, t )v  + - Z_(x ,  t ) v -  = 0 

one has that  v ~ N(Og - 2 h i )  = N ( £  - 2 , I ) .  

a.e. on  f2, 

a.e. on  Q, 

P r o o f .  Suppose the conclusion of  the lemma does not  hold. Then,  for  each m e N, 
there exists funct ions Z~_ ~ C°(Q)  and Vm ~ Dom((~), with Vm, = O, satisfying 

0 <_ z~_(x, t)<_ O(x), 
1 

0 <_ g+m(x, t) _< A + - -  a.e. on ~ ,  
m 

a.e. on Q, - - (~U m -~ )~nUm "-}- )~+m(X, t )v  + - Z_~(x, t )v~ = 0 

such that  u m ~ N((~ - ,~nI). 
Now,  taking the inner product  (in LZ(Q)) o f  the left-hand side o f  the above equat ion 

with f - 6 - v  °, it follows f rom L e m m a  4 (with fl_ = 0 and fl+ = A; recall that  all 
eigenfunctions associated with 2n+~ change sign in f2 and enjoy the unique cont inuat ion  

± 0. But vm, 0. property,  so that (29) holds) that,  for  m sufficiently large, one has v m = = 
Therefore ,  Vm(') = PnVm(') .  This is a contradict ion with the fact that  Vm ~i N(t~ - 2 ,  I )  
for  each m ~ N. The p r o o f  is complete.  

THEOREM 3. Suppose that  there exist a real number  r > 0 and a funct ion B e LE(ff2) 
such that  

(sgn u)g(x,  u) > B(x)  (44) 

for  a.e. x e f2 and all u e ~ with lul -> r. 
Let 0 ~ ~ be a constant  such that  0 < 0 < A and set f l_(x)  := 0 and fl+(x) := x > A,  

where x = x(O, ~ )  is the constant  given by L e m m a  6. Assume that  

and 

g(x, u) g(x, u) 
0 < l i m i n f - - < l i m s u p - - <  0 <  A (45) 

u ~ - - ~  U U ~ --¢o U 

0 < lim inf g(x,  u) g(x,  u) _ - -  _< lim s u p -  _< x (46) 
U ~ + O o  U u ~ + o o  U 
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un i fo rmly  for  a.e.  x e D. Then equat ion  (23) (resp. equat ion  (24)) has at least one solution 
u e Dom(t~) provided 

i g+(x)v+(x)dxdt- . l  g_ (x )v - (x )dxd t+t  ~ h(x , t )v (x)dxdt>O (47) 
Q Q Q 

for  all v e N ( ~  - 2 , I ) \ {0 ] .  = N ( £  - ; t , I ) \ [0} .  

Proof. The p r o o f  is very similar to the p roofs  o f  Theorems  1 and 2 and,  therefore ,  
we shall be very brief.  So, reasoning as in the p roofs  o f  the previous  theorems,  we derive, 
by way o f  contradic t ion,  that  there exists v ;~ 0, independent  o f  t, satisfying, similarly 
to (39), 

-t~v(x) + 2,v(x) + Z+(x, t)v+(x) - Z-(x, t)v-(x) = 0 a.e. in Q (48) 

with 

g(x, u) 
0 <_ Z+(x, t) <- lim s u p - -  -< K 

U ~ + ¢ ¢  U 
a.e. on [(x, t) : v(x) > 0] 

g(x, u) 
0 _< Z_(x, t) _< lim s u p -  -< 0 

u ~  - o o  U 
a.e. on [(x, t) : v(x) < 0}. 

Here  6 = 0/2.  Since all assumpt ions  o f  L e m m a  6 are fulfilled, we derive that  the funct ion 
v e N(t~ - 2nI ) \ [0 ] .  Thus,  it follows f rom (48), that  Z_+ = 0 a.e. on Q. This implies that  
Pm ~ 0 in L2(Q) as m ~ oo. Therefore ,  proceeding as in the p r o o f  o f  Theo rem 2 f rom (41) 
on, we get a contradic t ion  to condi t ion (47). The p r o o f  is complete .  • 

Even in the case of  elliptic part ial  differential  equat ions ,  the fol lowing corol lary  on 
crossing eigenvalues (directly) for  higher eigenvalues (i.e. n _ 2) is still new. 

COROLLARY 3. Assume  that  the condi t ions (44), (45) and (46) o f  T h e o r e m  2 hold and let 
h e L2(£)). Then  the elliptic part ial  differential  equat ion 

- d i v ( A ( x )  Vu) = 2nU + g(x, u) + h(x) a.e.  in £), 

u(x) = 0 on 0~ ,  

has a solut ion u ~ H2(~)) provided 

t~ g+(x)v+(x) dx - n g-(x)v-(x) dx + l ~ h(x)v(x) dx > O 

for  all v e N ( ~  - 2nI) \ [0}.  

Proof. The p r o o f  is similar to the p r o o f  of  Coro l la ry  1 o f  Section 3, using, at the 
appropr ia t e  step, equat ion  (23) and Theo rem 3 instead o f  equat ion (4) and Theo rem 1. 
The p r o o f  is complete .  
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5. H I G H E R  O R D E R  E Q U A T I O N S  

In this section, we shall briefly indicate the conditions under which the results of  the 
previous sections can be extended to higher order equations. 

Here 0f2 is of  class C 2m and £(x,  D) is a higher-order differential operator of  the form 

£ ( x ,  D) = ~ ( -  1 ) l i l + t D i ( a i j ( x ) D J u  ) 
Iil, [J[ ~ m 

which is assumed to be uniformly (strongly) elliptic and symmetric; i.e. 

aij = aft, E aij(x)~i~ j > cl~[ 2m for all x ~ ~ and all ~ e A N, 
Iil = IJl = m 

where aij ~ cliI+IA(~) for 0 _< li[, ]j[ -< m, and c > 0 is a constant. Here i a n d j  denote 
multi-indices with 1i[ = ~qU 1 iq where iq is a nonnegative integer for 1 _< q _< N. 

Throughout  this section, we shall assume that the eigenfunctions of the realization 
of  the linear operator £ ( x ,  D) on H~'(f])A Hzrn(~) enjoy the open set type unique 
continuation property; this is particularly true if the coefficients aij ~ C~°((2). 

We consider the higher order parabolic and telegraph equations 

ut - £ ( x ,  D)u  = 2nu + g(x, u) + h(x,  t) a.e. in Q, 

and, with 0 ~ a ~ •, 

u(-, t) e H y ( ~ )  on [0, 2rq, 

u(x, O) = u(x, 270 on (~, 

(49) 

a u  t + utt  - £(X,  D)U = 2 ,  u + g(x, u) + h(x, t) a.e. in Q 

u(. ,  t) ~ II~'(f~) 

u(x, O) = u(x, 270, ut(x,  O) = ut(x, 270 

on [0, 2rq, 

o n  ~ .  

(50) 

First we compare the nonlinearity (at double resonance) with two consecutive 
eigenvalues, and then we present results on crossing of not necessarily simple eigenvalue(s); 
it should be remembered that a complete description of the Fu~ik spectrum is not 
available for higher-order (multi-dimensional) equations (see e.g. FuEik [3]). We shall 
present the results only in the case of  equation (49), similar results may be derived for 
equation (50). As before, the following notations will be used: 

(~U :~--- U t -- ~ ( X ,  D)L/,  

and, respectively, 

6~u := aut + utt - £ ( x ,  D)u,  

with the following domains Dom(6t )=  Hzl~([0,2rq; H~'( f~)NHZm(f~) )  (respectively 
Dom(60 = H2Z~([0, 27rl; H~'(£))A Hzm(£)))), where the subscript 2zr indicates that the 
involved functions are 2zr-periodic in the variable t. Furthermore, A will denote the 
quantity 

A = 2n+ 1 -- ~n"  
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THEOREM 4. Suppose  tha t  there  exist a real  number  r > 0 and  a func t ion  B e L2(~) 
such that  

(sgn u)g(x, u) >_ B(x) (51) 

for  a.e.  x ~ f~ and  all u e [R with [u] _> r. 
Moreove r ,  assume tha t  

g(x, u) g(x, u) 
0 _< lim i n f -  _< l im s u p -  _< fl+(x) < A (52) 

u ~ + a o  /d u ~ -t-co U 

u n i f o r m l y  for  a.e.  x ~ ~ with fl_+ e Lz(o)  such tha t  

l (A - fl +)w2 + l (A - fl-)w2 > w < 0  (53) 

for  all w e N(6t - 2 .+1I ) \ [0} .  Then  equa t ion  (49) has at  least one so lu t ion  u ~ Dom(( t )  
p rov ided  

Q Q Q 

for  all v e N ( ~  - ,~ j ) \ {O] .  

We also have a result  on  cross ing at (not  necessar i ly  simple) eigenvalues.  In  o rde r  to 
ob t a in  this result ,  we shall  assume tha t ,  in add i t i on  to  the  cond i t ions  at  the beginning  o f  
this section,  all the e igenfunct ions  assoc ia ted  with the e igenvalue  2~÷1 change  sign in f2 
(see e.g. the  p r o o f  o f  L e m m a  6). 

THEOREM 3. Suppose  tha t  there  exist a real  n u m b e r  r > 0 and a func t ion  B ~ L2(£)) 
such tha t  

(sgn u)g(x, u) >_ B(x) (55) 

for  a .e .  x e ~ and  all u e [R with  ]u[ > r. 
Let  0 e • be a cons tan t  such tha t  0 < 0 < A and  set fl_(x) :=  0 and  fl+(x) :=  x > A,  

where  t¢ = J¢(0, (i) is the  cons tan t  given by  a resul t  s imilar  to L e m m a  6 a d a p t e d  to the  case 
o f  h igher  o rde r  equa t ions .  

A s s u m e  tha t  

and  

g(x, u) g(x, u) 
0 _< l im inf  - -  _< lim sup - -  _< 0 < A (56) 

u ~ - o o  / /  u--* - 0 o  / /  

g(x, U) g(x, u) 
0 _< l im inf  - -  _< lim sup - -  _ I¢ (57) 

u - ~  +~o g u--* +ao g 

u n i f o r m l y  for  a,e.  x ~ ~ .  Then  equa t ion  (49) has at  least  one  so lu t ion  u ~ D om( ( i )  
p rov ided  

l g+(x)v+(x)dxdt- I g_(x)v-(x)dxdt+ I h(x,t)v(x)dxdt>O (58) 
Q Q Q 

for  all v ~ N( ( i  - 2 . I ) \ { 0 ]  = N ( ~  - 2 j ) \ { 0 } .  
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W e  sha l l  o m i t  t h e  p r o o f s  o f  t h e s e  r e s u l t s  s ince  t h e y  a r e  v e r y  s i m i l a r  to  t h o s e  in  t h e  

p r e v i o u s  s e c t i o n .  O f  c o u r s e ,  s eve r a l  c o r o l l a r i e s  c o n c e r n i n g  t h e  c o r r e s p o n d i n g  n o n l i n e a r  

h i g h e r  o r d e r  e l l ip t ic  p a r t i a l  d i f f e r e n t i a l  e q u a t i o n s  a r e  ea sy  to  de r i ve .  W e  r e f e r  to  S e c t i o n  4 

f o r  s i m i l a r  de t a i l s .  
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