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ABSTRACT 

 

Chattanooga, Tennessee is among many cities experiencing rapid urbanization and 

subsequent losses to urban forest area. Using remote sensing and digital image processing, this 

research 1) applied supervised hybrid classification across Landsat imagery that quantified the 

extent of urban forest loss across Chattanooga between 1984 and 2021, 2) modeled the carbon 

sequestered in the biomass of Chattanooga’s urban trees using field data and vegetation indices, 

and finally 3) developed the first city-wide high-resolution land cover map across Chattanooga 

using SkySat imagery and object-based classification. Results found that Chattanooga has lost up 

to 43% of its urban tree canopy and gained up to 134% of urban land area. Additionally, a 

methodology for modeling sequestered carbon across urban forests was identified. Finally, using 

high-resolution imagery and the object-based workflow as described here, it is capable of 

producing accurate maps of urban tree canopy distribution with overall accuracy quantified in 

excess of 93%. 
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CHAPTER 1 

INTRODUCTION 

 

 

Background 

As metropolitan areas across the United States, Europe, and East Asia grow ever larger, 

more and more of Earth’s unique temperate forest ecosystems, places of enormous ecological, 

recreational, and cultural significance in the southeastern United States, are destroyed to make way 

for new urban development. Urbanization, or the conversion of natural, pervious surfaces to 

developed spaces, often involves the destruction of the bulk of extant plant communities in a given 

area, resulting in habitat loss and fragmentation, which in turn contributes to the rapid declines 

currently observed in global biodiversity [1, 2]. Converting natural, undeveloped landscapes to 

impervious, urbanized spaces can have a significant negative impact on local surface water quality 

[3, 4]. Urbanization has also been connected with increased surface and air temperatures in urban 

spaces, a phenomena referred to as urban heat island effect [5]. Additionally, once destructively 

removed from a landscape, the bulk of the carbon collectively sequestered in the biomass of the 

extracted vegetation will be released back to the atmosphere as carbon dioxide (CO2), thereby 

reducing the total carbon sequestration potential of the urbanized land area [6, 7]. 

Because of their proximity to human development, urban forests in particular possess an 

increased risk of being impacted by or converted to urban landscape [7-9]. Here, an urban forest 

or urban tree canopy is defined as all continuous or fragmented undeveloped landscapes dominated 

by trees within and surrounding a city, whether planted or naturally seeded [10]. 
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Problem Statement 

Since 1984, Chattanooga, Tennessee’s urban land area has increased rapidly. It is well 

understood that this conversion of undeveloped temperate forest to urban spaces across 

Chattanooga has resulted in an overall decrease in surface water quality and increases in surface 

and air temperatures [3, 4]. Aside from the inventory of coordinates of street trees located in the 

heart of downtown, no current or historic assessment of the distribution of Chattanooga’s urban 

tree canopy has ever been conducted. Additionally, a predictive model capable of estimating the 

dry weight of above ground sequestered carbon per unit area of urban tree canopy from field 

sampled tree measurements and imagery-derived spectral indices has never been created for the 

City of Chattanooga.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1.1 (A) Landsat 5 TM image of east Chattanooga, Tennessee captured June 27th, 1984; 

(B) Landsat 8 OLI image of east Chattanooga, Tennessee captured July 3rd, 2021 

 

 

 

 

(B) (A) 
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In recent decades, remote sensing has proven to be a powerful and cost-efficient tool for 

assessing a city’s urban tree canopy [11-13]. Furthermore, using free satellite imagery and field 

measured biophysical variables, such as diameter at breast height (DBH), it is possible to create 

predictive models capable of estimating the carbon sequestered in the biomass of trees across 

smaller study areas with acceptable accuracy [12, 14, 15]. However, a diverse array of sensors, 

each with unique advantages and disadvantages have been used with variable levels of accuracy 

[13]. For each of these data sources, there are complexities and nuances associated with accessing 

and manipulating the acquired data that should initially be considered.  

 

 

Objectives 

In order to assist future forestry research across the city, to better inform urban planning 

decisions into the future, and to help enhance the inherent value of trees in the eyes of local 

government and the community, this research uses remote sensing and digital image processing 

techniques to answer the following three questions:  

1. How has the extent of Chattanooga’s urban tree canopy changed between 1984 and 2021? 

2. How can the carbon sequestered in the biomass of urban forest trees be predictively 

modeled at little to no cost and without a significant time investment? 

3. What is the current extent of Chattanooga’s urban tree canopy? 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

Forests and Carbon Sequestration 

Earth’s Biogeochemical Cycles and Carbon Sequestration 

Earth’s biogeochemical cycles represent the various routes taken by major elements, like 

nitrogen and carbon, and neutral compounds, such as water, through the biotic and abiotic 

components of Earth’s atmosphere, biosphere, hydrosphere, and lithosphere. These 

biogeochemical cycles are essential systems that altogether contribute to sustain life on Earth [16].  

Within the carbon cycle, any mechanism that results in the removal and storage of CO2 

from the atmosphere is referred to as a carbon sink [6]. The storage of carbon in any sink is referred 

to as carbon sequestration [17]. CO2 is sequestered from the atmosphere via the carbon cycle at 

two different scales: the geologic carbon cycle (GCC), driven by geologic forces, and the biologic 

carbon cycle (BCC), driven by biologic forces [6, 18]. 

 

Sequestration of Atmospheric CO2 and the Geologic Carbon Cycle 

The GCC deals with both the dissolution of CO2 from the atmosphere into the surface water 

of Earth’s oceans, as well as the anaerobic burial of organic matter its subsequent transformation 

into carbon-rich fossil fuel deposits [18]. CO2 is sequestered through its dissolution into the surface 

water of Earth’s oceans and its eventual mixing into the waters of the deep ocean.  
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Under the intense pressure of the deep ocean, dissolved CO2 will ultimately be incorporated 

into carbonate rocks, such as limestone, as constituents in the mineral lattice of calcite crystals 

[19]. Carbon stored here can remain stable for vast expanses of time. 

 

Sequestration of Atmospheric CO2 and the Biologic Carbon Cycle 

The sequestration of atmospheric carbon in the BCC involves the conversion of water, 

CO2, and electromagnetic radiation (EMR) from the sun by plants into sugars with which they use 

to grow and reproduce. This process is collectively referred to as photosynthesis. To better 

understand its mechanisms, we can break down the processes of photosynthesis into a series of 

light-dependent and light-independent biochemical reactions occurring inside the chloroplasts of 

plant cells. 

 

Photosynthesis: Light-Dependent Reactions 

The purpose of the light-dependent reactions of photosynthesis is to generate chemical 

energy in the form of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide 

(NADPH) from CO2, water, and EMR from the sun, with wavelengths in the blue range (400-475 

nm) and the orange-red range (650-700 nm) being the optimal wavelength absorption range for 

chlorophyll-a [20, 21].  

Photosynthesis: Light-Independent Reactions 

Once chemical energy becomes available, provided by the light-dependent reactions, the 

plant can now begin the light-independent process of photosynthesis. This process ultimately 

results in the creation of the carbon-containing glucose molecule that the plant will use to form its 

biomass [21]. Named after the pioneers that discovered this critical step in plant biomass 

assimilation and carbon sequestration, the light-independent photosynthetic reactions are often 
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referred to collectively as the Calvin-Benson cycle [21]. The cycle begins with carbon fixation, in 

which inorganic CO2 in the atmosphere is absorbed through plant stomata and in a series of 

reactions is incorporated into a 3-carbon molecule called 3-phosphoglycerate (3-PGA) [21]. The 

3-PGA molecule is subsequently reduced to form a 3-carbon sugar, glyceraldehyde 3-phosphate 

(G3P). Every 3 CO2 molecules absorbed result in the net production of one G3P molecule. After 

6 cycles, 6 G3P molecules are rearranged to form a 6-carbon sugar, glucose, which the plant will 

use to form its biomass [21].  

 

Forest Carbon Reservoir 

Today, 30% of Earth’s surface is composed of forest ecosystems [22]. In addition to the 

myriad of human and animal communities composing their structure and ecologic function 

support, the trees of Earth’s forests represent a staggering 80% of the total biomass on Earth [6, 

23, 24]. In fact, the global forest carbon reservoir alone has incorporated more atmospheric carbon 

in its biomass and soils than currently exists in the entire atmosphere [24]. 

Forests are characterized in part by the dominance of woody tree species. Though not as 

permanent as the carbon stored in the GCC, the carbon stored within their woody biomass can 

remain sequestered until the end of that tree’s life cycle [25]. 

Therefore, the trees of Earth’s forests represent a prodigious carbon sink in the global 

carbon cycle [26-29]. However, compared to that stored via the GCC, due to natural disturbance 

events and anthropogenic pressures, the carbon making up the biomass of tree is under a greater 

threat of being released back to the atmosphere before the end of the tree’s natural life cycle [30].  
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Human Impact on Temperate Forests 

Historic Uses of Temperate Forests 

Humans have directly impacted the health and integrity of temperate forests more than any 

other forest type [31, 32]. The current global extent of temperate forests is now estimated to be 

between 40% to 50% of its historic expanse. Furthermore, 99% of all temperate forests have been 

harmfully impacted by agriculture, logging, urbanization, or another human activity resulting in 

deforestation or the harmful disturbance of the composition, structure, or overall function of 

temperate forest [31, 33]. 

 

 

Figure 2.1     Effects of deforestation in Colorado in 1915 [34] 
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By as early as 1100 BC, temperate forest area in Europe had already been reduced to 30% 

of its original extent as a result of increased demand for fuel wood and agricultural land area by 

early human civilizations [32, 35, 36]. During the American Industrial Revolution, the rapid 

clearing of forests for timber harvest and agricultural land conversion cleared 35% of the 

continent’s temperate forests. [36].  

 

Current Status of Temperate Forests 

Today, temperate forests cover about 10.4 million km2 (Figure 2.2.), representing a quarter 

of the world’s forest cover today. North America contains roughly 60% of total global temperate 

forests; Europe contains 24%; and eastern Asia, combined with other areas in the Southern 

Hemisphere, contain the remaining 16% [36].  

 

 

Figure 2.2      Global temperate forest distribution [37] 
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Despite the overexploitation of temperate forests to fuel growing timber markets during 

the pre- and post-industrialization stages of emergent nations, temperate forest land area is slowly 

increasing as successional communities begin to reestablish themselves in areas historically used 

for timber harvest or agricultural production that are no longer in operation [24, 36]. However, in 

the same way the overexploitation of timber in the industrial revolution threatened forest habitat, 

rapid urban development and the associated habitat loss is threatening the global extent of 

temperate forests (Figure 2.2.) once again, now at an unprecedented rate, scale, and intensity [38, 

39]. 

 

Urban Forests 

As urban centers in the United States, Europe, and eastern Asia grow ever larger to 

accommodate swelling populations, temperate forests are cut, bare earth is paved, and buildings 

are constructed. This generalized process of land cover change is collectively referred to as 

urbanization [4, 40]. Due to their proximity to human infrastructure and population centers, urban 

forests, or forested areas within or adjacent to a metropolitan center, are often the best option for 

developers [7-9]. The urban forest of a given city includes forested fragments, greenways, riparian 

zones, wetlands, urban parks, residential trees, street trees and working forests [10]. The US Forest 

Service reports that approximately 127 million acres of forest in the US is in immediate proximity 

to metropolitan areas, and therefore can be classified as urban forest [9].  However, as stated 

previously, when forest habitat is closer in proximity to human development, it runs a higher risk 

of being negatively impacted or destroyed [30, 41].  
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Therefore, due to the collective burden of natural disturbances (forest fires and extreme 

weather events) and anthropogenic pressures (losses in habitat and habitat connectivity 

(fragmentation) resulting from land cover changes, associated decreases in biodiversity, invasive 

species proliferation, and any unanticipated indirect and/or synergistic reactions between the 

aforementioned pressures), the composition, structure, and function of urban forests are at an 

extreme risk of deterioration. 

Urban forests are critically relied upon by wildlife. Following the urbanization of a 

landscape, the remaining interspersed fragments of urban forest serve as functional islands which 

provides extant species with some level of shelter from human impacts [8]. Urban forests are relied 

upon by humans as well. Urban forests play a significant role in the establishment of one’s sense 

of place, which can be passed down through generations [42]. Therefore, forests are often known 

to possess great cultural value [43, 44]. Additionally, urban forests provide metropolitan areas with 

a number of ecosystem services, such as mitigating a potential urban heat island effect through the 

cooling of surface and air temperatures via evapotranspiration, reducing the volume and rate of 

flow of a runoff event via stormwater uptake, filtering city air, and reducing urban noise [45].  

Contrary to what has been observed in tropical forests, recent research is suggesting that 

the trees along the edges of temperate forest fragments, adjacent to urban areas, are sequestering 

carbon dioxide in biomass and soils at an accelerated rate [46-48]. A study conducted by Morreale 

et al. (2021) found that trees along the edges of temperate forest fragments adjacent to urban areas 

grow up to 36% faster and sequester 24% more carbon than trees within the forest interior [48].  

Separate research conducted by Garvey et al. (2022) found that in urban areas, respiration rates 

and associate carbon loss rates of soil along the edges of urban forest fragments are up to 25% 

lower compared to trees within the forest interior [47].  
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In support of maintaining these critical services urban forest provide to metropolitan areas into 

the foreseeable future, as urbanization continues, understanding the distribution of a metropolitan 

area’s urban tree canopy relative to other land cover types, such as impervious surfaces, exposed 

soil, and water, will be increasingly useful [8, 10, 12, 43, 45]. 

 

 

Remote Sensing of Forestry and Carbon Sequestration 

Advantages of Remote Sensing 

Objects selectively absorb and reflect EMR due to subtle differences in the molecular 

composition of their surfaces [20]. Remote sensing can be defined as the utilization of EMR to 

detect objects on Earth’s surface based on that object’s interaction with and subsequent reflection 

of visible, infrared, and microwave portions of incident EMR [20].  

Due to the considerable amount of time needed to visit and document a statistically viable 

sample of urban tree canopy sites across an entire city recent decades, the utilization of remote 

sensing techniques alongside computer-based geographic information systems (GIS) have proven 

to be powerful, cost-efficient tools with a wide variety of applications, including  land use and land 

cover change studies, meteorological studies, emergency response planning, urban heat island 

monitoring and mitigation, water quality monitoring, forest carbon and biomass estimation, 

vegetation biophysical measurement estimation, and the management of urban forest vegetation 

[3-5, 11, 49-56].  

To understand how remote sensing can be utilized to both assess urban tree canopy extent, 

and to predictively model sequestered carbon across urban forest biomass, some specific 

advantages and disadvantages associated with remote sensor platform, type, and resolution will be 

discussed respectively in the following section. 
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Sensor Platform 

Airborne Sensors 

Airborne platforms commonly utilized to map forest extent and to model sequestered 

carbon include airplanes and unmanned aerial vehicles (UAV) [13, 57, 58]. Airborne platforms 

are capable of carrying passive sensors, such as multispectral or hyperspectral sensors, and active 

sensors, like radio detection and ranging (radar) and light detection and ranging (LiDAR) systems. 

However, unlike spaceborne sensors, the flight altitude of a given airborne sensor is much lower 

than that of a spaceborne sensor. Therefore, the spatial resolution of airborne sensors can be very 

fine [20]. This very fine resolution supports the accurate detection of individual tree crowns and 

other parameters of forest structure [59]. 

Airborne platforms give researchers freedom to determine when the best time to acquire 

imagery might be. To keep the influence of tree canopy shadow artifacts and cloud pollution to a 

minimum, a manned or unmanned acquisition of aerial imagery could be scheduled on a clear day 

around noon, when the solar zenith angle is near 90°. However, the data provided by plane-

mounted sensors is inherently limited by the cost of fueling and operating the airborne platform 

[57, 60]. UAV platforms can avoid potential cloud cover issues by flying just a few hundred feet 

above the ground, capturing imagery with spatial resolution measured in millimeters.  

One caveat of the ultra-fine resolution of UAVs is a small instantaneous field of view 

(IFOV), or the ground area observed by the sensor at a given altitude and a given time. As a result, 

UAV data is often broken up into many relatively small chunks which require complex processing 

techniques before it is ready to be used in analysis. 
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Spaceborne Sensors 

Spaceborne satellites are the most commonly utilized remote sensor platform, with many 

research applications including land use and land cover change studies, sequestered carbon 

modeling, and urban forest management [49, 51-54, 56]. Spaceborne sensors typically run 

continuously, collecting data along defined orbital paths, thereby creating large volumes of reliable 

data in a short amount of time [20]. Additionally,   spaceborne sensors provide a synoptic view of 

Earth, allowing researchers to obtain data virtually anywhere on the Earth’s surface in an instant 

without the need to charter an aircraft fitted with remote sensing equipment or scheduling a UAV 

flight [61, 62]. However, because of their predefined orbital paths, spaceborne sensors commonly 

collect data containing cloud pollution. Additionally, a majority of the data sources offering fine 

resolution spaceborne imagery are expensive.  

On the other hand, a number of moderate resolution spaceborne data sources offer 

inexpensive or free data to researchers [61, 62]. Additionally, a few moderate resolution 

spaceborne data sources offer publicly available, low-cost, historical datasets. For example, the 

Landsat missions provide researchers with free moderate resolution multispectral imagery of 

Earth’s surface dating back to 1972. Other remote sensors that provide comprehensive temporal 

datasets include NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) and ESA’s 

Sentinel-2 mission [63, 64]. 
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Sensor Type 

Active Sensors 

Active remote sensors emit and detect their own EMR across a landscape in the form of 

visible, infrared, and/or microwave radiation [20]. Active sensors are commonly fixed to airborne 

and ground-based platforms. The sensors are largely represented by radar and LiDAR systems. 

 

Radar 

 Radar systems detect the backscatter of emitted radio and microwaves to measure the 

surface roughness of objects within a given area [20, 65]. Smooth surfaces, such as a still water 

body, express very low surface roughness, as a majority of the emitted micro- and radio waves are 

being reflected on the smooth surface. Conversely, rough surfaces, such as urban tree canopy, 

scatter the emitted micro- and radio waves such that only the scattered light incident to urban tree 

canopy is reflected and subsequently detected by the radar sensor [66].  

Because radar uses longer wavelengths of EMR, these sensors are capable of detecting 

objects obscured by cloud cover, which facilitates its application in military operations and 

emergency response [67]. However, some regions of the electromagnetic spectrum (EMS) which 

radar sensors operate in may not be useful in the mapping of vegetation or the modeling of 

sequestered carbon [68]. Additionally, because radar systems are side looking, large trees or 

undulating terrain that blocks other adjacent smaller trees create voids in the radar data [69]. For 

these reasons, radar systems are not commonly utilized to assess urban tree canopy extent or 

predictively model the carbon sequestered therein. 

 

 



15 

LiDAR 

Like radar, LiDAR systems emit pulses of EMR and measure the amount of time it takes 

to detect the reflected energy [20, 58]. While radar systems use radio and microwaves, LiDAR 

uses more narrow wavelengths of EMR, such as visible and infrared light [20]. By continuously 

measuring the range between the sensor and objects on the ground, LiDAR systems create outputs 

of dense, 3-dimensional point clouds, where each point represents a location at which the emitted 

energy from the LiDAR sensor was reflected from some object in the field.  

However, a few drawbacks hinder the application of LiDAR data to map urban tree canopy 

extent. Spaceborne LiDAR systems such as the Geoscience Laser Altimeter System (GLAS), are 

still in preliminary stages; the low point density of spaceborne LiDAR systems currently hinder 

their utility in the modeling of a complex forest canopy structure. Airborne LiDAR offers higher 

point densities; however, these data sources are limited and obtaining data is expensive. Finally, 

utilizing ground-based systems to assess urban tree canopy extent across a city’s full extent is 

impractical, as the processing required to model urban tree canopy extent from ground-based 

sensors is complex and ground-based LiDAR scanners capable of mapping forest extent across an 

urban space are expensive. Therefore, unless low-cost airborne LiDAR data is accessible, 

researchers should consider other sources of remotely sensed data. 

 

Passive Sensors 

Passive sensors, also referred to as optical sensors, detect EMR emitted from the sun 

following its subsequent reflection off objects exposed on Earth’s surface [20]. Like active sensors, 

passive sensors can be fixed to both spaceborne and airborne platforms. Defined as a remote 

sensor’s specific characteristics and resolving power, sensor resolution can be further broken down 
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into the following components: spatial, spectral, temporal and radiometric resolution [20]. This 

section offers a brief discussion on a few advantages and disadvantages of the spatial and spectral 

resolution of common passive remote sensors. 

 

Spatial Resolution 

Spatial resolution is defined as the area of ground observable within a passive remote 

sensor’s IFOV, or the specific ground area represented by a single pixel, at a given moment [20]. 

Because the altitude and the solid angle by which a given passive remote sensor is capable of 

detecting EMR is different from sensor to sensor, the spatial resolution of different remote sensors 

is variable [20].  

 

Coarse Spatial Resolution 

 Coarse resolution sensors have spatial resolutions ranging from 40 meters to several 

kilometers. Therefore, coarse resolution data captured by Earth imaging sensors such as MODIS, 

Advanced Very High Resolution Radiometer (AVHRR), and Geostationary Operational 

Environmental Satellite (GOES) is typically used to map forest extent or model sequestered  

typically constrained to regional and global studies [64, 70-72].  

  

Moderate Spatial Resolution 

 

Moderate resolution remote sensors have spatial resolutions ranging between 10 and 30 

meters. Of the host of moderate remote sensors used to monitor forest vegetation, no other remote 

sensor has been as influential as the optical sensors of the Landsat program  [37, 49, 56, 62, 63, 

73-80]. Landsat’s temporal data archive provides continuous data from 1972 to current day, 

making it the single earliest and longest continuous archive of global multispectral remote imagery 
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source [81, 82]. Additionally, since 2008, researchers can freely view and download raw and 

processed data from Landsat’s extensive temporal archive [4, 83]. Because of this accessibility, 

combined with its unparalleled archive of historical imagery, the Landsat program is one of the 

most heavily relied upon sources of remote sensing data on Earth [81]. 

Sentinel-2a is another moderate resolution multispectral data source used in forestry 

applications [51, 63, 75, 84-86]. Aside from it being another source of free multispectral data, 

Setinel-2a imagery offers four moderate spatial resolution (20 meters) red-edge bands specifically 

sensitive to different regions of strong visible red absorption and (near-infrared radiation) NIR 

reflection of healthy vegetation at 705, 740, 783, and 865 nm respectively. However, as discussed 

by Cohen et al. (2003), when conducting studies across an intermittent urban tree canopy, it can 

be difficult to accurately model forest structural parameters using moderate resolution remote 

sensing data, as many pixels containing the spectral signature of forest canopy will be polluted by 

spectral signatures from other adjacent land cover types [73]. 

 

Fine Spatial Resolution 

 

 Fine resolution remote sensors are characterized by spatial resolutions smaller than 5 

meters. Unlike the free moderate resolution multispectral imagery offered by Landsat and Sentinel-

2a, the fine resolution multispectral imagery captured by satellites such as QuickBird, IKONOS, 

and the SkySat constellation requires significant financial investment. However, when seeking to 

map urban tree canopy using remotely sensed imagery, the ability to functionally delineate 

individual tree crown pixels from adjacent non-tree crown pixels across an urbanized landscape 

with any accuracy is only possible with fine resolution imagery [87-89].  

A few low cost sources of fine resolution multispectral imagery are available to 

researchers. Among these sources is the United States Department of Agriculture’s (USDA) 
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National Agricultural Imagery Program (NAIP). With a spatial resolution of ~1 meter or less, 

NAIP imagery is a suitable data source for vegetation mapping [90]. However, this data source 

has a lengthy temporal resolution of three years. Researchers using this source to model forest 

extent or structural parameters might consider planning research around known acquisition times.  

PlanetScope is another low-cost fine resolution multispectral data source. PlanetScope 

consists of a constellation of over 180 small cube satellites, or Doves, that continuously image 

Earth’s surface. By applying to Planet’s Education and Research Program, individuals affiliated 

with a university can download up to ~1,900 square miles of 4 and 8 band multispectral imagery 

with a spatial resolution of 3 meters and a daily revisit time free of charge. Many studies have 

shown that due to its temporal resolution and near-fine spatial resolution, PlanetScope is a superior 

data source for vegetation mapping [91, 92].  

One last fine resolution data source is SkySat. Planet’s SkySat constellation consists of 21 

fine resolution Earth imaging multispectral satellites. SkySat imagery has 5 bands (red, green, 

blue, NIR, and panchromatic) and a spatial resolution of 50 centimeters. One drawback of SkySat 

is that unlike PlanetScope data, SkySat data must be tasked, which comes at a steep cost. However, 

SkySat’s sub-meter spatial resolution and approximately 3.6 mile wide swath width merges the 

advantages of a spatial resolution comparable to that of airborne platforms with the  image size of 

spaceborne platforms. For this reason, SkySat is a preeminent data source for mapping urban tree 

canopy extent and modeling forest structural parameters. 
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Spatial Resolution and Machine Learning-Based Image Classification 

Coarse and Moderate Resolution Imagery 

When attempting to classify imagery using a machine learning algorithm, supervised 

classification is a commonly utilized method [93]. Supervised classification is a machine learning 

technique that works to identify distinct patterns in a dataset based on user-provided training data 

[94]. When dealing with coarse or moderate resolution imagery however, it can be very difficult 

to visually differentiate objects, such as tree canopies, apart from other types of vegetation or land 

cover types when collecting pure training samples with which to train a machine learning 

algorithm for supervised classification. In these situations, unsupervised classification workflows 

can be applied. Like supervised classification, unsupervised classification is a machine learning 

technique that works to identify distinct patterns in a dataset, however no training data is required 

[95].   

One commonly utilized unsupervised classification method is iso cluster [95-97]. 

Isocluster works by randomly selecting clusters in a dataset and iteratively sorting data to the 

nearest cluster [95]. After each iteration, cluster centers are redefined based on the average of the 

assigned data values. This process continues until clusters stabilize, or until a user-defined iteration 

convergence threshold is reached. By setting an appropriate iteration convergence threshold you 

prevent potential overfitting of the classified results [95]. 

Fine Resolution Imagery 

One specific advantage of fine resolution imagery is the ability to utilize an object-based 

image classification approach. When classifying fine resolution imagery, object-based 

classification has been found to offer accuracy advantages over traditional pixel-based 

classification methodologies [87, 88]. Because an individual pixel within moderate or course 
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resolution imagery is not exclusive to a single object, object-based classification is not typically 

employed in conjunction with these data sources. 

Unlike traditional pixel-based classification methods, object-based classification considers 

the spectral, geometric, and topological characteristics of pixel clusters [98]. As a result, when 

applied to fine resolution datasets, object-based classification approaches are capable of yielding 

smoother, more interpretable land cover datasets compared to that of pixel-based approaches [99].  

Following an object-based classification approach, different clusters of pixels representing 

various objects across an image are segmented based on the spectral signature, shape, length, and 

adjacency characteristics of homogeneous pixel clusters prior to classification [100]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.3      Comparison of pixel-based (middle) and object-based (right) classification outputs 

[101] 

 

Using ArcGIS Pro, there are a few methods to segment imagery. One such method employs 

an algorithm known as mean shift. Mean shift segmentation works by selecting a pixel within the 

input imagery and creating a window around the selected pixel. The algorithm then calculates the 

average value for all pixels in that window. Then, the window is shifted in the direction of 
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increasing pixel values, until it reaches a maximum. Next, the algorithm effectively outlines the 

region represented by all pixels of similar value within the window. This process continues 

iteratively until all pixels have been outlined or segmented [102-104].   

For each of the desired classes within the land cover dataset, training samples are collected 

by selecting image segments representative of the land class/object you are attempting to classify. 

For example, segmented tree crown segments are collected from the segmented image as training 

samples and fed into a machine learning algorithm to inform the identification and classification 

of tree canopy segments across the image the image based on the spectral, geometric, and 

topological characteristics of the segment [105].  

Following Esri’s object-based image classification workflow as directed by ArcGIS Pro’s 

Image Classification Wizard, during image classification, the machine learning classifier will 

specifically be looking for the spectral, geometric, and topologic segment characteristics 

transferred from the segmented layer to the training samples as attributes during sample collection. 

If samples derived purely from the multispectral image were selected as training data and not 

samples derived from the segmented layer, then the spectral and spatial characteristics needed to 

classify the image are not successfully transferred to the training samples [125].  

With recent updates to the Environmental Science Research Institute’s (Esri) flagship 

software, ArcGIS Pro, objects-based image classification workflows are now easily accessible via 

user friendly, ready-to-use software packages. However, the segmentation and classification 

processes can be time consuming, especially performed at the scale of larger municipality 

geographies [106]. 
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Spectral Resolution 

In the same way that fine resolution imagery is needed to effectively map urban tree canopy 

extent, when modeling sequestered carbon using passive remote sensors, spectral resolution should 

be considered, as the spectral signature expressed by healthy chlorophyll commonly serves as the 

basis for the independent variable of predictive model [107]. 

While some passive spaceborne sensors are fitted with only a few channels capable of 

detecting a relatively broad range of wavelengths (multispectral), others are fitted with hundreds 

of narrow band channels which can differentiate minute variations in the wavelength of reflected 

energy (hyperspectral) associated with differences in the molecular composition of objects at the 

surface of the Earth [20]. Multispectral imagery is well suited for the mapping of forest extent 

across a heterogeneous urban landscape. However, when modeling carbon using optical sensor 

data, especially when the independent variable selected is proxy for chlorophyl concentration, it is 

recommended that researchers obtain data with relatively narrow bands in the red (650-700 nm) 

and NIR  (700-1000 nm) region of the EMS, corresponding to the strong absorption of visible red 

light and the strong reflection of NIR by chlorophyl [20]. Sentinel-2a’s four narrow red edge bands 

are specifically sensitive to these regions of the EMS. Integrating these narrow red-edge bands into 

multispectral sensors merges the spectral power of hyperspectral sensors with the accessibility of 

moderate resolution sensors.  
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Analyzing Forest Extent and Sequestered Carbon Using Remote Sensing  

Allometric Equations 

The modeling of sequestered carbon across an urban tree canopy typically includes the 

utilization of allometric equations and biomass expansion factors [108-111]. Allometric equations 

are statistical formulas that can estimate sequestered carbon through analysis of a combination of 

biophysical variables measured in the field, such as DBH and tree height [111]. Because the 

sequestered carbon of a tree increases proportionally with biophysical variables such as height and 

DBH, allometric equations can provide accurate estimations of sequestered carbon without the 

need to destructively harvest vegetation. Allometric equations can be developed for a single 

species or a regionally specific community assemblages. Additionally, separate equations to model 

biomass and sequestered carbon across urban forests have been developed by the US Forest 

Service [112, 113]. 

 

Remote Sensing Applications 

Because the internal and external structure of plants have evolved to facilitate 

photosynthesis, these structures, and their interaction with incident EMR, have a direct influence 

on how leaves and the canopies of trees appear when analyzed by optical remote sensors [20]. 

Healthy vegetation expresses strong absorption of EMR between 650-700 nm (visible red light), 

and strong reflection of EMR between 700-1000 nm (NIR) [20]. This sharp change in reflectance 

values for vegetation is known as the red edge, where the slope of this red edge is strongly 

influenced by chlorophyll concentration [114].  
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Additionally, because of healthy green vegetation’s strong absorption of red wavelengths 

and strong reflection of near-infrared wavelengths, in a composite image with red and NIR bands, 

it is possible to generate a single normalized value, oftentimes ranging from 0 to 1, for each pixel, 

where each value represents the relative abundance of healthy green vegetation at that pixel. This 

is the concept for vegetation indices [20, 114, 115].  

  

 

 Vegetation indices such as the normalized differential vegetation index (NDVI), seen in 

Equation 1, are based upon this concept, where ρNIR is the reflectance values of the NIR band,  

ρR is the reflectance values of the red band [115]. Similar to structural predictors such as canopy 

height and basal area, vegetation indices, like NDVI, can be effectively utilized as a spectral 

predictor variable to estimate sequestered carbon [62, 84-86]. Similar to NDVI, many other 

vegetation indices, such as GNDVI, have been created, each with advantages and disadvantages. 

GNDVI for example was created with the idea that the integration of the green band in place of 

the red band would allow the derived index to be more sensitive to variation in chlorophyll content 

than compared to NDVI, where ρNIR is the reflectance values of the NIR band, ρG is the 

reflectance values of the green band [116]. 

  

  

 

 

 

 

𝐍𝐃𝐕𝐈          =     
( ρNIR  - 𝜌R )

( 𝜌NIR + 𝜌R )
 (1) 

 

𝐆𝐍𝐃𝐕𝐈       =     
( ρNIR  - 𝜌G )

( 𝜌NIR + 𝜌G )
 (2) 
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Figure 2.4     Visualization of the impact of chlorophyl abundance on NDVI [117] 
 

 

Modeling Forest Carbon Using Field Data and Remote Sensing  

In developing predictive models via regression analysis, two specific variables are 

identified by the researcher: the dependent variable, otherwise known as the response variable, and 

the independent variable, otherwise known as the predictor variable. The response variable in this 

case would be sequestered carbon values sampled in the field using allometric equations. Predictor 

variables used to model sequestered carbon are variable, and can generally be broken into 

biophysical measurements, such as DBH and stem volume, or spectral characteristics of remote 

sensing data [57, 58]. Common structural predictor variables used in the predictive modeling of 

sequestered carbon include diameter at stump height, DBH, canopy height, crown volume, crown 

area, leaf area index (LAI), and leaf area density (LAD) [73, 112, 118-121].  
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Using spectral predictor variables to model sequestered carbon often involves the creation 

of vegetation indices [20]. Vegetation indices take advantage of chlorophyll’s strong reflection 

and absorption of NIR and red wavelengths respectively [20, 114, 115]. Some of the most common 

vegetation indices are: NDVI, enhanced vegetation index (EVI), soil adjusted vegetation index 

(SAVI), simple ratio vegetation index (SR), moisture vegetation index (MSI), and green 

normalized vegetation index (GNDVI) [122]. Using vegetation indices like NDVI, relative 

chlorophyll concentration has been found to be an acceptable proxy for sequestered carbon when 

utilizing remote sensing techniques [56, 62, 115, 122, 123]. Additionally, some studies utilizing 

spectral predictor variables take advantage of the narrow red edge band sensors when creating 

vegetation indices [74, 75, 85, 86, 114, 122]. 

 

To effectively model sequestered carbon across an urban tree canopy using vegetation 

indices as the predictor variable, it is recommended that all source imagery be acquired during late 

spring to early summer, when the levels of chlorophyll within tree leaves are at peak 

concentrations, as it is this variation in chlorophyll concentration that that predictive model is 

based on [20]. Additionally, any predictive model derived using vegetation indices or other 

spectral information as the predictor variable should only be applied within the specific geographic 

location represented by the source imagery from which the predictor variable was derived [62]. 
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Literature Review Summary  

As the urbanization of metropolitan areas continues into the future, compared to the carbon 

stored via the GCC, carbon sequestered in the biomass of Earth’s forests is under a greater threat 

of being released back to the atmosphere as CO2 [30]. Due to their proximity to human 

development, the composition, structure, and function of urban forests in particular possess an 

enhanced risk of deterioration overtime [30, 41]. In support of maintaining the critical services 

urban forest provide to metropolitan areas into the foreseeable future, as urbanization continues, 

understanding the distribution of a metropolitan area’s urban tree canopy relative to other land 

cover types, such as impervious surfaces, exposed soil, and water, will be increasingly useful [8, 

10, 12, 43, 45]. 

Remote sensing techniques and geographic information systems offer researchers with 

streamlined methods to quickly assess the distribution of land cover types, including urban tree 

canopy, across a city [20]. Following a review of peer reviewed literature, Landsat’s historic 

imagery archive is the choice imagery source when seeking a historic imagery source across the 

full extent of a city’s urban tree canopy [81, 82].  

When mapping the current extent of urban tree canopy at the city-level, fine resolution 

multispectral imagery with a sufficiently large swath size was found to be the ideal data 

characteristic. Similarly, when developing predictive models to estimate sequestered carbon from 

satellite imagery, fine resolution multispectral imagery is superior, however it can be expensive to 

obtain. PlanetScope imagery is a great low cost option for researchers seeking higher resolution 

imagery in the development of predictive carbon models from satellite imagery.  

 

 



28 

Additionally, though Sentinel-2a is not a fine resolution sensor, considering its data comes 

with four narrow red edge bands and the fact that its imagery is free to download, Sentinel-2a data 

is a great data source for vegetation mapping. However, if seeking to obtain the highest resolution 

imagery possible across mid-sized or large metropolitan areas, and assuming financial resources 

are not limited, researchers might consider acquiring SkySat imagery. Its 50 cm resolution and 3.6 

mile wide swath width make SkySat a preeminent data source for mapping urban tree canopy at 

the city-level. 

 

Restatement of the Research Objectives 

Over the next three chapters presented here, this research works to identify practical 

methodologies using remote sensing and digital image processing to answer each of the following 

three questions:  

 

CHAPTER 3.    How has the extent of Chattanooga’s urban tree canopy changed between 

1984 and 2021? 

CHAPTER 4.   How can the carbon sequestered in the biomass of urban forest trees be 

predictively modeled at little to no cost and without a significant time 

investment? 

CHAPTER 5.  What is the current extent of Chattanooga’s urban tree canopy? 
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CHAPTER 3 

 

APPLICATION OF LANDSAT IMAGERY 

 

 

The objective of this chapter is to map the extent of Chattanooga’s urban forest canopy 

between 1984 and 2021 using historic satellite imagery. Because of the Landsat program’s 

unparalleled continuity, this section of research employs 30m Landsat 5 Thematic Mapper (TM) 

and 30m Landsat8 Operational Land Imager (OLI) to conduct all spatial analyses.  

 

Study Site 

The study site for this research was the City of Chattanooga, Tennessee. Research recently 

conducted at the University of Tennessee at Chattanooga has confirmed Chattanooga’s urban land 

areas have increased rapidly since 1986 [4, 124]. Previous research also confirmed that the 

conversion of forest to developed areas in the City of Chattanooga can be directly associated with 

impacts to surface water quality, increased surface and air temperatures, and decreased canopy 

cover resulting from the extraction of vegetation [3, 4, 83, 124, 125]. Analyzing the multidecade 

spatiotemporal impact of urbanization on forest canopy in Chattanooga could help direct 

sustainable development efforts towards areas urbanizing at an above-average rate. To date, no 

published research has identified the historic extent of Chattanooga’s urban tree canopy. 
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Figure 3.1     Study site map for Landsat research and the City of Chattanooga, Tennessee’s 

boundary 
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Data Collection 

 For this research, Landsat 5 Thematic Mapper (TM) and Landsat 8 Operational Land 

Imager (OLI) data were obtained from USGS’s Earth Explorer data hub, seen in Figure 3.2. 

Landsat data can be obtained from Earth Explorer as a Level-1 or a Level-2 product, where Level-

1 data are provided as digital numbers without atmospheric corrections conducted, and Level-2 

data are provided as calibrated surface reflectance values. For this research, Level-2 data were 

obtained. Downloaded from Earth Explorere as Level-2 products, Landsat 8 OLI imagery 

consisted of 9 bands, while Landsat 5 TM imagery consisted of 7 bands, shown in Table 3.1. 

 

Table 3.1     Landsat 5 TM and Landsat 8 OLI sensor specifications 

 

 

 

  Bands   Description Wavelength (μm) Spatial resolution (m) Temporal Resolution 

L
an

d
sa

t 
5
 

TM 1   Blue 0.45 - 0.52 30 

16 Days 

TM 2   Green 0.52 - 0.60 30 

TM 3   Red 0.63 - 0.69 30 

TM 4   Near-Infrared 0.76 - 0.90 30 

TM 5   Near-Infrared 1.55 - 1.75 30 

TM 6   Thermal-Infrared 10.40 - 12.50 120 

TM 7   Mid-Infrared 2.08 - 2.35 30 

L
an

d
sa

t 
8
 

OLI 1   Coastal Aerosol 0.43 - 0.45 30 

16 Days 

OLI 2   Blue 0.45 - 0.51 30 

OLI 3   Green 0.53 - 0.59 30 

OLI 4   Red 0.64 - 0.67 30 

OLI 5   Near-Infrared 0.85 - 0.88 30 

OLI 6   Shortwave-Infrared 1.57 - 1.65 30 

OLI 7   Shortwave-Infrared 2.11 - 2.29 30 

OLI 8   Panchromatic 0.50 - 0.68 15 

OLI 9   Cirrus 1.36 - 1.38 30 



32 

In order to understand how forest canopy coverage was impacted by urbanization between 

1984 and 2021, imagery was obtained along a defined interval, where the years between imagery 

acquisition (referred to in Table 3.2. as “Acquisition Gap”) was equal to or less than 5 years. A 5-

year interval was selected by the researchers in order to effectively observe urban growth and 

canopy loss through time without obtaining an excessive number of Landsat scenes. In this 

research a total of 10 scenes were obtained representing 37 years of urbanization in the City of 

Chattanooga, TN. All Landsat scenes were obtained during the months of June and July to account 

for any seasonal variation in canopy coverage. In some cases when cloud coverage was an issue, 

imagery was acquired before the defined 5-year interval. In one case however, the acquisition 

period between scenes was greater than the defined 5-year interval. This was due to excessive 

cloud coverage above Chattanooga, TN between the months of June and July from 2014 to 2020. 

For this reason, the acquisition gap between scenes 8 and 9 was 6 years instead of 5 years.  

 

Table 3.2     Acquired Landsat 5 TM and Landsat 8 OLI imagery 
 

Scene ID Year Month and Day Acquisition Gap Satellite - Sensor RGB 

1 1984   June 27 0 

Landsat 5 - TM 

321 

2 1988   July 8 4 321 

3 1990   June 28 2 321 

4 1995   July 12 5 321 

5 2000   June 23 5 321 

6 2004   July 20 4 321 

7 2009   June 16 5 321 

8 2014   June 14 5 

Landsat 8 - OLI 

432 

9 2019   August 31 6 432 

10 2021   July 3 1 432 
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Methods 

Image Pre-Processing and Enhancement 

Using the Composite Band geoprocessing tool in ArcGIS Pro, the individual bands for each 

of the downloaded scenes, as shown in Table 3.1., were stacked to create 10 composite 

multispectral images. Next, using the Clip Raster geoprocessing tool within ArcGIS Pro, each of 

the 10 composite images were clipped to the City of Chattanooga’s boundary. Landsat true color 

imagery is seen in Figure 3.2. and Appendix Figures A1-A10. For Landsat 5 scenes 1 – 7, the band 

combination for RGB true color was 321. For Landsat scenes 8 – 10, the band combination for 

RGB was 432. The images were stretched using either “percent clip” or “standard deviation”. 

 

Figure 3.2      True color Landsat 8 OLI image acquired July 3, 2021 over the City of 

Chattanooga, TN 
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Feature Extraction 

The final step in image processing was classifying each image to obtain a thematic land 

cover map visualizing the following classes: developed areas, forest canopy, non-forest vegetation, 

and water. To do this, both pixel-based supervised classification and pixel-based unsupervised 

classification were utilized. This is commonly referred to as a supervised hybrid classification 

strategy. For reasons related to Landsat’s 30 m spatial resolution,  pixel-based supervised hybrid 

classification was ultimately selected. 

 

Supervised Classification 

To conduct supervised pixel-based classification, ArcGIS Pro’s “Image Classification 

Wizard” (ICW) was utilized. On the “Configure” pane of the ICW, “supervised” and “pixel-based” 

were selected. ArcGIS Pro’s default classification schema was selected. In the next pane of the 

ICW, (“Training Samples Manager”) a new 3-class schema was created consisting of pervious 

surfaces, impervious surfaces, and water. This 3-class schema was then used to collect 10 sperate 

training sample datasets which would be used to train the classification of the 10 obtained Landsat 

images (Figure 3.3.A.; Appendix Figures A11-A20). In the next pane of the ICW, (“Train”) 

support vector machine was selected as the machine learning classifier for supervised 

classification. The default maximum number of samples per class were used. However, if a greater 

number of samples are collected in a single class than the default value, this value should instead 

be set to 0 so that the classifier considers all collected training samples. The output data obtained 

from supervised classification was 10 raster datasets consisting each of 3 land cover classes: 

pervious surfaces, impervious surfaces, and water (Figure 3.3.B.; Appendix Figures A21-A30). 

 

 



35 

 

Figure 3.3      (A) Distribution of training samples used for supervised classification shown on 

the true color 2021 Landsat 8 OLI imagery; (B) 3 class thematic land cover dataset 

derived from the supervised classification  of the 2021 Landsat 8 OLI imagery  

 

 

 

(A) 

(B) 
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Unsupervised Classification 

Next, using ArcGIS Pro’s Extract By Mask geoprocessing tool, pixels from the original 

multispectral Landsat images coincident with the pervious surfaces class from the output of 

supervised classification were extracted. Using these extracted pervious pixels from all obtained 

Landsat scenes, unsupervised classification was employed to classify the extracted multispectral 

pervious pixels into 10 spectrally distinct classes.  

 

 

 

 

 

 

 

 

 

Figure 3.4      Land cover output consisting of 10 spectrally distinct classes of pervious pixels 

following unsupervised classification (2021 Landsat 8 OLI imagery displayed) 

 

Unsupervised classification was selected to identify forest canopy pixels apart from other 

non-forest vegetation pixels. This step was conducted within ArcGIS Pro’s ICW. On the 

“Configure” pane of the ICW, “Unsupervised” and “Pixel based” were selected.  
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ArcGIS Pro’s default classification schema was selected. In the next pane of the ICW 

(“Train”), iso cluster was selected as the classifier for unsupervised classification. The maximum 

number of classes was set to 10. Unsupervised classification within ArcGIS Pro was configured 

with an appropriate iteration convergence threshold. All other parameters were left at default 

values. The output data obtained from unsupervised classification was 10 raster datasets, each 

consisting of 10 spectrally distinct classes of previous pixels (Figure 3.4.; Appendix Figures A31-

A40). 

 

Image Post-Processing 

 

Image Reclassification 

Next, the unsupervised outputs needed to be reclassified into 2-class rasters consisting of 

forest canopy and non-forest vegetation. This was accomplished using a true color reference to 

inspect each of the 10 classes of pervious pixels for all unsupervised outputs. After determining 

whether each class of the unsupervised outputs belonged to the forest canopy class or the non-

forest vegetation class, the unsupervised output was reclassified using ArcGIS Pro’s Reclassify 

geoprocessing tool. The output obtained from the reclassification of unsupervised data was 10 

raster datasets, each consisting of forest canopy and non-forest vegetation (Figure 3.5.; Appendix 

Figures A41-A50). 
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Figure 3.5     Reclassification of 10 spectrally distinct classes of previous pixels into a new 2 

class thematic raster consisting of Non-Forest Vegetation and Forest Vegetation 

(2021 Landsat 8 OLI imagery displayed) 

 

 

Creating the Final Land Cover Datasets 

Finally, to obtain the desired 4-class land cover map, the outputs from the reclassification 

of pervious pixels and supervised classification needed to be combined. From each of the 

supervised classification outputs, all pervious pixels were reclassified to “NoData” using ArcGIS 

Pro’s Reclassify geoprocessing tool. Next, using ArcGIS Pro’s Merge raster function, the 

developed and water classes from supervised classification and the forest and non-forest vegetation 

classes from unsupervised classification were combined. The final output data obtained  was 10 

raster datasets, each consisting of 4 classes: developed areas, forest canopy, non-forest vegetation, 

and water (Figure 3.6.; Appendix Figures A51-A60). 
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Table 3.3      Final thematic land cover dataset class names and descriptions 
 

Land Class  Class Code Class Description 

Impervious Surfaces 1 Buildings, Roads, Cars, Parking Lots, Artificial Turf, etc. 

Non-Forest Vegetation 2 Grasses, Scrubs, Shrubs, Crops, Ornamental Plants, etc. 

Urban Forest Canopy 3 All tree canopy within the study area. 

Water 4 Flooded Wetlands, Rivers, Streams, Man-Made Retention Ponds, etc.  

 

 

 
Figure 3.6      Final supervised hybrid thematic 4-class land cover raster 
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Accuracy Assessment 

 Typically, accuracy assessments of spatial analyses incorporate ground-truth data to 

reference the derived land cover dataset. However, this is generally not possible when dealing with 

temporal datasets. Therefore, to conduct an accuracy assessment of the spatiotemporal analysis 

conducted across Chattanooga’s forest canopy, Google Earth’s historic imagery archive was 

utilized. For each year of acquisition for the Landsat imagery obtained in this research, polygons 

representing pure samples of the 4 classes derived in the final output of this analysis were collected 

using random stratified sampling across the imagery and saved as separate kml files. The files 

were then uploaded to ArcGIS Pro and saved as feature classes. Finally, using ArcGIS Pro’s  

Tabulate Area geoprocessing tool, an analysis of user accuracy was preformed (Table 3.4.). 
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Figure 3.7     Example of the polygons digitized using Google Earth’s historic imagery to 

conduct the accuracy assessment across each of the 10 supervised hybrid land cover 

datasets (Images not to scale) 
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Results 

 Confusion Matrices 

For each of the classified land cover datasets, a confusion matrix was generated and 

provided in Table 3.4. Based on the results of the accuracy assessments conducted across each of 

the ten land cover datasets, overall accuracy ranged from 92.97% to 99.71%. Scene 10 (2021) 

yielded the highest overall accuracy, while Scene 1 (1984) produced the lowest. Results across all 

ten accuracy assessments suggest the most common error of commission (Type I error / false-

positive) was the erroneous classification of Non-Forest Vegetation pixels into the Impervious 

Surface and Forest Canopy land classes, while the most common error of omission (Type II error 

/ false-negative) was the erroneous classification of Impervious Surface pixels into the Non-Forest 

Vegetation and Forest Canopy land classes.  

 

Table 3.4     Confusion matrices derived from the accuracy assessment of 1984 – 2021 final 

land cover datasets 

 

  Classified Pixels Developed 
Non-Forest 

Vegetation 
Forest Water Total User's Accuracy 

1
9

8
4
 

Developed Pixels 413 18 2 0 433 95.38% 

Non-Forest Vegetation Pixels 166 206 135 0 507 40.63% 

Forest Pixels 0 0 1026 0 1026 100.00% 

Water Pixels 0 0 0 2599 2599 100.00% 

Total 579 224 1163 2599 4565   

Producer's Accuracy 71.33% 91.96% 88.22% 100.00%   Overall = 92.97% 

        

  

Classified Pixels Developed 
Non-Forest 

Vegetation 
Forest Water Total User's Accuracy 

1
9

8
8
 

Developed Pixels 214 3 3 0 220 97.27% 

Non-Forest Vegetation Pixels 66 172 60 0 298 57.72% 

Forest Pixels 22 28 709 0 759 93.41% 

Water Pixels 0 0 0 2599 2599 100.00% 

Total 302 203 772 2599 3876   

Producer's Accuracy 70.86% 84.73% 91.84% 100.00%   Overall = 95.30% 
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Classified Pixels Developed 
Non-Forest 

Vegetation 
Forest Water Total User's Accuracy 

1
9

9
0
 

Developed Pixels 206 0 0 0 206 100.00% 

Non-Forest Vegetation Pixels 102 263 6 0 371 70.89% 

Forest Pixels 0 0 802 0 802 100.00% 

Water Pixels 0 1 1 2597 2599 99.92% 

Total 308 264 809 2597 3978   

Producer's Accuracy 66.88% 99.62% 99.13% 100.00%   Overall = 97.23% 

        

  

Classified Pixels Developed 
Non-Forest 

Vegetation 
Forest Water Total User's Accuracy 

1
9

9
5
 

Developed Pixels 157 0 0 0 157 100.00% 

Non-Forest Vegetation Pixels 2 294 43 0 339 86.73% 

Forest Pixels 0 0 431 0 431 100.00% 

Water Pixels 0 0 0 2599 2599 100.00% 

Total 159 294 474 2599 3526   

Producer's Accuracy 98.74% 100.00% 90.93% 100.00%   Overall = 98.72% 

        

  

Classified Pixels Developed 
Non-Forest 

Vegetation 
Forest Water Total User's Accuracy 

2
0

0
0
 

Developed Pixels 132 0 0 0 132 100.00% 

Non-Forest Vegetation Pixels 0 164 149 0 313 52.40% 

Forest Pixels 41 0 606 0 647 93.66% 

Water Pixels 0 0 0 2599 2599 100.00% 

Total 173 164 755 2599 3691   

Producer's Accuracy 76.30% 100.00% 80.26% 100.00%   Overall = 94.85% 

   

  

Classified Pixels Developed 
Non-Forest 

Vegetation 
Forest Water Total User's Accuracy 

2
0

0
4
 

Developed Pixels 125 0 0 0 125 100.00% 

Non-Forest Vegetation 

Pixels 
51 187 0 0 238 78.57% 

Forest Pixels 0 1 417 0 418 99.76% 

Water Pixels 0 0 0 2599 2599 100.00% 

Total 176 188 417 2599 3380   

Producer's Accuracy 71.02% 99.47% 100.00% 100.00%   Overall = 98.46% 

        

  

Classified Pixels Developed 
Non-Forest 

Vegetation 
Forest Water Total User's Accuracy 

2
0

0
9
 

Developed Pixels 295 0 0 0 295 100.00% 

Non-Forest Vegetation 

Pixels 
24 159 10 0 193 82.38% 

Forest Pixels 0 0 1658 0 1658 100.00% 

Water Pixels 0 0 0 2599 2599 100.00% 

Total 319 159 1668 2599 4745   

Producer's Accuracy 92.48% 100.00% 99.40% 100.00%   Overall = 99.28% 

 

       



44 

  
Classified Pixels Developed 

Non-Forest 

Vegetation 
Forest Water Total User's Accuracy 

2
0

1
4
 

Developed Pixels 297 0 0 0 297 100.00% 

Non-Forest Vegetation 

Pixels 
46 161 5 0 212 75.94% 

Forest Pixels 1 0 1190 0 1191 99.92% 

Water Pixels 0 0 0 2599 2599 100.00% 

Total 344 161 1195 2599 4299   

Producer's Accuracy 86.34% 100.00% 99.58% 100.00%   Overall = 98.79% 

        

  

Classified Pixels Developed 
Non-Forest 

Vegetation 
Forest Water Total User's Accuracy 

2
0

1
9
 

Developed Pixels 253 0 0 0 253 100.00% 

Non-Forest Vegetation 

Pixels 
15 152 6 0 173 87.86% 

Forest Pixels 0 8 1288 0 1296 99.38% 

Water Pixels 0 0 0 2599 2599 100.00% 

Total 268 160 1294 2599 4321   

Producer's Accuracy 94.40% 95.00% 99.54% 100.00%   Overall = 99.33% 

        

  

Classified Pixels Developed 
Non-Forest 

Vegetation 
Forest Water Total User's Accuracy 

2
0

2
1
 

Developed Pixels 586 1 0 0 587 99.83% 

Non-Forest Vegetation 

Pixels 
3 302 0 0 305 99.02% 

Forest Pixels 0 13 2431 0 2444 99.47% 

Water Pixels 0 0 0 2599 2599 100.00% 

Total 589 316 2431 2599 5935   

Producer's Accuracy 99.49% 95.57% 100.00% 100.00%   Overall = 99.71% 
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Assessment of Spatiotemporal Trends  

Figure 3.8 displays the area of each land cover class in acres for all ten images in a bar 

chart. Trendlines were added to both impervious surface and forest canopy classes. Between 1984 

and 2021, a negative linear relationship was identified between time (x) and acres of forest canopy 

(y). Conversely, between 1984 and 2021, a positive linear relationship was identified between time 

(x) and acres of impervious surface (y). The area in acres and the relative percentage of each land 

cover class for all images is also provided in Table 3.6.   

 The percent change in the area of land cover classes between consecutive imagery dates 

was calculated and provided in Table 3.7. From the final land cover class area estimations, since 

1984,  Chattanooga has steadily lost forest canopy. In the 37 years analyzed, this study estimates 

that Chattanooga has lost approximately 36.9 square miles of its urban tree canopy. These losses 

in forest canopy are complimented by steady gains in impervious surface area. Since 1984 

Chattanooga’s urban spaces have gained 32.5 square miles, an increase of approximately 134%. 

 

Table 3.5     Area and relative percentage of land cover classes quantified across the 10 final 

land cover datasets (Non-Forest Vegetation = NF) 
 

  Impervious Surface NF Vegetation Forest Canopy Water  

  Acres % Area Acres % Area Acres % Area Acres % Area 

1984 15526 16.10% 20229 20.97% 55549 57.60% 5140 5.33% 

1988 24546 25.45% 18595 19.28% 48325 50.11% 4979 5.16% 

1990 23512 24.38% 22976 23.82% 44968 46.63% 4988 5.17% 

1995 25875 26.83% 23931 24.81% 41707 43.24% 4931 5.11% 

2000 21833 22.64% 26213 27.18% 43356 44.95% 5043 5.23% 

2004 22358 23.18% 30393 31.51% 38630 40.05% 5063 5.25% 

2009 27485 28.50% 28235 29.28% 35590 36.90% 5134 5.32% 

2014 32365 33.56% 24086 24.97% 34857 36.14% 5136 5.33% 

2019 31981 33.16% 22188 23.01% 37278 38.65% 4991 5.18% 

2021 36316 37.65% 23347 24.21% 31924 33.10% 4857 5.04% 
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Figure 3.8      Land cover class area in acres for the 10 final land cover datasets 

 

The most significant change in urban tree canopy surface area occurred between 2019 

and 2021. During this period, urban forest area decreased by 14%, while impervious surface area 

increased by 14%. The most significant change in impervious surface area between consecutive 

images occurred between 1984 and 1988. During this time period, Chattanooga’s urban spaces 

increased in area by ~14 square miles, an increase of approximately 58%, while urban forest area 

decreased by ~11 square miles, and non-forest vegetation decreased by ~3 square miles. This 

rapid increase in impervious surfaces alongside decreases in both forest canopy and non-forest 

vegetation classes suggests that Chattanooga likely experienced a period of rapid urbanization 

between 1984 and 1988.  
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Table 3.6     Land cover class area percent change between imagery acquisition dates 

 

  Impervious Surface Non-Forest Vegetation Forest Canopy Water 

1984 - 1988 58.09% -8.08% -13.01% -3.13% 

1988 - 1990 -4.21% 23.56% -6.95% 0.19% 

1990 - 1995 10.05% 4.16% -7.25% -1.15% 

1995 - 2000 -15.62% 9.53% 3.95% 2.27% 

2000 - 2004 2.40% 15.95% -10.90% 0.40% 

2004 - 2009 22.93% -7.10% -7.87% 1.41% 

2009 - 2014 17.75% -14.69% -2.06% 0.04% 

2014 - 2019 -1.19% -7.88% 6.94% -2.83% 

2019 - 2021 13.55% 5.23% -14.36% -2.68% 

 

 

 

In two separate instances, the percent change of urban tree canopy is positive rather than 

negative, suggesting a net growth in urban tree canopy. The first instance, occurring between 1995 

and 2000, reports increases in forest canopy around 4% complimented by an ~10% increase in 

non-forest vegetation. The second, occurring between 2014 and 2019, found an increase in forest 

canopy around of ~7% complemented by an ~8% loss in non-forest vegetation and negligible 

losses in all other classes. In both of these cases, increases in forest canopy can reasonably be 

explained by the regeneration of forest across recently harvested timber operations.  

Based on the results from the accuracy assessments, the methodology utilized in this 

research is effective when using a spatiotemporal dataset of moderate resolution remote sensing 

data, such as Landsat 5 TM and Landsat 8 OLI imagery, to classify broad land cover types apart 

from other broad land cover classes at the city-scale or larger. However, when seeking to obtain 

more granular information from the resulting landcover data, such as the percent of urban tree 

canopy across a park within the city itself for example, the utility and effective accuracy of the 

obtained land cover model would be far less. The inherent limitation of moderate resolution 

sensors in the mapping of urban tree canopy will be discussed in greater detail in later sections. 
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CHAPTER 4 

 

APPLICATION OF PLANETSCOPE AND SENTINEL IMAGERY 

 

 

The objective of this chapter is to develop a methodology to model the carbon sequestered 

in the biomass of Chattanooga’s urban forest trees using field data and different vegetation indices. 

Because of the limited spatial resolution of Landsat imagery (30 m), this section of research 

employs PlanetScope (3 m) and Sentinel-2a imagery (10 and 20 m).  

 

Study Site 

The study site for this research is a 177-acre portion of the University of Tennessee at 

Chattanooga (UTC). Covering an approximately 320 acre region within the center of downtown 

Chattanooga, Tennessee, the UTC campus was selected as a  study site for the proof of concept to 

develop a model to estimate the carbon sequestered in a subset of urban forest biomass before 

scaling up to the full extent of a mid-sized city like Chattanooga.  

Conducting random, city-scale field sampling requires a significant amount of time to 

generate a statistically viable sample upon which to develop a predictive model. Because the goal 

of this research was to determine how the carbon sequestered in the biomass of urban forest trees 

can be predictively modeled at little to no cost and without a significant time investment, a subset 

of Chattanooga’s urban tree canopy bound by UTC’s campus was selected as the study site. 
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Some less-accessible portions of the campus, such as around common areas of on-campus 

housing, and areas of campus where vegetation is not easily measured by remote sensors, such as 

trees planted on the perimeter of buildings were exclude from  the study site. The resulting study 

site was a 177 acre subset of UTC’s campus. 

 Aside from mapping urban tree canopy and modeling sequestered carbon across the UTC 

campus, this research explores various techniques that might be applied to mapping urban tree 

canopy rapidly across larger areas, such as the City of Chattanooga and the greater Chattanooga 

region. 

 

 

Figure 4.1     Study site map for Planet Scope and Sentinel-2a research representing the campus  

of the University of Tennessee at Chattanooga (UTC) 
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Data Collection 

For this research, all acquired imagery received geometric, radiometric, atmospheric, and 

positional accuracy corrections prior to collection. Collected data includes: a 4-band multispectral 

orthorectified NAIP image captured on November 10th, 2018 at 2:16 P.M.; a 4-band multispectral 

orthorectified PlanetScope Analytic image product captured on July 26, 2020 at 4:04 P.M.; and an 

8-band multispectral orthorectified Sentinel-2a image captured May 9th, 2020 at 3:34 P.M. NAIP 

imagery was downloaded from USDA’s NAIP imagery Dropbox page. PlanetScope data was 

downloaded from Planet Labs geospatial data portal for academic users. Sentinel-2a imagery was 

downloaded from the Copernicus Open Data Access Hub. 

Because NAIP imagery was acquired far outside the period of peak chlorophyll 

concentration, as a fine resolution image lacking the spectral information needed to derive a 

predictive model based on chlorophyll concentration, NAIP imagery was strictly used as reference 

data for the image-based digitization of urban tree canopy across the study site. 

NAIP and PlanetScope Imagery consisted of blue, green, red, and NIR bands, while 

Sentinal-2a consisted of blue, green, red, NIR, and 4 narrow red-edge bands. The spatial resolution 

of NAIP imagery is 1 meter, which facilitated the differentiation of individual tree crowns across 

the urban tree canopy. PlanetScope’s spatial resolution is 3 meters,  while Sentinel-2a’s spatial 

resolution is 10 meters across blue, red, green, and NIR bands, and 20 meters across the 4 red edge 

bands. Because the spectral information contained in PlanetScope and Sentinel-2a imagery would 

be used in analysis, corrected surface reflectance products were obtained. Finally, 2015 USGS 3D 

Elevation Program (3DEP) LiDAR data was acquired free directly from the Tennessee State 

Government’s GIS data portal.  
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Figure 4.2     Acquired multispectral imagery (viewed in false color to highlight the presence of 

vegetation in red) to model urban tree canopy across the campus of the University 

of Tennessee at Chattanooga (UTC); (A) Sentinal2-a visible and NIR bands have a 

resolution of 10 meters; (B) PlanetScope imagery has a resolution of 3 meters; (C) 

NAIP imagery has a resolution of 1 meter 

 

(A) 

(B) 

(C) 
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Methods 

Image Preprocessing  

As previously stated, all acquired imagery received geometric, radiometric, atmospheric, 

and positional accuracy corrections prior to collection. Additionally, because the spectral 

information contained in PlanetScope and Sentinel-2a imagery would be used in analysis, 

corrected surface reflectance products were obtained. 

The bands of both NAIP and PlanetScope imagery came pre-stacked in composite images. 

Using the Composite Band geoprocessing tool in ArcGIS Pro, the individual bands of Sentinel-2a 

were stacked into a composite image (Figure 4.2.) A general quality assessment was conducted 

across all three multispectral composite imagery sources to determine if cloud coverage and/or 

missing data might inhibit the extraction of useful data. 

 

Image Enhancements 

Using the band combination: Red = PC1, Green = PC2, Blue = PC1, a first order principal 

component analysis (PCA) was conducted on NAIP imagery using the Principal Components 

geoprocessing tool in ArcGIS Pro. The PCA was successfully able to detect shadows across the 

image, seen in Figure 4.3 as bright green regions.  

To assist with the digitization of urban tree canopy across the 2018 NAIP reference  image, 

a canopy height model (CHM) was generated from 2015 3DEP LiDAR [126].  A digital surface 

model (DSM) and a digital terrain model (DTM) were generated by right clicking the .las file and 

separately selecting Las Filters, then First Return (DSM) and Ground Return (DTM), then 

selecting Export Raster. By subtracting the DTM from the DSM using Raster Calculator in ArcGIS 

Pro, a canopy height model was generated.  
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Figure 4.3     First order PCA conducted on NAIP imagery to help delineate shadows, colored 

in bright green 

 

 

Figure 4.4     Digital surface model (DSM) generated using the data obtained from USGS  [126] 
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Next, the vegetation indices to be used as spectral predictor variables in the modeling of 

sequestered carbon were generated using the Band Arithmetic raster function in ArcGIS Pro. From 

the Sentinel-2a image, five different vegetation indices were calculated: NDVI shown in Equation 

1, Green Normalized Difference Vegetation Index (GNDVI) shown in Equation 2, Soil Adjusted 

Vegetation Index (SAVI) shown in Equation 3, and two NDVI models derived using Sentinel-2a’s 

red edge bands (RENDVI1 and RENDVI2) shown in Equations 4 and 5 respectively. From the 

PlanetScope image, three vegetation indices were calculated: NDVI, GNDVI, and SAVI, shown 

in Equations 1 – 3 respectively. Figure 4.5 shows the NDVI model derived from (a) Sentinel-2a 

and (b) PlanetScope imagery. It should be mentioned here that Equation 3, SAVI, was derived 

originally from MODIS imagery to reduce the brightness of bare soil in areas of relatively sparse 

vegetation [127-129]. However, SAVI has been successfully applied to other imagery sources 

[127-129]. A generic soil brightness correction factor (L) of 0.5 has been found to be acceptable 

when applied across a number of imagery sources [130]. Finally, all multispectral imagery, the 

derived CHM and PCA, and all generated vegetation indices were clipped to the study area using 

UTC’s campus boundary and the Clip Raster geoprocessing tool in ArcGIS Pro.  
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As stated previously, the equations above represent the vegetation indices equations used 

to derive the separate independent variables in this research, where ρNIR is the reflectance values 

of the NIR band,  ρR is the reflectance values of the red band, ρG is the reflectance values of the 

green band, ρRE1 is the reflectance values of Sentinel-2a’s first red edge band, ρRE2 is the 

reflectance values of Sentinel-2a’s second red edge band, and L is the soil brightness correction 

factor. 

𝐍𝐃𝐕𝐈          =     
( ρNIR  - ρR )

( ρNIR + ρR )
 

𝐒𝐀𝐕𝐈           =     
( ρNIR  - ρR )

( ρNIR + ρR + L )
∗ (1 ∗ L) 

𝐆𝐍𝐃𝐕𝐈       =     
( ρNIR  - ρG )

( ρNIR + ρG )
 

𝐑𝐄𝟏𝐍𝐃𝐕𝐈  =      
( ρNIR  - ρRE1)

( ρNIR + ρRE1 )
 

𝐑𝐄𝟐𝐍𝐃𝐕𝐈   =      
( ρNIR  - ρRE2 )

( ρNIR + ρRE2)
 

(1) 

(2) 

(3) 

(4) 

(5) 
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Figure 4.5     (A) NDVI generated from Sentinel-2a imagery (30m); (B) NDVI generated from    

PlanetScope imagery (3m)  

 

 

 

 

(A) 

(B) 
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Feature Extraction 

Next, from the fine spatial resolution NAIP image, 1,057 canopy polygons representing 

urban tree canopy were hand digitized across the UTC campus using ArcGIS Pro. Trees that were 

close enough together such that their canopies were difficult to delineate apart from one another 

in NAIP imagery were drawn as a single canopy zone. To facilitate the digitization process, the 

PCA model was used to detect shadows, seen as the brightest green regions across the PCA image. 

In cases where shadows were detected in the PCA image, but no trees were clearly visible in the 

NAIP image, the CHM served as a reference to confirm the presence or absence of a tree. 

Vegetation with a clearly visible canopy in the NAIP imagery and CHM, and a visible shadow, 

symbolized in green in the PCA image, was assumed to be a tree and the boundary of its canopy 

was hand digitized.  

 

Field Data Collection 

To sample DBH across UTC’s campus, the Subset Features geoprocessing tool within 

ArcGIS Pro was used to take a random subset of 10%, or approximately 112 of the 1,057 digitized 

urban tree canopy zones. However, of the 112 urban tree canopy sample sites, 26 sample sites were 

removed due to DBH measurements exceeding the minimum DBH threshold that a given 

allometric equation was calibrated to. The remaining 86 canopy zones, containing roughly 125 

individual DBH measurements, can be seen in Figure 4.6. as represented by the red canopy 

polygons. Each canopy zone was labeled with a unique ID. 
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Figure 4.6     Urban tree canopy polygons hand digitized across UTC from NAIP imagery 
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To facilitate navigation between sampling sites, the subset of 86 canopy zones and 

reference NAIP imagery was uploaded to an ArcGIS Field Maps project and referenced throughout 

the sampling process. Within each canopy zone visited in the field, the DBH for each tree was 

measured and recorded using a Forestry Supplies DBH tape. The unique canopy zone ID for each 

measurement was carefully documented. The positional accuracy needed to verify the canopy zone 

that each measured tree belonged to was achieved using a global navigation satellite system 

(GNSS) receiver. Additionally, in order to select the appropriate allometric equation when 

calculating sequestered carbon, tree species was documented each time DBH was measured using 

free plant identification applications, such as LeafSnap and PlantNet. All sampling was conducted 

by the sole researcher over the course of 2 days.  

 

Modeling Sequestered Carbon 

Preparing the Independent Variables 

Using the subset of 86 sampled canopy zone polygons as a mask, the Extract by Mask 

geoprocessing tool within ArcGIS Pro was used to create 5 new Sentinel-2a vegetation index 

rasters and 3 new PlanetScope vegetation index rasters clipped to the 86 sampled urban tree canopy 

polygons. The Zonal Statistics to Table geoprocessing tool within ArcGIS Pro was then used to 

extract the maximum and average vegetation index value within all of the 86 sampled canopy 

zones separately for each of the clipped urban tree canopy vegetation indices, resulting in average 

and maximum urban tree canopy vegetation index values for each sampled canopy zone. The 

average and maximum vegetation index value representative of each sampled canopy zone across 

all 8 derived vegetation indices were tested separately as independent variables.  
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Preparing the Dependent Variable 

Using Microsoft Excel, a master spreadsheet was created consisting of the common name 

of each tree, the unique polygon ID of each tree, and DBH (cm). For this research, allometric 

equations were found for all tree species or species groups sampled using the database of allometric 

equations created by the United States Forest Service (USFS) [112]. The output for all of these 

allometric equations is dry weight above ground biomass. Jenkins et al. (2003) provides specific 

allometric equations for common species of tree across the United States [112]. Using these 

equations and the field sampled DBH values, above ground biomass was calculated for each 

canopy zoner. Next, sequestered carbon was derived by multiplying the above ground biomass 

value for each canopy zone by the biomass-carbon conversion factor [131-133].  These sequestered 

carbon values were then divided by the area of the canopy zone to determine the average carbon 

sequestered per square meter of each canopy zone. The master spreadsheet, consisting of the 

common name of each tree, the unique polygon ID of each sample site, field measured DBH (cm), 

calculated dry weight biomass, and finally sequestered carbon is provided in Table 4.1. 
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Table 4.1     Master field sampling dataset, consisting of sampled tree common name, sample 

site ID, field measured DBH (in), calculated dry weight biomass (lbs), and finally 

sequestered carbon (lbs)  

 

Common Name Sample Site ID Formula ID DBH (in) Biomass (lbs) Carbon (lbs) 

Paradise Apple 1 mh 6.06 164.24 82.12 

American Holly 2 mh 14.55 1444.59 722.30 

Sweet Bay Magnolia 3 mh 5.10 107.01 53.51 

Willow Oak 5 mo 6.93 317.44 158.72 

Red Maple 6 mb 5.39 158.41 79.21 

Bald Cypress 7 cl 8.64 309.54 154.77 

Bald Cypress 8 cl 6.99 191.58 95.79 

Bald Cypress 9 cl 8.38 288.91 144.46 

Bald Cypress 10 cl 8.33 285.25 142.62 

Eastern Cottonwood 11 aa 14.29 1278.05 639.02 

Pen Oak 12 mo 7.64 402.29 201.15 

Pen Oak 13 mo 11.48 1084.37 542.19 

Sugar Maple 14 mo 6.73 295.10 147.55 

Sugar Maple 15 mo 6.16 238.19 119.09 

Pen Oak 16 mo 3.58 63.64 31.82 

Willow Oak 16 mo 22.34 5479.40 2739.70 

American Holly 17 mh 10.54 647.81 323.90 

Sweet Bay Magnolia 17 mh 7.02 236.66 118.33 

Sour Cherry 18 mh 5.43 125.08 62.54 

Sugar Maple 19 mo 18.89 3639.53 1819.77 

 

 

Table 4.2      Allometric equations used to derive biomass estimations from field measured 

DBH [134] 

 

 

 

 

 

Symbol Species Group   Allometric Equation 

mh Mixed Hardwood   biomass (kg) = e(-2.48 + 2.48 * ln(DBH)) 

cl Cedar / Larch   biomass (kg) = e(-2.03 + 2.26 * ln(DBH)) 

aa Alder / Willow   biomass (kg) = e(-2.21 + 2.39 * ln(DBH)) 

mo Maple / Oak / Hickory / Beech   biomass (kg) = e(-2.01 + 2.43 * ln(DBH)) 

pi Pine   biomass (kg) = e(-2.54 + 2.48 * ln(DBH)) 
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Simple Linear Regression 

A series of linear regression analyses were run using Microsoft Excel. The 

independent/predictor variables tested were the maximum and average vegetation index values 

within sampled canopy zones across each of the 8 vegetation indices, while the dependent/response 

variable was the pounds of carbon sequestered per meter of each canopy zone. The complete 

modeling approach is visualized in Figure 4.7. 

 

 

Figure 4.7     Modeling approach for developing the predictive carbon model using simple linear 

regression 
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Results 

Correlation Coefficient 

A Pearson’s product-moment correlation coefficient (r) was calculated to identify the 

presence of a correlation between the derived Planet Scope and Sentinel-2a vegetation index 

statistics, and the average carbon sequestered per meter of sampled urban tree canopy. Pearson’s 

correlation coefficient is a common way to analyze the linear correlation between two separate 

variables [135]. Results from this  analysis suggest that PlanetScope derived vegetation indices 

expressed a slight positive correlation (r = < 0.462), while Sentinel-2a derived vegetation indices 

expressed a low positive correlation (r = < 0.345). The correlation coefficients for each tested 

PlanetScope and Sentinel-2a variable is provided in Table 4.3.  

 

Linear Regression Analysis 

A linear regression analysis was run on each of the independent variables to determine the 

coefficient of determination (R2) which is used to assess the strength of an identified correlation. 

The results from each linear regression conducted here are provided in Table 4.4. Additionally, for 

the best performing statistic derived from each vegetation index (average or maximum), a linear 

regression plot is provided in Figures 4.8. – 4.15.  
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Table 4.3     Pearson’s correlation and linear regression analysis results from each tested 

independent variable derived from PlanetScope and Sentinel-2a imagery   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data 

Source 
Independent Variable r R² RMSE p-value 

PlanetScope 

GNDVImean 0.462 0.213 7.607 0.07 

GNDVImax 0.434 0.189 7.725 0.10 

         

NDVImean 0.436 0.190 7.717 0.21 

NDVImax 0.394 0.156 7.881 0.33 

         

SAVImean 0.434 0.188 7.726 0.03 

SAVImax 0.396 0.157 7.874 0.05 

Sentinel-2a 

GNDVImean 0.345 0.120 7.795 0.41 

GNDVImax 0.336 0.113 7.901 0.34 

         

NDVImean 0.290 0.084 8.140 0.05 

NDVImax 0.342 0.117 7.994 0.14 

         

SAVImean 0.290 0.084 8.233 0.73 

SAVImax 0.339 0.115 8.095 0.84 

         

RENDVImean 0.240 0.058 8.315 0.004 

RENDVImax 0.273 0.075 8.240 0.006 

         

RENDVI2mean 0.252 0.063 8.336 0.02 

RENDVI2max 0.278 0.078 8.273 0.04 
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Of the independent variables tested in this research, the average GNDVIPlanetScope tree 

canopy zone pixel values expressed the strongest correlation to field sampled sequestered carbon 

(R2 = 0.213). The next strongest correlation was expressed by the average NDVIPlanetScope tree 

canopy zone pixel values (R2 = 0.190) followed by the SAVIPlanetScope tree canopy zone pixel 

values (R2 = 0.188). Of the Sentinel-2a derived vegetation indices tested as independent variables, 

the strongest correlation to field sampled sequestered carbon was expressed by the average 

GNDVISentinel-2a tree canopy pixel values (R2 = 0.120), followed by the maximum NDVISentinel-2a 

tree canopy pixel values (R2 = 0.117). In a few of the analyses, the removal of extreme outliers had 

a slight improved the analysis results. 

In this research, the three regressions conducted using PlanetScope imagery outperformed 

all analyses using Sentinel-2a derived vegetation indices. Furthermore, amongst Sentinel-2a 

derived vegetation indices, RENDVI1 and RENDVI2 had the weakest correlation to field 

measured sequestered carbon. The significance of these trends in the overall strength of the 

identified correlations across the predictive models tested in this research is discussed in later 

sections. 
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Table 4.4     Obtained linear regression equation for each tested independent variable derived 

from PlanetScope and Sentinel-2a imagery 

 

Data Source Independent Variable Regression Equation 

PlanetScope 

GNDVImean (49.888 * GNDVI) - 10.282 

GNDVImax (45.471 * GNDVI) - 10.073 

    

NDVImean (43.518 * NDVI) - 6.621 

NDVImax (37.198 * NDVI) - 5.4106 

    

SAVImean (48.917 * SAVI) - 17.176 

SAVImax (48.825 * SAVI) - 16.590 

Sentinel-2a 

GNDVImean (25.539 * GNDVI) + 3.235 

GNDVImax (27.720 * GNDVI) + 3.6953 

    

NDVImean (18.164 * NDVI) + 6.8864 

NDVImax (19.334 * NDVI) + 5.2217 

    

SAVImean (21.233 * SAVI) + 1.8106 

SAVImax (23.820 * SAVI) - 1.0797 

    

RENDVImean (15.382 * RENDVI) + 9.3956 

RENDVImax (15.671 * RENDVI) + 8.3793 

    

RENDVI2mean (16.387 * RENDVI2) + 8.2671 

RENDVI2max (16.636 * RENDVI2) + 7.2153 
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Figure 4.8      Plotted distribution of pounds of sequestered carbon per square meter (y) and mean 

GNDVI values extracted from PlanetScope imagery (x) using the digitized urban 

tree canopy polygons 

 

 

Figure 4.9      Plotted distribution of pounds of sequestered carbon per square meter (y) and mean 

NDVI values extracted from PlanetScope imagery (x) using the digitized urban 

tree canopy polygons 

 

 

R² = 0.1903

p = 0.21

0

5

10

15

20

25

30

35

40

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

S
eq

u
es

te
re

d
 C

ar
b

o
n
 (

lb
s/

M
2
)

NDVImean

PlanetScope - NDVI

R² = 0.2132

p = 0.07

0

5

10

15

20

25

30

35

40

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

S
eq

u
es

te
re

d
 C

ar
b

o
n
 (

lb
s/

M
2
)

GNDVImean 

PlanetScope - GNDVI



68 

 

 

Figure 4.10      Plotted distribution of pounds of sequestered carbon per square meter (y) and mean 

SAVI values extracted from PlanetScope imagery (x) using the digitized urban 

tree canopy polygons 

 

 

 

Figure 4.11      Plotted distribution of pounds of sequestered carbon per square meter (y) and mean 

GNDVI values extracted from Sentinel-2a imagery (x) using the digitized urban 

tree canopy polygons 
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Figure 4.12      Plotted distribution of pounds of sequestered carbon per square meter (y) and the 

maximum NDVI values extracted from Sentinel-2a imagery (x) using the digitized 

urban tree canopy polygons 

 

 

 

Figure 4.13      Plotted distribution of pounds of sequestered carbon per square meter (y) and the 

maximum RENDVI1 values extracted from Sentinel-2a imagery (x) using the 

digitized urban tree canopy polygons 
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Figure 4.14      Plotted distribution of pounds of sequestered carbon per square meter (y) and the 

maximum RENDVI2 values extracted from Sentinel-2a imagery (x) using the 

digitized urban tree canopy polygons 

 

 

 

Figure 4.15      Plotted distribution of pounds of sequestered carbon per square meter (y) and the 

maximum SAVI values extracted from Sentinel-2a imagery (x) using the digitized 

urban tree canopy polygons 
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Figure 4.16      Final map of sequestered carbon for the trees of UTC’s campus derived from 

PlanetScope GNDVI 
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CHAPTER 5 

APPLICATION OF SKYSAT IMAGERY 

 

 

The objective of Chapter 5 is to map the current extent of Chattanooga’s urban tree canopy. 

Because of the inherent difficulties in classifying urban tree canopy pixels apart from other forms 

of vegetation in moderate resolution imagery, as discussed in previous chapters, the final section 

of research presented here employs fine resolution SkySat imagery to map the distribution of 

Chattanooga’s urban tree canopy at a high spatial accuracy.  

 

Study Site 

The City of Chattanooga is one of many mid-sized cities in the southeastern United States 

experiencing rapid urban growth. As a result, forest ecosystems, places of enormous ecological, 

recreational, and cultural significance in the greater Chattanooga region, are destroyed to make 

way for new urban development. In order to help conserve Chattanooga’s urban forest habitat, 

mitigate levels of CO2 released to the atmosphere associated with the extraction of forest biomass, 

and to help support sustainable development initiatives around the city, the overall goal of this 

research is to develop a high-resolution land cover dataset utilizing high resolution multispectral 

SkySat imagery, object-based classification, and machine learning in order to assess the 

distribution of urban tree canopy across Chattanooga, Tennessee in detail. .
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Figure 5.1    Study site map for SkySat research, representing the City of Chattanooga, 

Tennessee’s boundary 

 

 

Figure 5.2    Fine resolution (50 cm) orthorectified mosaic of tasked SkySat imagery clipped to 

the study site boundary 
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Data Collection 

 For this project, stakeholders requested the most recent and highest resolution multispectral 

imagery available and within the scope of the project budget. Funding from the Lyndhurst 

Foundation facilitated the tasking of high spatial resolution, multispectral images of Chattanooga 

acquired by Planet’s SkySat constellation. Over the course of late summer and early fall of 2021, 

Planet SkySat data was tasked, collecting imagery on cloud free days. The spatial resolution of 

SkySat is approximately 50 cm.   

For convenience, Planet processed their individual images to six mosaiced strips of 

multispectral imagery covering the full extent of the city, as seen in Table 5.1. and Figure 5.2 

(Appendix Figures B2-B3). Two pre-processed imagery products were ultimately downloaded 

from the six mosaiced strips: orthorectified pansharpened 4-band multispectral imagery and raw 

4-band multispectral surface reflectance. The orthorectified pansharpened imagery was used in the 

object-based classification workflow to generate the high resolution landcover dataset, while the 

raw surface reflectance values will be used in research stemming from this project. All pre-

processing and processing steps were conducted separately for each of the six strips of 

multispectral SkySat images. 
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Table 5.1     Description of acquired multispectral SkySat imagery 

 

SkySat Image ID Satellite ID Acquisition Date Acquisition Time 

Strip 1 SSC4 October 18, 2021 3:58 pm 

Strip 2 SSC4 October 23, 2021 4:04 pm 

Strip 3 SSC4 October 18, 2021 3:59 pm 

Strip 4 SSC1 September 25, 2021 4:47 pm 

Strip 5 SSC6 November 6, 2021 7:24 pm 

Strip 6 SSC1 September 25, 2021 4:46 pm 

 

 

 

 

Figure 5.3    Footprint of acquired multispectral SkySat imagery 
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Figure 5.4    Footprint boundary and true color SkySat imagery acquired 
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Methods 

Image Pre-Processing 

Data Storage and Backup 

After acquiring both the orthorectified pansharpened imagery and surface reflectance 

imagery products, a few data management steps were made before moving on to processing. First, 

all raw data was backed up. Due to the size of the raw imagery used in this research, this step is 

time consuming. Furthermore, because SkySat is a high resolution sensors, and because the study 

site for this research covered the entire City of Chattanooga, the acquired imagery for this research 

required a large amount of storage. In general, as spatial resolution increases, the more storage 

space is needed.  

To accommodate storage needs and to facilitate rapid processing of SkySat imagery, all 

pre-processing and processing was conducted within a powerful distributed processing server 

system managed and operated by the University of Tennessee at Chattanooga SimCenter to help 

speed up processing times and to provide large amounts of storage. 

Finally, because ArcGIS Pro was utilized exclusively during processing, all image files 

were imported into a geodatabase. This greatly improves the display speed of the high resolution 

imagery. 

 

QAQC 

Once all imagery was backed up, a final quality check was conducted across all four bands 

of both the orthorectified pansharpened imagery and surface reflectance imagery products. 

Potential things to look for which, if found, may warrant communication with the imagery provider 

regarding re-tasking include high and low altitude clouds, cloud shadows, seam lines, 
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holes/missing data, distorted data, scan line artifacts, and other artifacts in imagery. This concludes 

all pre-processing.  

 

Feature Extraction 

Image Segmentation 

 All multispectral imagery was segmented using the “Segment Mean Shift” geoprocessing 

tool and “Segment Mean Shift” raster function within ArcGIS Pro (Figure 5.6.; Appendix Figure 

B4). Both versions of “Segment Mean Shift” only accept a 3-band raster with an 8-bit unsigned 

character pixel depth as the input raster. To do this, the “Extract Bands” raster function was run 

across each image. For all images, the red, green, and blue bands were used.  

A number of segmentation iterations will likely be required before obtaining satisfactory 

results. Fine-tuning segmentation is a computationally intensive and time consuming process. To 

save time, raster functions may be utilized to rapidly process temporary files using the computer’s 

memory for the purpose of exploring the effectiveness of different segmentation parameter 

configurations [136]. 

 

 

Figure 5.5    Over- and under-segmentation within an object-based classification workflow  
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The two segmentation parameters to explore and fine-tune within the “Segment Mean 

Shift” raster function and geoprocessing tool are “Spectral Detail” and “Spatial Detail”. “Spectral 

Detail” controls how strong variation in spectral signatures will influence the creation of separate 

segments.  It  can be set from 1 - 20, where a higher value is best when you have objects you want 

to classify separately but have more or less similar spectral characteristics [136]. “Spatial Detail” 

controls how strong variation in distance between objects will influence the creation of separate 

segments. It is also set between 1 and 20, where a higher value is best when the objects you are 

trying to classify apart from one another are small and clustered together [136]. There is no specific 

rational in determining the best “Spectral Detail” and “Spatial Detail” values, as the optimal 

“Spectral Detail” and “Spatial Detail” values will be unique for a given image, so this process 

requires careful trial and error.  

This research selected the most sensitive configuration and increased the “Spectral Detail” 

and “Spatial Detail” values iteratively as needed. Keeping documentation on which segmentation 

parameter configurations have been tested is a helpful practice here.  

One thing to keep in mind is that as a raster function output, your segmented layer will 

process on-the-fly when changing scale. As a result, the topology of your segmented layer will 

vary at different scales. To resolve this issue, within ArcGIS Pro, select the option to “Zoom to 

Source Resolution” of the segmented layer. This scale will display the segmented layer as it would 

appear using the geoprocessing version. For this research the optimal segmentation parameters can 

be found in Table 5.2. 

Once the optimal segmentation parameters are determined using raster functions, the next 

step is to run the Segment Mean Shift” geoprocessing tool within ArcGIS Pro using the parameters 

you determined in the previous step. For this research, a multi-core server at the University of 
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Tennessee at Chattanooga's Multidisciplinary Research Building was used to complete all 

segmentation.  

 

Table 5.2     Unique spectral and spatial detail parameters for each SkySat image used in the 

configuration of the “Segment Mean Shift” geoprocessing tool with ArcGIS Pro 

 

 

 

 

 

Figure 5.6     Footprint boundary, study site boundary, and segmented true color SkySat rasters 

SkySat Image ID Spectral Detail Spatial Detail 

Strip 1 15.5 2 

Strip 2 15.5 2 

Strip 3 18 15 

Strip 4 18 15 

Strip 5 18 2 

Strip 6 18 7 
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Training Sample Collection 

 Following imagery segmentation, the next step in the object-based classification workflow 

is collecting samples with which to train the machine learning classifier using ArcGIS Pro’s 

Training Samples Manager. The collected samples provide the machine learning algorithm with 

the specific characteristics expressed by each of your classes. These characteristics are then used 

by the classifier to sort every segment across your image into a specific class [136]. In this research, 

the collection of training samples and classification of an image was conducted iteratively; 

multiple rounds of training sample collection and image classification were performed separately 

for each image.  

Next, the schema was updated within “Training Samples Manager” such that each class 

name and unique class value was correct prior to collecting training samples. A copy of the schema 

was saved to use later during image classification. Representative samples of each class were then 

collected via two different methods: selecting directly from the segmented layer from the previous 

step and by hand-drawing a polygon over the object in the image. More often than not, segments 

were selected directly in lieu of hand-drawing polygons. 

The collection process was started by first selecting the segmented layer in the contents 

pane and choosing the select segment option in the “Training Sample Manager” interface. Then 

within the schema, as displayed in the “Training Samples Manager” interface, a class was selected 

to begin collecting samples. As a note, this research found it useful to save often and utilize file 

versioning throughout this step of the workflow. Approximately 50 pure samples were collected 

for Forest Canopy, Non-Forest Vegetation, Developed Surfaces, and Shadows.  
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For exposed soil and water, ~20 pure samples were collected, as these land cover classes 

represent a considerably smaller land area than compared to other land cover types across the City 

of Chattanooga. In general, segments containing multiple image objects should not be sampled. 

Following this preliminary collection of training samples, the image was classified. Then, 

according to any apparent misclassification resulting from over- or under classification, additional 

rounds of training sample collection and image classification were performed until the image was 

sufficiently classified. For each of the six strips of imagery, between 150 - 350 training samples 

were collected for each class (Figure 5.7.; Appendix Figure B5) Once training samples were 

collected, a copy of the final training sample shapefile for each strip of imagery was saved.   

 

 

Figure 5.7     Training samples collected across segmented SkySat imagery to support object-

based classification 
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Image Classification 

 As stated previously, multiple rounds of training sample collection followed by image 

classification were conducted separately for each image. If classes were visually over-represented 

or under-represented in the output land cover data, poor quality training samples were reduced or 

additional pure training samples were added. In each round of classification, supervised 

classification was selected as the classification method, and the source location for the segmented 

layer, multispectral imagery, schema file and training sample dataset for a given strip of imagery 

were added to the configuration window. Next, support vector machine (SVM) was selected as the 

machine learning algorithm, as it is known to work well with an unbalanced number of classes 

and/or small sample sizes in a given class [136]. The maximum number of samples per class was 

kept at the default setting of 500. Following classification, the final, unrefined high resolution land 

cover dataset (Figure 5.8.; Appendix Figure B6) was obtained. 
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Figure 5.8     Final unrefined high resolution (50 cm) land cover dataset derived from SkySat 

imagery 
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Image Post-Processing 

Refining the High Resolution Land Cover Dataset 

After classifying each of the six strips of SkySat imagery, the next step was refining the 

land cover dataset, wherein all shadows were removed, and any areas that were misclassified based 

on visual interpretation were corrected to reduce error across the derived land cover map. First, the 

land cover dataset was exported as a .tif to a folder saved outside of the software. This folder was 

then copied to an external hard drive as a backup. Then, a 1000 square meter grid across the full 

extent of the land cover dataset was generated; the land cover dataset was assessed a cell at a time, 

with edits performed as needed using “Pixel Editor” within ArcGIS Pro. 

 

 

Figure 5.9     Final refined high resolution (50 cm) land cover dataset derived from SkySat 

imagery 
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Accuracy Assessment 

For both the unrefined and refined landcover accuracy assessments, approximately 500 

randomly distributed points were created using the “Create Accuracy Assessment Points” 

geoprocessing tool within ArcGIS Pro. Each point within the “Create Accuracy Assessment 

Points” output feature class was visually inspected, and a class code was assigned to the 

“GrndTruth” field for that point within the feature class’s attribute table. Finally, “Compute 

Confusion Matrix” geoprocessing tool within ArcGIS Pro was run using the 500 random points as 

input data. The output confusions matrices are provided in Table 5.3. and 5.4. 

 

 

Figure 5.10     500 randomly distributed points used for the accuracy assessment of the final 

unrefined high resolution land cover dataset 
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Figure 5.11     500 randomly distributed points used for the accuracy assessment of the final 

refined high resolution land cover dataset 
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Results 

Following image processing and post-processing tasks, an unrefined, 6-class thematic land 

cover dataset (Figure 5.8.; Appendix Figure B6), consisting of: Forest Canopy, Non-Forest 

Vegetation, Impervious Surfaces, Exposed Soil, Water, and Shadows; and a refined 5-class 

thematic land cover dataset (Figure 5.9.; Appendix Figure B7), consisting of: Forest Canopy, Non-

Forest Vegetation, Impervious Surfaces, Exposed Soil, and Water was obtained.  

 

 

 

 

 

Figure 5.12     Subsets showcasing the true color SkySat imagery (top), refined land cover dataset 

(bottom) over Coolidge Park / North Shore (left), and the Chattanooga National 

Cemetery (right) 
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Accuracy Assessment Results 

Accuracy assessments were performed on both the unrefined and refined land cover 

datasets using geoprocessing tools within ArcGIS Pro (Figures 5.9., 5.10., and 5.11.; Appendix 

Figures B7, B8, and B9). Results from an accuracy assessment of the unrefined land cover data 

can be used to determine if any refining is necessary, or if this process can be skipped. 

Additionally, assessing the accuracy of the refined dataset and comparing the results to the 

unrefined dataset accuracy assessment can help determine the effectiveness of the entire refining 

process. Considering the overall accuracy of the 2019 National Landcover Dataset (NLCD) is 

reportedly between 85% and 90% using 30-meter Landsat imagery, the results from the accuracy 

assessment of the refined data, as presented in Table 5.4., support the idea that an object-based 

workflow, compared to a more traditional pixel-based workflow, is well suited to classify large, 

high resolution multispectral images at a high accuracy. 

Results from the accuracy assessment of the unrefined data found an overall accuracy of 

87% with a supporting kappa coefficient of 0.82, as seen in Table 5.3. Results from the second 

accuracy assessment found the overall accuracy of the final refined land cover dataset to be 93% 

with a supporting kappa coefficient of 0.9, as seen in Table 5.4.  
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Table 5.3     Confusion matrix derived from the accuracy assessment of the unrefined land cover 

dataset 

 

Classification 
 Forest 

Canopy 

Non-Forest 

Vegetation 

Impervious 

Surface 

Exposed 

Soil 
Water Shadow Total 

User's 

Accuracy 
Kappa 

Forest 203 16 1 0 0 18 238 85.29%   

Non Forest 

Vegetation 
5 72 4 0 0 0 81 88.89%   

Impervious 1 3 106 2 0 0 112 94.64%   

Exposed Soil 1 0 0 9 0 0 10 90.00%   

Water 0 0 0 0 26 0 26 100.00%   

Shadow 10 0 2 0 3 27 42 64.29%   

Total 220 91 113 11 29 45 509     

Producer's 

Accuracy 
92.27% 79.12% 93.81% 81.82% 89.66% 60.00%   87.03%   

Kappa                 0.8174 

 

Table 5.4     Confusion matrix derived from the accuracy assessment of the refined land cover 

dataset 

Classification 
 Forest 

Canopy 

Non-Forest 

Vegetation 

Impervious 

Surface 

Exposed 

Soil 
Water Total 

User's 

Accuracy 
Kappa 

Forest 232 12 3 0 0 247 93.93%   

Non Forest 

Vegetation 
8 90 1 2 0 101 89.11%   

Impervious 0 3 117 1 0 121 96.69%   

Exposed Soil 0 0 2 8 0 10 80.00%   

Water 1 0 0 0 27 28 96.43%   

Total 241 105 123 11 27 507 0   

Producer's 

Accuracy 
96.27% 85.71% 95.12% 72.73% 100.00% 0 93.49%   

Kappa               0.9023 
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CHAPTER 6 

DISCUSSION 

 

 

Objectives of the Study 

 

This collection of research sought to: (1) quantify how the extent of Chattanooga’s urban 

tree canopy changed between 1984 and 2021 using Landsat imagery, (2) determine how the carbon 

sequestered in the biomass of urban forest trees can be predictively modeled at little to no cost and 

without a significant time investment using PlanetScope and Sentinel-2a imagery, and (3) map the 

current extent of Chattanooga’s urban tree canopy using high resolution SkySat imagery. 

Throughout this research, a number of obstacles were identified. These obstacles, along with any 

insight gained throughout the research are discussed below. 

 

Application of Landsat Imagery 

The main goal of this research was to identify the historic extent of urban tree canopy 

across the City of Chattanooga. In conducting this research, Landsat 5 and 8 data were obtained. 

Landsat 5 and 8 however, are two different systems designed three decades apart. Therefore, image 

quality between these systems is inherently different. Additionally, variable levels of atmospheric 

dust, pollen, and water vapor can impact the accuracy of a remote sensor. For this reason, a 

supervised hybrid classification workflow as described in this research was implemented in leu of 

more traditional classification methods to normalize potential variation across classified results.  
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To accurately classify the extent of forest canopy in each of the images, it was necessary 

to delineate tree pixels from pixels representing non-tree vegetation. However, because of 

Landsat’s moderate 30 meter spatial resolution, and the spectral similarities between tree pixels 

and non-tree pixels, it was highly difficult to differentiate between forest canopy and non-forest 

vegetation, even when viewing the imagery in false color. This was true across large portions of 

the city, where the forest canopy is highly fragmented and mixed in thoroughly with other 

fragments of non-forest vegetation and impervious surfaces, all in areas smaller than the spatial 

resolution of most moderate resolution sensors.  

Furthermore, the spectral response of individual features smaller in surface area than the 

spatial resolution of the sensor that captured the image were not clearly distinguishable or 

detectable in the obtained imagery. Clusters of multiple small features were visible in imagery, 

however the structure or form of one individual unit of the cluster of small features were not 

distinguishable.  

As a result, during the creation of both training sample polygons with which to train the 

machine learning classifier and accuracy assessment polygons with which to assess the obtained 

results, the primary researcher selected large, pure clusters of clearly identifiable forest and non-

forest vegetation as samples. In this way, bias was introduced that potentially influenced the results 

and accuracy reports of the obtained models. All attempts were made to maintain some sense of 

diversity in the obtained training and accuracy assessment sample datasets, especially with regards 

to forest canopy and non-forest vegetation. To these ends, an unsupervised workflow for pervious 

pixel classification was applied, as there was a greater chance for the algorithm to spectrally 

differentiate between spectrally distinct groups of forest and non-forest vegetation pixels than by 

a supervised classification with user inputs.  
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In this sense, the spatiotemporal analysis conducted here may be highly accurate in the 

classification of larger clusters of forest apart from areas of vegetation that might be forest 

vegetation or non-forest vegetation. However, due to the limited resolution of moderate sensors, 

the ability to classify urban tree canopy from other vegetation types with accuracies that can be 

consistently and objectively quantified is only obtainable using fine resolution imagery. 

Finally, when conducting spatiotemporal analyses, one approach was to acquire as much 

imagery as possible within a defined acquisition period. However, when working with a large 

multispectral dataset, generating classified outputs that are accurate enough to be compared 

chronologically without excessive under-classification or over-classification from dataset to 

dataset is quite difficult. Therefore, it could be helpful to only acquire data around the beginning 

and end of the defined temporal scope of a research project. 

 

Application of Planet Scope and Sentinel Imagery 

In this research, imagery from three separate sensors and their derivative products were 

correlated to derive a workflow capable of predicting the carbon sequestered in Chattanooga’s 

urban forest. The specific imagery sources acquired were NAIP, PlanetScope, and Sentinel-2a. 

However, like Landsat 5 and Landsat 8 as used in Chapter 4, each of these imagery sources have 

unique specifications and characteristics that can make data correlation difficult. This is a well-

known and heavily research area of remote sensing research [137-139].  

One specific challenge in correlating imagery from different remote sensors is variable 

spectral bandwidth [20]. In other words, the range of EM wavelengths detectable by a given 

sensor’s individual bands is different. This can lead to differences in the information collected by 

each sensor. Providers of remote sensing imagery help work around the issue of variable spectral 
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bandwidth by configuring remote sensors with broad-width bands, as broad band sensors are more 

likely to share similarities with other broad width sensors. 

Next, different sensors have different radiometric resolution. Radiometric resolution is 

essentially the ability for a given sensor to interpret between different levels of brightness in an 

image [20]. Providers of remote sensing data attempt to work around variable radiometric 

resolution by conducting radiometric calibration, which involve the conversion of raw digital 

number values into calibrated radiance or surface reflectance values. Last, as discussed in detail 

throughout this research, different remote sensors have their own unique spatial resolution. 

Different spatial resolution directly translates to different levels of detail in the obtained results 

[20]. Image fusion is a technique specifically used to combine imagery sources with different 

spatial resolutions into a single composite image that embodies the strengths of both sensors [140].  

Additionally, in recent years more computationally complex harmonization processes have 

been employed that work to adjust variable spectral and radiometric resolution, as well as 

geometric inconsistencies across different sources of imagery [141, 142]. More research could be 

used here to test the application of these calibration and correction techniques in the context of the 

research presented here. 

In review of the application of PlanetScope and Senteniel-2a derived vegetation indices to 

model urban forest sequestered carbon, regression analyses results report that across all tested 

independent variables, at best, a low correlation can be identified between the obtained sample 

dataset of sequestered carbon per square meter and the extracted tree canopy vegetation index 

values. These results are in part likely due to an incorrect assumption that was made  that the urban 

forest of UTC’s campus was a representative subset of the larger urban forest of the City of 

Chattanooga.  
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As was discovered during the collection of field data, like many other colleges across the 

nation, UTC capitalizes on the presence of any large old growth trees across its campus. 

Furthermore, UTC’s landscaping facilities are often busy with new projects involving tree planting 

around the campus; there are a high number of small, newly planted trees across campus. 

 In this way, a large portion of the trees sampled consisted of large, old growth trees, such 

as the massive oaks found across campus, or smaller trees, representing the younger, relatively 

new trees planted around campus. In order to obtain a sample dataset more representative of the 

population, a larger sample size could be considered across a larger, more representative subset of 

the city. As a result, developing a predictive model from a likely non-normal and under-sampled 

training dataset is likely to yield insignificant results, which can be improved with further research. 

Nonetheless, some valuable findings were in fact obtained from this research. Mean 

GNDVI pixels derived from PlanetScope imagery had the strongest correlation to the variation in 

sequestered carbon across the sample dataset (R2 = 0.213). The broad band independent variables 

derived from Sentinel-2a imagery tested in this research (GNDVI, NDVI, and SAVI) had less 

correlative strength to field sampled sequestered carbon (R2 = < 0.120) comparatively. Finally, the 

narrow band independent variables derived from Sentinal-2a imagery tested in this research 

(RENDVI1 and RENDVI2) had the weakest correlation to field sampled sequestered carbon (R2 

= < 0.078).  

While the observed correlation and respective strengths reported by the analyses conducted 

here yielded relatively weak results, a trend between the correlation coefficient intensity and 

spatial resolution was identified. Organized according to the spatial resolution of each independent 

variable tested, GNDVI derived from PlanetScope is among the finest resolution imagery products 

used here (3 m), followed by the broad band independent variables derived from Sentinel-2a 
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(GNDVI, NDVI, and SAVI; 10 m), and tailed by the narrow band independent variables derived 

from Sentinel-2a (RENDVI1 and RENDVI2; 20 m).  

Based on these results, as the spatial resolution of the source imagery becomes coarser, the 

ability for the sensor to identify the spectral identity of a single isolated or small cluster of trees 

across an urban environment quickly decreases. Therefore, for modeling sequestered carbon across 

an urban tree canopy using remote sensing principles, the finest resolution imagery should be 

sought. 

 

Application of SkySat Imagery 

 Research presented in Chapter 5 sought to develop a land cover dataset utilizing high 

resolution multispectral SkySat imagery, object-based classification, and machine learning in 

order to assess the distribution of urban tree canopy across the City of Chattanooga, Tennessee in 

detail. Results suggest object-based classification is a highly effective classification method when 

combined with high resolution imagery. However, during the analysis, several obstacles were 

identified. Some insight, and the implications of these obstacles on accuracy assessments 

conducted are discussed below. 

 

Segmenting High Resolution Multispectral Imagery 

The functional goal of segmentation is to generate a boundary, or segment around each 

object in imagery. However, perfectly segmenting an image such that each object is represented 

by a singular segment is not realistic. More likely, the segmented image will be slightly over- or 

under-segmented. In some situations, a few of which being discussed here, some level of over- 

and under-segmentation in the derived segmented layer can be accepted without a significant 

impact on the final accuracy of the obtained land cover dataset. 
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In general, it is better to over-segment than under-segment. Images with objects consisting 

of multiple segments are over-segmented, whereas images with multiple objects in a segment are 

under-segmented. In an over-segmented image, most of the image objects have been completely 

segmented, however rather than being represented by a single segment, image objects consist of 

multiple segments. Under-segmented images on the other hand are overgeneralized; many image 

objects have been erroneously included in a single segment [143].  

Adjusting the segmentation parameters such that each image object is represented by a 

single segment, or as few as possible without under-segmenting, is one of, if not the most important 

parts of the workflow as described in this report. When correctly segmented, the classifier will 

have an easier time sorting the various image objects (tree canopy, grassy field, building, etc.) into 

the defined classes that comprise the final land cover dataset. This directly translates to less error 

requiring revision in the final land cover dataset. 

 When utilizing an object-based workflow to classify an image, one thing to consider early 

is the number and identity of the unique classes which will collectively comprise the land cover 

dataset. When composed of few, very broad land cover classes, such as “Water”, “Soil”, 

“Impervious Surfaces”, etc., as was the case with this research, some under-segmentation can be 

accepted without a significant impact on the final accuracy of the obtained land cover dataset as 

long as all instances of under-segmentation occur within single land cover classes and not across 

multiple land cover classes. A few examples of acceptable under-segmentation within a single land 

cover class could be adjacent cars in a parking lot or a clump of trees being erroneously bound by 

a single segment. A few examples of unacceptable under-segmentation across multiple land cover 

classes could be a grassy front yard and a sidewalk or a tree canopy and a grassy median being 

erroneously bound by a single segment. These errors require post-processing to correct. 
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Using ArcGIS Pro’s Pixel Editor to Refine Classified Results 

When this research was conducted (using ArcGIS Pro version 2.6.3), Pixel Editor had a 

functional bug related to the recalculation of the thematic raster’s statistics that resulted in the 

corruption or deletion of the raster being refined when saving your edits. When attempting to use 

a file geodatabase raster, this research found a considerable increase in critical errors resulting in 

lost data. This research found that by conducting all refining on the .tif file only and saving every 

5-10 minutes of refining, the number of critical errors were significantly reduced. 

 

Training Sample Collection and Imagery Classification 

Rather than attempting to collect an excess of training samples in one single round of 

sample collection, this research found that by conducting multiple rounds of training sample 

collection and image classification separately for each image, the process of fine tuning each 

image’s classified output was more manageable by a single person. In each round, only a small 

number of training samples were added before re-classifying as to avoid errors due to 

oversampling.  

This process was started by collecting ~50 pure samples per major class (less prevalent 

classes like exposed soil can get away with fewer samples) and classifying the image. Then, 

following a preliminary assessment of the results, the number of samples were increased in under-

represented classes, and the number of poor quality or biased samples were reduced in over-

represented classes, as suggested by the preliminary classification report generated by ArcGIS 

Pro’s Image Classification geoprocessing tool. This research found that by conducting multiple 

rounds of training sample collection and image classification, a fewer number of pure training 

samples were needed to obtain accurate results. 
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Documented Challenges 

Schema Changes Not Preserved 

 Schema files are used in the image classification process to tell the machine learning 

classifier the different names and unique IDs for each of the desired classes. The training sample 

dataset and the schema file are directly connected to each other within ArcGIS Pro. Therefore, if 

any edits to the schema are made after collecting training samples, this research found that by 

temporarily switching to a different sketch tool within the training samples manager window, any 

edits made to the schema are preserved and updated within the training samples dataset. 

Error 999999: Unexpected Errors 

In a preliminary assessment of the object-based workflow applied in this study, researchers 

had success in running the segment mean shift raster function on a small subset of the imagery and 

exporting the output to memory, rather than running the segment mean shift geoprocessing tool. 

Using the exported raster function segmented layer, a subset of the multispectral imagery, and a 

preliminary testing training samples dataset, a subset land cover dataset derived from object-based 

classification was obtained. However, when scaling up to an entire strip of imagery, attempting 

classification using the raster function derived segmented layer resulted in the process failing with 

an unexpected error. Although the true cause of this unexpected error was not directly identified 

by the researchers, it was determined that exporting the raster function version of the segmented 

strips of imagery did not create an indexing file, whereas the Segment Mean Shift geoprocessing 

tool does create an indexing file. It is plausible that running the classifier using the segment mean 

shift raster function export, which lacked an index file, may have caused the unexpected error 

when applied to larger datasets. 
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Error 003436: No Training Samples Found 

On multiple occasions, immediately following the execution of the machine learning 

classifier, an error was triggered stating that no training samples were found, even though the 

training samples were in fact correctly loaded. This study found multiple plausible explanations 

for this error. First, when conducting object-based image classification, in navigating to the 

standalone training samples manager outside the image classification wizard in ArcGIS Pro, it is 

imperative that you select the segmented raster within the table of contents and not the physical 

multispectral image to be classified. If the image was selected instead, there would be no obvious 

sign of a problem until the machine learning classifier is executed. This is because when object 

based classification is selected within ArcGIS Pro, the machine learning classifier will specifically 

be looking for the spectral and spatial segment characteristics transferred from the segmented layer 

to the training samples as attributes during sample collection. If the multispectral image was 

selected and not the segmented layer, then the spectral and spatial characteristics needed to classify 

the image are not successfully transferred to the training samples.  

Another plausible explanation for Error 003436 is that unlike ArcGIS Pro’s standalone 

“Training Samples Manager”, when collecting training samples within the image classification 

wizard, there is no way to save your training samples dataset. Most likely when collecting training 

samples within the image classification wizard, the samples are temporarily written to memory 

until the “next” button is clicked, which initiates the training samples to be saved.  

However, when collecting a large number of training samples across a very large, high 

resolution multispectral image, it is possible that the training samples temporarily saved to memory 

are not saved effectively to the hard drive. This research found that when collecting training 

samples within the standalone training samples manager within ArcGIS Pro, which does have a 
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save and save as button, Error: 003436 did not occur, suggesting that the training samples were 

properly preserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



102 

CHAPTER 7 

FUTURE DIRECTIONS AND CONCLUSION 

 

 

Future Directions 

To help reduce the rate at which our urban forest is converted to new urban spaces, this 

research recommends the City of Chattanooga establish a regular acquisition of fine resolution 

imagery, as maintaining an accurate and publicly shared map of the distribution of a city’s urban 

forest canopy is a sure-fire way to enhance the inherent value of an urban forest in the eyes of local 

government and the community.  

The research presented here is intended to serve as a model for any institution to reference 

when attempting to map urban forest distribution and model sequestered carbon, as the methods 

explained here may be applied to any city extent. For those researchers looking to apply any of the 

workflows as described here, a few details might be considered. First, as discovered in the fourth 

chapter of this research, as spatial resolution becomes finer, the strength of any predictive model 

based on spectral characteristics of forest canopy pixels will increase. With this in mind, applying 

high resolution imagery, like SkySat used in the fifth chapter of this research, is very likely to yield 

statistically significant results. Because SkySat imagery was acquired after the research in the 

fourth chapter was conducted, this research was not able to utilize SkySat as a source of predictive 

variables. Other research might consider acquiring SkySat imagery for this purpose. 
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As mentioned earlier in this manuscript, SkySat imagery requires tasking and is not open 

to view or download without a considerable financial investment. The process of tasking SkySat 

imagery begins with contacting a sales representative with Planet Labs and inquiring about SkySat 

imagery. You will eventually be directed to an online tasking portal to provide more details on the 

specific requirements of your data request. 

 Some of these requirements might include the boundary of your area of interest, the ideal 

window of time to obtain imagery, or specific time of day/solar zenith angle required for your 

research. Your request will be reviewed by Planet Labs, and you will be quoted accordingly. The 

number of images and each of the individual image boundaries will not be known prior to the onset 

of data collection, as the availability of a given satellite in the SkySat constellation may change 

through time. Once all SkySat imagery has been tasked, you will be able to download all imagery 

as a number of different pre-processed data products, such as pansharpened orthorectified imagery, 

top of atmosphere reflectance, and corrected surface reflectance products. 

While it is true that SkySat imagery is an excellent data source for mapping urban tree 

canopy, due to the high cost of acquiring SkySat imagery, it is worth considering other sources of 

data.  

One possible direction is the utilization of UAV imagery to map urban forest canopy 

distribution. UAV platforms are capable of collection both LiDAR and high resolution imagery 

with spatial resolution measured in centimeters or millimeters. However, there are a number of 

issues related to the use of UAV systems for this type of research. The first is the relatively small 

coverage area a UAV platform can visit at a time. Additionally, there are a number of legal 

limitations related to the airspace a drone is permitted to access. These limitation make scaling 

UAV-based research up to the city scale difficult. 
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Next, data obtained by UAVs require complex processing before they can be used in 

analyses. While UAV collects imagery and LiDAR, it is also carefully collecting global navigation 

satellite system information (GNSS) and inertial navigation system (INS) information.  

Depending on whether a real-time kinematic (RTK) or post-processed kinematic (PPK) 

workflow is selected, the LiDAR/imagery data must be integrated with the GNSS and INS 

information. This process is complex and can require expensive software. 

Specifically related to correlating multiple UAV images through time, because of the 

complex processing and calibration techniques needed to obtain a final mosaiced image, it can be 

difficult to derive imagery products that can be objectively and quantifiably corelated. This is a 

major consistency issue that hinders the wider application of UAV imagery for spatiotemporal 

analyses. For this reason, and due to their limited coverage area, spaceborne and aerial platforms 

are often selected over UAV platforms when mapping urban forest canopy at the city level.  

Another plausible option that has the potential to significantly improve the accuracy of the 

obtained urban tree canopy map is the utilization of LiDAR. As mentioned earlier in this 

manuscript, LiDAR data can be difficult to obtain and is costly to task. However, the number of 

publicly available LiDAR datasets is increasing through time. Because LiDAR works to generate 

dense 3-D point clouds across a landscape, it is possible to obtain highly accurate 3D models of 

urban tree canopy distribution. More research is needed to test the application of LiDAR in 

mapping urban tree canopy at the city level. 
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Conclusions 

In review of the research presented here, moderate resolution imagery sources, such as 

Landsat and Sentinel-2a, are excellent data sources for approximating broad land cover changes at 

the city-level. However, land cover change analyses using moderate resolution imagery are only 

as accurate as the sensor’s spatial resolution, regardless of the obtained overall accuracy. As the 

spatial resolution of any remote sensor becomes coarser, the ability for the sensor to “see” the 

spectral identity of a single isolated or small cluster of urban trees quickly decreases. Therefore, 

to model sequestered carbon across an urban tree canopy using remote sensing principles and to 

effectively manage a city’s urban tree canopy using geospatial data, fine resolution imagery, such 

as that captured by the SkySat constellation, should be sought. Once the hurdle of obtaining quality 

data has been obtained, the resulting high resolution land cover data products, will likely have 

great utility in several industries. 

When developing a model to predict the carbon sequestered in urban forest biomass at a 

low cost and with relatively low time investment, rather than sampling within a random subset of 

urban forest, sampling across randomly placed points across the full extent of the urban tree canopy 

would likely yield more significant results, as the obtained training dataset would be more 

representative of the whole population.  

The importance of maintaining high levels of sequestered carbon in temperate forest 

ecosystem is apparent. Forests are solely defined by the dominance of woody tree species with 

high levels of sequestered carbon, so to maintain high levels of sequestered carbon is to maintain 

natural populations of trees within temperate forest environments. Additionally, maintaining high 

levels of sequestered carbon in temperate forests has another environmental implication.  
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Maintaining urban forest health and integrity though time can increase the carbon 

sequestration potential and overall quality of temperate forest habitats. Additionally, through 

public engagement and increased awareness brought about by the sharing of the information 

obtained from the mapping of urban tree canopy and modeling of sequestered carbon with local 

governments and surrounding communities, it is possible to reduce the rate at which extant urban 

forests are converted to urban spaces into the future.  
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APPENDIX A 

 

APPLICATION OF LANDSAT IMAGERY 
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A1 True color Landsat 5 TM image captured June 27, 1984 across Chattanooga, TN. 
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A2 True color Landsat 5 TM image captured July 8, 1984 across Chattanooga, TN. 
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A3 True color Landsat 5 TM image captured June 28, 1990 across Chattanooga, TN. 
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A4 True color Landsat 5 TM image captured July 12, 1995 across Chattanooga, TN. 
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A5 True color Landsat 5 TM image captured June 23, 2000 across Chattanooga, TN. 
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A6 True color Landsat 5 TM image captured July 20, 2004 across Chattanooga, TN. 
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A7 True color Landsat 5 TM image captured June 16, 2009 across Chattanooga, TN. 
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A8 True color Landsat 8 OLI image captured June 14, 2014 across Chattanooga, TN. 
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A9 True color Landsat 8 OLI image captured August 31, 2019 across Chattanooga, TN. 
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A10 True color Landsat 8 OLI image captured July 3, 2021 across Chattanooga, TN. 

 

 

 

 

 

 

 



130 

 

A11 Distribution of training polygons for supervised classification over true color Landsat 5 TM 

image captured June 27, 1984 across Chattanooga, TN. 
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A12 Distribution of training polygons for supervised classification over true color Landsat 5 TM 

image captured July 8, 1984 across Chattanooga, TN. 
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A13 Distribution of training polygons for supervised classification over true color Landsat 5 TM 

image captured June 28, 1990 across Chattanooga, TN. 
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A14 Distribution of training polygons for supervised classification over true color Landsat 5 TM 

image captured July 12, 1995 across Chattanooga, TN. 
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A15 Distribution of training polygons for supervised classification over true color Landsat 5 TM 

image captured June 23, 2000 across Chattanooga, TN 
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A16 Distribution of training polygons for supervised classification over true color Landsat 5 TM 

image captured July 20, 2004 across Chattanooga, TN. 

 

 

 

 

 

 



136 

 

A17 Distribution of training polygons for supervised classification over true color Landsat 5 TM 

image captured June 16, 2009 across Chattanooga, TN. 
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A18 Distribution of training polygons for supervised classification over true color Landsat 8 OLI 

image captured June 14, 2014 across Chattanooga, TN. 
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A19 Distribution of training polygons for supervised classification over true color Landsat 8 OLI 

image captured August 31, 2019 across Chattanooga, TN. 
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A20 Distribution of training polygons for supervised classification over true color Landsat 8 OLI 

image captured July 3, 2021 across Chattanooga, TN. 
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A21 3 Class thematic land cover map derived from the classification of a true color Landsat 5 

TM image captured June 27, 1984 across Chattanooga, TN. 

 

 

 



141 

 

A22 3 Class thematic land cover map derived from the classification of a true color Landsat 5 

TM image captured July 8, 1984 across Chattanooga, TN. 
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A23 3 Class thematic land cover map derived from the classification of a true color Landsat 5 

TM image captured June 28, 1990 across Chattanooga, TN. 
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A24 3 Class thematic land cover map derived from the classification of a true color Landsat 5 

TM image captured July 12, 1995 across Chattanooga, TN. 
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A25 3 Class thematic land cover map derived from the classification of a true color Landsat 5 

TM image captured June 23, 2000 across Chattanooga, TN. 
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A26 3 Class thematic land cover map derived from the classification of a true color Landsat 5 

TM image captured July 20, 2004 across Chattanooga, TN. 
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A27 3 Class thematic land cover map derived from the classification of a true color Landsat 5 

TM image captured June 16, 2009 across Chattanooga, TN. 
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A28  3 Class thematic land cover map derived from the classification of a true color Landsat 8 

OLI image captured June 14, 2014 across Chattanooga, TN. 
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A29 3 Class thematic land cover map derived from the classification of a true color Landsat 8 

OLI image captured August 31, 2019 across Chattanooga, TN. 
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A30 3 Class thematic land cover map derived from the classification of a true color Landsat 8 

OLI image captured July 3, 2021 across Chattanooga, TN. 
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A31 Land cover output consisting of 10 spectrally distinct classes of previous pixels following 

unsupervised classification of pervious pixels extracted from true color Landsat 5 TM image 

captured June 27, 1984 across Chattanooga, TN. 
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A32 Land cover output consisting of 10 spectrally distinct classes of previous pixels following 

unsupervised classification of pervious pixels extracted from true color Landsat 5 TM image 

captured July 8, 1988 across Chattanooga, TN. 
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A33 Land cover output consisting of 10 spectrally distinct classes of previous pixels following 

unsupervised classification of pervious pixels extracted from true color Landsat 5 TM image 

captured June 28, 1990 across Chattanooga, TN. 
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A34 Land cover output consisting of 10 spectrally distinct classes of previous pixels following 

unsupervised classification of pervious pixels extracted from true color Landsat 5 TM image 

captured July 12, 1995 across Chattanooga, TN. 
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A35 Land cover output consisting of 10 spectrally distinct classes of previous pixels following 

unsupervised classification of pervious pixels extracted from true color Landsat 5 TM image 

captured June 23, 2000 across Chattanooga, TN. 
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A36 Land cover output consisting of 10 spectrally distinct classes of previous pixels following 

unsupervised classification of pervious pixels extracted from true color Landsat 5 TM image 

captured July 20, 2004 across Chattanooga, TN. 
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A37 Land cover output consisting of 10 spectrally distinct classes of previous pixels following 

unsupervised classification of pervious pixels extracted from true color Landsat 5 TM image 

captured June 16, 2009 across Chattanooga, TN. 
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A38 Land cover output consisting of 10 spectrally distinct classes of previous pixels following 

unsupervised classification of pervious pixels extracted from true color Landsat 8 OLI image 

captured June 14, 2014 across Chattanooga, TN. 
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A39 Land cover output consisting of 10 spectrally distinct classes of previous pixels following 

unsupervised classification of pervious pixels extracted from true color Landsat 8 OLI image 

captured August 31, 2019 across Chattanooga, TN. 
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A40 Land cover output consisting of 10 spectrally distinct classes of previous pixels following 

unsupervised classification of pervious pixels extracted from true color Landsat 8 OLI image 

captured July 3, 2021 across Chattanooga, TN. 
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A41 Manual reclassification of 10 spectrally distinct classes of pervious pixels into Forest and 

Non-Forest Vegetation. Derived from true color Landsat 5 TM image captured June 27, 1984 

across Chattanooga, TN. 
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A42 Manual reclassification of 10 spectrally distinct classes of pervious pixels into Forest and 

Non-Forest Vegetation. Derived from true color Landsat 5 TM image captured July 8, 1984 

across Chattanooga, TN. 
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A43 Manual reclassification of 10 spectrally distinct classes of pervious pixels into Forest and 

Non-Forest Vegetation. Derived from true color Landsat 5 TM image captured June 28, 1990 

across Chattanooga, TN. 
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A44 Manual reclassification of 10 spectrally distinct classes of pervious pixels into Forest and 

Non-Forest Vegetation. Derived from true color Landsat 5 TM image captured July 12, 1995 

across Chattanooga, TN. 
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A45 Manual reclassification of 10 spectrally distinct classes of pervious pixels into Forest and 

Non-Forest Vegetation. Derived from true color Landsat 5 TM image captured June 23, 2000 

across Chattanooga, TN. 
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A46 Manual reclassification of 10 spectrally distinct classes of pervious pixels into Forest and 

Non-Forest Vegetation. Derived from true color Landsat 5 TM image captured July 20, 2004 

across Chattanooga, TN. 
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A47 Manual reclassification of 10 spectrally distinct classes of pervious pixels into Forest and 

Non-Forest Vegetation. Derived from true color Landsat 5 TM image captured June 16, 2009 

across Chattanooga, TN. 
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A48 Manual reclassification of 10 spectrally distinct classes of pervious pixels into Forest and 

Non-Forest Vegetation. Derived from true color Landsat 8 OLI image captured June 14, 2014 

across Chattanooga, TN. 
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A49 Manual reclassification of 10 spectrally distinct classes of pervious pixels into Forest and 

Non-Forest Vegetation. Derived from true color Landsat 8 OLI image captured August 31, 2019 

across Chattanooga, TN. 
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A50 Manual reclassification of 10 spectrally distinct classes of pervious pixels into Forest and 

Non-Forest Vegetation. Derived from true color Landsat 8 OLI image captured July 3, 2021 

across Chattanooga, TN. 
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A51 Final 4 class thematic land cover map derived from the supervised hybrid classification of a 

Landsat 5 TM image captured June 27, 1984 across Chattanooga, TN. 
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A52 Final 4 class thematic land cover map derived from the supervised hybrid classification of a 

Landsat 5 TM image captured July 8, 1988 across Chattanooga, TN. 
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A53 Final 4 class thematic land cover map derived from the supervised hybrid classification of a 

true color Landsat 5 TM image captured June 28, 1990 across Chattanooga, TN. 
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A54 Final 4 class thematic land cover map derived from the supervised hybrid classification of a 

true color Landsat 5 TM image captured July 12, 1995 across Chattanooga, TN. 
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A55 Final 4 class thematic land cover map derived from the supervised hybrid classification of a 

true color Landsat 5 TM image captured June 23, 2000 across Chattanooga, TN. 
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A56 Final 4 class thematic land cover map derived from the supervised hybrid classification of a 

true color Landsat 5 TM image captured July 20, 2004 across Chattanooga, TN 
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A57 Final 4 class thematic land cover map derived from the supervised hybrid classification of a 

true color Landsat 5 TM image captured June 16, 2009 across Chattanooga, TN. 
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A58 Final 4 class thematic land cover map derived from the supervised hybrid classification of a 

true color Landsat 8 OLI image captured June 14, 2014 across Chattanooga, TN. 
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A59 Final 4 class thematic land cover map derived from the supervised hybrid classification of a 

true color Landsat 8 OLI image captured August 31, 2019 across Chattanooga, TN. 
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A60 Final 4 class thematic land cover map derived from the supervised hybrid classification of a 

true color Landsat 8 OLI image captured July 3, 2021 across Chattanooga, TN. 
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APPENDIX B 

 

APPLICATION OF SKYSAT IMAGERY 
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B1 Study site map for SkySat research. The study site boundary is the City of Chattanooga, 

Tennessee. 
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B2 Footprint boundary and true color SkySat imagery acquired. 
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B3 Footprint of tasked SkySat imagery. Both pansharpened orthomosaics and surface reflectance 

products were obtained. 
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B4 Footprint boundary, study site boundary, and segmented true color SkySat rasters. 
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B5 Training samples collected across segmented SkySat imagery to support object-based 

classification. All training samples were collected within ArcGIS Pro’s Training Sample 

Manager. 
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B6 Final unrefined high resolution (50 cm) land cover dataset derived from SkySat imagery. 
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B7 Final unrefined high resolution (50 cm) land cover dataset derived from SkySat imagery. 

 

 

 



188 

 

B8 500 randomly distributed points used for the accuracy assessment of the final unrefined high 

resolution land cover dataset. 
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B9 500 randomly distributed points used for the accuracy assessment of the final refined high 

resolution land cover dataset. 
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satellite imagery to accurately and rapidly map Chattanooga’s forest lands, quantify how the extent 
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