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On the solvability of a boundary value problem for a fourth-order
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Abstract

We study the existence and multiplicity of nontrivial periodic solutions for a semilinear fourth-order ordinary
differential equation arising in the study of spatial patterns for bistable systems. Variational tools such as the
Brezis–Nirenberg theorem and Clark theorem are used in the proofs of the main results.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we study the existence and multiplicity of periodic solutions of a fourth-order ordinary
differential equation of the form

uiv + Au′′ + Bu + f (x, u) = 0, (1)

where A and B are constants andf (x, u) is a continuous function, defined inR2, whose potential
F(x, u) = ∫ u

0 f (x, t) dt satisfies suitable assumptions. The problem is motivated by the study of
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formation of spatial periodic patterns in bistable systems. Recently, interest has turned to the fourth-order
parabolic differential equation, involving bistable dynamics, such as the extended Fisher–Kolmogorov
(EFK) equation proposed by Coullet, Elphick & Repaux in 1987 and Dee & VanSaarlos in 1988, and
the Swift–Hohenberg (SH) equation proposed in 1977. With appropriate changes of variables, stationary
solutions of these equations lead to the equation

uiv − pu′′ − u + u3 = 0, (2)

in which p > 0 corresponds to the EFK equation andp < 0 to the SH equation. In this note we are
interested in the existence of 2L periodic solutions of Eq. (1) which is a generalization of Eq. (2). We
consider the solvability of the boundary value problem(P) for Eq. (1) with boundary conditions

u(0) = u(L) = u′′(0) = u′′(L) = 0. (3)

The solvability of (P) for some extension of Eq. (2) was studied in [1,3,4,7–11] by variational
methods. We suppose thatf (x, 0) = 0,∀x ∈ R and the potentialF(x, u) = ∫ u

0 f (x, s) ds satisfies
the following assumptions:

(H1) There is anumberp > 2 and for each bounded intervalI there is a constantc > 0 such that

F(x, u) ≥ c|u|p, ∀x ∈ I ,∀u ∈ R,

and
(H2) F(x, u) = o(u2) asu → 0, uniformly with respect tox in bounded intervals.
A typical example which satisfies(H1) and(H2) is f (x, u) = b(x)u|u|p−2, p > 2, whereb(x) is a

continuous, positive function.
The problem (P) has a variational structure and its solutions can be found as critical points of the

functional

I (u; L) := 1

2

∫ L

0
(u′′2 − Au′2 + Bu2) dx +

∫ L

0
F(x, u) dx (4)

in the Sobolev spaceX(L) := H2(0, L) ∩ H1
0 (0, L). In this work we obtain nontrivial critical points of

the functionalI using Brezis–Nirenberg’s linking theorem and Clark’s theorem (see [2,5,6]).
It is easy to see that if 4B ≥ A2 and f (x, u)u > 0 for x ≥ 0 andu �= 0 theproblem(P) has only

the trivial solution. We shall assume 4B < A2 and study separately the casesA ≤ 0 (EFK equation) and
A > 0 (SH equation). Our main results are:

Theorem 1. Let 4B < A2, A ≤ 0, set L1 := π
√

2√
A+

√
A2−4B

for B < 0 and let the function F(x, u) satisfy

the assumptions(H1) and(H2).
(a) If B < 0 and L > L1 the problem(P) has at least two nontrivial solutions. If moreover F(x, ·) is

even for each fixed x and L> nL1 there exist n distinct pairs of nontrivial solutions of(P).
(b) Let F(x, ·) be convex for each fixed x. Then the problem(P) has only the trivial solution provided

that either(i) B ≥ 0 or (ii) B < 0 and0 < L ≤ L1.

Theorem 2. Let 4B < A2, A > 0, set L1 := π
√

2√
A+

√
A2−4B

and hn =
(

(n2+n)A

2n2+2n+1

)2
, n ∈ N ∪ {0}, and let

the function F(x, u) satisfy the assumptions(H1) and(H2).
(a) If B ≤ 0 and L > L1 the problem(P) has at least two nontrivial solutions. If in addition F(x, ·)

is even for each fixed x and L> nL1 there exist n distinct pairs of nontrivial solutions of(P).
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(b) If B > 0, M1 := π
√

2√
A−

√
A2−4B

and L ∈ ]nL1, nM1[ the problem(P) has at least two nontrivial

solutions. If in addition F(x, ·) is even for each fixed x, k∈ N and n> k
2

(
A+√

4B√
A2−4B

− 1

)
, theproblem

(P) has k+ 1 pairs of nontrivial solutions if L∈ ](n + k)L1, nM1[.
(c) If F (x, ·) is convex for each fixed x the problem(P) has only the trivial solution provided that one

of the following holds:(i) B ≤ 0 and0 < L < L1, or (ii) hn < B ≤ hn+1 and L ∈ Tn+1 where Tn+1 is
a finite union of bounded intervals.

2. Sketch of proofs

A weak solution of the problem(P) is a functionu ∈ X(L), such that∫ L

0
(u′′v′′ − Au′v′ + Buv + f (x, u)v) dx = 0, ∀v ∈ X(L).

Onecan prove that a weak solution of(P) is a classical solution of(P) (see [11], Proposition 1). Weak
solutions of(P) are critical points of the functionalI : X(L) → R

I (u; L) := 1

2

∫ L

0
(u′′2 − Au′2 + Bu2) dx +

∫ L

0
F(x, u) dx. (5)

The following lemmas play an important role in further considerations.

Lemma 1. Thescalar product

〈u, v〉 =
∫ L

0
u′′v′′ dx, u ∈ X(L), v ∈ X(L)

induces an equivalent norm in X(L). Theset of functions
{
sin
(

nπx
L

) : n ∈ N
}

is a complete orthogonal
basis in X(L).

Lemma 2. Let A, B beconstants and f(x, u) be a continuous function such that(H1) holds. Then the
functional I is bounded from below, coercive and it satisfies the(PS) condition.

Proof of Theorem 1. The polynomial p(ξ) = ξ4 − Aξ2 and the real functionspn(L) = p
(

nπ
L

)
play

an important role in the following. LetA ≤ 0. The polynomialp(ξ) is a positive increasing and
convex function forξ > 0. The functionspn(L) are positive decreasing functions for everyn ∈ N
and pn(L) → +∞, asL → 0, and pn(L) → 0, asL → +∞. They areordered 0< p1(L) <

p2(L) < · · · < pn(L) < · · · for every L > 0. The graphs of functionspn(L) with A = −1 and
n = 1, 2, 3 are presented inFig. 1. Let B < 0. The equationpn(L) + B = 0 has theunique solution
Ln = nL1, L1 := π

√
2√

A+
√

A2−4B
and

pn(L) + B ≥ 0 if L ≤ nL1, (6)

pn(L) + B < 0 if L > nL1. (7)

Step 1. Nontrivial solutions.
Let L > L1. There exists a natural numbern such thatnL1 < L ≤ (n + 1)L1. Let ϕn ∈ En =

sp
{
sin πx

L , . . . , sin nπx
L

}
so thatϕn(x) = ∑n

k=1 ck sin
(

kπx
L

)
, and set c2

1 + · · · + c2
n = ρ2. We have

I (ϕn; L) < 0, for sufficiently smallρ > 0. Letu ∈ E⊥
n and‖u‖ ≤ ρ. It follows that pn+1(L) + B ≥ 0
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Fig. 1. Graphs of functionspn(L) = (nπ
L

)4 + (nπ
L

)2
, n = 1, 2, 3.

Fig. 2. Graphs of functionspn(L) = (nπ
L

)4 − (nπ
L

)2
, n = 1, 2, 3.

if nL1 < L ≤ (n + 1)L1 by (6). Since pn+1(L) < pn+2(L) < · · ·, by assumption(H1) there exists
C(L) > 0 such that I (u; L) ≥ 1

2(pn+1(L) + B)‖u‖2
L2 + C(L)‖u‖p

L2(0,L)
≥ 0, if u ∈ E⊥

n . The functional
I satisfies the(PS) condition. In view of Brezis–Nirenberg’s linking theorem (see [2]), for L > L1 the
functional I has at least two nontrivial critical points. Suppose that the functionF(x, u) is even with
respect tou. Then I is an even functional and by Clark’s theorem (see [11]) for L > nL1 there exist at
leastn pairs of nontrivial critical points ofI .

Step 2. Trivial solutions.
Let F be a convex function,B < 0 and 0 < L ≤ L1. We have seen thatp1(L) + B ≥ 0. As

P
(

kπ
L

) ≥ p1(L) + B ≥ 0 we inferthat the quadratic summand inI (u; L) is non-negative, hence it is a
convex quadratic form. Then, ifB < 0 and 0< L ≤ L1 the functionalI is convex, positive foru �= 0,
and its only critical point is zero. IfB ≥ 0 thesame argument applies for everyL > 0, which completes
the proof ofTheorem 1. �

Proof of Theorem 2. Step 1. Nontrivial and trivial solutions in the case B≤ 0. Let A > 0. The
polynomial p(ξ) = ξ4 − Aξ2 is positive forξ >

√
A and it has a negative minimump0 = − A2

4 at

ξ0 =
√

A
2 . The functionspn(L) are decreasing if 0< L < nπ

√
2/A and increasing ifL > nπ

√
2/A,

pn(L) > 0 if 0 < L < nπ/
√

A and pn(L) < 0 if L > nπ/
√

A. Thegraphs of functionspn(L) with
A = 1 andn = 1, 2, 3 are presented inFig. 2. Onecan show thatpk(L)+ B < 0 iff L > kL1. If L > L1

there exists a natural numbern such thatnL1 < L ≤ (n + 1)L1 and pk(L) + B ≥ 0, k = 1, . . . , n and
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pk(L) + B ≥ 0, k ≥ n + 1. In this case the proof is finished exactly as in the proof ofTheorem 1,
Step 1 fornontrivial solutions and Step 2 for trivial solutions.

Step 2. Nontrivial solutions in the case B> 0. Let∆n = ]nL1, nM1[. Observe thatL ∈ ∆n ∩ ∆n+k iff
(n + k)L1 < L < nM1 which implies

n >
k

2

(
A + √

4B√
A2 − 4B

− 1

)
. (8)

Hence, givenn ∈ N, if k ∈ N is the largest integer satisfying (8) the conditionL ∈ ∆n ∩ ∆n+k is
equivalent to the set of inequalitiespj (L) + B < 0, j ∈ {n, n + 1, . . . , n + k} and pj (L) + B ≥ 0, j �∈
{n, n + 1, . . . , n + k}. Let

Ek+1 := sp

{
sin
(nπx

L

)
, sin

(
(n + 1) πx

L

)
, . . . , sin

(
(n + k) πx

L

)}
.

With a computation similar to the Step 1 in the proof ofTheorem 1one can show thatI has a local
linking at 0. ThenI has at least two nontrivial critical points by the Brezis–Nirenberg theorem. LetF
be even with respect tou and L ∈ ∆n ∩ ∆n+k. We have sup{I (u; L) : u ∈ Ek+1, ‖u‖ ≤ ρ} < 0 for
sufficiently smallρ. Then, by Clark’s theorem there exist at leastk + 1 nontrivial pairs of critical points
of the functionalI .

Step 3. Trivial solutions in the case B> 0. We consider the solvability of the inequality

q(L) + B ≥ 0, (9)

whereq(L) = inf{pn(L) : n ∈ N}. Let 0< B ≤ (
4
25

)
A2 = h1 and

T1 :=
{]0, L1], B < h1

]0, L1] ∪ {l1}, B = h1.
(10)

If B ≤ h1, the inequality (9) holds iff L ∈ T1. Let l0 = 0, hn < B < hn+1 and

Dn+1 =]0, L1] ∪ [M1, 2L1] ∪ · · · ∪ [nM1, (n + 1)L1].
Let

Tn+1 :=
{

Dn+1, hn < B < hn+1,

Dn+1 ∪ {ln+1} , B = hn+1.
(11)

If hn < B ≤ hn+1 the inequality (9) is satisfied iff L ∈ Tn+1. Let F be convex in the second variable
and L ∈ Tn if hn < B ≤ hn+1. With an argument used in the proof ofTheorem 1, we conclude
that I is convex, positive foru �= 0. Its only critical point is zero, and this completes the proof of
Theorem 2. �

Acknowledgments

This work is partially supported by Fundação para Ciência e a Tecnologia and Grant MM 904/99,
Bulgarian National Research Foundation, and Grant 2003-PF-03, University of Rousse.



444 M.R. Grossinho et al. / Applied Mathematics Letters 18 (2005) 439–444

References

[1] G.J.B. van den Berg, L.A. Peletier, W.C. Troy, Global branches of multy bump periodic solutions of Swift–Hohenberg
equation, Arch. Ration. Mech. Anal. 158 (2001) 91–153.

[2] H. Brezis, L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math. XLIV (1991) 939–963.
[3] J.V. Chaparova, Existence and numerical approximations of periodic solutions of semilinear fourth-order differential

equations, J. Math. Anal. Appl. 273 (2002) 121–136.
[4] J.V. Chaparova, L.A. Peletier, S.A. Tersian, Existence and nonexistence of nontrivial solutions of fourth and sixth order

ODE, Adv. Differential Equations 8 (2003) 1237–1258.
[5] D.C. Clark, A variant of the Lyusternik-Schnirelmann theory, Indiana Univ. Math. J. 22 (1972) 65–74.
[6] M.R. Grossinho, S.A. Tersian, An Introduction to Minimax Theorems and Their Applications Differential Equations,

Kluwer Academic Press, 2001.
[7] L .A. Peletier, W.C. Troy, Spatial Patterns: Higher Order Models in Physics and Mechanics, Birkhäuser, Boston, 2001.
[8] L.A. Peletier, W.C. Troy, V. der Vorst, Stationary solutions of a fourth-order nonlinear diffusion equation, Differ. Equ. 31

(2) (1995) 301–314.
[9] L.A. Peletier, V. Rottschäfer, Large time behavior of solutions of the Swift-Hohenberg equation, C. R. Acad. Sci. Paris

Sér. I Math. 336 (2003) 225–230.
[10] L.A. Peletier, V. Rottschäfer, Pattern selection of solutions of the Swift-Hohenberg equation, Physica D (in press).
[11] S.A. Tersian, J.V. Chaparova, Periodic and homoclinic solutions of extended Fisher-Kolmogorov equation, J. Math. Anal.

Appl. 266 (2001) 490–506.


	On the solvability of a boundary value problem for a fourth-order ordinary differential equation
	Introduction
	Sketch of proofs
	Acknowledgments
	References


