
KOKKOS-ENHANCED EXAMPI

By

Evan Drake Suggs

Anthony Skjellum, Ph.D. Joseph Dumas, Ph.D.
Professor of Computer Science and Engineering UC Foundation Professor
(Chair) (Committee Member)

Michael J. Ward, Ph.D.
Advanced Cyber Infrastructure Facilitator
(Committee Member)

KOKKOS-ENHANCED EXAMPI

By

Evan Drake Suggs

A Thesis Submitted to the Faculty of the
University of Tennessee at Chattanooga

in Partial Fulfillment of the Requirements of the
Master of Science in Computer Science

The University of Tennessee at Chattanooga
Chattanooga, Tennessee

August 2023

ii

Copyright © 2023

Evan Drake Suggs

All Rights Reserved

iii

ABSTRACT

Kokkos provides in-memory data structures, concurrency, and algorithms for advanced

C++ parallel programming. The Message Passing Interface (MPI) provides the ubiquitous model

for inter-node communication. Using Kokkos and MPI together is an important use case. Here,

Kokkos is integrated within an MPI implementation to obtain performance and functionality

benefits both for the MPI itself, and applications that use them. For instance, this enables passing

first-class Kokkos objects directly to extended C++-based MPI APIs.

ExaMPI, a C++17-based subset implementation of MPI-4 is integrated with Kokkos.

Working with C++-friendly APIs and Kokkos extensions, example benefits of functionality and

performance are shown. This thesis explains why use of Kokkos within the certain parts of the

MPI implementation are crucial to yielding added performance. This paper motivates why making

Kokkos memory spaces visible to the MPI implementation generalizes the idea of “CPU memory’

and “GPU” memory,’ providing further optimizations in heterogeneous Exascale architectures.

iv

DEDICATION

To S.D.B. and T.L.S.

v

ACKNOWLEDGMENTS

Thanks to Riley Shipley and Derek Schafer for reviewing this thesis, along with the

ExaMPI team and the Kokkos team for technical support. Additional thanks to the thesis

committee, Dr. Anthony Skjellum, Dr. Joseph Dumas II, and Dr. Michael Ward.

Funding provided with NSF Grants: #1821431, 1822191, 1918987, 1925603, 2201497.

vi

TABLE OF CONTENTS

ABSTRACT . iv

DEDICATION . v

ACKNOWLEDGMENTS . vi

LIST OF FIGURES . x

1. INTRODUCTION . 1

1.1 Background . 1
1.2 Motivation . 2
1.3 Problem Statement & Objectives . 3
1.4 Contributions . 4
1.5 Outline . 4

2. LITERATURE REVIEW . 6

2.1 MPI and ExaMPI . 6
2.1.1 MPI Standard . 6

2.2 The specifics of ExaMPI . 7
2.3 Kokkos, its data structures and model . 9

2.3.1 The View Data Structure . 9
2.3.2 View Syntax . 10
2.3.3 Memory Space . 11
2.3.4 Dispatch Operations . 12

2.4 Previous Kokkos+MPI versions . 12
2.5 Summary . 14

3. METHODOLOGY . 15

3.1 Requirements . 15
3.1.1 Layouts and Contiguous Views . 16
3.1.2 Binding Syntax and Setup . 16

3.2 Summary . 17

vii

4. IMPLEMENTATION . 19

4.1 MPI Extension API Functions . 19
4.1.1 MPI Kokkos Get Dims . 20
4.1.2 MPI Kokkos Send and MPI Kokkos Recv 20
4.1.3 MPI Kokkos Isend and MPI Kokkos IRecv 22
4.1.4 MPI Kokkos Bcast . 24
4.1.5 MPI Kokkos Allgather . 24
4.1.6 MPI Kokkos Recv Dims . 25
4.1.7 MPI Kokkos Irecv Dims . 26

4.2 Miscellaneous . 27
4.2.1 CMake and Binding Creation . 27
4.2.2 Templates . 28

5. RESULTS . 30

5.1 Single-Dimension MPI Send And MPI Recv Tests 30
5.2 Multi-Dimension Send And Recv Tests . 32
5.3 MPI Kokkos Broadcast Tests . 35

6. CONCLUSIONS . 37

6.1 Future Work . 37

BIBLIOGRAPHY . 39

APPENDICES

A. KOKKOS/EXAMPI BINDING CODE . 41

A Bindings Code . 42
A.1 MPI Kokkos Send . 42
A.2 MPI Kokkos Recv . 43
A.3 MPI Kokkos ISend . 45
A.4 MPI Kokkos Irecv . 46
A.5 MPI Kokkos Bcast . 47
A.6 MPI Kokkos Allgather . 49
A.7 MPI Kokkos Recv Dims . 51
A.8 MPI Kokkos Irecv Dims . 53

B Test Code . 55
B.1 New Bindings Kokkos Pingpong Test . 55
B.2 Old Method Kokkos Pingpong Test . 58
B.3 Two Dimensional New Bindings Kokkos Pingpong Test 60
B.4 Two Dimensional Old Bindings Kokkos Pingpong Test 63

viii

B.5 Three Dimensional New Bindings Kokkos Pingpong Test 66
B.6 Three Dimensional Old Bindings Kokkos Pingpong Test 69
B.7 New Bindings Kokkos Broadcast Test . 71
B.8 Old Bindings Kokkos Broadcast Test . 73

VITA . 76

ix

LIST OF FIGURES

5.1 New MPI Extension bindings vs traditional method averages for pingpong tests 31

5.2 2D MPI Extension bindings vs. traditional method averages pingpong tests 33

5.3 3D MPI Extension bindings vs. traditional method averages pingpong tests 34

5.4 MPI Extension bindings vs. traditional method averages 35

x

CHAPTER 1

INTRODUCTION

While a large number of libraries and applications are still in C, modern C++-based libraries

are gaining popularity among high-performance exascale (≥ 1018 floating point instructions per

second) computing projects. However, the mixing of legacy C libraries with C++ ones provides

many compatibility problems, including combining interfaces and object types that were not

designed to work together. Like any other programmer, high-performance computing (HPC)

professionals aim to reduce redundant code and increase functionality when possible. There

are many libraries today that target HPC professionals, but some of the most heavily used are

implementations of the Message Passing Interface (MPI) standard [8]. The MPI standard is focused

on multi-processor communication and is often used for communicating between nodes on high-

performance computers. ExaMPI is an implementation of MPI written in modern C++ that aims

to help researchers adapt to modern challenges, such as exascale computing [9]. The Kokkos

library allows programmers to manipulate both large datasets and the execution and memory spaces

associated with them [11]. This thesis aims to create a series of function bindings within ExaMPI

to enable it to process Kokkos features internally. The rest of this chapter discusses what led to

this thesis, its objectives, contributions, and offers an outline of the entire thesis.

1.1 Background

The MPI standard provides a widely used message passing model for multicomputer and

multiprocessor communication [8]. The first version of the MPI standard was released in May 1994

and is currently on version 4.0 of the standard [8]. The MPI standard details a library for passing

message buffers (memory buffers, often data primitives, that will either be sent or received as a

message between processors). The first form of MPI communication is blocking communication,

in which a message buffer is sent then waited on before doing more operations. There is also

1

asynchronous, non-blocking communication, where users can begin communication then do other

operations before checking on its completion [8].

The MPI implementation utilized for this project, known as ExaMPI, [9] is a C++ MPI

implementation that leverages modern C++ features, such as smart pointers 1. ExaMPI is a

research-oriented implementation created by UTC in collaboration with other partners designed

for rapid testing of new features, particularly ideas for future versions of the MPI standard [9].

The Kokkos library provides in-memory advanced data structures, concurrency, and

algorithms to support advanced C++ parallel programming [3, 11]. Its ability to handle multi-

dimensional, typed arrays across memory spaces makes it useful for modern mathematics and data-

oriented applications [11]. Since both are widely-used libraries for high-performance computing,

work using both Kokkos and MPI together is becoming more common, such as Khuvis et al.

[7], where combining MPI and Kokkos increased performance on existing benchmarks. The

requirement of using traditional MPI C bindings to pass Kokkos features forces programmers to

use workarounds.

1.2 Motivation

A large amount of software development is not creating new libraries, programs, etc., but

improving existing ones and maximizing their performance and/or enhancing their productivity.

This thesis therefore has the following motivations:

• To improve the general programming experience when using MPI with Kokkos.

• To minimize the possibility of bugs from MPI+Kokkos programs

• To allow optimizations for MPI+Kokkos at the language binding level or below.

As the shift towards exascale systems occurs, existing libraries will have to be open to

improvement. The MPI standard does not have the ability to act with modern classes; this is

causing friction between the rapidly evolving C++ language and the MPI standard. This thesis

seeks to leverage the flexibility of ExaMPI to demonstrate how MPI could support new features (in

1New versions of the C++ standard roll out every 3 years, with the most recent versions of C++ being C++20/23
for the years 2020 and 2023 at the time of this thesis.

2

this case, Kokkos) faster. Because of problems with existing implementations, projects like Water

et al. [14]. seek to replace MPI with other frameworks [12, 14].

This thesis seeks to to address these concerns by showing how MPI could integrate new

libraries into its functionality. Similar to Trott, Plimpton, and Thompson [12], this thesis adopts

a philosophy for supporting new features by rewriting small portions of code (i.e., the language

bindings) and keeping the underlying structure as generic as possible. The primary advantage of

the proposed MPI extension is to save development time rather than run-time, as the underlying

model is still the same. However, this could open the possibility to some improved performance

if integrated more fully. Therefore, this work has implications separate from Kokkos, such as how

true MPI-based C++ bindings will differ from classic C bindings.

1.3 Problem Statement & Objectives

There does not currently exist a way to utilize both MPI and Kokkos in modern C++ (as

opposed to just C++ style syntax). Current practice is to set up MPI and Kokkos at the same time,

then access the raw pointers Kokkos uses rather than its existing datatypes. While this is workable,

it creates a lot of redundant code that could be optimized at a lower than user level (i.e., the length

of data could be automatically inferred from the Kokkos data structures). In addition, this thesis

discusses the opportunities and the drawbacks of integrating these two libraries.

The thesis’ objectives are as follows:

• To create a series of function bindings within ExaMPI whose syntax utilizes Kokkos objects

in the same manner as standard MPI buffers

• These function bindings should have at least similar performance to existing practices for

the majority of use cases

• Allow easier building of MPI applications using Kokkos alongside ExaMPI

These objectives are followed by the following questions:

• How useful are these new bindings for users?

• What are the long term opportunities created by these bindings?

3

• Should these bindings follow the more traditional C-style MPI bindings or experiment with

new parameters?

• Do these bindings decrease performance?

Since the primary metric for this effort is not performance gains, but increased function-

ality, the results should deliver comparable performance. This effort was lucky enough to have

feedback from the Kokkos team at Sandia National Laboratory and these discussions will feed into

how the project was designed. So long as the new bindings perform generally as well as previous

methods, they will be considered acceptable.

1.4 Contributions

This thesis creates a new MPI function extension in ExaMPI that allows Kokkos features to

be used alongside MPI features to obtain development functionality benefits over having the two

running separately. Using this model, it will be possible to pass first-class Kokkos objects directly

to a C++-based MPI extension (MPIX) Application Programmer Interface (API). This was done

for clarity, and later versions could just overload the existing MPI versions. Alternatively, this

work has implications separate from Kokkos, and completely new C++ function definitions could

be created. For example, the new functions in the extension can use templates rather than MPI

datatype parameters. By internalizing the usage of Kokkos in MPI, it decreases the opportunities

for bugs that arise from using Kokkos in unintuitive ways. If new function bindings prove to be

comparable in performance to existing methods, then they will save programming time, minimize

the possibility of bugs, and allow further optimizations.

1.5 Outline

The structure of the thesis is as follows. First, Chapter 2 is a literature review consisting

of an overview of the basics of Kokkos and what differentiates ExaMPI from other MPI

implementations. Then, the new MPI extension created for this project is shown, including what

was required to connect Kokkos and ExaMPI and some of the new bindings created for it. Next,

the test results are presented, which should show comparable performance to existing methods

4

of transferring View data. Finally, this thesis is summarized and future work is discussed which

consists of ideas brought up by existing work and other conclusions.

5

CHAPTER 2

LITERATURE REVIEW

This chapter covers background information of the ExaMPI implementation and MPI

in general, the Kokkos programming library, and discusses existing Kokkos+MPI work while

identifying gaps.

2.1 MPI and ExaMPI

Message Passing based on the MPI standard, as well as the ExaMPI implementation, are

covered here.

2.1.1 MPI Standard

The Message Passing Interface (MPI) standard specifies a programming library interface

for passing messages between peer processes [8]. The standard is separate from its various

implementations, such as OpenMPI [4] and ExaMPI. Version 1.0 of MPI was released in May

1994 and focused on communication between just 2 processors [8]. The basic message model

introduced in Version 1.0 uses contiguous data primitives (e.g., int, double, etc) passed via pointer

along with a count for number of elements. Normally, messages are restricted to all being of the

same MPI DATATYPE [8].

Later versions introduced ways to pass non-contiguous data through derived datatypes and

packing. Derived datatypes allow a developer to specify a list of datatypes and the memory offsets

between them to create a new MPI datatype. This is useful for passing structs with defined

datatypes. In the case of trickier and more variable examples such as matrix subsets, explicit

packing of elements into a contiguous buffer is also supported [8].

6

While some innovations have been introduced, MPI datatypes have remained essentially

the same since MPI 1.01.

MPI offers a wide range of functions, but probably the most popular are MPI Send and

MPI Recv. A MPI program is launched on a number of different processes identified by a rank

number that may be on entirely separate nodes (servers), or grouped on a single node as a

virtual concurrent computer. These might be divided up into groups identified by a communicator

that they share but by default they share the same communicator “world,” MPI COMM WORLD [8].

A data primitive buffer along with its length and datatype are sent to MPI Send to transport

this information to its destination, where MPI Recv reads that information from the underlying

transport and writes it to a buffer passed to it. Specifics on these and other functions, along with

their new implementations, are covered later in this thesis.

2.2 The specifics of ExaMPI

The ExaMPI project is designed to be a springboard for new ideas in MPI, including

fault tolerant concepts, modern C++ support, and extensions to the standard that require highly

effective progress for communication [9]. The complexity of producing significant improvements,

modifications, and/or changes in design to existing MPI implementations is a daunting task. In

existing implementations, such as OpenMPI [4] and MPICH [5] middleware, with hundreds of

thousands of lines of legacy code, substantially altering MPI is difficult for most researchers. Other

middleware implementations are closed-source, precluding any way for most researchers to alter

them. For instance, altering fundamental parts of MPI that manage internal state or concurrency

would require far too much work. ExaMPI targets a smaller subset of the MPI standard than those

middleware products, allowing it to focus on new functionality. This also avoids dead legacy code

and technical debt associated with assumptions about node concurrency or progress made in the

1990s.

ExaMPI is focused on principles-first design, highlighting the principles below:

1There has been discussion among the MPI community about getting rid of MPI datatypes all together. Instead,
the size of the message buffer in memory would be specified another way. This is thought to be faster, and would
streamline the interface. Due to compatibility issues, this has not progressed far as of this time.

7

• Enable rapid new development of new features, identify ways to increase performance, and

improve understanding of the MPI standard

• Support the research interests and experiments of developers, such as effective overlap of

communication and computation

ExaMPI is able to achieve the above by having a small scope and design. ExaMPI’s

underlying structure is as follows. The library bindings are the top-most layer, and exist separately

so they can interface with the C, C++, and Fortran languages with the same functionality. Their

primary use is to take in the parameters (buffers, MPI datatype, etc.) and handle them for

communication. Then, the message buffers, along with size and datatype information, are wrapped

in a Payload class containing the pointers to the underlying buffer. These Payloads are wrapped

in a Payload organizer, then sent to the Request class to be processed through the lower-level

transports. This might include transferring or receiving data over the desired transport medium

(for example, TCP, UCX, LibFabric, etc) to communicate with other MPI processes on local or

remote nodes [9].

Depending on the function, the request is specified to send, receive, broadcast, or any of a

number of other functions. For example, when received, the buffer is still wrapped in a Payload,

but this Payload is written to rather than read from. Once this request is made, it can be activated,

then either waited on within the binding (blocking communication) or asynchronous, non-blocking

communication. In the latter, the function can be exited and a function MPI Wait can be used later

to wait on the message [9, 8].

Fundamental to most MPI implementations are MPI Init and MPI Finalize, which

bracket the portion of the program where MPI code is executed. At compile-time, an MPI compiler

front-end is used (normally, mpicc, mpicpp, etc). At run-time, a program mpirun is used which

is passed MPI parameters and coordinates background information such as threading. In ExaMPI,

this mpirun consists of Python Dæmons [8, 9].

The main version of ExaMPI targets the same traditional C functions as all other MPI

implementations. MPI is a large standard with hundreds of function (many of which are de-facto

if not technically deprecated), so in order to keep itself small, ExaMPI includes 157 C functions at

8

present. Additionally, Fortran bindings are in development for ExaMPI. While they are not C++

per se, ExaMPI’s C bindings are compatible with it. There are only 16 C++ bindings in ExaMPI

currently (which are not described in any standard), along with the new work featured in this thesis.

2.3 Kokkos, its data structures and model

Kokkos is a library and programming model for C++ that provides data structures,

concurrency features and algorithms to support advanced C++ parallel programming across

different memory spaces [11]. Created at Sandia National Laboratories with funds form the DOE

exascale computing project, Kokkos is a newer library than MPI and exists for similar reasons to

ExaMPI: to facilitate new exascale architectures and services.

Exascale computers with large heterogeneous architectures composed of a mixture of

traditional ARM or Intel CPUs, GPUs, and other accelerators are incredibly powerful. Because

each can be a different paradigm of programming and different systems may only have some of

these, developers can have a difficult time leveraging these resources efficiently [11].

More accurately, Kokkos is a programming model in the shape of a library instead of

directives [11]. It is designed to work with other libraries (e.g., OpenMP) and can be used as

the basis for sparse kernel features in projects such as Trillinos [11, 10]. Kokkos’s sister library,

MDSpan, offers similar functionality with a simpler, less template-centric interface [6]. As it is

also a project at Sandia National Laboratory and shares team members, it shares much of the same

code with Kokkos. It has currently been accepted into the C++ standards as Proposal P0009R9 [6].

2.3.1 The View Data Structure

The primary feature of Kokkos discussed in this thesis is an implementation of the View

data structure, a datatype similar to a tensor, which handles multidimensional arrays (up to eight

dimensions in Kokkos) [11, 1]. Views may or may not refer directly to a given array, but they are

always containers for data that handles the number of dimensions, layout, and element access [1].

Unlike tensor implementations, the View datatype is low-level, more an extension of the C array

class than an implementation of the mathematical concept of tensors. At its core, it consists of a

template object pointer to an underlying object, normally a C array [1].

9

As the Kokkos implementation of Views is essentially a smart pointer wrapper with

additional functions, a large amount of meta-information can exist in the View [11, 3]. This

includes elements traditionally included in vectors (i.e., length, datatype) along with the given

memory and execution spaces. Kokkos offloads a large amount of processing to compile-time

features such as using typedefs. A key feature is that Kokkos Views can be declared to specific

memory and execution spaces, such as GPUs, accelerators, etc [11, 3].

Similar to traditional C pre-processor macros, the View templates let the C++ compiler

push run-time processing of data types to compile-time, allowing both speed-up at run-time and

complex data type work that would be difficult to analyze at run-time. In the case of Kokkos, these

compile-time features sometimes have the side effect of obfuscating the objects themselves (i.e.,

there is no function or class member that describes the entire dimensional layout of View objects

available at run-time). Instead it must be iterated over one dimension at a time with the extent

function [3, 11].

2.3.2 View Syntax

i n t n = 5 ;

Kokkos : : View<i n t [5]> A(”A View” , n) ;

Kokkos : : View<i n t *> B(”B View” , n) ;

i n t * buf = { . . . } ;

Kokkos : : View<i n t *> C(buf , n) ;

/ / C . da ta () == b u f ;

/ / i n t m = . . . ;

Kokkos : : View<i n t **> D(” 2D View” , n , m) ;

/ / i n t o , p , q , r , s , t = . . . ;

Kokkos : : View<i n t ******[10] [2] > E (

” 2D View” , n , m, o , p , q , r , s , t) ;

Listing 2.1: Kokkos View Creation

10

The following section discusses the initialization of four basic Views as shown in Listing

2.1. Similar to ExaMPI, there are Kokkos::initialize and Kokkos::finalize functions to outline

the Kokkos portion of the code[11, 3] In the first constructor, View A is created with template

parameters within angle brackets alongside parentheses parameters, the label string and the length.

Int is the datatype for the underlying data, followed by the length (in this case, 5 elements) of the

first dimension. This is analogous to creating an array of 5 integer elements or int[5]. Instead

of using a static length as in View A, View B has an asterisk “*” allowing its dimensions to be

determined at run-time instead of compile-time. Note that compile-time dimensions should be

passed both as constant template arguments (View¡...¿) and parameters. However Views are not

dynamically sized, so View A and B are basically the same [11, 3].

View C in Listing 2.1 shows a useful but problematic feature of Kokkos. The line above

View C creates a integer array called bu f . The constructor for View C takes this existing buffer

and the length n as parameters. This makes bu f the underlying data structure D points to, creating

what is known as an Unmanaged View (as opposed to Managed Views) [11]. This is not legal C++

as it deals directly with the raw pointer; however, most compilers will accept it, as it is legal C

syntax. These Unmanaged Views lack most of the debugging information of their peers, such as

the label string [11, 3]. According to discussions with the Kokkos team, a raw pointer constructor

that still offers full debugging information is planned, but has not made its way into Kokkos.

Finally, View D shows the creation of a two-dimensional View. The first difference is that in

the template parameters, there are 2 asterisks/dimensions instead of 1. Similarly, 2 size parameters

(n and m) are passed in parentheses. This can be continued for up to 8 dimensions, with View E

showing that these dimensions can be set at both compile and run-time, so long as compile-time

dimensions are last. It is also possible to make an illegal raw pointer View as with View C in this

manner, by putting the additional dimensions as parameters as with D [11, 3].

2.3.3 Memory Space

Another one of the key features of Kokkos is its ability to declare which kind of memory

and execution spaces a View is in. For example, if a GPU is available, then a View can be declared

11

as follows View < int∗,GPUExecSpace,GPUMemSpace > A [11]. This is key to some of the

ideas discussed later in this thesis.

2.3.4 Dispatch Operations

Kokkos : : View<double*> check (” check ” , n) ;

Kokkos : : p a r a l l e l f o r (check . e x t e n t (0) , KOKKOS LAMBDA(i n t i){

check (i) = i * i ;

}) ;

Listing 2.2: Kokkos View parallel for example

Kokkos has several parallel dispatch operations similar to those used in OpenMP:

parallel for, parallel reduce, and parallel scan. The primary dispatch operation used in

this thesis is the parallel for which is used for iterating through Views. This for loop takes

a label string, a range (number of iterations, analogous to int i in traditional for loop), and a

lambda or functor object to be executed [3, 11]. This lambda is a more modern language feature

(it is only introduced in newer versions of C++). As seen in Listing 2.2, The parallel for and

lambda are normally formatted to resemble a single for loop, but the lambda contains the actual

code to be executed [2, 3, 11]. While these lambdas are more limiting than OpenMP equivalents,

they are focused on their primary job, which is iterating and manipulating Views.

2.4 Previous Kokkos+MPI versions

Despite their popularity, there is not a framework that programmers can utilize that mixes

the two. There does exist quite a bit of work that uses both libraries at the same time.

Previous work combining both Kokkos and traditional versions of MPI has yielded

interesting results. For example, Khuvis et al. [7] have a shown a speedup of General Matrix

Multiplication (GEMM) code and the Graph500 benchmark using their version of MPI+Kokkos.

The tests used in Khuvis et al. use the Intel implementation of MPI, MVAPICH and standard

Kokkos. The GEMM code uses Kokkos for parallelism of matrix multiplication alongside MPI

to distribute the matrices; this code has noticeable improvement with each additional process

for up to 64 processes [7]. The Graph500 code actually has three implementations: one that

12

uses MPI only, one with MPI and Kokkos that uses locking operations, and another MPI and

Kokkos implementation without locks. The Graph500 results show a speed-up with the locking

implementation over the MPI-only one up to forty processes, and continued speed-up with the

non-locking implementation of up to 5x on 64 processes.

i n t n = 5 ;

/ / i n t d e s t i n a t i o n r a n k , my rank , tag , comm = . . . ;

Kokkos : : View<i n t [5]> A(”A View” , n) ;

i f (my rank) {

MPI Send (A. d a t a () , i n t (A. s i z e ()) , MPI DOUBLE , d e s t i n a t i o n r a n k ,

t ag , comm) ;

} e l s e i f (my rank]) {

MPI Recv (A. d a t a () , i n t (A. s i z e ()) , MPI DOUBLE , d e s t i n a t i o n r a n k ,

t ag , comm) ;

}

Listing 2.3: Kokkos View Send

There exists an implementation of the lattice Boltzman method fluid flow solver for

distributed CPUs/GPUs that uses both MPI and Kokkos [13]. In the Kokkos documentation itself,

there exists a halo exchange which uses both MPI and Kokkos [11]. A halo exchange is when data

(in this case, part or all of a View) is exchanged around the Communicator group of MPI processes.

The listing 2.3 shows the traditional way to transfer a Kokkos View by accessing the underlying

data pointer (.data()) and size (.size()) along with passing the MPI datatype [11].

The primary innovation that distinguishes this project from previous forms of MPI+Kokkos

interaction is the ability to take Kokkos Views as native first class objects. While there are plenty of

programs that use both Kokkos and MPI, these are only interactions not frameworks that actually

bind them together. The work highlighted in this thesis also lends itself to examine the tricky

subject of the future of the MPI Datatype. Specifically, this thesis examines whether and how to

replace it with templates or possibly automatic type inference.

13

2.5 Summary

This chapter has shown some of MPI’s history, followed by an overview of how MPI

programs run and their basic functions. Then this chapter covers the ExaMPI implementation.

This includes ExaMPI’s basic philosophy and a technical overview. Then, this chapter presented an

overview of Kokkos along with its fundamental data structures, structures across memory spaces,

and its parallel dispatch operations. Finally, it showcased previous work that utilized both Kokkos

and MPI, showing the programs that utilize both libraries still make concessions to be able to use

both.]

14

CHAPTER 3

METHODOLOGY

This chapter covers the requirements for the MPI extension covered in this thesis. This

framework utilizes the MPI and Kokkos library features but seeks to avoid the issues of previous

MPI+Kokkos systems. This chapter lays out how the requirements are based in abstractions built-

in to Kokkos (e.g., View layouts) and binding specifics.

3.1 Requirements

This project began with the conceptualization of one goal: alter MPI functions so that their

function bindings should handle Views directly as parameters. To restate this as a requirement,

create a series of functions based on MPI functions where any binding should be able to handle a

Kokkos View as input or output in a similar way to buffers in MPI. Here, this means that an object

can be passed to a function and used similarly to a traditional data buffer in MPI.

To use a View in this manner before this work, one would either have to use a work-around

with the .data() method, or use the View as a derived datatype. The .data() method of a

View allows access to the underlying array, but this is discouraged as it can cause memory leaking

and overwriting. Since functions execute the same every time, they can better handle data in a

repeatable way. Furthermore, a library extension is likely to have a larger number of eyes on any

bugs than individual programs to catch dangling references.

Due to the large amount of possible permutations of dimensions, data primitives, etc. and

the desire to show results in a reasonable time frame, the following requirements were laid out.

The MPI extension functions for this thesis were restricted to handling up to 3 dimensional Views.

The MPI extension functions should be able to handle int and double datatypes. The previous two

requirements should not prevent additional dimensions or data primitives from being implemented.

These are minimum requirements designed to focus the thesis rather than an end goal.

15

The derived datatype method allows MPI programmers to add new datatypes for MPI to

use [8]. As this is based on the size of an object, it would have to be redone for Views with different

datatypes and sizes. Thus, another requirement was created, the bindings should not require the

user to use the .data() method or repeatedly create new derived datatypes for Views.

3.1.1 Layouts and Contiguous Views

One of the main goals of Kokkos is to handle a number of layouts, namely C-style row-

major “right” layout and Fortran-style column-major “left” layout [11]. Additionally, matters are

further complicated by Kokkos allowing users to define their own tiled layouts and the fact that

either of these layout styles may or may not be contiguous. Kokkos works around this only caring

about the distance between elements (or stride), as well as featuring support for these via extent

and stride methods [11]. Therefore, a fundamental requirement of the implementation is to handle

these without the user having to specify additional information. This streamlines the experience

for developers.

In cases where layouts are contiguous, it does not matter how the data is transferred as

long as it is transferred in the proper order. So long as the user ensures that both the sender

and receiver Views have the same layout, the data will be transferred accurately. The ExaMPI

extension will handle data transfer while ignoring layout specifics where possible (e.g., contiguous

layouts) and where not possible, act according to the stride and datatype information. Therefore the

requirement is as follows: the bindings should be able to handle any contiguous View that meets

the previous requirements, regardless of layout. Non-contiguous objects are supported in both MPI

and Kokkos, but are less common and more complex. To add them to this project would require

packing techniques and complicate the more common use cases, possibly to the detriment of their

performance. Therefore, since this project is aiming to be a proof of concept with continuing

development, this was pushed to future work.

3.1.2 Binding Syntax and Setup

The next step was deciding how the actual function bindings would look. Expanding on

the earlier requirement that a user should not have to use the .data() method at all, Views would

16

act as buffers in functions. For example, in a new version of MPI Send, rather than taking in const

void *buf, the new bindings could take in Kokkos::View<int*> buf [8].

More radical bindings were discussed during the creation of this thesis. As mentioned in

a previous footnote, there is talk of attempting a type-less MPI centered purely around memory

buffers. Any attempt at creating a type-less MPI is a far bigger project than this thesis. So,

Kokkos-Enhanced ExaMPI still relies on MPI datatypes for memory transfer on its lower levels

and Kokkos uses template datatype parameters itself. There was the idea of returning the

received buffer, however creating a return datatype would have caused additional problems for

template instantiation. Additionally, as it diverges from the MPI standard, it would have been

controversial. The desire to closely follow the existing MPI standard for these functions led to

another requirement: for compatibility with Kokkos and MPI Datatypes, template parameters

should be used where possible.

3.2 Summary

This chapter explains the thought process that went into this project’s design. First, it

identified the minimum requirements. These were as follows:

• Create an MPI Extension composed of a series of functions based on MPI functions where

any binding should be able to handle a Kokkos View as input or output in a similar way to

buffers in MPI.

• The interface should not require the user to touch the .data() method;

• The interface should not require the user to create new derived datatypes for Views where

possible;

• For the purposes of this thesis, any bindings should be able to handle Views with at least 3

dimensions;

• For the purposes of this thesis, any bindings should be able to handle Views with either int

or double as their underlying datatype;

17

• The previous two requirements should not prevent additional dimensions or data primitives

from being implemented later;

• The bindings should be able to handle any contiguous View that meets the previous

requirements regardless of layout;

• For purposes of compatibility with Kokkos and avoiding reliance on the MPI Datatype,

template parameters should be used where possible.

18

CHAPTER 4

IMPLEMENTATION

This chapter describes the MPI extension with the requirements identified in Chapter

3. The bindings included here focus on point-to-point and collection communication [8]. The

MPI Kokkos Bcast and MPI Kokkos Allgather functions are the only collective communication

functions. All others are point-to-point with the exception of MPI Kokkos Get Dims which is a

helper function.

4.1 MPI Extension API Functions

Each of the functions in the MPI + Kokkos implementation is based on a common MPI

equivalent. The proposed MPI extension functions are listed below. The naming of these functions

includes a Kokkos in the middle, to identify them as variants of the traditional function.

1. MPI Kokkos Get Dims

2. MPI Kokkos Send

3. MPI Kokkos Recv

4. MPI Kokkos Isend

5. MPI Kokkos Irecv

6. MPI Kokkos Bcast

7. MPI Kokkos Allgather

8. MPI Kokkos Recv Dims

9. MPI Kokkos Irecv Dims

19

Each section shows the function’s name, then the template parameters, followed by the

normal function parameters. Templates, especially for complex structures such as Views, contain

more than just type information, so a more generic template allows compatibility with different

Views. Each binding uses roughly the following template to accept any View class, template <

class View t > along with any additional template parameters. A complete code listing of the

functions is listed in Appendix A.

4.1.1 MPI Kokkos Get Dims

MPI Kokkos Get Dims⟨View t⟩(std::vector⟨int⟩ & vec, View t view)

TEMPL View t View type

INOUT vec dimensions as a vector

IN view input View

The utility function MPI Kokkos Get Dims returns every extent (size of each individual dimen-

sion) of the View as a single integer vector, vec. MPI Kokkos Get Dims iterates over a View’s

extents and pushes them to a vector. For example, if a View A has dimensions [5, 6, 7],

MPI Kokkos Get Dims will ask for each extent, push it to a View until there are no more, then

return a vector containing the integers [5, 6, 7] at its tail. The template parameter View t ensures

the function does not have to know the underlying datatype or dimensions. This was intended as

a proof of concept that MPI and Kokkos could be compiled together in the manner needed for the

rest of the project.

4.1.2 MPI Kokkos Send and MPI Kokkos Recv

MPI Kokkos Send⟨View t,Datatype⟩(View t * buf, int count, MPI Datatype datatype, int dest,

int tag, MPI Comm comm)

TEMPL View t View type

TEMPL Datatype underlying datatype

IN buf address of View

IN count number of elements

20

IN datatype datatype of View’s elements

IN dest destination rank

IN tag message tag

IN comm handle to communicator

MPI Kokkos Recv⟨View t,Datatype⟩(View t * buf, int count, MPI Datatype datatype, int source,

int tag, MPI Comm comm)

TEMPL View t View type

TEMPL Datatype underlying datatype

OUT buf address of View

IN count number of elements

IN datatype datatype of View’s elements

IN source source rank

IN tag message tag

IN comm handle to communicator

The next two bindings are variations of MPI Send and MPI Recv which take Views as first

class objects, MPI Kokkos Send and MPI Kokkos Recv. MPI Kokkos Send takes a View as the

first parameter in the place of the traditional buffer and sends this over as an ExaMPI Payload.

All functions have the same template parameter, View t, as MPI Kokkos Get Dims. These

two and all following functions also have, Datatype, which allows the user to pass the underlying

datatype for the View.

buf is a parameter used to pass the address of the View, along with accessing the underlying

data with the data() method. Input parameters, count and datatype, are used to figure how many

elements and the size of each element respectively. This information is then used to traverse and

figure the size of the underlying allocation.

21

The dest parameter is the rank index of the process that receives the message. The tag

parameter is an optional id for messages. The comm parameter is a handle to the underlying com-

municator group that handles communication in a set of processes. Commonly, MPI COMM WORLD

is used which oversees all processes in an instance.

MPI Kokkos Send’s counterpart, MPI Kokkos Recv receives the Payload sent by MPI -

Kokkos Send, then wraps that in a View object and sends that to the pointer passed as a parameter.

The source parameter is the rank of the sending process.

4.1.3 MPI Kokkos Isend and MPI Kokkos IRecv

MPI Kokkos Isend⟨View t,Datatype⟩(View t * buf, int count, MPI Datatype datatype, int dest,

int tag, MPI Comm comm, MPI Request *request)

TEMPL View t View type

TEMPL Datatype underlying datatype

IN buf address of View

IN count number of elements

IN datatype datatype of View’s elements

IN dest destination rank

IN tag message tag

IN comm handle to communicator

OUT request handle to communication request

MPI Kokkos Irecv⟨View t,Datatype⟩(View t * buf, int count, MPI Datatype datatype, int dest,

int tag, MPI Comm comm, MPI Request *request)

TEMPL View t View type

TEMPL Datatype underlying datatype

INOUT buf address of View

IN count number of elements

22

IN datatype datatype of View’s elements

IN source source rank

IN tag message tag

IN comm handle to communicator

OUT request handle to communication request

MPI Kokkos Isend and MPI Kokkos IRecv are both MPI non-blocking calls, where the func-

tion call is returned before communication is finished. In MPIs with strong progress, such as

ExaMPI, this allows further code execution to be run while the underlying communication happens

between processes [8]. The functions are already called as well as exited and Payloads are already

set-up; all that needs to happen is the communication. Note that input and output parameters

could be written or read during the further code execution [8]. The two previous functions,

MPI Kokkos Send and MPI Kokkos Recv, are blocking functions; they halt any further code

execution until they are finished with communication [8].

In non-blocking functions, the function call is returned before communication is finished.

While the communication and writing to the buffer happens in the background, further code can

be executed. When a developer wants to tell if the communication is finished, they can query

the new parameter, request, with functions, such as MPI Wait. After this, the output parameters

will be finalized and ready to use. MPI Wait will halt further code execution until the request is

completed.

Rather than creating new query functions, existing ones are used, easing the process of

changing over other programs. For example, if an existing ExaMPI program is converted, any

lines with MPI Wait will not have to be changed. Note that only MPI Wait has been used in the

Chapter 5. Otherwise, this function differs from its non-Kokkos counterpart only in its ability to

handle a Kokkos View as a first class object.

MPI Kokkos IRecv is the counterpart of MPI Kokkos Irecv in the same way as MPI -

Kokkos Recv is to MPI Kokkos Send. Like MPI Kokkos Recv, an existing View address is

received from a send side and its data is written to a existing View.

23

4.1.4 MPI Kokkos Bcast

MPI Kokkos Bcast⟨View t,Datatype⟩(View t * buf, int count, MPI Datatype datatype, int root,

MPI Comm comm)

TEMPL View t View type

TEMPL Datatype underlying datatype

INOUT buf address of View

IN count number of elements

IN datatype datatype of View’s elements

IN root root rank

IN comm handle to communicator

MPI Kokkos Bcast is a version of MPI Bcast short for MPI Broadcast. This function resembles

the functionality of Send and Recv combined into one. Broadcast functions are classified as a form

of collective communication as they handle several processes [8]. A singular root process sends

(Broadcasts) its View to all the other process ranks in the given communicator group, enabling a

process to send to any number of other processes [9, 8].

4.1.5 MPI Kokkos Allgather

MPI Kokkos Allgather⟨View t,Datatype⟩(View t * buf, int count, MPI Datatype datatype,

View t * recv buf, int recv count, MPI Datatype recv type, MPI Comm comm)

TEMPL View t View type

TEMPL Datatype underlying datatype

INOUT buf address of View to be sent

IN count number of elements for buf

IN datatype datatype of sender View’s elements

INOUT recv buf address of receiving View

24

IN recv count number of elements for recv buf

IN recv type datatype of receiver View’s elements

IN comm handle to communicator

Next is MPI Kokkos Allgather, which takes (gathers) an input View from all processes

then compiles them into a View with inputs from each View ordered by their sending process’s

index ranking. MPI Allgather functions are classified as a form of collective communication as

they handle several processes [8].

The first parameter, buf, contains the data to be sent. The other buffer parameter,

recv buf, contains the contents of the first buffer from each process in the comm group that

used MPI Kokkos Allgather, placed in order by index rank. Unlike the previous functions, this

process requires the creation of two payloads, one for sending and another for receiving.

4.1.6 MPI Kokkos Recv Dims

MPI Kokkos Recv⟨View t,Datatype⟩(View t * buf, int count, MPI Datatype datatype, int source,

int tag, MPI Comm comm, int* dims)

TEMPL View t View type

TEMPL Datatype underlying datatype

OUT buf address of View

IN count number of elements

IN datatype datatype of View’s elements

IN source source rank

IN tag message tag

IN comm handle to communicator

IN dims integer array containing the View’s dimensions

This function receives the buffer of a Kokkos View, then creates a Kokkos View from an

allocated View pointer. This is an older, alternate version of MPI Kokkos Recv that forces the

25

correct dimensions on the received View. Neither Kokkos nor its sister project, MD-Span, have

a way for an existing multi-dimensional array to be passed to a new one with full debugging

information [11, 6]. The primary way to replicate a View is to manually copy each element, use

a copy function (e.g., deep copy()), or use unmanaged Views; only unmanaged Views allow

passing an existing array directly. In an unmanaged View, the underlying data buffer of the View

is passed as a parameter along with the dimensional size information. Originally intended to allow

a more flexible packing structure, it passes the received buffer to an unmanaged View. This means

that MPI Kokkos Recv Dims is not legal in C++, though it will compile on most compilers. This

was discovered in discussions with the Kokkos dev team and slack channel. This code being

illegal is due to the line, new (&buf[0]) View t(temp buf, count);, having an illegal pointer

access. Other forms of constructors have been proposed but are not part of Kokkos currently. The

output buf is also different; instead of being a pointer to a View where the underlying array will

be written, it is an allocated but empty array of Views. MPI Kokkos Recv Dims will fill the first

index of this array with an unmanaged View.

The dims parameter is an array with the View’s dimensions. If no dims are passed, it

is assumed that it is one-dimensional and the count is passed. This dims is designed to take an

integer array from MPI Kokkos Get Dims for the dimensions.

4.1.7 MPI Kokkos Irecv Dims

MPI Kokkos Irecv Dims⟨View t,Datatype⟩(View t * buf, int count, MPI Datatype datatype, int

dest, int tag, MPI Comm comm, MPI Request *request, int* dims)

TEMPL View t View type

TEMPL Datatype underlying datatype

INOUT buf address of View

IN count number of elements

IN datatype datatype of View’s elements

IN source source rank

IN tag message tag

26

IN comm handle to communicator

OUT request handle to communication request

IN dims integer array containing the View’s dimensions

This function is used to receive the View transported by the non-blocking MPI Kokkos -

Isend. As with MPI Kokkos Recv Dims, MPI Kokkos IRecv Dim has an optional dims parameter

and creates an unmanaged View on a View pointer array. Like MPI Kokkos IRecv, it is non-

blocking and other code can be executed while communication is completed.

There is no MPI Kokkos Send Dims, as the dims parameter is only intended to enforce the

correct dimensions on a View being created. It cannot alter the dimensions of existing Views after

creation. Additionally, sending them alongside the View data would require additional packing or

another send specific to the dims. Both of these would harm performance.

The dims technique was deprecated because this enforcement is not necessary on contigu-

ous Views and in its present state, forces the use of unmanaged Views. See Chapter 6 for more

details.

4.2 Miscellaneous

4.2.1 CMake and Binding Creation

This project is designed to integrate Kokkos with ExaMPI, a research-focused implemen-

tation of MPI-4 in C++ [9]. This project uses the more experimental C++ bindings, rather than

traditional C or Fortran bindings, so the mpicpp.h header is used. Here, a templated version of

MPI Send can be created that takes the class of the buffer as a template parameter instead of just

using MPI Datatype. Without these C++ features, letting MPI handle Views would have been

difficult if not impossible without sacrificing much of the utility of Views [9].

The first attempts at setting up a MPI+Kokkos framework required linking Kokkos to MPI

during MPI compilation. This failed because ExaMPI must find the Kokkos library to compile

the individual bindings correctly. ExaMPI uses the CMake build automation to assemble all of its

code, third-party libraries, etc. Therefore, the CMake system must be able to find the Kokkos file

either automatically or by being handed a file path.

27

The second stage required the Kokkos library to not just be compiled at the library level

with Kokkos, but when any ExaMPI program that utilized Kokkos has to be compiled with Kokkos.

For the first stage, Kokkos is set up as a third-party library. This involves creating FindKokkos file

that sets up a few environmental variables (similar files were made for other third party libraries

such as LibFabric or Nvidia tools). In the CMakeLists.txt file, a few new lines were added

to properly handle the new environmental variables: option(GET KOKKOS PATH ‘‘Obtain the

kokkos path’’ OFF), an add subdirectory(kokkos) directive, find package(Kokkos),

include directories (${Kokkos INCLUDE DIRS RET}), and target link libraries-

(exampi Kokkos::kokkos).

After adding the Kokkos source directory to the ExaMPI directory, ExaMPI’s CMake will

execute Kokko’s CMake file as a dependency and send the appropriate Kokkos header files to

/usr/local/include. Finally, ExaMPI will be able to link the Kokkos header files to files that

include them. After compiling ExaMPI, the ExaMPI compiler wrapper will link Kokkos to new

programs.

4.2.2 Templates

A primary issue for function creation is that, unlike templates, MPI datatypes contain no

direct information relating to the datatypes handled by the compiler. Instead, the MPI datatype is

a guide for how MPI should process the given data and is very implementation-dependent. In the

case of ExaMPI, MPI Datatype is a constant cast from an underlying Datatype class instance used

by the lower levels. While this is a robust system that can handle packing and data conversion,

there is no way to directly infer the data’s actual datatype form the MPI Datatype. [8, 9]. This

means that programmers will declare the datatype somewhere else to send it to the underlying

Kokkos code.

Instead of trying to add a datatype to the MPI datatype lookup table, this thesis utilizes

template parameters to supplement the existing parameters. There are two different template

parameters used in the MPI extension. The first template parameter is View t, which replaces

a Kokkos View and is used in each function. The second is the underlying Datatype, which is used

for preparing additional Kokkos and pointer code.

28

Inside the binding files, function prototypes for each combination of dimensions and

underlying datatype are created. Otherwise, the compile will not create template logic for any

function and will throw an error when compiling individual programs. As noted previously, to

simplify this project, only the cases with up to 3 dimensions, and int and double datatypes were

implemented for this thesis. The alternative, defining all bindings inside the header file mpicpp.h,

made the header file much larger and harder to debug.

Radically different bindings, such as ones that return Views, were pushed to future work

(See Ch. 6 for more details). This is due to their possibility for controversy, the lack of an existing

interface to work from, and the fact that they would have added development time without a definite

increase in functionality. This project, instead, decided to stick with having Views replace buffers

in a traditional MPI interface.

29

CHAPTER 5

RESULTS

This chapter evaluates the performance the functions in the MPI extension, highlighting

how they compare to existing methods of using MPI and Kokkos. First, its shows the results for

a one-dimensional MPI Send and MPI Recv test that changed length from 64 to 32768 with the

length multiplying by 2 at each step. For each length of the array, 101 runs were done. Then

two similar tests were run for two and three dimensional arrays, as well as a different test using

MPI Bcast. All tests were run on the Epyc cluster at the UTC SimCenter [15]. Parameters such as

the number of nodes or tasks vary based on the test being run. The code for each test can be seen

in Appendix A.

5.1 Single-Dimension MPI Send And MPI Recv Tests

Kokkos : : View<i n t *> check (” Example View” , n) ;

/ / o l d method

MPI Recv (check . d a t a () , n , MPI INT , 1 , 0 ,

MPI COMM WORLD, MPI STATUS IGNORE) ;

/ / new method

MPI Kokkos Recv<Kokkos : : View<i n t *> , i n t >(&A, n , MPI INT , 1 , 0 ,

MPI COMM WORLD) ;

Listing 5.1: Kokkos View parallel for example

This section covers the tests comparing the new bindings for sending and receiving using

a View (MPI Kokkos Send and MPI Kokkos Recv) and traditional methods for this. Figure 5.1

graphs the results for the runs for two MPI ping-pong tests, one with the new MPI extension

bindings from Chapter 4 and another with the older traditional bindings. A ping-pong tests is

30

Figure 5.1 New MPI Extension bindings vs traditional method averages for pingpong tests

31

where one process sends a buffer (here a View), another receives and alters the buffer. Finally, the

buffer is sent back to the original sending process.

The primary difference between the two is shown in Listing 5.1, where the old method for

receiving an array must touch the .data() method directly. These tests were run on a node of the

EPYC cluster at the UTC Simcenter with full access to two nodes with two processes each and up

to three cores available per process [15].

Aside from the differing methods, the main variable is the size of the View, each consisting

of a single dimensional array ranging in size from 64 to 32768 elements multiplying by 2 at each

step. For each length of the array, 101 runs were done with each point in Figure 5.1 being the

average time. The times recorded in the figure are from the original sending side as it will have

the longest overall time. The standard deviation of the mean is plotted as error bars. The full code

listings for all tests are shown in A.

In Figure 5.1, which bindings has better performance varies on almost every point. This is

likely due to the run-time environment and access to resources rather than the code itself as there

are no specific handling cases in the added code. Overall, these results seem to be comparable

for both methods with both types of bindings being better at different times and a very low

standard deviation of the mean. Since the primary goal of this thesis was not a significant change

in performance but roughly equal performance for each method, this means that the bindings

performed well by this thesis’s metrics.

5.2 Multi-Dimension Send And Recv Tests

This series of tests was run on both two and three-dimensional Views, but their code

is otherwise identical to the single dimensional Views unless otherwise specified. The slurm

configuration for both the two and three dimensional tests are the same as the one-dimensional

Views. For each of these, the x-axis number is the length of one dimension, so the 2 is actually

2∗2 = 4 in the two dimensional case and 2∗2∗2 = 8 in the three dimensional.

For both graphs, the new bindings and old bindings are roughly equal for time and standard

error. The primary outliers are for the two dimensional, where n=8, new bindings perform slightly

worse, and at n=512 they perform slightly better. For the three dimensional case and unlike

32

Figure 5.2 2D MPI Extension bindings vs. traditional method averages pingpong tests

33

Figure 5.3 3D MPI Extension bindings vs. traditional method averages pingpong tests

34

Figure 5.4 MPI Extension bindings vs. traditional method averages

the other tests, new bindings do perform slightly worse for n=512. This might be an outlier or

indicative of a larger trend and while 5123 is a large number, it is no where near the highest size

possible for a Kokkos View. Otherwise, both bindings perform identically.

5.3 MPI Kokkos Broadcast Tests

This test runs a MPI Bcast test with both the new Kokkos bindings and without. In this

series, the Epyc configuration was run with 2 nodes and 64 tasks. It does not run a pingpong,

instead transporting a single one dimensional View with 5000 elements using the MPI Bcast

command with a varying number of processes (2 to 128). The time it takes to run this is recorded

for every process then the maximum is found using the MPI Allreduce function. Each of these

35

tests is run 100 times for a given number of processes then the first time is discarded for warm-up,

leaving 99 run times for the average.

As shown in Figure 5.4, the average time and standard error varies wildly for both the new

bindings and traditional bindings. This is likely due to the fact that the default Broadcast algorithm

is a series of linear sends meaning each is dependent on the non-deterministic nature of not just

one transport, but every transport. As shown in Figure 5.4, this does not even necessarily even

increase linearly as one might think with the increasing number of processes. Overall, this series

of tests is less conclusive than previous ones by having no cohesive trends.

36

CHAPTER 6

CONCLUSIONS

This thesis set about to integrate two programming models, MPI and Kokkos, better than

previous attempts. Kokkos was chosen due to its unique data structures, but no one had yet created

an interface for interaction between its data structures and MPI. The ExaMPI implementation of

MPI was utilized due to it being written in C++, which enabled the use of templates that would not

have been possible in many other implementations. After introducing these models, a few existing

works that utilize both MPI and Kokkos are highlighted to show that demand exists for this work.

Then, a few guidelines for this thesis were decided, namely that users should not have to

touch the .data() method for Kokkos Views and should instead be able to use Views as buffers

directly in MPI. During the course of this thesis, several MPI bindings were implemented to use

Kokkos View objects as their primary buffers alongside template parameters for internal use.

After implementing the bindings for this project, this thesis found that the new bindings’

performed similarly to the old bindings’ with almost no loss of performance. This was particularly

true for the two and three dimensional View tests, which displayed almost identical performance

for the majority of View sizes and only small differences in other cases. The broadcast tests were

less conclusive in that the performance of both the MPI extension bindings and the traditional

methods varied significantly. Unlike previous programs that used both MPI and Kokkos, this

thesis was able to implement several MPI bindings using Kokkos View objects without significant

loss of performance. These bindings also preserve the C++ nature of the Kokkos View by allowing

templates.

6.1 Future Work

Going forward, this work will encompass a wider array of standard MPI functions and

more Kokkos-specific functions, with work beginning on functions, such as All-To-All, Scatter

37

and Gather, in the near future. Another future goal of this project is more device specific support

(i.e., MPI Send<View, class, Device>) for GPUs, FPGAs, and other hardware.

Currently, the Kokkos MPI bindings closely follow existing MPI functions with their

primary difference being the introduction of View template parameters. Other alternatives, notably

bindings that return Views directly, complicated the fundamental goal of extending the MPI

interface for Kokkos without performance benefit. Returning the Views directly rather than

MPI Success codes upon completion is desirable and allows less issues with View declaration

on the user end.

The major use-case not covered by the MPI extension covered in this thesis is non-

contiguous Views. Generally, non-contigous arrays can be of several different types: arrays/data

structures that are placed into multiple segments or pages of memory or arrays whose elements are

out of order within a contiguous memory block (such as a transposed array).

While both the MPI standard and Kokkos have methods of dealing with non-contiguous

arrays or Views, they are not directly compatible. MPI has derived datatypes where strides are

defined for new data structures, allowing disparate memory to be packed into a contiguous space.

Kokkos has the ability to adjust the defined strides for non-contiguous memory.

The primary path forward is to create a separate transport back-end for the non-contiguous

case. Kokkos provides a is contigous method for this, along with a stride interface for knowing

the spaces between interfaces (strides) [11]. The back-end would use the stride information to send

chunks of the View in parallel for non-contiguous View. This would have improved performance

over the more general case of manually packing the Views.

Further, a new back-end could be created for existing use-cases and enabling support for

Views within the lower-levels of ExaMPI. A related notion is to create an alternative back-end

for ExaMPI that only deals with data on a byte level instead of by datatype. This would be more

flexible for Views as it could just take in memory size or strides.

38

BIBLIOGRAPHY

[1] Andres, B., Köthe, U., Kröger, T., and Hamprecht, F. A. (2010). Runtime-flexible multi-

dimensional arrays and views for C++98 and c++0x. CoRR, abs/1008.2909. 9

[2] Dagum, L. and Menon, R. (1998). Openmp: an industry standard api for shared-memory

programming. Computational Science & Engineering, IEEE, 5(1):46–55. 12

[3] Edwards, H. C. and Trott, C. R. (2013). Kokkos: Enabling performance portability across

manycore architectures. In 2013 Extreme Scaling Workshop (xsw 2013), pages 18–24. 2, 10,

11, 12

[4] Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., Sahay,

V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R. H., Daniel, D. J., Graham, R. L.,

and Woodall, T. S. (2004). Open MPI: Goals, concept, and design of a next generation MPI

implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting, pages 97–

104, Budapest, Hungary. 6, 7

[5] Gropp, W., Lusk, E., and Skjellum, A. (2014). Using MPI: Portable Parallel Programming

with the Message-Passing Interface. The MIT Press. 7

[6] Hollman, D. S., Adelstein-Lelbach, B., Edwards, H. C., Hoemmen, M., Sunderland, D., and

Trott, C. R. (2020). mdspan in C++: A case study in the integration of performance portable

features into international language standards. CoRR, abs/2010.06474. 9, 26

[7] Khuvis, S., Tomko, K., Hashmi, J., and Panda, D. K. (2020). Exploring hybrid mpi+kokkos

tasks programming model. In 2020 IEEE/ACM 3rd Annual Parallel Applications Workshop:

Alternatives To MPI+X (PAW-ATM), pages 66–73. 2, 12

39

[8] Message Passing Interface Forum (2021). MPI: A Message-Passing Interface Standard Version

4.0. 1, 2, 6, 7, 8, 16, 17, 19, 23, 24, 25, 28

[9] Skjellum, A., Rüfenacht, M., Sultana, N., Schafer, D., Laguna, I., and Mohror, K. (2020).

Exampi: A modern design and implementation to accelerate message passing interface

innovation. In Crespo-Mariño, J. L. and Meneses-Rojas, E., editors, High Performance

Computing, pages 153–169, Cham. Springer International Publishing. 1, 2, 7, 8, 24, 27, 28

[10] Trilinos Project Team, T. (2020 (acccessed May 22, 2020)). The Trilinos Project Website. 9

[11] Trott, C. R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood, N., Gayatri, R.,

Harvey, E., Hollman, D. S., Ibanez, D., Liber, N., Madsen, J., Miles, J., Poliakoff, D., Powell,

A., Rajamanickam, S., Simberg, M., Sunderland, D., Turcksin, B., and Wilke, J. (2022). Kokkos

3: Programming model extensions for the exascale era. IEEE Transactions on Parallel and

Distributed Systems, 33(4):805–817. 1, 2, 9, 10, 11, 12, 13, 16, 26, 38

[12] Trott, C. R., Plimpton, S. J., and Thompson, A. P. (2017). Solving the performance portability

issue with kokkos. 3

[13] Vasyivy (2023). lbm2d-mpi-kokkos. Accessed: 2022-11-12. 13

[14] Waters, D., MacLean, C. A., Bonachea, D., and Hargrove, P. (2021). Demonstrating

upc++/kokkos interoperability in a heat conduction simulation (extended abstract). 3

[15] Wiki, S. (2023). Epyc cluster. Accessed: 2023-2-13. 30, 32

40

APPENDIX A

KOKKOS/EXAMPI BINDING CODE

41

A Bindings Code

A.1 MPI Kokkos Send

i n c l u d e <v e c t o r >

i n c l u d e ” debug . h ”

i n c l u d e ” e n g i n e s / b l o c k i n g p r o g r e s s . h ”

i n c l u d e ” r e q u e s t s / r e q u e s t . h ”

i n c l u d e ” mpicpp . h ”

i n c l u d e <Kokkos Core . hpp>

template<c l a s s View t , c l a s s Data type>

i n t MPI Kokkos Send (View t * buf ,

i n t count ,

MPI Data type d a t a t y p e ,

i n t d e s t ,

i n t t ag ,

MPI Comm comm)

{

us ing namespace exampi ;

s t d : : s h a r e d p t r <P a y l o a d O r g a n i z e r> u n d e r p a y l o a d

=

s t d : : make shared<P a y l o a d O r g a n i z e r >(

Pay load (buf −>d a t a () , count , d a t a t y p e

)) ;

s t d : : s h a r e d p t r <Reques t> t e m p r e q =

s t d : : make shared<Reques t >(u n d e r p a y l o a d ,

USE MY RANK,

d e s t ,

t ag ,

42

comm ,

O p e r a t i o n : : SEND

,

n u l l p t r ,

f a l s e ,

f a l s e ,

Op : : OP NULL) ;

t emp req −> a c t i v a t e () ;

auto pe = comm−>g e t p r o g r e s s () ;

pe−>p o s t r e q u e s t (t e m p r e q) ;

pe−>w a i t f o r c o m p l e t e (t e m p r e q) ;

re turn MPI SUCCESS ;

}

A.2 MPI Kokkos Recv

i n c l u d e <v e c t o r >

i n c l u d e ” debug . h ”

i n c l u d e ” e n g i n e s / b l o c k i n g p r o g r e s s . h ”

i n c l u d e ” r e q u e s t s / r e q u e s t . h ”

i n c l u d e ” mpicpp . h ”

i n c l u d e <Kokkos Core . hpp>

template<c l a s s View t , c l a s s Data type>

i n t MPI Kokkos Recv (View t * buf ,

i n t count ,

MPI Data type d a t a t y p e ,

i n t sou rce ,

i n t t ag ,

MPI Comm comm)

43

{

us ing namespace exampi ;

/ / T h i s b u f f e r i s what t h e pay load a c t u a l l y

u s e s from g i v e n View

D a t a t y p e * b u f d a t a = buf −>d a t a () ;

s t d : : s h a r e d p t r <P a y l o a d O r g a n i z e r> u n d e r p a y l o a d

=

s t d : : make shared<P a y l o a d O r g a n i z e r >(

Pay load (b u f d a t a , count , d a t a t y p e)) ;

s t d : : s h a r e d p t r <Reques t> t e m p r e q =

s t d : : make shared<Reques t >(n u l l p t r ,

sou rce ,

USE MY RANK,

tag ,

comm ,

O p e r a t i o n : : RECEIVE ,

u n d e r p a y l o a d ,

f a l s e ,

f a l s e ,

Op : : OP NULL) ;

t emp req −> a c t i v a t e () ;

auto pe = comm−>g e t p r o g r e s s () ;

pe−>p o s t r e q u e s t (t e m p r e q) ;

pe−>w a i t f o r c o m p l e t e (t e m p r e q) ;

re turn MPI SUCCESS ;

}

44

A.3 MPI Kokkos ISend

template<c l a s s View t , c l a s s Data type>

i n t MPI Kokkos Isend (View t * buf ,

i n t count ,

MPI Data type d a t a t y p e ,

i n t d e s t ,

i n t t ag ,

MPI Comm comm ,

MPI Request * r e q u e s t)

{

us ing namespace exampi ;

s t d : : s h a r e d p t r <P a y l o a d O r g a n i z e r> u n d e r p a y l o a d

=

s t d : : make shared<P a y l o a d O r g a n i z e r >(

Pay load (buf −>d a t a () , count , d a t a t y p e

)) ;

* r e q u e s t = s t d : : make shared<Reques t >(

u n d e r p a y l o a d ,

USE MY RANK,

d e s t ,

t ag ,

comm ,

O p e r a t i o n : : SEND

,

n u l l p t r ,

f a l s e ,

f a l s e ,

Op : : OP NULL) ;

45

re turn M P I S t a r t (r e q u e s t) ;

}

A.4 MPI Kokkos Irecv

template<c l a s s View t , c l a s s Data type>

i n t MPI Kokkos I recv (View t * buf ,

i n t count ,

MPI Data type d a t a t y p e ,

i n t sou rce ,

i n t t ag ,

MPI Comm comm ,

MPI Request * r e q u e s t)

{

us ing namespace exampi ;

/ * NOTE: t h i s i s l e g a l c++ u n l i k e above

* /

D a t a t y p e * b u f d a t a = buf −>d a t a () ;

s t d : : s h a r e d p t r <P a y l o a d O r g a n i z e r> u n d e r p a y l o a d

=

s t d : : make shared<P a y l o a d O r g a n i z e r >(Pay load (

b u f d a t a , count , d a t a t y p e)) ;

* r e q u e s t = s t d : : make shared<Reques t >(n u l l p t r ,

sou rce ,

USE MY RANK,

tag ,

comm ,

46

O p e r a t i o n : :

RECEIVE ,

u n d e r p a y l o a d ,

f a l s e ,

f a l s e ,

Op : : OP NULL) ;

re turn M P I S t a r t (r e q u e s t) ;

}

A.5 MPI Kokkos Bcast

template<c l a s s View t , c l a s s Data type>

i n t MPI Kokkos Bcast (View t * buf ,

i n t count ,

MPI Data type d a t a t y p e ,

i n t r o o t ,

MPI Comm comm)

{

us ing namespace exampi ;

s t d : : s h a r e d p t r <P a y l o a d O r g a n i z e r> u n d e r p a y l o a d

;

s t d : : s h a r e d p t r <Reques t> t e m p r e q ;

i f (r o o t == comm−>g e t r a n k ()) {

/ / send s i d e

u n d e r p a y l o a d = s t d : : make shared<

P a y l o a d O r g a n i z e r >(Pay load (buf −>d a t a () ,

count , d a t a t y p e)) ;

47

t e m p r e q = s t d : : make shared<Reques t >(

u n d e r p a y l o a d ,

r o o t ,

USE MY RANK,

COLLECTIVE TAG ,

comm ,

O p e r a t i o n : : BCAST,

n u l l p t r ,

f a l s e ,

true ,

Op : : OP NULL) ;

t emp req −> a c t i v a t e () ;

auto pe = comm−>g e t p r o g r e s s () ;

pe−>p o s t r e q u e s t (t e m p r e q) ;

pe−>w a i t f o r c o m p l e t e (t e m p r e q) ;

re turn MPI SUCCESS ;

}

e l s e {

/ / r e c v s i d e

u n d e r p a y l o a d = s t d : : make shared<

P a y l o a d O r g a n i z e r >(Pay load (buf −>d a t a () ,

count , d a t a t y p e)) ;

t e m p r e q = s t d : : make shared<Reques t >(

n u l l p t r ,

r o o t ,

USE MY RANK,

COLLECTIVE TAG ,

48

comm ,

O p e r a t i o n : : BCAST,

u n d e r p a y l o a d ,

f a l s e ,

true ,

Op : : OP NULL) ;

t emp req −> a c t i v a t e () ;

auto pe = comm−>g e t p r o g r e s s () ;

pe−>p o s t r e q u e s t (t e m p r e q) ;

pe−>w a i t f o r c o m p l e t e (t e m p r e q) ;

re turn MPI SUCCESS ;

}

}

A.6 MPI Kokkos Allgather

template<c l a s s View t , c l a s s Data type>

i n t MPI Kokkos Al lga the r (View t * buf ,

i n t count ,

MPI Data type d a t a t y p e ,

View t * r e c v b u f ,

i n t r e c v c o u n t ,

MPI Data type r e c v t y p e ,

MPI Comm comm)

{

us ing namespace exampi ;

s t d : : s h a r e d p t r <P a y l o a d O r g a n i z e r> s p a y l o a d =

49

s t d : : make shared<P a y l o a d O r g a n i z e r >(Pay load (

buf −>d a t a () , count , d a t a t y p e)) ;

D a t a t y p e * b u f d a t a = r e c v b u f −>d a t a () ;

s t d : : s h a r e d p t r <P a y l o a d O r g a n i z e r> r p a y l o a d =

s t d : : make shared<P a y l o a d O r g a n i z e r >(

b u f d a t a , r e c v c o u n t , r e c v t y p e , comm−>

g e t s i z e ()) ;

s t d : : s h a r e d p t r <Reques t> t e m p r e q =

s t d : : make shared<Reques t >(s p a y l o a d ,

USE MY RANK,

0 ,

COLLECTIVE TAG ,

comm ,

O p e r a t i o n : :

ALLGATHER,

r p a y l o a d ,

f a l s e ,

true ,

Op : : OP NULL) ;

t emp req −> a c t i v a t e () ;

auto pe = comm−>g e t p r o g r e s s () ;

pe−>p o s t r e q u e s t (t e m p r e q) ;

pe−>w a i t f o r c o m p l e t e (t e m p r e q) ;

re turn MPI SUCCESS ;

}

50

A.7 MPI Kokkos Recv Dims

template<c l a s s View t , c l a s s Data type>

i n t MPI Kokkos Recv Dims (View t * buf ,

i n t count ,

MPI Data type d a t a t y p e ,

i n t sou rce ,

i n t t ag ,

MPI Comm comm ,

i n t * dims)

{

us ing namespace exampi ;

/ / T h i s b u f f e r i s what t h e pay load a c t u a l l y uses ,

t h i s i s t h e n p u t i n an unmanaged View

D a t a t y p e * temp buf =(D a t a t y p e *) ma l lo c (c o u n t * s i z e o f

(D a t a t y p e)) ;

s t d : : s h a r e d p t r <P a y l o a d O r g a n i z e r> u n d e r p a y l o a d =

s t d : : make shared<P a y l o a d O r g a n i z e r >(Pay load (

temp buf , count , d a t a t y p e)) ;

s t d : : s h a r e d p t r <Reques t> t e m p r e q =

s t d : : make shared<Reques t >(n u l l p t r ,

sou rce ,

USE MY RANK,

tag ,

comm ,

O p e r a t i o n : : RECEIVE ,

u n d e r p a y l o a d ,

f a l s e ,

f a l s e ,

51

Op : : OP NULL) ;

t emp req −> a c t i v a t e () ;

auto pe = comm−>g e t p r o g r e s s () ;

pe−>p o s t r e q u e s t (t e m p r e q) ;

pe−>w a i t f o r c o m p l e t e (t e m p r e q) ;

/ * NOTE: t h i s i s t e c h n i c a l l y n o t l e g a l C++ (i t

i s l e g a l C) t h u s i s a l l o w e d on a l m o s t any

c o m p i l e r

As per Kokkos s l a c k , t h e o n l y a l t e r n a t i v e (

c u r r e n t l y , t h e y are work ing on i t) i s t o

manua l l y copy e v e r y t h i n g which i s v e r y much

n o t p e r f o r m a n t .

* /

sw i t ch ((i n t) View t : : r ank) {

case 1 :

new (& buf [0]) View t (temp buf , c o u n t) ;

break ;

case 2 :

new (& buf [0]) View t (temp buf , dims [0] ,

dims [1]) ;

break ;

case 3 :

new (& buf [0]) View t (temp buf , dims [0] ,

dims [1] , dims [2]) ;

break ;

d e f a u l t :

debug (”PROBLEM: Too many or n o t enough

d i m e n s i o n s i n View”) ;

52

/ / MPI ABORT (comm , 600) ;

}

re turn MPI SUCCESS ;

}

A.8 MPI Kokkos Irecv Dims

template<c l a s s View t , c l a s s Data type>

i n t MPI Kokkos I recv Dims (View t * buf ,

i n t count ,

MPI Data type d a t a t y p e ,

i n t sou rce ,

i n t t ag ,

MPI Comm comm ,

MPI Request * r e q u e s t ,

i n t * dims)

{

us ing namespace exampi ;

D a t a t y p e * temp buf = (D a t a t y p e *) ma l lo c (c o u n t

* s i z e o f (D a t a t y p e)) ;

s t d : : s h a r e d p t r <P a y l o a d O r g a n i z e r> u n d e r p a y l o a d

=

s t d : : make shared<P a y l o a d O r g a n i z e r >(Pay load (

temp buf , count , d a t a t y p e)) ;

* r e q u e s t = s t d : : make shared<Reques t >(n u l l p t r ,

sou rce ,

USE MY RANK,

53

t ag ,

comm ,

O p e r a t i o n : :

RECEIVE ,

u n d e r p a y l o a d ,

f a l s e ,

f a l s e ,

Op : : OP NULL) ;

/ * NOTE: t h i s i s t e c h n i c a l l y n o t l e g a l C++ (i t

i s l e g a l C) t h u s i s a l l o w e d on a l m o s t any

c o m p i l e r

As per Kokkos s l a c k , t h e o n l y a l t e r n a t i v e (

c u r r e n t l y , t h e y are work ing on i t) i s t o

manua l l y copy e v e r y t h i n g which i s v e r y much

n o t p e r f o r m a n t .

* /

sw i t ch ((i n t) View t : : r ank) {

case 1 :

new (& buf [0]) View t (temp buf , c o u n t) ;

break ;

case 2 :

new (& buf [0]) View t (temp buf , dims [0] ,

dims [1]) ;

break ;

case 3 :

new (& buf [0]) View t (temp buf , dims [0] ,

dims [1] , dims [2]) ;

break ;

54

d e f a u l t :

debug (”PROBLEM: Too many or n o t enough

d i m e n s i o n s i n View”) ;

/ / MPI ABORT (comm , 600) ;

}

re turn M P I S t a r t (r e q u e s t) ;

}

B Test Code

B.1 New Bindings Kokkos Pingpong Test

/ / ### p r o c e s s e s 2

/ / ### l a b e l s base , s h o r t

i n c l u d e <mpicpp . h>

i n c l u d e <Kokkos Core . hpp>

i n c l u d e <i o s t r e a m >

i n c l u d e <chrono>

i n t main (i n t argc , char ** a rgv) {

i n t e r r o r = 0 ;

M P I I n i t (& argc , &argv) ;

Kokkos : : i n i t i a l i z e (a rgc , a rgv) ;

{

i n t r ank = −1;

MPI Comm rank (MPI COMM WORLD, &rank) ;

/ / i n t n = 8;

55

i n t n = s t d : : s t o i (a rgv [argc − 1]) ;

Kokkos : : View<i n t *> check (” check ” , n) ;

Kokkos : : p a r a l l e l f o r (check . e x t e n t (0) ,

KOKKOS LAMBDA(i n t i) {

check (i) = i * i ;

/ / check (i , 1) = (i * i) +1;

/ / s t d : : c o u t << i << ” t h e n t r y :

” << check [i] << s t d : : e n d l ;

}) ;

i f (r ank == 1) {

auto b e g i n = s t d : : ch rono : : s t e a d y c l o c k

: : now () ;

/ / MPI Send t i m e

MPI Kokkos Send<Kokkos : : View<i n t *> , i n t

>(&check , check . s i z e () , MPI INT , 0 ,

0 , MPI COMM WORLD) ;

Kokkos : : View<i n t *> A(”A s i d e ” , n) ;

MPI Kokkos Recv<Kokkos : : View<i n t *> , i n t

>(&A, check . s i z e () , MPI INT , 0 , 0 ,

MPI COMM WORLD) ;

auto end = s t d : : ch rono : : s t e a d y c l o c k : :

now () ;

s t d : : ch rono : : d u r a t i o n <double>

e l a p s e d s e c o n d s = end − b e g i n ;

56

s t d : : c o u t << ” Send Time Count : ” <<

e l a p s e d s e c o n d s . c o u n t () << s t d : : e n d l

;

}

e l s e {

auto b e g i n = s t d : : ch rono : : s t e a d y c l o c k

: : now () ;

/ / MPI Recv t i m e

Kokkos : : View<i n t *> B(”B s i d e ” , n) ;

MPI Kokkos Recv<Kokkos : : View<i n t *> , i n t

>(&B , check . s i z e () , MPI INT , 1 , 0 ,

MPI COMM WORLD) ;

B(0) +=200;

MPI Kokkos Send<Kokkos : : View<i n t *> , i n t

>(&B , B . s i z e () , MPI INT , 1 , 0 ,

MPI COMM WORLD) ;

auto end = s t d : : ch rono : : s t e a d y c l o c k : :

now () ;

s t d : : ch rono : : d u r a t i o n <double>

e l a p s e d s e c o n d s = end − b e g i n ;

s t d : : c o u t << ” Recv Time Count : ” <<

e l a p s e d s e c o n d s . c o u n t () << s t d : : e n d l

;

}

}

Kokkos : : f i n a l i z e () ;

M P I F i n a l i z e () ;

57

re turn e r r o r ;

}

B.2 Old Method Kokkos Pingpong Test

/ / ### p r o c e s s e s 2

/ / ### l a b e l s base , s h o r t

i n c l u d e <mpicpp . h>

i n c l u d e <Kokkos Core . hpp>

i n c l u d e <i o s t r e a m >

i n c l u d e <chrono>

i n t main (i n t argc , char ** a rgv) {

i n t e r r o r = 0 ;

M P I I n i t (& argc , &argv) ;

Kokkos : : i n i t i a l i z e (a rgc , a rgv) ;

{

i n t r ank = −1;

MPI Comm rank (MPI COMM WORLD, &rank) ;

/ / i n t n = 8;

i n t n = s t d : : s t o i (a rgv [argc − 1]) ;

Kokkos : : View<i n t *> check (” check ” , n) ; / / [4] [3]

/ / randomize ?

Kokkos : : p a r a l l e l f o r (check . e x t e n t (0) ,

KOKKOS LAMBDA(i n t i) {

check (i) = i * i ;

58

}) ;

i f (r ank == 1) {

auto b e g i n = s t d : : ch rono : : s t e a d y c l o c k

: : now () ;

/ / MPI Send t i m e

MPI Send (check . d a t a () , check . s i z e () ,

MPI INT , 0 , 0 , MPI COMM WORLD) ;

i n t * s e n d b u f = (i n t *) ma l l oc (check .

s i z e () * s i z e o f (i n t)) ;

MPI Recv (s e n d b u f , check . s i z e () ,

MPI INT , 0 , 0 , MPI COMM WORLD,

MPI STATUS IGNORE) ;

Kokkos : : View<i n t *> r a n k 1 c h e c k (

s e n d b u f , check . s i z e ()) ;

/ / t i m e

auto end = s t d : : ch rono : : s t e a d y c l o c k : :

now () ;

s t d : : ch rono : : d u r a t i o n <double>

e l a p s e d s e c o n d s = end − b e g i n ;

s t d : : c o u t << ” Send Time Count : ” <<

e l a p s e d s e c o n d s . c o u n t () << s t d : : e n d l

;

}

e l s e {

auto b e g i n = s t d : : ch rono : : s t e a d y c l o c k

: : now () ;

/ / MPI Recv t i m e

59

i n t * r e c v b u f = (i n t *) ma l l oc (check .

s i z e () * s i z e o f (i n t)) ;

MPI Recv (r e c v b u f , check . s i z e () ,

MPI INT , 1 , 0 , MPI COMM WORLD,

MPI STATUS IGNORE) ;

Kokkos : : View<i n t *> r e c v c h e c k (r e c v b u f

, check . s i z e ()) ;

r e c v c h e c k (0) += 200 ;

MPI Send (r e c v c h e c k . d a t a () , r e c v c h e c k .

s i z e () , MPI INT , 1 , 0 ,

MPI COMM WORLD) ;

/ / t i m e

auto end = s t d : : ch rono : : s t e a d y c l o c k : :

now () ;

s t d : : ch rono : : d u r a t i o n <double>

e l a p s e d s e c o n d s = end − b e g i n ;

s t d : : c o u t << ” Recv Time Count : ” <<

e l a p s e d s e c o n d s . c o u n t () << s t d : : e n d l

;

}

}

Kokkos : : f i n a l i z e () ;

M P I F i n a l i z e () ;

re turn e r r o r ;

}

B.3 Two Dimensional New Bindings Kokkos Pingpong Test

60

i n c l u d e <mpicpp . h>

i n c l u d e <Kokkos Core . hpp>

i n c l u d e <i o s t r e a m >

i n c l u d e <chrono>

i n t main (i n t argc , char ** a rgv) {

i n t e r r o r = 0 ;

M P I I n i t (& argc , &argv) ;

Kokkos : : i n i t i a l i z e (a rgc , a rgv) ;

{

i n t r ank = −1;

MPI Comm rank (MPI COMM WORLD, &rank) ;

/ / i n t n = 8;

i n t n = s t d : : s t o i (a rgv [argc − 1]) ;

Kokkos : : View<i n t **> check (” check ” , n , n) ;

Kokkos : : p a r a l l e l f o r (check . e x t e n t (0) ,

KOKKOS LAMBDA(i n t i) {

f o r (i n t j = 0 ; j<check . e x t e n t (1) ; j ++){

check (i , j) = (i +1) * (j +1) ;

/ / check (i , 1) = (i * i) +1;

/ / s t d : : c o u t << i << ” t h e n t r y : ” << check

[i] << s t d : : e n d l ;

}

}) ;

i f (r ank == 1) {

61

auto b e g i n = s t d : : ch rono : : s t e a d y c l o c k

: : now () ;

/ / MPI Send t i m e

MPI Kokkos Send<Kokkos : : View<i n t **> ,

i n t >(&check , check . s i z e () , MPI INT ,

0 , 0 , MPI COMM WORLD) ;

/ / Kokkos : : View< i n t **> A(”A s i d e ” , n , n)

;

MPI Kokkos Recv<Kokkos : : View<i n t **> ,

i n t >(&check , check . s i z e () , MPI INT ,

0 , 0 , MPI COMM WORLD) ;

auto end = s t d : : ch rono : : s t e a d y c l o c k : :

now () ;

s t d : : ch rono : : d u r a t i o n <double>

e l a p s e d s e c o n d s = end − b e g i n ;

s t d : : c o u t << ” Send Time Count : ” <<

e l a p s e d s e c o n d s . c o u n t () << s t d : : e n d l

;

}

e l s e {

auto b e g i n = s t d : : ch rono : : s t e a d y c l o c k

: : now () ;

/ / MPI Recv t i m e

/ / Kokkos : : View< i n t **> B(”B s i d e ” , n , n)

;

62

MPI Kokkos Recv<Kokkos : : View<i n t **> ,

i n t >(&check , check . s i z e () , MPI INT ,

1 , 0 , MPI COMM WORLD) ;

check (0 , 0) +=200;

MPI Kokkos Send<Kokkos : : View<i n t **> ,

i n t >(&check , check . s i z e () , MPI INT ,

1 , 0 , MPI COMM WORLD) ;

auto end = s t d : : ch rono : : s t e a d y c l o c k : :

now () ;

s t d : : ch rono : : d u r a t i o n <double>

e l a p s e d s e c o n d s = end − b e g i n ;

/ / s t d : : c o u t << ”Recv Time Count : ” <<

e l a p s e d s e c o n d s . c o u n t () << s t d : : e n d l

;

}

}

Kokkos : : f i n a l i z e () ;

M P I F i n a l i z e () ;

re turn e r r o r ;

}

B.4 Two Dimensional Old Bindings Kokkos Pingpong Test

i n c l u d e <mpicpp . h>

i n c l u d e <Kokkos Core . hpp>

i n c l u d e <i o s t r e a m >

i n c l u d e <chrono>

63

i n t main (i n t argc , char ** a rgv) {

i n t e r r o r = 0 ;

M P I I n i t (& argc , &argv) ;

Kokkos : : i n i t i a l i z e (a rgc , a rgv) ;

{

i n t r ank = −1;

MPI Comm rank (MPI COMM WORLD, &rank) ;

/ / i n t n = 8;

i n t n = s t d : : s t o i (a rgv [argc − 1]) ;

Kokkos : : View<i n t **> check (” check ” , n , n) ;

Kokkos : : p a r a l l e l f o r (check . e x t e n t (0) ,

KOKKOS LAMBDA(i n t i) {

f o r (i n t j = 0 ; j<check . e x t e n t (1) ; j ++){

check (i , j) = (i +1) * (j +1) ;

/ / check (i , 1) = (i * i) +1;

/ / s t d : : c o u t << i << ” t h e n t r y : ” << check

[i] << s t d : : e n d l ;

}

}) ;

i f (r ank == 1) {

auto b e g i n = s t d : : ch rono : : s t e a d y c l o c k

: : now () ;

/ / MPI Send t i m e

MPI Send (check . d a t a () , check . s i z e () ,

MPI INT , 0 , 0 , MPI COMM WORLD) ;

64

/ / Kokkos : : View< i n t **> A(”A s i d e ” , n , n)

;

/ / i n t * A = (i n t *) ma l l oc (check . s i z e ()

* s i z e o f (i n t)) ;

MPI Recv (check . d a t a () , check . s i z e () ,

MPI INT , 0 , 0 , MPI COMM WORLD,

MPI STATUS IGNORE) ;

/ / Kokkos : : View< i n t **> r a n k 1 c h e c k (A , n ,

n) ;

auto end = s t d : : ch rono : : s t e a d y c l o c k : :

now () ;

s t d : : ch rono : : d u r a t i o n <double>

e l a p s e d s e c o n d s = end − b e g i n ;

s t d : : c o u t << ” Send Time Count : ” <<

e l a p s e d s e c o n d s . c o u n t () << s t d : : e n d l

;

}

e l s e {

auto b e g i n = s t d : : ch rono : : s t e a d y c l o c k

: : now () ;

/ / MPI Recv t i m e

/ / Kokkos : : View< i n t **> B(”B s i d e ” , n , n)

;

/ / i n t * B = (i n t *) ma l l oc (check . s i z e ()

* s i z e o f (i n t)) ;

MPI Recv (check . d a t a () , check . s i z e () ,

MPI INT , 1 , 0 , MPI COMM WORLD,

MPI STATUS IGNORE) ;

65

check (0 , 0) +=200;

MPI Send (check . d a t a () , check . s i z e () ,

MPI INT , 1 , 0 , MPI COMM WORLD) ;

auto end = s t d : : ch rono : : s t e a d y c l o c k : :

now () ;

s t d : : ch rono : : d u r a t i o n <double>

e l a p s e d s e c o n d s = end − b e g i n ;

/ / s t d : : c o u t << ”Recv Time Count : ” <<

e l a p s e d s e c o n d s . c o u n t () << s t d : : e n d l

;

}

}

Kokkos : : f i n a l i z e () ;

M P I F i n a l i z e () ;

re turn e r r o r ;

}

B.5 Three Dimensional New Bindings Kokkos Pingpong Test

i n c l u d e <mpicpp . h>

i n c l u d e <Kokkos Core . hpp>

i n c l u d e <i o s t r e a m >

i n c l u d e <chrono>

i n t main (i n t argc , char ** a rgv) {

i n t e r r o r = 0 ;

66

M P I I n i t (& argc , &argv) ;

Kokkos : : i n i t i a l i z e (a rgc , a rgv) ;

{

i n t r ank = −1;

MPI Comm rank (MPI COMM WORLD, &rank) ;

/ / i n t n = 8;

i n t n = s t d : : s t o i (a rgv [argc − 1]) ;

Kokkos : : View<i n t ***> check (” check ” , n , n , n) ;

Kokkos : : p a r a l l e l f o r (check . e x t e n t (0) ,

KOKKOS LAMBDA(i n t i) {

f o r (i n t j = 0 ; j<check . e x t e n t (1) ; j ++){

f o r (i n t k = 0 ; k<check . e x t e n t (2) ; k ++){

check (i , j , k) = (i +1) * (j +1) * (k +1) ;

/ / check (i , 1) = (i * i) +1;

/ / s t d : : c o u t << i << ” t h e n t r y : ” << check

[i] << s t d : : e n d l ;

}}

}) ;

i f (r ank == 1) {

auto b e g i n = s t d : : ch rono : : s t e a d y c l o c k

: : now () ;

/ / MPI Send t i m e

MPI Kokkos Send<Kokkos : : View<i n t ***> ,

i n t >(&check , check . s i z e () , MPI INT ,

0 , 0 , MPI COMM WORLD) ;

67

MPI Kokkos Recv<Kokkos : : View<i n t ***> ,

i n t >(&check , check . s i z e () , MPI INT ,

0 , 0 , MPI COMM WORLD) ;

auto end = s t d : : ch rono : : s t e a d y c l o c k : :

now () ;

s t d : : ch rono : : d u r a t i o n <double>

e l a p s e d s e c o n d s = end − b e g i n ;

s t d : : c o u t << ” Send Time Count : ” <<

e l a p s e d s e c o n d s . c o u n t () << s t d : : e n d l

;

}

e l s e {

auto b e g i n = s t d : : ch rono : : s t e a d y c l o c k

: : now () ;

/ / MPI Recv t i m e

MPI Kokkos Recv<Kokkos : : View<i n t ***> ,

i n t >(&check , check . s i z e () , MPI INT ,

1 , 0 , MPI COMM WORLD) ;

check (0 , 0 , 0) +=200;

MPI Kokkos Send<Kokkos : : View<i n t ***> ,

i n t >(&check , check . s i z e () , MPI INT ,

1 , 0 , MPI COMM WORLD) ;

auto end = s t d : : ch rono : : s t e a d y c l o c k : :

now () ;

s t d : : ch rono : : d u r a t i o n <double>

e l a p s e d s e c o n d s = end − b e g i n ;

68

/ / s t d : : c o u t << ”Recv Time Count : ” <<

e l a p s e d s e c o n d s . c o u n t () << s t d : : e n d l

;

}

}

Kokkos : : f i n a l i z e () ;

M P I F i n a l i z e () ;

re turn e r r o r ;

}

B.6 Three Dimensional Old Bindings Kokkos Pingpong Test

i n c l u d e <mpicpp . h>

i n c l u d e <Kokkos Core . hpp>

i n c l u d e <i o s t r e a m >

i n c l u d e <chrono>

i n t main (i n t argc , char ** a rgv) {

i n t e r r o r = 0 ;

M P I I n i t (& argc , &argv) ;

Kokkos : : i n i t i a l i z e (a rgc , a rgv) ;

{

i n t r ank = −1;

MPI Comm rank (MPI COMM WORLD, &rank) ;

/ / i n t n = 8;

i n t n = s t d : : s t o i (a rgv [argc − 1]) ;

Kokkos : : View<i n t ***> check (” check ” , n , n , n) ;

69

Kokkos : : p a r a l l e l f o r (check . e x t e n t (0) ,

KOKKOS LAMBDA(i n t i) {

f o r (i n t j = 0 ; j<check . e x t e n t (1) ; j ++){

f o r (i n t k = 0 ; k<check . e x t e n t (2) ; k ++){

check (i , j , k) = (i +1) * (j +1) * (k +1) ;

}}

}) ;

i f (r ank == 1) {

auto b e g i n = s t d : : ch rono : : s t e a d y c l o c k

: : now () ;

/ / MPI Send t i m e

MPI Send (check . d a t a () , check . s i z e () ,

MPI INT , 0 , 0 , MPI COMM WORLD) ;

MPI Recv (check . d a t a () , check . s i z e () ,

MPI INT , 0 , 0 , MPI COMM WORLD,

MPI STATUS IGNORE) ;

auto end = s t d : : ch rono : : s t e a d y c l o c k : :

now () ;

s t d : : ch rono : : d u r a t i o n <double>

e l a p s e d s e c o n d s = end − b e g i n ;

s t d : : c o u t << ” Send Time Count : ” <<

e l a p s e d s e c o n d s . c o u n t () << s t d : : e n d l

;

}

e l s e {

auto b e g i n = s t d : : ch rono : : s t e a d y c l o c k

: : now () ;

70

/ / MPI Recv t i m e

MPI Recv (check . d a t a () , check . s i z e () ,

MPI INT , 1 , 0 , MPI COMM WORLD,

MPI STATUS IGNORE) ;

check (0 , 0 , 0) +=200;

MPI Send (check . d a t a () , check . s i z e () ,

MPI INT , 1 , 0 , MPI COMM WORLD) ;

auto end = s t d : : ch rono : : s t e a d y c l o c k : :

now () ;

s t d : : ch rono : : d u r a t i o n <double>

e l a p s e d s e c o n d s = end − b e g i n ;

/ / s t d : : c o u t << ”Recv Time Count : ” <<

e l a p s e d s e c o n d s . c o u n t () << s t d : : e n d l

;

}

}

Kokkos : : f i n a l i z e () ;

M P I F i n a l i z e () ;

re turn e r r o r ;

}

B.7 New Bindings Kokkos Broadcast Test

i n c l u d e <mpicpp . h>

i n c l u d e <Kokkos Core . hpp>

i n c l u d e <i o s t r e a m >

i n c l u d e <chrono>

71

i n t main (i n t argc , char ** a rgv) {

i n t e r r o r = 0 ;

M P I I n i t (& argc , &argv) ;

Kokkos : : i n i t i a l i z e (a rgc , a rgv) ;

{

i n t r ank = −1;

MPI Comm rank (MPI COMM WORLD, &rank) ;

i n t n = 5000 ;

Kokkos : : View<i n t *> check (” check ” , n) ;

i f (r ank == 0) {

Kokkos : : p a r a l l e l f o r (check . e x t e n t (0) ,

KOKKOS LAMBDA(i n t i) {

check (i) = i * i ;

}) ;

MPI Request r eq1 ;

}

f o r (i n t i =0 ; i <100; i ++){

M P I B a r r i e r (MPI COMM WORLD) ;

auto b e g i n = s t d : : ch rono : : s t e a d y c l o c k : : now () ;

MPI Kokkos Bcast<Kokkos : : View<i n t *> , i n t >(&

check , check . s i z e () , MPI INT , 0 ,

MPI COMM WORLD) ;

/ / t i m e

auto end = s t d : : ch rono : : s t e a d y c l o c k : : now () ;

/ / MPI Barr i e r (MPI COMM WORLD) ;

72

s t d : : ch rono : : d u r a t i o n <double> e l a p s e d s e c o n d s =

end − b e g i n ;

double l o c a l m a x v a l u e = e l a p s e d s e c o n d s . c o u n t

() ; / / end . c o u n t () −b e g i n . c o u n t () ;

double max time ;

MPI Al l r educe (& l o c a l m a x v a l u e , &max time , 1 ,

MPI DOUBLE , MPI MAX, MPI COMM WORLD) ;

i f (r ank == 0) {

s t d : : c o u t << ”Max Time : ” << max time <<

s t d : : e n d l ;

}

}

}

Kokkos : : f i n a l i z e () ;

M P I F i n a l i z e () ;

re turn e r r o r ;

}

B.8 Old Bindings Kokkos Broadcast Test

i n c l u d e <mpicpp . h>

i n c l u d e <Kokkos Core . hpp>

i n c l u d e <i o s t r e a m >

i n c l u d e <chrono>

i n t main (i n t argc , char ** a rgv) {

i n t e r r o r = 0 ;

73

M P I I n i t (& argc , &argv) ;

Kokkos : : i n i t i a l i z e (a rgc , a rgv) ;

{

i n t r ank = −1;

MPI Comm rank (MPI COMM WORLD, &rank) ;

i n t n = 5000 ;

Kokkos : : View<i n t *> check (” check ” , n) ;

i f (r ank == 0) {

Kokkos : : p a r a l l e l f o r (check . e x t e n t (0) ,

KOKKOS LAMBDA(i n t i) {

check (i) = i * i ;

}) ;

}

f o r (i n t i =0 ; i <100; i ++){

M P I B a r r i e r (MPI COMM WORLD) ;

auto b e g i n = s t d : : ch rono : : s t e a d y c l o c k : : now () ;

MPI Bcast (check . d a t a () , check . s i z e () , MPI INT ,

0 , MPI COMM WORLD) ;

/ / t i m e

auto end = s t d : : ch rono : : s t e a d y c l o c k : : now () ;

/ / MPI Barr i e r (MPI COMM WORLD) ;

s t d : : ch rono : : d u r a t i o n <double> e l a p s e d s e c o n d s =

end − b e g i n ;

double l o c a l m a x v a l u e = e l a p s e d s e c o n d s . c o u n t

() ;

double max time ;

MPI Al l r educe (& l o c a l m a x v a l u e , &max time , 1 ,

MPI DOUBLE , MPI MAX, MPI COMM WORLD) ;

74

i f (r ank == 0) {

s t d : : c o u t << ”Max Time : ” << max time <<

s t d : : e n d l ;

}

}

}

Kokkos : : f i n a l i z e () ;

M P I F i n a l i z e () ;

re turn e r r o r ;

}

75

VITA

Evan Drake Suggs was born in Chattanooga, TN to parents Tony Lee Suggs and Susan

Diane Brown. After graduating Sequatchie County High School, he attended the University of

Tennessee at Chattanooga and in May 2022 graduated magna cum laude with a Bachelor of Science

in Computer Science. He graduated with a Master’s of Science degree in Computer Science Data

Science From the University of Tennessee at Chattanooga in August 2023.

76

	Title
	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Problem Statement & Objectives
	1.4 Contributions
	1.5 Outline

	2 Literature Review
	2.1 MPI and ExaMPI
	2.1.1 MPI Standard

	2.2 The specifics of ExaMPI
	2.3 Kokkos, its data structures and model
	2.3.1 The View Data Structure
	2.3.2 View Syntax
	2.3.3 Memory Space
	2.3.4 Dispatch Operations

	2.4 Previous Kokkos+MPI versions
	2.5 Summary

	3 Methodology
	3.1 Requirements
	3.1.1 Layouts and Contiguous Views
	3.1.2 Binding Syntax and Setup

	3.2 Summary

	4 Implementation
	4.1 MPI Extension API Functions
	4.1.1 MPI_Kokkos_Get_Dims
	4.1.2 MPI_Kokkos_Send and MPI_Kokkos_Recv
	4.1.3 MPI_Kokkos_Isend and MPI_Kokkos_IRecv
	4.1.4 MPI_Kokkos_Bcast
	4.1.5 MPI_Kokkos_Allgather
	4.1.6 MPI_Kokkos_Recv_Dims
	4.1.7 MPI_Kokkos_Irecv_Dims

	4.2 Miscellaneous
	4.2.1 CMake and Binding Creation
	4.2.2 Templates

	5 Results
	5.1 Single-Dimension MPI_Send And MPI_Recv Tests
	5.2 Multi-Dimension Send And Recv Tests
	5.3 MPI_Kokkos_Broadcast Tests

	6 Conclusions
	6.1 Future Work

	BIBLIOGRAPHY
	A Kokkos/ExaMPI Binding code
	A Bindings Code
	A.1 MPI_Kokkos_Send
	A.2 MPI_Kokkos_Recv
	A.3 MPI_Kokkos_ISend
	A.4 MPI_Kokkos_Irecv
	A.5 MPI_Kokkos_Bcast
	A.6 MPI_Kokkos_Allgather
	A.7 MPI_Kokkos_Recv_Dims
	A.8 MPI_Kokkos_Irecv_Dims

	B Test Code
	B.1 New Bindings Kokkos Pingpong Test
	B.2 Old Method Kokkos Pingpong Test
	B.3 Two Dimensional New Bindings Kokkos Pingpong Test
	B.4 Two Dimensional Old Bindings Kokkos Pingpong Test
	B.5 Three Dimensional New Bindings Kokkos Pingpong Test
	B.6 Three Dimensional Old Bindings Kokkos Pingpong Test
	B.7 New Bindings Kokkos Broadcast Test
	B.8 Old Bindings Kokkos Broadcast Test

	VITA

