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Abstract

In this paper, we present existence and location results for the third-order separated boundary value
problems

u′′′(t) = f (t, u(t), u′(t), u′′(t)),

with the boundary conditions

u(a) = A, u′′(a) = B, u′′(b) = C

or

u(a) = A, c1u
′(a) − c2u

′′(a) = B, c3u
′(b) + c4u

′′(b) = C,

with c1, c2, c3, c4 ∈ R+ andA, B, C ∈ R.
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Weassumef : [a, b]×R3 → R is a continuous function satisfying one-sidedNagumo-type condi-
tionwhich allows an asymmetric unbounded behaviour. The arguments used concern Leray–Schauder
degree and lower and upper solution techniques.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The purpose of this paper is to study the third-order differential equation

u′′′(t) = f (t, u(t), u′(t), u′′(t)) for t ∈ [a, b], (1)

with the following types of boundary conditions

u(a) = A, u′′(a) = B, u′′(b) = C (2)

or

u(a) = A,

c1u
′(a) − c2u

′′(a) = B,

c3u
′(b) + c4u

′′(b) = C, (3)

whereA, B, C ∈ R, ci >0, i = 1, . . . ,4. The functionf : [a, b] × R3 → R is continuous
and satisfies a growth condition from above but no restriction from below. This asymmetric
type of unboundedness canappear sincef is assumed to satisfy an one-sidedNagumogrowth
condition which creates some control from above but none from below. More precisely, we
assume that there is a positive continuous function� such that

f (t, x, y, z)��(|z|), ∀(t, x, y, z) ∈ E, (4)

on some given subsetE ⊂ [a, b] × R3, and∫ +∞

0

�
�(�)

d� = +∞.

Some boundedness of Nagumo-type[15] seem to play a key role in this sort of studies.
In fact in [11] it is shown for some second-order problems that existence results are not
guaranteed if no Nagumo condition is assumed.
On the other hand in most of the available literature, for example,[1–5,7–9,13,14]ex-

istence results are established when the nonlinear termf verifies a growth condition of
two-sided Nagumo-type, that is, such that

|f (t, x, y, z)|��(|z|), ∀(t, x, y, z) ∈ E,
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which is obviously more restrictive than (4). So the existence and location results obtained
in this work for problems (1)–(2) and (1)–(3) improve the existent ones, because they can
be applied for unbounded nonlinearities, as it can be seen in the examples containedd in
Section 5.
The arguments used rely on degree theory,[12], and lower and upper solutions method

and an a priori estimate onu′′ is established in Lemma 2, depending on the boundary values
u′′(a) andu′′(b). More precisely, for every�>0 it is possible to establish an estimate for
the second derivative of the solutionsu of Eq. (1) that satisfy

u′′(a)�� and u′′(b)� − �.

The above referred one-sided Nagumo-type condition plays there an important role.
A priori estimates depending on the values ofu′′(a) andu′′(b) can also be found in[6,10]

for second and third-order differential equations, respectively. Those estimates can be used
since the bounds foru′′(a) andu′′(b) are trivially satisfied in the boundary problems there
considered. However, Lemma 2 of[10] cannot be applied to the problems we present in
this paper. In fact, the respective boundary conditions imply that some more care has to
be taken. Therefore, we prove Lemma 2 that generalizes the result contained in Lemma 2
of [10] and Theorem 4 improves the main result presented in[10]. Theorem 6 contains an
existence result for some Sturm–Liouville-type boundary value problems.
Observe that problem (1)–(2) is not a particular case of (1)–(3) since the constantsci ,

i = 1, . . . ,4, in the boundary conditions (3) are positive.
An analogous existence result still holds if it is assumed an one-sided Nagumo condition

with reversed inequality in (4), i.e.

f (t, x, y, z)� − �(|z|), ∀(t, x, y, z) ∈ E.

2. A priori estimate

The one-sided Nagumo condition plays an important role in the arguments. We observe
that it does not depend on the boundary values.

Definition 1. Given a subsetE ⊂ [a, b] × R3, a functionf : [a, b] × R3 → R is said to
satisfy one-sided Nagumo-type condition inE if there exists� ∈ C(R+

0 , [k, +∞[), with
k >0, such that

f (t, x, y, z)��(|z|), (5)

for all t ∈ [a, b] and all(t, x, y, z) ∈ E, and∫ +∞

0

s

�(s)
ds = +∞. (6)

In the next result we establish, under adequate conditions, an a priori bound for the second
derivativeu′′ of the solutions of Eq. (1).
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Lemma 2. Let�1, �2, �1, �2 ∈ C([a, b], R) satisfy

�1(t)��2(t) and �1(t)��2(t), ∀t ∈ [a, b]
and consider the set

E = {(t, x, y, z) ∈ [a, b] × R3 : �1(t)�x��2(t), �1(t)�y��2(t)}.
Let f : [a, b] × R3 → R be a continuous function that satisfies one-sided Nagumo-type
condition inE.

Then, for every�>0 there existsR >0 (depending on�1, �2, �, �) such that for every
solutionu(t) of

u′′′(t) = f (t, u(t), u′(t), u′′(t)) (7)

with

u′′(a)��, u′′(b)� − � (8)

and

�1(t)�u(t)��2(t), �1(t)�u′(t)��2(t), ∀t ∈ [a, b], (9)

we have

‖u′′‖∞ < R.

Proof. Consider�>0.
Let u be a solution of (7) such that (8) and (9) hold. Define the non-negative number

r := max

{
�2(b) − �1(a)

b − a
,
�2(a) − �1(b)

b − a

}
.

Assume that��r and suppose, by contradiction, that|u′′(t)| >� for everyt ∈]a, b[. If
u′′(t) >�, for everyt ∈]a, b[, then we obtain the following contradiction:

�2(b) − �1(a)�u′(b) − u′(a) =
∫ b

a

u′′(�)d�>

∫ b

a

�d�

�
∫ b

a

r d���2(b) − �1(a).

If u′′(t) < − �, for every t ∈]a, b[, a similar contradiction can be derived. So, there is
t ∈]a, b[ such that|u′′(t)|��. By (6) we can takeR1>� such that∫ R1

�

s

�(s)
ds > max

t∈[a,b] �2(t) − min
t∈[a,b] �1(t). (10)

If |u′′(t)|��, for everyt ∈ [a, b], then we have trivially|u′′(t)| < R1. If not, we can take
t1 ∈ [a, b[ such thatu′′(t1) < − � or t1 ∈]a, b] such thatu′′(t1) >�. Suppose the first case
holds. By (8) we can considert1< t̂1�b such that

u′′(̂t1) = −�, u′′(t) < − �, ∀t ∈ [t1, t̂1[.
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Applying a convenient change of variable we have, by (5) and (10),∫ −u′′(t1)

−u′′ (̂t1)

s

�(s)
ds =

∫ t1

t̂1

−u′′(t)
�(−u′′(t))

[−u′′′(t)]dt

=
∫ t̂1

t1

f (t, u(t), u′(t), u′′(t))
�(−u′′(t))

[−u′′(t)]dt

�
∫ t̂1

t1

[−u′′(t)]dt = u′(t1) − u′(̂t1)

� max
t∈[a,b] �2(t) − min

t∈[a,b] �1(t) <

∫ R1

�

s

�(s)
ds. (11)

Henceu′′(t1) > − R1. Sincet1 can be taken arbitrarily as long asu′′(t1) < − � we can
conclude that we have, for everyt ∈ [a, b[ such thatu′′(t) < − �,

u′′(t) > − R1.

By a similar way, it can be proved thatu′′(t) < R1, for everyt ∈]a, b] such thatu′′(t) >�.
Therefore,

|u′′(t)| < R1, ∀t ∈ [a, b]. (12)

Consider now the caser >� and takeR2 such that∫ R2

r

s

�(s)
ds > max

t∈[a,b] �2(t) − min
t∈[a,b] �1(t).

By (8) we cannot have|u′′(t)| > r, for everyt ∈ [a, b]. So, there ist ∈ [a, b] such that
|u′′(t)|�r.
If |u′′(t)|�r, for everyt ∈ [a, b], then it is trivial that|u′′(t)| < R2. If not, we can take

t1 ∈ [a, b[ such thatu′′(t1) < − r or t1 ∈]a, b] such thatu′′(t1) > r. Suppose the first case
holds. By (8) we can considert1< t̂1< b such that

u′′(̂t1) = −r, u′′(t) < − r, ∀t ∈ [t1, t̂1[.
Then computations similar to (11) with� andR1 replaced byr andR2, respectively,
yield ∫ −u′′(t1)

−u′′ (̂t1)

s

�(s)
ds <

∫ R2

r

s

�(s)
ds

and sou′′( t1) > − R2. Arguing in a similar way we derive as in (12):

|u′′(t)| < R2, ∀t ∈ [a, b].
TakingR =max{R1, R2} we have‖u′′‖∞ < R. �
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3. Two-point boundary value problem

Consider problem (1)–(2) wheref : [a, b] × R3 → R is a continuous function.
By a solution of the above problem we mean a functionu ∈ C3([a, b]) satisfying the

differential equation (1) and the boundary conditions (2).
Upper and lower solutions will be an important tool to obtain a priori bounds onu and

u′. For this problem we define them as follows.

Definition 3. A function � ∈ C3(]a, b[) ∩ C2([a, b]) is said to be a lower solution of
problem (1)–(2) if

�′′′(t)�f (t, �(t), �′(t), �′′(t)),

for t ∈]a, b[ and
�(a)�A, �′′(a)�B, �′′(b)�C.

A function� ∈ C3(]a, b[) ∩ C2([a, b]) is said to be an upper solution of problem (1)–(2)
if it satisfies the reversed inequalities.

Next theorem provides an existence and localization result for problem (1)–(2), since we
prove the existence of at least a solution and give some information about the strip where
the solution and the first derivative lie.

Theorem 4. Assume that there exist�, � ∈ C3(]a, b[) ∩ C2([a, b]) lower and upper solu-
tions of problem(1)–(2),respectively, such that

�′(t)��′(t), ∀t ∈ [a, b]. (13)

Define the set

E∗ = {(t, x, y, z) ∈ [a, b] × R3 : �(t)�x��(t), �′(t)�y��′(t)}. (14)

Letf : [a, b]×R3 → R be a continuous function that satisfies the one-sided Nagumo-type
condition inE∗ and such that

f (t, �(t), y, z)�f (t, x, y, z)�f (t,�(t), y, z), (15)

for (t, y, z) ∈ [a, b] × R2 and�(t)�x��(t).
Then problem(1)–(2)has at least a solutionu ∈ C3([a, b]) such that

�(t)�u(t)��(t) and �′(t)�u′(t)��′(t), ∀t ∈ [a, b].

Remark 1. The relation�(t)��(t) is obtained by integrating (13) and using the boundary
conditions of Definition 3.

Proof. For	 ∈ [0,1], consider the modified problem
u′′′(t) = 	f (t, �(t, u(t)), �∗(t, u′(t)), u′′(t)) + u′(t) − 	�∗(t, u′(t)), (16)
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with the boundary conditions

u(a) = 	A,

u′′(a) = 	[B + u′(a) − �∗(a, u′(a))],
u′′(b) = 	[C − u′(b) + �∗(b, u′(b))], (17)

where the functions�, �∗ : R2 → R are given by

�(t, x) =
{�(t) if x >�(t),

x if �(t)�x��(t),

�(t) if x < �(t),

and

�∗(t, y) =
{�′(t) if y >�′(t),

y if �′(t)�y��′(t),
�′(t) if y < �′(t).

(18)

Taker1>0 such that, for everyt ∈ [a, b],
−r1< �′(t)��′(t) < r1, (19)

f (t, �(t), �′(t),0) − r1 − �′(t) <0, (20)

f (t,�(t),�′(t),0) + r1 − �′(t) >0, (21)

B − �′(a) < r1, −C − �′(b) < r1,

�′(a) − B < r1, C + �′(b) < r1. (22)

Step1: Every solutionu of problem (16)–(17) satisfies in[a, b]:
|u′(t)| < r1 and |u(t)| < r0,

with r1 given above andr0 = |A| + r1(b − a), independent of	 ∈ [0,1].
Let u be a solution of problem (16)–(17). Assume, by contradiction, that there exists

t ∈ [a, b] such that eitheru′(t)�r1 oru′(t)� −r1. Suppose that the first case holds. Define

max
t∈[a,b] u′(t) := u′(t0) (�r1>0).

If t0 ∈]a, b[, thenu′′(t0) = 0 andu′′′(t0)�0. Hence, for	 ∈]0,1], by (15), (19) and (21)
we have the following contradiction:

0�u′′′(t0)
= 	f (t0, �(t0, u(t0)), �∗(t0, u′(t0)), u′′(t0)) + u′(t0) − 	�∗(t0, u′(t0))
= 	f (t0, �(t0, u(t0)),�

′(t0),0) + u′(t0) − 	�′(t0)
�	f (t0, �(t0, u(t0)),�

′(t0),0) + r1 − 	�′(t0)
�	[f (t0,�(t0),�

′(t0),0) + r1 − �′(t0)] >0
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and, for	 = 0,

0�u′′′(t0) = u′(t0)�r1>0.

If t0 = a then

max
t∈[a,b] u′(t) := u′(a) (�r1>0),

andu′′(a+) = u′′(a)�0. If 	 = 0 thenu′′(a) = 0 and sou′′′(a)�0. Therefore, the above
computations witht0 replaced bya yield a contradiction. For	 ∈]0,1], by (18) and (22),
we get the following contradiction:

0�u′′(a) = 	[B + u′(a) − �∗(a, u′(a)] = 	[B + u′(a) − �′(a)]
> 	[u′(a) − r1]�0.

The caset0 = b is analogous. Thus,u′(t) < r1, for everyt ∈ [a, b]. In a similar way, we
prove thatu′(t) > − r1, for everyt ∈ [a, b].
Furthermore, sinceu(a) = 	A, the estimate|u(t)| < r0, wherer0 := |A|+ r1(b − a), is

easily obtained by integration.
Step2: There existsR >0 such that every solutionu of problem (16)–(17) satisfies in

[a, b]
|u′′(t)| < R

independent of	 ∈ [0,1].
Consider the set

E∗∗ := {(t, x, y, z) ∈ [a, b] × R3 : −r0�x�r0, −r1�y�r1},
and the functionF	 : [a, b] × R3 → R defined by

F	(t, x, y, z) = 	f (t, �(t, x), �∗(t, y), z) + y − 	�∗(t, y). (23)

Sincef satisfies one-sided Nagumo-type condition inE∗, consider the function� ∈ C(R+
0 ,

[k, +∞[) such that (5) and (6) hold withE replaced byE∗. Thus, for(t, x, y, z) ∈ E∗∗, we
have, by (18) and (19),

F	(t, x, y, z) = 	f (t, �(t, x), �∗(t, y), z) + y − 	�∗(t, y)

�	�(|z|) + r1 − �′(t)��(|z|) + 2r1.

Take�(z) := �(|z|) + 2r1 then∫ +∞

0

s

�(s)
ds =

∫ +∞

0

s

�(|s|) + 2r1
ds� 1

1+ 2r1/k

∫ +∞

0

s

�(|s|) ds,

and so�(z) satisfies (6). Therefore,F	 satisfies the one-sided Nagumo-type condition in
E∗∗ with �(z) replaced by�(z), independent of	.
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Moreover, for� := 2r1 every solutionu of (16)–(17) satisfies

u′′(a) = 	[B + u′(a) − �∗(a, u′(a)]�	[B + u′(a) − �′(a)]�2r1 = �,

u′′(b) = 	[C − u′(b) + �∗(b, u′(b))]�	[C − u′(b) + �′(b)]� − 2r1 = −�.

Defining

�1(t) := −r0 = −|A| − r1(b − a),

�2(t) := r0 = |A| + r1(b − a),

�1(t) := −r1 and �2(t) := r1,

the hypotheses of Lemma 2 are satisfied withE replaced byE∗∗ so there existsR >0,
depending onr1 and�, such that|u′′(t)| < R, for every t ∈ [a, b]. As r1 and� do not
depend on	, we conclude that the estimate|u′′(t)| < R is also independent of	.
Step3: For	 = 1, there exists at least one solutionu1(t) for problem (16)–(17).
Define the operators

L : C3([a, b]) ⊂ C2([a, b]) �−→ C([a, b]) × R3

and

N	 : C2([a, b]) �−→ C([a, b]) × R3

by

Lu = (u′′′ − u′, u(a), u′′(a), u′′(b)),

and

N	 u = (	f (t, �(t, u(t)), �∗(t, u′(t)), u′′(t)) − 	�∗(t, u′(t)), A	, B	, C	),

with

A	 = 	A,

B	 = 	[B + u′(a) − �∗(a, u′(a)],
C	 = 	[C − u′(b) + �∗(b, u′(b))].

Observe thatL has a compact inverse. Therefore, we can consider the completely
continuous operator

T	 : (C2([a, b]), R) �−→ (C2([a, b]), R)

defined by

T	(u) = L−1N	(u).

ForRgiven by Step 2, take the set


 = {x ∈ C2([a, b]) : ‖x‖∞ < r0, ‖x′‖∞ < r1, ‖x′′‖∞ < R}.
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BySteps1and2, for everyusolution of (16)–(17),u /∈ �
and so thedegreed(I−T	,
,0)
is well defined for every	 ∈ [0,1] and due to the invariance under homotopy

d(I − T0,
,0) = d(I − T1,
,0).

Since the equationT0(x) = x, equivalent to the problem{
u′′′(t) − u′(t) = 0,
u(a) = 0, u′′(a) = 0, u′′(b) = 0,

has only the trivial solution then, by the degree theory,

d(I − T0,
,0) = ±1.

So, the equationT1(x) = x has at least a solution and therefore the equivalent problem

u′′′(t) = f (t, �(t, u(t)), �∗(t, u′(t)), u′′(t)) + u′(t) − �∗(t, u′(t)),

u(a) = A,

u′′(a) = B + u′(a) − �∗(a, u′(a)),

u′′(b) = C − u′(b) + �∗(b, u′(b)),

has at least a solutionu1(t) in 
.
Step4: The functionu1(t) is a solution of (1)–(2), too.
Indeed, the solutionu1(t) of the above problemwill also be a solution of problem (1)–(2)

since it satisfies

�(t)�u1(t)��(t), �′(t)�u′
1(t)��′(t), ∀t ∈ [a, b].

Suppose, by contradiction, that there existst ∈ [a, b] such that
�′(t) > u′

1(t)

and define

min
t∈[a,b] [u

′
1(t) − �′(t)] := u′

1(t2) − �′(t2) <0.

If t2 ∈]a, b[ thenu′′
1(t2)=�′′(t2)andu′′′

1 (t2)−�′′′(t2)�0.Therefore, by (15)andDefinition
3, we have the contradiction:

0�u′′′
1 (t2) − �′′′(t2)

�f (t2, �(t2, u1(t2)), �′(t2), u′′
1(t2)) + u′

1(t2) − �′(t2)
− f (t2, �(t2), �′(t2), �′′(t2))

< f (t2, �(t2, u1(t2)), �′(t2), �′′(t2)) − f (t2, �(t2), �′(t2), �′′(t2))�0. (24)

If t2 = a we have

min
t∈[a,b] [u

′
1(t) − �′(t)] := u′

1(a) − �′(a) <0
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and

u′′
1(a) − �′′(a) = u′′

1(a
+) − �′′(a+)�0.

By Definition 3 this yields a contradiction

�′′(a)�u′′
1(a) = B + u′

1(a) − �∗(a, u′
1(a))

= B + u′
1(a) − �′(a) < B ��′′(a).

Thent2 �= a and, in a similar way, we prove thatt2 �= b. Thus

�′(t)�u′
1(t), ∀t ∈ [a, b].

Using an analogous technique, it can be obtained thatu′
1(t)��′(t), for everyt ∈ [a, b].

From

�′(t)�u′
1(t)��′(t), ∀t ∈ [a, b]

by integration we have

�(t)�u1(t)��(t), ∀t ∈ [a, b].
Therefore,u1 is in fact a solution of problem (1)–(2).�

4. Separated boundary value problem

Consider now problem (1)–(3) withf : [a, b] × R3 → R a continuous function and
ci ∈ R+, for i = 1, . . . ,4,A, B, C ∈ R.
The following lowerandupper solutionsdefinitionwill beanessential tool in theapproach

that follows.

Definition 5. Considerci ∈ R+, for i = 1, . . . ,4 andA, B, C ∈ R.
A function� ∈ C3(]a, b[) ∩ C2([a, b]) is said to be a lower solution of problem (1)–(3)

if

�′′′(t)�f (t, �(t), �′(t), �′′(t)),

for t ∈]a, b[ and
�(a)�A,

c1�′(a) − c2�′′(a)�B,

c3�′(b) + c4�′′(b)�C. (25)

A function� ∈ C3(]a, b[) ∩ C2([a, b]) is said to be an upper solution of problem (1)–(3)
if it satisfies the reversed inequalities.

We are now in position to state and prove an existence and location result for problem
(1)–(3).
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Theorem 6. Assume that there are�,� ∈ C3(]a, b[)∩C2([a, b]) lower andupper solutions
of problem(1)–(3),respectively, such that

�′(t)��′(t), ∀t ∈ [a, b]
and consider the setE∗ defined in(14).
Letf : [a, b] × R3 → R be a continuous function that satisfies the one-sided Nagumo-

type condition inE∗ and(15).
Then problem(1)–(3)has at least a solutionu ∈ C3([a, b]) such that

�(t)�u(t)��(t) and �′(t)�u′(t)��′(t), ∀t ∈ [a, b].

Proof. For	 ∈ [0,1], consider themodified problem composed by the differential equation
(16) with the boundary conditions

u(a) = 	A,

u′′(a) = 	
c2

[c1u′(a) − B],

u′′(b) = 	
c4

[C − c3u
′(b)]. (26)

Taker1>0 such that, for everyt ∈ [a, b], (19)–(21) hold and
|B|
c1

< r1,
|C|
c3

< r1. (27)

Step1: Every solutionu of problem (16)–(26) satisfies in[a, b]
|u′(t)| < r1 and |u(t)| < r0,

with r0 = |A| + r1(b − a), independent of	 ∈ [0,1];
Let u be a solution of problem (16)–(26).
Assume, by contradiction, that there existst ∈ [a, b] such that eitheru′(t)�r1 or

u′(t)� − r1. Suppose that the first case holds. Defining

max
t∈[a,b] u′(t) := u′(t0) (�r1>0)

and following the arguments of Theorem 4, Step 1, it can be shown thatt0 /∈]a, b[. If t0=a,
then

max
t∈[a,b] u′(t) := u′(a) (�r1>0)

andu′′(a+) = u′′(a)�0. For	 = 0 we haveu′′(a) = 0,u′′′(a)�0 and therefore we obtain
the contradiction

0�u′′′(a) = u′(a)�r1>0.

For	 ∈]0,1], by (27), sincec1c2>0, we have the following contradiction:

0�u′′(a) = 	
c2

[c1u′(a) − B]� 1

c2
[c1r1 − B] >0.
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The arguments are similar to show thatt0 �= b. Then,u′(t) < r1, for every t ∈ [a, b].
Analogously, it can be proved thatu′(t) > − r1, for everyt ∈ [a, b].
Thus,|u′(t)| < r1, for everyt ∈ [a, b], and the estimate|u(t)| < r0, wherer0 := |A| +

r1(b − a), is easily obtained by integration.
Step 2: There existsr2>0 such that every solutionu of problem (16)–(26) satisfies in

[a, b]
|u′′(t)| < r2

independent of	 ∈ [0,1].
Consider the set

E∗∗ := {(t, x, y, z) ∈ [a, b] × R3 : −r0�x�r0, −r1�y�r1},
and the functionF	 : E∗∗ → R given by (23).
Defining�(z) := �(|z|) + 2r1 and following previous arguments it is easy to see that

F	 satisfies the one-sided Nagumo-type condition inE∗∗ with �(z) replaced by�(z), in-
dependent of	.
Moreover, for

� := max

{
c1r1 + |B|

c2
,
c3r1 + |C|

c4

}
every solutionu of problem (16)–(26) satisfies

u′′(a) = 	
c2

[c1u′(a) − B] <
c1r1 + |B|

c2
��,

u′′(b) = 	
c4

[C − c3u
′(b)] > − c3r1 + |C|

c4
� − �.

Defining

�1(t) := −r0, �2(t) := r0,

�1(t) := −r1 and �2(t) := r1,

assumptions of Lemma 2 are satisfied withE replaced byE∗∗ and there existsr2>0,
depending onr1 and� but independent of	, such that

|u′′(t)| < r2, ∀t ∈ [a, b].
Step3: There exists at least a solutionu1(t) for problem (16)–(26), for	 = 1.
The proof of this statement is parallel to the proof of Step 3 of Theorem 4 with obvious

modifications due to the boundary conditions.
Step4: This functionu1(t) is a solution of (1)–(3) too.
As in Step 4 of Theorem 4 the statement follows from the fact that

�(t)�u1(t)��(t), �′(t)�u′
1(t)��′(t), ∀t ∈ [a, b].
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Assuming by contradiction that there existst2 ∈ [a, b] such that
min

t∈[a,b] [u
′
1(t) − �′(t)] := u′

1(t2) − �′(t2) <0

it can be derived, as in (24), thatt2 /∈]a, b[. If t2 = a we have

min
t∈[a,b] [u

′
1(t) − �′(t)] := u′

1(a) − �′(a) <0,

u′′
1(a) − �′′(a) = u′′

1(a
+) − �′′(a+)�0

and by (25), sincec2>0, this yields to the contradiction:

0�u′′
1(a) − �′′(a) = c1

c2
u′
1(a) − 1

c2
[B + c2�′′(a)]

� c1

c2
[u′

1(a) − �′(a)] <0.

Thent2 �= a and, analogously, we prove thatt2 �= b. Therefore,

�′(t)�u′
1(t), ∀t ∈ [a, b].

Using a similar technique, it can be deduced thatu′
1(t)��′(t), for all t ∈ [a, b] and by

integration

�(t)�u1(t)��(t),

for everyt ∈ [a, b]. �

Remark 2. Theorems analogous to the existence and localization results presented here
can be obtained if the reversed one-sided Nagumo condition is assumed, i.e.

f (t, x, y, z)� − �(|z|), ∀(t, x, y, z) ∈ E,

with adequate modifications.

5. Examples

The following examples not only illustrate the applicability of Theorems 4 and 6, re-
spectively, but also prove that the nonlinearities considered satisfy the one-sided Nagumo
condition and do not satisfy the two-sided Nagumo.

Example 1. Let �(z) = (6+ 4 sgn(z))/(5− sgn(z)), where

sgn(z) =
{1, z >0,
0, z = 0,
−1, z <0,

A, C ∈ R and consider the boundary value problem

u′′′(t) = −2[u3(t) + 1][1− u′(t)]2 − [u′′(t)]�(u′′(t)), (28)

u(0) = A, u′′(0) = 0, u′′(1) = C, (29)
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If A ∈ [0,1] andC ∈ [−1,0] then the functions�, � : [0,1] → R given by

�(t) = − t3

6
and �(t) = 1+ t

are, respectively, lower and upper solutions of (28)–(29), according to Definition 3. The
nonlinearity

f (t, x, y, z) =
{−2(x3 + 1)(1− y)2 − √

z5 if z�0,
−2(x3 + 1)(1− y)2 − 3

√
z if z <0

is continuous in[0,1]×R3, satisfies assumptions (15) and the one-sidedNagumo condition
with

�(z) = 1+ 3
√|z|,

for every(t, x, y, z) ∈ E, where

E =
{
(t, x, y, z) ∈ [0,1] × R3 : − t3

6
�x�1+ t, − t2

2
�y�1

}
.

Therefore, by Theorem 4, there is at least a solutionu(t) of problem (28)–(29) such that,
for everyt ∈ [0,1],

− t3

6
�u(t)�1+ t and − t2

2
�u′(t)�1.

Notice that the functionf (t, x, y, z) = −(x3 + 1)(1− y)2 − z�(z) does not satisfy the
two-sided Nagumo-type condition of[7].

Example 2. Consider now the problem

u′′′(t) = −[u(t) + 1][u′(t)]2 − [u′′(t)]4, (30)

u(0) = 0, u′(0) − u′′(0) = B, u′(1) + u′′(1) = C, (31)

with B, C ∈ R. The nonlinearity

f (t, x, y, z) = −(x + 1)y2 − z4

is continuous in[0,1]× R3. If B, C ∈ [−1,0] then the functions�, � : [0,1] → R defined
by

�(t) = −t and �(t) = 0

are, respectively, lower and upper solutions of (30)–(31). Moreover, defining

E = {(t, x, y, z) ∈ [0,1] × R3 : −t �x�0, −1�y�0},
f satisfies condition (15) and the one-sided Nagumo condition with�(z) = 1, inE.
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Therefore, by Theorem 6, there is at least a solutionu(t) of problem (30)–(31) such that,
for everyt ∈ [0,1],

−t �u(t)�0 and − 1�u′(t)�1.

Observe that, like in first example, the function

f (t, x, y, z) = −(x + 1)y2 − z4

does not satisfy the two-sided Nagumo condition.
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