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Abstract

In this paper we present an existence and location result for the third-order separated boundary
value problem

⎧⎪⎨⎪⎩
u′′′(t) = f (t, u(t), u′(t), u′′(t)),
u(a) = A,

u′′(a) = 0,

u′′(b) = 0,

where f : [a, b] × R3 → R is a continuous function and A ∈ R.
One-sided Nagumo condition, lower and upper solutions, a priori estimates and Leray–Schauder

degree play an important role in the arguments.
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1. Introduction

In this work we consider the third-order separated boundary value problem denoted by
(P)

u′′′(t) = f (t, u(t), u′(t), u′′(t)), (1)

u(a) = A, u′′(a) = 0, u′′(b) = 0, (2)

where f : [a, b] × R2 → R is a continuous function and A ∈ R.

An existence and location result is obtained by degree theory, [6], and lower and upper
solutions method. An a priori estimate on u′′, established by using a one-sided Nagumo
type condition, plays an important role in the arguments.

We observe that commonly the above techniques use two-sided Nagumo conditions, [8].
For example, we refer for separated boundary value problems the results contained in [2,3]
for second order, in [1,4] for third order and in [5,7] for higher order.

More precisely, for a third-order boundary value problem of the above type the usually
assumed growth condition states that given a subset E ⊂ [a, b] × R3 there is a positive
continuous function � such that

|f (t, x, y, z)|��(|z|), ∀(t, x, y, z) ∈ E (3)

and ∫ +∞

0

�

�(�)
d� = +∞.

In this paper condition (3) is replaced by the one-sided assumption

f (t, x, y, z)��(|z|), ∀(t, x, y, z) ∈ E. (4)

In view of (4), the functions f considered in (P) are not necessarily controlled from
below on the variable z by a function � that satisfies the above integral condition. In fact,
f (t, x, y, z) = −x3 + y − z4 verifies condition (4), but it does not satisfy (3), as it can
be seen in the example concerning problem (24)–(25), that illustrates our main result (see
Section 3).

This more general situation of f has the drawback that in Lemma 2, estimates for solutions
u of the equation of problem (P) are established only for those solutions that satisfy

u′′(a)�r and u′′(b)� − r

for some r > 0 adequately defined. This, however can still be applied to problem (P) since
by the boundary conditions (2) is trivially satisfied.

An analogous existence result still holds if the one-sided Nagumo condition (4) is replaced
by

f (t, x, y, z)� − �(|z|), ∀(t, x, y, z) ∈ E. (5)
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2. Definitions and a priori bound

First it is defined that for the one-sided Nagumo condition we use forward.

Definition 1. Given a subset E ⊂ [a, b]× R3, a continuous function f : [a, b]× R3 → R

is said to satisfy one-sided Nagumo-type condition in E if there exists � ∈ C(R+
0 , [k, +∞[),

with k > 0, such that

f (t, x, y, z)��(|z|), (6)

for every (t, x, y, z) ∈ E and∫ +∞

0

s

�(s)
ds = +∞. (7)

Next, we establish an a priori bound for the second derivative of solutions of Eq. (1)
under adequate conditions.

We remark that by a solution of problem (P) we mean a function u ∈ C3([a, b]) satisfying
the differential equation (1) and the boundary conditions (2).

Lemma 2. Let �1, �2, �1, �2 ∈ C ([a, b] , R) satisfy

�1(t)��2(t) and �1(t)��2(t), ∀t ∈ [a, b] ,

and consider the set

E =
{
(t, x, y, z) ∈ [a, b] × R3 : �1(t)�x��2(t), �1(t)�y��2(t)

}
.

Let � ∈ C
(
R+

0 , [k, +∞[
)
, with k > 0, such that∫ +∞

r

s

�(s)
ds > max

t∈[a,b]
�2(t) − min

t∈[a,b]
�1(t), (8)

where r �0 is given by

r = max

{
�2(b) − �1(a)

b − a
,
�2(a) − �1(b)

b − a

}
.

Then there exists R > 0 (depending on �1, �2, �) such that for every continuous function
f : E → R that satisfies (6) and every solution u(t) of (1) such that

u′′(a)�r, u′′(b)� − r (9)

and

�1(t)�u(t)��2(t), �1(t)�u′(t)��2(t), ∀t ∈ [a, b] , (10)

we have∥∥u′′∥∥∞ < R.

Proof. Let u be a solution of (1) verifying (9) and (10).
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Suppose, by contradiction, that
∣∣u′′(t)

∣∣ > r , for every t ∈ ]a, b[. If u′′(t) > r for every
t ∈ ]a, b[, then the following contradiction is obtained

�2(b) − �1(a)�u′(b) − u′(a) =
∫ b

a

u′′(�) d� >

∫ b

a

r d���2(b) − �1(a).

If u′′(t) < − r , for every t ∈ ]a, b[, a similar contradiction can be obtained. So, there is
t ∈ ]a, b[ such that

∣∣u′′(t)
∣∣ �r .

Let R > r be such that∫ R

r

s

�(s)
ds > max

t∈[a,b]
�2(t) − min

t∈[a,b]
�1(t). (11)

If
∣∣u′′(t)

∣∣ �r , for every t ∈ [a, b] then we have
∣∣u′′(t)

∣∣ < R. If not, we can take t1 ∈ ]a, b]
such that u′′(t1) > r or t1 ∈ [a, b[ such that u′′(t1) < − r . Suppose that the first case holds.
By (9) we can consider I = [̂

t1, t1
]

such that

u′′(̂t1) = r, u′′(t) > r, ∀ t ∈ ]̂
t1, t1

]
.

Then, by a convenient change of variable and applying assumptions (6) and (11), we have∫ u′′(t1)

u′′ (̂t1)

s

�(s)
ds =

∫ t1

t̂1

u′′(t)
�(u′′(t))

u′′′(t) dt =
∫ t1

t̂1

f (t, u(t), u′(t), u′′(t))
�(u′′(t))

u′′(t) dt

�
∫ t1

t̂1

u′′(t) dt = u′(t1) − u′(̂t1)� max
t∈[a,b]

�2(t) − min
t∈[a,b]

�1(t)

<

∫ R

r

s

�(s)
ds.

Hence u′′(t1) < R. Since t1 can be taken arbitrarily as long as u′′(t) > r we can conclude
that, for every t ∈ ]a, b] such that u′′(t) > r , we have

u′′(t) < R.

By a similar way, it can be proved that u′′(t) > − R, for every t ∈ [a, b[ such that
u′′(t) < − r . �

Remark 1. Observe that condition (7) implies (8).

For problem (1)–(2) lower and upper solutions are defined as it follows.

Definition 3. A function � ∈ C3 ([a, b]) is said to be a lower solution of problem (1)–(2)
if

�′′′(t)�f (t, �(t), �′(t), �′′(t)),

and

�(a)�A, �′′(a)�0, �′′(b)�0.
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A function � ∈ C3 ([a, b]) is said to be an upper solution of problem (1)–(2) if it verifies
the reversed inequalities.

Upper and lower solutions will be an important tool to define the referred set E and to
obtain a priori bounds on u and u′.

3. Existence and location result

Next theorem contains an existence and location result for problem (1)–(2).

Theorem 4. Assume that there exist�,� ∈ C3 ([a, b]) lower and upper solutions of problem
(1)–(2), respectively, such that

�′(t)��′(t), ∀t ∈ [a, b] . (12)

Define the set

E∗ =
{
(t, x, y, z) ∈ [a, b] × R3 : �(t)�x��(t), �′(t)�y��′(t)

}
.

Let f : [a, b] × R3 → R be a continuous function that satisfies the one-sided Nagumo
condition in E∗ and such that

f (t, �(t), y, z)�f (t, x, y, z)� f (t, �(t), y, z) (13)

for (t, y, z) ∈ [a, b] × R2 and �(t)�x��(t).
Then problem (1)–(2) has at least a solution u ∈ C3 ([a, b]) such that

�(t)�u(t)��(t) and �′(t)�u′(t)��′(t), ∀t ∈ [a, b] .

Remark 2. The relation �(t)��(t) is obtained by integration of (12) and using the bound-
ary conditions of Definition 3.

Proof. For � ∈ [0, 1] consider the modified problem

u′′′(t) = �f (t, �(t, u(t)), �∗(t, u′(t)), u′′(t)) + u′(t) − ��∗(t, u′(t)) (14)

with the boundary conditions

u(a) = �A, u′′(a) = 0, u′′(b) = 0, (15)

where the continuous functions �, �∗ : R2 → R are given by

�(t, x) =
{�(t) if x > �(t),

x if �(t)�x��(t),

�(t) if x < �(t)

(16)

and

�∗(t, y) =
{�′(t) if y > �′(t),

y if �′(t)�y��′(t),
�′(t) if y < �′(t).

(17)
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Take r1 > 0 such that, for every t ∈ [a, b],

−r1 < �′(t)��′(t) < r1, (18)

f (t, �(t), �′(t), 0) − r1 − �′(t) < 0, (19)

f (t, �(t), �′(t), 0) + r1 − �′(t) > 0. (20)

Step 1: Every solution u of problem (14)–(15) satisfies in [a, b]∣∣u′(t)
∣∣ < r1 and |u(t)| < r0 (21)

with r1 given above and r0 = |A| + r1(b − a), independently of � ∈ [0, 1] .

Let u be a solution of problem (14)–(15).
Assume, by contradiction, that there exists t ∈ [a, b] such that either u′(t)�r1 or

u′(t)� − r1. Suppose that the first case holds and define

u′(t0) := max
t∈[a,b]

u′(t) (�r1 > 0).

If t0 ∈ ]a, b[ , then u′′(t0)= 0 and u′′′(t0)�0. For � ∈ ]0, 1] and following the technique
used in [4], by (13), (18) and (20), we have the contradiction

0�u′′′(t0)
= �f (t0, �(t0, u(t0)), �∗(t0, u′(t0)), u′′(t0)) + u′(t0) − ��∗(t0, u′(t0))
= �f (t0, �(t0, u(t0)), �

′(t0), 0) + u′(t0) − ��′(t0)
��f (t0, �(t0, u(t0)), �

′(t0), 0) + r1 − ��′(t0)
��

[
f (t0, �(t0), �

′(t0), 0) + r1 − �′(t0)
]
> 0

and, for � = 0,

0�u′′′(t0) = u′(t0)�r1 > 0.

If t0 = a then

max
t∈[a,b]

u′(t) = u′(a) (�r1 > 0),

which together with the boundary condition of this problemu′′(a)=0 implies thatu′′′(a)�0.
Then the above computations with t0 replaced by a yield a contradiction.

The case t0 = b is analogous. Thus, u′(t) < r1, for every t ∈ [a, b].
In a similar way we can prove that u′(t) > − r1, for every t ∈ [a, b]. Furthermore, since

u(a) = �A, the estimate |u(t)| < r0, where r0 = |A| + r1(b − a), is easily obtained by
integration.

Step 2: There exists r2 > 0 such that every solution u of problem (14)–(15) satisfies in[a, b]∣∣u′′(t)
∣∣ < r2 (22)

independently of � ∈ [0, 1] .
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Consider the set

E∗∗ :=
{
(t, x, y, z) ∈ [a, b] × R3 : −r0 �x�r0, −r1 �y�r1

}
,

and the function F� : [a, b] × R3 → R defined by

F�(t, x, y, z) = �f (t, �(t, x), �∗(t, y), z) + y − ��∗(t, y).

Since f satisfies a one-sided Nagumo condition in E∗, consider the function � ∈ C
(
R+

0 ,

[k, +∞[) such that (6) and (7) hold with E replaced by E∗. Thus, for (t, x, y, z) ∈ E∗∗,
we have, by (17) and (18),

F�(t, x, y, z) = �f (t, �(t, x), �∗(t, y), z) + y − ��∗(t, y)

���(|z|) + r1 − �′(t)��(|z|) + 2r1. (23)

Take �(z) := �(|z|) + 2r1. Since∫ +∞

0

s

�(s)
ds =

∫ +∞

0

s

�(|s|) + 2r1
ds� 1

1 + 2r1/k

∫ +∞

0

s

�(|s|) ds,

then �(z) satisfies (7) (and thus (8) by Remark 1). Therefore, F� satisfies the one-sided
Nagumo condition in E∗∗ with �(z) replaced by �(z), independently of �.

Moreover, if we put

�1(t) := −r0 = − |A| − r1(b − a), �2(t) := r0 = |A| + r1(b − a),

�1(t) := −r1, �2(t) := r1 and r∗∗ = 2r1

b − a

and take Remark 1 into account, assumptions (6) and (8) of Lemma 2 are satisfied with
E replaced by E∗∗ and r by r∗∗. So, since every solution u of (14)–(15) satisfy

u′′(a) = 0�r∗∗, u′′(b) = 0� − r∗∗

there exists r2 > 0, depending on r1 and �, such that
∣∣u′′(t)

∣∣ < r2, for every t ∈ [a, b]. As r1
and � do not depend on �, we can conclude that the estimate

∣∣u′′(t)
∣∣ < r2 is also independent

of �.
Step 3: For � = 1 problem (14)–(15) has a solution u1(t).

Define the operators

L : C3 ([a, b]) ⊂ C2 ([a, b]) �−→ C ([a, b]) × R3,

N� : C2 ([a, b]) �−→ C ([a, b]) × R3

by

Lu = (u′′′ − u′, u(a), u′′(a), u′′(b)),

N�u = (�f (t, �(t, u(t)), �∗(t, u′(t)), u′′(t)) − ��∗(t, u′(t)), �A, 0, 0).



e254 M.R. Grossinho et al. / Nonlinear Analysis 63 (2005) e247–e256

Observe thatL has a compact inverse. Therefore we can consider the completely continuous
operator

T� :
(
C2 ([a, b]) , R

)
�−→

(
C2 ([a, b]) , R

)
defined by

T�(u) = L−1N�(u).

Take the set

	 =
{
x ∈ C2 ([a, b]) : ‖x‖∞ < r0,

∥∥x′∥∥∞ < r1,
∥∥x′′∥∥∞ < r2

}
.

By (21) and (22), for every u solution of (14) and (15), u /∈ �	 and so the degree d(I −
T�, 	, 0) is well defined for every � ∈ [0, 1]. Then, due to the invariance under homotopy
and since T0(x) = x has only the trivial solution we have

d(I − T0, 	, 0) = ±1 = d(I − T1, 	, 0).

Therefore problem (14)–(15) has at least a solution u1(t).
Step 4: u1 is a solution of (P).
Arguing by contradiction and following the arguments used in [4] it can be derived in a

standard way, using the definitions of solution and upper and lower solutions and condition
(13), that

�′(t)�u′
1(t)��′(t), ∀t ∈ [a, b]

and by integration

�(t)�u1(t)��(t), ∀t ∈ [a, b] .

Therefore u1 is in fact a solution of problem (1)–(2), too. �

Remark 3. An analogous existence and location result can be established, with adequate
modifications, if the reversed one-sided Nagumo condition (5) is assumed.

Example. Consider the boundary value problem

u′′′(t) = − u3(t) + u′(t) − [
u′′(t)

]4
, (24)

u(0) = 0, u′′(0) = 0, u′′(1) = 0. (25)

We note that the boundary conditions (25) are a particular case of (2) and of the problem
presented in [4] with c1 = c3 = 0, A = B = C = 0 and c2, c4 > 0. As we see next the
nonlinearity

f (t, x, y, z) = −x3 + y − z4,

satisfies the hypotheses of Theorem 4 but it does not satisfy the assumptions assumed in
[4], namely the two-sided Nagumo condition. In fact, f is continuous in [0, 1] × R3 and
verifies Nagumo conditions (6) and (7) with

�(z) = 2 + z2,
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for every (t, x, y, z) ∈ E, where

E =
{
(t, x, y, z) ∈ [0, 1] × R3 : −t �x� t, −1�y�1

}
,

and assumption (13).
Moreover, the functions �, � : [0, 1] → R

�(t) = −t and �(t) = t

are, respectively, lower and upper solutions of (24)–(25), according to Definition 3.
Therefore, by Theorem 4, there is at least a solution u(t) of problem (24)–(25) such that,

for every t ∈ [0, 1],

−t �u(t)� t and − 1�u′(t)�1.

Notice, however, that the function f (t, x, y, z) = −x3 + y − z4 does not verify the
two-sided Nagumo-type condition. In fact, suppose by contradiction that there is a positive
continuous function � such that

|f (t, x, y, z)| ��(|z|), ∀(t, x, y, z) ∈ E

and ∫ +∞

0

s

�(s)
ds = +∞.

In particular,

−f (t, x, y, z)��(|z|), ∀(t, x, y, z) ∈ E,

and, so for t, x = 1, y = −1 and z ∈ R

−f (1, 1, −1, z) = 2 + z4 ��(|z|).
As

∫ +∞
0 s/(2 + s4) ds is finite, we have the following contradiction:

+∞ >

∫ +∞

0

s

2 + s4 ds�
∫ +∞

0

s

�(s)
ds = +∞.

Remark 4. The same arguments can be applied for a more general class of differential
equations

u′′′(t) = −u2k+1(t) + [
u′(t)

]2p+1 − [
u′′(t)

]2m+4
,

with k, p, m non-negative integer, and with boundary conditions given by (25).
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