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Abstract

In this paper, we present existence and location results for the third-order separated boundary value
problems

W' (1) = £t u@), u' @), u” 1)),
with the boundary conditions
u@=A, u'(@=B, u'b)=C
or
u(@)=A4, cu'(a)—cou’(a)=B, c3u'(b)+cau” (b)=C,

with ¢1, ¢2, c3, c4 € RT andA, B, C € R.
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We assumg : [a, b] x R3 — Ris a continuous function satisfying one-sided Nagumo-type condi-
tion which allows an asymmetric unbounded behaviour. The arguments used concern Leray—Schauder
degree and lower and upper solution techniques.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The purpose of this paper is to study the third-order differential equation
u” ()= ft,u),u' @), u’(t)) fortela,b, Q)

with the following types of boundary conditions

u@=A, u(@=B, u'(b)=C 2
or

ula) =4,

c1u'(a) — cou”’(a) = B,

cau'(b) + cau” (b) = C, 3)
whereA, B,C e R,¢; >0,i =1, ..., 4. The functionf : [a, b] x R® — Ris continuous

and satisfies a growth condition from above but no restriction from below. This asymmetric
type of unboundedness can appear sficassumed to satisfy an one-sided Nagumo growth
condition which creates some control from above but none from below. More precisely, we
assume that there is a positive continuous funciicuch that

f,x,y,9<z)), V@, x,y,2) €E, 4

on some given subsét C [a, b] x RS, and

+00 f )
[ st

Some boundedness of Nagumo-typB] seem to play a key role in this sort of studies.
In fact in [11] it is shown for some second-order problems that existence results are not
guaranteed if no Nagumo condition is assumed.

On the other hand in most of the available literature, for exanipley, 7-9,13,14kx-
istence results are established when the nonlinear terenifies a growth condition of
two-sided Nagumo-type, that is, such that

Lf@ x, y, D<@z, V@, x,y,2) € E,
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which is obviously more restrictive than (4). So the existence and location results obtained
in this work for problems (1)—(2) and (1)—(3) improve the existent ones, because they can
be applied for unbounded nonlinearities, as it can be seen in the examples containedd in
Section 5.

The arguments used rely on degree thef], and lower and upper solutions method
and an a priori estimate aif is established in Lemma 2, depending on the boundary values
u” (a) andu” (b). More precisely, for every > 0 it is possible to establish an estimate for
the second derivative of the solutionsf Eq. (1) that satisfy

W'(@)<p and u"(b)> —p.

The above referred one-sided Nagumo-type condition plays there an important role.

A priori estimates depending on the valueg®fa) andu” (b) can also be found if6,10]
for second and third-order differential equations, respectively. Those estimates can be used
since the bounds far’(a) andu” (b) are trivially satisfied in the boundary problems there
considered. However, Lemma 2 [df0] cannot be applied to the problems we present in
this paper. In fact, the respective boundary conditions imply that some more care has to
be taken. Therefore, we prove Lemma 2 that generalizes the result contained in Lemma 2
of [10] and Theorem 4 improves the main result presentgtidh Theorem 6 contains an
existence result for some Sturm—Liouville-type boundary value problems.

Observe that problem (1)—(2) is not a particular case of (1)—(3) since the constants
i=1,...,4,inthe boundary conditions (3) are positive.

An analogous existence result still holds if it is assumed an one-sided Nagumo condition
with reversed inequality in (4), i.e.

f, x,y,2)=2 —o(z|), V¥V, x,y,2) € E.

2. A priori estimate

The one-sided Nagumo condition plays an important role in the arguments. We observe
that it does not depend on the boundary values.

Definition 1. Given a subseE C [a, b] x R, a functionf : [a, b] x R® — Ris said to
satisfy one-sided Nagumo-type conditionBrif there existsp € C(IRO“L, [k, +o0]), with
k > 0, such that

ft, x, vy, 20<o(z)), (%)

forallt € [a, b] and all(¢, x, y, z) € E, and

“+00 s d 6
/o o) T ©)

In the next result we establish, under adequate conditions, an a priori bound for the second
derivativeu” of the solutions of Eq. (1).
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Lemma 2. LetI'1, I'2, 71, y2 € C([a, b], R) satisfy
@ <rIa@ and y()<pa(1), Vi €la,b]
and consider the set
E={(t,x,y,2) €la,b] x R*: 1) <x <T2(), 710 <y <yp(n).

Let f : [a, b] x R® — R be a continuous function that satisfies one-sided Nagumo-type
condition inE.

Then for everyp > 0 there existR > 0 (depending ory4, y,, @, p) such that for every
solutionu(r) of

u” () = f(t,u(e), u' @), u" (1)) (7
with

w'@<p, u"(b)=-p (®)
and

IO <u) <), 7)<’ (1) <y,(1), Vi € [a, b], ©)
we have

" lloo < R.

Proof. Considerp > 0.
Letu be a solution of (7) such that (8) and (9) hold. Define the non-negative number

Y2(b) — v1(a) (@) — y1(D) }
b—a ’ b—a '

ri= max{

Assume thap >r and suppose, by contradiction, that ()| > p for everyr €la, b[. If
u’ (1) > p, for everyr €la, b[, then we obtain the following contradiction:

b b
Po(b) — y1(a@) =u'(b) — u'(a) = / u’(t)dt > / pdt

b
> / rde>7,(6) — 71(a).
a

If u”(t) < — p, for everyt €la, b[, a similar contradiction can be derived. So, there is
t €la, b[ such thatu” ()| < p. By (6) we can take®; > p such that

R1 s
d max y,(t) — min y,(z). 10
/p o 7 e V2(t) min, y1(2) (10)

If |u”(¢)| < p, for everyr € [a, b], then we have triviallyu” (r)| < R1. If not, we can take
t1 € [a, b[ such that”(r1) < — p or 1 €la, b] such thau” (1) > p. Suppose the first case
holds. By (8) we can consider < 71 <b such that

W' (@) =—p, u'(t)<—p, Vielnnl
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Applying a convenient change of variable we have, by (5) and (10),
—u" (1) -
/ Lds: / M—/E)[_u///(t)] dr
—uw@) Ps) n e(—u(1)

N NIONUONEO):
Jy P(—u" (1))

7
< / (" (O] df = ' (11) — ' (D)
1

[—u”(t)]dt

Ry s
< max ) — min t —— ds. 11
max 72(t) re[a,b]yl(kfp o) )

Henceu”(r1) > — R1. Sincer; can be taken arbitrarily as long a8(11) < — p we can
conclude that we have, for evene [a, b[ such thai” (1) < — p,

u”(t) > — Ry.

By a similar way, it can be proved that(r) < R1, for everyr €]a, b] such thai”(r) > p.
Therefore,

lu"(t)| < R1, Vt € la,b]. (12)

Consider now the case> p and takeR, such that

Ro s
d max y,(t) — min 1).
/r 0(s)  rclab] r2(t) = I 72 0)

By (8) we cannot havé:” (¢)| > r, for everyt € [a, b]. So, there is € [a, b] such that
lu” ()| <r.

If |u” ()| <r, for everyt € [a, b], then it is trivial thatju” (r)| < R2. If not, we can take
f1 € [a, b[ such that”(t1) < — r ort1 €la, b] such that.”(¢1) > r. Suppose the first case
holds. By (8) we can consider < 71 < b such that

W) =—r, u'(t)<—r Vtelnnl

Then computations similar to (11) with and Ry replaced byr and Ry, respectively,
yield

—u"(t1) Rz
/ = ds < / L ds
—u"(11) @(s) o s)
and sau”( 11) > — Ro. Arguing in a similar way we derive as in (12):

lu” ()| < R2, V1 € [a, b].

Taking R = max{Ry1, Ro} we have||u”||oo < R. [
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3. Two-point boundary value problem

Consider problem (1)—(2) wherg: [a, b] x R® — R is a continuous function.

By a solution of the above problem we mean a funciioa C3([a, b]) satisfying the
differential equation (1) and the boundary conditions (2).

Upper and lower solutions will be an important tool to obtain a priori bounds and
u’. For this problem we define them as follows.

Definition 3. A function o € C3(Ja, b[) N C2([a, b]) is said to be a lower solution of
problem (1)—(2) if

()= f(t, (), o (1), o (1)),
for ¢ €la, b[ and
wa)<A, o'(a)=B, o' (b)<C.

A function € C3(la, b[) N C?([a, b)) is said to be an upper solution of problem (1)—(2)
if it satisfies the reversed inequalities.

Next theorem provides an existence and localization result for problem (1)—(2), since we
prove the existence of at least a solution and give some information about the strip where
the solution and the first derivative lie.

Theorem 4. Assume that there exigt f € C3(a, b)) N C?([a, b)) lower and upper solu-
tions of problen(1)—(2),respectivelysuch that

o ()< P (1), Vtela, bl (13)
Define the set
Ev={(t,x,y,2) € la,b] x R®: a(t) <x<P(1), o (1) <y<f (1)), (14)

Let f : [a, b] x R® — R be a continuous function that satisfies the one-sided Nagumo-type
condition inE, and such that

ft o), y, 2= f(t,x,y,2) = f(t, pt), y, 2), (15)

for (1, y, z) € [a, b] x R? anda(r) <x < ().
Then problen{1)—(2) has at least a solution € C3([a, b]) such that

at)<u()<P@) and o (1)<u' (1)< (), Vt € la, bl

Remark 1. The relatiorx(¢) < f(¢) is obtained by integrating (13) and using the boundary
conditions of Definition 3.

Proof. For/ € [0, 1], consider the modified problem

u” () = Af @, E@,u), Eu(t, u' (1), u" (1) + u' (1) — A&, (1, u' (1)), (16)
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with the boundary conditions

u(a) = AA,

u"(a) =B +u'(a) — ¢y (a, u'(a))],

u"(b) = [C — u'(b) + &, (b, u/ (b))], 17)
where the functiong, ¢, : R> — R are given by

) if x> p@),
&, x) = {x if a(t) <x<p(),
a(t) if x <o),
and

B if y>p@,
Eult,y) = {y it o (1) <y<p(0), (18)
o (1) if y<d(@).

Taker; > 0 such that, for every € [a, b],

—ri<d )< @) <r1, (19)
[t o), o (1),0) —r1 — o (1) <0, (20)
f@, B@), B (t),0 +r.— ) >0, (21)

B—d(a)<r, —C—0d(b) <r,

p'(a)—B<ri, C+pb)<r1. (22)
Stepl: Every solutior: of problem (16)—(17) satisfies {a, b]:

lu' ()| <ry and |u(r)| <ro,

with r1 given above andy = |A| + r1(b — a), independent of. € [0, 1].
Let u be a solution of problem (16)—(17). Assume, by contradiction, that there exists
t € [a, b] such that eithei’ () >r oru’(r) < — r1. Suppose that the first case holds. Define

max u'(t) == u'(tg) (=r1> 0).
tela,b]

If 7o €la, b[, thenu” (19) = 0 andu’’(10) <0. Hence, for. €]0, 1], by (15), (19) and (21)
we have the following contradiction:

0=>u"(10)
= Af (10, (10, u(10)), &, (10, u'(10)), u” (10)) + u'(t0) — A&, (10, u'(10))
= Af (10, {(to, u(10)), B (t0), 0) + u’ (t0) — AP (t0)
> /.f (t0, &0, u(10)), B (t0), 0) + r1 — 2B (10)
> AL f (10, B(10), B’ (0), 0) +r1 — f'(10)] > O
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and, for1 =0,
02 u///(to) = I/l/(to) 2"1 > 0.
If 1o =a then

max u'(t) == u'(a) (=r1>0),
rela,b)

andu”(at) = u”(a)<0. If 2 =0 thenu”(a) = 0 and sa:’’(a) <0. Therefore, the above
computations withg replaced bya yield a contradiction. Foi €]0, 1], by (18) and (22),
we get the following contradiction:

0=u"(a) = AB +u'(a) — &(a,u' ()] = B +u'(a) — f(a)]
> Au'(a) —r1] >0.

The caseg = b is analogous. Thus,/ (t) < r1, for everyt € [a, b]. In a similar way, we
prove thatu'(t) > — r1, for everyr < [a, b].

Furthermore, since(a) = /A, the estimatéu(r)| < ro, whererg := |A|+ ri(b — a), is
easily obtained by integration.

Step2: There existsR > 0 such that every solution of problem (16)—(17) satisfies in
[a, b]

lu” (1) <R

independent of € [0, 1].
Consider the set

Ews = {(t,x,7,2) € [a,b] x R®: —rg<x <ro, —r1 <y <ril,
and the functior¥; : [, b] x R® — R defined by
Fit,x,y,2) =Af(t,E(t, x), E (1, y),2) +y — A& (1, y). (23)

Sincef satisfies one-sided Nagumo-type conditiotkin consider the functiop € C([RR(J{,
[k, +o0[) such that (5) and (6) hold witl replaced byE... Thus, for(z, x, y, z) € E., We
have, by (18) and (19),

Fi(t,x,y,2) =Af(t, E(t,x), &1, y),2) +y — AL (L, y)
<Ap(z]) +r1— o (1) < o(lz]) + 2r1.

Takep(z) := ¢(|z]) + 2r1 then

+0o0 s +0o0 s 1 +o00 s
/ ——ds :/ ds > / ds,
o @) o o(sh+2r 1+2r1/k Jo  o(sD)

and sop(z) satisfies (6). Therefordy; satisfies the one-sided Nagumo-type condition in
E.. with ¢(z) replaced byp(z), independent of.




M.R. Grossinho et al. / Nonlinear Analysis 62 (2005) 1235-1250 1243

Moreover, forp := 2r1 every solutioru of (16)—(17) satisfies
u"(a) = 2B +u'(a) — Coa, u' (@] <AB +u'(a) — o ()] <2r1 = p,
u"(b) = AC —u' (b) + &, (b, u' ()1 = AC —u'(b) + o' ()] = — 2r1 = —p.
Defining
I'1(t) == —ro=—|Al = r1(b — a),
I2) :==ro= Al +r1(b —a),
p1(t) == —r1 and yo(1) :=r1,

the hypotheses of Lemma 2 are satisfied viitheplaced byE,, so there exist > 0,
depending omrp and ¢, such thatu”(r)| < R, for everyr € [a, b]. As r1 and ¢ do not
depend oni, we conclude that the estimdi€’(r)| < R is also independent df.
Step3: For A = 1, there exists at least one solutiof(¢) for problem (16)—(17).
Define the operators

& : C3%(la, b]) C C%(la, b)) —> C([a,b]) x R®

and
N5 2 C¥(la, b)) — C(la, b]) x R®
by
Lu=w" —u' ua), u" (@), u" (b)),
and
N juw=f(, & u@), Et,u' (1), u" (1)) — A&, (1, u' (1)), Aj, By, C)),
with

A) = A,
B, =AB+u'(a) — E,(a, u'(a)),
Cj=AC —u'(b) + & (b, u' (b))

Observe that¥ has a compact inverse. Therefore, we can consider the completely
continuous operator

T )+ (C%(la, b, R) — (C?(la, b)), R)
defined by

T ) =ZL7IN ).
For R given by Step 2, take the set

Q={x € C%(la, b)) : Ixlloo <70, I*"c <71, %" lloc < R}
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By Steps 1 and 2, for evenysolution of (16)—(17)y ¢ 022 and sothe degre& 1 —.7 , 2, 0)
is well defined for everyt € [0, 1] and due to the invariance under homotopy

d(I —70,2,00=d(I — 71, 2,0).
Since the equatiof o(x) = x, equivalent to the problem

u” (@) —u'(t) =0,
u(a)=0, u’(a)=0, u"(b)=0,

has only the trivial solution then, by the degree theory,
d(I — T, Q,0) = +1.
So, the equatio¥ 1(x) = x has at least a solution and therefore the equivalent problem
u” () = f(t, &t u®), &t u' @), u” () +u' (1) = St u' (1)),
u(a) = A,
u"(a) = B +u'(a) — & (a, u'(a)),
u"(b) = C —u'(b) + &, (b, u/ (b)),

has at least a solutiamn (¢) in Q.

Step4: The functioru1(¢) is a solution of (1)—(2), too.

Indeed, the solution (r) of the above problem will also be a solution of problem (1)—(2)
since it satisfies

() Sur() <P(r), o ()<uy(®)<p'(1), Vi € la,b].
Suppose, by contradiction, that there exists[a, b] such that
o (t) > uy(1)
and define
min [u}(r) — o/ (1)] := uy(12) — o () <O.
tela,b]
If 12 €]a, b[ thenu{ (r2)=a" (2) andu?’ (1) —o" (t2) > 0. Therefore, by (15) and Definition
3, we have the contradiction:

0<uf (t2) — o (12)
< [, &2, ua(12)), o (12), uf (t2)) + uy (t2) — o (12)
— f(12, a(t2), o (12), o' (12))
< f(t2, E(t2, ur(12)), o (t2), o (12)) — f (12, a(t2), o (12), &" (12)) <O. (24)

If £, =a we have

min [u4(t) — ' (1)] := uj(a) — &' (a) <0
tela,b]
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and
uj(a) —o"(a) =uf(@®) —o"(@@")>0.
By Definition 3 this yields a contradiction

o (a) <uf(a) = B +u(a) — & (a, uy(a))
=B+ u/l(a) —d/(a) < B<Ld (a).

Thent; # a and, in a similar way, we prove that# b. Thus
o (t)<uy(t), Vi€ la,bl.

Using an analogous technique, it can be obtainedu@éibgﬁ’(t), for everyt € [a, b].
From

ol (1) <u/1(t) <P (), Vtela,b]
by integration we have
a(t) Sur(t) <B(1), Vit € la, bl.

Thereforeyu is in fact a solution of problem (1)—(2).

4. Separated boundary value problem

Consider now problem (1)—(3) witlff : [a, b] x R® — R a continuous function and
¢ieRT fori=1,...,4,A,B,C € R.

The following lower and upper solutions definition will be an essential tool in the approach
that follows.

Definition 5. Considerc; € R*, fori =1,...,4andA, B, C € R.
; A functiono € C3(Ja, b[) N C?([a, b)) is said to be a lower solution of problem (1)—(3)
o (1) = f (2, o), o (1), o (1)),
fort €la, b[ and
a(a) < A,
c10 (a) — 20 (a) < B,
c30/ (b) + c40" (b) < C. (25)

A function € C3(la, b[) N C?([a, b)) is said to be an upper solution of problem (1)—(3)
if it satisfies the reversed inequalities.

We are now in position to state and prove an existence and location result for problem

1)-@).
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Theorem 6. Assumethatthere atgf € C3(la, b))NC?([a, b]) lower and upper solutions
of problem(1)—(3),respectivelysuch that

o (t)<P (1), Vi€la,b]

and consider the sdf, defined in(14).

Let f : [a,b] x R® — R be a continuous function that satisfies the one-sided Nagumo-
type condition inE, and(15).

Then problen{1)—(3)has at least a solution € C3([a, b]) such that

() <u()<P@) and o O)<u'(@)<P(1), Vi€ la,bl.

Proof. For/ € [0, 1], consider the modified problem composed by the differential equation
(16) with the boundary conditions
ula) =24,

A
u"(a) = —[c1u'(a) — B],
2

A
u"(b) = =[C — c3u' (b)]. (26)
c4
Takeri > 0 such that, for every € [a, b], (19)—(21) hold and
181 <ri, el <ri. (27)
c1 c3

Stepl: Every solutioru of problem (16)—(26) satisfies ia, b]
lu' ()| <r1 and |u(t)| <ro,

with ro = |A| + r1(b — a), independent of. € [0, 1];

Letu be a solution of problem (16)—(26).

Assume, by contradiction, that there existss [a, b] such that eithew/(r) >ry or
u' (1) < — r1. Suppose that the first case holds. Defining

max u'(t) == u'(tg) (=r1>0)
tela,b]

and following the arguments of Theorem 4, Step 1, it can be showmt@at, b[. If 1o =a,
then

max u'(t) :=u'(a) (=r1>0)
tela,b]

andu”(a™) =u"(a) <0. For/ = 0 we have:” (a) = 0, u” (a) <0 and therefore we obtain
the contradiction

0>u"(a) =u'(a)>r1>0.

For 4 €]0, 1], by (27), sincer1¢2 > 0, we have the following contradiction:

A 1
0>u"(a) = — [c1u’(a) — B]> —[c1r1 — B] > 0.
2 2
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The arguments are similar to show that# b. Then,u'(t) < r1, for everyr € [a, b].
Analogously, it can be proved that(r) > — r1, for everyr € [a, b].

Thus,|u’(r)| < r1, for everyr € [a, b], and the estimatg:(¢)| < ro, whererg := |A| +
ri(b — a), is easily obtained by integration.

Step 2 There exists» > 0 such that every solution of problem (16)—(26) satisfies in
[a, b]

lu" (1) <r2

independent of € [0, 1].
Consider the set

Ewe = {(t,x,9,2) € [a,b] x R®: —rg<x <ro, —r1 <y <ril,

and the functionF; : E.,. — R given by (23).

Defining ®(z) := ¢(|z]) + 2r1 and following previous arguments it is easy to see that
F, satisfies the one-sided Nagumo-type conditiorjn with ¢(z) replaced byp(z), in-
dependent of.

Moreover, for

p 1= max cir1+ |B| car1 + [C]
) c ca

every solutioru of problem (16)—(26) satisfies

c1r1 + | B|
——F<

c2
_anticl,

u’(a) = i[clu/(a) — B]<
2

A
u"(b) = C—4[C — cau(b)] >

Defining

I'1(t) .= —ro, T'2(t) :=ro,

p1(t) == —r1 and y5(1) :=r1,
assumptions of Lemma 2 are satisfied wihreplaced byE,, and there exists; > 0,
depending om; and¢ but independent of, such that

lu"(t)| <r2, Vt € la, bl

Step3: There exists at least a solution(s) for problem (16)—(26), for = 1.

The proof of this statement is parallel to the proof of Step 3 of Theorem 4 with obvious
modifications due to the boundary conditions.

Step4: This functionu1 (¢) is a solution of (1)—(3) too.

As in Step 4 of Theorem 4 the statement follows from the fact that

awt) <ur()<P@), o @O)<uy()<B (), Vt € la, bl
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Assuming by contradiction that there exists= [a, b] such that
min [u(t) — o' (1)] := u}y(t2) — o/ (12) <0
tela,b]
it can be derived, as in (24), that¢]a, b[. If o, = a we have

trT[Iir})] [uy(t) — o/ (1)] := uy(a) — &' (a) <O,

ui(a) —o"(a) =ufj(@) — o (@) >0
and by (25), since; > 0, this yields to the contradiction:
1
0<uf(@) — (@) = 2ui(a) — =[B + 2o (@)]
c2 c2
<2 uh(a) — £ (@] <0.
€2
Thenr, # a and, analogously, we prove that# b. Therefore,
oc’(t)gu’l(t), vt € [a, D].

Using a similar technique, it can be deduced iHdt) <P @), forallt € [a, b] and by
integration

o) Sur(r) < P(1),

for everyt € [a,b]. O

Remark 2. Theorems analogous to the existence and localization results presented here
can be obtained if the reversed one-sided Nagumo condition is assumed, i.e.

f, x,y,2)=2 —o(z|), V@, x,y,2) € E,

with adequate modifications.

5. Examples

The following examples not only illustrate the applicability of Theorems 4 and 6, re-
spectively, but also prove that the nonlinearities considered satisfy the one-sided Nagumo
condition and do not satisfy the two-sided Nagumo.

Example 1. Let o(z) = (6 + 4sgnz))/(5 — sgn(z)), where

1, z>0,
sgnz) =40, z=0,
-1, z<0,
A, C € R and consider the boundary value problem
W (1) = =20u®(0) + UL — ' O = [u" (017D, (28)

u@ =4, u"0=0 u'1)=cC, (29)
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If A €[0,1] andC e [—1, O] then the functions, f : [0, 1] — R given by

/3
oc(r):—g and f(t)=1+1+

are, respectively, lower and upper solutions of (28)—(29), according to Definition 3. The
nonlinearity

_[263+ DA - y)2 -5 if 220,
f(t,x,yaZ)—{_2(x3+1)(1_y)2_% ifZ<O

is continuous in0, 1] x R3, satisfies assumptions (15) and the one-sided Nagumo condition
with

¢(z)=l+m,

for every(t, x, y, z) € E, where
13 12
E = {(t,x,y,z) € [0, 1] x RS- —€<x<1+t, —Egygl}.

Therefore, by Theorem 4, there is at least a soluti@i of problem (28)—(29) such that,
for everyr € [0, 1],

13 12
/
—Egu(t)<l+t and —Egu(t)gl.

Notice that the functiory (z, x, y, z) = —(x3 + 1)(1 — y)? — z°@ does not satisfy the
two-sided Nagumo-type condition pf].

Example 2. Consider now the problem
W (1) = —[ut) + 1 (O — [u" 014, (30)
u©0 =0, WO —-u"O=B, Q+u"Q=C, (31)
with B, C € R. The nonlinearity
ft,x,y, ) =—(x+1y* =

is continuous irf0, 1] x R3. If B, C € [—1, 0] then the functions, f : [0, 1] — R defined
by

a(t)y=—t and p@)=0
are, respectively, lower and upper solutions of (30)—(31). Moreover, defining
E={(t,x,y,2) €[0,1] x R®: -t <x<0, -1<y <0},

f satisfies condition (15) and the one-sided Nagumo conditiong(th= 1, in E.
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Therefore, by Theorem 6, there is at least a soluii@n of problem (30)—(31) such that,
for everytr € [0, 1],

—t<u(®)<0 and —1<u'(r)<1.

Observe that, like in first example, the function

f(l7x1 y:Z)=—(x+1)y2—Z4

does not satisfy the two-sided Nagumo condition.
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