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Abstract. We consider the initial-boundary value problem for a multidi-
mensional linear parabolic PDE of second order. This problem is solvable
in Hölder spaces. The solution is numerically approximated, using finite
differences, and the rate of convergence of the time-space finite difference
scheme is estimated. Both explicit and implicit discrete operators are
given.

1. Introduction

In this article, we consider the initial-boundary value problem (with a Dirich-
let boundary condition) for a multidimensional linear parabolic PDE of second
order of the following type

Lu− ut + f = 0 in Q, u(0, x) = g(x) for x ∈ Ū , u = ḡ on ∂xQ,

where

L(t, x) = aij(t, x)
∂2

∂xi∂xj
+ bi(t, x)

∂

∂xi
+ c (t, x)

is a uniformly elliptic operator with respect to the space variables,
Q = [0, T ] × U , with T ∈ (0,∞), the domain U ⊂ Rd is of class C2+δ, with
δ ∈ (0, 1) fixed, and ∂xQ := [0, T ]× ∂U . The coefficient functions in L and the
given functions f , g and ḡ belong to Hölder spaces, as it will be explained in
detail in the next sections.

We study the numerical approximation of the solution of the above initial-
boundary value problem, using finite-difference methods.

The numerical methods and possible approximation results are strongly
linked to the theory on the solvability of the PDEs. In this article, we make
use of the theory of linear PDEs in Hölder spaces.
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2 F. F. GONÇALVES AND M. R. GROSSINHO

In particular, we consider the approach by Krylov [3]. Using the discrete
framework in Krylov [3], we show that the numerical approximation is still
valid when weaker conditions are imposed over the PDE data.

Also, we construct discrete operators, using both the explicit and implicit
schemes, for cases more general than those presented in Krylov [3].

We summarize the article’s content. In Section 2, we go through some
preliminaries on Hölder spaces, and state a main solvability result. In Section
3, the particular case where a zero boundary condition is imposed is briefly
studied. We prove that the same smoothness for the solution can be obtained,
under weaker conditions over the initial data, by stepping away from the origin
in the time variable. In Section 4, we follow the presentation of Krylov [3] for
the discretization of the PDE problem and prove an existence and uniqueness
result for the solution of the discrete problem, and also a convergence result.
These results are stated in Krylov [3], but proved only for an elliptic problem.
In Section 5, using the same discrete framework, we prove that the numerical
approximation holds under weaker conditions. In the final Section, we give
discrete operators approximating the corresponding continuous operator, using
both the explicit and implicit schemes. These operators are considered in
Krylov [3], but for a more particular case of the PDE.

2. Preliminaries and classical results

We briefly introduce the Hölder spaces (see, e.g., Krylov [3], pp. 33-34 and
117-118).

Let U be a domain in Rd, i.e., an open subset of Rd. For k = 0, 1, 2, . . . we
denote Ck

loc(U) the set of all functions u : U → R whose derivatives Dαu for
|α| ≤ k (with α a multi-index) are continuous in every bounded subset V of U .
We define |u|0;U := [u]0;U := supU |u|, [u]k;U := max|α|=k |Dαu|0;U .

Definition 1. For k = 0, 1, 2, . . ., the space Ck(U) is the Banach space of all
real-valued functions u ∈ Ck

loc(U) for which the norm |u|k;U =
∑k

j=0 [u]j;U is
finite. If 0 < δ < 1, we say that u is Hölder continuous with exponent δ in
U if the seminorm [u]δ;U = supx,y∈U, x 6=y |u(x) − u(y)|/|x − y|δ is finite. This
seminorm of u is called Hölder’s constant of u of order δ.

In the above definition, the notation | | stands for the Euclidean norm in
Rd.

We define [u]k+δ;U := max|α|=k[Dαu]δ;U .

Definition 2. For 0 < δ < 1 and k = 0, 1, 2, . . ., the Hölder space Ck+δ(U) is
the Banach space of all functions u ∈ Ck(U) for which the norm

|u|k+δ;U = |u|k;U + [u]k+δ;U

is finite.
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Now denote Rd+1 = {(t, x) : t ∈ R, x ∈ Rd}. In Rd+1 define the parabolic
distance between the points z1 = (t1, x1), z2 = (t2, x2) as

ρ(z1, z2) := |x1 − x2|+ |t1 − t2|1/2.

Fix a constant δ ∈ (0, 1). If u is a real-valued function in Q ⊂ Rd+1, we define

[u]δ/2,δ;Q := sup
z1 6=z2, zi∈Q

|u(z1)− u(z2)|/ρδ(z1, z2)

and
|u|δ/2,δ;Q := |u|0;Q + [u]δ/2,δ;Q.

Definition 3. For 0 < δ < 1, Cδ/2,δ(Q) is the Banach space of all functions u
defined in Q for which |u|δ/2,δ;Q < ∞.

We introduce the parabolic Hölder spaces.

Definition 4. For 0 < δ < 1, the parabolic Hölder space C1+δ/2,2+δ(Q) is the
Banach space of all real-valued functions u(z) defined in Q for which both

(1) [u]1+δ/2,2+δ;Q := [ut]δ/2,δ;Q +
d∑

i,j=1

[uxixj ]δ/2,δ;Q

(2) |u|1+δ/2,2+δ;Q := |u|0;Q + |ux|0;Q + |ut|0;Q +
d∑

i,j=1

|uxixj |0;Q + [u]1+δ/2,2+δ;Q

are finite.

Next, we will set an initial-boundary value problem for a second-order par-
abolic PDE, and state a classical result on its solvability in Hölder spaces.

We define the elliptic operator of order m.

Definition 5. Let m ≥ 1 be an integer and aα(x) be some real-valued functions
in Rd, given for any multi-index α with |α| ≤ m. The operator
L =

∑
|α|≤m aα(x)Dα is called mth order (uniformly) elliptic if there exists a

constant λ > 0 (the constant of ellipticity), such that
∑
|α|≤m aα(x)ξα ≥ λ|ξ|m

∀x, ξ ∈ Rd.

We consider the second-order operator (in the non-divergence form)1

(2.1) L(t, x) = aij(t, x)
∂2

∂xi∂xj
+ bi(t, x)

∂

∂xi
+ c (t, x),

with real coefficients. We assume that, for some λ > 0 and for each t > 0,
the operator satisfies aij(t, x)ξiξj ≥ λ|ξ|2, for all x, ξ ∈ Rd, so that L is
uniformly elliptic with respect to the space variables, with constant of ellipticity
λ. Then, for each t, the symmetric matrix (aij(x, t)) is positive definite for any

1 The operator L is written assuming the usual summation convention. In the sequel, this
convention is used whenever it makes the writing simpler.
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x ∈ Rd. We also assume that there exists a constant K such that |a|δ/2,δ ≤ K,
|b|δ/2,δ ≤ K, |c|δ/2,δ ≤ K, where δ ∈ (0, 1) is fixed.

As, for any constant µ, the function v(t, x) = u(t, x)e−µt satisfies
Lv − µv − vt + fe−µt = 0 if and only if u satisfies Lu − ut + f = 0, we
set c ≤ 0 without loss of generality.

Let U ⊂ Rd be a bounded domain. We give a preliminary definition con-
cerning the straightening of the boundary of U (see Krylov [3], p. 78). Denote
BR(x0) ⊂ Rd the open ball in Rd with center x0 and radius R. For any U ⊂ Rd,
denote ∂U the boundary of U . Denote also

Rd
+ = {(x′, xd) : x′ = (x1, . . . , xd−1) ∈ Rd−1, xd > 0}.

Definition 6. Let r > 0 and U be a bounded domain in Rd. We write U ∈ Cr

(or ∂U ∈ Cr) and say that the domain U is of class Cr if there are numbers
ρ0, K0 > 0 such that for any point x0 ∈ ∂U there exists a one-to-one mapping
ψ of Bρ0(x0) onto a domain D ⊂ Rd such that

(1) D+ := ψ(Bρ0(x0) ∩ U) ⊂ Rd
+ and ψ(x0) = 0;

(2) ψ(Bρ0(x0) ∩ ∂U) = D ∩ {y ∈ Rd : yd = 0};
(3) [ψ]s;Bρ0 (x0) + [ψ−1]s;D ≤ K0 for any s ∈ [0, r];
(4) |ψ−1(y1)− ψ−1(y2)| ≤ K0 |y1 − y2| for any yi ∈ D.

Consider the initial-boundary problem, with Dirichlet boundary conditions

(2.2) Lu− ut + f = 0 in Q, u(0, x) = g(x) for x ∈ Ū , u = ḡ on ∂xQ,

where Q = [0, T ] × U , with T ∈ (0,∞), the domain U ⊂ Rd is of class C2+δ,
∂xQ := [0, T ]× ∂U and f , g and ḡ are given functions.

Notation. We denote ∂tQ := {0} × Ū and ∂Q := ∂xQ ∪ ∂tQ.

We make some assumptions.

Assumption 1. (Consistency conditions)

(1) ḡ(0, x) = g(x) for x ∈ ∂U ;
(2) L(0, x)g(x)− ḡt(0, x) + f(0, x) = 0 for x ∈ ∂U .

The following result states the solvability of the problem in Hölder spaces
(see Krylov [3], p. 153). Denote Rd+1

+ = {(t, x) : t ≥ 0, x ∈ Rd}.

Theorem 1. Let f ∈ Cδ/2,δ(Rd+1
+ ), g ∈ C2+δ(Rd), ḡ ∈ C1+δ/2,2+δ(Q), with

Q = [0,∞)× U . Let (1)–(2) in Assumption 1 be satisfied. Then there exists a
unique function u ∈ C1+δ/2,2+δ(Q) satisfying (2.2). Moreover

|u|1+δ/2,2+δ;Q ≤ N
(|f |δ/2,δ;Rd+1

+
+ |g|2+δ;Rd + |ḡ|1+δ/2,2+δ;Q

)
,

where N is a constant depending on d, λ, δ, K, ρ0, K0 and the diameter of U .
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3. Further results under weaker conditions

Consider now the particular case of the initial-boundary value problem (2.2)
where ḡ ≡ 0, under weaker smoothness imposed over the initial data g.

We state a main result on the existence and uniqueness of the solution of
(2.2) (proved, e.g., in Ladyz̆enskaja et al. [4], pp. 412-413, for interior and
exterior domains).

Theorem 2. Let f ∈ Cδ/2,δ(Q), g ∈ C(Ū), with Q = [0, T ] × U , T ∈ (0,∞).
Assume that (1) in Assumption 1 is satisfied. Then problem (2.2) with ḡ ≡ 0
has a unique solution u(t, x) in Q. Moreover

u(t, x) =
∫ t

0

dτ

∫

U

G(t, τ, x, y)f(τ, y)dy +
∫

U

G(t, 0, x, y)g(y)dy,

where G is the Green’s function for problem (2.2).

The following estimates for the Green’s function and its derivatives hold
(see, e.g., Ladyz̆enskaja et al. [4], pp. 412-414).

Proposition 1. Let G be the Green’s function considered in Theorem 2. The
following inequalities hold:

(1) |Dα
t Dβ

xG(t, τ, x, y)| ≤ K(t− τ)−(d+2|α|+|β|)/2 exp(−M |x− y|2/(t− τ)),
where K, M constants, 2|α|+ |β| ≤ 2 and τ < t;

(2) |Dα
t Dβ

xG(t, τ, x, y)−Dα
t′D

β
xG(t′, τ, x, y)|

≤ K(t− t′)(δ−2|α|−|β|+2)/2(t′ − τ)−(δ+d+2)/2 exp(−M |x− y|2/(t− τ)),
where K, M constants, 2|α|+ |β| = 1, 2 and τ < t′ < t;

(3) |Dα
t Dβ

xG(t, τ, x, y)−Dα
t Dβ

x′G(t, τ, x′, y)|
≤ K|x− x′|δ(t− τ)−(δ+d+2)/2 exp(−M |x′′ − y|2/(t− τ)),
where K, M constants, 2|α| + |β| = 2, τ < t and x′′ is the one of the
points x and x′ which is closest to y.

It can be easily shown from estimate (1) in Proposition 1 that the solution
u of problem (2.2) in Theorem 2 belongs to C1,2(Q).

The smoothness of the solution u can be improved stepping away from
the time origin in problem (2.2). We prove that, in this case, we obtain a
C1+δ/2,2+δ solution.

Theorem 3. Assume that the hypotheses of Theorem 2 are satisfied and de-
note by u the corresponding solution of problem (2.2) with ḡ ≡ 0. Let the set
Qε = [ε, T ]× U , where ε is a positive constant. Then u ∈ C1+δ/2,2+δ(Qε).

Proof. Denote

u1(t, x) =
∫ t

0

dτ

∫

U

G(t, τ, x, y)f(τ, y)dy and u2(t, x) =
∫

U

G(t, 0, x, y)g(y)dy,

so that u(t, x) = u1(t, x) + u2(t, x).
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We note that u1(t, x) solves the problem

Lu− ut + f = 0 in Q, u(0, x) = 0 for x ∈ Ū , u = 0 on ∂xQ,

and that u2(t, x) solves the problem

Lu− ut = 0 in Q, u(0, x) = g(x) for x ∈ Ū , u = 0 on ∂xQ.

From Theorem 1, we obtain immediately that u1 ∈ C1+δ/2,2+δ(Q). Thus
u1 ∈ C1+δ/2,2+δ(Qε). It remains to prove that u2 ∈ C1+δ/2,2+δ(Qε).

From estimate (2) in Proposition 1, with |α| = 1, |β| = 0 and 0 < ε < t′ < t,

|DtG(t, 0, x, y)−Dt′G(t′, 0, x, y)|≤K(t−t′)
δ
2 t′−

d+2+δ
2 exp

(−M
|x−y|2

t

)

≤Nε(t− t′)
δ
2 ,

(3.1)

with Nε a constant independent of t, t′ and x.
From estimate (3) in Proposition 1, with |α| = 0, |β| = 2 and 0 < ε < t,

|Dβ
xG(t, 0, x, y)−Dβ

x′G(t, 0, x′, y)|≤K|x−x′|δt− d+2+δ
2 exp

(−M
|x′′−y|2

t

)

≤Nε|x− x′|δ,
(3.2)

with Nε a constant independent of t, x and x′.
From estimate (1) in Proposition 1, with 0 < ε < t and |α|, |β| taking the

appropriate values,

(3.3) |G(t, 0, x, y)|≤Nε, |DtG(t, 0, x, y)|≤Nε, |Dβ
xG(t, 0, x, y)|≤Nε, |β|=1, 2,

with Nε a constant independent of t and x.
As g is a bounded function in Ū , from (3.1) and (3.2) we obtain

[u2]1+δ/2,2+δ;Qε
< ∞ and, from (3.3)

|u2|0;Qε + |Dxu2|0;Qε + |Dtu2|0;Qε +
d∑

i,j=1

|Dxj Dxiu2|0;Qε < ∞.

Thus u2 ∈ C1+δ/2,2+δ(Qε), and the result is proved. ¤

4. Numerical Approximation

We want to discretize problem (2.2). For the discretization, we use the
setting in Krylov [3], p. 155, where the time and the space steps are connected.

Take a number T ∈ (0,∞) and denote Q = [0, T ] × U , with U a bounded
domain in Rd. Let l(h) be a function on (0, 1] such that l(h) > 0 and l(h) → 0
as h ↓ 0. For h ∈ (0, 1] define the (l(h), h)−grid on Rd+1

+

Zd+1
h = {(t, x) : t = l(h)k, x = h

d∑

i=1

eini, k = 0, 1, 2, . . . , ni = 0,±1,±2, . . .}.
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Here, (ei), i = 1, . . . , d denotes the standard basis of Rd. Let Q(h) = Q ∩ Zd+1
h

and Q0(h) = {(t, x) ∈ Q(h) : dist(x, ∂U) ≥ h and t ≥ l(h)}. Denote
∂′Q(h) = Q(h) \Q0(h) = ∂′xQ(h) ∪ ∂′tQ(h), with

∂′xQ(h)={(t, x) ∈ Q(h) : dist(x, ∂U)<h}, ∂′tQ(h)={(t, x) ∈ Q(h) : t<l(h)}.
For any h ∈ (0, 1], z ∈ Q0(h), z1 ∈ Q(h) denote

(4.1) Lhu(z) =
∑

z1∈Q(h)

ph(z, z1)u(z1),

where ph(z, z1) are some given numbers.
Consider the following problem, discrete version of problem (2.2)

(4.2) Lhu(z) + f(z) = 0 ∀z ∈ Q0(h), u(z) = ḡ(z) ∀z ∈ ∂′Q(h),

We make assumptions on the behaviour of the discrete operator Lh.

Assumption 2. (Maximum principle). If u is a function defined on Q(h) and
for a point z0 ∈ Q0(h) we have u(z0) = maxQ(h) u(z) > 0, then Lhu(z0) ≤ 0.

Assumption 3. The operators Lh approximate L− ∂/∂t. More precisely, for
any u ∈ C1+δ/2,2+δ(Q) and any z ∈ Q0(h) we have

|Lu(z)− ut(z)− Lhu(z)| ≤ Khδ|u|1+δ/2,2+δ;Q,

with K a constant.

Note that Assumption 3 regards the consistency of the discretization.
We next study the stability of the numerical approximation. Under Assump-

tions 2 and 3, we prove an existence and uniqueness result for the discretized
problem and give estimates for the solution (this result is stated in Krylov [3],
p. 154, but only proved for an elliptic version).

Theorem 4. Let Assumptions 2 and 3 be satisfied. Then there is a constant
h0 > 0 depending only on κ, K, δ, d and the diameter of U such that for
h ∈ (0, h0] and for any bounded functions f , ḡ, the system of linear equations
(4.2) has a unique solution uh(z), z ∈ Q(h). In addition

max
Q(h)

(uh(z))+ ≤ N max
Q0(h)

f+(z) + max
∂′Q(h)

ḡ+(z),

max
Q(h)

(uh(z))− ≤ N max
Q0(h)

f−(z) + max
∂′Q(h)

ḡ−(z),

max
Q(h)

|uh(z)| ≤ N max
Q0(h)

|f(z)|+ max
∂′Q(h)

|ḡ(z)|,

where the constant N depends only on λ, K, d and the diameter of U .

For the proof of the above theorem, we need the following lemma (see Krylov
[3], p. 77):

Lemma 1. For any R > 0 there exists a function v0∈C∞(B̄R), with BR⊂ Rd,
such that Lv0 ≤ −1 in BR. Moreover, 0 < v0 ≤ N0 = N0(λ, K,R, d) in BR

and v0 = 0 on ∂BR.
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We now prove Theorem 4.2

Proof. (Theorem 4) Let n be the number of points in Q(h). Then the linear
system (4.2) is a system of n equations about n variables uh(z), z ∈ Q(h).
Therefore, to prove the first assertion we only need to prove uniqueness of the
trivial solution for f ≡ ḡ ≡ 0. This uniqueness follows at once from the second
assertion.

To prove the second assertion, it suffices only to prove the first estimate. In
fact, if

max
Q(h)

(uh(z))+ ≤ N max
Q0(h)

f+(z) + max
∂′Q(h)

ḡ+(z),

then

max
Q(h)

(uh(z))− = max
Q(h)

((−uh(z))+ ≤ N max
Q0(h)

(−f)+(z) + max
∂′Q(h)

(−ḡ)+(z)

= N max
Q0(h)

f−(z) + max
∂′Q(h)

ḡ−(z).

Note that if uh solves (4.2) then −uh is a solution of the system obtained
from (4.2) taking −f and −ḡ instead of f and ḡ, respectively.

Also

max
Q(h)

|uh(z)| = max
Q(h)

(
(uh(z))+ + (uh(z))−

)
= max

Q(h)
(uh(z))+ + max

Q(h)
(uh(z))−,

and the third estimate follows.
In the proof of the first estimate we assume without loss of generality that

0 ∈ Q̄. We take the function v0 from Lemma 1 with R defined as the diameter
of U . Define v∗0(t, x) := v0(x) for all (t, x) ∈ Q̄. Note that (L− ∂/∂t)v∗0 ≤ −1
in Q, so that, by Assumption 3, we can choose h0 to have Lhv∗0 ≤ −1/2, for
any h ∈ (0, h0] and for any z ∈ Q0(h). In fact

|Lv∗0(z)− ∂

∂t
v∗0(z)− Lhv∗0(z)| ≤ Khδ|v∗0 |1+δ/2,2+δ;Q

=⇒ Lhv∗0(z) ≤ Khδ|v∗0 |1+δ/2,2+δ;Q + Lv∗0(z)− ∂

∂t
v∗0(z),

and, as (L− ∂/∂t)v∗0 ≤ −1 in Q, then Lhv∗0(z) ≤ Khδ|v∗0 |1+δ/2,2+δ;Q− 1. If we
take h ≤ ((2K|v∗0 |1+δ/2,2+δ;Q)−1)1/δ, then

Lhv∗0(z) ≤ −1
2
, ∀z ∈ Q0(h).

Now, we take a solution uh of (4.2) and consider w = uh − 2(F + ε)v∗0 − Ḡ
where F = maxQ0(h) f+, Ḡ = max∂′Q(h) ḡ+ and ε is a positive constant.

If we prove that for any ε we have w ≤ 0 in Q(h), then the first estimate
will obviously follow. In fact if w ≤ 0 in Q(h) then

uh ≤ 2(max
Q0(h)

f+ + ε)v∗0 + max
∂′Q(h)

ḡ+

2 The proof we give is an adaptation of the proof given in Krylov [3] for an elliptic version
of the result.
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and

max
Q(h)

(uh)+ = max
Q(h)

uh = sup
Q(h)

uh ≤ 2v∗0 max
Q0(h)

f+ + max
∂′Q(h)

ḡ+.

By Lemma 1, v∗0 ≤ N0 = N0(λ,K, R, d) in Q (with R = diameter of U) and
we obtain

max
Q(h)

(uh)+ ≤ 2N0 max
Q0(h)

f+ + max
∂′Q(h)

ḡ+.

Assume that w > 0 at some points and define z0 as a point in Q(h), where
w takes its maximum value w(z0) > 0. Since uh = ḡ and v∗0 ≥ 0 on ∂′Q(h),

w = ḡ − max
∂′Q(h)

ḡ+ − 2v∗0(max
Q0(h)

f+ + ε) ≤ 0, on ∂′Q(h),

so that z0 ∈ Q0(h).
By Assumption 2 we obtain LhḠ ≤ 0 and Lhw(z0) ≤ 0. Note that if

Ḡ = max∂′Q(h) ḡ+ = 0 then LhḠ = 0 ≤ 0 trivially.
Then

0 ≥ Lhw(z0) = Lhuh(z0)− 2(F + ε)Lhv∗0(z0)− LhḠ(z0)

= −f(z0)− 2(F + ε)Lhv∗0(z0)− LhḠ(v∗0)

≥ −f(z0) + F + ε ≥ ε > 0.

We obtained a contradiction and the proposition is proved. ¤

Furthermore, we prove that the solution of the discrete problem (4.2) con-
verges to the solution of the continuous problem (2.2), and determine the rate
of convergence (this result is also stated in Krylov [3], p. 155, but only proved
for the elliptic case).

Theorem 5. Let f ∈Cδ/2,δ(Rd+1
+ ), ḡ∈C1+δ/2,2+δ(Rd+1

+ ). Take g(x)= ḡ(0, x)
in Theorem1, and assume that its hypotheses are satisfied. Let u∈C1+δ/2,2+δ(Q)
be the solution of (2.2). Take a number h ∈ (0, h0] and denote by uh the cor-
responding solution of (4.2). Then

|u− uh|0,Q(h) ≤ Nhδ
(
|f |δ/2,δ;Rd+1

+
+ |ḡ|1+δ/2,2+δ;Rd+1

+

)
,

where the constant N depends only on d, K, δ, λ, ρ0, K0 and the diameter of
U .

Proof. For z ∈ Q0(h)

|Lh(uh − u)(z)| = | − f(z)− Lhu(z)| = |Lu(z)− ut(z)− Lhu(z)|
≤ Khδ|u|1+δ/2,2+δ;Rd+1

+
≤Nhδ

(
|f |δ/2,2;Rd+1

+
+|ḡ|1+δ/2,2+δ;Rd+1

+

)
,

owing to Assumption 3, and to Theorem 1.
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Now, notice that uh − u satisfies the problem




Lh(uh − u)(z) = −f(z)− Lhu(z) ∀z ∈ Q0(h)
(uh − u)(z) = 0 ∀z ∈ ∂′Q(h) ∩ ∂Q

(uh − u)(z) = (ḡ − u)(z) ∀z ∈ ∂′Q(h) \ ∂Q .

Therefore, owing to Theorem 4, the desired estimate is obtained.
If z ∈ ∂′Q(h), then the distance from z to ∂Q is less than h, so that there is a

y ∈ ∂Q satisfying ρ(z, y) ≤ h. Notice that ∂′tQ(h) ⊂ ∂tQ so that if z ∈ ∂′tQ(h)
then ρ(z, ∂Q) = 0 and the inequality is satisfied trivially.

We obtain, using the mean-value theorem and Theorem 1,

|(uh − u)(z)| = |ḡ(z)− u(z)| = |ḡ(z)− u(z) + u(y)− ḡ(y)|
≤ |ḡ(z)− ḡ(y)|+ |u(z)− u(y)|
≤ h

(
sup

w∈[z,y]

|∇ḡ(w)|+ sup
w∈[z,y]

|∇u(w)|
)

≤ h
(

sup
w∈[z,y]

( d∑

i=1

|ḡxi(w)|+ |ḡt(w)|
)
+ sup

w∈[z,y]

( d∑

i=1

|uxi(w)|+ |ut(w)|
))

≤ h
(|ḡ|1+δ/2,2+δ;Rd+1

+
+ |u|1+δ/2,2+δ;Rd+1

+

)

≤ h
(|ḡ|1+δ/2,2+δ;Rd+1

+
+ N

(|f |δ/2,δ;Rd+1
+

+ |ḡ|1+δ/2,2+δ;Rd+1
+

))
,

and the result is proved. ¤

5. Approximation under weaker conditions

In Section 3, we considered the case where weaker smoothness was imposed
over the initial data g, for the case of a zero Dirichlet boundary. Under the
discrete framework we set in Section 4, Theorem 4 still holds in this case, and
for the same reasons.

For the convergence, we state a new proposition. Let Qε = [ε, T ]× U , with
ε > 0 a constant, and Qε(h) = Q(h) ∩Qε.

Theorem 6. Let f ∈ Cδ/2,δ(Q), g ∈ C(Ū), with Q = [0, T ]×U , for T ∈ (0,∞).
Define

ḡ(t, x) =

{
0, x ∈ ∂U

g(x), otherwise .

Assume that the hypotheses in Theorem 2 are satisfied. Let u be the solution
of (2.2), and denote by uε its restriction to Qε. Take a number h ∈ (0, h0], let
uh be the solution of (4.2), and denote by uhε its restriction to Qε(h). Then

|uε − uhε|0,Qε(h) ≤ Nhδ
(|f |δ/2,δ;Q̄ε

+ |ḡ|1+δ/2,2+δ;Q̄ε

)
,

where the constant N depends only on d, K, δ, λ, ρ0, K0, ε and the diameter
of U .
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Proof. The proof is the same as for Theorem 5 taking, when needed, Qε and
Qε(h) in place of Q and Q(h), respectively. ¤

6. Two examples

From what we showed in the previous section, in order to obtain an approx-
imation for the solution of the continuous problem (2.2), with a known rate of
convergence, it suffices to consider a discrete operator with the form of operator
Lh in (4.1), and satisfying Assumptions 2 and 3.

We will now construct particular operators, using both the explicit and
implicit schemes.

In Krylov [3], pp. 155-156, discrete operators are considered for the particu-
lar case where L =

∑d
i=1 aii(t, x)D2

i .3 We will construct discrete operators for
the more general case

L =
d∑

i,j=1

aij(t, x)DiDj +
d∑

i=1

bi(t, x)Di + c(t, x),

where the coefficients aij(t, x) satisfy
∑d

j=1 aij(t, x) ≥ 0, for i = 1, 2, . . . , d

, and aij(t, x) < 0, for i 6= j, i, j = 1, 2, . . . , d. Note that there is a large
class of positive definite matrices (aij(t, x)) satisfying the preceding conditions.
The matrix defined by aii(t, x) = d for i = 1, 2, . . . , d and aij(t, x) = −1 for
i 6= j, i, j = 1, 2, . . . , d, with eigenvalues 1 and d + 1 with multiplicity 1 and
d− 1, respectively, is an example.

In the sequel,
∑

i,
∑

j ,
∑

i,j denote de summation over i = 1, . . . , d, and
j = 1, . . . , d.

First, we consider the explicit scheme. For (t, x) ∈ Q0(h), we define the
operator

Lhu(t, x) :=− ε−1h−2
(
u(t, x)− u(t− εh2, x)

)

+
∑

i,j

aij(t− εh2, x)2−1h−2
(
u(t− εh2, x + hei)

+ u(t− εh2, x− hei)− u(t− εh2, x + h(ei − ej))

− 2u(t− εh2, x)− u(t− εh2, x− h(ei − ej))

+ u(t− εh2, x− hej) + u(t− εh2, x + hej)
)

+
∑

i

|bi(t−εh2, x)|h−1
(
u(t−εh2, x+hei sign bi(t−εh2, x))

− u(t− εh2, x)
)

+ c(t, x)u(t, x).

(6.1)

3 In Krylov [3], pp. 86-87, discrete schemes for the operator L =
∑d

i=1 aii(x)D2
i +∑d

i=1 bi(x)Di are also introduced, in connection to an elliptic problem).
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Theorem 7. Assume the coefficients aij(t, x) are such that
∑

j aij(t, x) ≥ 0,
for i = 1, 2, . . . , d and aij(t, x) < 0 for i 6= j, i, j = 1, 2, . . . , d. Let l(h) = εh2,
where ε−1 ≥ supz(2

∑
i≤ja

ij(z) +
∑

i |bi(z)|). Then the discrete operator Lh

defined by (6.1) satisfies Assumptions 2 and 3.

Proof. To check Assumption 2, let z0 = (t0, x0) ∈ Q0
h and

u(t0, x0) = M = max
Q(h)

u(z) > 0.

Denote tp0 = t0 − εh2. We then have

h2Lhu(t0, x0) =−Mε−1 + u(tp0, x0)
(
ε−1 − 2

∑

i≤j

aij(tp0, x0)− h
∑

i

|bi(tp0, x0)|
)

+
1
2

∑

i

∑

j

aij(tp0, x0)
(
u(tp0, x0 + hei) + u(tp0, x0 − hei)

)

+
1
2

∑

j

∑

i

aij(tp0, x0)
(
u(tp0, x0 + hej) + u(tp0, x0 − hej)

)

−
∑

i<j

aij(tp0, x0)
(
u(tp0, x0+ h(ei − ej))+u(tp0, x0 − h(ei − ej))

)

+ h
∑

i

|bi(tp0, x0)|u
(
tp0, x0 + hei sign bi(tp0, x0)

)
+ h2Mc(t0, x0)

Owing to the hypotheses over the matrix (aij(t, x)) and also over ε, we
obtain

h2Lhu(t0, x0) ≤−Mε−1 + M
(
ε−1 − 2

∑

i≤j

aij(tp0, x0)− h
∑

i

|bi(tp0, x0)|
)

+ 2M
∑

i

∑

j

aij(tp0, x0)− 2M
∑

i<j

aij(tp0, x0)

+ hM
∑

i

|bi(tp0, x0)|

=0,

and Assumption 2 is satisfied.
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We now check Assumption 3. Denote tp = t− εh2. The expression we want
to estimate, |Lu(t, x)− ut(t, x)− Lhu(t, x)|, writes

∣∣Lu(t, x)− ut(t, x)− Lhu(t, x)
∣∣

=
∣∣∣
∑

i,j

aij(t, x)uxixj (t, x)

+
∑

i

bi(t, x)uxi(t, x)+ c(t, x)u(t, x)− ut(t, x) + ε−1h−2(u(t, x)− u(tp, x))

−
∑

i,j

aij(tp, x)2−1h−2
(
u(tp, x + hei) +u(tp, x− hei)−u(tp, x + h(ei − ej))

− 2u(tp, x)− u(tp, x− h(ei − ej)) + u(tp, x + hej) + u(tp, x− hej)
)

−
∑

i

|bi(tp, x)|h−1
(
u(tp, x + hei sign bi(tp, x))− u(tp, x)

)− c(t, x)u(t, x)
∣∣∣.

Rearranging and manipulating the terms, we obtain

∣∣Lu(t, x)− ut(t, x)− Lhu(t, x)
∣∣

≤
∣∣∣
∑

i,j

aij(t, x)uxixj (t, x)

−
∑

i,j

(
aij(t, x) + aij(tp, x)− aij(t, x)

)
2−1h−2

((
u(tp, x + hei)− u(tp, x)

)

− (
u(tp, x)− u(tp, x− hei)

)
+

(
u(tp, x + hej)− u(tp, x− h(ei − ej))

)

− (
u(tp, x + h(ei − ej))− u(tp, x− hej)

))∣∣∣

+
∣∣∣
∑

i

bi(t, x)uxi(t, x)−
∑

i

|bi(tp, x)|h−1
(
u(tp, x + hei sign bi(tp, x))−u(tp, x)

)∣∣∣

+
∣∣∣ut(t, x)− ε−1h−2

(
u(t, x)− u(tp, x)

)∣∣∣.

Using the mean-value theorem repeatedly, owing the hypotheses over the
smoothness of the coefficients the result is easily obtained. ¤

The operator we have constructed furnishes an explicit scheme for the ap-
proximation. It allows the computation of uh(t, x) on Q(h), starting from
u(0, x) (which is given), and then finding uh(εh2, x), uh(2εh2, x), and so on,
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recursively from the formula

uh(t, x) =c′εh2f(t, x)− c′u(t′, x)

− 2−1c′ε
∑

i,j

aij(t′, x)
(
u(t′, x + hei)+u(t′, x− hei)

− u
(
t′, x + h(ei − ej)

)− 2u(t′, x)

− u
(
t′, x− h(ei − ej)

)
+u(t′, x− hej)+u(t′, x + hej)

)

− c′εh
∑

i

|bi(t′, x)|
(
u
(
t′, x + hei sign bi(t′, x)

)− u(t′, x)
)
,

where tp = t− εh2 and c′ = (εh2c(t, x)− 1)−1.
We note that the restrictions over ε corresponding to the cases where

(aij(t, x)) is diagonal or where there are no first-order partial derivatives (as
in Krylov [3]) can be obtained immediately from the more general condition
presented in Theorem 7.

We consider now the implicit scheme. For the same particular case of the
continuous operator L, we define, for (t, x) ∈ Q0(h), the discrete operator

Lhu(t, x) :=− ε−1h−2
(
u(t, x)− u(t− εh2, x)

)

+
∑

i,j

aij(t, x)2−1h−2
(
u(t, x + hei) + u(t, x− hei)

− u
(
t, x + h(ei − ej)

)− 2u(t, x)− u
(
t, x− h(ei − ej)

)

+ u(t, x− hej) + u(t, x + hej)
)

+
∑

i

|bi(t, x)|h−1
(
u
(
t, x + hei sign bi(t, x)

)− u(t, x)
)

+ c(t, x)u(t, x).

(6.2)

Theorem 8. Assume that the coefficients aij(t, x) satisfy the hypotheses in
Theorem 7. Then the discrete operator defined by (6.2) satisfies Assumptions
2 and 3.

Proof. The proof is the same as for Theorem 7. The operator Lh satisfies
Assumption 3 for the same reasons and Assumption 2 with no restrictions over
ε. ¤

The method of computation of uh(t, x) on Q(h) is implicit: in order to
find uh((k + 1)εh2, x) from uh(kεh2, x) a linear system of n equations about n
variables (with n the number of points in Q(h)) has to be solved.
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