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ABSTRACT

This study extends the classical smallest enclosing circle problem in location science to

optimize healthcare communication hubs. Given a set of demand points and potential groups,

we identify the optimal number of subgroups to cover all points and the circle enclosing

them with minimum radius. The center of this circle serves as the communication hub

location, minimizing the distance between demand points and facilities subject to customer

demand. We develop a nonconvex-nonlinear optimization model and propose a quadratic

programming-based approximation algorithm to solve it. Tested on various hypothetical and

real scenarios, our model effectively reduces the facility setup cost and identifies the optimal

communication hub location.
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CHAPTER 1

INTRODUCTION

1.1. Literature Review

Optimization is essential to decision-making in every society. Many significant areas of

application in mathematical programming and control theory have benefited from its recent

advancements to solve practical problems and this trend is expected to continue. Mathemati-

cal optimization is the science of identifying the optimal solutions to mathematically defined

problems, which may represent models of physical reality or industrial and management

systems (Snyman et al., 2005). It is widely used across all branches of applied mathemat-

ics, including economics, engineering, medicine, and other scientific fields. The three major

components of the mathematical optimization model include the decision variables, objec-

tive functions, and constraints. Decision variables refer to the unknown quantities which are

to be calculated to represent the output of the optimization solution. Constraints are the

restrictions in the form of equations and inequalities on the variables used in optimization

problems. The objective function is the real-valued function that is to be maximized or

minimized subject to a set of constraints. Objective functions are always needed to solve

optimization problems. The two main approaches used in solving optimization problems are

the “exact approaches,” which ensure that an optimal solution will be discovered and the

“heuristic approaches,” which are used when exact techniques are too slow or fail to obtain

an exact answer (Hooker, 2015). It is preferable to use an exact optimization approach if
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it can find a solution to the optimization problem with an amount of work that increases

polynomially with the size of the problem (Hooker, 2015). Analytical, numerical, and other

optimization methods can be used to solve optimization problems. Analytical approaches

only apply to problems with a high level of structure and for which the objective function

can be determined with certainty. The numerical approach uses numerical techniques to

calculate an objective function’s maximum or minimum value. Examples of such numerical

methods include the simplex and interior point methods, which are used in solving linear

programming problems (LPs). The simplex method is a technique for finding the optimal

solution to LPs through the use of slack variables, tableaus, and pivot variables. This ap-

proach for solving LPs is proposed by George B. Dantzig in 1947 (Dantzig, 1990). In the

early 1960s, Anthony V. Fiacco and Garth P. McCormick pioneered the invention of the in-

terior point method to solve both linear and non-linear convex optimization problems, which

explores the interior of the feasible region in order to locate the optimal solution (Shanno,

2012) .

Before 1979, the simplex method was the main and most efficient approach to solving

LPs since it could solve very big LPs effectively (Rothlauf, 2011). For almost all important

real-world problems, the number of iterations needed to get to the best possible solution is

a small multiple of the problem’s dimension (n) when using the simplex method (Rothlauf,

2011). Lenid Khachian (Khachian, 1979) presented yet another approach to the interior

point method in 1979 which is a subset of non-linear methods. This method inscribes a

series of ellipsoids of decreasing volume in the viable region rather than searching across its

convex hull. The interior point method does not search on the convex hull but approaches the

optimal solution (which is a corner point) from within the feasible region (Khachian, 1979).
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However, the interior-point method in most cases performs better than the simplex methods

for larger problems when there is no available prior information about the optimal solution

(Beasley, 1996). In contrast, when prior information about an already obtained solution is

known, the simplex methods perform better than the interior-point methods (Beasley, 1996).

The branch and bound method for LPs with integer decision variables is another ap-

proach for solving optimization problems. This approach was introduced by Land and Doig

in 1960. Its first practical implementation was presented by Dakin in the year 1965 (Rothlauf,

2011). Branch-and-bound algorithms, which can be applied to non-linear problems, work by

recursively breaking down the original problem into smaller sub-problems (Rothlauf, 2011).

The fundamental concept behind these algorithms is to recursively partition a problem into

a set of sub-problems. Branching is the process of subsequently adding more constraints to

the initial problem, which may be depicted using hierarchical tree structures. This process

can be done in an iterative manner. The process of eliminating (also known as “killing” or

“fathoming”) sub-problems from the further examination is referred to as “bounding.” Sub-

problems that have been eliminated from consideration that are not further broken down

into sub-problems are not taken into account. If a bound is lower than an existing lower

bound, then the sub-problems are eliminated (maximization problem). Computationally de-

veloped algorithms are applied to solve complex problems in nonlinear optimization (convex

and non-convex), multi-objective programming, optimal control, discrete optimization, and

stochastic optimization among others.

In general, recognizing and identifying a problem, and building and solving models to

assess and put solutions into action are the standard processes in optimization. In operations

research, optimization is a critical tool for making effective decisions in a variety of fields,

3



including in the area of facility location. FLP seek to determine the optimal placement

of facilities in order to achieve specific objectives, such as reducing costs or maximizing

benefits. These problems involve finding the best location for facilities by considering a

range of factors, including transportation costs, availability of resources, and accessibility

for customers. FLP is a classical optimization problem that is used to find the optimal

solution for the ideal location of a warehouse and factories. The concept of FLP is used to

effectively reduce the cost of facility setup and to also cover demand points by the established

facilities to ensure the maximum satisfaction of customers.

FLP identifies the ideal location for a distribution center based on demands, costs,

and travel distances. The primary goal of any FLP is to strategically locate a set of facilities,

each of which serves a set of users so that a particular optimality criterion is satisfied. The

spatial decision problem of facility location and its demand allocations has been studied

widely with various real-world applications (Liao and Guo, 2008) which include emergency

response system management (Ehrgott, 2002), telecommunication network design (Liao and

Guo, 2008), power distribution system design (Haghifam and Shahabi, 2002), industrial

logistics (Ceselli and Righini, 2005) among others. Obtaining solutions to these facility

location problems and their related demand allocations must describe the coverage of each

facility and its respective location (Liao and Guo, 2008). Some common studies about FLP

include p−center problem (Suzuki and Drezner, 1996), the weber problem (Cooper and

Katz, 1981), regionally constrained p−median problem (Murray and Gerrard, 1997), the

capacitated single allocation hub location problem (Ernst and Krishnamoorthy, 1999), the

single source capacitated plant location problem (Dı́az and Fernández, 2002). As described

by Hsu et al. (1995), location models can be grouped into three categories namely the
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p−median models, p− center models, and covering models. The p−center model aims to

locate p−facilities and minimize the maximum distance between various demand points to

the closest facility (Hakimi, 1964). The minimax model minimizes the distance between sited

facilities to their farthest client for public facility design and emergency services management

like emergency medical services and fire protection (Love et al., 1988). The provision of a

specific amount of service coverage in response to demand is one of the most important goals

of covering models. Customers are considered to be covered if the distance between the

customer and the facility from which the customer receives service falls within a specified

effective range of the facility (Wei, 2008). Covering problems also can be described using the

smallest enclosing circle problem which aims to identify the circle with the least radius that

encompasses all of the other circles in a euclidean plane. General applications of covering

models and their specific reviews can be found in (ReVelle et al., 2002). Applications of

covering problems are vital in every domain of engineering and the applied sciences. In

most modeling situations, facilities and users are represented as points on a plane (ReVelle

et al., 2002). Hospitals, schools, supermarkets, rubbish dumps, and chemical plants are

examples of facilities that can be set up using covering problem analysis (Barahona and

Anbil, 2000). The set of users can either be continuous, meaning that they cover an area in

which every point is regarded to be a user, or discrete, meaning that it is made up of a finite

number of points (Pereira et al., 2015). The location of the facility is a critical factor in the

decisions made about logistics. Every day, a large number of businesses rely on quantitative

approaches to determine the optimal or most cost-effective approach to satisfying the needs

of their customers in terms of the provision of goods or services. In other instances, the

availability of the service may be contingent on the amount of time required to reach an
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existing facility or the distance traveled. Decision makers will therefore need to identify the

most advantageous site to set up facilities in order to fulfill the majority of the demand

(Adeleke and Olukanni, 2020). One of the most well-liked FLP is the covering models which

continue to hold a lot of appeal for research as a result of their applicability in real-world

life, particularly in the context of service and emergency facilities (Farahani et al., 2012).

FLP is very vital in planning and setting up emergency medical services to provide coverage

to a group of demand points under consideration.

Emergency medical services (EMS), is a network of medical professionals ready to

respond to medical emergencies. EMS is primarily concerned with the immediate medical

needs of a patient triggered in response to a life-threatening situation. The healthcare

industry has always had difficulties in allocating few resources to meet the unending demands

of its three primary goals: patient care, service excellence, and financial success. Decision-

makers in the healthcare sector are tasked with coming up with efficient means of allocating

limited resources in a way that is both equitable and maximizes society’s benefits. Within

healthcare systems, EMS performs a critical role in stabilizing and transporting critically

injured patients to hospitals. Call volume, traffic, infrastructure, and overhead are just some

of the variables that might have an impact on emergency medical services. The objective of

optimization strategies is to determine the optimal placement of emergency medical facilities

and to allocate ambulances to those facilities in order to increase the number of patients

who survive their injuries while minimizing the overall cost of the EMS system. Studies that

cover topics like the location set covering problem (Toregas et al., 1971), maximal covering

location problem (Church and ReVelle, 1974) among others seek to get the optimal locations

of facilities that can lead to improved performance and improvement of the EMS system.
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The stochastic and dynamic nature of EMS needs to be considered when modeling

the EMS system to see its real conditions. The study by Aboueljinane et al. (2013) discusses

a review of the various simulation models which are applied to emergency medical service

operations. The effectiveness of emergency medical services has been improved by the appli-

cation of a number of methodologies, including simulation, mathematical programming, and

models based on queuing theory. The study by Aboueljinane et al. (2013) primarily focuses

on computer simulation models which are used for analysis and improvement of EMS. Sim-

ulation is the process of designing and making a computerized model of a system to mimic

its operations or properties in order to learn more about how that system works under a

certain set of conditions (Aboueljinane et al., 2013). It is one of the most popular operations

research methodologies for analyzing complex systems like military deployment, telecom-

munications systems, logistical networks, manufacturing systems, and healthcare delivery

to spot opportunities for improvement and waste. Simulation has been utilized in numer-

ous healthcare-related studies, such as those examining capacity and hospital bed planning

(Holm et al., 2013), emergency room critical care situations, patient flow, and wait times

(Aboueljinane et al., 2013). Simulation has been proven to be useful in the field of EMS in

a variety of contexts due to its capacity to provide an in-depth description of the system

and to take into account a variety of different sources of uncertainty. This is in contrast

to other approaches, such as mathematical programming and queuing theory, which require

simplifying assumptions in order to obtain performance measure predictions. In the work

done by Henderson and Mason (2005), they employ simulation to explore potential improve-

ments to New York’s emergency ambulance service. Since then, several researchers have

developed simulation models to predict how potential future modifications to EMS would
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affect current operations. McCormack and Coates (2015) also describes a simulation model

that allows for the optimization of the allocation of ambulance fleets and the location of

base stations in order to enhance the number of patients who survive. It makes use of a

genetic algorithm (GA) in conjunction with an integrated EMS simulation model. Within

this model, multiple patient classes are described, and survival functions are utilized in or-

der to differentiate the required levels of service (McCormack and Coates, 2015). The aim

was to achieve the greatest possible increase in the overall anticipated survival probability

across all patient classifications. Models developed from the notion of set covering are used

in much of the research that has to be done on EMS facility location (Farahani et al., 2012).

These types of models attempt to locate EMS resources in such a way that they can cover a

collection of demand nodes. At its most basic level, a node is considered to be covered if an

EMS resource is within a certain distance from it or within a certain amount of time. The

early covering models neglected the stochastic nature of EMS systems and focused on solv-

ing the location problem using a static and deterministic approach (Farahani et al., 2012).

Since ambulances function as servers in a queuing system and are occasionally unavailable,

probabilistic models based on queuing theory have been created to account for this phe-

nomenon Bianchi and Church (1988). EMS is classified as an application to the hierarchical

hub covering facility location problems (Korani and Eydi, 2014). It is the goal of these hub

problems to decrease costs and establish an adequate condition in the distribution network

by identifying the location of service providers’ facilities at various levels and specifying the

directions in which they are linked (Korani and Eydi, 2014). Hub location problems (HLP)

consider hub placement and assign demand nods to newly constructed hub facilities.

Hubs are specialized facilities used in many-to-many distribution networks for switching,
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transshipping, and sorting. The HLP entails deciding where to put hubs and how to dis-

tribute demand nodes among them so that traffic can be efficiently routed from one origin

to a particular destination (Alumur and Kara, 2008). HLP is a relatively new extension of

classical facility location problems. Hub facilities consolidate flows rather than serving each

origin-destination pair individually in order to capitalize on the advantages of economies of

scale. During the hub process, flows that originate from the same source but are headed in

separate directions are merged with flows that originate from various sources but will end

up in the same place. Consolidation occurs between hubs and along the route from origin

to hub and hub to destination. Hub networks can be divided into two broad categories

classified as single allocation and multiple allocations. They are different in the way that

non-hub nodes are assigned to hubs. Each demand center’s incoming and outgoing traffic in

a single allocation model is directed to a single hub, while in a multiple allocation model,

demand centers may receive and send flow via numerous hubs. The telecommunications

industry is one of the earliest adopters of the hub network concept. However, this idea is

heavily utilized in logistical systems by the airline and postal industries. The concept of a

hub can now be applied to a wide variety of different domains, such as the shipping sector,

organizations that specialize in freight transportation, public transportation systems, and

message delivery networks (Farahani et al., 2013).

HLP is used to solve diverse problems by different researchers. Notable ones include

the hub location and routing problem (Aykin, 1995) where locations of hubs and the services

provided on the routes connecting demand points are established together. Rather than

calculating the total demand for the services as a whole, each flow from a single origin to

a number of different destination points is analyzed independently. Another application
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that can be discussed is the hierarchical-hub model for airline networks (Chou, 1990). This

model is significant because it does not call for an arbitrary number of hub facilities to

be built. The ideal number can be derived from within the system. In application to

health, HLP can be discussed when the question of how to provide medical care to a large

population within a certain radius is examined. An example of such a situation is analyzed

in the article which discusses the hub location problem during an epidemic outbreak with

emphasis on COVID-19 (Marmolejo-Saucedo and Rojas-Arce, 2020). It is very important

to provide access to essentials like food and water as well as medical supplies in a situation

where there is an outbreak of an epidemic. It is therefore vital to establish strategic storage

and distribution centers in order to guarantee and supply these products. These centers

must be able to interact with the projected demand locations in the event of emergencies.

For a network to function at its peak efficiency, key parameters including the number and

position of distribution and collecting centers, unloading sites, placement of demand centers,

and the choice of optimal distribution algorithms, must be defined. Hu and Zhao (2012)

offers a multi-objective programming model for the selection of emergency facilities and the

amounts of drugs to be transferred from the supply sources to the demand sites (Marmolejo-

Saucedo and Rojas-Arce, 2020). They extend the idea of multi-objective programming into

a stochastic model by utilizing genetic algorithms for its solution and incorporating the

study of system dynamics to describe the dynamic behavior of the refueling, reception, and

dispensing sources in the event of an anthrax attack. In their subsequent research, they

put forward a dynamic optimization model that includes variable replacement and transport

times and relies on heuristic methods to solve it (Liu and Zhao, 2012).
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Motivated by existing research in various works of literature, we are interested in

proposing a mathematical model to address the following research question. Suppose we are

provided a set of demand points and some potential groups of those demand points. How

do we identify a hub location and an optimal number of groups to cover all demand points

with a minimum radius centering the hub location? If we remove the condition of some

potential groups of those demand points, the problem can be reduced to a certain type of

p-center problem. Also, if we remove identifying a hub location goal, the problem can be

reduced to an excessively studied set covering problem. To our understanding based on the

review of several works of literature, no work has been done on simultaneously selecting the

best facilities to set up and also locating a communication hub in FLP. This thesis, there-

fore, aims to fill this research gap by selecting the best facilities to set up and also finding

a communication hub that works simultaneously with the selected facilities to supply the

health needs of the people. Reduction in the total number of facilities leads to efficient cost

minimization. We also consider the minimum radius of the communication hub in other

to minimize the total distance between the selected communities (demand points) and the

selected facilities. We assume that customers are also grouped to get service from potential

facility locations. Thus, the research goal is to find a compact shape that will provide a

maximum interior space including potential sites which minimize the maximum Euclidean

distance among potential sites and selected sites for satisfying customer demand. The best

compact shape is the circular shape. We will propose an extension to existing theories by

developing a new mathematical model and algorithm to solve both hypothetical and real-

world problems.
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The thesis is arranged as follows. In Chapter 2, we discuss the context and current

techniques for mathematical optimization. The various principles in linear programming,

non-linear programming, and convex optimization are defined, and we supplement our ex-

planations with diagrams showcasing convex and non-convex sets. Moreover, we examine

different optimality conditions. We introduced related facility location problems, the We-

ber problem, and the p-center problem briefly. In Chapter 3 of this thesis, we present an

overview of the optimization models and algorithms utilized in our research analysis. We not

only explore the formulation proposed by Xu et al. (2003), but also introduce a novel math-

ematical model that identifies optimal facility locations and minimizes communication hub

radii. To assess the effectiveness of our approach, we apply the algorithm to a hypothetical

test case and thoroughly analyze the resulting outcomes. In Chapter 4, we expand upon our

computational analyses by conducting additional hypothetical test cases and applying our

algorithms to a practical, real-world scenario in Dougherty County, Georgia, USA. Specif-

ically, we examine the county’s fire stations and health centers and evaluate the efficacy

of our algorithms in determining the optimal location for a communication hub with the

smallest feasible radius. Our findings shed light on the practical implications of our research

and provide valuable insights that can be used by stakeholders and decision-makers in the

field. Chapter 5 serves as the culminating chapter of our thesis, offering a comprehensive

summary and conclusion of our research findings. In addition, we outline potential areas for

future research and expansion of our work. The Appendix complements this discussion by

providing a detailed record of the codes utilized in our study, allowing for transparency and

reproducibility of our results.
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CHAPTER 2

Background And Existing Methods For Mathematical Optimization

In this chapter, we define notations and review basic concepts of mathematical opti-

mization. We also briefly review the various categories of mathematical optimization prob-

lems along with the solution approaches. Optimization problems are categorized into groups

based on the characteristics of the objective function and constraint functions.

2.1. Basic concepts and optimization models

Mathematical optimization can be defined as the process of minimizing or maximiz-

ing an objective function by finding the best available values across a set of inputs. The

three major components of an optimization model include the decision variables, objective

function, and constraints. Based on the variables in the objective function and constraint

function, optimization problems can be classified into continuous and discrete problems.

Any general optimization problem can either be minimized or maximized. Without loss of

generality, we consider minimization with non-negative decision variables to represent an

optimization problem as shown in the model (2.1a - 2.1c).

z = min f(x) (2.1a)

s.t. gi(x) ≤ bi for i = 1, . . . ,m (2.1b)
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x = (x1, x2, . . . , xn) ≥ 0 (2.1c)

where x = (x1 · · ·xn) ∈ Rn is an n−dimensional decision vector, f : Rn → R is the

objective function, gi(x) represent the constraint function for i = 1, . . . ,m, and bi represents

the various limits on the constraint for i = 1, . . . ,m.

Optimization problems also can be categorized into convex problems and nonconvex

programming problems. Convex problems consist of all linear programming problems and

nonlinear optimization problems which are convex while nonconvex programming problems

consist of optimization problems that do not meet conditions of convex optimization. In the

subsequent discussions, the basic definitions of linear and non-linear optimization, convex and

non-convex optimization, some linear models, and the formulation of optimization problems

will be explained.

2.2. Convex optimization

Convex optimization can be defined as an area in the field of mathematical optimiza-

tion that aims to minimize convex functions over convex sets or maximize concave functions

over convex sets. Referring to the generic model (2.1a - 2.1c), for convex optimization prob-

lems, the objective function f is a convex function, and the constraint functions gi are also

convex functions. The objective function is usually restricted with inequality and equality

constraints that show if the given set of optimal solutions achieved should lie within a range

or should exactly lie at a point. The convex optimization problems can be further categorized

as constrained convex optimization problems and unconstrained convex optimization prob-

lems. Unconstrained convex optimization is not subject to any convex constraints. Thus the
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convex function to be optimized does not have convex constraints in its restrictions as com-

pared to constrained convex optimization problems. Convex optimization problems can be

solved using different methods such as the projected gradient methods, interior point meth-

ods using convex conjugate gradients and barrier function, modified optimization methods,

and sequential convex programming among others. In practical applications, convex opti-

mization can be applied in diverse fields. Examples include the solving of facility location

problems which are used to optimize the use of resources within a facility. Scheduling flights

to finding various flight times which minimizes costs while maximizing the total number

of passengers. Routing phone calls for general network design problems. Logistics for the

transportation of commodities from a group of supplies to a group of end users. Inventory

management to minimize the total costs of ordering, holding, and shortage and also main-

taining stocks within a certain desired point. Some important concepts used in describing

convex optimization problems are briefly described below:

Lines and line segments: A line segment is a portion of a straight line bordered

by two unique endpoints and containing every point on the line between its endpoints. Let

y1 ̸= y2 represent points in Rn then points of the form x = θy1 + (1 − θ)y2 for θ ∈ R

represents the line that passes through y1 and y2. If θ = 0 then x = y2 and θ = 1 then

x = y1. The (closed) line segment between y1 and y2 corresponds to values of the parameter

θ that fall within the range of 0 to 1. If we let x = y2 + θ(y1−y2) then x is equal to the sum

of the base point y2 (which indicates that θ = 0) and the direction y1, y2 (which indicates

that y2 is pointing in the direction of y1) where the direction is scaled by the parameter θ.

Therefore, the value of θ indicates the percentage of the distance between y2 and y1 at which

15



point x can be found. The point x moves from y2 to y1 as θ increases from 0 to 1; for θ

values that are larger than 1, the point x is located on the line beyond y1 in the equation.

Convex sets: For convex sets, the subset contains the entire line segment that

connects any two points in it. It is a set that intersects every line into a single line segment.

The term “convex hull of A” refers to the intersection of all of the convex sets in euclidean

space that contain a particular subset denoted by the letter “A”. A set Q is said to be

convex if the line segment that connects any two points in the set Q lies somewhere within

Q. Thus for any a1, a2 ∈ Q and any θ where 0 ≤ θ ≤ 1 we will have θa1 + (1 − θ)a2 ∈ Q.

Each and every affine set is also convex due to the fact that it includes the complete line that

runs between any two different points that are included in it, as well as the line segment that

runs between those points. In Figure (2.1- 2.2) below, we show some examples of convex

and non-convex sets:

Strictly convexConvex Non-convex

Figure 2.1 Convex, strictly convex and non-convex sets
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a1

a2

Convex set

a1 a2

Non-convex set

Figure 2.2 Convex and non-convex sets

Convex functions: If the domain of a function is convex and satisfies the condition

2.2

h(θx + (1− θ)y) ≤ θh(x) + (1− θ)h(y) (2.2)

where x, y ∈ dom(h) and θ ∈ [0, 1] then the function can be classified as a convex function.

The line segment that geometrically connects (x, h(x)) to (y, h(y)) must be above the graph

of h. The function becomes strictly convex if the inequality is strict. Examples of convex

functions include quadratic form, least squares, quadratic-over-linear, and geometric mean

among others. Some convex functions in R and Rn includes exponential: eβx,∀β ∈ R,

powers of absolute value: |y|q, ∀ q ≥ 1, and affine: bTx+m,∀ b ∈ Rn, m ∈ R.

2.3. Optimality

An optimality criterion is a set of requirements that a function’s minimum value

must satisfy. Optimization techniques that aim to satisfy the optimality conditions by some

means (perhaps numerically) are commonly known as optimality criterion techniques (Arora,
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2004). To analyze the optimality condition for a convex optimization problem, we consider

the optimization problem below (2.3a-2.3b)

z = min f(x) (2.3a)

s.t. x ∈ Ω (2.3b)

where the function f : Rn −→ R is convex and differentiable, and Ω is convex. We consider

a point x as optimal if and only if x ∈ Ω and satisfies the condition below 2.4

∇f(x)T (y − x) ≥ 0, ∀ y ∈ Ω (2.4)

Thus, f is increased locally whenever we move towards any feasible y from x.

First-order conditions: Consider the gradient function h stated below 2.5

∇h(x) =

(
∂h

∂x1

,
∂h

∂x2

,
∂h

∂x3

, · · · , ∂h

∂xn

)
(2.5)

If the function exists for all x ∈ dom h and the domain is open then the function h is

differentiable. From the definition above, assume that h is differentiable, thus its gradient

can be found at some point in dom h which is open, then h is convex if and only if dom h

is convex and h(x) ≥ f(y) +∇h(y)T (x− y) holds for all x, y ∈ dom h.

Second-order conditions: Consider the function f given in 2.6. If the domain of the

function is open and the hessian exists ∀ x ∈ domf then the function is twice differentiable.

∇2f(x) ∈ Sn,∇2f(x)ij =
∂2f(x)

∂xi∂xj

i, j = 1, · · · , n. (2.6)
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From the above definition, the second-order condition for convexity can be explained as

follows. Suppose that f is twice differentiable thus its second derivative (∇2f) can be found

at each point in dom f , which is open, then the function f is convex if and only if the

domain function f is convex and the hessian of the function f is positive semidefinite.

2.4. Linear programming

Linear programming is a subset of convex optimization, also known as linear opti-

mization, is a technique for optimizing a mathematical model provided in (2.1a - 2.1c) which

obey a linear relationship for the objective function and constraint functions. In general, a

linear programming problem can be written as (2.7a- 2.7e):

min f(x) =c1x1 + c2x2 + c3x3 + · · ·+ cnxn (2.7a)

s.t. a11x1 + a12x2 + a13x3 + · · ·+ a1nxn ≤ b1 (2.7b)

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn ≤ b2 (2.7c)

...
...

... + · · ·+ ...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn ≤ bm (2.7d)

x1, x2, x3, . . . xn ≥ 0 (2.7e)

where f(x) = c1x1+c2x2+c3x3+· · ·+cnxn represents the objective function to minimized.The

coefficients of the objective function are denoted by c1, c2, c3, · · · , cn, while the restriction

on the objective function also known as the constraint is stated as
n∑

k=1

ajkxk ≤ bj where

ajk represent the coefficient of the various constraints for j = 1, · · · p and k = 1, · · ·n. The

nonnegativity constraint is represented as x1, x2, x3, xn ≥ 0.
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Linear programming is useful in operations research for modeling, formulating, and

solving real-world application problems with linear objective functions and linear constraints

together with continuous decision variables. Transportation, energy, telecommunications,

and manufacturing are examples of disciplines where linear programming can be imple-

mented. It has been effective for simulating a variety of planning, routing, assignment, and

design problems. The problems can be easily changed from one equivalent form to another

(minimization to maximization and vice versa) with some basic modifications. In the prac-

tical application of linear programming, most problems represent physical quantities and

are usually non-negative. The Simplex method and its variants, such as the dual-simplex

method, are successfully used in solving linear programs. This method is used through the

introduction of slack or surplus variables, pivot variables, and tableaus as a way of finding

the optimal solution to optimization problems. Having the problem in standard form is

essential because it provides a solid foundation for addressing optimization problems using

the simplex method and other approaches. While the exact number of arithmetic operations

used in solving linear programming problems cannot be determined, rigorous bounds can be

established on the number of operations required to solve a given problem to a particular

accuracy using the interior point method. The two most basic forms of linear program rep-

resentations are the standard form and the canonical form. A linear programming problem

is said to be in standard form if all variables are nonnegative and all constraints are equal-

ity constraints. The simplex method is applied in solving problems in their standard form.

Any linear program can be transformed to this form using slack or surplus variables. The

standard form of a linear program in the matrix form can be represented as in (2.8a - 2.8c).
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min f(x) = cTx (2.8a)

s.t. Ax = b (2.8b)

x ≥ 0 (2.8c)

where cT = (c1, c2, . . . , cn) ∈ Rn represents the transpose of the objective coefficients,

A = [aki] denotes the m × n matrix in Rm×n whose element in the ith row and kth column

is denoted by aki, b
T = (b1, b2, . . . , bm) ∈ Rm and xT = (x1, x2, . . . , xn) ∈ Rn.

2.5. Nonlinear programming

Nonlinear programming (NLP) refers to the process of finding solutions to an opti-

mization problem with some of the objective functions or constraints being nonlinear. In this

type of optimization problem, the feasible region is determined by the nonlinear constraints.

The standard form for a nonlinear optimization problem with both equality and inequality

constraints is given below (2.9a - 2.9d):

z = min f(x) (2.9a)

s.t. gi(x) = 0 for i = 1, . . . ,m (2.9b)

hj(x) ≤ 0 for j = 1, . . . , n (2.9c)

x = (x1, x2, . . . , xn) ≥ 0 (2.9d)

where x is a vector of decision variables, f(x) is the objective function to be minimized,

g(x) is a set of equality constraints that must be satisfied, and h(x) is a set of inequality
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constraints that must be satisfied. In this type of problem, either the objective function or

the constraints are nonlinear.

NLP algorithms can be categorized into two main groups: gradient-based methods

and derivative-free methods. Gradient-based methods rely on computing the gradient of the

objective function, which is the vector of its partial derivatives with respect to the decision

variables. Derivative-free methods, on the other hand, do not rely on gradient information

and can be useful when the gradient is difficult to compute. NLP has many real-world

applications, such as in finance, where it can be used to optimize investment portfolios, or in

engineering, where it can be used to optimize the design of complex systems such as aircraft

or automobiles. NLP can also be used in machine learning, where it can be used to train

models with nonlinear activation functions.

2.6. Least-squares problems

In regression analysis, the method of least squares is a commonly used methodology

for approximating the solution of overdetermined systems by the minimization of the sum

of squares of residuals produced by the solution of each equation. Least-squares problems

are defined as optimization problems whose objective function is represented by the sum of

squares but without a constraint. An example of a least square problem is stated in 2.10

below:

min f0(x) = ||Ax− b||22 =
k∑

i=1

(aTi x− bi)
2 (2.10)

where the total number of rows for A is represented by k ≥ n and aTi for M ∈ Rk×n. The

vector x ∈ Rn denotes the optimization variable.

It is trivial to recognize an optimization problem as a least-squares problem, provided that

the objective function is quadratic and that the corresponding quadratic form is positive
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semi-definite. Ordinary least squares and nonlinear least squares are the two classes within

which least square problems can be grouped. A problem can be classified as ordinary least

squares or nonlinear least squares based on the linearity of the residuals in all unknowns.

Iterative refinement is a common method for solving a nonlinear problem, as the system is

transformed into a linear approximation at each step. The linear least square can often be

seen in statistical regression analysis and can be used to fit data in a model if the idealized

value supplied by the model for any data point can be stated linearly in terms of the unknown

parameters of the model. In solving least squares problems, the solution can be reduced to

a set of linear equations in the form

(ATA)x = AT b.

Analytically, the solution for this system is simply written as

x = (ATA)−1AT b.

We have good techniques using software implementations for solving least-squares problems

with very high accuracy and reliability. Algorithms and software for solving least-squares

problems are reliable enough for embedded optimization. Existing methods for solving op-

timization least-squares problems are very effective and extremely reliable.

2.7. Global and local optimization

Local optimization refers to algorithms that are used to find the local optima. Thus,

it locates the best possible optimal solution for a particular region of the search space. The

main idea behind local optimization is to find a point that is locally optimal or get a point

that optimizes the objective function among feasible points that are near it but not assured

of having a lower objective value than all other feasible points. One disadvantage to the
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local optimization method is that it requires an initial guess for the optimization variable.

This initial guess can greatly affect the objective value of the local solution obtained since it

is very critical. This method involves experimenting with the choice of algorithm, adjusting

algorithm parameters, and finding a good enough initial guess when solving problems. Al-

gorithms that perform local searches iteratively make small modifications to each solution

in the search space until an optimal solution is identified or a certain amount of time has

elapsed. In machine learning and deep learning applications, local optimization is employed

to find solutions to complex problems. Using local optimization can boost the functional-

ity of a design generated using manual or other design processes in an engineering design

program.

The goal of global optimization is to identify the optimal solution for a set of (usually

nonlinear) models when several optimal solutions exist locally. The solution to nonlinear

models in many applied areas such as data analysis, financial planning, environmental man-

agement, risk management, and scientific modeling among others usually requires a global

search approach.

2.8. Related facility location problems-location science

Different kinds of FLP have been studied extensively in different articles Drezner

et al. (2002). The earliest one to be studied is the weber problem which aims to locate a

facility in the euclidean plane in order to minimize the sum of its (weighted) distances to the

locations of a given set of demand points X = {(x1, y1), (x2, y2), · · · , (xn, yn)} on the plane.

The p−center problem is also another form of FLP that aims to find the minimum coverage

distance such that all demands are covered. It is also called the minimax problem since it
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aims at minimizing the greatest possible distance between demand and the nearest facility.

In effect, the p−center problem is minimizing the maximum distance from any customer to

the nearest facility.

2.9. Weber location problem

The problem stated below is well-known in the continuous location theory. It is called

the Weber problem which is defined as (2.11a-2.11b)

min
x̄

ϕ(x̄) =
n∑

j=1

wj||x̄− x̄j|| (2.11a)

s.t. x̄ = (x, y) and x̄j = (xj, yj) (2.11b)

where the parameters wj represents the various weights that are known, x̄j represents points

in E2, and x̄ is to be determined (Cooper and Katz, 1981).

The problem stated above (2.11a-2.11b) is an unconstrained optimization where ϕ(x̄)

is a convex function. Newton-Raphson method and the weiszfeld algorithm are some ap-

proaches that have been used to find a solution to the weber problem (Cooper and Katz,

1981). Some of these approaches are found to be more effective than others.

2.10. P−center problem:

The main objective of the p-center problem is to arrange a certain number of facilities

(say p facilities) on a network in such a way as to reduce the greatest distance between a

demand point and the facility that is geographically closest to it. A p-center can therefore

be simply referred to as an approach that seeks to find a minimax solution that consists of a

collection of p points that minimize the greatest possible distance between a demand point
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and the point in the collection that is closest to the demand point. The p-center problem

in an area generalizes the euclidean p-center problem by requiring that the minimum-radius

circles centered at the p depot sites enclose the entire area, rather than only a finite collection

of demand points. It’s far more challenging than the discrete counterpart. The application

of this problem is most commonly used when deciding where to place emergency services

like ambulances, fire stations, and police stations.

The problem is referred to as the “vertex restricted p- center problem” when the

placement of the facilities is limited to the vertices of the network, however, if the facility’s

placement can be located anywhere on the network, we refer to such instances as the “abso-

lute p- center problem”. In some instances, it can be called a “capacitated p- center problem”.

This is when on the facilities, there are capacity restrictions where the demand nodes can

be distributed to the facilities using a single allocation strategy or multiple allocations Calık

(2013).

Given a finite set of demand points, the p− center problem is to find p depots to

minimize the maximum distance from any demand point to its respective nearest depot.

Specifically, given a set X = {(a1, b1), (a2, b2), . . . , (an, bn)} of demand points on the plane,

the problem is to find p points with coordinates {(s1, t1), (s2, t2), . . . , (sp, tp)} to minimize

max
1≤i≤n

min
1≤j≤p

{(ai − sj)
2 + (bi − tj)

2}.

The absolute center problem was first proposed by Hakimi (1964) for the purpose of

determining where a police station or a hospital should be situated so as to minimize the

maximum distance between the facility and a group of communities that are linked together

by a network of highways. The literature work of Hakimi (1964) described an analysis as

follows:
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Assume G = (Q,E) be a graph which has the node set Q = {q1, · · · , qn} and fj is

used to represent the weight of the node qj ∈ Q. Also, assume that lij is used to

represent the length for the edge {i, j} ∈ E that connects nodes qi and qj.

The goal of the absolute center problem is to locate a point x on the nodes such

that max
j=1,··· ,n

fjd(qj, x) is minimized, where d(qj, x) represent the length of the shortest

distance between node qj and point x.

When the problem is solved, then the optimal value that gives the results in the best

possible way is referred to as the absolute radius of graph G. If we restrict x to the nodes of

G, we will locate the center of the graph G, and the value that gives us the best results will

be the so-called radius of G. There is no guarantee that there is a unique “center of G.” In

other words, the radius is not necessarily equal to the absolute radius. The generalization

of the absolute center problem to the p-center problem is something that Hakimi (1965)

discusses in the conclusion of his subsequent research on median and covering problems.

If a set of m points in G known as Xm = {x1, · · · , xm} is provided, then the distance

d(Xm, qj) between Xm and node qj can be determined using the formula

min
i=1,··· ,m

d(xi, qj).

The objective of the p-center issue is to locate a set Xm of m points in G such that

the maximum value of

max
j=1,··· ,n

fjd(qj, Xm)

is minimized.

2.10.1. Approaches to analyzing the P−center problem: In this section, the var-

ious approaches or variants which are used in analyzing the p-center problem are discussed.
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Firstly, the absolute and vertex p−center problem will be discussed. Capacitated p−center

Problem as well as the discrete approach, will also be analyzed.

The absolute P−center problem : In this problem, the aim is to locate a set

Y ′ ⊂ G which has p number of points so that f(Y ′) ≤ f(Y ) where Y ⊂ G for any p

number of points. To get the optimal value of the absolute p-center problem, the condition

r′A = f(Y ′) = minY⊂G:|Y |=p f(Y ) must hold. Hakimi (1964) first developed and defined

the absolute p−center problem by using graphical methods and also using the idea of the

piecewise linearity of a function. A point on the edge (y), is considered an intersection

point in this problem if there exist two distinct vertices such that d(i, y) = d(y, j). Note

that i, j are considered as the two distinct vertices and the point y on the edge {t, h} ∈ E.

To find diy = dyj, the condition dit + dty = dyh + dhj or djt + dty = dyh + dhi must hold

where d(i, y) becomes the relative radius of y. According to Minieka (1970), Y ′ is an optimal

solution of the absolute p−center problem where Y ′ ⊂ (P ∪ N). There are no more than

O(n2) intersecting points on any one particular edge, and there are O(n2|E|) points over the

entire network. Given this, it is possible for us to suppose that the potential facilities at the

absolute p-center come from a finite collection (Calık, 2013). A more in-depth examination

than just enumerating the vertex set is required in order to solve the absolute center problem,

which necessitates an endless search through a continuous set of points on edges.

Vertex restricted P−center problem : The vertex-restricted p−center problem

was first proposed by Daskin (1997), however, he opts, instead to do a set-covering-based

bisection search within a region bounded by lower and upper bounds on r∗v that has already

been computed. This approach is enhanced by Daskin (2000), who solves a maximal covering

location problem using lagrangean relaxation, where the goal is to maximize the number of
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covered vertices inside a region of radius r, with a maximum of p open facilities allowed.

In this problem, the idea is to locate a set Y ′ ⊆ N which has p number of vertices so

that f(Y ′) ≤ f(Y ) where Y ⊆ N for any p number of vertices. In an approach to find

the optimal value of the vertex-restricted p− center problem, the condition r′V = f(Y ′) =

minY⊂Y :|N |=p f(Y ) must hold.

Capacitated P -center problem : Barilan et al. (1993) carried out the very first

research investigation on the capacitated p−center problem. They investigate the p-center

problem, which is the situation in which a facility can satisfy at most L demand nodes.

As a subset of the problem studied about the p−center, they coin the term “balanced p−

center problem” to describe situations in which every node requires exactly one unit but

every facility can produce a maximum of L units. A simplified version of this capacity

problem was also considered by Barilan et al. (1993) in which more than one center can

be placed and located on a node and this was referred to as a multi p-center problem.

Albareda-Sambola et al. (2010) also provides a solution approach to the capacitated p−

center problem. They use two auxiliary problems known as the maximum demand coverage

within a defined radius and minimal necessary centers within a fixed radius to derive lower

bounds from the lagrangean duals. By employing a binary search approach, their precise

algorithm not only resolves the second auxiliary problem but also chooses the radius value

that should be used to resolve this problem from the set of possible radius values. The lower

and higher boundaries that they obtain place restrictions on the range of possible radius

values. Let Bk represent the capacity node for k ∈ K and ci be the demand node where

i ∈ I. Then to get the effective capacity Aardal et al. (1995) of the node k ∈ K of the radius
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r, we use the condition

Br
k = min

Bk,
∑

k∈Ir(i)

ck


Discrete center problem: Locating one or more facilities on a network to service a

set of demand points at known locations is the focus of this class of problems. The goal is to

ensure that all demand points are serviced by the facility that are geographically closest to

them, while also minimizing the maximum distance between any two demand points and the

facilities servicing them. While the title suggests a finite number of demand points, there are

also continuous variants of center location problems that arise when the collection of demand

points to be served represents a continuous number of points on the network. Hakimi (1964)

first investigated the discrete center problem. This is a foundational publication in the sense

that it paved the way for an entirely new field of research that we now know as network

location as a result of its influence. In his research article, Hakimi (1964) discusses two issues

that he refers to as the absolute median problem and the absolute center problem. Both

of these issues assume that the weights are positive and that there are no addends. Both

problems require a continuous set of points to represent the edges of a network. Minimizing

the greatest possible distance between the facility and any vertex is the goal of the absolute

center problem, whereas minimizing the weighted total of such distances is the goal of the

absolute median problem.
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CHAPTER 3

OPTIMIZATION MODELS AND ALGORITHMS

In this section, we develop an optimization framework for identifying the best location

of a communication hub and circles such that all demand points are covered by at least one

circle such that the radius of the largest circle containing all selected circles is minimized.

3.1. Optimization models

The problem consists of m fixed demand points with the index set I = {1, 2, . . . ,m}

that should be covered by a collection of subsets of n potential facilities (hospitals) with the

index set J = {1, 2, . . . , n}. Assume that these subsets correspond with circles with given the

centers (aj, bj) ∈ R2 and radii rj (maximum distance from the center) for j ∈ J on the plane.

The objective of the optimization problem is to identify the optimal coordinates (x, y) ∈ R2

for a new landmark and a subset of circles, such that all m demand points are encompassed

by at least one circle. The goal is to minimize the radius of the largest circle that encloses

all selected circles while meeting the coverage requirements. In addition to decision variables

(x, y, R), the decision variable xj, j ∈ J is defined to indicate which polygon j is selected to

cover demand point i ∈ I.

xj =

{
1 if the circle with the center (aj, bj) is selected
0 otherwise.
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The problem can be formulated into a mixed integer nonlinear programming model

and the required distance R can be formulated by the optimization model provided by (3.1a-

3.1d).

MA(I, J) : minR (3.1a)

s.t.
∑
i∈Ji

xj ≥ 1, for all i ∈ I (3.1b)√
(aj − x)2 + (bj − y)2 + rj ≤ R + (1− xj)M, for all j ∈ J (3.1c)

x ≥ 0, y ≥ 0, xj ∈ {0, 1}, for all j ∈ J (3.1d)

The objective function (3.1a) minimizes the radius of the largest circle that contains

all selected polygons. Constraint (3.1b) serves as the coverage constraint. It allows respective

demand points to be covered by a selected circle and Constraint (3.1c) is used to minimize

the maximum distance from any demand point to its respective nearest polygon. Now,

considering (3.1c), if xj = 1 we obtain
√

(aj − x)2 + (bj − y)2 + rj ≤ R. This condition

ensures that all selected circles are included in the largest circle with the radius R. If xj = 0,

we just obtain r ≥ 0. Constraint (3.1d) provides the domains of decision variables x, y, xj

for j ∈ J , respectively.

We outline three algorithms to obtain a bound on R, respectively. We divide the

constraints (3.1c) into two sets of constraints. Assume that we partition the set of polygons

into two groups such that for all j ∈ J̄ , xj = 1 and for all j ∈ J \ J̄ , xj = 0. If we set xj = 1

then obtain
√

(aj − x)2 + (bj − y)2+ rj ≤ R. With this binary partition, we obtain two sets

of convex constraints and the following theoretical result.
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Theorem 3.1. Let x = (x1, x2, . . . , xn) be set to any binary assignment {0, 1}n. Then

the MINLP defined above is reduced to a convex optimization problem

Proof. Let J̄ = {j ∈ J : xj = 1}. The optimization model (3.1a-3.1d) can be repre-

sented as

f = minR (3.2a)

s.t.
√

(aj − x)2 + (bj − y)2 + rj ≤ R, for all j ∈ J̄ (3.2b)√
(aj − x)2 + (bj − y)2 + rj ≤ R +M, for all j ∈ J \ J̄ (3.2c)

x ≥ 0, y ≥ 0 (3.2d)

The right side of constraint (3.2b) and (3.2c) are convex functions of the variables

(x, y) ∈ R2 because each term
√

(aj − x)2 + (bj − y)2 = ||(x, y)− (aj, bj)||2 is convex due to

l2 norm. This yield the terms
√

(aj − x)2 + (bj − y)2 + rj and
√

(aj − x)2 + (bj − y)2 + rj

which are convex for j ∈ J̄ and j ∈ J \ J̄ . The epigraphs of constraint (3.2b) are given by

the sets {(xj, yj, R) : ||(x, y)− (aj, bj)||2 + rj ≤ R} for j ∈ J ⊆ R3. Similarly, the epigraphs

of constraint (3.2c) are given by the sets {(xj, yj, R) : ||(x, y)− (aj, bj)||2 + rj −M ≤ R} for

j ∈ J ⊆ R3. Therefore, the inequalities given in constraint (3.2b) and (3.2c) describe the

epigraph of the convex function for j ∈ J̄ and j ∈ J \ J̄ which are convex Boyd et al. (2004).

The intersection of convex sets forms a convex set. Hence the feasible region of the relaxed

problem forms a convex set on R3. We obtain a convex optimization problem by minimizing

a linear function R over the intersection of n convex sets. This completes the proof. □
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3.2. Computing an upper bound on R: SCP-allocate algorithm

We determine an assignment J̄ = {j ∈ J : xj = 1} satisfying the constraint∑
i∈Ji xj ≥ 1, for all i ∈ I. Such an assignment can be obtained by solving the classi-

cal SCP which is an optimization/search version of the set cover is NP-hard. Thus, our first

algorithm is constructed based on solving the classical SCP. We first solve the classical SCP

using the model (3.3a-3.3c)

fscp = min
∑
j∈J

xj (3.3a)

s.t.
∑
i∈Ji

xj ≥ 1, for all i ∈ I (3.3b)

xj ∈ {0, 1}, for all j ∈ J (3.3c)

We may solve the LP-relaxed version of the SCP in which the integrity gap of this

relaxation is at most logm. Hence, its relaxation gives a factor-logm approximation algo-

rithm for the minimum set cover problem when solving the exact version is computationally

challenging. Now we propose the iterative SCP-allocate algorithm for approximately solving

the MINLP.

Let x∗ be the optimal solution of the SCP. Let SE(x∗) = {j ∈ J : x∗
j = 1} and

NS(x∗) = {j ∈ J : x∗ = 0}. Then the set {J̄ , J \ J̄} partition the index set J . Let J̄ ⊆ J

denote the index set of the selected set to optimal solution x∗. With this binary assignment

{0, 1}n, we then define the model (3.4a-3.4c) using indices in J̄ .

fR = minR (3.4a)

s.t.

(√
(aj − x)2 + (bj − y)2 + rj

)
≤ R, for all j ∈ J̄ (3.4b)
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x ≥ 0, y ≥ 0 (3.4c)

The model is nonlinear model and a quadratic programming approach can be used

to find the upper bound R. This model can be solved globally using the solution approaches

described in (Xu et al., 2003). We review the complete solution approach proposed by (Xu

et al., 2003) below.

Formulation 1: First, we reformulate
√
(aj − x)2 + (bj − y)2 + rj ≤ R, for all j ∈ J̄

by the introduction of new auxiliary variables xj = aj −x, yj = bj −y, and zj = R−rj, j ∈ J̄

the model (3.4a-3.4c) is reformulated as (3.5b - 3.5e):

min R (3.5a)

s.t. xj + x = aj, j ∈ J̄ (3.5b)

yj + y = bj, j ∈ J̄ (3.5c)

zj + rj = R, j ∈ J̄ (3.5d)

zj ≥
√

x2
j + y2j , j ∈ J̄ (3.5e)

This problem can be solved using any global nonlinear solver such as Ipopt.

Formulation 2: Second, we use iterative means to solve a series of convex quadratic pro-

gramming problems to enable us to find the smallest enclosing circle. In order to accomplish

this, we will first construct a new variable θ and consider a fixed R ≥ max{rj, j ∈ J̄} for

the problem can be written as in model (3.6a-3.6b).

min θ (3.6a)
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s.t. (x− aj)
2 + (y − bj)

2 − θ ≤ (R− rj)
2, j ∈ J̄ (3.6b)

Let z = x2 + y2 − θ. We formulate model (3.6a-3.6b) as in model (3.7a-3.7b).

min x2 + y2 − z (3.7a)

s.t − 2ajx− 2bjy + z ≤ (R− rj)
2 − a2j − b2j , j ∈ J̄ . (3.7b)

The model (3.7a-3.7b) is a linearly constrained quadratic programming problem if R

is fixed and sufficiently large. We solve this model using the heuristic approach as described

below (steps I-III). Let ϵ be a very small number.

Step I: start with (x, y) = (0, 0) and then compute the value of R using

R = max
j∈J̄

{√
(aj − x)2 + (bj − y)2 + rj

}
Step II: solve the model (3.7a-3.7b) to find the values of x, y and z

Step III: if |x2 + y2 − z| ≤ ϵ, then stop, otherwise we will continue the computation

for R = max
j∈J̄

{√
(aj − x)2 + (bj − y)2 + rj

}
with new (x, y) and then proceed to

Step II.

We summarize our solution approaches in the following pseudocodes. We provide

three algorithms. SCP-allocate Algorithm 1 solves the model with Formulation 1, while

SCP-allocate Algorithm 2 solves the model with Formulation 2. The codes for these algo-

rithms are provided in Appendix 5.2. The implemented algorithms using Julia and Python

programming languages.

Algorithm 1 SCP-allocate Algorithm 1

1: Input: an instance of MA(I, J)
2: Step I: Initialization Solve SCP and identify initial potential locations J̄ = {j ∈ J : x∗

j = 1} ⊆ J
3: Step II: Obtain Upper Bound
4: Apply Formulation 1
5: Return: (R, x, y)
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The pseudocode in Algorithm 1 above explains the process involved in identifying the

best location for the communication hub and which facilities are to be opened in order to

minimize the radius of the enclosing circle but maximize the needs of the people. It also

shows the direct quadratic approach also known as the all-in-one (AIO) algorithm used to

obtain the center and minimum radius of the communication hub. Line 1 gives reference

to the model (3.3a-3.3c) applied in solving the test case. In Line 2, we input the coverage

matrix together with the objective function and constraint functions in the code. We then

apply the Mosek optimizer to solve the SCP. SCP can be solved with a linear solver which

ensures the selection of the best facilities j ∈ J to set up that covers all demand points

i ∈ I. In other to obtain the upper bound as shown in Line 3, we applied Formulation 1 in

Line 4 to get values for the center and minimum radius of the communication hub. Note

that any global nonlinear solver can be used in solving the problem. In this work, we used

the “Interior Point Optimizer” (Ipopt). Ipopt is a software package that is available under

an open-source license and is designed for large-scale nonlinear optimization. The goal of

the Ipopt algorithm is to discover a local solution to nonlinear problems using a filtering

mechanism that searches along interior point lines. Line 5 returns the values of x, y and R

Algorithm 2 SCP-allocate Algorithm 2

1: Input: an instance of MA(I, J), ϵ = 0.001
2: Step I: Initialization Solve SCP and identify initial potential locations J̄ = {j ∈ J : x∗

j = 1} ⊆ J
3: Step II: Obtain Upper Bound
4: Apply Formulation 2

5: Set (x, y) = (0, 0) and compute R = max
j∈J̄

{√
(aj − x)2 + (bj − y)2 + rj

}
6: while |x2 + y2 − z| ≤ ϵ do
7: Apply QP (J̄ , R) procedure to find new (x, y, z)

8: Compute R = max
j∈J̄

{√
(aj − x)2 + (bj − y)2 + rj

}
using new (x, y)

9: end while
10: Return: (R, x, y)
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The pseudocode in Algorithm 2 explains the iterative approach to finding the center

and minimum radius of the communication hub as proposed by Xu et al. (2003). Lines 1

and 2 solve the classical SCP to enable the selection of the best facilities to be opened for

the maximum satisfaction of customers as explained in Algorithm 1. Line 3 obtains the

upper bound by solving a series of convex quadratic programming problems using iterative

means as described in Formulation 2 in Line 4. Lines 5 to 10 further explain the idea behind

formulation 2. In Line 5, we set the initial values of (x, y) as (0, 0). We input the center and

radius of the selected facilities to be opened in our code together with the objective function

and constraints. We find the value of R by selecting the maximum distance between the

selected facilities and the initial (x, y). Note that on each iteration for finding the distance,

we add the corresponding radius of the circle before we select the maximum value as R. We

then solve the model (3.7a-3.7b) to find the optimal values of x, y and z. In Line 6, we test

a condition with respect to ϵ where ϵ is taken as 0.001. If the condition is met, the iteration

stops. If the condition is not met as shown in Lines 7 and 8, we run Formulation 2 again

using the new values of (x, y) obtained from the previous iteration. This continues until

the condition in Line 6 is met to end the iteration as shown in Line 9. Line 10 returns the

optimal values of R, x, y. where (x, y) and R show the center and minimum radius of the

communication hub.
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Algorithm 3 Dynamic Set Selection

1: Input: an instance of MA(I, J)
2: Step I: Initialization Find initial xj∗ with largest coverage. Let J̄ = {j∗}
3: Step II: Obtain Upper Bound
4: Set count = covered demand points by xj∗

5: Set (x, y) = (aj∗ , bj∗)
6: while count ̸= m do
7: find next best j∗ ∈ J \ J̄ that covers the highest uncovered demand points
8: if only one set is eligible update J̄ = J̄ ∪ j∗

9: if more than one set is eligible
10: apply QP (J̄ , R) procedure to find new (x, y, z) for each candidate

11: compute R = max
j∈J̄

{√
(aj − x)2 + (bj − y)2 + rj

}
using new (x, y) for each candidate

12: select the set that produces small R and update J̄ = J̄ ∪ j∗

13: update covered demand points
14: update count = count+covered demand points by new xj∗

15: end while
16: Return: (R, x, y)

The newly developed algorithm is displayed in Algorithm 3 above. From the al-

gorithm, Lines 1 and 2 explain the model that solves the classical SCP as explained in

Algorithm 1. It locates the best facilities to be opened and allows respective demand points

to be covered by the selected circles. This algorithm uses Ipopt to solve for the minimum

radius which represents the upper bound in Line 3. Lines 4 to 16 explain the iterative ap-

proach used in selecting facility j ∈ J that covers demand point i ∈ I. In Line 4, the circle

that covers the maximum number of demand points is selected. The center of the selected

circle (aj∗ , bj∗) is assigned to (x, y) as shown in Line 5 to illustrate the selection of the first

facility. Lines 6 to 9 represent the selection of the next best facility j ∈ J that covers the

highest uncovered demand point by the previously selected circle. If only one of the circles

covers a maximum number of demand points, that circle is selected as the next best facility

but if more than one set is eligible, we apply Lines 10 to 16 which illustrates the solving

of the quadratic approach as illustrated in Algorithm 2 using Ipopt to find the minimum
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radius of those circles to select the one with the smallest radius as the next best circle to be

selected. This process is repeated until all demand points are covered.

We demonstrate the application of Algorithms 1, 2 and 3 using a hypothetical test

problem. This test case consists of 15 different communities to represent our demand points

and 6 health facilities to set up. The aim of this experiment is to provide adequate health

coverage for 15 demand points using 6 health facilities. Circles are used to represent the

facilities with points within the circles to illustrate the various demand points used in this

experiment. The coordinates for the center of the circle and radius are shown in Table 1.

As shown below, we also give the x and y coordinates for the data set used to represent the

demand point in Table 2.

Table 1 Coordinates of centers and radius for circles in Figure 3.1a

x−cordinates 2.11 2.59 6.25 9.19 1.37 3.59
y−cordinates 8.78 8.60 5.57 1.19 7.49 5.55

radius 4.5 4.7 5 2 4 3

Table 2 Coordinates of the demand points in Figure 3.1a

x−cordinates 3.55 5.25 1.74 7.49 4.65 9.42 5.63 4.75 10.82 5.25 3.04 7.31 3.14 5.58 8.35
y−cordinates 5.53 5.78 10.94 5.27 1.88 8.69 10.59 5.40 6.32 1.40 12.81 8.53 4.17 8.17 1.80

For this test case, I = {1, 2, . . . , 15} and J = {1, 2, . . . , 6}. In order to select a

cost-effective subset of facilities to be opened at a given set of potential locations, we first

cover all demand points with the various circles. Demand points are considered covered

when facilities provide maximum coverage within a certain area closer to the service point.

We, therefore, generate a coverage matrix by considering facilities that serve demand points

within the shortest distance possible. Table 3 below shows the coverage matrix used for this
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experiment where the columns corresponding to H1−H6 denote the demand points that the

corresponding facility can cover. From the coverage matrix, 1 indicates if a facility located

in j ∈ J can cover a demand point i ∈ I; otherwise is 0. For example, demand point 3 can

be covered by facilities 1,2,5,6 but, not by facilities 3 and 4.

Table 3 Coverage matrix for the hypothetical test problem with m = 15
and n = 6

Facility Coverage
H1 H2 H3 H4 H5 H6

Coverage of demand point 1 1 1 1 0 1 1
Coverage of demand point 2 1 1 1 0 1 1
Coverage of demand point 3 1 1 0 0 1 1
Coverage of demand point 4 0 0 1 1 0 1
Coverage of demand point 5 0 0 1 1 0 1
Coverage of demand point 6 0 0 1 0 0 0
Coverage of demand point 7 1 1 0 0 0 0
Coverage of demand point 8 1 1 1 0 1 1
Coverage of demand point 9 0 0 1 0 0 0
Coverage of demand point 10 0 0 1 1 0 1
Coverage of demand point 11 1 1 0 0 0 0
Coverage of demand point 12 0 1 1 0 0 1
Coverage of demand point 13 1 1 1 0 1 1
Coverage of demand point 14 1 1 1 0 1 1
Coverage of demand point 15 0 0 1 1 0 0

The geographical illustration of this test problem is given in Figure 3.1a where all

15 communities are covered by the 6 health facilities (hospitals). Thus the problem consists

of nine decision variables (x1, x2, x3, x4, x5, x6, x, y, R). As described in Algorithm 1, we first

solve the SCP. The results obtained show that x1 = x3 = 1 and x2 = x4 = x5 = x6 = 0. Thus

J̄ = {1, 3} which illustrates the selection of Hospitals 1 and 3 to cover all demand points

while Hospitals 2, 4, 5, and 6 have not been selected. Formulation 1 (the direct quadratic

approach) is then applied using the selected circles to find the center and radius of the

communication hub. Algorithm 1 produces a radius of 7.3714 with center (4.3841, 7.0298).
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We also applied Algorithm 2 which uses Formulation 2 to solve the same test problem.

Algorithm 2 produces the radius of the communication hub and this also gives a radius of

7.3714 with center (4.3841, 7.0298). Thus the center and radius of the communication hub

using Algorithm 1 and Algorithm 2 produce the same results for this test case.

We similarly applied Algorithm 3 for this test problem. The main idea behind Al-

gorithm 3 is to first select the circle that covers the maximum number of demand points.

Circle 1 has been selected on the first iteration since it covers the maximum number of de-

mand points. The next circle that covers the maximum number of demand points is circle 3.

Algorithm 3, therefore, selects Circle 3 as the next best facility representation to set up. All

demand points were covered after the selection of Circles 1 and 3 which stops the algorithm

from further selections. This implies that 2 facilities were selected out of a total of 6 to supply

the needs of the various demand points. It, therefore, reduces the total cost of the facility

setup since every customer will equally have access to maximum health care through the 2

selected facilities instead of 6 facilities. We then applied Formulation 1 (the direct quadratic

approach) and Formulation 2 (iterative means) to find the center and radius of the commu-

nication hub. Both Formulations produced a radius of (7.3709) with center (4.3841, 7.0298)

for the communication hub. In comparing Algorithm 3 to Algorithms 1 and 2, it can be

observed that Algorithm 3 performs better in finding the radius of the communication hub

since it gives the smallest radius as compared to Algorithms 1 and 2. More hypothetical

test cases are explained in chapter 4 using Algorithm 3 to show its effectiveness in selecting

the best facilities that produce the minimum radius for the communication hub. The results

discussed above are depicted in Figure 3.1b showing the various hospitals selected that cover
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the 15 communities under study. The center and minimum radius for the communication

hub are summarized in Table 4.

Table 4 Center and radius of communication hub

Center (x, y) Radius (R)
Algorithm 1 (4.3841, 7.0298) (7.3714)
Algorithm 2 (4.3841, 7.0298) (7.3714)
Algorithm 3 (4.3841, 7.0298) (7.3709)

(a) Coverage of 6 facilities with 15 demand points

(b) A selection of 2 facilities selected out of 6

Figure 3.1: An illustration of facilities covering a set of demand points
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CHAPTER 4

COMPUTATIONAL WORK

Hypothetical Problems and Real Data Analysis using Geographic Information

Systems (GIS)

In this section, we first discuss the quality and effectiveness of Algorithm 3 using more

hypothetical problems. We also provide a table that compares Algorithm 3 to Algorithms

1 and 2. A real-world test scenario using GIS has also been discussed to effectively analyze

the importance of the various algorithms introduced in Chapter 3. For the hypothetical

problems, we considered 11 facilities with 50 demand points and 15 facilities with 100 demand

points in our discussion. We choose Dougherty County in Georgia as the study area for

the real test problem. Dougherty County, Georgia, has some characteristics regarding its

boundary shape and demand representation as discussed in section 4.2.

4.1. Model evaluation- on more hypothetical test problems

We discuss the effectiveness of algorithms using various hypothetical test cases in

this section. The test cases discussed include 11 circles with 50 demand points, 15 circles

with 100 demand points, and 10 circles with 50 demand points. As discussed previously, the

circles represent the various facilities to be opened while the demand points represent the

customers or communities that will be covered by the various facilities. Demand points are

44



covered when facilities are able to provide maximum service to supply their needs within a

short distance. The data set that represents the demand points for the 50 demand points

with 11 circles and 100 demand points with 15 circles is obtained from the literature work

of Canbolat and von Massow (2009). The centers of the circles were randomly generated

in Python using the inbuilt uniform random number generation function. The radius of

the circles was manually entered and increased to ensure all demand points are covered by

at least one circle. The data set that represents the demand points for the 10 circles and

50 demand points is randomly generated using Python. The center for the 10 circles was

obtained using an idea from the literature work of Liu (2022). The radius for this test case

was also entered manually and increased to ensure that all demand points are covered by

at least a circle. In generating the coverage matrix for the various test cases, we used 1

for demand points covered by a particular circle and 0 otherwise. The process involved in

selecting the best facilities to be opened and finding the communication hub for the various

test cases is described below.

We first consider the 11 circles with 50 demand point test case. We demonstrate

the use of Algorithm 3 using this test case. Algorithm 3 is used to find the best facilities

to be opened. As previously discussed, the main goal of Algorithm 3 is to select the best

facilities to be opened and allow respective demand points to be covered by the selected

circles. This is implemented by first selecting the circle that covers the maximum number

of demand points. It then selects the next best circle with the maximum coverage until all

demand points are covered. An illustration of this test case is shown in Figure 4.1. On

the first iteration, Algorithm 3 selects circle 3 since it has the maximum number of demand

coverage as shown in 4.2a. On the next iteration, circle 5 was selected followed by circle 9 to
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ensure the coverage of all demand points as shown in (4.2b-4.2c). The iteration stops since

all demand points are covered. This shows that 3 facilities were selected to provide service

to the 50 communities used in this experiment. The results produced for the minimum

radius and center of the communication hub are 40.9598 and (23.3924, 28.3349). As shown

in Figure (4.3a-4.3c), the communication hub covers all selected circles with demand points

effectively at a reduced distance between demand points and facilities. The reduction in the

total number of facilities based on our test case illustrates cost-effectiveness. We also use

Ipopt with Formulation 1 (Algorithm 1) and Formulation 2 (Algorithm 2) together with the

selected circles from the SCP to find the center and radius of the communication hub.

We also consider a similar analysis used for the 11 circles and 50 demand points test

for the 15 circles and 100 demand point test case as shown in Figure 4.4. From the results

produced, 3 circles were selected as shown in 4.5. The communication hub as shown in

Figure 4.6 has a radius of 42.8782 with a center of (15.1734, 33.3349). The star located in

the circle shows where the center of the communication hub can be located.

The results for more test problems are included in Table 5. We compare the results for the

hypothetical test cases discussed above using Algorithms 1 to 4 as summarized in Table 5.

In our observation with the test cases analyzed, Algorithm 3 works better than the other

algorithms since it produces the smallest minimum radius. Our newly developed algorithm

is, therefore, more effective in locating the best facilities to set up based on this analysis.

Further discussion for Table 5 is discussed as follows.

Table 5 below, shows the results of the number of circles selected, as well as the

radius and center for the communication hub from Algorithms 1, 2, 3 and 4. From the

table, n represents the total facilities, and m shows the total demand points. Considering
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problem 2 with 10 facilities and 25 demand points, the results produced by Algorithms 1

and 2 show a radius of 41.8685 and 45.9702. The radius for Algorithm 3 is 37.3539. For

problem, 5 with 20 facilities and 25 demand points, The radius produced for Algorithms 1

and 2 are 40.2546 and 41.3795 while Algorithm 3 produces a result of 34.388. Subsequent

results from Table 5 show that Algorithm 3 always produces a smaller radius as compared

to the other algorithms. This shows that the distance between demand points and selected

facilities is effectively minimized with the newly developed algorithm as compared to the

others. Algorithm 3, therefore, works better to find the minimum radius.

TABLE 5 Results of more hypothetical test cases

Algorithm 1 Algorithm 2 Algorithm 3 (Dynamic selection) All selected
Test Cases #circles R (x, y) Time (s) #x R (x, y) Time #x R (x, y) Time #x R (x, y) Time
Problem 1 2 7.3714 (4.3841,7.0298) 0.5319 2 7.3714 (4.3841,7.0298) 0.5319 2 7.3709 (4.38411,7.0298) 0.0803 6 8.4407 (4.8000, 5.9042) 0.1310
(n,m)=(6,15)
Problem 2 4 41.8685 (30.6000,19.6200) 0.1250 4 45.9702 (28.02746,20.8935) 0.3627 3 37.3539 (29.0809,19.2393) 0.1244 10 46.7459 (27.2466, 18.7470) 0.0690
(n,m)=(10,25)
Problem 3 4 41.7278 (24.5821,25.4136) 0.1580 4 43.0296 ( 36.9368,21.6637) 0.3456 4 39.8714 (26.0413,18.8307) 0.1406 10 75.1710 (49.9999,49.9999) 0.0839
(n,m)=(10,50)
Problem 4 3 44.3955 (21.6903,33.7499) 0.2650 3 44.3955 (21.6903,33.7499) 0.3706 3 40.9598 (23.3924,28.3349) 0.1992 11 53.0638 (37.0063, 37.3469) 0.14000
(n,m)=(11,50)
Problem 5 4 41.1066 (26.8690,27.8298) 0.2030 4 46.7449 (27.3982,18.9173) 0.2206 7 39.8714 (26.0413,18.8307) 0.1702 10 46.7459 (27.2466,18.7470) 0.1319
(n,m)=(10,100)
Problem 6 3 44.6503 (15.1734,33.3349) 0.4671 3 44.6503 (15.1734,33.3349) 0.3749 3 42.8782 (22.0175,32.7089) 0.1992 15 58.0638 (37.0063, 37.3469) 0.1849
(n,m)=(15,100)
Problem 7 3 40.2546 (30.9201, 36.5458) 0.0780 3 41.3795 (34.9719, 29.0329) 0.4883 4 34.388 (27.0506,23.7417) 0.1343 20 48.427 (26.2739,28.2879) 0.5367
(n,m)=(20,25)
Problem 8 4 40.7161 (26.5004, 27.8694) 0.1510 4 40.3998 (23.0827,19.3910) 0.2107 5 39.5973 (21.5515,30.4707) 0.1849 20 48.4274 (26.2739, 28.2879) 0.1879
(n,m)=(20,50)
Problem 9 4 44.6251 (18.3273,21.0272) 0.0460 4 44.62510 (18.3272,21.0271) 0.5489 5 42.5527 (24.4190, 32.5760) 0.0959 20 49.2395 (22.1753, 23.7359) 0.1309
(n,m)=(20,100)
Problem 10 11 34.4755 (23.9670, 27.6688) 0.1810 11 34.6124 (23.9470, 29.7689) 0.1895 7 31.3465 (25.5376, 32.5760) 0.0876 40 45.7886 (23.1875, 26.7550) 0.1429
(n,m)=(40,50)
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Figure 4.1: A set of clustered 50 demand points covered with 11 circles

(a) Iteration 1: first highest
density coverage circle

(b) Iteration 2: two highest
density coverage circles

(c) Iteration 3: three highest
density coverage circles

Figure 4.2: Order of circle selections with Algorithm 3 with m = 50 and
n = 11
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(a) First selected health facility with
communication hub

(b) First two selected circles with
communication hub

(c) Three selected circles with communication
hub

Figure 4.3: Final lay of produced by Algorithm 3 with m = 50 and n = 11

Figure 4.4: A set of clustered 100 demand points covered with 15 circles
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Figure 4.5: Order of circle selections where Algorithm 3 with m = 100 and
n = 15

Figure 4.6: Final lay of produced by Algorithm 3 with m = 100 and n = 15
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Using a similar analysis with Algorithm 3, we now consider the test case with 10 circles

and 50 demand points as shown in Figure 4.7. With this test case, we consider all facilities to

provide coverage to the various demand points. Thus all 10 facilities have been selected. The

center and radius for the communication hub are (49.9999, 49.9999) and 75.1710, respectively.

From Table 5, Algorithm 4 shows some test cases conducted with all facilities considered as

being selected. It can be observed that the radius of the communication hub for all test cases

in Algorithm 4 produced a higher value than all algorithms. It is therefore important for the

SCP model to be used to first select the best facilities to be opened in order to achieve the

smallest radius possible for the communication hub.

Figure 4.7: Communication hub covering 10 facilities with demand points
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4.2. Model evaluation- on real data test case from Dougherty county

Dougherty county can be located in the southwestern (SW) part of Georgia (USA).

According to the 2020 census, The SW part of Georgia has a total population of 496,433.

Dougherty County has a population of about 85,790 according to the 2020 census and can

be located in the city of Albany. The total area of the county according to the U.S. Census

Bureau is 335 square miles, thus (870km2). 329 square miles (850km2) of the total is land

and the remaining 5.9 square miles (15km2) or (1.8%) is covered by water. Figure (4.8a-

4.8b) displays the map of Dougherty county with 4.8a showing where the fire stations are

located on the map and 4.8b showing the locations of the health centers. Our aim is to

make an analysis with the application of FLP considering the highly populated areas in this

county such that all communities in this county that are located in the highly populated

areas have adequate access to health centers and fire stations within the shortest distance

and also obtaining a maximum coverage from this facilities.

Our application of the facility location problem extends to solving real-world problems

by studying demands from geographic information systems (GIS) in Dougherty county as

shown in figure (4.8a - 4.8b). Our aim is to maximize the demand coverage and get the

smallest radius that reduces the distance between the various facilities and demand points in

Dougherty county, Georgia. In our analysis, we assumed that demand will always be served

so far as it is within the highly populated area of the selected county under study. We,

therefore, applied our model to maximize the demand coverage by finding a communication

hub that provides additional coverage to some communities. We used circles to illustrate

the facilities to set up and considered a radius of 2km, 4km, and 6km for each circle in
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this analysis. The buffer tool in ArcGIS is used to draw the 2km, 4km, and 6km buffers

which cover all demand points, especially in highly populated areas. We give a geographical

representation as shown below in Figure (4.9a - 4.9c) for fire stations and Figure (4.9d -

4.9f) for health centers. Note that Figure 4.9 represents both the fire stations and the health

centers.

We applied various types of demand representations before conducting the sensitivity

analysis as we aim to find solutions to the computational complexities in representing demand

in GIS. To make an effective analysis, we used ArcGIS to visualize the various demand

representations and applied the buffer tool to draw the circles that covers the various demand

points. All analyses have been carried out using data from GIS for Dougherty county and

Julia programming language is used to compute the various models. The x and y coordinates

for the fire stations and health centers are shown in Tables 6 and 7. The coordinates were

obtained based on the positions of the fire and health centers on the map shown in Figures

(4.9a - 4.9c) and (4.9d - 4.9f). We manually generated the coverage matrix by allocating

1 to demand points covered by a particular circle and 0 otherwise. Note that the highly

populated area is highly considered in generating the coverage matrix. All rows of zeros

were removed using a code written in python.

TABLE 6 Data showing the GIS coordinates for health centers in
Dougherty county

x−cordinates 31.597 31.590 31.575 31.610 31.517

y−cordinates 84.163 84.158 84.105 84.218 84.115
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TABLE 7 The GIS coordinates for fire centers in Dougherty county

x−cordinates 31.576 31.581 31.598 31.517 31.563 31.552 31.586 31.510 31.533

y−cordinates 84.096 84.153 84.163 84.129 84.220 84.170 84.284 84.204 84.189

4.2.1. Demand representation in GIS:. Representing demand in GIS-based imple-

mentation requires the creation of demand objects, estimating the total demand for each of

these created demand objects, and showing a relationship of coverage between these demand

objects and potential service areas. In the literature work of Straitiff and Cromley (2010),

the most efficient way to cover a particular region using circles is to apply equilateral triangle

representation or polygon lattice-based representation. To create circular objects to cover all

demand areas for potential facility sites, the buffer tool is used to create circles to represent

the facilities. A hexagonal lattice is created with the center of the hexagons representing

the various demand points in the study area, the various service sites are overlaid with the

‘Identity’ overlay tool. Each polygonal record in the resulting overlay represents a demand

object and a prospective facility site whose service could accommodate that demand object.

Figure 4.10 shows the fire stations and health centers in Dougherty county with buffers of

2km, 4km, and 6km with hexagonal lattices. The circles in the figures show the various areas

of coverage in the county under study. The center of the hexagons within the coverage areas

has been labeled to represent the various demand points mostly in the highly populated

areas. The coverage matrix used for our analysis in this research is generated based on the

coverage areas for the fire stations and health centers as shown in Figure 4.10.
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(a) Dougherty county with 9 fire stations

(b) Dougherty county with 5 health centers

Figure 4.8: A map showing Dougherty county with fire stations and health
centers
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(a) Fire station with 2km buffer

(b) Fire station with 4km buffer

(c) Fire station with 6km buffer

(d) Health center with 2km buffer

(e) Health center with 4km buffer

(f) Health center with 6km buffer

Figure 4.9: Fire stations and Health centers in Dougherty county with
buffers
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(a) Fire station with 2km buffer and
hexagonal lattice

(b) Fire station with 4km buffer and
hexagonal lattice

(c) Fire station with 6km buffer and
hexagonal lattice

(d) Health center with 2km buffer and
hexagonal lattice

(e) Health center with 4km buffer and
hexagonal lattice

(f) Health center with 6km buffer and
hexagonal lattice

Figure 4.10: Fire stations and Health centers in Dougherty county with
hexagonal lattice’s
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4.2.2. Sensitivity Analysis: In this section, we discuss the output of the selected

facilities to be opened and the results obtained for the communication hub in the county

under study. We applied our algorithms for the 2km, 4km, and 6km buffer test cases for

both fire stations and health centers. Algorithms 1 and 3 are specifically applied for the

real-world application of the FLP since Algorithm 2 produce the same results as Algorithm

1 after computing the test cases discussed in this experiment. Note that the results for

Algorithm 1 in Table 8 and 9 are the same for Algorithm 2. A further discussion of the

output produced is given below.

Considering the fire stations, we first used the centers generated from the map as

discussed earlier with a 2km radius to cover all demand points, particularly at the highly

populated region of the map. Algorithm 1 is applied on this test case, the results produced

show that all 9 facilities were selected with the radius and center of the communication hub

obtained as 2.094 and (31.580, 84.189). Using Algorithm 3 for the 2km test case also, 9 cir-

cles were selected with a radius of 2.094 and center (31.580, 84.189) for the communication

hub. The communication hub gives additional coverage for some communities in the highly

populated areas. The geographical representation of the 2km test case with the communi-

cation hub is shown in Figure 4.11a. A similar analysis as described for the 2km test case

is used for the 4km and 6km test cases respectively and the results are shown in Table 8.

The geographical representation for 4km and 6km is shown in Figure (4.11b - 4.11c). From

Table 8, Ar,R, (x, y) and #cir represents the total percentage coverage for the circles, the

radius of the communication hub, the center of the communication hub, and the number of

facilities selected respectively.
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Considering the health centers, Algorithm 1 selects all 5 facilities for the 2km test case

with the radius and center of the communication hub obtained as 2.069 and (31.563, 84.166)

respectively. The average coverage is 2.704%. We further used Algorithm 3 for the 2km

test case and obtained 2.069 as the radius and (31.563, 84.166) as the center. The average

coverage with this algorithm is 2.704%. A similar analysis of Algorithms 1 and 3 is used

for the 4km and 6km test case. The results produced is shown in Table 9. A geographical

representation of the various buffers and the big buffer for the health centers is shown in

Figure (4.11d- 4.11f).
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(a) Fire station with 2km buffer

(b) Fire station with 4km buffer

(c) Fire station with 6km buffer

(d) Health center with 2km buffer

(e) Health center with 4km buffer

(f) Health center with 6km buffer

Figure 4.11: Fire stations and Health Centers in Dougherty county with
big buffer
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TABLE 8 Sensitivity analysis for fire centers in Dougherty county

r = 2 for Algorithm 1 r = 2 for Algorithm 3

#cir (x, y) R Ar #cir (x, y) R Ar

9 (31.580, 84.189) 2.094 4.339% 9 (31.580, 84.189) 2.094 4.339%

r = 4 for Algorithm 1 r = 4 for Algorithm 3

#cir (x, y) R Ar #cir (x, y) R Ar

7 (31.553, 84.156) 4.064 18.742% 7 (31.553, 84.156) 4.064 18.742%

r = 6 for Algorithm 1 r = 6 for Algorithm 3

#cir (x, y) R Ar #cir (x, y) R Ar

6 (31.553, 84.156) 6.064 29.056% 6 (31.569, 84.157) 6.062 29.056%

TABLE 9 Sensitivity analysis for health centers in Dougherty county

r = 2 for Algorithm 1 r = 2 for Algorithm 3

#cir (x, y) R Ar #cir (x, y) R Ar

5 (31.563, 84.166) 2.069 2.704% 5 (31.563, 84.166) 2.069 2.704%

r = 4 for Algorithm 1 r = 4 for Algorithm 3

#cir (x, y) R Ar #cir (x, y) R Ar

5 (31.563, 84.166) 4.069 11.509% 5 (31.563, 84.166) 4.069 11.509%

r = 6 for Algorithm 1 r = 6 for Algorithm 3

#cir (x, y) R Ar #cir (x, y) R Ar

4 (31.563, 84.166) 6.069 20.062% 5 (31.563, 84.166) 6.069 20.062%
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1. Overview and summary

In this study, we examined the practical application of FLP in solving some hypo-

thetical and real-world problems. Based on transportation costs, geographical demands, and

the cost of facility setup, the idea of FLP is used by decision-makers to find the best location

to set up a facility or warehouse. FLP can simply be defined as a place to set up facilities

for the production of goods and services. Nonetheless, we need to note that FLP is not

only important for companies when starting a business or when an existing business needs

to be expanded. It is also important for healthcare systems to provide adequate services for

various communities. Improper healthcare facility site selections have far-reaching effects on

the community beyond simple cost and service measures but can lead to a high increase in

morbidity and mortality rates. This highlights the importance of healthcare facility location

modeling over that of other sectors (Ahmadi-Javid et al., 2017). FLP is therefore important

because it provides cost benefits to organizations and identifies proximity to the sources of

raw materials and transportation facilities. It is significant to also realize the importance of

the hierarchical hub covering facility location problems in the distribution network in pro-

viding adequate services to customers. During the hub process, flows that originate from

the same source but are headed in separate directions are merged with flows that originate
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from various sources but will end up in the same place. Consolidation occurs between hubs

and along the route from origin to hub and hub to destination.

Therefore, this study provides a step-by-step approach to using different algorithms

for the best location of facilities and finding a communication hub that works with the

selected facilities to provide maximum service to the various demand points under study.

We validate our newly developed mathematical model based on the test cases provided in

this work and we observed that it works better than the other algorithms. We summarize

the various chapters as follows.

In Chapter 1, we provide the literature review on the various concepts used in this re-

search and also stated the motivation of our study. In Chapter 2, we discuss the background

and existing methods for mathematical optimization. We define the various concepts in

linear programming, non-linear programming, and convex optimization. We also provided

some diagrams to show convex and non-convex sets and explained the various optimality

conditions. This chapter also briefly discusses FLP, the Weber problem, and the p−center

problem. The various approaches used in analyzing the p−center problem include the abso-

lute p−center problem, vertex restricted p−center problem, capacitated p−center problem,

and discrete p−center problem. If the facilities can only be placed at the network’s vertices,

then the problem is known as the vertex-restricted p-center problem. The absolute p−center

problem occurs when facilities can be placed anywhere on the network. The goal of the

capacitated p-center problem is to assign demand points to facility centers by choosing p

locations such that the greatest distance between a demand point and its nearest center is

reduced. The discrete p−center problem also aims to locate a set of p− facilities so that
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demand points have the shortest possible travel times to the facilities that can best meet

their needs.

In Chapter 3, we introduced the optimization models and the various algorithms used

in making analysis in this research. We discussed the formulation as proposed by Xu et al.

(2003) and also introduced a newly developed mathematical model to find the best facilities

to set up and also get the minimum radius for our communication hub. We tested this

algorithm on a hypothetical test case and discussed the results. In Chapter 4, we did more

computational work. Thus, we further discussed more hypothetical test cases and applied

our algorithms to a practical real-world application using Dougherty county in Georgia,

USA as our case study. We considered the fire stations and health centers in this county

and discussed the effectiveness of our algorithms in locating the best place to set up the

communication hub using the minimum radius possible. Based on the various test cases

analyzed in this research, we concluded that our newly developed algorithm works better

than the already existing ones.

5.2. Future works

Moving forward, we will apply our algorithms to solve different test cases to verify

their effectiveness. We aim to compare the newly developed algorithm (Algorithm 3) to the

existing ones. We will do this by working on more hypothetical and real-world problems.

One of the major problems we encountered in this work is how to convert the radius of

the communication hub to a scale that will be accepted in ArcGIS for our real-world test

problems. We aim to find a solution to this challenge. We also aim to incorporate the cost

of the facility instead of uni-cost for all facilities and apply the multi-objective approach
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to minimize the radius and distance simultaneously. We will also develop a sub-gradient

algorithm using Lagrange dual function to solve the proposed model.

In collaborating with my supervisor, Dr. Lakmali Weerasena, we are aiming to pro-

duce a very high and advanced research paper to be submitted to top peer-reviewed Opera-

tions Research/Mathematical journals for publication. We aim to use different polygons to

represent our facilities and the communication hub and apply our algorithms to find optimal

locations to set up facilities that will supply all demand points.
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In this appendix, we provide the code used to implement the various algorithms

discussed in this thesis. The code is written and presented using Julia programming language,

which can be run using a Julia interpreter. The codes are designed to take input data in a

specific format and output the results of the algorithm in a structured format that can be

easily analyzed and interpreted. The various codes provided generate the coverage matrix,

select the best facilities to set up, and find the communication hub’s radius and center.

The code for Algorithm 3 which selects the best circles dynamically is also added in this

Appendix.

##In t h i s code , we con s id e r 10 f a c i l i t i e s with 25 customers .
The code runs to s e l e c t the best f a c i l i t i e s to s e t up that w i l l
cover a l l demand po in t s .

us ing JuMP
us ing Mosek
us ing MosekTools
model= Model (Mosek . Optimizer )
#Let parameter
m=25 # num customers
NumVar=10 # num ho s p i t a l s
Ob jCoe f f i c i en t =[1 1 1 1 1 1 1 1 1 1 ] # Object ive co−e f f i c i e n t r ep r e s en t i ng
the 10 d i f f e r e n t h o s p i t a l s

l en=50
us ing Random
Random . seed ! ( 1 234 )
us ing D i s t r i bu t i o n s
xc=rand (Uniform (1 , l en ) ,NumVar)
yc=rand (Uniform (1 , l en ) ,NumVar)

r= [20 , 20 , 20 , 20 ,20 , 20 , 20 , 20 , 20 , 20 ] # Radiuus o f c i r c l e

us ing De l imi t edF i l e s , CSV, DataFrames
dlm = readdlm (” coveragen10p25 . txt ”) ### COVERAGE MATRIX

###Declare the v a r i a b l e s###
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@var iable (model , x [ i =1:NumVar ] , Bin )

###Def ine the ob j e c t i v e func t i on###
@object ive (model , Min , sum( Ob jCoe f f i c i en t [ i ]∗ x [ i ] f o r i =1:NumVar) )

###Def ine your c on s t r a i n t s###

@constra int (model , cons t r [ i =1:m] , sum(dlm [ i , j ]∗ x [ j ] f o r j =1:NumVar)
>= 1)

##Showing and s o l v i n g the model##

@show model
p r i n t (model )
opt imize ! ( model )
@show te rm ina t i on s t a tu s (model )
@show pr ima l s t a tu s (model )
@show dua l s t a tu s (model )
@show ob j e c t i v e v a l u e (model )
f o r i in 1 :NumVar

p r i n t l n (”x [ $ i ] = ” , va lue (x [ i ] ) )
end

73



APPENDIX B

CODE FOR FINDING THE RADIUS AND CENTER OF THE COMMUNICATION
HUB

(THE HEURISTIC APPROACH)

74



## This code prov ide s the h e u r i s t i c approach used in f i nd i n g the cente r
and rad iu s o f the communication hub . The code c o n s i s t s o f 5 s e l e c t e d
f a c i l i t i e s that prov ide coverage f o r some demand po in t s .

us ing JuMP
import Juniper
import Ipopt
NumVar = 5

a = [ 4 6 . 8 9 , 18 .36 , 24 .81 , 14 .31 , 4 5 . 8 1 ] #x−co rd ina t e s o f s e l e c t e d c i r c l e
b = [ 3 4 . 2 1 , 34 .21 , 15 .03 , 5 . 03 , 1 7 . 2 3 ] #y−co rd ina t e s o f s e l e c t e d c i r c l e
r = [ 20 , 20 , 20 , 20 , 20 ] #Radius o f s e l e c t e d c i r c l e s

func t i on i nn e r l o op ( R)

model = Model (
o p t im i z e r w i t h a t t r i b u t e s (

Juniper . Optimizer ,
” n l s o l v e r ” => op t im i z e r w i t h a t t r i b u t e s (

Ipopt . Optimizer ,
MOI. S i l e n t ( ) => true ,

) ,
) ,

)

@var iable (model , x >= 0)
@var iable (model , y >= 0)
@var iable (model , z >= 0)

@object ive (model , Min , xˆ2 + yˆ2 − z )
@constra int (

model ,
[ i in 1 :NumVar ] ,
−2 ∗ x ∗ a [ i ] − 2 ∗ b [ i ] ∗ y + z <= (R − r [ i ] ) ˆ 2 − a [ i ] ˆ2 − b [ i ] ˆ 2 )

#pr in t (model )
opt imize ! ( model )

r e turn value (x ) , va lue (y ) , va lue ( z )
end
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f unc t i on main ( )
count=0;
x , y , z , R = 0 . 0 , 0 . 0 , In f , 0
whi l e abs (xˆ2 + yˆ2 − z ) >= 0.01

R = 0.0 ### Added t h i s l i n e
f o r i in 1 : l ength ( a )

R = max(R, sq r t ( ( a [ i ] − x )ˆ2 + (b [ i ] − y )ˆ2) + r [ i ] )
end
x , y , z = inne r l o op (R)
count=count+1;
@show( count )
p r i n t l n (”The abs value i s : abs (xˆ2+yˆ2−z ) = ” , abs (xˆ2+yˆ2−z ) )

end
@show(x )
@show(y )
@show(R)

end
main ( )
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## This code i s used to f i nd the rad iu s and cente r o f the communication
hub us ing the d i r e c t method a l s o known as the a l l−in−one approach .
The code c o n s i s t s o f 4 s e l e c t e d f a c i l i t i e s used to cover 25 demand po in t s .

us ing JuMP
import Juniper
import Ipopt

a = [ 4 6 . 8 9 , 18 .36 , 24 .81 , 14 .31 , 4 5 . 8 1 ] #x−co rd ina t e s o f s e l e c t e d c i r c l e
b = [ 3 4 . 2 1 , 34 .21 , 15 .03 , 5 . 03 , 1 7 . 2 3 ] #y−co rd ina t e s o f s e l e c t e d c i r c l e
r = [ 20 , 20 , 20 , 20 , 20 ] #Radius o f s e l e c t e d c i r c l e s
NumVar = s i z e ( r ) [ 1 ] [ 1 ]

f unc t i on solveAiO ( )

model = Model (
o p t im i z e r w i t h a t t r i b u t e s (

Juniper . Optimizer ,
” n l s o l v e r ” => op t im i z e r w i t h a t t r i b u t e s (

Ipopt . Optimizer ,
MOI. S i l e n t ( ) => true ,

) ,
) ,

)

@var iable (model , X)
@var iable (model , Y)
@var iable (model , R >= 0)

@var iable (model , x [ i in 1 :NumVar ] )
@var iable (model , y [ i in 1 :NumVar ] )
@var iable (model , z [ i in 1 :NumVar ] >= 0)

@object ive (model , Min , R)
@constra int ( model , xeq [ i in 1 :NumVar ] , x [ i ] + X == a [ i ] )
@constra int ( model , yeq [ i in 1 :NumVar ] , y [ i ] + Y == b [ i ] )
@constra int ( model , zeq [ i in 1 :NumVar ] , z [ i ] + r [ i ] == R)

@constra int ( model , xyz [ i in 1 :NumVar ] , x [ i ] ˆ2 + y [ i ] ˆ2 <= z [ i ] ˆ 2 )
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#pr in t (model )
opt imize ! ( model )

r e turn value (X) , va lue (Y) , va lue (R)
end

func t i on main ( )
X, Y, R = solveAiO ( )
@show(X)
@show(Y)
@show(R)

end
main ( )
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## This code i s used to s e l e c t the best f a c i l i t i e s to s e t up dynamical ly .

us ing JuMP
import Juniper
import Ipopt

NumVar=10
l en=50
us ing Random
Random . seed ! ( 1 0 0 )
us ing D i s t r i bu t i o n s
a1=rand (Uniform (1 , l en ) ,NumVar) # X−co rd ina t e s o f C i r c l e
b1=rand (Uniform (1 , l en ) ,NumVar) # Y−co rd ina t e s o f C i r c l e
p r i n t ( a1 , b1 )

r1= [20 , 20 , 20 , 20 ,20 , 20 , 20 , 20 , 20 , 20 ] # Radiuus o f c i r c l e

us ing De l imi t edF i l e s , CSV, DataFrames
A = readdlm (” coveragen10p25 . txt ”)

m, n=s i z e (A)
CoveredItems=ze ro s ( Int64 ,m)
Coverage=ze ro s ( Int64 , n)
f o r i in 1 : n

sumval=sum(A[ : , i ] )
Coverage [ i ]=sumval

end
p r i n t l n (” I n t i a l Coverage i s ” , Coverage )
S e l e c t edSo l u t i on=ze ro s ( Int64 , n)
maxval , maxpos=findmax ( Coverage )
I n i t i a lB a r J=Vector{ Int64 } ( )
I n i t i a lR=Vector{ Int64 } ( )

f o r q in 1 : n
i f (maxval==Coverage [ q ] )
push ! ( I n i t i a lBa rJ , q )
push ! ( I n i t i a lR , r1 [ q ] )
end

end
p r i n t l n (” I n i t i a l B a r i s ” , I n i t i a lB a r J )
p r i n t l n (” I n i t i a lR i s ” , I n i t i a lR )
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count=maxval

i f ( l ength ( I n i t i a lB a r J )==1)
CoveredItems=A[ : , maxpos ]
S e l e c t edSo l u t i on [ maxpos]=1

Se l e c t edSe t=maxpos
p r i n t l n (” I n i t i a l Set ” , maxpos )
p r i n t l n (” I n i t i a l Cover ” , CoveredItems )

e l s e
minR , minRpos=findmin ( I n i t i a lR )
CoveredItems=A[ : , I n i t i a lB a r J [ minRpos ] ]
S e l e c t edSo l u t i on [ I n i t i a lB a r J [ minRpos ] ]=1
p r i n t l n (” I n i t i a l Set ” , I n i t i a lB a r J [ minRpos ] )
p r i n t l n (” I n i t i a l Cover ” , CoveredItems )
Se l e c t edSe t=In i t i a lB a r J [ minRpos ]

end
#Step I I
UncoveredItems=ze ro s ( Int64 ,m)
f o r i in 1 :m

i f ( CoveredItems [ i ]==0)
UncoveredItems [ i ]=1

e l s e
A[ i , : ] .= 0

end
end
A # pr in t A f o r check ing

p r i n t l n (” I n i t i a l So lu t i on i s ” , S e l e c t edSo l u t i on )

p r i n t l n (A)
a = Vector{Float64 } ( )
b = Vector{Float64 } ( )
r = Vector{Float64 } ( )
push ! ( a , a1 [ S e l e c t edSe t ] )
push ! ( b , b1 [ S e l e c t edSe t ] )
push ! ( r , r1 [ S e l e c t edSe t ] )
p r i n t l n ( a )
p r i n t l n (b)
p r i n t l n ( r )
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BarJ = Vector{ Int64 } ( )
push ! ( BarJ , S e l e c t edSe t )
p r i n t l n (”BarJ ” , BarJ )

func t i on main ( )
#f o r p in 1 :m

whi le count<m
fo r i in 1 :m

i f ( CoveredItems [ i ]==0)
Poss ib leR = Vector{Float64 } ( )
BarJ = Vector{ Int64 } ( )
IndiCover= Vector{ Int64 } ( )
IndiCoverSet = Vector{ Int64 } ( )
f o r p in 1 : n

i f (A[ i , p]==1 && Se l e c t edSo l u t i on [ p]==0)
push ! ( IndiCover , sum(A[ : , p ] ) )
push ! ( IndiCoverSet , p )

end
end
p r i n t l n (” IndiCover i s ” , IndiCover )
p r i n t l n (” IndiCoverSet i s ” , IndiCoverSet )

# p r i n t l n (” check ing po int ”)
maxcover , maxcoverset=findmax ( IndiCover )
p r i n t l n ( findmax ( IndiCover ) )
uniquebar=Vector{ Int64 } ( )
f o r q in 1 : l ength ( IndiCover )

i f (maxcover==IndiCover [ q ] )
push ! ( uniquebar , IndiCoverSet [ q ] )

end
end
p r i n t l n (” uniquebar i s ” , uniquebar )
p r i n t l n (” l ength ( IndiCover ) i s ” , l ength ( IndiCover ) )
i f ( l ength ( IndiCover )==1)

push ! ( a , a1 [ uniquebar [ 1 ] ] )
push ! ( b , b1 [ uniquebar [ 1 ] ] )
push ! ( r , r1 [ uniquebar [ 1 ] ] )
p r i n t l n ( a )
p r i n t l n (b)
p r i n t l n ( r )
S e l e c t edSo l u t i on [ uniquebar [ 1 ] ]=1
R,X,Y=solveAiO (a , b , r , sum( Se l e c t edSo l u t i on ) )
p r i n t l n (R)
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p r i n t l n (X)
p r i n t l n (Y)

f o r r in 1 :m
i f (A[ r , uniquebar [1] ]==1 && CoveredItems [ r ]==0)
CoveredItems [ r ]=1;
A[ r , : ] .=0

#ze ro s (1 ,m) ;
end

end
p r i n t l n (” So lu t i on i s ” , S e l e c t edSo l u t i on )
p r i n t l n (” Updated A ” , A)
#break

e l s e
f o r j in 1 : l ength ( uniquebar )

S e l e c t edSo l u t i on [ uniquebar [ j ] ]=1
NumVar=sum( Se l e c t edSo l u t i on )
p r i n t l n (NumVar)
push ! ( a , a1 [ uniquebar [ j ] ] )
push ! ( b , b1 [ uniquebar [ j ] ] )
push ! ( r , r1 [ uniquebar [ j ] ] )
p r i n t l n ( a )
p r i n t l n (b)
p r i n t l n ( r )
R,X,Y=solveAiO (a , b , r ,NumVar )
p r i n t l n (R)
p r i n t l n (X)
p r i n t l n (Y)

push ! ( PossibleR , R)
push ! ( BarJ , uniquebar [ j ] )
S e l e c t edSo l u t i on [ uniquebar [ j ] ]=0
d e l e t e a t ! ( a ,NumVar)
d e l e t e a t ! ( b ,NumVar)
d e l e t e a t ! ( r ,NumVar)
p r i n t l n ( a )
p r i n t l n (b)
p r i n t l n ( r )

end

p r i n t l n (” Poss ib leR ” , Poss ib leR )
BestR , BestPos=findmin ( Poss ib leR ) ;
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p r i n t l n (” BestPos ” , BestPos )
p r i n t l n (”BarJ ” ,BarJ )
BestSet=BarJ [ BestPos ]
p r i n t l n ( BestSet )

S e l e c t edSo l u t i on [ BestSet ]=1
push ! ( a , a1 [ BestSet ] )
push ! ( b , b1 [ BestSet ] )
push ! ( r , r1 [ BestSet ] )
p r i n t l n ( a )
p r i n t l n (b)
p r i n t l n ( r )

f o r k in 1 :m
i f (A[ k , BestSet ]==1 && CoveredItems [ k]==0)
CoveredItems [ k ]=1;
A[ k , : ] . = 0 ;
end

end
end

end

end
p r i n t l n (” CoveredItems ” , CoveredItems )
p r i n t l n (” S e l e c t edSo l u t i on ” , S e l e c t edSo l u t i on )
count=sum( CoveredItems )
p r i n t l n (” count ” , count )
i f ( count==m)

break
end

end #BigForLoop/whi l e loop ends

end # f i l e Ends

func t i on solveAiO (a , b , r ,NumVar )

model = Model (
o p t im i z e r w i t h a t t r i b u t e s (

Juniper . Optimizer ,
” n l s o l v e r ” => op t im i z e r w i t h a t t r i b u t e s (
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Ipopt . Optimizer ,
MOI. S i l e n t ( ) => true ,

) ,
) ,

)

@var iable (model , X)
@var iable (model , Y)
@var iable (model , R >= 0)

@var iable (model , x [ i in 1 :NumVar ] )
@var iable (model , y [ i in 1 :NumVar ] )
@var iable (model , z [ i in 1 :NumVar ] >= 0)

@object ive (model , Min , R)
@constra int ( model , xeq [ i in 1 :NumVar ] , x [ i ] + X == a [ i ] )
@constra int ( model , yeq [ i in 1 :NumVar ] , y [ i ] + Y == b [ i ] )

@constra int ( model , zeq [ i in 1 :NumVar ] , z [ i ] + r [ i ] == R)

@constra int ( model , xyz [ i in 1 :NumVar ] , x [ i ] ˆ2 + y [ i ] ˆ2 >= z [ i ] ˆ 2 )

#@show model

#pr in t (model )
opt imize ! ( model )
p r i n t l n (” Poss ib leR ” ,R)
p r i n t l n (” Poss ib leX ” ,X)
p r i n t l n (” Poss ib leY ” ,Y)
@show(R)
@show(X)
@show(Y)
re turn value (R) , va lue (X) , va lue (Y)

end

main ( )
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## This code i s used in gene ra t ing the coverage matrix . I t c o n s i s t s
o f 20 f a c i l i t i e s with 50 demand po in t s where we cons ide r ed a rad iu s o f 20 .

a=[19 .7 , 30 . 2 , 44 . 3 , 1 . 7 , 43 . 3 , 13 . 0 , 2 . 6 , 11 . 8 , 15 . 0 , 28 . 1 , 19 . 2 , 45 . 6 ,
21 . 9 , 48 . 8 , 49 . 6 , 47 . 6 , 35 . 5 , 48 . 7 , 15 . 7 , 18 . 2 , 4 . 6 , 4 . 1 , 24 . 9 , 19 . 3 , 3 . 0 ,
1 . 2 , 5 . 9 , 39 . 0 , 40 . 6 , 5 . 2 , 38 . 1 , 9 . 5 , 28 . 1 , 28 . 2 , 48 . 5 , 26 . 9 , 40 . 5 , 9 . 7 ,
6 . 6 , 38 . 3 , 49 . 3 , 45 . 3 , 25 . 5 , 25 . 0 , 2 . 9 , 33 . 9 , 29 . 6 , 44 . 7 , 10 . 8 , 1 7 . 4 ]

b=[5 .9 , 45 . 1 , 48 . 0 , 21 . 0 , 7 . 8 , 3 . 2 , 9 . 0 , 1 . 8 , 17 . 8 , 18 . 5 , 18 . 4 , 23 . 8 , 15 . 9 ,
40 . 5 , 13 . 6 , 3 . 6 , 41 . 0 , 23 . 8 , 37 . 8 , 39 . 0 , 10 . 7 , 18 . 6 , 26 . 0 , 49 . 3 , 12 . 3 , 46 . 4 ,
13 . 6 , 34 . 3 , 36 . 5 , 7 . 5 , 31 . 7 , 20 . 8 , 35 . 9 , 9 . 9 , 34 . 7 , 40 . 0 , 13 . 8 , 43 . 5 , 3 . 9 ,
37 . 2 , 46 . 4 , 27 . 7 , 34 . 1 , 8 . 1 , 40 . 0 , 36 . 9 , 8 . 5 , 19 . 5 , 11 . 1 , 1 6 . 9 ]

n=20
m=50
r=20
l en=50
us ing Random
Random . seed ! ( 4 5 )
us ing D i s t r i bu t i o n s
xs=rand (Uniform (1 , l en ) , n )
ys=rand (Uniform (1 , l en ) , n )
p r i n t ( xs , ys )

func t i on d i s t anc e ( xs , ys , a , b , n ,m, r )
# n = length ( xs )
# m = length ( a )

coverage = ze ro s (m, n) # c r ea t e the matrix and f i l l i t with z e ro s
f o r j in 1 : n

f o r i in 1 :m
i f s q r t ( ( xs [ j ]−a [ i ] ) ˆ 2 + ( ys [ j ]−b [ i ] ) ˆ 2 ) <= r

coverage [ i , j ] = 1
@show i j coverage

end
end

end
return coverage

end
coverage=d i s t anc e ( xs , ys , a , b , n ,m, r )

#Print the coverage matrix as a text f i l e
#import ing the module
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us ing De l im i t edF i l e s
writedlm (” coveragen20p50 . txt ” , coverage )
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