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Abstract

Impressive progress in vehicle control technologies has equipped modern vehicles with

advanced driver assistance and stability control systems to help the driver handle unfa-

vorable driving conditions. These control systems rely on sensor measurements and/or

information estimated based on these measurements to generate control commands for

vehicle actuators. Therefore, any failure in sensors and actuators can degrade the perfor-

mance of these control systems and cause instability in vehicle operation. Sensor failures

make the control systems generate undesired control commands and actuator failures pre-

vent desired control commands from being applied. To achieve safe and satisfactory vehicle

operation, a real-time health monitoring system is crucial for vehicle sensors and actuators.

The reliability of health monitoring is determined by its sensitivity to faults and robustness

to disturbances. A reliable health monitoring system is responsible for timely detecting the

occurrence of a fault in the target vehicle, accurately identifying the source of the fault,

and properly determining the type and magnitude of the fault. This information is crucial

for reconstructing sensor data or scaling actuator output, which ultimately could result in

a fault-tolerant vehicle system.

This thesis proposes a hybrid model/data fault detection and diagnosis system to mon-

itor the health status of any sensor or actuator in a vehicle. The proposed approach

works based on residuals generated by comparing sensor measurements or control inputs

with their estimations. The estimations are obtained by a hybrid estimator that is de-

veloped based on the integration of model-based and data-driven estimators to leverage

their strengths. Due to the poor performance of data-driven estimators in unknown condi-

tions, a self-updating dataset is proposed to learn new cases. Estimation based on updated

datasets necessitates the use of data-driven estimators that do not require any pre-training.

As case studies, the proposed hybrid fault detection and diagnosis system is applied to a

vehicle’s lateral acceleration sensor and traction motor. The experimental results show

that the hybrid estimator outperforms the model-based and data-driven estimators used

individually. These results also confirm that the proposed hybrid fault detection and di-

agnosis system can detect the faults in the target sensor or actuator, and then reconstruct

the healthy value of the faulty sensor or find the failure level of the faulty actuator.
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For cases where a set of sensors and actuators should be monitored to evaluate their

health status, this thesis develops a general data-driven health monitoring system to de-

tect, isolate, and quantify faults in these components. This method checks the coherency

among the target vehicle’s variables by using the vehicle’s data. The coherency among

the vehicle variables means that the variables reflect the physical principles governing the

target vehicle’s motion and the causality between its states. Each variable corresponds to

a component in the vehicle. When a fault occurs in one of the vehicle’s components, the

coherency among the variables is no longer valid. This idea is incorporated to detect faults.

After fault detection, to isolate the faulty component, the developed system explores the

coherency in the subsets of the vehicle’s variables to find which variable is not coherent

with others. Once the faulty component is determined, the health monitoring system uses

the remaining healthy components to reconstruct the true value of the faulty sensor or find

the failure level of the faulty actuator. The experimental results show that the developed

health monitoring system appropriately detects, isolates, and quantifies faults in the test

vehicle’s sensors and actuators.

The developed data-driven health monitoring system requires a pre-collected dataset

for each vehicle to monitor the health status of its sensors and actuators. To relax this

requirement, this thesis proposes a universal health monitoring system for the vehicle IMU

sensor (measuring the longitudinal/lateral accelerations and yaw rate) by involving vehicle

parameters in the health monitoring process. The proposed universal health monitoring

system is able to monitor the health status of the target vehicle’s IMU sensor using the other

vehicles’ data. The performance of the universal health monitoring system is evaluated by

simulations. The simulation results are in line with what is expected.
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Chapter 1

Introduction

1.1 Motivations

As the complexity of vehicles increases, they are more susceptible to various faults, some of

which may have life-threatening consequences [1]. Therefore, health monitoring is crucial

to prevent these disastrous consequences and provide added safety to vehicle operations.

Vehicles, similar to any other mechatronic system, work based on two main processes:

sensing and acting. In the sensing process, different sensors are applied to measure some

of vehicle states, and in the acting process, actuators apply the control actions to vehi-

cles [2]. Sensors and actuators are two of the main sources of faults in vehicles. If a

sensor becomes faulty, controllers generate control actions based on wrong measurements,

and if an actuator becomes faulty, desired control actions are not applied properly. In

autonomous vehicles, since there is no human to monitor the system, the importance of

health monitoring becomes more obvious.

Fault Detection and Diagnosis (FDD) generally works based on information redun-

dancy. One method to achieve information redundancy is analytical redundancy utilizing

the correlations among system variables that can be either expressed by a mathematical

model in an explicit form or implicitly through input-output data. Model-based and data-

driven approaches are two of the main classes of FDD methods. Each class has its own
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advantages and disadvantages. In model-based methods, since only limited information is

needed to detect and diagnose a fault, their computational cost is low. This fact makes

them applicable for real-time applications. In addition, these methods can detect and di-

agnose unknown faults. However, model-based FDD methods require an explicit model for

the target system and the accuracy of the model affects the performance of such methods.

Unlike model-based methods, data-driven approaches do not require an explicit model of

the system. Instead, they need a significant amount of high-fidelity data in all opera-

tional states of the vehicle making them costly. The performance of data-based methods

is dependent on the training data, and they do not have the ability to detect unknown

faults [3, 4]. To tackle the disadvantages and to gain the advantages of both methods,

hybrid FDD approaches are being developed. These approaches, made by the integration

of two or more fault diagnosis methods, can outperform each working individually.

1.2 Objectives

The main objective of this research is to develop a reliable health monitoring system for

vehicle sensors and actuators. This objective entails the development of fault detection,

fault isolation, and fault reconstruction tasks. The fault detection system is responsible for

determining whether there is any fault in the vehicle. After the fault is detected, the fault

isolation system localizes the source of the fault. Finally, the fault quantification system

determines the type and magnitude of the fault that can be used to reconstruct sensor

data or find the level of actuator failure.

2



Figure 1.1: The general scheme of a health monitoring system’s contribution to a vehicle

system.

Fig. 1.1 illustrates how a reliable health monitoring system works with a vehicle control

system. The ultimate goal of the health monitoring system is to provide fault-free sensory

information for the vehicle control system in the event of sensor failure and/or adjust con-

trol commands to achieve desired actuator output in case of actuator failure. The proposed

health monitoring system is made of fault detection, isolation, and quantification systems.

Using analytical redundancy provided by sensor measurements and control commands,

the fault detection system always searches for anomalies in the target vehicle. If there is

no fault in the system, the vehicle control system receives the sensor measurements and

the vehicle receives control commands without any changes. If the fault detection system
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notifies that a fault occurs in the vehicle, the fault isolation system specifies the faulty

component. If the faulty component is a sensor, the fault quantification system quantifies

the fault and reconstructs the healthy value of that sensor. In this condition, the vehicle

control system receives the reconstructed measurements of the faulty sensor instead of its

faulty measurements. If the faulty component is an actuator, the fault quantification sys-

tem determines the type and magnitude of the fault to find the failure level of the faulty

actuator. In partial failures when the faulty actuator provides a portion of control com-

mands, the desired actuator output may be achieved by scaling the corresponding control

commands.

Furthermore, this research attempts to accomplish its objective using common sensors

and actuators in commercial vehicles without the availability of prior knowledge of pa-

rameters such as road friction coefficient and road bank/grade angles. Hence, the health

monitoring systems developed in this research can be applied to real-world applications.

1.3 Thesis Outline

A literature review on relevant fault detection and diagnosis methods with a focus on

sensor and actuator fault detection is presented in the second chapter. These methods are

categorized into three classes: model-based, data-driven, and hybrid methods.

In the third chapter, a reliable hybrid model/data fault detection and diagnosis system

is developed for any vehicle sensor and actuator. This system works based on information

redundancy provided by a hybrid estimator operating by the integration of a model-based

observer with a data-driven estimator. For sensor fault detection, the fault detection and

diagnosis system compares the sensor measurements with their estimations provided by the

hybrid estimator. For actuator fault detection, this system compares the desired control

actions determined by vehicle controllers or a driver with the estimations of actuator output

obtained by the hybrid estimator. After fault detection, the estimations of the hybrid

estimator are used to reconstruct sensor data or find the level of actuator failure. To

evaluate the performance of the proposed hybrid fault detection and diagnosis system,

it is applied to a vehicle’s lateral acceleration sensor and traction motor. The results
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of experimental tests conducted on an all-wheel-drive vehicle validate that the proposed

system can successfully detect and quantify faults in the target component.

Chapter four proposes a general data-driven health monitoring system for a set of

vehicles’ sensors and actuators. The proposed health monitoring system generally works

based on the coherency among a vehicle’s variables including its sensors’ measurements

and actuators’ actions. The performance of this system is evaluated through experimental

tests conducted on an electric all-wheel-drive vehicle. The results of these tests validate

that the proposed health monitoring system can successfully detect, isolate, and quantify

faults in vehicles’ sensors and actuators.

Chapter five focuses on adding universality to the data-driven health monitoring system

developed in Chapter four. Universality in the health monitoring application provides an

opportunity to monitor the health status of a vehicle by using the other vehicles’ data.

Therefore, vehicle parameters should participate in the health monitoring process, and the

governing equations of motion at the vehicle CG are used to find how it should be done.

The performance of the proposed system is evaluated by CarSim simulations with six

high-fidelity vehicle models. In these simulations, the universal health monitoring system

monitors the health status of the IMU sensor in a vehicle by using the pre-collected data of

the five other vehicles. The simulation results show that the universal health monitoring

system for an IMU sensor is achieved with some limitations.
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Chapter 2

Literature Review

2.1 Introduction

Automotive systems work based on measurements provided by sensors and control actions

generated by actuators to achieve control goals. Any failure in sensors and actuators

adversely affects system performance and may cause system degradation or instability [1].

A sensor fault provides incorrect measurements that no longer correspond to a target

physical variable [5]. A sensor health monitoring system is responsible for determining

when a fault occurs, which sensor is faulty, and whether it can be reconstructed through

other measurements. An indication of an actuator fault is its deviation from the desired

control actions. In a complete failure, the actuator produces no action, whereas, in a

partial failure, the actuator provides a portion of the commanded action [6]. A vehicle

actuator health monitoring system identifies the faulty actuator and the deviation from

the expected value.

Fault detection and diagnosis (FDD) generally works based on information redundancy.

A traditional method to achieve information redundancy is physical redundancy that can be

provided by duplication of devices [7]. Not only is this duplication very costly, but also it is

not always practical [8–10]. Duplication of hardware itself can be another source of fault be-

cause it makes the system more complex and more susceptible to faults. Another approach
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for information redundancy is analytical redundancy that utilizes the correlation among

system variables, which are either expressed by a mathematical model in an explicit form

or implicitly hidden behind a large amount of data [3]. Regarding analytical redundancy,

FDD methods can be generally categorized into model-based, and data-driven approaches.

Since each of these approaches has advantages and disadvantages, hybrid approaches are

introduced to take advantage of their strengths and tackle their weaknesses [11].

2.2 Model-based FDD Methods

Model-based FDD methods require an explicit model of the target system for the esti-

mation of the system’s variables. These methods work based on residuals determined by

comparing the measured or expected values of the system’s variables with their predic-

tion [12–18]. Model-based FDD methods have their own advantages and disadvantages.

One of the advantages of these techniques is that they need limited information to moni-

tor the health status of the system, so their computational cost is low which makes them

easily applicable for real-time applications. Another advantage of these approaches is their

ability to detect and diagnose unknown faults. However, the disadvantages of model-based

methods are that they need an explicit model for the target system and the model’s accu-

racy remarkably affects these methods’ performance [3,19,20]. Model-based FDD methods

can be categorized into different categories including [21]:

• System Identification and Parameter Estimation Methods

• Parity Space Methods

• Observer-based (state estimation) Methods

2.2.1 System Identification and Parameter Estimation Methods

for FDD

System identification and parameter estimation methods are applied to provide information

redundancy regarding the physical parameters of a system by using its input and output
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signals. If the estimated physical parameters deviate from their actual values, it indicates

that a fault occurs in the system [22]. These approaches are usually applied for plant

fault detection. Sensor and actuator FDD with these techniques may be difficult because

the faults in sensors and actuators affect the system’s input and output in the same as

plant faults do [3]. There are some studies conducted on FDD using parameter estimation

methods. In [23], a parameter estimation-based method is proposed to detect, isolate, and

reconstruct faults in nonlinear satellite models. In [24], a recursive least squares parameter

estimation approach is applied to detect and localize a fault that occurs in the electrical

power system of an aircraft. In [25], a multi-parametric programming method is proposed

to estimate the parameters of nonlinear process systems for fault detection.

2.2.2 Parity Space Methods for FDD

In the application of fault detection, parity space methods work based on comparing the

output of an actual system and its model. In these methods, the model output is obtained

by using an input-output transfer matrix without applying any observers [26]. Some re-

search has been carried out in the field of FDD by applying parity space approaches. For

instance, in [26], a parity space method is developed to detect actuator faults in linearized

systems. This method is applied to an unmanned aerial vehicle and its effectiveness is val-

idated by simulation and practical tests. In [27], the parity space method applied for fault

detection in linear systems is generalized to nonlinear systems by using Takagi-Sugeno

fuzzy models. In [28], A fault detection and quantification method is developed by the

integration of a parity space technique and a recursive least squares algorithm. The per-

formance of this method is evaluated by numerical simulation on a quadrotor unmanned

aerial vehicle.

2.2.3 Observer-based Methods for FDD

Observer-based FDD methods rely on residuals, which are obtained by comparing the ac-

tual system states and inputs with their estimations provided by observers to detect faults

in sensors and actuators. If the target component is a sensor, the residual is determined
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by comparing the sensor measurement with its estimation [29]. If the target component

is an actuator the residual is obtained by comparing the desired control actions generated

by controllers with the estimation of the actuator’s actions. For deterministic cases, Luen-

berger observers and ellipsoidal set-membership estimators [30], and for stochastic cases,

Kalman filters, extended Kalman filters, and unscented Kalman filters can be used to esti-

mate the system states [31]. It is essential for FDD techniques to be robust to disturbances

and the model uncertainties which can be modeled as unknown inputs [3, 12]. Unknown

input observers without a need to know the system inputs are able to estimate the states

and inputs of the system [15,32,33]. The aforementioned tools are model-based estimators

that can be used to detect faults in the system sensors and actuators.

Some research focuses on observer-based approaches for the FDD application in vehicles.

In [34], a Luenberger observer is designed for FDD in lane-keeping control. The loop-

shaping methodology is applied to retune the observer gain. The robustness required

for fault detection is modeled as constraints on the frequency domain of residual signals.

In [35], a higher-order sliding mode observer is proposed to estimate the vehicle motor

speed. Sensor faults can be detected by comparing the measurement of the motor speed

with its estimation. A reconfiguration section works based on switching from measured

speed to its estimation in presence of the sensor faults. According to this reconfiguration

section, a PI controller can provide suitable performance in the speed tracking control

task in presence of faults such that it can act as a fault-tolerant controller. In [16], a

fault detection and reconstruction approach is proposed for the longitudinal motion of

autonomous vehicles. The longitudinal acceleration of the host vehicle is provided by

an acceleration sensor and the relative states of its front object are obtained by a radar

sensor. A sliding mode observer is applied to estimate the longitudinal acceleration. Based

on the residuals obtained by comparing the sensor measurement and its estimation, the

acceleration sensor faults can be detected. In [36], an observer-based FDD method is

provided for some important vehicle sensors and actuators. Kalman filters and extended

Kalman filters are applied to construct a bank of observers. Since each sensor or actuator

fault affects a unique subset of residuals obtained by the bank of observers, it is possible to

localize the source of faults. A sensor and actuator FDD approach for a small autonomous

helicopter is presented in [32]. This approach works based on residuals generated by a
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bank of observers. In [37], a bank of adaptive unknown input observers is constructed to

detect and identify the actuators’ faults in aircraft, and the effectiveness of this approach

is evaluated by applying it to the linear model of the F-16 aircraft.

Several observer-based FDD approaches are developed for different types of dynamic

systems. In [38], an observer-based method is provided to generate residuals for FDD

in linear discrete time-varying systems. In this study, the performance of this method is

improved by increasing its sensitivity to the fault and its robustness to disturbance. In

[39,40], a model-based estimator is presented for state estimation and hence fault detection

in time-varying nonlinear systems. An unscented Kalman filter is applied for FDD in

nonlinear systems with unknown input in [41]. In [42], an unknown input observer is

designed to detect and diagnose faults in the sensors and actuators of Lipschitz nonlinear

systems.

2.3 Data-driven FDD Methods

Data-driven FDD methods, unlike model-based ones, do not need an explicit model. How-

ever, they require a significant amount of data to discover knowledge implicitly hidden

behind them [43]. This knowledge can provide information redundancy required for fault

detection and diagnosis. The main advantage of these approaches is that they do not re-

quire a complete model of the system in contrast to model-based methods. This is quite

essential, especially for complex systems, because deriving an accurate explicit model of

these systems may be difficult or impractical. The performance of data-driven methods is

heavily dependent on the quality of training data. Hence, these methods are not suitable

to be applied to detect unknown faults [3, 4].

Data-driven fault detection and diagnosis methods are generally categorized into quan-

titative and qualitative methods. The quantitative approaches include supervised and

unsupervised learning methods [3]. The main difference between supervised and unsuper-

vised learning methods is that in the supervised method, training data need to be labeled,

but in unsupervised methods, the data are labeled by themselves.
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2.3.1 Unsupervised Methods for FDD

Unsupervised learning techniques usually attempt to cluster data based on their similarity.

In FDD applications, each cluster may be an indication of a special type of fault [3]. Several

studies have been conducted on FDD by applying unsupervised learning methods. In [44],

an autoencoder, one of the unsupervised learning methods, is applied to detect faults

in unmanned aerial vehicles. The autoencoder is initially trained by safe flight data and

then based on the magnitude of reconstruction loss produced by the well-trained model, the

healthy and faulty states of the vehicle can be determined. The low reconstruction loss is an

indication of healthy states and the large one is a sign of fault. K means and fuzzy C means

algorithms that are well-known clustering methods are applied for FDD in [45]. In [46],

an unsupervised learning method is proposed for online FDD in autonomous robots. The

effectiveness of the method is evaluated by conducting experimental tests on the electrical

power system of a spacecraft, unmanned aerial vehicles, a vacuum-cleaning robot, and a

flight simulator.

2.3.2 Supervised Methods for FDD

Supervised learning methods generally work based on training a mapping function from

input to output and can be further classified into classification and regression techniques.

Neural networks, principal component analysis (PCA), partial least squares (PLS), and

fuzzy logic are supervised approaches applied for FDD in the literature. Neural networks

are well-known machine learning methods for FDD applications since they are powerful

tools to approximate heavily nonlinear functions and have great adaptive learning capa-

bilities. In FDD tasks, the input of neural networks is data history and their output is

normally the healthy or faulty system status [3]. Unlike neural networks that implicitly

describe knowledge through a network of connections, fuzzy logic can explicitly express

human knowledge [47]. Although supervised techniques show impressive performance in

FDD applications, they are highly dependent on balanced datasets containing a substantial

number of healthy and faulty data. In reality, collecting sufficient amounts of faulty data

to create balanced datasets can be extremely difficult [48].
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In the literature, there are several studies that focus on classification techniques for FDD

applications. In [49], a general FDD method is proposed for autonomous vehicles. This

method works based on learning faulty patterns by using deep learning algorithms, and its

performance is examined by applying it to a multi-wheeled vehicle. It can appropriately

identify faults that occur in the vehicle. In [50], a data-driven method is proposed for sensor

FDD in unmanned aerial vehicles. In this method, an adaptive neuro fuzzy inference system

(ANFIS)-based algorithm uses the residual determined by the Kalman filter for FDD. This

model-free method can be considered one of the robust FDD methods and its adaptive

rules can be extracted by updating the training dataset. A data-driven fault detection

and identification method for multirotor aircraft is expressed in [51]. This method uses a

combination of a statistical time series model and a neural network to detect and classify

faults. In [52], another data-driven method is presented for sensor FDD in aircraft engines.

In this method, training data are classified with different labels based on various engine

health conditions, and feature extraction and pattern classification are applied for FDD.

The regression techniques can be considered data-driven estimators that provide the

analytical redundancy required for fault detection. The data-driven estimators usually

act as black boxes and by satisfying the observability conditions, they can estimate any

system variables whether these variables are the inputs or states of the system. Hence, these

estimators can be applied to estimate both sensor measurements and actuator commands.

Kernel regression, one of the most well-known regression techniques, is used for FDD

applications [53]. In [54], a kernel-based method as a nonlinear regression technique is

applied to predict the output of nonlinear systems. By comparing sensor measurements to

the predicted values, the residual required for FDD is generated. In [55], a fault detection

approach that works based on auto-associative kernel regression is introduced, and some

modifications are applied to it to increase its robustness.

2.4 Hybrid FDD Methods

As previously mentioned, each FDD method has its own advantages and disadvantages.

To tackle the disadvantages and to gain the advantages of each method, hybrid FDD
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approaches are developed. Hybrid approaches made by the integration of two or more

FDD methods can outperform each of them when used individually.

Some studies focus on hybrid approaches for FDD in vehicles. A hybrid FDD method

for autonomous vehicles is proposed in [56]. In this method, a support vector machine is

applied to determine safe and unsafe domains, and a Kalman filter is adopted to predict the

position of vehicles. Finally, the Jarque-Bera test is used to detect faults by checking the

obtained residuals, and a fuzzy system is designed to diagnose the types of faults. Another

hybrid FDD method is developed based on a convolutional neural network supplemented

by the Kalman filter for automated vehicles [57]. The convolutional neural network is

applied to generate images from time-series data and classify them into healthy and faulty

categories. The results show that the hybrid approach can outperform a convolutional

neural network and a Kalman filter when used individually. A hybrid fault detection and

isolation algorithm is proposed for unmanned aerial vehicles [58]. This hybrid method is

developed at low and high levels. The low-level method is able to appropriately detect

faults and the high-level one can isolate the faults by the reconstruction of the low-level

method. In [59], another hybrid fault detection and isolation method is introduced for a

network of unmanned vehicles. In this method, a set of residuals is determined by a bank

of residual-generator modules and then a discrete-event system fault detector can detect

and isolate faults by using the residuals and their sequential features.

In addition to vehicles, hybrid FDD approaches are developed and applied to a va-

riety of systems. For instance, in [60, 61], a hybrid approach is proposed to detect and

isolate faults in power transmission systems. The proposed approach combines several

techniques, including principal component analysis, multilevel wavelet transform, support

vector machines, and adaptive structure neural networks, to enhance its robustness against

noise and compatibility with regard to learning new environments. A hybrid FDD method

composed of two data-driven techniques is presented in [53]. The first one is an auto-

associative kernel regression technique that is applied to generate residuals. The second

approach is a dynamic independent component analysis that can detect faults by using the

obtained residuals. The efficiency of this method is verified by some experimental tests. To

deal with unclassified data, hybrid FDD approaches are developed in [62, 63] for robotics

systems. These methods are made of the integration of unsupervised and supervised meth-
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ods. The unsupervised approach is applied to classify data into healthy and faulty, and

then the supervised method is used to detect faults. The results show the superiority of

the hybrid method over the original unsupervised one. In [64], a hybrid FDD method

for high performance operational systems is presented. This method works based on the

fuzzy c-means clustering technique and artificial immune system. The simulation results

verify the strength of this method for real-time applications. A hybrid approach proposed

in [65] works based on integrating data-driven and model-based approaches to select a

set of residuals for fault detection in systems where model uncertainties and measurement

noises are considerable.

14



Chapter 3

A Hybrid Model-Data Vehicle Sensor

& Actuator Fault Detection &

Diagnosis System

3.1 Introduction

The main goal of this chapter is to develop a reliable hybrid model/data fault detection

and diagnosis system for any vehicle sensor and actuator. The contributions of this chapter

are as follows:

• Developing a hybrid framework simultaneously using vehicle models and data to

improve the capability of detecting and quantifying faults.

• Proposing a self-updating rule for the dataset in confronting new environments. The

developed fault detection approach can use the updated dataset to learn these envi-

ronments.

This chapter is organized as follows: Section 3.2 presents the developed hybrid fault

detection and diagnosis methodology. A test vehicle and its experimental setup are pre-

sented in Section 3.3. In Sections 3.4 and 3.5, the proposed approach is applied to the
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vehicle’s lateral acceleration sensor and traction motor, respectively, and its performance

is evaluated by experimental tests. Finally, the chapter is summarized in Section 3.6.

3.2 Hybrid Model/Data Fault Detection & Diagnosis

System

The general scheme of the proposed fault detection and diagnosis system is provided in

Fig. 3.1. The authentication module is a decision center that can determine which of the

model-based or data-driven estimators provides more reliable estimation. In the ideal case,

the dataset of a data-driven estimator should cover the whole feasible space; however, in

this research, a self-updating dataset is proposed that relaxes this requirement. Using the

self-updating dataset, new data will be added to the dataset when the vehicle faces new

environments. The fault-detector module is able to detect the fault in the vehicle by using

the residuals obtained by comparing the measurements (provided by sensors) or desired

control actions (obtained by controllers or a driver) with their estimations (determined

by the hybrid estimator). If the residuals exceed the threshold and are persistently placed

outside the prediction interval, the target sensor or actuator becomes faulty. After detecting

a fault, if the target component is a sensor, its healthy value is reconstructed by using the

estimation provided by the hybrid estimator, and if the target component is an actuator,

its actual action is obtained by the hybrid estimation, which can be utilized to find its level

of failure. All modules and blocks shown in Fig. 3.1 are explained in the following.
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Figure 3.1: The general scheme of the hybrid fault detection and diagnosis system.

3.2.1 Data-driven Estimator

There are various data-driven techniques that can be used for estimation applications

such as deep learning neural networks, multi-layer perceptron, and adaptive neuro-fuzzy

inference systems [3]. Most of these methods not only require a significant amount of

data to obtain suitable performance but also have numerous parameters that must be

trained [46]. As new data is needed for the training of unseen conditions that often happen

in vehicles, the dataset must be gradually updated. Estimation based on the updated

dataset brings about a need of using instant-based learning methods as the data-driven

estimator for this research.

Kernel regression, one of the most well-known statistical techniques, is widely used as

a function approximator [66]. This method is applied for estimation by finding a nonlinear

relationship between inputs and output and provides a smooth approximation based on an

appropriate distance measure. Kernel regression as an instant-based learning method does

not need pre-training, which makes it more applicable for real-time fault detection. By

using such kernel regressions, the dataset can be updated in real-time and the estimation

can be conducted based on the updated dataset.
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3.2.1.1 Nadaraya-Watson Kernel Regression

Nadaraya-Watson Kernel Regression (NWKR), one of the well-known kernel regression

approaches, works based on weighted averaging [66]. The kernel function, K ( , ), applied

in NWKR should satisfy the following conditions:

Positive Semi-definiteness: K (x,xj) ≥ 0

Symmetry:
∫
xK (x, 0) dx = 0

(3.1)

where x is a test point that is required to be predicted, and xj is one of the points in the

dataset. The Gaussian kernel function:

Kσ (x,xj) =
1√
2π

exp

(
−(x− xj)

2

2σ2

)
(3.2)

is a well-known and commonly used kernel function in the literature. In this equation, σ

is the standard deviation of the Gaussian function, which is also called the bandwidth of

the kernel function and determines the width of this function. The feature vector xj and

test point x with m individual variables are defined as

xj =
(
x1
j , . . . , x

m
j

)⊤
, x = (x1, . . . , xm)

⊤
. (3.3)

Additionally, their respective outputs are denoted by y and yj. NWKR approach estimates

the output of the test point y using

ŷ (x) =

n∑
j=1

yj

(
m∏
i=1

Kσ

(
xi, xi

j

))
n∑

j=1

(
m∏
i=1

Kσ

(
xi, xi

j

)) =
n∑

j=1

wjyj = w⊤y (3.4)

where y = (y1, . . . , yn)
⊤ and w = (w1, . . . , wn)

⊤.

In the next subsections, the following questions are addressed:

• How is the performance of NWKR evaluated? (Subsection 3.2.1.2)

• How are the features that are essential in the estimation of a target variable selected

or in other words, how are the inputs of NWKR determined? (Subsection 3.2.1.3)
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• How σ, the only parameter of NWKR, is tuned? (Subsection 3.2.1.4)

• What are the effects of distant points in the dataset on the estimation? (Subsection

3.2.1.5)

• How is the dataset used in NWKR managed? (Subsection 3.2.1.6)

3.2.1.2 Evaluation of NWKR’s Performance

To evaluate the performance of NWKR during a test maneuver, Root Mean Squared Error

(RMSE) is applied. RMSE shows the spread of prediction errors called residuals, and it is

determined by

RMSE =

n′∑
i=1

(y(i)− ŷ(i))2

n′ (3.5)

where, y(i) and ŷ(i) are respectively the ith observed and predicted point in the test

maneuver, and n′ is the number of points in the maneuver. Based on the definition of

RMSE, a lower RMSE value indicates a more precise prediction.

3.2.1.3 Feature Selection by Sensitivity Analysis (Pearson Correlation Coef-

ficient)

Sensitivity analysis is applied for feature selection, which is an important part of data-

driven methods. In a system, just some of the features (variables) have a strong correlation

with a target feature. In fact, these features play the main role in the estimation of the

target variable. If all features are applied for the estimation, it may cause an overfitting

problem. Overfitting makes the trained model too fitted to the training dataset which has

an adverse effect on the fitting of the trained model to test data.

By considering the vehicle dynamics equations, it is possible to find the features that

play a meaningful role in the estimation of the target variable in vehicles. This approach

may not be applicable to all vehicle variables due to the system’s complexity, and unmod-

eled dynamics. Therefore, a systematic method is required to select the features that are

essential in the estimation of the target variable.
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Pearson Correlation Coefficient (PCC) is a statistical method that is applied to deter-

mine the strength and direction of the linear relationship between two variables (u1 and u2)

by calculating the linear correlation between them. The value of PCC is always between

-1 and 1. If the absolute value of PCC between two variables is equal to 1, it shows that

these two variables are completely linearly correlated. By decreasing the strength of linear

correlation between variables, the absolute value of PCC decreases. When PCC is equal

to zero, it indicates that the variables are linearly independent of each other [67]. For two

feature vectors u1 = (u1
1, . . . , u

n
1 ) and u2 = (u1

2, . . . , u
n
2 ), PCC is calculated using

PCC =

n∑
i=1

(ui
1u

i
2)−nū1ū2√

n∑
i=1

(ui
1)

2
−nū2

1

√
n∑

i=1
(ui

2)
2
−nū2

2

(3.6)

where ū1 and ū2 are the means of u1 and u2, respectively.

3.2.1.4 Bandwidth Selection

In NWKR, it is essential to obtain a rule to tune the bandwidth of the Gaussian kernel in

Eq. 3.2. According to the literature, the bandwidth is selected based on the variance of

output [66]. In this study, since the variance of the output is varying, it may be difficult

to formulate the bandwidth as a function of the output variance. In this case, to tune the

bandwidth, the RMSE of estimations with different values of bandwidth are calculated.

The bandwidth that corresponds to the minimum RMSE is the optimal bandwidth [68].

3.2.1.5 Estimation Based on Neighbors

In this section, it is shown that the nearest points in the dataset to the test point play

the main role in its estimation, so the estimation can be conducted only based on these

points. To show it, the Gaussian function, Eq. (3.2), used in NWKR is considered. In

Eq. (3.2), if the distance between xi
j (the ith feature of the jth point in the dataset) and

xi (the ith feature of the test point) becomes greater than 3σ, Kσ(x
i, xi

j) < 0.005, and it is

negligible. According to Eq. (3.4), if Kσ(x
i, xi

j) has a very small value, the jth point can be

omitted to participate in the estimation of the test point’s output. It is inferred that the
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nearest neighbors to each test point play the main role in its output estimation. Therefore,

to reduce the computational time, it is possible to use only points in the dataset that are

placed in the neighborhood of each test point to estimate its output. In this research, an

ε-neighborhood is defined as a multi-dimensional cube that is considered around each test

point and its edge is 2ε. By considering the ε-neighborhood, for each test point, only a

portion of the dataset participates in the estimation. Hence, the computational cost of the

estimation decreases significantly.

Note that without loss of generality, since the scales of features are different from each

other, each feature is normalized by dividing it by the maximum of its absolute value.

Therefore, all data lie between -1 and 1.

3.2.1.6 Dataset Management

To ensure that a dataset does not include repeated points or closely clustered points, it

is important to analyze and manage it during data collection. A dataset is ideal when it

uniformly covers all the feasible space, but in reality, it is possible that some points in the

dataset are too close to each other. Hence, a systematic method is required to manage and

remove excess and unnecessary points. To achieve this goal, a data management approach

is proposed in this study. This approach, presented in Algorithm 1, works based on the

number of neighbors in the ε1-neighborhood of each point in the dataset. If this number

is greater than or equal to a threshold denoted by k1, the point should be removed from

the dataset.
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Algorithm 1 Data Management.

Input: Dataset: x,

ε in ε-neighborhood: ε1,

Threshold of the number of neighbors: k1.

z ← Normalize x

n ← Size of x

for j = 1, ..., n do

if the number of neighbors of zj in its ε1-neighborhood > k1 then

remove xj from x

end if

end for

Output: Reduced dataset: x.

This algorithm is applied to the dataset with different values of k1 to provide differ-

ent reduced datasets. Each new dataset is applied for the estimation, and its RMSE and

average computational time are determined. Given the obtained RMSE and average com-

putational time, the optimal dataset is determined. By using the optimal dataset, the

quality of estimation is preserved while its computational time decreases.

3.2.2 Model-based Estimator

There are several studies conducted to estimate vehicle states and inputs in the literature.

Some studies regarding vehicle state estimation are summarized in [69, 70], and for each

one, the estimation methodology, vehicle model, required measurements, and estimated

states are provided. This research presents the model-based estimators used for vehicle

state estimation, including different versions of the Kalman filter, Luenberger observer,

nonlinear observer, and sliding mode observer. These techniques can be used as model-

based estimators to detect faults in sensors. Unknown input observers can estimate the

states and inputs of a system without a need to know its inputs. Some studies conducted

on automotive systems apply these observers to estimate the vehicle engine torque [71],
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driver torque [72, 73], and vehicle steering angle [74]. Hence, for fault detection of vehicle

actuators, these approaches can be applied as model-based estimators in the proposed fault

detection system.

3.2.3 Authentication & Self-updating Dataset

The hybrid estimator works based on the integration of the model-based and data-driven

estimators. Based on the availability of data in the self-updating dataset around the

operating points (test points), the authentication module is responsible for determining

which estimator should be used. As previously mentioned, model-based estimators are

able to work in unknown conditions and environments, unlike data-driven ones. Therefore,

in these conditions, the authentication module chooses the estimation provided by the

model-based estimator. If the dataset has enough data around the test points, the data-

driven estimator can provide accurate estimation, so the authentication module chooses

the estimation obtained by the data-driven estimator. The hybrid estimation, ŷH , provided

by the authentication module can be modeled as:

ŷH = f (ŷM , ŷD, nε) =

{
ŷM nε < k2

ŷD nε ≥ k2
(3.7)

in which ŷM and ŷD are the estimations of the model-based and data-driven estimators,

respectively. Parameter nε is the number of neighbors in the ε-neighborhood of each test

point, and k2 is a threshold for the number of neighbors.

The self-updating module adds new data to the dataset when the vehicle faces unknown

conditions or the dataset is not rich enough around test points. Therefore, the data-driven

estimator can use the new data if the vehicle encounters these conditions or similar ones

again. In the proposed fault detection system, when nε < k2, and the fault detector

confirms that the target component is healthy, the authentication module issues a command

to update the self-updating dataset by adding test points to it.
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3.2.4 Fault Detector

The fault detector module shown in Fig. 3.1 notifies the occurrence of faults in the tar-

get sensor or actuator. This module contains the residual-calculator and decision-maker

modules. The residual-calculator module obtains the residual, r, by comparing the mea-

surements (provided by sensors) or desired control actions (obtained by controllers or a

driver) with their estimations (determined by the hybrid estimator) as follows:

r = y − ŷ
H

(3.8)

where y is the true value of the target variable (sensor measurement or desired control ac-

tion). If the residual lies persistently outside of the prediction interval (−L
H
(i) ,+L

H
(i)),

the decision-maker module notifies that there is a fault in the target component. Otherwise,

the target component is healthy. The hybrid threshold L
H
is equivalent to the model-based

threshold L
M

when the model-based estimator is utilized and it is the same as the data-

driven threshold L
D
when the data-driven estimator is employed. The threshold L

D
can

be derived using NWKR estimation is Eq. (3.9) as follows,

L
D
= tα/2,df

√
σ̂2

D
(1 +w⊤w) (3.9)

where tα/2,df is the α
2
-th quantile of the t-distribution with df degrees of freedom and α as

the significance level [75]. The quantity σ̂2
D
is the Mean Square Error (MSE) defined as:

σ̂2
D
=

1

nε − 1

nε∑
j=1

(yj − ŷj)
2 (3.10)

where ŷj is the estimation of yj. For the model-based estimator, the threshold L
M

for the

prediction of the current test point is obtained by,

L
M
= tα/2,df

√
σ̂2

M

(
1 +

1

n′

)
(3.11)

in which σ̂2
M

is the standard deviation of predictions obtained for the previous test points

placed in the determined window of time, and the number of these previous test points is

denoted by n′. L
M0

is considered a minimum value for L
M
, and this value is determined
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based on the target component’s specifications or nominal accuracy. If L
M

obtained by

Eq. (3.11) is less than L
M0

, then L
M
= L

M0
.

Once a fault has been detected, the hybrid estimator can be used to reconstruct the

healthy value of the faulty sensor. This reconstructed data can then be utilized by the

vehicle’s control systems instead of the faulty sensor measurements. In the event that the

faulty component is an actuator, the hybrid estimator can be utilized to determine the level

of failure. Based on this information, it is possible to scale the faulty actuator’s output to

achieve the desired results.

3.3 Test Vehicle & Experimental Setup

In this research, To experimentally evaluate the performance of the developed approaches,

an electric all-wheel-drive test vehicle shown in Fig. 3.2 is utilized. The specifications

of this vehicle are listed in Table 3.1. This vehicle has an independent motor for each

four wheels as its powertrain system and a robotic steering system to perform repeatable

maneuvers. The vehicle collects the required data for the health monitoring system using

a 6-axis IMU sensor, a steering wheel sensor, and wheel speed and torque sensors.

The desired control actions of the steering actuator and the traction motors are ex-

ported from the MATLAB/Simulink environment and are sent directly to the vehicle ac-

tuators (drive motors, brake, etc.) via a CAN-bus network. After applying the desired

control actions, all the sensor measurements are read through the CAN-bus in the real time

MATLAB/Simulink environment. The experimental setup diagram of the test vehicle is

illustrated in 3.3.
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Figure 3.2: An electric all-wheel-drive test vehicle.

Table 3.1: The specifications of the test vehicle.

Parameter value Description

M 2271 kg Vehicle mass

Iz 4600 kgm2 Vehicle moment of inertia

about normal direction

a, b 1.42,1.43 m Distance from front/rear axle to the CG

Rw 0.347 m Tire effective radius

Cα 83700 N Tire cornering stiffness

Iw 1.7 kgm2 Wheel moment of inertia

about its axis

SR 18 : 1 Ratio between steering wheel angle

& front wheel angle
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Figure 3.3: The experimental setup diagram of the test vehicle.

3.4 Hybrid Fault Detection and Diagnosis System Ap-

plied to Lateral Acceleration Sensor

In this section, the hybrid fault detection and diagnosis system is applied to detect faults in

a lateral acceleration sensor and reconstruct its healthy value. In the following subsections,

all modules shown in Fig. 3.1 and explained in Section 3.2 are developed for this objective.

The performance of this system is experimentally evaluated with the test vehicle.

3.4.1 Data-driven Estimator for Lateral Acceleration

NWKR is applied as the data-driven estimator to estimate the vehicle’s lateral acceleration.

The data-driven estimator requires a dataset to operate and needs test data to evaluate
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its performance. The dataset and test data are provided by conducting experimental tests

with the test vehicle. Without loss of generality, some acceleration-in-turn maneuvers are

used to create the dataset. Two experimental tests are also considered as test data. Like

the maneuvers in the dataset, one of these two tests is an acceleration-in-turn maneuver,

and another one is a double-lane-change (DLC) maneuver that is new for the data-driven

estimator based on its primary dataset. The specifications of all these maneuvers are

provided in Table 3.2. In this table, the subscripts ij ∈ {fL, fR, rL, rR} represent the

front-left, front-right, rear-left, and rear-right wheels, respectively.

Table 3.2: The specifications of the maneuvers used for collecting the dataset and test data

Torque of each wheel Steering wheel angle

Tij = A× Ramp Function δ = B × Step function (deg)

Tmax = 500 N.m

Dataset A ∈ {50, 70, 80} B ∈ {140, 160, 200, 220}
Test Data #1 A = 60 B = 180

Test Data #2 A = 60 δ for DLC maneuver

3.4.1.1 Feature Selection by PCC

All variables that play a role in the vehicle planar motion are listed in Table 3.3. These

variables are either measurements provided by sensors or control actions obtained by ac-

tuators. Since the reliable estimation of longitudinal velocity can be available by the GPS

sensor, it is also considered in the list of variables.

28



Table 3.3: List of the vehicle variables in the proposed string of data

Variable Description

δ Steering Wheel Angle

δw Front Wheel Steering Angle

T Total torque applied to the wheels

ax Longitudinal Acceleration

ay Lateral Acceleration

r,ṙ Yaw Rate Acceleration

ωij Wheel Angular Velocity

ω̇ij Wheel Angular Acceleration

PCC is applied to select the essential features for the estimation of the vehicle lateral

acceleration. Using the collected data from the maneuvers in Table 3.2, PCCs between all

the variables presented in Table 3.3 and the vehicle lateral acceleration are calculated and

shown in Fig. 3.4.

Figure 3.4: PCCs between the vehicle lateral acceleration and other variables.

This figure shows that ay has strong linear correlations with the yaw rate, steering

wheel angle, vehicle longitudinal velocity, and angular velocity of all wheels.
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To show the importance of feature selection, two NWKR models shown in Fig. 3.5 are

considered to estimate the vehicle lateral acceleration. In the first NWKR, the features

selected by using the PCC test are considered as the NWKR’s inputs, and in the second

one, all features presented in Fig. 3.4 are assigned as its inputs. Given these two NWKR

models, the estimations with different values of bandwidth (σ) are provided to reconstruct

the dataset and estimate the first test data (Table 3.2). The RMESs of these estimations

are calculated and shown in Fig. 3.6. This figure shows that in the small values of the

bandwidth, the 1st NWKR model provides more accurate estimations than those obtained

by the 2nd NWKR model for the first test data. Therefore, the missed variables not only

are not essential features in the estimation of ay but also decrease the estimation accuracy.

Fig. 3.6 also illustrates that the excessive reduction of σ causes decreasing the RMSEs of

the dataset reconstruction while increasing the RMSEs of the test data estimation. This

condition is known as overfitting which makes the dataset reconstruction too fitted to the

dataset and adversely affects the prediction of the test set. Fig. 3.7 illustrates the sensor

measurement and the estimations of ay provided by the two NWKR models with σ = 0.05

for the first test data.

Figure 3.5: Two NWKR models are applied for the vehicle lateral acceleration estimation.
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Figure 3.6: RMSE of the estimations provided by the two NWKR models with different

values of bandwidth.

Figure 3.7: The sensor measurement and the estimation of ay provided by the 1st and 2nd

NWKR models for σ = 0.05.
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3.4.1.2 Bandwidth Selection

As previously mentioned, to tune the bandwidth, at first, NWKR with different values of

the bandwidth is applied for the estimation of test data, and then, the RMSEs of these

estimations are calculated. Finally, based on the results, the bandwidth that corresponds

to the minimum RMSE is considered the desired bandwidth. Fig. 3.6 (the solid blue line)

shows that when σ = 0.05, the minimum RMSE of the estimations provided by the chosen

NWKR is achieved.

3.4.1.3 Estimation Based on Neighbors

In Section 3.2.1.5, it is mentioned that considering a proper ε-neighborhood for the test

data not only does not decrease the quality of estimations but also causes a significant

reduction in the computational time. This point can also be evaluated by using the first

test data. To find an appropriate ε-neighborhood, for different values of ε, the RMSEs of

the estimations and the average computational time required for the estimation of each

test point are determined. These values are presented in Fig. 3.8. This figure illustrates

that for the NWKR with σ = 0.05, the RMSE remains constant by reducing ε to 3σ. This

point has conformity with the negligibility of Kσ(x
i, xi

j) (Eq. (3.2)) when |xi − xi
j| > 3σ.

Fig. 3.8 also shows that the average computational time required for the estimation of

each test point significantly decreases by shrinking the ε-neighborhood. By considering

ε = 0.15, the computational time drops to almost 1/3 of the computational time of the

estimation in which the ε-neighborhood is not considered.
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Figure 3.8: The effect of considering the ε-neighborhood on the accuracy of estimation and

its computational time.

3.4.1.4 Dataset Management

To remove the redundant data from the dataset, the data management technique proposed

in Algorithm 1 is used. This algorithm is applied with different values of k1 and ε1 = 0.02 to

provide different reduced datasets, and these extracted datasets are applied for estimation.

The RMSE and average computational time of these estimations are provided in Fig 3.9.

This figure shows that the desired k1 is 40 since by using its corresponding dataset, the

average computational time remarkably decreases, while the RMSE remains constant. It

indicates that the accuracy of estimation is preserved although the size of the database

denoted by n on the x-axis of Fig 3.9 decreases.
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Figure 3.9: The RMSE and average computational time of estimations provided by the

reduced datasets.

3.4.2 Model-based Estimator for Lateral Acceleration

To provide the model-based observer, the vehicle is modeled by using a planar single-track

model with the following equations of motion:

ẋs (t) =


−Cαf + Cαr

Mu (t)
−aCαf − bCαr

Mu (t)
− u(t)

−aCαf − bCαr

Izu (t)
−a2Cαf + b2Cαr

Izu (t)

xs (t) +


Cαf

M

a
Cαf

Iz

 δw (t)

ẋs (t) =

[
v̇ (t)

ṙ (t)

]
xs (t) =

[
v (t)

r (t)

] (3.12)

in which v is the vehicle’s lateral velocity, and Cαf and Cαf are the front and rear tire

cornering stiffness, respectively. The descriptions of other variables and parameters are

provided in Tables 3.1 and 3.3. Note that the time variable is denoted by t ∈ R in the
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continuous form and k ∈ Z in the discrete form. For the tires, a piecewise linear model is

considered, so based on that:

Cαi =

 Cα αi <
4π
180

4π

180

Cα

|αi|
αi ≥ 4π

180

(3.13)

where the subscripts i ∈ f, r represent the front and rear wheels, and their slide-slip angles

are respectively αf and αr that can be determined by:

αf = tan−1

(
δw (t)− v (t) + ar (t)

u (t)

)
αr = tan−1

(
−v (t)− br (t)

u (t)

) (3.14)

The forward Euler approach with the time step, ∆t, is utilized to discretize the vehicle

model. The discretized vehicle model with ∆t = 0.01 is presented in:

xs (k + 1) = Adxs (k) + bdδ (k) + Ωp

y (k) = r (k) = c⊤d xs (k) + Ωm

= (0, 1)xs (k) + Ωm

(3.15)

in which, yaw rate is considered the available measurement, and Ωp and Ωm are process

and measurement noises, respectively.
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The Kalman filter expressed in [76] is

x̂−
s (k + 1) = Ad (k) x̂s (k) + bd (k) δ (k)

P− (k + 1) = Ad (k)P (k)Ad
⊤ (k) +Q

Time

Update

(Prediction)

k → k + 1

x̂−
s (k + 1)

P− (k + 1)

x̂s (k + 1)

P (k + 1)

− → +

Measurement

Update

(Correction)

k (k + 1) = P− (k + 1) cd
(
c⊤d P

− (k + 1) cd +R
)−1

x̂s (k + 1) = x̂−
s (k + 1) + k (k + 1)

(
y (k + 1)− cd

⊤x̂−
s (k + 1)

)
P (k + 1) =

(
I− k (k + 1) cd

⊤)P− (k + 1)

(3.16)

is applied to the discretized vehicle model to estimate its states. Then, based on the state

estimation, the vehicle lateral acceleration can be obtained by

x̂s (k + 1) =

[
v̂ (k + 1)

r̂ (k + 1)

]
, x̂s (k) =

[
v̂ (k)

r̂ (k)

]

ây (k) =
v̂ (k + 1)− v̂ (k)

∆t
+ r (k)u (k)

(3.17)

In Eq. (3.16), I is an identity matrix.

3.4.3 Authentication & Self-updating Dataset for Lateral Accel-

eration

According to Eq. (3.7), k2 is a threshold that determines which estimator should be used.

When the model-based observer is used, the authentication module issues a command to

update the self-updating dataset by adding the operating point to it. Note that updating
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the dataset happens when the fault detection system confirms that the lateral acceleration

sensor is healthy.

The estimations provided by the model-based, data-driven, and hybrid estimators for

the first test data when k2 = 100 are illustrated in Fig. 3.10. On the horizontal axis of

this figure, the red and green colors show when the hybrid estimator uses the data-driven

and model-based estimators, respectively. In this estimation, the hybrid estimator uses the

model-based observer in 25 points from the 400 points of the test data, and the dataset is

updated by adding these 25 points to itself. The RMSEs of the model-based, data-driven

and hybrid estimations are 0.0208, 0.0099, and 0.0097, respectively. This result shows that

the hybrid estimator outperforms the model-based observer.

The superiority of the hybrid estimator over the data-driven one can be shown when

the vehicle encounters unknown environments. The second test data in Table 3.2 is used to

simulate one of these conditions. Fig. 3.11 shows that in some test points, the data-driven

estimator is not able to estimate since there is no neighbor in their ε-neighborhood. In

some other points of this test, the estimation provided by the data-driven estimator is not

as accurate as the one obtained by the model-based observer because the dataset is not

rich enough around these points. Therefore, the hybrid estimator uses the model-based

observer in these points, and it indicates the superiority of the hybrid estimator over the

data-driven one. In this test, the hybrid estimator uses the prediction of the model-based

observer in almost 280 points from the 400 points of this maneuver. The dataset is updated

in these 280 points, so the data-driven estimator can use these new points if the vehicle

encounters this environment or similar ones again. Since the data-driven estimator does

not have the ability to estimate the entire test data, the RMSE is not determined for that.

The RMSEs of the model-based and hybrid estimations are 0.0501 and 0.0497, respectively.

Based on the results it can be concluded that the hybrid estimator can outperform the

model-based and data-driven estimators.
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Figure 3.10: Estimation of ay by the hybrid, model-based, and data-driven estimators for

the 1st test data.

Figure 3.11: Estimation of ay by the hybrid, model-based, and data-driven estimators for

the 2nd test data.
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3.4.4 Fault Detector for Lateral Acceleration

In this part, the fault detector module is applied to generate residuals by using the esti-

mations obtained by the hybrid estimator and the measurements provided by the lateral

acceleration sensor. If the residuals exceed the threshold LH and persistently lie outside

of the prediction interval, it is an indication of occurring a fault in the lateral acceleration

sensor, and if the residuals remain within the prediction interval, it shows that the sensor

is healthy.

To simulate a scenario with the faulty lateral acceleration sensor, the measurements of

this sensor are multiplied by a factor. To evaluate the performance of the proposed fault

detection approach, the first test data with a 20% fault applied to the lateral acceleration

sensor from the 3rd second is used. Fig. 3.12 illustrates the residuals of ay and their

prediction intervals for the first test data in the presence of the fault. In this figure, the

green and red regions are the prediction intervals for the residuals obtained by using the

model-based and data-driven estimators, respectively. Fig. 3.12 shows that the residuals

exceed the threshold and persistently lie outside the prediction interval after the 3rd second.

It indicates that there is a fault in the lateral acceleration sensor and the proposed fault

detection system successfully detects this fault. After fault detection, the estimation of ay

obtained by the hybrid estimator is considered as the reconstruction of the healthy value

of the lateral acceleration sensor.
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Figure 3.12: The residuals of ay and their prediction intervals for the 1st test data in the

presence of the fault.

3.5 Hybrid Fault Detection and Diagnosis System Ap-

plied to Vehicle Traction Motor

In this section, the hybrid fault detection and diagnosis system is applied to detect faults

in the vehicle traction motor and find its level of failure. The system’s performance is

experimentally evaluated with the test vehicle. All required modules for this system are

developed in the following subsections.

3.5.1 Data-driven Estimator for Total Traction Torque

NWKR is the data-driven estimator used to estimate the wheels’ total torque. To evaluate

its performance, the dataset and test data provided in Table 3.2 are utilized. Like the

previous section, the same procedure is used to develop the data-driven estimator.

40



3.5.1.1 Feature Selection by PCC

To select the important features for the estimation of the wheels’ total torque, PCCs

between all the variables presented in Table 3.3 and the total torque are calculated and

shown in Fig. 3.13. This figure illustrates that T has strong linear correlations with ax and

the angular acceleration of all wheels. Based on our physical knowledge, an aerodynamic

force can affect the vehicle traction torque especially, in high-speed maneuvers. Since the

aerodynamic force can be defined as a function of the vehicle longitudinal velocity, this

velocity is also considered another essential feature to estimate the total torque.

Figure 3.13: PCCs between the wheels’ total torque and other variables

The importance of feature selection can be validated by using two NWKRmodels shown

in Fig. 3.14. In the first NWKR, only the selected features are considered as its inputs, and

in the second one, all features presented in Table 3.3 are assigned as the inputs of NWKR.

Given these two NWKR models, the estimations with different values of bandwidth (σ)

are provided to reconstruct the dataset and estimate the first test data (Table 3.2). The

RMESs of these estimations are illustrated in Fig. 3.15. This figure illustrates that for the

small values of the bandwidth, the 1st NWKR model provides more precise estimations

than those obtained by the 2nd NWKR model for the first test data. It shows that the

missed variables in the 1st NWKR model not only are not important in the estimation of
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T but also adversely affect the estimation accuracy. Fig. 3.15 also shows that especially in

the 2nd NWKR model, the excessive reduction of σ causes overfitting. Fig. 3.16 illustrates

the desired control action and the estimations of T provided by the two NWKR models

with σ = 0.02 for the first test data.

Figure 3.14: Two NWKR models are applied for the wheels’ total torque estimation.

Figure 3.15: RMSE of the estimations provided by the two NWKR models with different

values of bandwidth.
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Figure 3.16: The desired control action and the estimations of T provided by the 1st and

2nd NWKR models for σ = 0.02.

3.5.1.2 Bandwidth Selection

As previously mentioned, the optimal bandwidth is the one that corresponds to the mini-

mum RMSE. Fig. 3.15 (the solid blue line) shows that in the estimation of test data, the

minimum RMSE occurs when σ = 0.02.

3.5.1.3 Estimation Based on Neighbors

To find an appropriate ε-neighborhood, for different values of ε, the RMSEs of the estima-

tions and their computational time are determined. Given these values shown in Fig. 3.17,

the RMSE remains constant by reducing ε to 3σ. Fig. 3.17 also illustrates that the compu-

tational time of the estimation reduces by shrinking the ε-neighborhood. By considering

ε = 0.06, while the accuracy of estimation is preserved, the computational time decreases

to almost 1/3 of the computational time of the estimation in which the ε-neighborhood is

not considered.
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Figure 3.17: The effect of considering the ε-neighborhood on the accuracy of estimation

and its computational time.

3.5.1.4 Dataset Management

Like what has been done in Section 3.4.1.4, Algorithm 1 is applied with different values

of k1 and ε1 = 0.02 to remove the redundant data from the dataset and provide different

reduced datasets. The extracted datasets are utilized to estimate the first test data, and

the RMSE and average computational time of these estimations are provided in Fig 3.18.

This figure illustrates that the desired k1 is 80 since by using its corresponding dataset,

the average computational time decreases while the accuracy of estimation is preserved.
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Figure 3.18: The RMSE and average computational time of estimations provided by the

reduced datasets.

3.5.2 Model-based Estimator for Total Traction Torque

To design the model-based estimator for the total traction torque, the vehicle longitudinal

model and wheel rotational dynamics are used. The wheel rotational dynamics for each

wheel is

Tij −RwFxij = Iwω̇ij (3.18)

in which the subscripts j ∈ {fL, fR, rL, rR} represent the front-left, front-right, rear-left,
and rear-right wheels, respectively. By taking the summation of Eq. (3.18) for all four

wheels, the following equation is achieved:∑
Tij︸ ︷︷ ︸

T

−Rw

∑
Fxij︸ ︷︷ ︸

Fx

= Iw
∑

ω̇ij (3.19)

in which Fx is the total traction force of all wheels.
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The general form of the vehicle longitudinal dynamics is expressed as:

Fx − FR = Max (3.20)

in which FR is the vehicle’s total resistance force. Since this force is considered the sum-

mation of aerodynamic and rolling resistance forces, it can be modeled as follows:

FR = A1u+ A2u
2 (3.21)

in which A1 and A2 are unknown parameters that should be determined. Therefore, based

on Eqs. (3.19), (3.20), and (3.21), the following parametric model is considered:

Iw
∑

ω̇ij +RwMax︸ ︷︷ ︸
z

=
(

T A1 A2

)
︸ ︷︷ ︸

θ⊤

 1

−u
−u2


︸ ︷︷ ︸

φ

⇒ z = θ⊤φ
(3.22)

in which φ and z are the regression and output signals, and θ is a vector of unknown

estimated by the following recursive least squares approach [77]:

θ̂
⊤
(k) =

(
T̂ (k) Â1 (k) Â2 (k)

)
θ̂ (k + 1) =

θ̂ (k) + k (k + 1)
(
z (k + 1)− φ⊤ (k + 1) θ̂ (k)

)
k (k + 1) =

P (k)φ (k + 1)

(λ+φ⊤ (k + 1)P (k)φ (k + 1))

P (k + 1) =
(
I− k (k + 1)φ⊤ (k + 1)

)
P (k) /λ

(3.23)

in which λ is the forgetting factor, and I is an identity matrix. The recursive least squares

approach guarantees that θ → θ∗ when t→∞ if φ is persistently exciting [78]. θ∗ is the

actual value of θ, and the first element of θ shows the total traction torque estimation.

3.5.3 Authentication & Self-updating Dataset for Total Traction

Torque

Given k2 in Eq. (3.7), the authentication module decides to choose between the model-

based and data-driven estimators and also determines when the self-updating dataset
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should be updated. The estimations provided by the model-based, data-driven, and hybrid

estimators for the first test data when k2 = 100 are shown in Fig. 3.19. The green and

red colors on the horizontal axis of this figure illustrate when the hybrid estimator uses

the model-based and data-driven estimators, respectively. In this test, the hybrid esti-

mator uses the model-based estimator in 99 points from the 1000 points, and the dataset

is updated in these 99 points. The RMSEs of the model-based, data-driven and hybrid

estimations are 0.0150, 0.0167, and 0.0139, respectively. This result shows that the hybrid

estimator outperforms the others. To evaluate the performance of the hybrid estimator

when the vehicle faces new environments, the second test data in Table 3.2 is used, and its

result is shown in Fig. 3.20. This figure illustrates that in some test points, the data-driven

estimator is not able to estimate or its estimation is not as precise as the one obtained by

the model-based estimator due to the lack of neighbors in the dataset. Therefore, in these

points, the hybrid estimator uses the model-based estimator, and the dataset is updated

by adding them to itself. Fig. 3.20 shows that in 580 points from the 900 points of this

maneuver, the hybrid estimator uses the estimation obtained by the model-based estima-

tor. Since the data-driven estimator cannot estimate the entire test data, the RMSE is not

determined for that. The RMSEs of the model-based and hybrid estimations are 0.0258

and 0.0251, respectively. The result shows the superiority of the hybrid estimator over the

data-driven one when the vehicle encounters unknown environments.
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Figure 3.19: Estimation of T by the hybrid, model-based, and data-driven estimators for

the 1st test data.

Figure 3.20: Estimation of T by the hybrid, model-based, and data-driven estimators for

the 2nd test data.
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3.5.4 Fault Detector for Total Traction Torque

In the fault detector module, the residuals are obtained by comparing the estimations pro-

vided by the hybrid estimator and the desired control command determined by controllers

or a driver. The traction motor is healthy while the residuals are placed within the predic-

tion interval. If the residuals exceed the threshold LH and persistently lie outside of the

prediction interval, it indicates that a fault occurs in the vehicle traction motor.

To simulate a fault in the vehicle traction motor, the desired control actions are mul-

tiplied by a factor, then these new control actions are applied to the vehicle. To evaluate

the performance of the proposed fault detection approach, a 35% fault is applied to the

traction motor after the 10th second of the first test data. Fig. 3.21 illustrates the resid-

uals of T and their prediction intervals for the first test data in the presence of the fault.

Fig. 3.21 illustrates that the residuals exceed the threshold and persistently lie outside

the prediction interval after the 10.18th second. It represents that there is a fault in the

vehicle traction motor and the proposed fault detection system appropriately detects this

fault. Fig. 3.22 shows the estimation of the actual actuator commands obtained by the

hybrid estimator. This figure illustrates that after occurring the fault, the estimation of

the actual actuator command is almost placed between 60% to 70% of the desired control

actions. Therefore, the failure level of the actuator is estimated between 30% and 40%. It

shows that the failure level of the traction motor is successfully determined since its actual

failure level is 35%.
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Figure 3.21: The residuals of T and their prediction intervals for the 1st test data in the

presence of the fault.

Figure 3.22: The desired, actual, and estimated value of T after the vehicle traction motor

becomes faulty.
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3.6 Summary

In this chapter, a hybrid model/data fault detection and diagnosis methodology was de-

veloped for any vehicle sensor and actuator. This system generally works based on the

information redundancy obtained by a hybrid estimator. In the hybrid estimator, the

authentication module decides how to choose the model-based and data-driven estimators

based on the availability of data around the operating points. The hybrid estimator uses the

model-based and data-driven estimators in unknown and known conditions, respectively.

The authentication module also issues a command to update the self-updating dataset

when the vehicle faces unknown conditions or environments. In this study, Nadaraya-

Watson kernel regression (NWKR) was used as a data-driven estimator. Since NWKR is

an instant-based learning method, it does not need any pre-training, and new data can

be used immediately upon collection. Pearson Correlation Coefficient is used to select

the essential features required for the data-driven estimator. Regarding the nature of the

Gaussian kernel function in NWKR, it is shown that the nearest neighbors of each test

point play the main role in estimation. Therefore, an ε-neighborhood is defined so that

the prediction is conducted based on only the points in this neighborhood. In addition, a

data management approach was proposed to remove redundant points from the database.

Using points placed in the ε-neighborhood for estimation and applying the proposed data

management cause a significant reduction in the computational time of estimation, which

is essential for real-time fault detection. The performance of this fault detection system

was evaluated by applying it to the vehicle’s lateral acceleration sensor and traction motor.

For the lateral acceleration sensor, a Kalman filter applied to a vehicle single-track model

was used as the model-based estimator, and for the traction motor, the recursive least

squares approach applied to the vehicle longitudinal model is proposed as the model-based

estimator. NWKR was used as the data-driven estimator in these two cases. The results

of the experimental tests conducted on the all-wheel-drive test vehicle confirm that the hy-

brid estimator outperforms the model-based and data-driven estimators used individually.

These results also justify that the proposed fault detection and diagnosis system is able to

successfully detect the faults in the target sensor or actuator, then reconstruct the healthy

value of the faulty sensor or find the failure level of the faulty actuator.
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The hybrid fault detection and diagnosis approach proposed in this chapter is applicable

to one target component (a sensor or an actuator) in the vehicle. Therefore, since the target

component is known, there is no need for fault isolation. The need for fault isolation arises

when a set of sensors and actuators is considered. In the next chapter, a data-driven

proposed is proposed to monitor the health status of a set of sensors and actuators. This

approach is able to detect, isolate and quantify a fault occurring in these components.
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Chapter 4

Data-Driven Sensor and Actuator

Health Monitoring System

4.1 Inroduction

The main goal of this chapter is to develop a reliable data-driven health monitoring system

for a set of vehicle sensors and actuators. The algorithm is built upon the coherency of the

vehicle data at any given time. The vehicle data must be coherent, meaning that it must

reflect the physics of the vehicle motion and the causality between states. The contribution

of this chapter is threefold:

• A fault detection algorithm is proposed that works based on the coherency among the

target vehicle’s variables. If a fault occurs in the vehicle, the coherency is violated.

• The proposed fault isolation algorithm checks the coherency among the subsets of

the target vehicle’s variables. This technique finds the subset of the data in which

the coherency among the data holds. In this case, the faulty components are those

not included in that subset.

• Fault quantification determines the type and magnitude of the fault that can be

used to reconstruct sensor data or find the level of actuator failure. The proposed
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fault quantification system applies Nadaraya-Watson Kernel Regression (NWKR) to

reconstruct the healthy value of the faulty sensor and estimate the actual action of

the faulty actuator by using the remaining healthy components.

This chapter is organized as follows: Section 4.2 explains the developed data-driven health

monitoring system in detail. In Section 4.3, this health monitoring system is applied vehicle

and in Section 4.4 its performance is evaluated by experimental results. Finally, the chapter

is summarized in Section 4.5.

4.2 Health Monitoring System

A vehicle’s motion follows physics laws and its variables at each time instance should not

violate these physical causalities. These variables include measurements provided by the

vehicle’s sensors and desired control actions obtained by its controllers or driver. The

proposed health monitoring system checks whether the string of these variables belongs to

the target vehicle or not. If this string of data does not belong to the vehicle, this system

notifies that a fault occurs in the vehicle’s sensors or actuators. After detecting a fault, to

isolate the fault, the health monitoring system searches to find the data coherency in the

subsets of the string of data and determine which of these subsets belongs to the target

vehicle. The faulty component is the variable that is absent from the determined subset. In

this study, it is assumed that at most one component becomes faulty at a time although the

proposed health monitoring system can be easily extended for multiple-fault conditions.

After fault localization, the magnitude and type of the fault are determined by using the

healthy components to reconstruct sensor data or find the level of actuator failure. The

reconstruction of sensor data is essential since the vehicle’s controllers may use the sensor

data to obtain the control actions. When a sensor becomes faulty, if the controllers use

the measurement of the faulty sensor, they will generate inappropriate control actions that

may cause the vehicle’s instability. Therefore, when a sensor becomes faulty, the vehicle’s

controllers should use its reconstructed healthy value instead of its faulty measurement

to generate appropriate control actions. Determining the actuator failure level is also

beneficial, since desired control actions may be obtained by scaling the actuator output
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in partial failures. Therefore, the proposed health monitoring system can be broken down

into three subsystems, including fault detection, isolation, and quantification systems as

will be explained in detail in the following sections.

4.2.1 Fault Detection System

The proposed fault detection system is responsible to notify the fault when it occurs in

the vehicle’s sensors or actuators. This system works based on checking the coherency

among the data received from the vehicle by using the pre-collected data. Since a vehicle

is a deterministic system, by considering all variables presented in the vehicle’s governing

equations of motion, it is possible to check whether these variables’ values belong to the

target vehicle and specify the health status of the target vehicle at the current time. These

variables, also called features, are provided by sensor measurements and desired control

actions and can be expressed in the form of a data string. Throughout this chapter,

vectors and matrices are shown in bold lowercase and bold capitals, respectively. Let

x ∈ Rn denote an n-dimensional data string, i.e.,

x = (x1, x2, . . . , xn )
⊤, (4.1)

where xi, i = 1, . . . , n corresponds to a feature. Similarly, an operating point, x(i) =

(x1(i), x2(i), . . . xn(i) )
⊤, is defined as a point at which the vehicle is currently working.

Additionally, let

D =
{
xj ∈ Rn|j = 1, . . . ,m

}
. (4.2)

denote the pre-collected dataset.

The main idea of the proposed fault detection technique is as follows. First, the vehicle

is locally modeled around the operating point by a multiple linear model. This is in fact a

multi-dimensional linear surface estimated using data points around the operating point.

Then using the distance of the operating point from this linear surface, the health status

of the operating point is specified. To estimate a multi-dimensional linear surface, in the

dataset, the data points placed in an ε-neighborhood are used. An ε-neighborhood is a

multi-dimensional cube with edge length 2ε around the operating point. These data points
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placed in an ε-neighborhood, also called neighbors, are defined as{
xj ∈ D

∣∣ ∥∥x (i)− xj
∥∥
∞ < ε, j = 1, ...,m

}
. (4.3)

To create an accurate linear surface estimation, a rich dataset is required. Hence, if the

created neighborhood is not rich enough, meaning that the number of neighbors is less than

a threshold denoted by k, previous operating points placed within a pre-specified window

of time are considered. In other words, if the neighborhood is rich, the selected data

points are
(
x1, x2, . . . , xN

)
, otherwise, are (x (i− h), . . . , x (i− 1) ), where h is the time

window size. The selected data points, either neighbors or history points, are used to form

the input matrix X ∈ RN×n. The least square method is a form of statistical regression

analysis used to determine the linear surface of best fit for a set of data points. Each point

of data represents the relationship between input variables and an output variable. This

method creates a model that minimizes the sum of the squared residuals. In general, for

a given input matrix X∗ ∈ RN×n and an output vector y∗ ∈ RN , the least square method

aims to solve the quadratic problem [79]

β̂
∗
= argmin

β∗∈Rn

∥y∗ −X∗β∗∥22. (4.4)

The estimated weight vector β̂
∗
is used for estimations and predictions. Importantly,

for a new input vector, x∗
new ∈ RN and an output y∗new, the prediction value and its

corresponding residual are defined as ŷ∗new = x⊤
new β̂∗ and rnew = ŷ∗new − y∗new, respectively.

In order to align the aforementioned least square method with the proposed fault detection

algorithm, the following notations are defined. In the string of data x, for an arbitrary

feature xq, let y = xq, and x−q = (1, x1, . . . , xq−1, xq+1, . . . , xn)
⊤. Similarly, given the

matrix X, X−q =
(
x1
−q, . . . , x

N
−q

)⊤
and y =

(
x1
q, . . . , x

N
q

)⊤
. With the above notations,

the least square function for the proposed fault detection system is given by

β̂ = argmin
β∈Rn

∥y −X−q β∥22. (4.5)

The solution of Eq. (4.5) is used to calculate the predicted value of xq(i), the qth element

of the operating point, which is given by

x̂q(i) = x⊤
−q β̂ = x⊤

−q

(
X⊤

−q X−q

)−1
X⊤

−q y. (4.6)
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The next step is to determine the health status of the operating point. This step is executed

using the residual r(i) = x̂q(i)−xq(i) for the corresponding operating point. If this residual

lies in a prediction confidence interval (−Lr (i) ,+Lr (i)), then the operating point belongs

to the target vehicle and the vehicle is healthy, otherwise, faulty. The boundary (threshold)

of the prediction confidence interval, Lr(i), is given by

Lr (i) = tα
2
,df

√
σ̂2
(
1 + x⊤

−q (i)
(
X⊤

−qX−q

)−1
x−q (i)

)
, (4.7)

where 100 × α
2
-th quantile of t-distribution with nominal level α, and degrees of freedom

df = N−n−1 [79]. Note that the σ̂2 known as Mean Square Error (MSE) is the estimated

value of noise variance. This estimation is given by

σ̂2 =
1

N − 1

N∑
i=1

r2i , (4.8)

where ri = ŷi − yi, and ŷi = x⊤
i β̂, i = 1, . . . , N are the residuals and fitted values for the

modeled linear surface, respectively. The procedure of the proposed residual analysis is

presented in Algorithm 2.
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Algorithm 2 Residual Analysis

Input: Dataset X, operating point x(i).

Output: Determine the vehicle’s health status.

Step 1: Fit a linear model by solving the lease square problem

β̂ = argmin
β∈Rn

∥y −X−qβ∥22

and predict xq(i) using

x̂q(i) = x⊤
−q

(
X⊤

−qX−q

)−1
X⊤

−qy

Step 2: Compute the residual r(i) for the operating point by

r(i) = x̂q(i)− xq(i)

Step 3: Compute the prediction interval
(
−Lr (i) ,+Lr (i)

)
for r(i), where

Lr (i) = tα/2,df

√
σ̂2
(
1 + x⊤

−q (i)
(
X⊤

−qX−q

)−1
x−q (i)

)

Step 4: Determine the health status of the operating point. It is healthy if |r (i)| <
Lr (i); Otherwise, it is faulty .

It should be mentioned that a residual is a vertical distance (r) between the actual

point and the estimated or predicted point in a linear regression model. Moreover, the

orthogonal distance (d) is the length of the line from the actual point that is perpendicular

to the estimated linear surface. In fact, the orthogonal distance is the main criterion

that shows the deviation of the actual point from the estimated surface. The residual

determined in Algorithm 2 can be easily converted to the orthogonal distance using the

equation d (i) = |r (i) × cos θ|, where θ is the angle between the normal vector of the

linear surface and the vertical direction. This equation along with Eq.(4.7), results in

the threshold of the prediction interval based on the orthogonal distance, Ld(i), which
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is determined by Ld (i) = Lr (i) |cos θ|. For clarification, the schematics of the residual,

(orthogonal) distance, and their corresponding thresholds are shown in Fig. 4.1

Figure 4.1: The schematics of the residual, orthogonal distance, and their corresponding

thresholds.

The diagram in Fig. 4.2 visually illustrates how the proposed fault detection system

performs. As previously mentioned, when the history of operating points is used in the

fault detection algorithm, it is shown that the pre-collected dataset is not rich enough

around the current operating point. On this condition, if this algorithm confirms that the

current operating point is healthy, this healthy point is called missing data and it is added

to the dataset to update it. This kind of dataset is called Self-updating dataset.
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Figure 4.2: The overview of the proposed fault detection system.

Figures 4.3 and 4.4 visualize the orthogonal distances for faulty and healthy operating

points when the string of data has two features. Fig. 4.3 shows the cases when the dataset

is rich enough around the operating point.

(a) (b)

Figure 4.3: Visualization of the concept of the proposed fault detection system when data

are available around the operating point. (a) Healthy Case. (b) Faulty Case.

In Fig.4.3a, first, by considering an ε-neighborhood around the operating point (green

point), the operating point’s neighbors are determined, and then a two-dimensional surface
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is fitted to these neighbors. By considering a prediction interval (blue lines), it can be shown

that the operating point is placed within this prediction interval. Therefore, it shows that

the operating point belongs to the target system and the system is healthy. This process

is also performed in Fig. 4.3b, but this time, the distance of the operating point (red

point) from the fitted surface exceeds the threshold and the operating point lies outside

the prediction interval. This point shows that the operating point does not belong to the

target system, so there is a fault in the target system.

Fig. 4.4 visualizes the cases when the dataset is not rich enough around the operating

point. On this condition, a set of previous operating points is used to form a linear surface,

and the distance of the current operating point from the fitted surface can indicate whether

the current operating point belongs to the target system or not. Fig. 4.4a shows that if this

distance is less than the determined threshold (yellow lines) and the current operating point

is placed within the prediction interval, this point belongs to the target vehicle, but it is

missing from the dataset. Since there are not enough neighbors around the operating point,

this point is added to the dataset to update it. Fig. 4.4b illustrates that if this distance

exceeds the threshold and the current operating point is placed outside the prediction

interval, it shows that the operating point does not belong to the target system and there

is a fault occurring in the target system.

(a) (b)

Figure 4.4: Visualization of the concept of the proposed fault detection system when data

are not available around the operating point. (a) Healthy Case. (b) Faulty Case.
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4.2.2 Fault Isolation System

Algorithm 2 proposed in the previous subsection can specify the status of the operating

point. If the operating point is determined as faulty, the next step is to isolate the faulty

feature. As previously mentioned, it is assumed that at most one feature (sensor or ac-

tuator) becomes faulty at a time in this study. For fault isolation, based on the string of

data, all subspaces in each of which one feature is absent are explored. To this end, in

each subspace, first, an ε-neighborhood is considered around the projected operating point

to find neighbors, and then Algorithm 2 is applied to check the health status of the pro-

jected operating point. Algorithm 2 shows that the projected operating point is healthy in

only one subspace, and the faulty feature is the feature that is absent from this subspace.

Only in this subspace, the projected operating point is placed within the prediction inter-

val and its distance from the fitted surface does not exceed the corresponding threshold.

This algorithm can be extended to isolate multiple faults by exploring lower-dimensional

subspaces.

Fig. 4.5 visualizes this isolation process in three-dimensional space. In Fig. 4.5a, the

blue points show the points in the dataset and the red point is an operating point whose

Feature 3 is made faulty. Figs. 4.5b, 4.5c, and 4.5d illustrate these points in the subspaces

from which Features 1, 2, and 3 are respectively removed. In each of these subspaces, an

ε-neighborhood is plotted around the operating point, and then a two-dimensional surface

is fitted to neighbors placed in this ε-neighborhood. It can be shown that only in the

subspace from which Feature 3 is absent, the projected operating point is placed within

the prediction interval. Based on the proposed approach for fault isolation, the faulty

feature is Feature 3, so the existence of a fault in Feature 3 is verified. The diagram in

Fig. 4.6 displays the general overview of this fault isolation process.
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(a) (b)

(c) (d)

Figure 4.5: Visualization of the concept of the proposed fault isolation system. (a) The

red point is the operating point whose faulty feature is Feature 3 and the blue points are

data in the dataset in three-dimensional space. Projection of all these points into the plane

whose absent feature is Feature 1 (b)/Feature 2 (c)/Feature 3 (d).
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Figure 4.6: The overview of the proposed fault isolation system.

4.2.3 Fault Quantification System

After detecting and isolating the fault, it is required to quantify the fault and reconstruct

the actual value of the faulty feature. If an actuator becomes faulty, the fault quantification

system can determine its failure level by using the estimation of its actual output. If a

sensor becomes faulty, by using its reconstructed healthy value, appropriate control actions

can be obtained to achieve safe and satisfactory vehicle performance. After localizing the

source of the fault, by removing the faulty feature from the string of data and by using

the remaining healthy features, the proposed fault quantification system applies Nadaraya-

Watson Kernel Regression (NWKR) to reconstruct the healthy value of the faulty sensor or

estimate the actual action of the faulty actuator. As previously mentioned in the proposed

fault detection system, a self-updating dataset is proposed to be updated by adding missing

data to itself. Estimation based on the updated dataset raises a need of using instant-based

learning methods (e.g., kernel regression methods) for the data-driven estimator. NWKR

is one of the well-known kernel regression techniques that works based on the extraction

of a nonlinear relationship that is the best fit to the given dataset, and it can estimate the

unseen data with weighted averaging [66].

Based on the definition of x in Eq. (4.1) and without loss of generality, it is assumed

that the faulty feature is xp (i) (the p
th feature of the operating point). By eliminating this

feature from the string of data and using the dataset, NWKR can estimate the healthy
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value of this faulty feature as follows:

x̂p (i) =

m∑
j=1

xj
p

(
k=n∏

k=1,k ̸=p

Kσ

(
xk (i) , x

j
k

))
m∑
j=1

(
k=n∏

k=1,k ̸=p

Kσ

(
xk (i) , x

j
k

)) (4.9)

where xk (i) is the kth feature of the operating point, and xj
k is the kth feature of the jth

point in the dataset. In addition, Kσ( , ) is the Gaussian kernel function defined as,

Kσ

(
xk (i) , x

j
k

)
=

1√
2π

exp

(
−
(
xk (i)− xj

k

)2
2σ2

)
(4.10)

in which σ is the standard deviation of the Gaussian function, also known as the bandwidth

of the kernel function.

In the proposed reconstruction approach, the faulty feature, xp (i), is considered as the

output of NWKR, and all remaining healthy features are considered as NWKR’s inputs.

Based on the nature of the Gaussian kernel function, if
∣∣xk (i)− xj

k

∣∣ > 3σ,Kσ

(
xk (i) , x

j
k

)
has a negligible value, according to the NWKR formula, xj can be omitted to participate

in the estimation of x̂p (i). Therefore, in the subspace from which the faulty feature is

absent, an ε-neighborhood with ε = 3σ is considered around the operating point to find its

neighbors, and only these neighbors participate in the estimation process. Based on this

idea, in Eq. (4.9), m will be the number of these neighbors, and xj
k will be the kth feature

of the jth neighbor placed in this ε-neighborhood.Considering the proper ε-neighborhood

not only does not decrease the quality of estimation but also causes a significant reduction

in its computational time. Fig. 4.7 shows the overview of the proposed fault quantification

system.
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Figure 4.7: The overview of the proposed fault quantification system.

4.3 Application of The Health Monitoring System to

Vehicles

To apply the proposed health monitoring system to a vehicle, its planar motion is consid-

ered. Based on this motion, the available vehicle sensors are the IMU sensor and the wheel

speed sensors, and the available desired control actions are the vehicle traction torque,

brake torque, and steering wheel angle. Given the vehicle’s equations of motion, the de-

sired control actions and sensor measurements along with some of their derivatives are

essential to determine the vehicle’s state. Therefore, based on the aforementioned points,

the string of data that can express the vehicle’s state is:

x = (ax, ay, r, ṙ, ωfL, ω̇fL, ωfR, ω̇fR, ωrL, ω̇rL, ωrR, ω̇rR, δ, T )
⊤ (4.11)

in which the descriptions of all these variables are provided in Table 4.1. In this table,

subscripts ij ∈ {fL, fR, rL, rR} represent the front-left, front-right rear-left, and rear-right

wheels, respectively.
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Table 4.1: List of the vehicle variables in the proposed string of data

Variable Description

Notation

δ Steering Angle

T Total torque applied to the wheels

ax Longitudinal Acceleration

ay Lateral Acceleration

r Yaw Rate

ṙ Yaw Acceleration

ωij Wheel Angular Velocity

ω̇ij Wheel Angular Acceleration

As previously mentioned, the proposed health monitoring approach generally works

based on the distance of the operating point from the multi-dimensional surface fitted to

the operating point’s neighbors. In the fault detection task, this subject is studied in the

full-dimensional space, but in the fault isolation task, it is investigated in all subspaces.

Based on Eq. (4.11), some features along with their derivatives are in the proposed string

of data. If each of these features is absent from subspaces, its derivative should not be

considered either, since if a feature is not valid due to being faulty, its derivative is not

valid either. Given Eq. (4.11), there are 9 subspaces, and Table 4.2 illustrates the removed

feature from the string of data in each of these subspaces.

67



Table 4.2: Feature(s) removed from the proposed string of data in all 9 subspaces

Feature(s) removed from x (Eq. (4.11))

Subspace 1 ax

Subspace 2 ay

Subspace 3 r, ṙ

Subspace 4 ωfL, ω̇fL

Subspace 5 ωfR, ω̇fR

Subspace 6 ωrL, ω̇rL

Subspace 7 ωrR, ω̇rR

Subspace 8 δ

Subspace 9 T

Note that, in reality, due to different disturbance sources, the sensor measurements are

noisy. Therefore, persistency in the health status of operating points should be considered

in the health monitoring process. It means that if the distance of the operating point from

the corresponding surface is persistently placed within the prediction interval, it indicates

that the target system is healthy. If this distance exceeds the threshold and persistently

lies outside the prediction interval, it shows that there is a fault in the target system.

4.4 Vehicle Health Monitoring System Evaluation with

Experimental Results

The performance of the proposed health monitoring system is experimentally evaluated

with the electric all-wheel-drive test vehicle shown in Fig. 3.2.

To generate a dataset for the algorithm evaluation and without loss of generality, the

acceleration-in-turn maneuver is also considered in this study. The specifications of the

acceleration-in-turn maneuvers used for collecting the dataset and test data are presented

in Table 4.3. To test the proposed algorithm, the collected data are used with different

sensor/actuator faults to evaluate the fault detection, isolation, and quantification systems.
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Table 4.3: The specifications of the acceleration-in-turn maneuvers used for collecting the

dataset and test data

Dataset Test Data

Torque applied to each wheel

Tij = A× Ramp Function, Tmax = 500N.m A ∈ {50, 70, 80} A = 60

Steering Wheel Angle

δ = B × Step function B ∈ {140, 160, 200, 220} B = 180 deg

To evaluate the performance of the proposed health monitoring system, the procedure

is applied to the following cases:

1. the healthy and known test data

2. the healthy and unknown test data

3. the faulty test data (Faulty sensor)

4. the faulty test data (Faulty Actuator)

Note that since the scales of features are different from each other, they are normalized

between -1 and 1. The design parameters used in the proposed health monitoring system

are provided in Table 4.4. If the number of neighbors in ε-neighborhood is greater than

500, only 500 of them are randomly selected and used in the health monitoring process.

Table 4.4: The design parameters of the proposed health monitoring system

Design Parameter Value

ε in the ε-neighborhood 0.1

σ in the Gaussian kernel function 0.025

k in Fig. 4.2 20

The confidence level of the prediction interval (1− α) 99%
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4.4.1 Healthy & Known Test Data

The healthy and known test data is the test data when the vehicle operates under conditions

that are approximately the same as those in its dataset and the vehicle’s sensors and

actuators are completely healthy. In each operating point of the healthy and known test

data, it is expected that there are enough neighbors to fit a full-dimensional surface, and

the distance of the operating point from the fitted surface is placed within the prediction

interval. Having enough neighbors to fit a surface means that the number of neighbors is

greater than a determined threshold, k. Fig. 4.8 shows the distance of the operating point

from the associated surface in the healthy and known test data, and the result confirms

what is expected.

Figure 4.8: The distance of the operating point from the associated surface in the healthy

and known test data.

4.4.2 Healthy & Unknown Test Data

The healthy and unknown test data is the test data when the vehicle encounters unknown

environments and the vehicle’s sensors and actuators are completely healthy. Since all data

in the dataset are for acceleration-in-turn maneuvers, to simulate an unknown environment,
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an acceleration maneuver with sinusoidal steering is considered as test data in this part.

Fig. 4.9 shows the distance of the operating point from its associated surface in this ma-

neuver. On the horizontal axis of this figure, the pink/yellow color shows when the dataset

has/does not have enough neighbors around the operating point to fit the full-dimensional

surface. For each operating point that has enough neighbors, the fault detection system

fits a surface to its neighbors and then finds its distance from this surface. This distance

and its corresponding threshold are shown with blue and dashed red lines in Fig. 4.9. For

each operating point that does not have enough neighbors, the fault detection system fits a

surface to its history of operating points and then finds its distance from this surface. This

distance and its threshold are also shown with black and dashed green lines in Fig. 4.9.

This figure confirms that the distance of the operating point from its associated surface in

this test data does not exceed the threshold and is placed within the prediction interval.

This point shows that all vehicle sensors and actuators are healthy. Moreover, since the

dataset is not rich enough around the healthy operating points that do not have enough

neighbors (missing data), these operating points are added to the self-updating dataset to

update it.

Figure 4.9: The distance of the operating point from the associated surface in the healthy

and unknown test data. The pink/yellow color on the horizontal axis shows the availabil-

ity/lack of data around the operating points.
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4.4.3 Faulty Test Data (Faulty Sensor)

In this part, the proposed health monitoring system is applied to the test data in which one

of the vehicle’s sensors is faulty. To evaluate the performance of this system, the following

cases are studied in this section:

• Faulty longitudinal acceleration sensor

• Faulty lateral acceleration sensor

• Faulty rear-right wheel speed sensor

• Faulty front-left wheel speed sensor

It is expected that the health monitoring system is able to detect and isolate the fault and

then reconstruct the healthy value of the faulty sensor.

4.4.3.1 Faulty longitudinal acceleration sensor

In the first case, a 30% fault is applied to the vehicle’s IMU sensor measuring the longitu-

dinal acceleration starting at the 5th second of the test maneuver. First, the fault detection

system is applied to find when the fault occurs. Based on its results shown in Fig. 4.10,

after the 5th second, the distance of the operating point from the fitted surface exceeds its

threshold and persistently lies outside the prediction interval. Therefore, the fault detec-

tion system notifies that a fault occurs in the vehicle. After that, the fault isolation system

checks the distance of the operating point from the fitted surface in all nine subspaces.

Fig. 4.11 shows that only in Subspace 1, the distance is persistently placed within the pre-

diction interval, so the faulty feature is the one that is absent from this subspace. Based

on Table 4.2, it can be found that the faulty feature is the longitudinal acceleration sensor,

and this point has conformity with what is expected. Finally, all remaining healthy fea-

tures (features in Subspace 1) are used to reconstruct the healthy value of the longitudinal

acceleration by applying NWKR. Fig. 4.12 illustrates that the fault quantification system

can appropriately reconstruct the healthy value of the longitudinal acceleration sensor.
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Figure 4.10: The distance of the operating point from the associated surface in the faulty

test data in which the longitudinal acceleration sensor becomes faulty.

Figure 4.11: The distance of the operating point from the associated surface in all subspaces

when the fault occurs in the longitudinal acceleration sensor.
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Figure 4.12: Reconstruction of the longitudinal acceleration sensor after it has become

faulty.

4.4.3.2 Faulty lateral acceleration sensor

In the second case, a bias fault of 0.5m/s2 is applied to the lateral acceleration sensor

starting at the 6th second of the test maneuver. First, Fig. 4.13 shows that after the 6th

second, the distance of the operating point from the fitted surface persistently lies outside

the prediction interval, so it indicates that there is a fault in the vehicle and the fault

detection system successfully detects it. Then, based on Fig. 4.14, the fault isolation

system shows that only in Subspace 2 in which the lateral acceleration sensor is removed,

the distance of the projected operating point from the corresponding surface is persistently

placed within the prediction interval. Therefore, it verifies that the faulty feature is the

lateral acceleration sensor. Finally, Fig. 4.15 illustrates that the fault quantification system

by using the all features in Subspace 2 can properly reconstruct the healthy value of the

faulty sensor.
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Figure 4.13: The distance of the operating point from the associated surface in the faulty

test data in which the lateral acceleration sensor becomes faulty.

Figure 4.14: The distance of the operating point from the associated surface in all subspaces

when the fault occurs in the lateral acceleration sensor.
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Figure 4.15: Reconstruction of the lateral acceleration sensor after it has become faulty.

4.4.3.3 Faulty rear-right wheel speed sensor

In the third example, a 30% fault is applied to the rear-left wheel speed sensor starting

at the 6th second of the test maneuver. Fig. 4.16 shows that after the 6th second, the

distance of the operating point from the fitted surface in the full-dimensional space is

persistently placed outside the prediction interval, which is an indication occurring a fault

in the vehicle. After fault detection, in Fig. 4.17, the fault isolation system shows that only

the distance of the operating point from the fitted surface in Subspace 7 persistently lies

within the prediction interval. Based on Table 4.2, Subspace 7 is the subspace from which

the rear-right wheel angular velocity and its derivative are absent, so this point confirms

that the faulty feature is the rear-right wheel speed sensor. By using the all features in

Subspace 7, NWKR can successfully reconstruct the healthy value of the rear-right wheel

angular velocity shown in Fig. 4.18.
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Figure 4.16: The distance of the operating point from the associated surface in the faulty

test data in which the rear-right wheel speed sensor becomes faulty.

Figure 4.17: The distance of the operating point from the associated surface in all subspaces

when the fault occurs in the rear-right wheel speed sensor.
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Figure 4.18: Reconstruction of the rear-right wheel speed sensor after it has become faulty.

4.4.3.4 Faulty front-left wheel speed sensor

In the last case, a gradual multiplicative fault with the pattern shown in Fig. 4.19 is

applied to the front-right wheel speed sensor. Fig. 4.20 illustrates that after the 4.1th

second, the distance of the operating point from the fitted surface exceeds the threshold

and persistently lies outside the prediction interval. Therefore, the fault detection system

notifies the existence of the fault at this time when the fault’s magnitude is 2% (based

on Fig. 4.19). Then, based on Fig. 4.21, the fault isolation system shows that only in

Subspace 4 in which the front-left wheel angular velocity and its derivative are removed,

the distance of the projected operating point from the corresponding surface is persistently

placed within the prediction interval. Therefore, it verifies that the faulty feature is the

front-left wheel speed sensor. Lastly, Fig. 4.22 shows that the fault quantification system

by using the all features in Subspace 4 can appropriately reconstruct the healthy value of

the faulty sensor.
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Figure 4.19: The fault pattern applied to the front-left wheel speed sensor.

Figure 4.20: The distance of the operating point from the associated surface in the faulty

test data in which the front-left wheel speed sensor becomes faulty.
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Figure 4.21: The distance of the operating point from the associated surface in all subspaces

when the fault occurs in the front-left wheel speed sensor.

Figure 4.22: Reconstruction of the front-left wheel speed sensor after it has become faulty.

80



4.4.4 Faulty Test Data (Faulty Actuator)

In this section, the proposed health monitoring system is applied to the test data in which

one of the vehicle’s actuators is faulty. It is expected that the health monitoring system

is able to detect and isolate the fault and then find the level of actuator failure. To study

the performance of this system in health monitoring of the vehicle actuators, a 25% fault

is applied to the vehicle traction motor or brake actuator starting at the 11th second of

the test maneuver. Fig. 4.23 illustrates that after the 11th second, the distance of the

operating point from the fitted surface exceeds its threshold and it is persistently placed

outside the prediction interval. Based on this result, the fault detection system notifies

occurring a fault in the vehicle. After fault detection, the distance of the operating point

from the fitted surface in all nine subspaces shown in Fig. 4.24 is determined by the fault

isolation system. Based on Fig. 4.24, the distance of the operating point from the fitted

surface in Subspace 9 lies within the prediction interval. According to Table 4.2, Subspace

9 is the subspace in which the wheels’ total torque is excluded, so the fault isolation system

determines that the faulty feature is the vehicle traction motor or brake actuator. After

localizing the source of the fault, NWKR uses all features in Subspace 9 to estimate the

wheels’ actual torque, and Fig. 4.25 shows that its actual value is successfully estimated.

The sign of its estimated value can specify whether the faulty feature is the vehicle’s

traction motor or brake system. If the estimated value of the wheels’ actual torque is

positive/negative, it shows that the vehicle is in the acceleration/brake mode, so the faulty

feature is the vehicle’s traction motor/brake system. By comparing the desired value of the

wheels’ total torque (T ) provided by the vehicle’s controllers or driver to the estimation

of its actual value obtained by the fault quantification system, the level of actuator failure

can be determined. Fig. 4.25 also shows that the estimated value of the wheels’ total

torque (T ) can be approximately fitted to 75% of its desired value, so the level of actuator

failure is determined as 25%.

81



Figure 4.23: The distance of the operating point from the associated surface in the faulty

test data in which the vehicle traction motor becomes faulty.

Figure 4.24: The distance of the operating point from the associated surface in all subspaces

when the fault occurs in the vehicle traction motor.
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Figure 4.25: Estimation of the actual action of the traction motor after it has become

faulty.

4.5 Summary

In this chapter, a general data-driven health monitoring system was developed to evaluate

the health status of vehicles’ sensors and actuators. This system involves three tasks: fault

detection, isolation, and quantification, which are respectively responsible for determining

the occurrence, location, and magnitude of faults. The developed system requires data

provided by the sensors’ measurements and desired control actions of the target vehicle.

The vehicle’s current state expressed by a string of data with n features is called the ve-

hicle’s operating point. By using the target vehicle’s data around its operating point, the

proposed health monitoring system checks whether the operating point belongs to the tar-

get vehicle. If the operating point does not belong to the vehicle, the health monitoring

system notifies that there is a fault in the vehicle. After fault detection, to isolate the fault,

the health status of the operating point is investigated on subspaces in each of which one

feature is absent. In the subspace from which the faulty feature is absent, the projected

operating point onto this subspace belongs to the target vehicle. Based on this idea, the

faulty component was localized. If a sensor becomes faulty, the fault quantification sys-
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tem reconstructs its healthy value by using the remaining healthy features. Therefore, the

vehicle’s controllers can use the reconstructed value instead of the faulty measurements to

generate appropriate control actions. If an actuator becomes faulty, by using the remaining

healthy features, the fault quantification system estimates its actual action and finds its

level of failure. This information can be used to generate desired control actions by scaling

the actuator output. The proposed health monitoring system can also detect abrupt faults

when the vehicle encounters unknown environments or when there is a lack of data around

its operating point. In these conditions, the proposed self-updating dataset also collects

data directly from the vehicle to enrich the dataset, and the health monitoring system is

able to use the new data when the vehicle faces similar environments again. The perfor-

mance of the proposed health monitoring system is evaluated using experimental tests.

The results show that the health monitoring system appropriately detects, isolates, and

quantifies faults in the vehicle’s sensors and actuators.

There are two issues in the developed data-driven health monitoring system. The first

one is that although this health monitoring system is able to detect abrupt faults in a lack of

data, it is challenging for this system to deal with gradual faults in these conditions. In [80],

a model-based health monitoring system is developed for vehicle sensors, which can detect

sensor faults, isolate the faulty sensor and provide the fault-tolerant estimation of vehicle

states. When the vehicle faces unknown environments, this model-based health monitoring

system can be used to improve the performance of the data-driven one developed in this

chapter. Integrating these two methodologies provides a reliable hybrid health monitoring

system that can outperform the model-based and data-driven ones used individually. The

next issue is that for each vehicle, the data-driven health system needs an individual

dataset. The next chapter is provided to address this issue.
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Chapter 5

Universal Health Monitoring System

for IMU Sensor

5.1 Introduction

In the previous chapter, a data-driven health monitoring system is developed to monitor

the health status of a set of sensors and actuators in a vehicle. The main requirement of the

proposed algorithm is that it needs an individual dataset for each vehicle. This chapter

attempts to investigate whether it is possible to provide a universal health monitoring

system for vehicles. Universality in the health monitoring application means that the

health monitoring system is able to monitor the health status of a vehicle using other

vehicles’ data.

5.2 Universal Health Monitoring System in The Ve-

hicle Planar Motion

In universality, the vehicle inertial and geometrical parameters must be combined with

vehicle variables so that the resulting features are invariant from one vehicle to another.
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To develop a universal health monitoring system, it is required to propose a string of data

with these features, and then apply the proposed data-driven health monitoring system

operating based on this data string. To this end, the planar double-track vehicle model

shown in Fig. 5.1 is considered. The model parameters with their descriptions are listed

in Table 5.1.

Figure 5.1: a planar double-track vehicle model

Table 5.1: The parameters of the double-track vehicle model with their descriptions

Parameter Description

M Vehicle mass

Iz Vehicle moment of inertia about normal direction

a, b Distance from the vehicle CG to front/rear axle

w1, w2 Distance from the vehicle CG to left/right wheels

Rw Tire effective radius

Iw Wheel moment of inertia about its axis

SR Ratio between steering wheel angle & front wheel angle

Based on Fig. 5.1, an external force applied to each wheel can be projected onto the

wheel’s longitudinal and lateral axes, and these forces are respectively denoted by Fxij and
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Fyij, ij ∈ {fL, fR, rL, rR}. According to Fig. 5.1, the equivalent external longitudinal

force, lateral force, and moment applied to an axle are respectively denoted by Fxi, Fyi,

and Mi. The subscripts i ∈ {f, r} represent the front and rear axles, respectively. These

forces and moments for the front and rear axles are as follows:

Fxf = FxfL + FxfR

Fyf = FyfL + FyfR

Mf = FxfRw2 cos δw − FyfRw2 sin δw − FxfLw1 cos δw + FyfLw1 sin δw

(5.1)

Fxr = FxrL + FxrR

Fyr = FyrL + FyrR

Mr = FxrRw2 − FxrLw1

(5.2)

where δw is the front wheel steering angle. By transferring the axles’ forces to the vehicle

CG with their corresponding moments. The governing equations of motion at the CG are

determined as

FxCG = Fxf cos δw − Fyf sin δw + Fxr ⇒ FxCG = Max

FyCG = Fxf sin δw + Fyr cos δw + Fyr ⇒ FyCG = May

MCG = Mf +Mr + (Fxf sin δw + Fyr cos δw) a− Fyrb⇒MCG = Iz ṙ

(5.3)

where FxCG, FyCG, and MCG are respectively the total longitudinal force, lateral force, and

moment applied to the CG. The variables ax, ay, ṙ are respectively the vehicle longitudinal,

lateral, and yaw accelerations. Due to the uncertainties and unmodeled dynamics, the

equality in Eq. (5.3) is not always valid, so it may be not possible to detect a fault

in the vehicle by exploring inconsistency in these equations. However, these equations

provide an opportunity to find how the vehicles’ parameters should participate in the

health monitoring process to achieve universality. Based on Eq. (5.3), the following string

of data is proposed.

x =

(
ax ay ṙ

FxCG

M

FyCG

M

MCG

Iz

)⊤
(5.4)

The first three features in the proposed string of data can be obtained by the IMU sensor,

and the last three features can be determined if the longitudinal and lateral forces of

each wheel are available. These forces can be measured by wheel force/moment sensors,
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but these sensors may not be available in commercial vehicles. Hence, reliable estimation

approaches in the literature can be utilized to obtain them. The longitudinal force of each

wheel can be estimated independently of the IMU sensor measurements by using the wheel

dynamics as follows:

F̂xij =
Tij − Iwω̇ij

Rw

(5.5)

In the literature, several approaches are developed to estimate the tire lateral force [80–84].

By applying the developed data-driven health monitoring system to the proposed string

of data (Eq. (5.4)), the universal health monitoring system is provided. The universal

health monitoring system can monitor the health status of the target vehicle’s IMU sensor

(measuring the longitudinal/lateral accelerations and yaw rate) by using the data of other

vehicles. Despite some limitations in the isolation and reconstruction tasks, the universal

health monitoring system is capable of the following:

• Longitudinal Acceleration Sensor: The universal health monitoring system can

detect and isolate faults in the target vehicle’s longitudinal sensor and also reconstruct

its healthy value by using other vehicles’ data.

• Lateral Acceleration Sensor: The proposed universal health monitoring system

is able to only detect faults in the target vehicle’s lateral sensor. The reason behind

it is that approaches developed in the literature to estimate tire lateral force require

lateral acceleration as their input [80–84]. Therefore, if the lateral acceleration sensor

becomes faulty, the three last features in the proposed string of data are not valid

anymore. Based on the proposed data-driven health monitoring approach, to isolate

the fault in the lateral acceleration sensor, the lateral acceleration feature and all

features affected by it should be removed from the string of data. On this condition,

the remaining features are longitudinal and yaw accelerations which are insufficient

to represent a vehicle model. Therefore, it is not possible to check the vehicle health

status in this subspace and hence isolate the fault in the lateral acceleration sensor.

• Yaw Rate Sensor: The universal health monitoring system can detect and isolate

non-bias faults in the yaw rate sensor. Since the yaw acceleration feature is in the

proposed string of data and a bias fault in the yaw rate sensor does not affect its
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derivative, it is not possible to detect a bias fault in the yaw rate sensor. Moreover,

after detecting and isolating non-bias faults in the yaw rate sensor, the health moni-

toring system based on the proposed string of data is able to reconstruct the healthy

value of the yaw acceleration signal not the yaw rate sensor.

Since it is only possible to isolate faults when the longitudinal acceleration sensor or yaw

rate sensor becomes faulty, for fault isolation, only two subspaces are considered. Table

5.2 illustrates the available and removed features in each of these subspaces.

Table 5.2: The available and removed features in subspaces

Removed Feature Available Features

Subspace 1 ax

(
ay, ṙ,

FxCG

M
,

FyCG

M
, MCG

Iz

)
Subspace 2 ṙ

(
ax, ay,

FxCG

M
,

FyCG

M
, MCG

Iz

)

5.3 Universal Health Monitoring System Evaluation

with Simulation Results

The performance of the universal health monitoring system is evaluated by software sim-

ulations with high-fidelity CarSim models.

5.3.1 Training and Test Vehicles/Dataset

Six vehicle models in the CarSim software are considered and their specifications are listed

in Table 5.3. To investigate the effect of universality, one of the vehicles is considered a

test vehicle, and others are considered training vehicles.
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Table 5.3: The specifications of the six CarSim vehicle models

Test Training

Vehicle Vehicles

Vehicle D Class E Class E Class C Class B Class Minivan

Parameters Sedan SUV Sedan Hatchback Hatchback

M(Kg) 1525 3397 1839 1675 1236 1936

Iz(Kgm2) 2315 2687 3234 1413 1343 3528

a(m) 1.1 1.18 1.4 1.015 1.04 1.35

b(m) 1, 76 1.77 1.65 1.895 1.56 1.65

w1(m) 0.775 0.788 0.8 0.838 0.740 0.82

w2(m) 0.775 0.788 0.8 0.838 0.740 0.82

Rw(m) 0.325 0.393 0.353 0.325 0.298 0.346

Iw(Kgm2) 1.5 2.8 2 1.5 1 2

SR 17.41 : 1 20.05 : 1 17.61 : 1 17.97 : 1 17 : 1 17 : 1

The acceleration-in-turn maneuver comprised of steering and pushing the accelerator

pedal is considered in this study. Note that the position of the accelerator pedal can be

represented by the percentage of the throttle opening. Therefore, to generate a dataset,

the simulation runs for the training vehicles with different steering wheel angles, different

percentages of throttle opening, and different road frictions. Test data is obtained by

running another acceleration-in-turn maneuver for the test vehicle. The specifications

of the acceleration-in-turn maneuvers used for collecting the dataset and test data are

presented in Table 5.4.

Table 5.4: The specifications of the acceleration-in-turn maneuvers used for collecting the

dataset and test data

Dataset Test Data

Throttle Opening (THRL) % THRL ∈ {0%, 10%, ..., 100%} THRL = 65%

δ = B × Step function (deg) B ∈ {−270, −225, ..., 225, 270} B = 100

Road Friction µ µ ∈ {0.5, 0.75, 0.85, 1} µ = 0.8
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5.3.2 Simulation Results

In this section, the universal health monitoring system is utilized on the test data from

the test vehicle using the dataset collected from training vehicles. The following cases are

studied to evaluate the performance of this system:

• Faulty longitudinal acceleration sensor

• Faulty Yaw rate sensor

• Faulty lateral acceleration sensor

5.3.2.1 Faulty longitudinal acceleration sensor

In the first case, a 50% fault is applied to the vehicle’s IMU sensor measuring the yaw

rate starting at the 3.5th second of the test maneuver. First, the fault detection system

is applied to find when the fault occurs. Fig. 5.2 shows that after the 3.5th second, the

distance of the operating point from the fitted surface exceeds its threshold and persistently

lies outside the prediction interval. Hence, the fault detection system notifies that a fault

occurs in the vehicle. After that, the fault isolation system checks the distance of the

projected operating point from the fitted surface in two subspaces. Fig. 5.3 shows that

in Subspace 1, the distance is persistently placed within the prediction interval, so the

faulty feature is the longitudinal acceleration sensor that is absent from this subspace.

Finally, the healthy features in Subspace 1 are used to reconstruct the healthy value of the

longitudinal acceleration shown in Fig. 5.4. The simulation results show that the universal

health monitoring system can successfully detect and isolate the fault in the ax sensor of

the test vehicle and this system can also appropriately reconstruct the healthy value of ax

although the other vehicles’ data are used.
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Figure 5.2: The distance of the operating point from the associated surface in the faulty

test data in which the longitudinal acceleration sensor becomes faulty.

Figure 5.3: The distance of the operating point from the associated surface in two deter-

mined subspaces when the fault occurs in the longitudinal acceleration sensor.
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Figure 5.4: Reconstruction of the longitudinal acceleration sensor after it has become faulty

by using the other vehicles’ data.

5.3.2.2 Faulty yaw rate sensor

In the second case, a 60% fault is applied to the yaw rate sensor starting at the 4th second

of the test maneuver. When the yaw rate sensor becomes faulty, the yaw acceleration is

also 40% of its healthy value. Fig. 5.5 shows that after the 4th second, the distance of the

operating point from the fitted surface in the full-dimensional space is persistently placed

outside the prediction interval, so it indicates that there is a fault in the system. After fault

detection, in Fig. 5.6, the fault isolation system shows that the distance of the operating

point from the fitted surface in Subspace 2 persistently lies within the prediction interval.

Therefore, the faulty feature is the yaw acceleration that is absent from this subspace.

Since yaw acceleration is obtained by using the measurements of the yaw rate sensor, the

actual faulty component is the yaw rate sensor. By using all features in Subspace 2, NWKR

can reconstruct the healthy value of the yaw acceleration, but it is not able to reconstruct

the healthy value of the yaw rate sensor.
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Figure 5.5: The distance of the operating point from the associated surface in the faulty

test data in which the yaw rate sensor becomes faulty.

Figure 5.6: The distance of the operating point from the associated surface in two deter-

mined subspaces when the fault occurs in the yaw rate sensor.
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5.3.2.3 Faulty lateral acceleration sensor

In the last case, a 20% fault is applied to the lateral acceleration sensor starting at the

5th second of the test maneuver. Based on points mentioned in Section 5.2, by using the

other vehicles’ data, it is expected that the universal health monitoring system is able only

to notify the occurrence of a fault in the test vehicle when the lateral acceleration sensor

becomes faulty. Fig. 5.7 illustrates that after the 5th second, the distance of the operating

point from the fitted surface persistently lies outside the prediction interval, so it is an

indication of occurring a fault in the test vehicle. Based on this result, the expectation has

been successfully met.

Figure 5.7: The distance of the operating point from the associated surface in the faulty

test data in which the lateral acceleration sensor becomes faulty.

5.3.3 Summary

This chapter attempts to develop a universal data-driven health monitoring system for

vehicles. Universality in the vehicle health monitoring application means monitoring the
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health status of a vehicle by using other vehicles’ data. To develop a universal health

monitoring system, it is required to define a universal string of data including vehicle

parameters along with vehicle variables. The governing equations of motion at the vehicle

CG shows how vehicle parameters can combine with vehicle variables to provide a universal

string of data. Based on the proposed string of data, universality with some restrictions

is obtained for the vehicle IMU sensor. To develop a more comprehensive framework,

further study is required. The performance of the proposed universal health monitoring

system is evaluated by CarSim simulations. These simulations are carried out on six vehicle

high-fidelity models. One of these vehicles is considered a test vehicle to provide the test

data and the others are considered training vehicles to build the universal dataset. The

simulation results show by using the training vehicles’ data, the universal health monitoring

system is able to:

• detect and isolate a fault in the test vehicle’s longitudinal acceleration sensor and

reconstruct its healthy value.

• detect and isolate a non-bias fault in the test vehicle’s yaw rate sensor.

• detect a fault in the test vehicle’s lateral acceleration sensor.
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Chapter 6

Conclusions & Future Work

6.1 Conclusions

The main objective of this thesis was the development of a dependable health monitoring

system for vehicles’ sensors and actuators. Health monitoring is generally comprised of

three tasks: fault detection, isolation, and quantification, which respectively determine the

occurrence, location, and magnitude of faults.

For cases where the target sensor or actuator is known in advance, a hybrid model/data

fault detection and diagnosis methodology was developed. This fault detection system

worked based on residuals generated by comparing the measurements of a target sensor

or control inputs of a target actuator with their estimations. These estimations were

provided by a hybrid estimator developed based on the integration of model-based and

data-driven estimators to take advantage of their strengths and tackle their weaknesses.

The proposed self-updating dataset showed that collecting data directly from the vehicle

when it confronts new environments could enrich the dataset. The data-driven estimator

can use the new data for prediction if the vehicle confronts these environments again

without any pre-training, thanks to Nadaraya-Watson kernel regression (NWKR) as an

instant-based learning method. The Gaussian nature of the kernel function used in NWKR

highlighted the remarkable role of each point’s neighbors in the estimation of its output.
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It was shown that considering an ε-neighborhood around each point and using only data

in this neighborhood for prediction could drastically reduce the computational time of

estimation while maintaining estimation quality. The proposed data management system

can significantly reduce the size of the dataset and hence computational time by removing

redundant points that are highly clustered. The performance of this fault detection system

was evaluated by applying it to the vehicle’s lateral acceleration sensor and traction motor.

The results of the experimental tests conducted on the all-wheel-drive test vehicle confirmed

that the hybrid estimator can outperform the model-based and data-driven estimators used

individually. These results also validated that the proposed fault detection and diagnosis

system can successfully detect the faults in the target sensor or actuator, then reconstruct

the healthy value of the faulty sensor or find the failure level of the faulty actuator.

For cases where it is required to monitor the health status of a set of sensors and

actuators rather than an individual component, in addition to fault detection, the fault

isolation task comes into play. Therefore, a general data-driven health monitoring system

was developed to detect, isolate, and quantify faults in a set of vehicle sensors and actu-

ators. The fault detection algorithm works based on exploring the coherency among the

target vehicle’s variables, and it was shown that when a fault occurs in the system, the

coherency is violated. The fault isolation approach works based on identifying a subset

of the vehicle variables that are coherent with each other. It was argued that the sen-

sor/actuator corresponding to the absent variable(s) from this subset is faulty. For cases

where the faulty component was a sensor, it was demonstrated that the fault quantification

algorithm can reconstruct the healthy value of the faulty sensor by using the remaining

healthy variables, so the vehicle’s controllers can use the reconstructed value instead of the

faulty measurements to generate appropriate control actions. For cases where the faulty

component was an actuator, it was shown that the fault quantification approach can es-

timate the actual actions of the faulty actuator and determine its level of failure. This

information can be used to generate desired control actions by scaling the actuator output.

It was discussed that the proposed health monitoring system can detect abrupt faults in

confronting new environments. In these environments, the proposed self-updating dataset

can collect data directly from the vehicle to enrich the dataset. The performance of the

proposed health monitoring system was evaluated using experimental tests. The results
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showed that the health monitoring system can appropriately detect, isolate, and quantify

faults in the vehicle’s sensors and actuators.

One of the main concerns about the developed data-driven health monitoring system

is that each vehicle needs its own dataset. To relax this requirement, a universal health

monitoring system was proposed to monitor the health status of the target vehicle by

using the other vehicles’ data. In this universal system, new features provided by the

combination of vehicle parameters and variables were involved in the health monitoring

process. The performance of the universal health monitoring system was evaluated by

CarSim simulations. The simulation results showed that the universal health monitoring

system for an IMU sensor could be achieved with some limitations.

6.2 Future Work

As potential future works, a few suggestions are mentioned in this section to enhance the

accuracy of the developed health monitoring system and amplify its capabilities:

• Extend the developed data-driven health monitoring system to other ve-

hicle sensors and actuators: In this research, the developed data-driven health

monitoring system was applied to monitor the health status of a set of sensors (wheel

speed sensors and IMU sensor measuring longitudinal/lateral accelerations and yaw

rate) and actuators (steering actuator and traction motor) that plays a role in vehicle

planar (yaw) dynamics and appears in its governing equations of motion. However,

the application of the proposed health monitoring system can be extended to vehicle

variables participating in vehicle pitch and roll dynamics. These variables includ-

ing height sensors and the IMU sensor measuring vertical acceleration and pitch/roll

rates can form a set of features that is representative of vehicle pitch and roll motions.

Therefore, the developed data-driven health monitoring can be applied to monitor

the health status of these components. As previously mentioned, the application of

the proposed system can exceed the automotive systems and it can be applied to all

dynamic systems. For any deterministic dynamic system, if a set of variables that
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represents this system is available, the proposed health monitoring methodology can

be applied to detect, isolate, and quantify faults in this system.

• Enhance the performance of the developed data-driven health monitoring

system in data scarcity by using the model-based approaches: The developed

data-driven health monitoring system is capable of monitoring abrupt faults in data

scarcity. However, dealing with gradual faults is challenging for this system in a lack

of data. In [80], a comprehensive model-based health monitoring methodology is pro-

posed for vehicle sensors. This approach is able to detect sensors’ faults, isolate the

faulty sensor and provide fault-tolerant estimation of the faulty sensor. By extending

this approach for monitoring the health status of vehicle actuators, it is possible to

use this approach when the vehicle faces unknown environments. Integrating these

two methodologies provides a reliable hybrid model/data health monitoring system

for a set of vehicle sensors and actuators. As previously mentioned, the advantage

of data-driven health monitoring approaches is no need to deal with model uncer-

tainties and unmodeled dynamics, so they can provide accurate performance in the

presence of sufficient data. The advantage of model-based approaches is their ability

in confronting new environments and faults. Therefore, by taking the advantage of

the model-based and data-driven health monitoring systems, the hybrid system can

outperform each of them used individually.

• Extend the developed data-driven health monitoring system for multiple-

fault conditions: In this research, it is assumed that at most one sensor or actuator

becomes faulty at a time. This assumption is reasonable since it is unlikely that

multiple faults occur simultaneously. Given this assumption, to isolate the fault, the

proposed health monitoring system checks the coherency in subsets of the vehicle

variables in which only one feature is omitted. The faulty feature is the feature

that is absent from the subset in which the coherency exists. When multiple faults

simultaneously occur in the target vehicle, the fault detection process is exactly the

same as when a mono fault occurs. However, to isolate faulty features, the fault

isolation system should explore all subsets of the vehicle variables in which more

than one feature is omitted and find the subset in which the vehicle variables are
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coherent with each other. Faulty features are the ones removed from this subset.

This idea can be utilized for fault isolation as far as the features in each subspace

can be representative of the target vehicle and can satisfy observability conditions.

As long as these conditions are satisfied, by using the remaining healthy features, the

fault quantification system can also reconstruct the healthy value of faulty sensors

and find the failure level of faulty actuators. In future studies, it is possible to

investigate what combination of simultaneous faults can be monitored.

101



References

[1] Z. Gao, C. Cecati, and S. X. Ding, “A survey of fault diagnosis and fault-tolerant

techniques—part i: Fault diagnosis with model-based and signal-based approaches,”

IEEE transactions on industrial electronics, vol. 62, no. 6, pp. 3757–3767, 2015.

[2] E. Khalastchi and M. Kalech, “On fault detection and diagnosis in robotic systems,”

ACM Computing Surveys (CSUR), vol. 51, no. 1, pp. 1–24, 2018.

[3] X. Dai and Z. Gao, “From model, signal to knowledge: A data-driven perspective of

fault detection and diagnosis,” IEEE Transactions on Industrial Informatics, vol. 9,

no. 4, pp. 2226–2238, 2013.

[4] J. Zhou, D. Zhang, C. Ooi, M. Luo, S. Mao, and D. Wang, “Comparative study of data

driven and model based approaches of rotary machines fault detection and diagnosis,”

SIMTech Tech. Rep., vol. 11, no. 4, pp. 195–201, 2010.

[5] N. Mehranbod, M. Soroush, and C. Panjapornpon, “A method of sensor fault detection

and identification,” Journal of Process Control, vol. 15, no. 3, pp. 321–339, 2005.
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