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Abstract

We study the existence and multiplicity of nontrivial periadilutions for a semilinear fourth-order ordinary
differential equation arising in the study of spatial patterns for bistable systems. Variational tools such as the
Brezis—Nirenberg theorem and Clark theorem are used in the proofs of the main results.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we study the existence and multiplicity of periodic solutions of a fourth-order ordinary
differential equation of the form
u' + AU + Bu+ f(x,u) =0, (1)

where A and B are constants and (x, u) is a continuous function, defined R?, whose potential
Fx,u) = fou f(x,t)dt satisfies suitable assumptions. The problem is motivated by the study of
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formation of spatial periodic patterns in bistable systems. Recently, interest has turned to the fourth-order
parabolic differential equation, involving bistable dynamics, such as the extended Fisher—Kolmogorov
(EFK) equation proposed by Coullet, Elphick & Repaux in 1987 and Dee & VanSaarlos in 1988, and
the Swift-Hohenberg (SH) equation proposed in 1977. With appropriate changes of variables, stationary
solutions of these equations lead to the equation

uiv_ pU//—U+U3:0, (2)

in which p > 0 corresponds to the EFK equation apd< 0 to the SH gquation. In this note we are
interested in the existence of Zoeriodic solutions of Eqg.1) which is a g¢neralization of Eq.4). We
consider the solvability of the boundary value problé®) for Eq. (1) with boundary conditions

u(0) =u(L) =u"(0) =u’(L) =0. (3)

The olvability of (P) for some extension of Eq2) was studied in [1,3,4,7-11] by variational
methods. We suppose thdt(x, 0) = 0,Vx € R and the potentiaF (x, u) = fou f (x, s) ds satisfies
the following assumptions:

(Hy) There is anumberp > 2 and for each bounded intervalthere is a constarmt > 0 such hat

F(x,u) > clu|P, vx el,VueR,

and

(Ho) F(x,u) = o(u?) asu — 0, uniformly with respect tx in bounded intervals.

A typical example which satisfigdd;) and (H,) is f (x, u) = b(x)ulu|P~2, p > 2, whereb(x) is a
continuous, positive function.

The poblem (P) has a variational structure and its solutions can be found as critical points of the
functional

1 L L
l(u;L) = 5/ (U2 — Au? 4+ BU?) dx +/ F(x, u) dx (4)
0 0

in the Sobolev spac¥ (L) := H2(0, L) N Hc-}(O, L). In this work we obtain nontrivial critical points of
the functionall using Brezis—Nirenberg’s linking theorem and Clark’s theorem (8¢&¢9]).

It is easy to see that if@ > A and f (x, u)u > 0 for x > 0 andu # 0 theproblem(P) has only
the trivial solution. We shall assumd4< A? and study separately the cas®s: 0 (EFK equatbn) and
A > 0 (SH guation). Our main results are:

Theorem 1. Let4B < A2, A<0,set Ly = V2 for B < 0and let the function Fx, u) satisfy

V At/ A2—4B
the assumptionéH;) and (Hy).

(@ If B < 0and L > L, the problem(P) has at least two nontrivial solutions. If moreove()§ ) is
even for each fixed x and & nL; there exist n distinct pairs of nontrivial solutions @).

(b) Let F(x, -) be convex for each fixed x. Then the probld has only the trivial solution provided
that either(i) B> Oor (ii) B <0and0 < L < L;.

2 2
Theorem 2. Let4B < A2, A > 0, set Ly = ﬁ and h, = (%) ,n e NU{0}, and let
+,/ —

the function Rx, u) satisfy the assumptior($i;) and (Hy).
(@ If B <0and L > L, the problem(P) has at least two nontrivial solutions. If in addition(¥, -)
is even for each fixed x and £ nL, there exist n distinct pairs of nontrivial solutions @®).
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b)IfB >0 M; = 72 gndLe InLy, nMq[ the problem(P) has at least two nontrivial
A—+/ A2—-4B
. . - N . k( _Atv4B
solutions. If in addition KX, -) is even for each fixed x, & Nand n> 3 (m 1), the problem

(P) has k+ 1 pairs of nontrivial solutions if Le 1(n + K)L1, nMy[.

(o) If F(x, -) is convex for each fixed x the probl€) has only the trivial solution provided that one
of the following holdsii) B <0andO < L < Ly, or (ii) hy < B <hp,;and L e T,.; where .1 is
afinite union of bounded intervals.

2. Sketch of proofs

A weak solution of the problergP) is a functionu € X(L), such hat
L
/ (u"v” — AUV + Buv + f(x, u)v)dx =0, Yv e X(L).
0

Onecan prove that a weak solution @P) is a classical solution ofP) (see [L1], Proposition 1). Weak
solutions of(P) are critical points of the functiondl : X(L) — R

1 L L
l(u;L) = 5/ (U — AU? 4+ BU?) dx +/ F(x, u) dx. (5)
0 0

The fdlowing lemmas play an important role in further considerations.

Lemma 1. The scalar product
L
(u, v) =/ u”v” dx, ue X(L),ve XL
0

induces an equivalent norm in(X). Theset of functiongsin(22) : n € N} is a complete orthogonal
basis in X(L).

Lemma 2. Let A, B beconstants and ¢x, u) be a continuous function such thdtl;) holds. Then the
functional | is bounded from below, coercive and it satisfies(#h&) condition.

Proof of Theorem 1. The polynomial p(§) = £* — As2 and the real functiong,(L) = p (5&) play
an important role in the following. LeA < 0. The polynomialp(¢) is a positive increasing and
convex function foré > 0. The functionsp,(L) are positive decreasing functions for everye N
and p,(L) — 400, asL — 0, andp,(L) — 0, asL — +oo. They areordered O0< pi(L) <
po(L) < -+ < pp(L) < --- for everyL > 0. The graphs of functiong,(L) with A = —1 and
n =1, 2 3 ae presented ifrig. L Let B < 0. The equatiorp,(L) + B = 0 has theunique solution

. /2
L :nL,L — - —- T
pn(L)+B >0 ifL <nLy, (6)
pn(L)+B <0 ifL >nLy. @

Step 1. Nontrivial solutions.

Let L > L,. There eists a natural numben such thanL; < L < (n+ 1)L;. Lety, € E, =
sp{sinZX, ..., sin™2} so thatg,(x) = Y y_; ccsin(¥%), andsetc? + --- + ¢2 = p2. We have
| (¢n; L) < O, for sufficiently smallp > 0. Letu € Ex- and|ju|| < p. It follows thatpn1(L) + B > 0
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Fig. 1. Graphs of functiongn (L) = (T’T)4+ (”T’T)2 n=123.
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Fig. 2. Graphs of functiongn (L) = (”T”)4 — (T”)2 n=1,23.

ifnL; < L < (h+121)L; by (6) Sincepny1(L) < prea(l) < ---, by assumption(H,) there exists
C(L) > Osuchhatl (u; L) > 2(pn+1(L) + B)||u|| + C(L)||u||L2 oLy = 0, if u € E. The functional
| satisfies th&€P S condition. In view of Bre2|s—N|renbergs Ilnklng theorem (s@p,[for L > L, the
functional | has at least two nontrivial critical points. Suppose that the fundtiox, u) is even with
respect tal. Thenl is an even functional and by Clark’s theorem (s&8)[for L > nL, there exist at
leastn pairs of nontrivial critical points of .

Step 2. Trivial solutions.

Let F be a convex functionB < 0 and O0< L < L;. We hawe seen thatp,(L) + B > 0. As
P ("”) > p(L) + B > 0 we inferthat the quadratic summand irfu; L) is non-negative, hence itis a
convex quadratic form. Then, B < 0 and O< L < L, the functionall is convex, positive fou # 0,
and its only critical point is zero. IB > 0 thesame argument applies for evdry> 0, which completes
the proof ofTheorem 1 [

Proof of Theorem 2. Step 1. Nontrivial and trivial solutions in the case B 0. Let A > 0. The
polynomial p(¢§) = £* — A2 is positive foré > +/A and it has a negative minimumy, = —ATZ at
& = JTK. The functionspp(L) are decreasing if < L < nz+/2/A and increasing iL > nx/2/A,

pa(L) > 0if0 < L < nz/v/Aandp,(L) < 0if L > nz/+/A. Thegraphs of functiong, (L) with
A=1andn =1, 2, 3 ae presented ifrig. 2 Onecan show thapc(L) + B < 0iff L > kL;. If L > L;
there exists a natural numbersuch thanlL; < L < (n+ D)Ly andp(L)+ B >0,k=1,...,nand
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p«(L) + B >0, k > n+ 1. In this case the proof is finished exactly as in the prooftoéorem 1
Step 1 fomontrivial solutions and Step 2 for trivial solutions.

Step 2. Nontrivial solutions in the case=BO0. Let A, = InL1, nMy[. Observe thal. € A, N Ay iff
(n+k)L; < L < nM; which implies

k { A+ 4B

Herce, givenn € N, if k € N is the largest integer satisfyin@)(the conditionL € A, N Apk is
equivalent to the set of inequalitigg(L) + B <0, j e {n,n+1,....,n+k}andp;(L)+ B >0, j ¢
{(n,n+1,...,n+k}. Let

Eus = spfoin("X) sin(CEDIX) L ain(0EOT) |

With a computation similar to the Step 1 in the proofTdieorem lone can show thalt has a local
linking at 0. Thenl has at least two nontrivial critical points by the Brezis—Nirenberg theoremFLet
be even with respect toandL € A, N Anx. We have sufl (u; L) : u € Exyq, U] < p} < Ofor
sufficiently smallp. Then, by Clark’s theorem there exist at lelast 1 nontrivial pairs of critical points
of the functionall .

Step 3. Trivial solutions in the case B 0. We consider the solvability of the inequality

q(L) +B >0, ©)
whereq(L) = inf{p(L) : n € N}. Let0 < B < (5) A? = hy and
_ 10, L4], B<h
n’{w¢ﬂUML B=h;. (10)

If B < hy, the inequality 9) holds iff L € T;. Letlo =0, h, < B < h,y; and
Dnt1 =10, L1]U[Mg, 2L1] U --- U [NMy, (n + 1)L4].
Let

D h, < B<h
T — n+1, n n+1; 11
N {Dn+1 U {lnsa}, B = hnya. (11)

If hy, < B < hpyj the inequality 9) is sdisfied iff L € T,,,. Let F be convex in the second variable
andL € T,if h < B < hpq. With an argument used in the proof dheorem 1 we mnclude
that | is convex, positive folu £ 0. Its only critical point is zero, and this completes the proof of
Theorem2 O
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