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Abstract

Recent progress in our understanding of the black hole information paradox has led to a
new prescription for calculating entanglement entropy, which involves special subsystems in
regions where gravity is dynamical, called quantum extremal islands. We present a simple
holographic framework where the emergence of quantum extremal islands can be under-
stood in terms of the standard Ryu-Takayanagi prescription, used for calculating entangle-
ment entropy under the anti-de Sitter (AdS)/conformal field theory (CFT) correspondence.
Our setup describes a d-dimensional boundary CFT coupled to a (d−1)-dimensional defect,
which are dual to a (d+1)-dimensional global AdS spacetime containing a codimension-one
brane. Through the Randall-Sundrum mechanism, graviton modes become localized at the
brane and, in a certain parameter regime, an effective description of the brane is given by
Einstein gravity on a d-dimensional AdS background coupled to two copies of the boundary
CFT. Within this effective description, the standard Ryu-Takayanagi formula implies the
existence of quantum extremal islands in the gravitating region, whenever Ryu-Takayanagi
surfaces cross the brane. Considered with Rindler and Poincaré coordinates respectively,
our setup may be viewed as a special class of non-extremal and extremal black holes on the
brane, in equilibrium with non-gravitational bath systems. For non-extremal black holes
in any dimension, the appearance of quantum extremal islands has the right behaviour to
avoid the information paradox and we show that the calculation of the full Page curve is
possible. In the case of extremal black holes in higher dimensions, we find no quantum
extremal islands for a wide range of parameters. The main benefit of our setup is that it
allows for a high degree of analytic control as compared to previous work in higher dimen-
sions. In two dimensions, we find agreement with previous work at leading order; however,
a finite ultraviolet cutoff introduced by the brane results in subleading corrections.
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Chapter 1

Introduction

Almost half a century ago, it was discovered that black holes behave as quantum objects,
with an associated temperature, entropy, and other thermodynamic properties [8–12]. In
particular, quantum black holes are not exactly black, but rather emit Hawking radiation
at their prescribed temperature. Another realization of these ideas is the Bekenstein-
Hawking (BH) formula, which states that the black hole entropy is a quarter of its horizon
area measured in Planck units:

S =
A

4GN

. (1.1)

These concepts gained a wider scope in the context of the holographic anti-de Sitter
(AdS)/conformal field theory (CFT) correspondence, where, as we will review, the Ryu-
Takayanagi (RT) prescription [13–16] applies the same geometric expression to extremal
bulk surfaces in evaluating entropy.

Understanding the quantum description of black holes remains a central question in
theoretical physics. The key unresolved puzzle is the information paradox [8, 9, 17–19] —
that is, the question of whether black holes destroy information as they evaporate. In
recent years, some success has been made in resolving this paradox using the AdS/CFT
correspondence. The goal of this thesis is to expand upon these ideas. In particular, we
will set up a gravitational model on a brane which is simple enough to admit a largely
analytic study of the black hole information paradox even in arbitrary dimensions.

We start here with a review of the black hole information paradox in section 1.1 and
a review of recent advances in its understanding using the AdS/CFT correspondence in
section 1.2. In section 1.3, we provide an overview of the doubly holographic brane world
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model which will be our focus. Finally, in section 1.4, we outline the remainder of this
thesis.

1.1 The black hole information paradox

As hinted above, the fate of information during black hole evaporation remains a subject
of ongoing research. In his seminal work, Hawking argued that information is lost in
black hole evaporation [8,9,17]. Below, we provide an intuitive sketch of how this occurs in
semiclassical gravity. In a fully quantum theory of gravity, however, to an outside observer,
the black hole looks like an ordinary, quantum mechanical system, e.g., as suggested by
the AdS/CFT correspondence [20, 21]. Under the tenets of quantum mechanics, the time
evolution of such a system should be unitary and thus preserve quantum information. This
tension is colloquially known as the black hole information paradox [18].

To understand the phenomena of Hawking radiation, for concreteness, we may consider
the situation illustrated in fig. 1.1 where a black hole forms from the collapse of matter
and subsequently evaporates. Near the horizon, quantum fields fluctuate, much like they
do anywhere else in the spacetime. However, by its definition, the horizon separates those
fluctuating modes that are doomed to fall into the black hole singularity, and those that
escape as excitations to infinity. The latter constitute Hawking radiation. Due to the emis-
sion of Hawking radiation, the black hole loses mass, i.e., evaporates, and will eventually
disappear completely.

Information loss due to Hawking radiation is the result of entanglement between Hawk-
ing radiation and modes falling from just inside the horizon into the black hole singularity.
At a very rough level, the entangled state of an excited Hawking radiation mode and its in-
falling partner inside the black hole can be modelled by two qubits, labelled in the following
by subscripts r and b respectively. For simplicity, we may consider the Bell state

|ψ⟩r b =
|↑⟩r |↑⟩b + |↓⟩r |↓⟩b√

2
. (1.2)

This state is clearly entangled since tracing out b leads to a state

ρr = trb(ρr b) = trb(|ψ⟩r b ⟨ψ|r b) =
|↑⟩r ⟨↑|r + |↓⟩r ⟨↓|r

2
(1.3)

of r that is mixed — mathematically, this means the density matrix ρr is not a projection
(in contrast to the original pure state ρr b = |ψ⟩r b ⟨ψ|r b). Physically, this means that
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Figure 1.1: Black hole formation from collapsing matter and evaporation due to Hawking
radiation, illustrated in an Eddington-Finkelstein-style diagram (a), where surfaces of con-
stant radius are vertical, and in a conformal diagram (b), where 45◦-directions are null.
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Figure 1.2: Qualitative entropy curves for black hole evaporation. The green curve shows
the BH entropy (1.1) which gives the thermodynamic entropy of the black hole; the red
curve shows the monotonically increasing entanglement entropy (EE) for Hawking radia-
tion predicted by Hawking’s calculation; and the Page curve is shown in blue, giving the
expected EE of Hawking radiation under a unitary evolution of the gravitational system.

information would be lost if the b qubit is discarded; in particular, the above state for r is
now a classical probabilistic distribution over the spin-up and spin-down states. Indeed, in
the black hole context, the infalling quanta within the black hole are inaccessible to outside
observers and eventually lost altogether to the singularity. While this qubit toy example
is extremely simplified, it intuitively illustrates the underlying mechanism for information
loss behind Hawking’s calculation.

In reality, Hawking quanta are entangled thermally with their infalling partners, giving
a tangible meaning to the temperature of a black hole, as hinted earlier in this chapter.
In fact, this thermal entanglement is a general property of any Killing horizon and boost-
symmetric state, including Rindler horizons in the vacuum. (In this general context, the
analogue of Hawking radiation is called Unruh radiation [22–25].) So really, the entangle-
ment between Hawking radiation and their infalling partners is a necessary ingredient for
a horizon that is smooth, i.e., locally vacuum-like and without “firewalls” [19].

To sharpen this discussion, let us quantify the entanglement and resulting loss of quan-
tum information from losing a subsystem by consider entanglement entropy (EE) — to be
precise, von Neumann entropy — defined for a state ρ by

S = − tr(ρ log ρ) . (1.4)
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Intuitively, EE quantifies the degree to which the state ρ is mixed; in particular, note that
a pure state ρ = |ψ⟩ ⟨ψ| has eigenvalues 1 and 0, and therefore has a vanishing EE. Further,
if the state ρR = trB ρRB describes a subsystem R within a pure state ρRB = |ψ⟩RB ⟨ψ|RB

of a full system R ∪ B, the EE of ρR quantifies the entanglement between the R and B
subsystems. (A property of EE in this case is that ρR and ρB = trR ρRB have the same
EE.)

Let us return to the situation illustrated in fig. 1.1, and take R to be the part of a
Cauchy slice that is outside the black hole horizon and B to be the part inside. Of course,
before the formation of the black hole, there is no horizon, so R fully covers a Cauchy
slice. With access to this entire Cauchy slice, it is reasonable to suppose that the state
ρR(t = 0) = |ψ⟩R ⟨ψ|R at this initial time t = 0 is pure, so the EE of ρR(t = 0) is initially
zero. However, after the black hole forms, observers outside its horizon lose access to the
black hole interior. While R has now collected some Hawking quanta, their entangled
partners within the black hole interior are part of the complementary system B. Thus, the
state ρR(t) outside becomes mixed and its EE is correspondingly nonvanishing. Moreover,
as the black hole evaporates through the emission of Hawking radiation, the increase of
this entropy over time gives a measure of the amount of entanglement between the radi-
ation and the black hole. According to Hawking’s original calculation, this EE increases
monotonically throughout the evaporation process and becomes a nonzero constant once
the black hole has disappeared, as illustrated by the red curve of fig. 1.2.

However, the above described information loss, characterized by a nonvanishing final
EE for the Hawking radiation collected by R, is at odds with how a quantum system is
expected to unitarily evolve. Note, in particular, that at any final time t = tfin after the
black hole has disappeared, R again covers a full time slice. One expects, therefore, a
theory of quantum gravity to describe the time evolution of R from t = 0 to t = tfin in
a unitary manner; that is, ρR(tfin) = UρR(0)U

† where U is a unitary operator. If this is
true, the final state ρR(tfin) = U |ψ⟩R ⟨ψ|R U † must be pure and have a vanishing EE, in
contrast to Hawking’s calculation. Thus, under unitary evolution, after the initial increase
predicted by Hawking, the EE of Hawking radiation must eventually decrease and fall
back to zero. This qualitative behaviour of the radiation’s entropy as a function of time,
illustrated by the blue curve of fig. 1.2, is known as the Page curve [26–30] — see also [21].

The latter decreasing branch of the curve is expected to be governed by the BH entropy
(1.1) proportional to the area of the black hole. This is because the BH entropy is believed
to represent the thermodynamic or coarse-grained entropy of the black hole [10, 12, 31].
In other words, it counts the microstates [32] of the black hole subject to its macroscopic
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properties such as mass, charges, and angular momentum1, and therefore sets an upper
bound on its EE. Since the combined system of the black hole and Hawking radiation
should be pure (again, because we have started with a pure state at t = 0), the EEs of
the Hawking radiation and black hole are equal and both bounded by the BH entropy. So,
assuming the EE of Hawking radiation follows Hawking’s calculation to the furthest extent
possible, it will increase until the so-called Page time when it saturates the upper bound
given by the falling BH entropy, after which it will follow the latter back down to zero as
the black hole completely evaporates.

While reconciling Hawking’s calculation with the idea that quantum gravity is unitary
was a longstanding puzzle, recent progress has made it possible to compute the Page curve
in a controlled manner [7, 34, 35], as we will now review.

1.2 Advances using the AdS/CFT correspondence

As the simplest solution to Einstein’s equations with a negative cosmological constant,
an anti-de Sitter (AdS) spacetime is a spacetime with constant negative curvature. It is
maximally symmetric, meaning it is homogeneous and isotropic in both space and time.
In fact, the isometries SO(2, d) of AdSd+1 (i.e., (d + 1)-dimensional AdS) may be recast
as the conformal (i.e., angle-preserving) transformations of a spacetime in one lower di-
mension. In physics, the matching of symmetries between different theories sometimes
hints at the presence of a duality — that is, the fact that the theories are actually alterna-
tive descriptions of the same underlying physics. Originally derived in string theory, the
AdS/CFT correspondence [36] indeed describes such a duality. It relates a gravitational
theory in a so-called bulk spacetime that asymptotically approaches AdS near its boundary
to a quantum field theory with conformal symmetry, i.e., a conformal field theory (CFT),
living on the AdS boundary. This correspondence, illustrated in fig. 1.3, has been dubbed
‘holographic’ due to the differing dimensions of the related theories. Since its discovery
over two decades ago, AdS/CFT has proven an ideal arena in which to study the interplay
of spacetime geometry and quantum information.

This is perhaps best demonstrated by the celebrated Ryu-Takayanagi (RT) formula
1There is also a somewhat different notion of “complexity coarse-graining” that has arisen in recent

discussions [33] of the black hole information paradox. In particular, it is posited that the monotonically
increasing entropy in Hawking’s calculation is measuring an entropy that is coarse grained over complex
operators acting on the Hawking radiation. This leaves only simple operators that fail to detect the subtle
correlations required to recover the Page curve.
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Figure 1.3: The AdS/CFT correspondence relates a gravitational theory in an asymptoti-
cally AdS spacetime (filling in the middle of the cylinder) to a CFT on the AdS boundary
(the cylinder’s surface). In particular, the RT formula relates the EE of a boundary sub-
region R to the area of an extremal surface ΣR.

[13–16] for the EE of a boundary spatial subregion R:

SEE(R) = min

{
ext
ΣR

A(ΣR)

4GN

}
. (1.5)

Here, ΣR is a bulk surface homologous to the boundary subregion R — that is, ΣR ∪R
forms the boundary of some spatial subregion in the bulk — and we are instructed to take
the minimal extrema among such surfaces. A simple example of a boundary subregion R
in the CFT and the corresponding RT surface ΣR in the AdS bulk are illustrated in fig. 1.3.

An interesting application of the RT formula is to (asymptotically) AdS black holes,
where the BH entropy (1.1) can be found, in certain situations, to match the EE of the
CFT. For example, one may consider an eternal black hole in the bulk with two asymptotic
boundaries, as illustrated in fig. 1.4. Under AdS/CFT, this gravitational system is dual
to a so-called thermofield double (TFD) state, which is an entangled state of two copies
of the CFT (corresponding to the two asymptotic boundaries). When the RT formula is
evaluated with R being a time slice of either asymptotic boundary, the relevant RT surface
ΣR coincides with the bifurcation surface of the black hole. Thus, the BH formula (1.1) is
simply a special case of the RT formula (1.5).

However, as motivated by the promotion of classical laws of black hole mechanics to
the semiclassical level, it is natural to collectively consider the geometric BH entropy
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Figure 1.4: An eternal AdS black hole dual to two copies of a CFT respectively on the two
asymptotic AdS boundaries. The RT formula (1.5) relates the EE of the CFT on a time
slice R of one asymptotic boundary to the area of the extremal surface ΣR coinciding, in
this case, with the black hole bifurcation surface.

together with the EE of quantum fields outside the horizon. This combination, known as
generalized entropy, can be shown for example to satisfy the semiclassical generalization
[6, 37] of the first law of black hole mechanics [38, 39], which relates the variations of
entropy, energy, charge, and angular momentum in much the same manner as the first
law of thermodynamics. The generalized entropy of a black hole horizon is also non-
decreasing [40–42] over time, in analogy to the second law of thermodynamics. Moreover,
whereas the EE of quantum fields is by itself ultraviolet (UV) divergent, generalized entropy
can be rendered finite by a renormalization of Newton’s constant [43]. These are indications
that generalized entropy is the correct notion of entropy to consider for a semiclassical bulk
theory of gravity.

In the context of holographic EE, consideration of semiclassical corrections in the bulk
indeed leads to the natural extension of the RT prescription [44,45]

SEE(R) = min

{
ext
ΣR

Sgen(ΣR)

}
= min

{
ext
ΣR

(
A(ΣR)

4GN

+ SQFT

)}
, (1.6)

which now includes the EE (to be precise, the von Neumann entropy) SQFT of the bulk
quantum fields on the partial Cauchy surface bounded by ΣR ∪ R. The surface that
extremizes the generalized entropy in the above expression is then referred to as a quantum
extremal surface (QES) [45]. Again, the ‘min’ indicates that, in the situation where there
is more than one extremal surface, one chooses that which yields the minimum value for
Sgen(ΣR).

This quantum RT formula has produced some surprising new insights with holographic
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models of black hole evaporation [7,34,35]. In particular, at late stages in the evaporation,
the quantum term can compete with the classical BH contribution in eq. (1.6) to produce
new saddle points for the QES, which could describe the late-time phase of the Page curve.
Perhaps the biggest surprise is that the Page curve can be reproduced from saddle-point
calculations in semi-classical gravity, i.e., in a situation where the details of the black hole
microstates or of the encoding of information in the Hawking radiation are still not fully
revealed.

This calculation is best understood in a setting where a black hole is coupled to an
auxiliary, non-gravitational reservoir — referred to as the bath – which captures the Hawk-
ing radiation. In this situation, it was argued that instead of using Hawking’s calculation,
the true entropy of the Hawking radiation captured in a region R of the bath should be
calculated using the so-called island rule [7]

SEE(R) = min
{

ext
islands

(
A(∂(islands))

4GN

+ SQFT(R ∪ islands)

)}
. (1.7)

This formula instructs us to evaluate, in the semiclassical theory, the EE SQFT of fields
in the bath region R combined with any codimension-one and possibly disconnected ‘is-
land’ subregions in the gravitating region. The boundaries of the candidate islands also
contribute a gravitational term in the form of the usual BH entropy. One extremizes the
right hand side (RHS) of eq. (1.7) over all such choices, and if this yields multiple extrema,
the correct choice is the minimal extremum. If this procedure yields a solution with a
nontrivial island, the latter is called a quantum extremal island (QEI) — see [46] for a
recent review.

In a sense, eq. (1.7) follows quite naturally from eq. (1.6), by making explicit the
fact that QESs can contain disconnected pieces that form the boundaries of QEIs. The
incorporation of the bath system, though, requires some explanation. As described above,
it is an auxiliary spacetime region into which the bulk matter fields may propagate. Viewed
as an extension of the bulk in this way, the bath region R therefore appears on the RHS of
eq. (1.7). On the other side of the AdS/CFT duality, however, one may view the bath as
a system coupled to the CFT. So, considering the bath region R as part of this boundary
side of the holographic duality, it is natural to apply the quantum RT formula (1.6) to
evaluate its EE — hence, the appearance of R on the left hand side (LHS) of eq. (1.7). A
more careful derivation of eq. (1.7) can be obtained from an analysis of the ‘replica trick’
for evaluating holographic EE [47–49]. Further, as will become clear in the brane world
model studied in this thesis, eq. (1.7) may even be viewed as the manifestation of (a mild
extension to) the classical RT formula (1.5).
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Let us now explain how eq. (1.7) allows one to recover the Page curve. For an evapo-
rating black hole, an obvious choice for the island region that extremizes the functional on
the RHS is the empty set. In the early phase of the Hawking evaporation, this is indeed
the minimal extremum, and the result of eq. (1.7) is simply the semiclassical EE SQFT(R)
calculated by Hawking. However, if radiation in the region R shares a large amount of
entanglement with the quantum fields within the black hole, a nontrivial QEI can appear.
In particular, this occurs for an old evaporating black hole, and in this case a QEI appears
in the black hole interior, extending nearly to the horizon [35]. It turns out that after the
Page time, this configuration takes over as the minimal extremum in eq. (1.7). In this
phase, SEE(R) is dominated by the area term on the RHS of eq. (1.7). Hence, as the black
hole evaporates, the latter shrinks to zero size and the island rule (1.7) gives a unitary
Page curve, as illustrated in fig. 1.2. The discovery of islands has sparked a variety of new
investigations in the contexts of both black holes [4, 5, 46–75] and cosmology [76–83].

1.3 Doubly holographic brane world model

In this thesis, we will further examine the island formula (1.7). This formula was motivated
by the ‘doubly holographic’ model presented in [7], who in turn began with the two-
dimensional model of [34]. The latter consists of a bath, i.e., a two-dimensional CFT on a
half line, and a pair of quantum mechanical systems. These quantum mechanical systems
are then assumed to be holographically dual to a two-dimensional theory of gravity, called
Jackiw-Teitelboim (JT) gravity (which will be described later in this thesis), on AdS2

coupled to the same CFT as in the bath. Hence if the quantum mechanical systems
begin in a TFD state, the dual description is given by a two-sided AdS2 black hole. If
the boundary of the bath is then coupled to one of the quantum systems, i.e., to the
asymptotic boundary of one side of the black hole, the black hole begins to evaporate as
Hawking radiation leaks into the bath.

Now the insight of [7] was to examine the case where the two-dimensional CFT is itself
holographic, and so can be replaced with a locally AdS3 bulk. The boundary of this bulk
geometry has two components: the two-dimensional asymptotic AdS3 boundary, on which
the bath lives, and a so-called Planck brane, where the JT gravity is supported. This
third perspective on the system has the advantage that the generalized entropy of the
gravitational theory on the Planck brane and the matter fields (described now by the two-
dimensional CFT) in eq. (1.6) or (1.7) is realized completely geometrically. In particular,
the EE of the CFT is computed by classical RT surfaces in the three-dimensional bulk, and
the geometric BH contribution is given by the usual expression for JT gravity. Further,
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calculations in this doubly holographic model produce the expected Page curve, with RT
surfaces ending on the Planck brane manifesting the island rule (1.7).

One direction to generalize the above calculations is to understand the Page curve
and QEIs in higher dimensions. Only limited results have been previously obtained on
this front. For instance, some analyses in higher dimensions were undertaken numerically
in [58], in an effective theory in flat space [59], and using a Randall-Sundrum (RS)-inspired
toy model in [60]. (See also [35, 47,61].)

In this thesis, we shall generalize the doubly holographic model described above to
arbitrary dimensions. Our model will provide the first setup in which islands in black
holes may be calculated largely analytically in higher dimensions, in the regime where
the gravitational theory on the brane is well-approximated by Einstein gravity. This is
done as follows (see figure 1.5): We consider a d-dimensional holographic CFT coupled
to a codimension-one conformal defect. The gravitational dual then corresponds to an
asymptotically AdSd+1 spacetime, containing a codimension-one brane anchored on the
asymptotic boundary at the position of the defect. The gravitational backreaction of
the brane warps the geometry creating localized graviton modes in its vicinity, by the
mechanism originally discovered by Randall-Sundrum (RS) [84–86]. Hence at sufficiently
long wavelengths, the system can then also be described by an effective theory of Einstein
gravity coupled to (two copies of) the holographic CFT on the brane, all coupled to the
CFT on the static boundary geometry.2 To better emulate the previous model with JT
gravity [7], we also consider introducing an intrinsic Einstein term to the brane action,
analogous to the construction of Dvali, Gabadadze, and Porrati (DGP) [87].3

In any event, this more or less standard holographic model can be viewed from three
perspectives in analogy with [7]: the bulk perspective, with a brane coupled to gravity in an
asymptotically AdSd+1 space; the boundary perspective, with the boundary CFT coupled
to a conformal defect; and the brane perspective, with a region where the holographic
CFT couples to Einstein gravity and another region where the same CFT propagates on
a fixed background geometry. Let us emphasize that while the three different perspectives
were presented on a more or less equal footing, the fact that the RS gravity on the brane
has a finite UV cutoff [84, 85] singles out the brane perspective as an effective low-energy
description, in contrast to the boundary and bulk descriptions.4

2Some tuning of the parameters characterizing the brane is required to achieve this effective description.
Note that the fact that the RS gravity on the brane has a finite cutoff [84,85] makes conspicuous that this
is only an effective theory.

3Without the DGP term, our construction resembles that in [47] in many respects. Our model resembles
the setup in [7] even more closely if we make a Z2 orbifold quotient across the brane.

4This does not mean that the bulk description in terms of a(n infinitely thin) brane in AdSd+1 is UV

11



f.

c.

e.
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d.

Figure 1.5: This figure shows the relation between a time-slice in our construction and the
holographic setup of [7]. The top row illustrates three perspectives with which the system
discussed here can be described, while the bottom row displays the analogous descriptions
for the model in [7]. In the former, we are using the global conformal frame where the
boundary CFT lives on R × Sd−1 and the conformal defect appears on the equator of the
(d− 1)-sphere — see discussion in chapter 2 and section 2.5. The comparison can be made
more precise by performing a Z2 orbifold quotient across the bulk brane/conformal defect
in the top row.
a. Bulk gravity perspective, with an asymptotically AdSd+1 space (shaded blue) which
contains a co-dimension one RS brane (shaded grey).
b. Brane perspective, with dual CFTd on the asymptotic boundary geometry (blue) and
also extending on the AdSd region (shaded green) where gravity is dynamical.
c. Boundary perspective, with the holographic CFTd on Sd−1 (blue) coupled to a
codimension-one conformal defect (green).
d. AdS3 formulation with two boundary components: the flat asymptotic boundary
(straight black line) and a “Planck brane” (curved black line) with an AdS2 geometry.
e. The holographic CFT extends over a region with a fixed metric (blue) and an AdS2

region with JT gravity (green).
f. The microscopic description as a two-dimensional BCFT (blue) coupled to a quantum
mechanical system at its boundary (green).
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An advantage of working in the bulk perspective is that EEs of subregions in the bath
can be computed geometrically using the usual rules of holographic EE [13–15], taking
into account that the RT surfaces that can also end on the Planck brane [91, 92]. In
particular, EE is realized in terms of the areas of RT surfaces, with a contribution in the
bulk and another contribution on the brane. That is, we have an extension of the usual
RT prescription with

SEE(R) = min

{
ext
ΣR

(
A(ΣR)

4Gbulk

+
A(σR)

4Gbrane

)}
, (1.8)

where again ΣR is a bulk surface homologous to the boundary subregion R and σR =
ΣR ∩ brane is a surface on the brane — this intersection of the RT surface with the brane
becomes the boundary of the islands seen in the brane perspective. (See figure 1.6.) Note
that the brane contribution seems natural here; we will argue for its presence by extending
the derivation in [93].

In contrast to eq. (1.6), we are not considering quantum field contributions in the
AdSd+1 bulk. Nonetheless, the equivalence between eqs. (1.7) and (1.8) can be easily
understood as follows: The bulk term in eq. (1.8) describes the leading planar contributions
of the EE of the boundary CFT, and so matches the second term in eq. (1.7). However,
as we will show in this thesis, expanding the former near the brane also reveals a BH
term that matches the induced Einstein part of the effective gravitational action on the
brane. This contribution combines with the brane term in eq. (1.8) to produce the BH
term appearing in eq. (1.7). In fact, as we shall demonstrate, the RT contribution also
captures higher derivative contributions matching the Wald-Dong entropy [38, 39, 94, 95]
of the higher curvature terms appearing in the effective gravitational action. Further, the
competition between candidate QEIs, denoted by the ‘min’ in eq. (1.7) simply becomes the
usual competition between different possible RT surfaces in the holographic formula (1.8),
e.g., see figure 1.7.

Our goal will be to study the question of QEIs for black holes in arbitrary dimensions
using the purely geometric description (1.8) of the bulk gravity perspective. We emphasize
the underlying simplicity of our holographic model. In particular, the elements of construc-
tion are more or less standard, and the entropies are evaluated with the geometric formula
for holographic EE. Hence we generalize the island rule to any number of dimensions but
also cast it in a framework where many of its features follow simply from the properties
of the RT prescription — and in fact, can be understood analytically. For instance, the

complete. However, it is reasonable to expect that the bulk description can be completed in the UV by a
more complicated configuration which can be obtained within string theory, e.g., see [88–90]. In contrast,
the brane theory has a fundamental cutoff.
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(no gravity)

AdSd brane

ΣR

σR

Boundary CFT

R

AdSd+1

Gbulk

Gbrane

Figure 1.6: A sketch of our holographic setup illustrating the various elements appearing
in eq. (1.8), which manifests the island rule in our analysis.

transition between the phase without an island and that with the island is nothing more
than the usual transition between different classes of RT surfaces [96–98] — see figure 1.7.
In particular, in the island phase, the RT surface crosses the brane so that a portion of
the latter, i.e., the island, is included in the corresponding entanglement wedge. Thus the
appearance of quantum extremal islands is simply described by a well understood feature
of holographic EE in a new setting. Using our model, we will moreover be able to address
several issues that appeared puzzling in [7]. Our analysis, being analytic to a great ex-
tent, complements previous approaches that heavily relied on numerics [58]. In our case,
the numerics required to extract quantitative results are limited to solving few ordinary
differential equations.

1.4 Outline of thesis

To conclude this introduction, let us now outline the remainder of this thesis.

In chapter 2, we begin by studying a certain class of d-dimensional branes embedded
in AdSd+1. We show how the RS gravity induced on the brane is equivalent to the bulk
description of the brane embedded in the higher dimensional geometry. Moreover, in sec-
tion 2.5, we elucidate the different holographic perspectives of this system as described
above, i.e., we can describe the system as a d-dimensional boundary CFT coupled to a
conformal defect, a d-dimensional CFT containing a region with dynamical gravity, or a
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R

ΣR

R

ΣR

σR

island

Figure 1.7: The choice of RT surfaces on a constant time slice in the presence of the brane
(coloured green), showing the different ingredients involved in eq. (1.8).

(d+1)-dimensional theory of gravity coupled to a codimension-one brane. Chapter 3 inves-
tigates the relation between the appearance of QEIs using eq. (1.7) and the bulk picture
using eq. (1.8) with RT surfaces crossing the brane. We also present some explicit calcu-
lations illustrating the appearance of such QEIs for d = 3. Connected to ideas introduced
in this first half of the thesis are the appendices A and B: In appendix A, we extend the
arguments in [93] to support the appearance of the brane contribution to the generalized
entropy in eq. (1.8). Appendix B examines a surprising class of spherical RT surfaces,
which can be supported at finite size by the brane.

In this first half of the thesis, our discussion will be quite general and not necessarily
linked to the physics of black holes. In fact, the explicit calculations in section 3.4 evaluate
the EE of entangling regions (with components on either side of the conformal defect) in
the vacuum state of the boundary system.5 This illustrates that QEIs are not a feature
exclusive to the black hole information problem, but may play a role in more general
settings where gravity and entanglement are involved.

Black holes will be the focus of the second half of this thesis, starting in chapter 4: As
a warm-up, in section 4.1, we summarize the two-dimensional setup of [50], describe the
connection to our model, and introduce eternal black holes. In sections 4.2 and 4.3, we
construct eternal black holes on the brane in higher dimensions. As in the d = 2 case,
these black holes are in equilibrium with the bath at finite temperature and so they do not

5Further, let us note that the formation of QEIs on branes in the ‘Einstein gravity regime’ require us
to introduce somewhat unconventional couplings. That is, we must consider a negative Newton’s constant
on the brane and/or a Gauss-Bonnet interaction in the four-dimensional bulk gravity.
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evaporate. Nonetheless, there is a continuous exchange of radiation between the black hole
and the bath, which has the potential to create an information paradox [50]. Hence, we use
eq. (1.8) to investigate under which conditions islands appear in sections 4.4 to 4.8. We
present the general analysis for the time dependence of the entropy, exploring the island
and no-island phases. In section 4.9, we develop the numerics associated with some integral
equations found in the previous sections and explicitly evaluate the Page curve for d = 3,
4 and 5. Chapter 5 examines an extremal horizon with a vanishing temperature, finding
that in contrast to two dimensions [50], generally islands do not form in higher dimensions.
However, this is not problematic, since at zero temperature the black hole and bath are
not actually exchanging radiation and thus no information paradox arises. Details for the
special case d = 2 appear in chapter 6. We evaluate the quantum extremal surfaces and
the Page curve, and show that the brane cutoff produces subleading corrections compared
to the results in [50].

Finally in chapter 7, we discuss our results, considering features of the brane world
model introduced and examined in the first half of this thesis and its application to black
holes and the information paradox considered in the second half. We also point towards
some directions for future research.
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Chapter 2

Brane Gravity

As described in the introduction in chapter 1, we are studying a holographic system where
the boundary theory is a d-dimensional CFT which lives on a spherical cylinder R× Sd−1

(where the R is the time direction). Further, this CFT is coupled to a (codimension-one)
conformal defect positioned on the equator of the sphere. Hence, the defect spans the
geometry R× Sd−2 and supports a (d− 1)-dimensional CFT.

The bulk description of this system involves an asymptotically AdSd+1 spacetime with
a codimension-one brane spread through the middle of the space (and extending to the
position of the defect at asymptotic infinity). In this setup which we will review below,
the brane has an AdSd geometry. In particular, we consider the case in which the brane
has a substantial tension and backreacts on the bulk geometry. If the brane tension is
appropriately tuned, the backreaction produces Randall-Sundrum (RS) gravity supported
on the brane [84, 85], as we will describe later in this chapter. That is, in the backreacted
geometry, new (normalizable) modes of the (d+1)-dimensional bulk graviton are localized
near the brane inducing an effective theory of d-dimensional dynamical gravity on the
brane.

Our overall goal in this chapter is to describe the bulk geometry produced by the
backreaction of the brane, and also the gravitational theory induced on the brane.
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2.1 Brane Geometry

In the bulk, we have Einstein gravity with a negative cosmological constant in d + 1
dimensions, i.e.,

Ibulk =
1

16πGbulk

∫
dd+1x

√
−g
[
R(g) +

d(d− 1)

L2

]
, (2.1)

where gab denotes the bulk metric, and we are ignoring the corresponding surface terms
here [99–101]. We also introduce a codimension-one (i.e., d-dimensional) brane in the bulk
gravity theory. The brane action is simply given by

Ibrane = −To
∫
ddx
√

−g̃ . (2.2)

where To is the brane tension and g̃ij denotes the induced metric on the brane. We will
later supplement this action with a Dvali-Gabadadze-Porrati (DGP) term [87], but for now
let us consider just the tension term (2.2).

Away from the brane, the spacetime geometry locally takes the form of AdSd+1 with
the curvature scale set by L, i.e., it has constant curvature

Rµνρσ = − 1

L2
(gµρgνσ − gµσgνρ) . (2.3)

As described above, the induced geometry on the brane will be an AdSd space, and so it
is useful to consider the following metric where the AdSd+1 geometry is foliated by AdSd

slices
ds2 = dϖ2 + cosh2 (ϖ/L) gAdSd

ij dxidxj . (2.4)

Implicitly here, L also sets the curvature of the AdSd metric, e.g., in global coordinates,

gAdSd
ij dxidxj = L2

[
− cosh2ϱ̃ dt2 + dϱ̃2 + sinh2ϱ̃ dΩ2

d−2

]
. (2.5)

With the above choices, we approach the asymptotic boundary with ϖ → ±∞, or with
fixed ϖ and ϱ̃ → ∞. In the latter case, we arrive at the equator of the boundary Sd−1,
where the conformal defect is located. For the following, it will be convenient to replace ϖ
with a Fefferman-Graham-like coordinate [102, 103] 0 < z < ∞, or an angular coordinate
0 < θ < π,

z =2Le−ϖ/L ,
1

sin θ
= cosh(ϖ/L) , (2.6)
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with which the metric (2.4) becomes

ds2 =
L2

z2

[
dz2 +

(
1 +

z2

4L2

)2

gAdSd
ij dxidxj

]
=

1

sin2 θ

(
L2dθ2 + gAdSd

ij dxidxj
)
. (2.7)

In these coordinates we approach the asymptotic boundary with z → 0 (θ → 0) and with
z → ∞ (θ → π). Below, we will focus on the region near z ∼ 0 (θ ∼ 0).

AdSd+1 AdSd+1AdSd+1

AdSd

CFTda. b.

Figure 2.1: Panel (a): Our RS construction involves foliating with AdSd slices. Then
identical portions of two such AdSd+1 geometries are glued together along a common AdSd

slice. Panel (b): The jump in the extrinsic curvature across the interface between the two
geometries is supported by a(n infinitely) thin brane. The brane is represented by a green
line in the figures and the bulk AdSd+1 spacetime is blue with a d-dimensional CFT at the
asymptotic boundary.

As described above, the brane spans an AdSd geometry in the middle of the backreacted
spacetime. Following the usual RS approach, we construct the desired solution by cutting
off the AdSd+1 geometry at some z = zB (θ = θB), and then complete the space by gluing
this geometry to another copy of itself — see figure 2.1. Then the Israel junction conditions
(e.g., see [104,105]) fix zB (and θB) by relating the discontinuity of the extrinsic curvature
Kij across this surface to the stress tensor introduced by the brane, i.e.,

∆Kij − g̃ij ∆Kk
k = 8πGbulk Sij = −8πGbulkTo g̃ij , (2.8)

where ∆Kij = K+
ij −K−

ij = 2Kij (given the symmetry of our construction) and g̃ij denotes
the induced metric on the brane, located at z = zB. More generally, the induced metric on
an arbitrary surface of fixed z (or, equivalently, fixed θ) is given by

gij =

(
L

z
+

z

4L

)2

gAdSd
ij =

1

sin2 θ
gAdSd
ij , (2.9)
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of which g̃ij is a special case with z = zB (θ = θB). Then, the extrinsic curvature is
calculated as [105]

Kij =
1

2

∂gij
∂n

∣∣∣∣
z=zB

= − z

2L

∂gij
∂z

∣∣∣∣
z=zB

=
1

L

4L2 − z2B
4L2 + z2B

g̃ij , (2.10)

where ∂n = − z
L
∂z is the outward directed unit normal vector. Combining eqs. (2.8) and

(2.10), we arrive at

4L2 − z2B
4L2 + z2B

=
4πGbulkLTo

d− 1
, (2.11)

or alternatively in terms of the brane angle θB related to zB by eq. (2.6),

sin2 θB =2ε (1− ε/2) , where ε ≡
(
1− 4πGbulkLTo

d− 1

)
. (2.12)

Now if we consider zB ≪ L, it will ensure that the defect is well approximated by the
holographic gravity theory on the brane — see the discussion in the next subsection. In
this regime, we can solve eq. (2.11) in a small zB expansion, and to leading order, we find
that

z2B ≃ z20 = 2L2ε . (2.13)

Hence to achieve this result, we must tune ε to be small:

ε ≡ 1− 4πGbulkLTo
d− 1

≪ 1 . (2.14)

As the notation suggests, we can think of this quantity ε as an expansion parameter in
solving for the brane position from eq. (2.11). A useful check of our calculations below will
come from carrying the solution to the next order, i.e., z2B = z20 + δ[z2B]2 + · · · with

δ[z2B]2 =
(d− 1)L

4πGbulkTo
ε2 =

(d− 1)L

4πGbulkTo

(
1− 4πGbulkLTo

d− 1

)2

. (2.15)

To conclude, we consider the intrinsic geometry of the brane. As we noted above, the
curvature scale of gAdSd

ij is simply L, and hence given the full bulk metric (2.7), we can read
off the curvature scale of the surface z = zB (θ = θB) as

ℓB =
L2

zB

(
1 +

z2B
4L2

)
, (2.16)

1

ℓ2B
=

sin2 θB

L2
. (2.17)
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Note that since we are considering zB/L ≪ 1, it follows that ℓB/L ≫ 1, i.e., the brane is
weakly curved compared to the bulk. Using eq. (2.13), we can solve for ℓB to leading order
in the ε expansion to find

L2

ℓ2B
≃ 2 ε = 2

(
1− 4πGbulkLTo

d− 1

)
. (2.18)

It will be useful to have the following expressions for the Ricci tensor and scalar evaluated
for the brane geometry, and these are compactly written using eq. (2.16) as

R̃ij(g̃) = −d− 1

ℓ2B
g̃ij , R̃(g̃) = −d(d− 1)

ℓ2B
. (2.19)

2.2 Gravitational Action on the Brane

As noted above, following the usual RS scenario [84–86], new (normalizable) modes of the
bulk graviton are localized near the brane in the backreacted geometry, and this induces
an effective theory of dynamical gravity on the brane. The gravitational action can be
determined as follows: First, one considers a Fefferman-Graham (FG) expansion near the
boundary of an asymptotic AdS geometry [102, 103]. Then integrating the bulk action
(including the Gibbons-Hawking-York surface term [99,100]) over the radial direction out
to some regulator surface produces a series of divergent terms, which through the FG ex-
pansion can be associated with various geometric terms involving the intrinsic curvature
of the boundary metric. Usually in AdS/CFT calculations, a series of boundary coun-
terterms are added to the action to remove these divergences, as the regulator surface is
taken to infinity [101]. In the present brane world construction, the regulator surface is
replaced by the brane, which remains at a finite radius, and no additional counterterms are
added. Rather the ‘divergent’ terms become contributions to the gravitational action of
the brane theory. Hence, drawing upon previous discussions of the boundary counterterms
in AdS/CFT [101], the brane action becomes

Idiver =
1

16πGbulk

∫
ddx
√

−g̃
[
2(d− 1)

L
+

L

(d− 2)
R̃

+
L3

(d− 4)(d− 2)2

(
R̃ijR̃ij −

d

4(d− 1)
R̃2

)
+ · · ·

]
. (2.20)

Several comments are in order at this point: First of all, we note that the above
expression is written in terms of the induced metric g̃ij on the brane (as in [101]) rather
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than the boundary metric
(0)

g ij that enters the FG expansion. Using the standard results,
e.g., [106,107], we can relate the two with

g̃ij(xk) =
L2

z2B

(0)

g ij(xk) +
(1)

g ij(xk) +
z2B
L2

(2)

g ij(xk) + · · · , (2.21)

where the higher order terms can be expressed in terms of the curvatures of
(0)

g ij, e.g.,

(1)

g ij = − L2

d− 2

(
Rij

[(0)
g
]
−

(0)

g ij

2(d− 1)
R
[(0)
g
])

. (2.22)

In other words, the two metrics are related by a Weyl scaling and a field redefinition.
Further, we see a factor of (d− 2) appearing in the denominator of the second term, i.e.,
the Einstein-Hilbert term, in eq. (2.20). Hence this expression only applies for d ≥ 3 and
must be reevaluated for d = 2, which we do in section 2.3. Similar factors, as well as a
factor of d − 4, appear in the denominator of the third term, which again indicates that
this expression must be reconsidered for d = 4.

In any event, the gravitational action on the brane is given by combining the above
expression with the brane action (2.2),

Iinduced = 2 Idiver + Ibrane , (2.23)

where the factor of two in the first term accounts for integrating over the bulk geometry
on both sides of the brane — see fig. 2.1. The combined result can be written as

Iinduced =
1

16πGeff

∫
ddx
√

−g̃
[
(d− 1)(d− 2)

ℓ2eff
+ R̃(g̃)

]
(2.24)

+
1

16πGRS

∫
ddx
√

−g̃
[

L2

(d− 4)(d− 2)

(
R̃ijR̃ij −

d

4(d− 1)
R̃2

)
+ · · ·

]
,

where

1

Geff

=
1

GRS

=
2L

(d− 2)Gbulk

,
1

ℓ2eff
=

2

L2

(
1− 4πGbulkLTo

d− 1

)
. (2.25)

In the present discussion Geff and GRS are equal, but by adding terms to the brane action
this can change. We will explain this in section 2.4. Comparing eqs. (2.12), (2.18), and
(2.25), we see that ℓeff (which sets the cosmological constant term in Iinduced) precisely
matches the leading order expression for the brane curvature ℓB. Hence if we only consider
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the first two terms in eq. (2.24), the resulting Einstein equations would reproduce the
leading expression (in the ε expansion) for the curvatures in eq. (2.19). Further, it is a
straightforward exercise to show that if the contribution of the curvature squared terms is
also included in the gravitational equations of motion, the curvature is shifted to precisely
reproduce the ε2 term in eq. (2.19). Hence rather than using the Israel junction conditions,
we could determine the position of the brane in the backreacted geometry by first solving
the gravitational equations of the brane action (2.24) and then finding the appropriate
surface z = zB with the corresponding curvature. More generally, the fact that these
two approaches match was verified by [108],1 which argued the bulk Einstein equations
combined with the Israel junction conditions are equivalent to the brane gravity equations
of motion.2

This approach of constructing an effective theory of gravity on the brane is only a good
way to describe the brane physics in the limit that ℓeff ≫ L; otherwise the contributions of
the higher curvature terms cannot be ignored and dealing with the effective gravity theory
becomes very complicated. For example, if the curvatures are proportional to 1/ℓ2eff at
leading order, then the curvature squared term is suppressed by a factor of L2/ℓ2eff relative
the first two terms. Similarly the higher order curvature terms denoted by the ellipsis in
eq. (2.24) are further suppressed by a further factor of L2/ℓ2eff for each additional curvature
appearing these terms. From eqs. (2.12) and (2.18), we can write L2

ℓ2eff
= 2ε and hence we see

that the gravitational brane action and the resulting equations of motion can be organized
in the same small ε expansion discussed in section 2.1.

Following the usual rules of AdS/CFT correspondence, we can give a holographic de-
scription of this system involving (two weakly interacting copies of) the boundary CFT
living on the brane. However, this CFT has a finite UV cutoff because the brane resides
at a finite radius in the bulk, e.g., see [107,115,116]. The action (2.20) is then the induced
gravitational action resulting from integrating out the CFT degrees of freedom. The UV
cutoff is usually discussed in the context of the boundary metric g(0)

ij , where the short dis-
tance cutoff would be given by δ ≃ zB. However, recall that the gravitational action (2.24)
is expressed in terms of the induced metric g̃ij and so the conformal transformation in
eq. (2.21) yields δ̃ ≃ L for this description of the brane theory. Therefore the ε expansion
corresponds to an expansion in powers of the short distance cutoff, i.e., ε ∼ δ̃2/ℓ2eff.

1See also earlier discussions, e.g., [109–111].
2We note that the brane graviton acquires a small mass through interactions with the CFT residing

there [86, 112, 113]. While this mass appears to be negligible in the regime of interest, i.e., L/ℓeff ≪ 1 —
see further discussion in section 2.5 — it has also been argued [60,114] that this mass plays an important
role in the appearance of islands.
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2.3 The case of two dimensions

Recall that the curvature terms in the induced action (2.20) have coefficients with inverse
powers of (d− 2) and so we must reconsider the calculation of this brane action for d = 2,
i.e., when the bulk space is (locally) AdS3 and the induced geometry on the brane is
AdS2. This section sketches the necessary calculations, which are largely the same as those
performed in higher dimensions, but with a few important differences.

Let us add that in contrast to the induced action, the calculations in section 2.1,
where the position of the brane is determined using the Israel junction conditions, need
no modifications for d = 2. Therefore we can simply substitute d = 2 into eqs. (2.13) and
(2.15) for the brane position to find

z2B ≃ 2L2ε+
L

4πGbulkTo
ε2 + · · · , with ε = 1− 4πGbulkLTo . (2.26)

Of course, we must be able to reproduce the same result using the new induced gravity
action.

Integration of bulk action

As discussed in section 2.2, one can determine the structure of the terms in the induced
action by a careful examination of the FG expansion near the asymptotic boundary [107,
108,117]. However, we can take the simpler route here, since in two dimensions the Riemann
curvature has a single component and therefore the entire induced action can be expressed
in terms of the Ricci scalar R(g̃). Therefore, we evaluate the on-shell bulk action and match
the boundary divergences to an expansion in R(g̃). That is, we substitute the metric
(2.7) into the bulk action (2.1) plus the corresponding Gibbons-Hawking-York surface
term [99, 100] and integrate over the radial direction z. The result can be expressed as a
boundary integral with a series of divergences as zB → 0,3

Idiver =
L

16πGbulk

∫
d2x
√

−gAdS2

[
1

z2B
+

1

L2
log
(zB

L

)
− z2B

16L4
+ · · ·

]
. (2.27)

3This expression also includes O(z2B) contributions (which are not divergent as zB → 0); these are
necessary to match eq. (2.26) to O(ε2) in the following. Further, note that we are ignoring the contributions
coming from asymptotic boundaries at z → ∞.
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Now we rewrite the above expression in terms of the induced metric and the corresponding
Ricci scalar combining eqs. (2.7), (2.16) and (2.19), which yield

√
−g̃ = L2

z2B

(
1 +

z2B
4L2

)2√
−gAdS2 , R = −2

z2B
L4

(
1 +

z2B
4L2

)−2

. (2.28)

Using these expressions, the induced action becomes4

Idiver =
L

16πGbulk

∫
d2x
√

−g̃
[ 2

L2
− 1

2
R̃ log

(
−L

2

2
R̃

)
+

1

2
R̃ +

L2

16
R̃2 + · · ·

]
. (2.29)

The most striking feature of this induced action is the term proportional to R log |R|.
The appearance of this logarithm is related to the conformal anomaly [118–120], and points
towards the fact that the corresponding gravitational action is nonlocal,5 as we discuss next.
Further, since the Einstein-Hilbert term is topological in two dimensions, it turns out that
this unusual action is precisely what is needed to match the dynamics of the bulk gravity
described above, i.e., the position of the brane in eq. (2.26).

The logarithmic contribution should correspond to that coming from the nonlocal
Polyakov action [117]. Schematically, we would have

Ibulk ≃ IPoly = − αL

16πGbulk

∫
d2x
√

−g̃ R̃ 1

□̃
R̃ , (2.30)

where we have introduced an arbitrary constant α here but it will be fixed by comparing
with the divergences in the integrated action. Of course, 1

□̃
R̃ indicates a convolution of

the Ricci scalar with the scalar Green’s function, but there are subtleties here in dealing
with constant curvatures. The latter are ameliorated by making the action (2.30) local by
introducing a auxiliary field ϕ (e.g., see [117,121]),

IPoly =
αL

8πGbulk

∫
d2x
√

−g̃
[
−1

2
g̃ij∇̃iϕ∇̃jϕ+ ϕ R̃ + χ e−ϕ

]
. (2.31)

4Our derivation of eq. (2.29) will miss terms involving derivatives of R̃ as these vanish for the constant
curvature geometry of our brane. However, apart from the total derivative □̃R̃, such terms will only appear
at higher orders, i.e., in the ‘· · · ’.

5Similar nonlocalities appear in the curvature-squared or four-derivative contributions with d = 4, or
more generally in the interactions with d/2 curvatures for higher (even) d. Hence they do not play a role
in higher dimensions if we work in the regime where the induced action (2.24) is well approximated by
Einstein gravity coupled to a cosmological constant.
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where χ is a fixed constant.6

The equation of motion resulting from eq. (2.31) is

0 = □̃ϕ+ R̃− χ e−ϕ , (2.32)

which has a simple solution when R̃ is a constant, namely,

ϕ = ϕ0 = log(χ/R̃) . (2.33)

Evaluating the Polyakov action with ϕ = ϕ0 yields

IPoly

∣∣
ϕ=ϕ0

= − αL

8πGbulk

∫
d2x
√
−g̃

[
R̃ log(R̃/χ)− R̃

]
. (2.34)

Comparing this expression with the log term in eq. (2.29), we fix α = 1
4

and χ = − 2
L2 .

Varying the action (2.31) with respect to the metric, we find the corresponding contri-
bution to the ‘gravitational’ equations of motion

T Poly
ij = − 2√

−g
δIPoly

δgij
=

L

32πGbulk

[
∇̃iϕ∇̃jϕ+ 2 ∇̃i∇̃jϕ (2.35)

−g̃ij
(
1

2
(∇̃ϕ)2 + 2 □̃ϕ− χ e−ϕ

)]
,

where we have used R̃ij − 1
2
g̃ijR̃ = 0 for d = 2 to eliminate the terms linear in ϕ (without

any derivatives). Now substituting ϕ0, we find that this expression reduces to

T Poly
ij

∣∣
ϕ=ϕ0

=
L

32πGbulk

g̃ij R̃ , (2.36)

which we will substitute into evaluating the equations of motion below to fix the position
of the brane. As an aside, we can take the trace of the above expression to find that it
reproduces the trace anomaly, e.g., [123,124]

⟨T i
i⟩ =

c

24π
R̃ , (2.37)

6The last term is needed to take care of zero mode problem [121]. Examining the equation of motion
(2.32), one can think of ϕ as a conformal factor relating the metric g̃ij to a canonical constant curvature
metric ĝij , i.e., g̃ij = eϕĝij with R̂(ĝ) = χ [121, 122]. Hence we choose χ to be negative to match the
sign of R̃. Further, note that with the interaction χe−ϕ in the action (2.31), ϕ becomes an interacting
field [117].
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where we recall that c = 3L
2Gbulk

for the boundary CFT. In our case, the trace anomaly will
be twice as large, since there are two copies of the CFT living on the brane.

The induced action Iinduced = 2 Idiver + Ibrane can be written as

Iinduced =
1

16πGeff

∫
d2x
√

−g̃
[ 2

ℓ2eff
− R̃ log

(
−L

2

2
R̃

)
+ R̃ +

L2

8
R̃2 + · · ·

]
, (2.38)

where the two effective scales are(
L

ℓeff

)2

=2 (1− 4πGbulkLTo) , Geff =Gbulk/L . (2.39)

Notice that while the first equality follows the same definition as in higher dimensions, the
second one must be redefined for d = 2 (c.f. eq. (2.25)). The metric variation then yields
the following equation of motion

0 =
2

ℓ2eff
g̃ij + g̃ij R̃ +

L2

8
R̃
(
g̃ij R̃− 4R̃ij

)
+ · · · , (2.40)

where we dropped the terms involving derivatives of curvatures arising from the variation
of the R̃2 term. To leading order, we find R̃ ∼ −2/ℓ2eff = −4ε/L2 in agreement with
eqs. (2.12), (2.18), and (2.19). Hence, the gravitational equations of motion again fix the
(leading-order) position of the brane for d = 2, and further it is a straightforward exercise
to match to second order corrections in eq. (2.26) using the curvature-squared contributions
in eq. (2.40).

Adding JT gravity

Much of the recent literature on QEIs examines models involving two-dimensional gravity,
e.g., [4, 7, 34, 48, 50, 53, 65], however, the gravitational theory in these models is Jackiw-
Teitelboim (JT) gravity [125,126]. One can incorporate JT gravity into the current model
by dropping the usual tension term (2.2), and instead using the following brane action7

Ibrane = IJT + Ict , (2.41)

where the JT action takes the usual form,

IJT =
1

16πGbrane

∫
d2x
√

−g̃
[
Φ0 R̃ + Φ

(
R̃ +

2

ℓ2JT

)]
. (2.42)

7Alternatively, one could simply add IJT to the usual tension term. With this approach, an extra source
term appears in eq. (6.4), but it can be eliminated by shifting the dilaton in a manner similar to eq. (2.48).
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Here, as in previous actions, we have ignored the boundary terms associated with the JT
action, e.g., see [127], and we have introduced the dilaton Φ. Recall that Φ0 is simply a
constant and so the first term is topological but contributes to the generalized entropy. In
eq. (2.41), we have also included a counterterm

Ict = − 1

4πGbulkL

∫
d2x
√
−g̃ , (2.43)

which is tuned to cancel the induced cosmological constant on the brane. This choice
ensures that the JT gravity (2.42) couples to the boundary CFT in the expected way, e.g.,
as in [34,127] — see further comments below.

The full induced action now takes the form

Iinduced =
1

16πGeff

∫
d2x
√

−g̃
[
− R̃ log

(
−L

2

2
R̃

)
+
L2

8
R̃2 + · · ·

]
+

1

16πGbrane

∫
d2x
√

−g̃
[
Φ̃0 R̃ + Φ

(
R̃ +

2

ℓ2JT

)]
, (2.44)

where we have combined the two topological contributions in the second line with8

Φ̃0 = Φ0 +Gbrane/Geff . (2.45)

Now, with the JT action (2.42), the dilaton equation of motion fixes R̃ = −2/ℓ2JT, i.e.,
the brane geometry is locally AdS2 everywhere with ℓB = ℓJT. Then the position zB of the
brane is fixed by eq. (2.16) and implicitly we assume that ℓJT ≫ L, which ensures that
zB ≪ L as in our previous discussions. The gravitational equation of motion coming from
the variation of the metric becomes

−∇i∇jΦ + g̃ij

(
∇2Φ− Φ

ℓ2JT

)
= 8πGbrane T̃

CFT
ij = −Gbrane

Geff

1

ℓ̂2eff
g̃ij , (2.46)

where ℓ̂eff is the effective curvature scale produced by ℓJT. That is, in the case without JT
gravity, we can combine eqs. (2.11), (2.16) and (2.25) to find

L2

ℓ2eff
= f

(
L2

ℓ2B

)
≡ 2

(
1−

√
1− L2

ℓ2B

)
. (2.47)

8In [34], Φ̃0 would also absorb a logarithmic constant −2 log(L/zB), which would be accompanied by a
shift in the prefactor in the argument of the logarithmic term in eq. (2.44), i.e., 2/L2 → 2/z2B.
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We can understand this expression as the gravitational equation of motion coming from
the two-dimensional action (2.38), where a Taylor expansion of the right-hand side for
L/ℓB ≪ 1 corresponds to varying the curvature terms and subsequently substituting R̃ij =
− 1

ℓ2B
g̃ij, as in eq. (2.19). Now in the JT equation of motion (6.4), the effective curvature

scale ℓ̂eff satisfies L2/ℓ̂2eff = f(L2/ℓ2JT). We have indicated in eq. (6.4) that the left-hand side
corresponds to the stress tensor of the boundary CFT which lives on the brane. In the
present arrangement,9 this takes a particularly simple form, with T CFT

ij ∝ g̃ij. Of course,
this source term in eq. (6.4) can be easily absorbed by shifting the dilaton,

Φ̃ ≡ Φ− Gbrane

Geff

ℓ2JT

ℓ̂2eff
, (2.48)

so that Φ̃ satisfies the usual source-free equation studied in e.g., [127].

At this point, we observe that the trace of eq. (6.4) yields on the right-hand side,

⟨
[
T̃ CFT

]i
i⟩ = − L

4πGbulk

1

ℓ̂2eff
= − L

4πGbulk

1

ℓ2JT

(
1 +

1

4

L2

ℓ2JT
+

1

8

L4

ℓ4JT
+ · · ·

)
, (2.49)

where in the final expression, we are Taylor expanding f(L2/ℓ2JT) assuming L2/ℓ2JT ≪ 1, as
above. Noting that R̃ = −2/ℓ2JT and comparing to eq. (2.37),10 we see that the expected
trace anomaly has received a infinite series of higher order corrections. We can interpret the
latter as arising from the finite UV cutoff on the brane, recalling that δ̃ ≃ L as discussed
at the end of section 2.2.

2.4 Dvali-Gabadadze-Porrati Gravity on the Brane

The previous discussion of d = 2 motivates that it is interesting to add an intrinsic gravity
term to the brane action. Here, we extend this discussion to higher dimensions, i.e., extend
the brane action to include an Einstein-Hilbert term. Of course, this scenario can be viewed
as a version of Dvali-Gabadadze-Porrati (DGP) gravity [87] in an AdS background. Hence,
it combines features of both RS and DGP gravity theories. We discuss the modifications

9In more interesting scenarios, e.g., with evaporating black holes as in [4,7,34], it is more appropriate to
work directly with the CFT’s stress tensor, rather than replacing these degrees of freedom by an effective
gravity action after integrating out the CFT.

10Recall that the central charge here is twice that appearing in eq. (2.37) because the brane supports
two (weakly interacting) copies of the boundary CFT.
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of the brane dynamics and the induced action below, but it also produces interesting
modifications of the generalized entropy, as discussed in chapter 3 and appendices A and B.

We write the extended brane action, replacing eq. (2.2), as

Ibrane = −(To −∆T )

∫
ddx
√
−g̃ + 1

16πGbrane

∫
ddx
√
−g̃R̃ . (2.50)

In general, for a fixed brane tension, the position of the brane will be modified with the
additional Einstein-Hilbert term. Hence we have parametrized the full brane tension as
To−∆T and the contribution ∆T will be tuned to keep the position of the brane fixed. This
choice will facilitate the comparison of the generalized entropy between different scenarios
in the following.

As in section 2.1, the position of the brane can be determined using the Israel junction
conditions (2.8). Hence we begin by evaluating the brane’s stress tensor,

Sij ≡ − 2√
−g̃

δIbrane

δg̃ij
= −g̃ij(To −∆T )− 1

8πGbrane

(
R̃ij −

1

2
g̃ij R̃

)
. (2.51)

As commented above, we choose ∆T to cancel the curvature contributions in this expres-
sion, i.e., the stress tensor reduces to Sij = −To g̃ij. With this tuning, the Israel junction
conditions in eq. (2.8) are unchanged as the analysis which follows from there. Therefore
the brane position and curvature remain identical to those determined in eqs. (2.11) and
(2.16). This allows use to determine the desired tuning as

∆T =
(d− 1)(d− 2)

16πGbrane ℓ2B
≃ (d− 1)(d− 2)

8πGbrane L2
ε . (2.52)

We have used eqs. (2.12) and (2.18) to show that the shift in the brane tension is small in
the ε expansion.

We return to the induced gravitational action on the brane that takes the same form
as in eq. (2.24) but with the effective Newton’s constant in eq. (2.25) replaced by

1

Geff

=
2L

(d− 2)Gbulk

+
1

Gbrane

. (2.53)

By construction, ℓeff and the position of the brane are unchanged. Note that the gravita-
tional couplings in the Einstein terms and in the higher curvature interactions, i.e., in the
first and second lines of eq. (2.24), are now distinct. That is, Geff no longer equals GRS.
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In the following, it will be useful to define the ratio

λb =
GRS

Gbrane

with
1

GRS

=
2L

(d− 2)Gbulk

, (2.54)

where GRS is the induced Newton’s constant on an RS brane appearing in eq. (2.25), while
the dimensionless ratio λb controls the relative strength of the Newton’s constants in the
bulk and on the brane. With these definitions, the induced Newton’s constant on the DGP
brane, in eq. (2.53), can be rewritten as

1

Geff

=
1

GRS

(1 + λb) . (2.55)

Of course, one can also consider other modifications of the brane action beyond adding
the Einstein-Hilbert term in eq. (2.50) — see discussion in the next subsection and [128].
Further, we will discuss adding topological gravitational terms on the brane or in the bulk
in chapters 3 and 7. In particular, we will see in section 3.4 that adding a Gauss-Bonnet
term to the four-dimensional bulk gravity theory yields another tunable parameter which,
for a certain parameter range, makes it possible to find quantum extremal islands in the
absence of black holes.

2.5 Three perspectives: Bulk/Brane/Boundary

Our setup can be interpreted from three different ‘holographic’ perspectives, which are
analogous to the three descriptions of [7], suitably generalized to arbitrary dimensions. A
set of analogous descriptions for gravity on a brane in higher dimensions was discussed in
the context of the Karch-Randall model [86], and in fact, these are the models discussed
here with the addition of the DGP term (2.50). In this section we review each of the dual
descriptions, and explore their relation.

First, consider the bulk gravity perspective corresponding to the geometric picture por-
trayed in section 2.1: we have an AdSd+1 bulk region where gravity is dynamical, containing
a DGP brane with tension running through the middle of the spacetime — see figure 1.5a.
The induced geometry on the brane is AdSd. In the second picture, we integrate out
the bulk action from the asymptotic boundary where gravity is frozen up to the brane,
giving rise to RS gravity [84–86] on the brane. From the resulting brane perspective, the
CFTd is then supported in a region with dynamical gravity (i.e., the brane) and another
non-dynamical one (i.e., the asymptotic boundary) — figure 1.5b. Finally, the third de-
scription makes full use of the AdS/CFT dictionary, by using holography along the brane.
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This boundary perspective describes the system as a CFTd coupled to a conformal defect
that is located at the position where the brane intersects the asymptotic boundary — see
figure 1.5c.

A holographic system was presented in [7] to describe the evaporation of two-dimensional
black holes in JT gravity. This system has three descriptions analogous to those above. Of
course, it also includes certain elements that we did not introduce in our model, i.e., end-
of-the-world branes to give a holographic description of conformal boundaries separating
various components [91,92] and performing a Z2 orbifold quotient across the Planck brane,
i.e., the brane supporting JT gravity. However, the essential ingredients are the same as
above. The boundary perspective in [7] describes the system as a two-dimensional holo-
graphic conformal field theory with a boundary, at which it couples to a (one-dimensional)
quantum mechanical system — figure 1.5f. With the brane perspective, the quantum me-
chanical system is replaced by its holographic dual, the Planck brane supporting JT gravity
coupled to another copy of the two-dimensional holographic CFT — see figure 1.5e. Fi-
nally, the bulk gravity perspective replaces the holographic CFT with three-dimensional
Einstein gravity in an asymptotically AdS3 geometry. Because of the Z2 orbifolding, the
latter effectively has two boundaries, the standard asymptotically AdS boundary and the
dynamical Planck brane — see figure 1.5d.

This initial model [7] raised a number of intriguing puzzles. For example, as emphasized
in [50], implicitly two different notions of the radiation degrees of freedom are being used:
one being the semi-classical approximation and the other one in the purely quantum theory.
Here, we will explain some details of the higher dimensional construction which allow us
to provide a resolution of several of these questions in chapter 7.

2.5.1 Bulk gravity perspective

As discussed in section 2.1, the system has a bulk description in terms of gravity on an
asymptotically AdSd+1 spacetime containing a codimension-one brane, which splits the
bulk into two halves — see figure 1.5a. The brane is characterized by the tension To and
also the DGP coupling 1/Gbrane, introduced in eqs. (2.2) and (2.50), respectively. We can
use the Israel junction conditions (2.8) to determine the location of the brane as embedded
in the higher dimensional space. The backreaction causes warping around the brane, and
after a change of coordinates, tuning the brane tension can be understood as moving the
brane further into a new asymptotic AdS region, as seen in eq. (2.11) or (2.13). For
large brane tension, i.e., with ε ≪ 1, the spectrum of graviton fluctuations in the bulk is
almost unchanged with respect to the modes in empty AdS space. However, a new set of
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µB

ψ(µ)

π0
µ

Figure 2.2: This figure illustrates the spatial profile of the first few normalized graviton
modes in the presence of a large tension brane, and a Z2 orbifolding across the brane. We
use the spatial coordinate µ, related to ϖ in eq. (2.4) by cotµ = sinhϖ/L. The tension
is adjusted such that the location of the brane is at µ = µB with µB ≲ π. As discussed
in the main text, the presence of the brane creates new bulk modes (orange), which are
highly localized at the brane, and which play the role of a (nearly massless) graviton on
the brane. The remaining bulk modes appear as KK modes in the brane theory.

graviton states also appear localized at the brane [84, 85], as illustrated figure 2.2. These
are created by the nonlinear coupling of gravity to the brane. Unlike in the RS model
with a flat or de Sitter brane, the new graviton modes are not actually massless on the
brane, but merely very light states whose wavefunction peaks around the brane [86, 112].
The remaining bulk graviton modes appear as a tower of Kaluza-Klein states, from the
point of view of the theory on the brane, with masses of O(1/ℓeff) set by the curvature
scale of the d-dimensional AdS geometry on the brane. These results have been studied
in quite some detail [86, 112, 113, 129–131] for RS branes, but it is interesting to examine
how the spectrum is modified by the DGP term (2.50). We will make some qualitative
statements about this question below, but leave a detailed quantitative discussion and the
interpretation of this mechanism from the point of view of the CFT for future work [128].

2.5.2 Brane perspective

This second perspective, discussed in section 2.2, effectively integrates out the spatial
direction between the asymptotically AdS boundary and the brane to produce an effective
action (2.24) for RS/DGP gravity on the brane, with the new localized graviton state
playing the role of the d-dimensional graviton. Hence, we are left with a d-dimensional
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theory of gravity coupled to (two copies of) the dual CFT on the brane — see figure 1.5b.
As discussed in the description of the bulk perspective, amongst the new localized bulk
modes, we have an almost massless graviton but also a tower of massive Kaluza-Klein states
with masses of O(1/ℓeff). In section 2.2, we demonstrated the consistency between the bulk
gravity perspective and the brane perspective by observing how the equations of motion
of the new effective action fix the brane position in the ambient spacetime. Of course, the
bulk physics is also dual to the dual CFT on the asymptotic AdSd+1 boundary, and so
this description is completed by coupling the gravitational and CFT degrees of freedom
on the brane to the CFT on the fixed boundary geometry. We refer to that latter as the
bath CFT. Next, we discuss how different parameters in the brane perspective are related
to bulk parameters.

There are four independent parameters that characterize the gravitational theory on
the brane: the curvature scale ℓeff, the effective Newton’s constant Geff, the central charge
of the boundary CFT cT, and the effective short-distance cutoff δ̃. These emerge from
the bulk theory through the four parameters characterizing the latter: the bulk curvature
scale L, the bulk Newton’s constant Gbulk, the brane Newton’s constant Gbrane and the brane
tension To.11 From eq. (2.25), we see that ℓeff is determined by a specific combination of To,
Gbulk and L. Similarly, Geff is determined by Gbrane, Gbulk and L in eq. (2.53). The central
charge of the boundary CFT is given by the standard expression cT ∼ Ld−1/Gbulk, e.g.,
see [132].

Lastly, as discussed in section 2.2, the theory on the brane comes with a short-distance
cutoff δ̃ [107,115,116] at which the description of the brane theory in terms of (two copies
of) the boundary CFT coupled to Einstein gravity breaks down. Following a standard bulk
analysis, one would see that correlators of local operators (with appropriate gravitational
dressings) no longer exhibit the expected CFT behaviour at short distances of order

δ̃CFT ∼ L . (2.56)

We denote this cutoff with the subscript ‘CFT’ to emphasize that the description of the
matter degrees of freedom on the brane as a local d-dimensional CFT is failing at distances
smaller than this short-distance cutoff. However, we stress that there is another scale δ̃GR,
which is the distance at which the approximation of Einstein gravity on the brane breaks
down. The simple parameter counting above shows that this cannot be an independent
scale. For the brane perspective, the true cutoff δ̃ where the description in terms of the
dual CFT coupled to Einstein gravity fails is

δ̃ = max
{
δ̃CFT , δ̃GR

}
. (2.57)

11Recall that ∆T is determined by these parameters in eq. (2.52), as well as eqs. (2.11) and (2.16).
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We now discuss how δ̃GR is related to the other scales in the brane theory.

Recall that integrating out the bulk degrees of freedom produces a series of higher
curvature terms in the effective action (2.24), and hence demanding that d-dimensional
Einstein gravity provides a good approximation of the brane theory introduces constraints.
The suppression of these higher curvature corrections requires that the ratio L/ℓeff be small.
However, if we examine eq. (2.24) carefully and note the distinction Geff ̸= GRS, then
suppressing the curvature-squared terms requires that

1

1 + λb

L2

ℓ2eff
≪ 1 , (2.58)

using eq. (2.55). Note that for fixed bulk and boundary curvature scales, this implies a
lower bound on the DGP term, such that λb cannot be arbitrarily close to −1. For a
pure RS brane with no additional DGP gravity, i.e., λb = 0, we conclude that the cutoff
below which we find Einstein gravity coincides with the CFT cutoff δ̃GR ∼ δ̃CFT ∼ L. More
generally then, the above expression suggests that the DGP term (2.50) affects a shift
producing a new short-distance cutoff for gravity,

δ̃GR ∼ L√
1 + λb

∼ δ̃CFT√
1 + λb

. (2.59)

Hence the true cutoff (2.57) depends on the sign of λb — we return to this point below.
We should note that this result only applies for d > 4. For d = 4, the coefficient of the
curvature-squared term is logarithmic in the cutoff, while for d = 2 or 3, this interaction
is not associated with a UV divergence.

While the above are UV effects, there are also infrared (IR) effects resulting from
having a large number of matter degrees of freedom propagating on the brane, as explained
in [133–135]. The usual regime of validity for QFT in semiclassical gravity lies at energy
scales below the Planck mass, or at distance scales larger than G

1/(d−2)
eff . However, the

boundary CFT has a large number of degrees of freedom, as indicated by the large cT,
and hence the semiclassical description of gravity in fact breaks down much earlier. A
direct way to see this breakdown [134] is to consider the computation of the (canonically
normalized) graviton two-point function. In the high energy approximation, i.e., ignoring
the AdS geometry, we have here:12

⟨h(p)h(−p)⟩ ∼ p−2
[
1 + cTGeff p

d−2 + · · ·
]
. (2.60)

12This propagator argument can also be applied for the higher curvature terms discussed
above. For example, the curvature-squared terms gives a perturbative correction: ⟨h(p)h(−p)⟩ ∼
p−2

[
1 + L2

1+λb
p2 + · · ·

]
. Hence this approach yields the same result for the cutoff in eq. (2.59).
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The leading correction arises from a diagram involving the external gravitons coupling to
the CFT stress tensor two-point function. We see that such corrections are only suppressed
relative to the ‘tree-level’ result for momenta below a cutoff scale of order (cTGeff)

−1/(d−2).
For our model, the gravitational theory of the brane can therefore only be treated semi-
classically for distance scales larger than

δ̃GR ∼ (cTGeff)
1/(d−2) ∼ L

(1 + λb)1/(d−2)
∼ δ̃CFT

(1 + λb)1/(d−2)
. (2.61)

Again, for a pure RS brane with λb = 0, the cutoffs for Einstein gravity and the CFT
agree, yielding δ̃ ∼ L. However, the addition of a DGP gravity term modifies the cutoff,
but in a manner distinct from eq. (2.59), produced by the higher curvature terms. Note
that the above result applies for d ≥ 3.

The distinction between these two cutoffs indicates that these are really two different
physical phenomena contributing to the breakdown of Einstein gravity in the brane per-
spective. Note that for λb > 0, in both eqs. (2.59) and (2.61), the effect is to produce a
shorter cutoff scale; however, the second limit (2.61) is the first to contribute (where we
are assuming d > 4). However, this result is smaller that δ̃CFT and hence from eq. (2.57),
we find

λb > 0 : δ̃ ∼ δ̃CFT ∼ L . (2.62)

On the other hand with λb < 0, the cutoff δ̃GR is pushed to larger distance scales. In this
case, eq. (2.59) is the first to modify the gravitational physics on the brane as we move
to smaller distances. Further since this result is now larger than the CFT cutoff, in this
regime, eq. (2.57) yields

λb < 0 : δ̃ ∼ δ̃GR ∼ L√
1 + λb

. (2.63)

Let us also note that the latter effect, i.e., CFT corrections to the graviton propagator,
is also responsible for the mass of the brane graviton [129]. It is interesting to note that if
we take the high energy limit of the corrections to the graviton propagator, eq. (2.60), we
can estimate a mass correction for low energy gravitons mode of roughly

cTGeff

ℓdeff
∼ 1

(1 + λb) ℓ 2eff

(
L

ℓeff

)d−2

, (2.64)

where we have substituted the d-dimensional AdS scale as a lower bound on the momentum.
The scaling with the d-dimensional cosmological constant − 1

ℓ2eff
agrees with predictions
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in the Karch-Randall model [130, 131]. However, we caution the reader that the above
argument by which we obtained the scaling is heuristic at best. Importantly, whether or
not the graviton actually obtains a mass correction depends on the boundary conditions
of the matter fields in AdS and can therefore not be determined by a local argument
alone [129]. However, taking eq. (2.64) at face value, we also see that a negative DGP
coupling increases the mass scale, and vice versa for a positive coupling. This can be
confirmed explicitly from bulk calculations [128].

2.5.3 Boundary perspective

As the preceding discussion has made clear, the theory obtained by integrating out the bulk
between the asymptotic boundary and the brane, has an effective description of the brane
in terms of a local d-dimensional CFT coupled to Einstein gravity up to some cutoff (2.57).
However, the standard rules of AdS/CFT also allow for a fully microscopic description of
the system in terms of the boundary theory. This is obtained by integrating out the bulk —
including the brane — and the result is given by the bath CFT on the fixed d-dimensional
boundary geometry coupled to a (d − 1)-dimensional conformal defect (positioned where
the brane reaches the asymptotic boundary, i.e., the equator of the boundary sphere) —
see figure 1.5c.

The bath CFT is characterized by the central charge cT ∼ Ld−1/Gbulk, while the defect
is characterized by its defect central charge c̃T ∼ ℓd−2

eff /Geff. We note that in the absence of
a DGP term, increasing the brane tension increases the defect central charge c̃T. Further,
we note that the ratio of these two charges is given by

c̃T

cT

∼
(
ℓeff
L

)d−2

(1 + λb) . (2.65)

Following the standard AdS/CFT dictionary, the ratio ℓeff/L also translates to a ratio of
couplings in the defect and bath CFTs,13

λ̃/λ ∼ ℓeff/L . (2.66)

Since we do not have a particular string construction in mind here, λ should be thought
of some positive power of the ‘t Hooft coupling of the bath CFT, while λ̃ will be some
(different) positive power of the analogous coupling for the defect CFT.

13Remember that the AdS/CFT dictionary tells us that GN ∼ ℓd−1
AdS /Ndof and λHooft ∼ (ℓAdS/ℓs)

d.
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Now the parameters in this boundary description must be constrained if we want to be
in the regime where the brane perspective is valid. In particular, the latter requires that
the brane curvature scale must be much larger than the effective cutoff, i.e.,

ℓeff/δ̃ ≫ 1 . (2.67)

Now as described above, the cutoff has a separate form depending on whether λb is positive
or negative. Eq. (2.62) applies for λb > 0, which then yields ℓeff/L ≫ 1. Hence we must
have λ̃/λ ≫ 1 and also c̃T/cT ≫ 1 since 1 + λb > 1 in this case. Similarly for λb < 0,
combining eqs. (2.63) and (2.67) yields ℓeff/L≫ 1/

√
1 + λb. In this case, 1+λb < 1 and it

is straightforward to again show that the ratios must be constrained in the same manner.
Hence for either sign of λb, we have

λ̃/λ≫ 1 and c̃T/cT ≫ 1 . (2.68)

The large ratio of the central charges can also be heuristically understood requiring that
energy and information are only leaking very slowly from the dynamical gravity region
into the bath [47]. It has been argued that this ratio also sets the Page time [47]. With
the boundary perspective, this can be understood as a requirement that ensures that the
degrees of freedom on the defect and the CFT only slowly mix.

Lastly, the d-dimensional graviton can be understood as a field dual to the lightest
operator appearing in the boundary OPE expansion of the CFT stress energy tensor [136].
At weak coupling, one would naively assume that the lightest operator has dimension
∆ = d. However, due to strong coupling effects it becomes possible that a negative
anomalous dimension of roughly −1 is obtained, so that the corresponding operator can
act as the holographic dual to a d-dimensional graviton. The mass of the lightest state
then signals that the anomalous dimension is not quite −1, such that the dimension of the
boundary operator dual to the graviton is ∆ ≥ d− 1.
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Chapter 3

Holographic entanglement entropy on
the Brane

In this chapter, we shall look for QEIs using the holographic setup described in chapter 2.
Of course, QEIs have recently proven especially enlightening in the context of the black hole
information paradox in two-dimensional JT gravity, where the emergence of these islands
has signalled a transition to a phase where entropy of the Hawking radiation decreases over
time, e.g., [4, 7, 34, 48, 50, 53, 65]. Some preliminary investigations of quantum extremal
islands in higher dimensions also appeared in [35, 58]. In later chapters, we will use the
holographic model developed here to further extend these discussions to consider black
holes in arbitrary dimensions. However, in our present discussion, black holes are not
involved. Rather, we are simply considering the holographic entanglement entropies for
certain regions in the vacuum of the boundary CFT coupled to the conformal defect. In
situations to be discussed below, we find that the corresponding RT surfaces cross the
brane in the bulk and this can be interpreted in terms of the appearance of a QEI in the
effective theory of gravity on the brane.

In section 3.1 we will describe the regions we are considering and the possible RT sur-
faces. Section 3.2 discusses the extremization procedure of the RT surface in the presence
of a brane and derives the conditions an RT surface needs to obey in our setting. Further,
section 3.3 shows that the leading contribution of the RT surface close to the brane can
be understood as the Dong-Wald entropy on the brane, as seen from the brane perspec-
tive. In section 3.4 we show an explicit calculation in d = 3 and investigate the choices of
parameters necessary to obtain QEIs. In particular, there, we will consider adding a DGP
coupling to the bulk theory.
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Conformal Defect

ϑCFT ϑCFT

R

ΣCFT

Figure 3.1: A time slice of our CFT setup. A conformal defect running along the equator
separates the two halves of R and its corresponding entangling surface ΣCFT.

3.1 Holographic setup

In the remainder of this chapter, we will focus on a specific calculation of the EE: We
consider the vacuum state of our boundary CFT on R(time)×Sd−1(space) with a conformal
defect running along the equator of the Sd−1. As described in chapter 2, the bulk spacetime
has locally an AdSd+1 geometry and is bisected by a brane extending out to the defect
position on the asymptotic boundary. Now we wish to evaluate the EE in the boundary
CFT for a region R comprised of the union of two polar spherical caps on the Sd−1 — see
figure 3.1. We follow the usual holographic prescription to compute the EE. That is, we
examine the bulk surfaces ΣR which are homologous to R and extremize the generalized
entropy functional

SEE(R) = min {extSgen(ΣR)} = min

{
ext

(
A(ΣR)

4Gbulk

+
A(ΣR ∩ brane)

4Gbrane

)}
. (3.1)

Of course, the first term above corresponds to the usual Ryu-Takayanagi (RT) term [13,14]
while, as discussed in appendix A, we expect the second term to arise whenever the bulk
surface crosses a DGP brane.1 Let us denote the extremal bulk surface as ΣR, and the
intersection with the brane σR = ΣR ∩ brane, see figure 3.3. Importantly, if there are

1Implicitly, eq. (3.1) assumes that the bulk and brane gravitational actions both correspond to the
Einstein-Hilbert action (with a cosmological constant term), as in eqs. (2.1) and (2.50).
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multiple extrema, the EE is given by choosing the extremal surface yielding the smallest
value for Sgen(ΣR), as indicated above.

For the calculation described above, the candidate RT surfaces are anchored at the
AdS boundary to the entangling surface ΣCFT = ∂R = ∂ΣR, i.e., the boundaries of these
surfaces are comprised of two (d−2)-spheres, which are the boundaries of the two polar caps.
We will find that there are two topologically distinct candidates for ΣR which extremize
the generalized entropy in eq. (3.1), see figure 3.4. The first consists of two disconnected
disks on either side of the brane (in which case σR = {∅}). The second candidate has a
cylindrical geometry which pierces the brane. Hence it is only in this latter case that the
second term contributes in eq. (3.1). As noted above, the correct RT surface is chosen from
these two candidates as the one which yields a smaller generalized entropy. Generally, we
shall find that when the two polar caps are small, the disconnected discs are favoured, while
the cylindrical surface can be the leading saddle for when the polar caps are large. We
will denote the first situation as the ‘disconnected’ phase and the latter as the ‘connected’
phase. As we will describe in section 3.4, the details of the transition between these two
phases also depends on other parameters in the holographic model, e.g., the tension and
gravitational coupling of the brane.

To understand the interpretation of these results in terms of quantum extremal islands,
we turn to the ‘brane perspective’ described in section 2.5.2. This effective description
gives the ‘island rule’ proposed in [7] for the EE,

SEE(R) = min {extSgen(R ∪ islands)} (3.2)

= min

{
ext

(
SEE(R ∪ islands) +

A (∂(islands))

4Gbrane

)}
.

As geometries R = R, but we have used a different font on the right-hand side to emphasize
the fact that the effective ‘brane perspective’ does not give the same detailed description
of the CFT state on R, as the boundary or bulk perspectives. Based on our discussion in
chapter 2, one might have expected that the gravitational term in eq. (3.2) would involve
Geff rather than Gbrane. This is implicit in (3.2), as we will see below. In the presence of
an island, the first term SEE(R ∪ islands) receives two large contributions, coming from
the asymptotic AdS boundary and the region close to the brane. It is this second term,
proportional to 1/GRS, which combines with the last term in eq. (3.2) to yield the expected
island contribution proportional to 1/Geff , c.f. eq. (2.53).

It is now straightforward to interpret the previous holographic discussion in terms of
the effective theory on the brane, eq. (3.2). In the connected phase, the holographic
RT surface crosses the brane and (if DGP couplings are turned on) we see an explicit
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brane contribution in eq. (3.1). From the brane perspective, a QEI has formed in the
gravitational region (i.e., the region on the brane enclosed by σR)2 and the analogous
gravitational term appears in the island rule (3.2). The bulk RT contribution in eq. (3.1)
corresponds to SEE(R ∪ islands) in eq. (3.2). As alluded to above, this makes clear that
the gravitational contribution to the island is comprised of two components: the bare
contribution ∼ 1/Gbrane, which arises from a DGP coupling added to the brane, and the
bulk contribution proportional to L/Gbulk, which arises from the volume of the RT surface
close to the brane. To see how the latter arises in the effective theory, notice that we can
split SEE into UV-finite and UV-‘divergent’ contributions close to the brane, where the
latter are contributions proportional to inverse powers of zB. These are the analog of the
UV divergent boundary contributions for the boundary CFT in the regions without gravity.
As discussed in section 2.5, the brane position imposes a UV cutoff for the CFT on the
brane, and hence the corresponding ‘divergent’ contributions to the EE are in fact finite
and instead yield contributions which match those expected for the gravitational entropy
from the induced contributions to eq. (2.24). This makes contact with the usual notion of
generalized entropy as the sum of the geometric gravitational entropy and the entropy of
the quantum fields [44,45].

In the disconnected phase, the EE only involves the modes enclosed within the two
polar caps and there is no contribution from the CFT in the gravitational region, i.e., on
the AdSd brane. In passing, let us recall that the short wavelength modes in the vicinity of
the entangling surface ΣCFT produce various UV divergent boundary contributions, such as
the celebrated area law term [144–146]. Of course, in both phases these contributions are
regulated in the holographic calculation by introducing a cutoff surface near the asymptotic
AdS boundary [16].

3.2 Ryu-Takayanagi meets the Brane

In this section, we shall introduce some technical details, which are useful to calculate the
EE associated with the two polar caps in the boundary CFT. In particular, we examine
the behaviour of the bulk RT surface ΣR as it crosses the brane, i.e., how the intersec-
tion surface σR is determined. However, we begin by specifying our EE calculation more
precisely and reviewing the metrics describing the bulk spacetime.

2Let us add that from the bulk perspective, entanglement wedge reconstruction [137–143] ensures that
operators within this island can be reconstructed from boundary CFT data in R.
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Let us describe the R× Sd−1 geometry on which the boundary CFT lives with,

ds2 = R2
[
−dt2 + dϑ2 + sin2ϑ dΩ2

d−2

]
, (3.3)

where R is the radius of curvature of the (d − 1)-sphere. The polar angle ϑ runs over
0 ≤ ϑ ≤ π, and the conformal defect sits at the equator ϑ = π/2. As illustrated in figure
3.1, we wish to evaluate the EE in the boundary CFT for a region R comprised of two
polar caps on the Sd−1. More specifically, we choose the entangling surface ΣCFT to be
two circles placed symmetrically on either side of the defect at ϑ = π/2 ± ϑCFT. Hence
we are evaluating the EE between these two balls and the complementary region, which
corresponds to a ‘belt’ of width 2ϑCFT centred on the conformal defect.

Turning now to the bulk geometry, recall that in section 2.1, we discussed the back-
ground solution in terms a metric where the AdSd+1 geometry was foliated by AdSd slices.
Eq. (2.7) describes the local geometry on either side of the brane located at z = zB with

ds2 =
L2

z2

[
dz2 + L2

(
1 +

z2

4L2

)2 (
− cosh2ϱ̃ dt2 + dϱ̃2 + sinh2ϱ̃ dΩ2

d−2

)]
. (3.4)

While these coordinates are well suited to discuss the brane geometry, we also consider
‘global’ coordinates for the AdSd+1 geometry

ds2 = L2
[
− cosh2ϱ dt2 + dϱ2 + sinh2ϱ

(
dϑ2 + sin2ϑ dΩ2

d−2

)]
, (3.5)

which are better adapted to discuss the boundary theory. That is, up to a Weyl rescaling,
the geometry on fixed ϱ surfaces matches eq. (3.3) in the asymptotic region, and the UV
regulator surface needed to properly define the holographic EE can be simply chosen as
some slice ϱ = ϱUV ≫ L.

However, while we refer to eq. (3.5) as ‘global’ coordinates, they do not cover the entire
back-reacted bulk solution depicted in figure 2.1. Rather we use the coordinates in eq. (3.5)
to cover two patches on either side of the brane and near the asymptotic AdSd+1 boundary.3
Comparing eqs. (3.4) and (3.5), it is straightforward to identify the transformation between
the two coordinate systems as

tanh ϱ̃ = tanh ϱ sinϑ ,
z

L
= −2 sinh ϱ cosϑ± 2

√
sinh2ϱ cos2ϑ+ 1 . (3.6)

With the + (−) sign, the brane at z = zB ≪ L resides near the boundary hemisphere with
0 ≤ ϑ ≤ π/2 (π/2 ≤ ϑ ≤ π) and ϱ → ∞. Therefore letting ϑ run from 0 to π on the

3Of course, the same applies for the previous coordinates in eq. (3.4).
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boundary with the defect at ϑ = π/2, we choose the − (+) sign to cover the patch covering
the asymptotic boundary hemisphere 0 ≤ ϑ ≤ π/2 (π/2 ≤ ϑ ≤ π).

Using the AdS foliation (3.4), the position of the brane was specified by z = zB. In
terms of the global coordinates (3.5), the brane position can be specified with

sinh2ϱ cos2ϑ =
L2

z2B

(
1− z2B

4L2

)2

. (3.7)

The specific sign of cosϑ depends on whether one considers the coordinate patch above
or below the brane — see comments below eq. (3.6). Further, we reach the asymptotic
boundary on the brane by taking ϱ̃→ ∞, which in the global coordinates then corresponds
to ϱ→ ∞ and ϑ→ π/2. Hence, we see that the brane intersects the asymptotic boundary
at the position of the conformal defect, as expected.

To examine the behaviour of the bulk RT surface ΣR where it crosses the brane, it is
useful to consider the problem of extremal surfaces using the metric (3.4). Because the
bulk geometry is static, the RT surfaces will be confined to a constant time slice in the
bulk. The entangling surfaces in the boundary are spherically symmetric and so we only
need to consider bulk surfaces with the same rotational symmetry on the Sd−2, that is, we
parametrize the surfaces as ϱ̃ = ϱ̃(z) and the bulk contribution to the holographic EE is
then given by

Sbulk = 2
Ld−1Ωd−2

4Gbulk

∫
dz

z

[
L

z

(
1 +

z2

4L2

)
sinh ϱ̃

]d−2
√
1 + L2

(
1 +

z2

4L2

)2(
dϱ̃

dz

)2

(3.8)

where Ωd−2 is the area of a unit (d − 2)-sphere.4 An overall factor of 2 is included here
because we assume that the profile ϱ̃(z) will be reflection symmetric about the brane, and
hence SRT receives the same contribution from both sides.

Treating eq. (3.8) as an action, we would derive an ‘Euler-Lagrange’ equation for the
profile whose solution corresponds to an extremal surface in the bulk, i.e., away from the
brane.5 However, this equation is second order and so the solutions are parameterized
by two integration constants. One of these constants is fixed by the angle ϑCFT on the
asymptotic boundary (i.e., the position of the entangling surface ΣCFT in the boundary
theory), and the other, by the radius ϱ̃B at which the RT surface intersects the brane, i.e.,
ϱ̃(z = zB) = ϱ̃B. We are thus left with the question of fixing the boundary condition at the
brane.

4Recall that the area of a unit n-sphere is given by Ωn = 2π
n+1
2 /Γ

(
n+1
2

)
.

5This equation is rather involved and the details are not important here.
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There are two contributions that come into play at the brane. The first is the DGP
contribution in eq. (3.1),

Sbrane =
Ld−2Ωd−2

4Gbrane

[
L

zB

(
1 +

z2B
4L2

)
sinh ϱ̃B

]d−2

. (3.9)

The second is a boundary term that comes from integrating by parts in the variation of
the RT functional (3.8). Combining these, one arrives at the following expression6

L
dϱ̃

dz

∣∣∣∣
z=zB

=
1

Gbrane

zB/L

1 +
z2B
4L2

[(
1 +

z2B
4L2

)2(
2L

Gbulk

tanh ϱ̃B

)2

−
(
zB/L

Gbrane

)2
]− 1

2

. (3.10)

Hence, scanning through the family of RT surfaces parametrized by ϱ̃B, the solution which
satisfies the above boundary condition is the one that properly extremizes the full entropy
functional in eq. (3.1). One observation is that without the DGP term, i.e., 1/Gbrane = 0,
the boundary condition simplifies to Ldϱ̃/dz|z=zB = 0. That is, the RT surface intersects
the brane at a right angle. Turning on the gravitational action on the brane (with a positive
coupling) produces Ldϱ̃/dz|z=zB > 0, which arises from pushing ϱ̃B to a smaller value. The
decrease in ϱ̃B is natural here because the DGP contribution in eq. (3.9) adds an additional
penalty for large areas on the brane and the effect is to shrink the area of σR.7 This is
illustrated in the left panel of figure 3.2.

We observe that the above analysis has a simple interpretation in terms of the island rule
(3.2). Recall that extremizing the RT functional (3.8) leads to a family of bulk solutions
that are parametrized by ϱ̃B, their radius on the brane. Evaluating Sbulk + Sbrane for these
different solutions is equivalent to evaluating the Sgen in eq. (3.2) with different candidates
for the island geometry. The final step of extremizing with respect to variations of ϱ̃B then
matches the extremization in the island rule and identifies the quantum extremal surface
σR on the brane.

Next, we provide a more general geometric discussion of the boundary conditions.
The orthogonality between the RT surface and the RS brane is a special feature of the
reflection symmetry of our setup. For a better geometric understanding of the boundary

6Implicitly, we assume that we care considering the RT surfaces with a cylindrical topology, i.e., in the
connected phase. Examining these boundary terms carefully, one also finds that they are eliminated with
ϱ̃B = 0. This solution points towards the existence of the second phase of disconnected surfaces, which do
not intersect the brane.

7If 1/Gbrane < 0 as we consider in section 3.4, then the DGP entropy (3.9) facilitates a larger area for
σR and so we find that ϱ̃B increases.
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Z2-symmetric Z2-asymmetric

Figure 3.2: Families of extremal surfaces anchored at fixed positions on the asymptotic AdS
boundary. The true RT surfaces are the members of these families which extremize area
in the bulk, or equivalently, generalized entropy in the brane perspective. The RT surfaces
in the case of zero, positive, and negative 1/Gbrane are respectively shown in solid, dashed,
and dotted red. In the absence of a DGP Einstein-Hilbert action (1/Gbrane = 0), the RT
surfaces passe ‘straight’ through the brane. The left (right) panel shows the computation
of EE for a region in the boundary CFT that is Z2-symmetric (-asymmetric) about the
defect.

conditions, let us examine eq. (3.1) in more detail. Consider a (d− 1)-dimensional surface
ΣR parametrized by intrinsic coordinates ξα, embedded in the (d + 1)-dimensional bulk
spacetime with coordinates Xµ and metric gµν . Hence we describe the embedding of this
surface in the bulk spacetime as Xµ = Xµ(ξα), and the induced metric then becomes

hαβ = gµν
∂Xµ

∂ξα
∂Xν

∂ξβ
. (3.11)

Hence the bulk contribution in eq. (3.1) becomes

Sbulk =
A(ΣR)

4Gbulk

=
1

4Gbulk

∫
ΣR

dd−1ξ
√
h . (3.12)

Next to evaluate the brane contribution in eq. (3.1), we introduce (d−2) coordinates ya to
parameterize the intersection of ΣR and the brane. The induced metric on this intersection
surface then becomes

h̃ab = hαβ
∂ξα

∂ya
∂ξβ

∂yb
, (3.13)
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and the corresponding contribution to the generalized entropy is

Sbrane =
1

4Gbrane

∫
dd−2y

√
h̃ . (3.14)

Now following the prescription in eq. (3.1), we wish to extremize the sum of the two
quantities above. So we begin with the variation of Sbulk, which yields

δSbulk =
1

4Gbulk

[∫
ΣR∩brane

dd−2y
√
h̃ gµν (∂nRX

µ + ∂nLX
µ) δXν

+

∫
ΣR

dd−1ξ
√
h [e.o.m.]ν δXν

]
.

(3.15)

Here we assume that the equations of motion along the bulk of ΣR can be satisfied and so
the second term above vanishes. However, one must integrate by parts to arrive at these
equations and so we are left with a boundary term where ΣR crosses the brane.8 Here
we are assuming that the extremal surface is not necessarily smooth at the brane and so
nα

R and nα
L are unit normals to the intersection surface directed along the extremal surface

approaching the brane from either side.

In the absence of the DGP term (2.50), there is no brane contribution (3.14) and then
the vanishing of the boundary term in eq. (3.15) dictates nα

R + nα
L = 0.9 That is, with

1/Gbrane = 0, the boundary condition is that the RT surface should pass smoothly through
the brane — this is illustrated by the solid red RT surfaces in figure 3.2. In the reflection
symmetric setup considered above, this can only be accomplished if the RT surface is
orthogonal to the brane, i.e., both nα

R and nα
L are orthogonal to the brane.

Of course, with a DGP brane, we must also consider the variation of Sbrane in eq. (3.14),
which yields

δSbrane =
1

4Gbrane

∫
dd−2y

√
h̃ K̃i

∂xi

∂Xν
δXν , (3.16)

8Dirichlet boundary conditions remove the analogous boundary contributions at the asymptotic AdS
boundary.

9Actually, the requirement is g̃iα(n
α
R + nα

L ) = 0, i.e., the projection into the brane of the sum of the
two normals vanishes — see the discussion after eq. (3.17). However, the vanishing of the full vector sum
follows from this restriction.
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where K̃i denotes the trace of the extrinsic curvature of the intersection surface on the
brane, as viewed from the brane geometry (with the d coordinates xi).10 Requiring the
sum of eqs. (3.15) and (3.16) to vanish then yields the boundary condition

0 = g̃j
ν

(
gµν(∂nRX

µ + ∂nLX
µ) +

Gbulk

Gbrane

K̃i ∂νx
i

)
. (3.17)

Here, we think of the induced metric on the brane as the bulk tensor g̃µν = gµν − NµNν ,
where Nµ is the unit normal orthogonal to the brane. Then, the initial factor g̃jν above
projects the vector expression in the brackets on to the brane. This projection is required
because δXν in eqs. (3.15) and (3.16) is restricted to be parallel to the brane.11 Hence the
brane contribution (3.14) leads to a discontinuity in the first derivative of the RT surface
at the brane, as was implicitly found in eq. (3.10) above.

3.3 Wald-Dong entropy

As alluded to above, one of the striking features of EE for subregions in quantum field
theory is that the result is dominated by short wavelength modes in the vicinity of the
entangling surface and the EE is UV divergent. Of course, the leading contribution is the
famous area law term [144–146] and in higher dimensions, there are subleading UV diver-
gences which are also determined by the geometry of the entangling surface (as well as the
dimensionful couplings of the underlying theory). In the holographic context, these diver-
gences arise because the RT surface in the bulk extends out to the asymptotic boundary
and hence the unregulated area is infinite [13,14,16]. In the context of brane world gravity,
like the construction in the previous sections with zB ≪ L, one expects large UV contribu-
tions when the RT surface crosses the brane. However, in this instance, the corresponding
UV cutoff remains finite and set by the position of the brane, as discussed above. We show
below that the corresponding UV contributions to the holographic EE can be interpreted
as the Wald-Dong entropy [38, 39, 94, 95]12 of the induced gravity on the brane [115, 116].

10In deriving eq. (3.16), we used that K̃i gives the expansion of the area element
√
h̃ under the map

produced by geodesics shooting out normal to the intersection surface, RT ∩ brane.
11In writing eq. (3.15), we have assumed that the same domain for the coordinates ξa mapped to the

portion of the RT surface on either side of the brane under both Xµ(ya) and Xµ(ya) + δXµ(ya). Said
another way, Sbulk has the same integration limits in ya both before and after the variation.

12Our calculations will include the subleading contributions arising from the curvature-squared terms in
eq. (2.24). Because the corresponding quantum extremal surfaces have nonvanishing extrinsic curvature,
we will need the full expression for the gravitational entropy derived by Dong [95].
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Of course, the leading UV contributions studied here do not probe the full bulk profile of
the RT surface, and we leave the full calculation of holographic EE to section 3.4.

ΣR

ΣCFT

σR

Figure 3.3: A time slice of AdSd+1 space. The entangling surface ΣCFT lies on the CFT
boundary and the RT surface ΣR intersects the brane at σR.

To evaluate the leading contributions to the holographic entropy where the RT surface
crosses the brane, first recall the bulk metric (2.7) with bulk coordinates Xµ = (z, xi) and
the brane positioned at z = zB. Now, for the RT area functional (3.12), we choose the
coordinates on the RT surface as ξα = (z, ya) where z is the same radial coordinate as in
the bulk and ya are the d−2 spatial coordinates describing the profile of the RT surface in
slices of constant z (and time). Now following [147], we can construct a Fefferman-Graham
expansion for the transverse profile xi(ξ) of the RT surface for small z (i.e., in the vicinity
of the brane) to find13

xi(z, ya) =
(0)

x i(ya) +
z2

L2

(1)

x i(ya) +
z4

L4

(2)

x i(ya) + · · · . (3.18)

In principle, the functions
(n)

x i(ya) are determined recursively through extremization of the
RT area functional (3.12), however, we will simply quote the next-to-leading result found

13We will assume that the RT surface is Z2 symmetric across the brane. However, in principle, there
are two independent profiles on either side of the brane, i.e., xi

R(z, y
a) and xi

L(z, y
a). Of course, the

profiles agree where they meet on the brane, xi
R(z = zB, y

a) = xi
L(z = zB, y

a) and satisfy the boundary
condition (3.17). At this point, let us also recall that the profile in the time direction is trivial here, i.e.,
xt(z, ya) =

(0)

x t(ya) = constant.
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in [147]:

(1)

x i = − L2
(0)

Ki

2(d− 2)
= − L4 K̃i

2(d− 2)z2B
+O

(
z2B
L

)
, (3.19)

where
(0)

Ki is the trace of the extrinsic curvature of the surface
(0)

x i(ya) (at z = 0) with
the boundary metric,

(0)

g ij = gAdSd
ij as given in eq. (2.5). As the latter is an unphysical

surface in the present context, we introduced the second expression with K̃i, the trace of
extrinsic curvature of intersection surface σR on the brane, i.e., xi(z = zB, y

a), evaluated
with induced metric g̃ij. This expression follows using the relation (2.21) between the
boundary metric and the induced metric on the brane,14 and the relation (3.18) between
(0)

x i(ya) and xi(zB, y
a). Note that the leading term on the right-hand side of eq. (3.19) scales

as z0B since K̃i ∼
(0)

Kiz2B/L
2 and by this counting, the first correction is O(z2B/L).

Using eq. (3.11), we now evaluate the non-vanishing components of the induced metric
on the RT surface. First, the hzz component is given by

hzz =
L2

z2

[
1 +

z2

L2

(1)

h zz +O
(
z4

L4

)]
, (3.20)

where
(1)

h zz =
4

L2
gAdSd
ij

(1)

x i(1)x j =
L4

(d− 2)2z2B
K̃i K̃i +O

(
z2B
L2

)
.

In the final expression and throughout the following, the indices on K̃i are contracted using
the induced metric g̃ij. The remaining nonvanishing components are

hab =
L2

z2

(
1 +

z2

4L2

)2

hab , with hab ≡ gAdSd
ij

∂xi

∂ya
∂xj

∂yb
=

(0)

h ab+
z2

L2

(1)

h ab+O
(
z4

L4

)
. (3.21)

The leading term in hab is simply given by

(0)

h ab =g
AdSd
ij

∂
(0)

x i

∂ya
∂

(0)

x j

∂yb
, (3.22)

and while the individual components
(1)

h ab will not be needed, we will use the next-to-leading
order expansion of the measure√

h =

√
(0)

h

{
1− L2z2

2(d− 2)z2B
K̃i K̃i

[
1 +O

(
z2B
L2

)]
+O

(
z4

L4

)}
. (3.23)

14Note that in contrast to [147], the indices i on the extrinsic curvatures in eq. (3.19) are coordinate
indices, rather than orthonormal frame indices. This introduces an extra factor of L/zB in the leading
term on the right-hand side of eq. (3.19). We also note that the sign of our extrinsic curvatures differs
from that in [147], i.e., the extrinsic curvature of a sphere embedded in flat space is positive here.
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The latter is obtained by interpreting
(0)

Ki ∼ L2K̃i/z2B as giving an expansion of the area
element

√
h.

Combining these expressions, the area functional (3.12) for the RT surface ΣR in the
vicinity of the brane becomes

A(ΣR)

4Gbulk

≃ 1

2Gbulk

∫
zB

dz

{(
L

z

)d−1(
1 +

z2

4L2

)d−2

×
∫
dd−2y

√
h

[
1 +

z2

2L2

(1)

h zz +O
(
z4

L4

)]}

=
Ld−1

2Gbulkz
d−2
B

∫
dd−2y

√
(0)

h

[
1

d− 2
+

d− 2

4(d− 4)

(zB

L

)2
− d− 3

2(d− 2)2(d− 4)
L2K̃iK̃i +O

(
z4B
L4

)]
(3.24)

where an overall factor of 2 was included to account for the contributions coming from both
sides of the brane.15 Next, we evaluate the area of the intersection surface σR = ΣR∩brane
using the metric induced on this surface, i.e., h̃ab = hab|z=zB where hab appears in eq. (3.21):

A(σR) =

∫
σR

dd−2y
√
h̃

=

(
L

zB

)d−2 ∫
σR

dd−2y

√
(0)

h

[
1 +

d− 2

4

(zB

L

)2
− L2K̃iK̃i

2(d− 2)
+O

(
z4B
L4

)]
. (3.25)

Hence we may rewrite the result in eq. (3.24) as

A(ΣR)

4Gbulk

≃ LA(σR)

2(d− 2)Gbulk

+
L

4(d− 4)Gbulk

∫
σR

dd−2y
√
h̃

[
z2B
L2

− L2 K̃iK̃i

(d− 2)2

]
+O

(
Ld−6

zd−6
B

)
.

(3.26)

Of course, if the brane action also includes a DGP contribution (2.50), one would add the
corresponding Bekenstein-Hawking term, as in eq. (3.1), to produce

A(ΣR)

4Gbulk

+
A(σR)

4Gbrane

≃A(σR)
4Geff

+
L

4(d− 4)Gbulk

∫
σR

dd−2y
√
h̃

[
z2B
L2

− L2 K̃iK̃i

(d− 2)2

]
+O

(
Ld−6

zd−6
B

)
,

(3.27)
15Recall that we are assuming that the RT surface is symmetric under reflection across the brane.

51



where the two leading contributions proportional to A(σR) were combined using eq. (2.53).

It is clear that the first term in eq. (3.27) corresponds to the Bekenstein-Hawking
entropy of the surface σR for the gravity action (2.24) induced on the brane. We now
show that leading corrections in eq. (3.27) match the contributions to the Wald-Dong
entropy [95] coming from the curvature-squared terms. That is, given the gravity action
(2.24), the corresponding Wald-Dong entropy is given by

SWD =
A(σR)

4Geff

+
L3

4(d− 2)2(d− 4)Gbulk

∫
σR

dd−2y
√
h̃

(
2R̃ijn

imnj
m − d

d− 1
R̃− K̃iK̃i

)
,

(3.28)

where ni
m are two unit normals to the entangling surface σR embedded in the d-dimensional

brane geometry, and as in chapter 2, R̃ij and R̃ are the Ricci tensor and scalar curvatures,
respectively, evaluated with g̃ij. Comparing eqs. (3.27) and (3.28), we immediately see that
the coefficients precisely match for the term proportional to K̃iK̃i. Then using eqs. (2.16)
and (2.19), we can evaluate the remaining two curvature terms in eq. (3.28),

L3

4(d− 2)2(d− 4)Gbulk

∫
dd−2y

√
h̃

(
2R̃ijn

imnj
m − d

d− 1
R̃

)
=

z2B
4(d− 4)GbulkL

∫
dd−2y

√
h̃ , (3.29)

which matches the O(z2B/L
2) term in eq. (3.27). Hence, as expected [115,116], in the regime

zB ≪ L, one finds that the leading contributions to the holographic EE (3.1) where the
RT surface crosses the brane reproduce the Wald-Dong entropy of the intersection surface
derived for the gravity action (2.24).

To close this section, we briefly remark on the case of d = 2, which is somewhat special
in that the intersection between the RT surface and the brane is a point. Consequently, the
leading UV contribution to entropy is not a standard area term, but rather a logarithmic
term. Integrating the RT area (in this case, length) across gives

S ≃ L

2Gbulk

log

(
ℓIR
zB

)
. (3.30)

where an IR length scale ℓIR must appear to make the argument of the logarithm dimen-
sionless.16

16As in eq. (3.24), a factor of two has been included to account for both sides of the brane.
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Following [148], we can find (the leading contribution to) the gravitational entropy for
the brane theory evaluating the Wald entropy formula [38] to the Polyakov-Liouville action
(2.31), and then substituting the on-shell solution (2.33) for the scalar ϕ,17

S =
L

4Gbulk

ϕ0 = − L

4Gbulk

log

(
−L

2R̃

2

)
. (3.31)

Now substituting R̃ ≃ −2z2B/L
4 reproduces the leading singular behaviour in the holo-

graphic result (3.30). The same answer can be obtained by evaluating the Wald-Dong
entropy formula [38, 95] directly on the induced gravity action (2.38). Hence, once again
in this special case, the holographic EE (3.1) reproduces the Wald-Dong entropy for the
corresponding gravity action on the brane.

3.4 Explicit Calculations

In this section, we explicitly evaluate the holographic EE and examine the transition be-
tween the two classes of RT surfaces. While we set up the calculations for general d > 2, our
explicit results are given for d = 3 in which case the bulk spacetime locally has the geome-
try of AdS4. We add some comments about d = 2, and the addition of Jackiw-Teitelboim
gravity (2.42) on the brane, in the discussion of chapter 7.

3.4.1 Setting up the calculation for general dimension

In section 3.2, we reviewed two different coordinate systems in AdSd+1. The AdSd folia-
tion (3.4) was well suited to discuss the brane geometry, while the global coordinates are
adapted to discuss the background geometry of the boundary CFT. However, our explicit
calculations of the holographic EE are best performed in a new ‘cylindrical’ coordinate
system. In particular, following [149], we introduce cylindrical coordinates P, ς where ς
specifies the position along the axis of the cylinder while P measure the distance from the
axis. These are related to the global coordinates in eq. (3.5) by

cosh ϱ =
√
P 2 + 1 cosh ς , (3.32)

tanϑ =
P√

1 + P 2

1

sinh ς
, (3.33)

17Note that the action (2.31) is multiplied by a factor of two for the full induced brane action, i.e.,
Iinduced = 2 Idiver + Ibrane.
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while the rest of the spherical angles remain unchanged. With this transformation, the
metric becomes

ds2 = L2

[
−(P 2 + 1) cosh2 ς dt2 +

dP 2

1 + P 2
+
(
1 + P 2

)
dς2 + P 2 dΩ2

d−2

]
. (3.34)

The range of these coordinates is P ∈ (0,∞) and ς ∈ (−∞,∞). The conformal boundary
is reached with P → ∞ (or ς → ±∞ with fixed P ). The upper (0 ≤ ϑ ≤ π/2) and lower
(π/2 ≤ ϑ ≤ π) hemispheres are mapped to the upper (ς ≥ 0) and lower (ς ≤ 0) halves of
the cylindrical system. The conformal defect is positioned at ς = 0. As noted above, the
RT surfaces will be restricted to a constant time surface and hence the convenience of the
cylindrical coordinates becomes evident, i.e., ς becomes an extra Killing coordinate in the
corresponding spatial geometry.

A few more technical details are needed for our calculations: in cylindrical coordinates
(3.34), the boundary entangling surface corresponds to the two circles ς = ±ςCFT, where

sinh ςCFT = tanϑCFT , (3.35)

seen in the limit P → ∞ of the second line in eq. (3.33). Using the AdS foliation of
eq. (3.4), the position of the brane was z = zB. Using eq. (3.7), the brane position can be
specified in cylindrical coordinates (3.34) according to

(
1 + P 2

)
sinh2ς =

L2

z2B

(
1− z2B

4L2

)2

. (3.36)

Recall that the brane intersects the asymptotic boundary at the position of the conformal
defect, i.e., at ϑ = π/2 with ϱ→ ∞, which corresponds to ς = 0 with P → ∞ in cylindrical
coordinates. Further recall that RT surface areas are UV divergent since they extend to
the asymptotic boundaries. Hence we introduced a UV regulator surface at ϱ = ϱUV, which
in cylindrical coordinates becomes

(P 2 + tanh2 ς) cosh2 ς = sinh2ϱUV . (3.37)

We will be mainly interested in comparing the areas of different surfaces for fixed ςCFT,
as discussed above. Since the UV divergent terms only depend of the geometry of the
entangling surface, they will cancel in the difference of the two areas. Hence, we can then
safely take the UV cutoff to infinity.

As noted, the RT surfaces all lie in a fixed time slice and thus we only need consider
configurations with cylindrical symmetry (i.e., rotational symmetry on the Sd−2). Hence
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it is convenient to use the cylindrical coordinates (3.34) and parametrize the profile of the
bulk surfaces as ς = ς(P ). The bulk contribution to the holographic EE is given by

Sbulk =
Ld−1Ωd−2

2Gbulk

∫
dPP d−2

√
1

1 + P 2
+ (1 + P 2) ς ′2 (3.38)

where again Ωd−2 is the area of the unit (d− 2)-sphere — see footnote 4. As in eq. (3.8),
an overall factor of 2 is included here to account for the reflection symmetry of the profile
ς(P ) about the brane. Since this expression does not contain an explicit ς dependence, it
is straightforward to derive

ς ′(P ) = ± 1

1 + P 2

√√√√ P
2(d−2)
0 (1 + P 2

0 )

P 2(d−2) (1 + P 2)− P
2(d−2)
0 (1 + P 2

0 )
(3.39)

where the two branches correspond to two identical surfaces related by a reflection with
respect to ς = 0. P0 corresponds to the turning point, where the surface makes its closest
approach to the symmetry axis.

We now discuss the disconnected phase described in section 3.1. It corresponds to the
‘trivial’ solution with P0 = 0. We find ς(P ) = ±ςCFT, which in cylindrical coordinates looks
simply as a pair of disks anchored at the boundary entangling surface. Substituting ς ′ = 0
into eq. (3.38), the area of the two discs can be integrated up to some cutoff radius PUV,
and the corresponding holographic EE is

Sdisc =
Ld−1Ωd−2

2(d− 1)Gbulk

P d−1
UV 2F1

[
1

2
,
d− 1

2
,
d+ 1

2
,−P 2

UV

]
. (3.40)

In this case, the entanglement wedge corresponds to two identical disconnected pieces
contained between each component of the RT surface and the asymptotic boundary, i.e.,
the regions ς ≥ +ςCFT and ς ≤ −ςCFT, as sketched in the upper panel of figure 3.4.

The connected phase corresponds to P0 > 0, which leads to a cylindrical RT surface.
Integrating eq. (3.39) yields a family of bulk surfaces, which are symmetric about the brane
and which are anchored on the asymptotic boundary at ς = ±ςCFT. Recalling the discussion
below eq. (3.8), we observe that in this configuration, P0 is the second integration constant
which must be tuned in order to satisfy the appropriate boundary condition (3.10) at the
brane, see the lower panel of figure 3.4.

Before we calculate the entropy in the most general setting, let us consider the case
of a zero-tension brane with 1/Gbrane = 0, i.e., empty AdSd+1. In this case, the brane
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Figure 3.4: Sketch of fixed time slices of our symmetric setup, showing the two possible
configurations. The shaded red region corresponds to the entanglement wedge. The con-
nected solution contains an island on the brane, where gravity is dynamical.
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is positioned at zB = 2L or simply, ς = 0. Now, the ‘plus’ branch of eq. (3.39) can be
integrated to produce a profile extending from P = PUV at ς = +ςCFT to the maximal depth
P = P0 at some ς = ς0(ςCFT, P0) < ςCFT. Since eq. (3.10) indicates that the RT surface
must intersect the brane orthogonally, we must tune P0 (with fixed ςCFT) such that ς0 = 0,
i.e., the RT surface reaches its maximal depth at the brane position. Now, substituting
eq. (3.39) into eq. (3.38), the holographic EE (for empty AdSd+1) becomes

Sconn(To = 0) =
Ld−1Ωd−2

2Gbulk

∫ PUV

P0

dP
P 2(d−2)√

P 2(d−2)(1 + P 2)− P
2(d−2)
0 (1 + P 2

0 )

. (3.41)

In the general case, this exercise is slightly more complicated for the case of interest with
a finite-tension DGP brane at some z = zB ≪ L, and the geometry of the corresponding
RT surface is illustrated in the lower panel of figure 3.4. The RT surface is again symmetric
about the brane and so as above, we focus on the portion starting at ς = +ςCFT at the
asymptotic boundary (i.e., at P = PUV). As before, the ‘plus’ branch of eq. (3.39) produces
a surface reaching its maximal depth P = P0 at some ς = ς0(ςCFT, P0) < ςCFT.18 Now one
continues from this point using the ‘minus’ branch of eq. (3.39), which then meets the
brane as some P = PB(ςCFT, P0) and ς = ςB(ςCFT, P0).19 One would again tune P0 (for fixed
ςCFT) to ensure the appropriate boundary condition (3.10) is satisfied at the brane. The
bulk contribution to the holographic EE then becomes

Sconn(To > 0) =
Ld−1Ωd−2

2Gbulk

∫ PUV

P0

dP
P 2(d−2)√

P 2(d−2)(1 + P 2)− P
2(d−2)
0 (1 + P 2

0 )

(3.42)

+

∫ PB

P0

dP
P 2(d−2)√

P 2(d−2)(1 + P 2)− P
2(d−2)
0 (1 + P 2

0 )

 .

Of course, if there is no gravitational term on the brane (e.g., as in eq. (2.50)), then this
expression yields the entire generalized entropy (1.6) for the connected phase. Now rather
than explicitly examining the brane boundary condition (3.10) in cylindrical coordinates,
we will simply evaluate the generalized entropy and find the minimum numerically in the
following. Hence to proceed further we will have to choose a specific value for the boundary
dimension d.

18In fact, ς0(ςCFT, P0) is precisely the same function introduced above, since the turning point of the RT
surfaces are completely independent of the brane properties.

19Of course, PB and ςB are related as in eq. (3.36).
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3.4.2 Explicit results for d = 3

In this section, we consider the above discussion for d = 3, in which case the boundary
geometry becomes R×S2, the bulk spacetime is locally AdS4, and the branes have an AdS3

geometry. We will also consider supplementing the four-dimensional bulk action (2.1) with
a Gauss-Bonnet term,

Itop =
λGB

16π2

∫
d4x

√
−g

[
RabcdR

abcd − 4RabR
ab +R2

]
. (3.43)

Note that we have ignored the necessary boundary terms which ensure that this interaction
is proportional to the Euler density, e.g., see [150]. Although this curvature-squared term
does not effect the bulk equations of motion, it will contribute to the generalized entropy
[95,151]20

SJM =
λGB

4π

∫
ΣR

d2x
√
hR+

λGB

2π

∫
∂ΣR

dx
√
hKg , (3.44)

where R denotes the Ricci scalar for the intrinsic geometry on the RT surface ΣR. Simi-
larly, Kg denotes the geodesic curvature of the boundary ∂ΣR. Of course, eq. (3.44) gives
a topological contribution proportional to the Euler character of the two-dimensional ex-
tremal surfaces21 and so their geometry remains unaffected by this term. However, in the
following, this additional contribution will provide an extra parameter which allows us to
adjust the transition between the connected and disconnected phases.

For d = 3, some analytic expressions for the extremal surfaces can be obtained [149].
For example, integrating eq. (3.39) yields the following profile for the extremal surface in
empty AdS4 [149]

ς±(P ;P0, ς0) = ς0 ±
P0√

(1 + P 2
0 )(1 + 2P 2

0 )
(3.45)

×

[
(1 + P 2

0 )F

(
Arcos

P0

P
,

√
1 + P 2

0

1 + 2P 2
0

)
− P 2

0 Π

(
Arccos

P0

P
,

1

1 + P 2
0

,

√
1 + P 2

0

1 + 2P 2
0

)]
where F and Π correspond to incomplete elliptic integrals of the first and third kind,
respectively.22 Again, the ± branches correspond to the two portions of the surface, sym-

20One may worry that the topological nature of Itop undercuts the usual derivations of the generalized
entropy. However, individually the three terms in eq. (3.43) are dynamical and one can apply the results
of [95] for each separately and then take the sum of the corresponding contributions to the holographic
entropy, which one finds matches the result in eq. (3.44).

21The normalization is chosen so that for an RT surface with two-sphere topology, SJM = 2λGB.
22Our notation for the elliptic integrals matches that in [152], section 8.1.
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metric with respect to ς0 = 0. Of course, we need to know where this surface is anchored
at the boundary. Hence we define

ς∞ ≡ ς+(P → ∞;P0, ς0)− ς0 (3.46)

=
P0

[
(1 + P 2

0 )K
(√

1+P 2
0

1+2P 2
0

)
− P 2

0 Π
(

1
1+P 2

0
,
√

1+P 2
0

1+2P 2
0

)]
√

(1 + P 2
0 )(1 + 2P 2

0 )

and the surface reaches the asymptotic boundary at ς±(P → ∞) = ς0± ς∞. Hence the two
components of the entangling surface in the boundary theory are separated by 2ς∞, in the
cylindrical coordinates.

Figure 3.5 plots ς∞ as a function of P0. The maximum is obtained at P0 = P crit
0 ≈

0.51633 with ς∞ = ςcrit
∞ ≈ 0.5011. An interesting observation in [149] was that, for P0 <

P crit
0 , there exist two values of P0 with the same ς∞. That is, if the two components of

the entangling surface are sufficiently ‘close’ on the boundary sphere, there actually exist
two extremal RT surfaces that connect them in the bulk. However, one branch (with the
smaller value of P0) is always subdominant, and therefore will be of little interest in our
analysis. On the other hand, if the separation of the two entangling spheres is larger than
the critical value 2ςmax

∞ (in cylindrical coordinates), there is no connected extremal surface
that joins them.

P0

0.8

0.4

0 0.5 1.0 1.5 2.0

2ς∞(P0)

Figure 3.5: Plot of the ‘height’ of the RT surface in cylindrical coordinates, as a function
of the turning point P0 characterizing the surface. For ς∞ < ςcrit

∞ , there are two minimal
surfaces anchored at the same regions; otherwise there exists none.

Let us now describe the solutions corresponding to different values of the tension and
DGP term:
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a) To = 0; 1/Gbrane = 0 : First we consider the holographic EE in empty AdS4 as a lead-
in to the case with a brane. As emphasized above, the area of these surfaces is divergent,
and so one introduces a UV regulator surface, integrating of the area from P0 to some
PUV ≫ 1 [149]. For the disconnected solution (i.e., a pair of disks), eq. (3.40) with d = 3
gives

Sdisc(PUV) =
πL2

Gbulk

(√
1 + P 2

UV − 1
)
+ 2λGB (3.47)

=
A(S1

PUV
)

4Geff

− πL2

Gbulk

+ 2λGB +O(P−1
UV ) . (3.48)

where
A(S1

P )

4Geff

=
πL2

Gbulk

P , (3.49)

is the length of S1
P , a circle with radius P , and we used eq. (2.25) to write 1

Geff
= 2L

Gbulk
. We

have included in eq. (3.47) the topological contribution in eq. (3.44). On the other hand,
for the connected surfaces the area formula (3.41) yields

Sconn(PUV, P0)

=
πL2

Gbulk

P 2
0√

1 + 2P 2
0

Π

(
Arccos

P0

PUV

, 1,

√
1 + P 2

0

1 + 2P 2
0

)
(3.50)

=
A(S1

PUV
)

4Geff

+
πL2

Gbulk

[
−
√

1 + 2P 2
0E

(√
1 + P 2

0

1 + 2P 2
0

)
+

P 2
0√

1 + 2P 2
0

K

(√
1 + P 2

0

1 + 2P 2
0

)]
+O(P−1

UV ) ,

(3.51)

where E is the elliptic integral of the second kind. We emphasize that this result only
applies for vanishing To and vanishing 1/Gbrane, i.e., for the AdS4 vacuum. Note that the
Euler character of the cylindrical RT surface is zero and hence there is no contribution
proportional to λGB. As expected, the divergence in the PUV → ∞ limit matches for the
areas of the connected and disconnected surfaces. Hence we can safely take the limit when
considering the difference

∆S(P0) = lim
PUV→∞

(Sconn(PUV, P0)− Sdisc(PUV)) , (3.52)

given by the difference in O
(
(P0/PUV)

0) terms in eq. (3.51) and eq. (3.48). A plot of ∆S
is shown in figure 3.6. When ∆S > 0, the disconnected RT surface is the dominant saddle,
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while for ∆S < 0, the connected solution dominates. Notice that with a larger (positive)
topological coupling λGB, the entropy in eq. (3.47) increases while eq. (3.50) is unaffected,
and hence the range of the disconnected phase is decreased in figure 3.6.

0.5 1.0

0.05

0

-0.05

λGB = 0

P0 λGB = 0.03 πL2

2GBulk

λGB = 0.05 πL2

2GBulk

disconnected phase

connected phase

Gbulk
πL2 ∆Sgen

Figure 3.6: Renormalized entropy from eq. (3.52). The connected (disconnected) surface
dominates when ∆S < 0 (∆S > 0). When λGB becomes very large, λGB ∼ cT , the connected
solution becomes favoured.

b) To ̸= 0; 1/Gbrane = 0 : The next step is to introduce the brane, however, we do not
include a gravitational term in the brane action yet, i.e., 1/Gbrane = 0. In this case, we saw
in eq. (3.42) that there is an additional contribution as the RT surface extends from the
maximal depth P0 back out to meet the brane at PB. Both contributions in eq. (3.42) take
the same form except for the limits of integration, hence the d = 3 result in eq. (3.50) is
replaced by

Sconn(PUV, P0) =
πL2

Gbulk

P 2
0√

1 + 2P 2
0

[
Π

(
Arccos

P0

PUV

, 1,

√
1 + P 2

0

1 + 2P 2
0

)
(3.53)

+Π

(
Arccos

P0

PB

, 1,

√
1 + P 2

0

1 + 2P 2
0

)]
.

Of course, the entropy for the disconnected phase remains the same as in eq. (3.47)
and we can consider the difference of the generalized entropy evaluated on the connected
and disconnected extremal surfaces, as in eq. (3.52). Just as we saw a leading divergent
contribution in eq. (3.50) for PUV → ∞, we expect that eq. (3.53) will contain an analogous
large contribution for PB ≫ P0. However, this term will not be cancelled in ∆S. In fact,
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in this regime, we can expand the difference as

∆S(P0)

=
A(σR)

4Geff

+
πL2

Gbulk

[
1− 2

√
1 + 2P 2

0E

(√
1 + P 2

0

1 + 2P 2
0

)
+

2P 2
0√

1 + 2P 2
0

K

(√
1 + P 2

0

1 + 2P 2
0

)]
− 2λGB +O(P−1

B ) .

(3.54)

Here, the intersection σR of the RT surface and the brane is a circle of radius PB with area
A(σR) = 2πLPB given by eq. (3.34). The fact that the leading term can be expressed as
the gravitational entropy for the induced gravity action (2.24) on the brane is in perfect
agreement with our discussion in section 3.3. As we will see below, the finite terms will
play a role once we turn on the DGP term, allowing for the appearance of a different island
on the brane.

From the above expansion, we see that there is a strong penalty for having a large σR
in the connected phase. From the brane perspective, the gravitational entropy results in
a large penalty against forming an island on the brane. In fact, generally we expect that
∆S > 0 in this regime and hence the disconnected solution provides the dominant saddle
point. However, if we tune the topological coupling λGB to be large23 (and positive), this
contribution can compensate for the leading gravitational entropy term, at least for σR up
to a certain size.

On the other hand, we must note that PB is not an independent parameter. Rather it
is implicitly determined by ςCFT and the brane tension To, as well as the value of P0 that
minimizes the area functional in eq. (3.54). PB can be determined in the following way
(see figure 3.4). One begins by solving for ς0 using ς0+ ς∞(P0) = ςCFT where ς∞(P0) is given
in eq. (3.46). Then one finds ‘sample’ values of PB, ςB where the extremal surface meets
the brane by combining eqs. (3.36) and (3.45) and simultaneously solving

(
1 + P 2

B

)
sinh2ςB =

L2

z2B

(
1− z2B

4L2

)2

,

ς−(PB;P0, ς0) = ςB . (3.55)

This yields PB as a function of P0, ςCFT and To, and substituting PB into eq. (3.53) gives
the area of the associated extremal surface. Below, we perform this calculation numeri-
cally. However, we have not yet considered the boundary conditions (3.10) in this analysis.

23We note that this requires λGB ∼ L2/Gbulk ∼ cT, the central charge of the boundary CFT — see
further discussion in chapter 7.
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Rather than explicitly examining the latter, we simply evaluate the area (or rather the
difference ∆S) over the range of possible P0 (with fixed ςCFT, To), as shown in figure 3.7a.
The correct RT surfaces are then identified as the minima in these plots. Further, the
examples in the figure illustrate that without the topological contribution, ∆S > 0 for
all minima and so the disconnected phase dominates, as generally expected. That is, no
QEIs form on the brane in this case. However, as shown in figure 3.7b, we see that with
a sufficiently large topological coupling λGB one can achieve ∆S < 0, where a first order
transition leads to the formation of an island.

Although the above recipe is valid for arbitrary brane tensions, in the limit of very large
tension we can approximate the solution analytically. Since, as stated above, the leading
contribution to the entropy (3.49) scales as A(σR) ∼ PB, the RT surface corresponds to
that which has the minimal value of PB. Moreover, since the function ςB(P ) defining
embedding of the brane in (3.55) is monotonically decreasing with P , the surface must
maximize ς∞(P0), which is achieved for P0 = P crit

0 , by definition (see discussion around
figure 3.5). This can be readily checked in figure 3.7a, where the curves attain a minimum
around arctan(P crit

0 ) ≈ 0.47, with a small correction due to the finite terms in (3.54), which
becomes smaller and smaller as we increase the tension. We shall refer to this solution with
P0 ≈ P crit

0 as the small island, in order to distinguish it from a second island appearing
below which corresponds to a circle with a larger radius.
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Figure 3.7: Panel a. illustrates the renormalized area from eq. (3.54) of connected RT
surfaces, anchored at ςCFT = 0, with λGB = 0. Panel b. is a plot of the critical value of λGB

such that min(∆S) < 0.

c) To ̸= 0; 1/Gbrane ̸= 0 : Finally, we examine the holographic EE in the presence of a
DGP brane. The only difference in this analysis is the additional contribution coming at
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the intersection of the RT surface with the brane in eq. (3.1). In the present setting, this
means that we add the following,

Sbrane =
A(σR)

4Gbrane

=
πL

2Gbrane

PB , (3.56)

to the bulk contribution in eq. (3.53). In fact, the expansion of ∆S for PB ≫ P0 takes
precisely the same form as in eq. (3.54). The only difference is that the induced Newton’s
constant on the brane is now given by eq. (2.53), i.e., 1

Geff
= 2L

Gbulk
+ 1

Gbrane
.

Generally, we might think of 1/Gbrane as a positive quantity, and so the DGP contri-
bution (3.56) would simply increase the penalty for having a large σR in the connected
phase, and enhance the dominance of the disconnected phase. However, there is no a priori
reason why we should not also consider a negative gravitational coupling on the brane,24 in
which case the DGP term serves as another mechanism to reduce the penalty for forming
an island on the brane. It is this scenario that we will examine further here — as well as
in appendix B.

It will prove convenient to work with the ratio λb introduced in eq. (2.54). Let us
recall what parameters are in play. The tension of the brane is controlled by zB, which we
keep small but finite. The dimensionless ratio between the bulk and brane gravitational
constants is controlled by λb. As discussed above, interesting things happen when λb < 0,
which is when Gbrane < 0 while Gbulk > 0.

Using the same approach described above, we can explore the transition between the
connected and disconnected phases numerically. In figure 3.8a, we plot ∆S as function of
P0 for a fixed ςCFT = 0.095, L/zB = 100 and λGB = 0, for different values of λb. These plots
are analogous to those presented in figure 3.8a where λb = 0 (but L/zB is varied). Again,
these plots are made in lieu of a detailed examination of the boundary conditions where the
RT surfaces meet the brane, rather the correct boundary conditions (3.10) will be achieved
where P0 is tuned to produced an minimum in these plots. For small λb the curves show a
single minimum but ∆S > 0, indicating that the disconnected solution dominates in this
case. As λb becomes more negative, the curves are pulled down and eventually ∆S enters
the negative region so that the connected solution becomes the dominant saddle point.
This behaviour is as expected but we note that λb is very close to −1 in this regime, which
according to eq. (2.54) means there is almost a complete cancellation between the induced

24For example, integrating out quantum fields on the brane could produce either a positive or negative
shift in Newton’s constant. In particular, it can be negative for gauge fields or non-minimally coupled
scalar fields, as discussed in the context of EE in [153, 154] — see further discussion in chapter 7 and
appendix B.
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Figure 3.8: Panel a.: Generalized (renormalized) area from eq. (3.54) as function of P0, for
different values of the DGP coupling λb. Notice the appearance of a ‘large’ island when λb
approaches −1, due to the partial cancellation of the induced and DGP area terms. Panel
b.: Phase diagram: the blue lines correspond to first order phase transitions, while the
green one at λb = −1 bounds the region where gravity becomes unstable due to Geff < 0
(see eq. (2.55)). Both plots are done for fixed L/zB = 100.

gravitation coupling 1/GRS and the DGP term 1/Gbrane. Of course, this near cancellation
is alleviated by turning on the topological coupling λGB, as shown in figure 3.8b.

Another interesting feature shown in figure 3.8a is the appearance of a second minimum
in the curves. This second solution occurs at a larger value of P0 and also of PB, and
corresponds to a larger circle σR on the brane, and therefore we refer to it as a large island.
The existence of this second island is due to the finite terms in (3.54). Indeed, these terms
are essentially what is plotted in figure 3.6, and they are unbounded from below for large P0.
Therefore, when λb becomes sufficiently negative as to produce a significant cancellation
between the induced and DGP gravitational entropies, there is a new competition, now
between A(σR)/4Geff and the finite terms, producing the large island. As λb → −1, the
minimum rolls down to infinity (P → ∞,∆Sgen → −∞), indicating an instability at this
point, which we explore further in appendix B.

Figure 3.8b summarizes the phase diagram of the system, for a fixed value of the tension
L/zB = 100, as we vary both the DGP coupling λb and the topological coupling λGB. The
lines between no/small/large islands correspond to first order phase transitions, while the
blue line at λb indicates the region where the theory becomes unstable.
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Chapter 4

The brane world framework and black
holes

Having introduced our brane world model and performed some preliminary entropy cal-
culations, our goal in the second half of this thesis is to apply our model to study black
holes, in particular, the information paradox. As we will see, our brane world model will
allow us to extend the analysis of QEIs to arbitrary dimensions. As a starting point, in
section 4.1, we will briefly review the two-dimensional case studied in [50] and reframe
their discussion in terms of our model. This will provide some intuition to set us up for
the study of higher dimensional black holes, which we overview in section 4.2 and carry
out explicitly in following sections.

4.1 The two-dimensional case: a review

Ref. [50] interprets the two Rindler patches of AdS2 as exteriors of an eternal non-zero
temperature black hole and subsequently considers coupling each exterior to a flat half-
space, constituting a bath region. A matter CFT2 theory spans both the bath and AdS2

regions and JT gravity is placed on the AdS2 region. Invoking AdS2/CFT1, this setup
is alternatively described by the TFD state of a BCFT living on two half-lines (the bath
regions) coupled to quantum mechanics (dual to the AdS2 spacetime) on the boundaries
of the half-lines. The authors then compute the EE of a region consisting of intervals on
both sides of the TFD including the defect and with endpoints in the bath regions. From
the AdS2 perspective, this entropy is obtained using eq. (1.7), allowing for the possibility

66



defect

Rindler Left

Rindler Right

τ = t = 0

Figure 4.1: Our eternal black hole coupled to the CFT bath, as seen from the bulk per-
spective.

of islands in the AdS2 spacetime. In particular, this gives rise to a competition between a
no-island phase and an island phase, with the former dominating at early times and the
latter at late times. In the island phase, QESs appear in the AdS2 spacetime just outside
the horizon, marking the boundaries of an island, stretching through the AdS2 wormhole,
which now belongs to the entanglement wedge of the bath complements to the intervals.

Let us return to our brane world to see how our setup mimics that of [50] described
above. The key extension, as described in chapter 2, is to view the matter CFT2 itself as
holographically dual to a locally AdS3 bulk. Through this higher dimensional bulk runs
a brane, lying along an AdS2 slice (see fig. 4.1) and supporting an intrinsic theory of JT
gravity, as described in section 2.3. We may reproduce the AdS2 black hole on the brane
by taking Rindler-AdS coordinates in the AdS3 bulk — this equips the AdS3 bulk with a
horizon and ‘left’ and ‘right’ exterior regions. The resulting picture is that of a Hartle-
Hawking state prepared by the Euclidean path integral drawn in fig. 4.2. The Rindler
AdS3 coordinates also induce a horizon on the brane. In fact, the geometry of the brane
is itself Rindler-AdS,

ds2 = ℓ2B

[
−(ρ2 − 1)dτ 2 +

dρ̃2

ρ2 − 1

]
, (4.1)

supporting a dilaton profile Φ ∝ ρ. In the brane perspective, we then have a matter CFT2

spanning the left and right asymptotic boundary regions — the baths — and the Rindler-
AdS2 brane supporting a theory of JT gravity. Illustrated in figure 4.3, this is essentially
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β
2
= πR

defect

Figure 4.2: The Euclidean path integral (orange region) prepares the Hawking-Hartle state.
The black hole temperature T = 1/(2πR) is derived in section 4.2.

the same setup as in [50], up to a Z2-quotient across the brane. We may alternatively take
the boundary perspective, wherein the bulk AdS3 plus brane theory is dual to a CFT2 plus
defect theory. More precisely, the Euclidean path integral preparing the Hartle-Hawking
bulk is equated to a thermal path integral preparing a TFD state of two copies of a CFT2

with a defect running through its middle. We are thus led to the boundary picture drawn
in figure 4.4. Taking a Z2 quotient across the defect, this, of course, is the alternative
description of the setup in [50] as a thermal BCFT coupled to quantum mechanics.

With our setup in place, we can then consider subregions of the boundary CFT and use
the RT formula (1.8) to compute the corresponding entanglement entropies. Analogous
to [50], we may choose ‘belt’ subregions consisting of intervals symmetric about the defect;
equivalently (and for better alignment with the notation of this thesis), we consider the
entanglement of the bath regions R complementary to the belt. The details of the resulting
entropy calculation in two dimensions are provided in chapter 6. The upshot is that we
find a competition between a no-island phase and an island phase, as sketched in fig. 1.7,
with the former dominating at early times and the latter past a Page time. Notice that
these phases are analogous to the no-island and island phases of [50], with now the QESs
demarked by the intersection between our bulk RT surface and the brane. Namely, it
is clear from the bulk picture shown in the right panel of fig. 1.7 that the island region
between these intersection points belongs to the entanglement wedge of the bath region R.

In chapter 6, we also explicitly demonstrate that our bulk RT calculation using eq. (1.8)
precisely reproduces the results of [50], in the limit where the brane approaches the would-
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τ = t = 0

horizon

defect

Figure 4.3: Our eternal black hole coupled to the CFT bath, as seen from the effective
brane perspective. Each point in the Penrose diagram represents a hyperbolic space Hd−2.
For d = 2 this is simply a point.

be AdS3 boundary by slicing through the bulk at a small brane angle θB (that is, the
high-tension limit of higher dimensions). For early times, we find that the EE grows
linearly in the no-island phase1 as 4πct/(3β) (see eq. (6.30)), whereas for late times it is
dominated by the island and given by a constant, 1

2Gbrane

(
Φ̃0 + Φr

)
(see eq. (6.43)). Thus,

as in [50], the appearance of an island caps off the entropy growth at the expected coarse-
grained entropy of two copies of the black hole on the brane, rescuing the system from a
potential information paradox (the resulting Page curve is shown in fig. 6.2). While we
find perfect agreement with [50] at leading order in θB, we also find corrections to these
results due to the brane imposing a UV cutoff at finite θB. The result is O(θ2B) corrections
which, for instance, push the QES further from the horizon, lower the entropy of the island
phase, and lead to a hastened Page transition. (Note that, in the no-island phase, no such
corrections appear as the bulk RT surface does not intersect the brane.)

It would be straightforward to use our setup to perform the zero-temperature analysis
also covered in [50] for d = 2. Here one would instead take Poincaré coordinates which
would equip the AdS3 bulk and AdS2 brane with an extremal horizon. We then expect
EE of large regions in the bath to require the inclusion of islands on the gravitating brane.
In particular, intervals stretching from some location in the bath out to infinity require
the inclusion of an island localized around the horizon. (This is to be contrasted with our
findings in d ≥ 3, where islands are lacking in the extremal case at small brane angle θB.)

1Recall our setup is related to that of [50] by a Z2-orbifold, hence factors of 2 must be accounted for
when comparing results.

69
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Figure 4.4: Conformal defects along a CFT bath in the boundary perspective.

The benefit of our RS setup is that it allows great flexibility in generalizing the con-
struction of [50] to higher dimensions. Indeed, it is straightforward to re-interpret figures
4.1, 4.3, and 4.4 with a suppressed hyperbolic Hd−2 direction. In the following sections, we
shall apply our setup to extend the results mentioned here to higher dimensions.

4.2 Higher dimensions: an overview

In this and following sections, we discuss how islands arise in the presence of certain topo-
logical, non-extremal black holes in higher-dimensional brane-world models. Topological
black holes are characterized as having nontrivial horizon topology, and we will be inter-
ested in the case of neutral black holes with a hyperbolic horizon [155, 156]. The general
metric is given by

ds2 = −f(r) L
2

R2
dt2 +

dr2

f(r)
+ r2 dH2

d−1 , (4.2)

with the blackening factor

f(r) =
r2

L2
− 1− ωd−2

rd−2
. (4.3)

Here, L denotes the AdS curvature scale and dH2
d−1 denotes the line element on a (d− 1)-

dimensional hyperbolic plane with unit curvature. This bulk geometry (4.2) is dual to
a TFD state for two copies of the boundary CFT [157], where each resides on a spatial
geometry Hd−1. After an appropriate Weyl rescaling, the boundary metric for each CFT
reads

ds2CFT = −dt2 +R2 dH2
d−1 , (4.4)
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and hence the scale R (introduced in eq. (4.2)) corresponds to the curvature scale of the
spatial geometry. The full boundary geometry is then two copies of R ×Hd−1, where the
R corresponds to the time direction in each of the CFTs.

Turning back to eq. (4.2), the relation between the position of the horizon rh, the black
hole mass M , and the ‘mass’ parameter ω is [101,158,159]

ωd−2 = rd−2
h

(
r2h
L2

− 1

)
=

16π GN

(d− 1) volHd−1

R

L
M. (4.5)

Here and in the following, we use volHd−1
to denote the dimensionless volume of the spatial

boundary geometry, i.e., the volume measured by the metric dH2
d−1. Of course, this volume

is infinite and we must introduce an infrared regulator — see below.

In the following, we will consider the special case of a topological black hole with
vanishing mass M = ω = 0. Note that despite the fact that ω = 0, we still find a horizon
at rh = L from eq. (4.3). In fact, the bulk geometry corresponds to the AdS vacuum (as
expected forM = 0), but we are describing this geometry with the AdS-Rindler coordinates
where the metric resembles that of black hole [160]. In this case, it is straightforward to
evaluate the entropy and the temperature of the black hole

S =
volHd−1

Ld−1

4GN

, T =
1

2πR
. (4.6)

In terms of the dual CFT, we are considering a pure state (i.e., the vacuum) in the
conformal frame where the boundary geometry corresponds to R × Sd−1. However, with
an appropriate conformal transformation, we produce the TFD state on two copies of
R × Hd−1 with temperature T = 1/(2πR) [160]. The entropy in eq. (4.6) corresponds to
the EE between the two copies of the CFT — and alternatively, can be interpreted as
the EE between two halves of the sphere in the original conformal frame. From the point
of view of the CFT, masslessness of the black hole corresponds to a fine tuning of the
temperature to T = 1

2πR
.

Following the brane world construction outlined in the previous section, we locate
a codimension-one defect at the centre of each CFT. By the holographic dictionary, this
corresponds to a brane which cuts through the bulk and orthogonally intersects the horizon
— see figure 4.1. Since, with ω = 0 , the bulk geometry is just the AdS vacuum, our previous
discussion of the brane geometry in section 2.1 is still applicable. Hence, the brane position
in the bulk is determined precisely as described above in terms of the brane tension To. In
fact, this bulk geometry provides a higher dimensional generalization of the construction
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discussed in section 4.1, and we will see that the brane inherits a black hole metric with
temperature T = 1/(2πR), from the AdS-Rindler coordinates in the bulk.

Our aim will be to use eq. (1.8) to investigate the appearance of QEIs, from the brane
perspective, where (two copies of) the boundary CFT are supported in this black hole
geometry on the brane. Further, we will compute the EE associated with symmetric
regions R on each side of the defect as a function of time — see figure 1.7. The regions
R of interest consist of those points on a CFT time slice that are further than a distance
χ = χΣ away form the defect.2 The EE is evaluated using the holographic prescription of
the bulk perspective and as described in the introduction, the corresponding RT surfaces
can be in one of two phases. Either they connect through the horizon, which we will
call the no-island phase, or they connect through the brane, which we will call the island
phase. The reason for those names is apparent from the d-dimensional effective gravity on
the brane, i.e., the region bounded by the intersection of the RT surface and the brane
is a QEI, which now contributes to the entropy of R. This also implies that from the
(d + 1)-dimensional bulk perspective, the appearance of islands is simply explained as a
standard phase transition of an RT surface. We will see in the following sections that at
early times, the RT surfaces start out in the no-island phase, i.e., connects through the
horizon. As is well known [161], the volume of the corresponding surfaces grows linearly
with time. At some point its volume will have grown so large, that the RT surface in the
island phase has smaller area and gives the correct EE.

The calculation of the time-dependence of the area of RT surfaces will proceed in two
steps: In sections 4.4 to 4.6, we will derive expressions for the area of three special cases
of extremal surfaces. The first one will be RT surfaces in the island phase anchored at
Rindler time τΣ = 0. The second and third special cases will be RT surfaces ΣR in the
no-island phase that either end on entangling surfaces ∂R at χ = ±χΣ and τΣ = 0, or end
on entangling surfaces located at the defect (χΣ = 0) and arbitrary τΣ. While these special
cases naively might seem not to contain enough information to completely reconstruct
the time-evolution of the EE, we will argue in section 4.7 that the time-evolution of any
symmetric RT surface in the no-island phase can always be reduced to one of those three
cases.

We remind the reader that as described in section 4.1, we are considering eternal black
holes that do not evaporate. Nonetheless, from the effective brane point of view, the black
hole on the brane and the fields on the asymptotic boundary are in contact, and can

2The coordinate χ is introduced in eq. (4.8) below. Of course, since the global state that we are
considering is pure, we could equivalently discuss the EE of the belt regions −χΣ < χ < χΣ in both CFTs,
including the conformal defects.

72



therefore continuously exchange radiation. If islands are not accounted for appropriately,
this leads to information loss [7]. In section 4.8 we will argue, using results obtained below,
that also in higher dimensions the presence of islands makes the entanglement dynamics
of the joint system of black holes and radiation compatible with unitarity.

4.3 Geometry on the brane

To set the stage for the following calculations, we will start by discussing the bulk and
brane geometry. As noted above, the bulk metric is described by AdS-Rindler coordinates

ds2 = L2

(
−(r2 − 1)dτ 2 +

dr2

r2 − 1
+ r2 dH2

d−1

)
, (4.7)

which is obtained from eq. (4.2) by taking the massless limit ω,M → 0 and rescaling the
coordinates t→ Rτ and r → L r, such that the coordinates in eq. (4.7) are dimensionless.
Although the underlying geometry is simply the AdS vacuum, the metric (4.7) resembles
a black hole metric with horizons at r = ±1 and an apparent singularity at r = 0. We can
also extend the spacetime at a fixed time-slice through the bifurcation surface and arrive
at a second Rindler wedge. The bulk spacetime thus has two asymptotic regions, located
at r → ∞, each of which hosts one copy of the boundary CFT on the R×Hd−1 geometry.
As noted above (in terms of the dimensionful coordinates), the corresponding TFD state
has a (dimensionful) temperature T = 1/(2πR), which is tuned in relation to the curvature
scale R of the hyperbolic geometries (4.4). Lastly, note that since the Rindler wedges are
simply a reparametrization of pure AdS, it is clear that the singularity at r = 0 is only
a coordinate singularity.3 In fact, we can extend the coordinates smoothly through the
interior to negative r where we can exit the region behind the (inner) horizon at r = −1
and enter a new set of Rindler wedges.

For each CFT, we introduce a codimension-one conformal defect (with zero extrinsic
curvature) at the centre of the hyperbolic spatial geometry. It is convenient to choose
slicing coordinates for the hyperbolic boundaries, such that

dH2
d−1 = dχ2 + cosh2 χdH2

d−2. (4.8)

In these coordinates, the location of the conformal defect is χ = 0.

From the bulk perspective, the CFT defects are dual to a co-dimension one brane,
which spans a slice of constant extrinsic curvature of the bulk spacetime and intersects the

3This is in contrast to the general metric (4.2) where r → 0 does yields a curvature singularity.
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asymptotic boundary at the location of the CFT defect. In order to describe its trajectory,
it is convenient to write the bulk metric in terms of the slicing coordinates in eq. (2.7).
The brane is located at constant θ = θB, which is determined by the tension To through
eq. (2.12) with

ℓB =
L

sin θB

. (4.9)

The trajectory of a hypersurface of constant θB in the bulk spacetime is then given by

r2 sinh2 χ =cot2 θB =

(
ℓB
L

)2

− 1 . (4.10)

As noted in section 2.1, this means that a brane with positive tension (i.e., To ≥ 0) creates
additional geometry by its backreaction. Of course, the backreaction of a negative-tension
brane would remove geometry. However, let us add that there is no (nearly) massless
graviton induced on a negative-tension brane4 and therefore we will only consider positive
tensions in the following, i.e., 0 ≤ θB ≤ π

2
.

For such a (positive-tension) brane, the bulk geometry to one side of the brane can be
described by eq. (4.7), with r sinhχ ≤ cot θB, while the geometry to the other side of the
brane is given by the same metric with r sinhχ ≥ − cot θB. We can therefore treat either
side of the brane as an AdS-Rindler geometry which is cut off by the brane.

Using eq. (4.10), we can determine the induced metric on the brane. After a short
calculation, one finds

ds2 = ℓ2B

(
−(ρ2 − 1) dτ 2 +

dρ2

ρ2 − 1
+ ρ2 dH2

d−2

)
, (4.11)

where we have changed the radial coordinate with

ℓ2B(ρ
2 − 1) = L2(r2 − 1) . (4.12)

This brane metric again takes the form of an AdS-Rindler metric, c.f. eq. (4.7). Further,
this demonstrates that the Rindler horizon in the bulk (at r = 1) induces a Rindler
horizon on the brane (at ρ = 1), as one would expect from the bulk perspective.5 From the
boundary perspective, this behaviour is readily explained by the fact that the conformal

4We thank Raman Sundrum for explaining this point to us.
5However, it is interesting to note that r = 0 corresponds to ρ = cos θB = 1− (L/ℓB)

2, and hence one
cannot reach ρ = 0 in the r-coordinate system (unless θB = π/2).
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defect is in thermal equilibrium with the surrounding CFT. In the effective RS description
of the brane perspective, this behaviour arises because the region of dynamical gravity is
coupled to the bath CFT along an accelerated trajectory, so that the temperature felt by
the accelerated boundary agrees with the temperature of the CFT, e.g., see [162–164]. As
already mentioned, this setup generalizes the two-dimensional framework presented in [50]
to higher dimensions.

All calculations below will be done for the case of positive tension branes. However,
when it comes to interpretation, we will be particularly interested in the case where 1 ≫
θB ≃ L

ℓB
, for which the brane theory is well described as Einstein gravity coupled to two

copies of the boundary CFT (with a high cutoff). The reason is that in this limit, we can
interpret the intersection of the brane and the RT surface as bounding an island in this
effective gravitational theory.

4.4 Island phase at τΣ = 0

We will start our analysis by calculating the area of the RT surface for an entangling
surface lying in the τ = τΣ = 0 plane and crossing the Planck brane. In other words, the
RT surface is in the connected phase — see figure 4.5. We are interested in the EE of R
comprised of the combined regions χ > χΣ and χ < −χΣ in both the left and right CFTs.
Hence the entangling surfaces of interest have two components (in each CFT) sitting a
constant distance away from the defect at χ = ±χΣ. We note that the induced metric on
the latter surfaces is proportional to coshd−2χΣ.

In two dimensions, the analysis of the RT surfaces is simplified because the metric
(4.7) has a shift symmetry χ → χ + const, but the latter is absent in higher dimensions.
However, we can find a similar simplification by going to a different coordinate system
defined via [149]

(1 + ζ2) = r2 cosh2 χ , tan ξ =
r√

r2 − 1
sinhχ , (4.13)

such that the horizon is located at ξ = ±π
2
. By time-translation invariance, we know that

the RT surface lies on a constant Rindler time slice and hence we consider the metric on
the τ = 0 slice in the new coordinates,6 which reads

ds2E = L2

(
dζ2

1 + ζ2
+ ζ2dξ2 + (1 + ζ2)dH2

d−2

)
. (4.14)

6Note that the full metric takes the form ds2 = L2 ζ2 cos2ξ dτ2 + ds2E, and hence the shift symmetry
does not extend to the full spacetime metric.
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Hence the geometry of this spatial slice (or any constant τ slice) is invariant under ξ →
ξ + const, which will simplify the following.

Making the ansatz ζ = ζ(ξ) for the profile of the RT surface, the induced metric on
these surfaces takes the form

ds2ind = L2

[((
∂ζ

∂ξ

)2

+ ζ2(1 + ζ2)

)
dξ2

(1 + ζ2)
+ (1 + ζ2)dH2

d−2

]
, (4.15)

with metric determinant

det(γ) = L2(d−1)(1 + ζ2)d−3

((
∂ζ

∂ξ

)2

+ ζ2(1 + ζ2)

)
. (4.16)

To obtain the correct RT surface, we now need to extremize the area functional

A(ΣR) =

∫
ΣR

√
det(γ) , (4.17)

subject to the correct boundary conditions. Even in higher dimensions, the extremization
of the RT surface is simple, as it can be cast as an effectively two-dimensional problem
with metric

ds22D = L2(d−1)volHd−2
(1 + ζ2)d−2

(
dζ2

1 + ζ2
+ ζ2dξ2

)
. (4.18)

Note that the area functional does not explicitly depend on ξ. Rather, ξ plays the
role of an angular coordinate and its associated Hamiltonian is conserved. This allows us
to turn the second order equation which determines extremal surfaces into a first order
expression,

dζ

dξ
= ±

√
ζ2(1 + ζ2)

(
ζ2(1 + ζ2)d−2

ζ2∗ (1 + ζ2∗ )
d−2

− 1

)
, (4.19)

where we have introduced ζ∗ which is the turn-around point for ζ as a function of ξ —
see figure 4.5. The sign depends on whether ζ is going towards (+) or away (−) from the
boundary as ξ increases. In the latter case, where the RT surface does not turn around
before it intersects the brane we have to think of ζ∗ as a coordinate of vacuum AdS extended
past the brane, as shown in figure 4.6. More generally, the sign starts out negative and
generally flips after ζ = ζ∗ has been reached.
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ΣR

ζ∗

(ζQES, ξQES)

horizon

(∞, ξΣ)
CFTL

CFTR

ξ
R R

conformal
defect

conformal
defect

Figure 4.5: This figure shows the RT surface and various quantities defined in the text
for the RT surface in the connected phase. The entangling region R in the boundary is
composed of the two regions |χ| > χΣ (where tan ξΣ = sinhχΣ) in both the left and right
CFTs. Note that the right (left) CFT occupies the region on the asymptotic boundary
marked in pink (aqua). The conformal defects (i.e., χ = 0 or ξ = 0 and π) are positioned
where the brane (green) reaches these boundary regions.

The area functional for the RT surfaces satisfying eq. (4.19) then becomes

A(ΣR) = 4Ld−1volHd−2

(∫ ∞

ζ∗

±
∫ ζ∗

ζQES

)
dζ

ζ(1 + ζ2)d−
5
2√

ζ2(1 + ζ2)d−2 − ζ2∗ (1 + ζ2∗ )
d−2

, (4.20)

where here and below, we use the subscript QES to mark coordinates of the intersection
between RT surface and brane, which corresponds to a quantum extremal surface in the
brane theory. The upper limit of integration indicated as ∞ must be regulated, since the
area of the RT surface is infinite. The sign here is the same sign as in eq. (4.19). We have
also included a factor of four, since there is one RT surface to each side of the defect and
considering both CFTs, we need to multiply the result by another factor of two.

Eq. (4.19) yields a family of RT surfaces (parameterized by ζ∗) that are locally extremal
in the bulk away from the brane. However, fully extremizing the area functional (4.17)
requires that we also extremize over the possible locations where these candidate surfaces
intersect the brane. That is, we consider the extremization condition of the RT surfaces’
area (plus possibly the area of the QES, should there be extra DGP gravity) with respect
to the position of the intersection σR,

0 =
∂

∂ρQES

(
A(ΣR)

4Gbulk

+
A(σR)

4Gbrane

)
, (4.21)
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ζ∗

R R

CFTL

CFTR

Figure 4.6: This figure shows how RT surfaces can intersect the brane before reaching the
turnaround point ζ∗, with relatively small brane tension To, i.e., θB ∼ O(1), and positive
DGP coupling.

where the two contributions reflect the two contributions in eq. (1.8). Here, ρQES denotes
the location of σR in coordinates along the brane in eq. (4.11).

As described in section 3.2, this extremization leads to a boundary condition restricting
the angle at which the RT surface meets the brane. Normally, this would be a difficult
problem in higher dimensions. However, here we are leveraging the hyperbolic symmetry
along the transverse directions, which reduces the present case to a two-dimensional prob-
lem. That is, we need only extremize a one-dimensional profile ζ(ξ) of the RT surface in
the effective two-dimensional geometry given by eq. (4.18). Assuming that we consider an
extremal bulk surface that is anchored at the asymptotic boundary, the variation of the
surface’s area with respect to its intersection point with the brane is given by

δσR
A(ΣR) =hij T

iXj|end-point, (4.22)

where hij is the two-dimensional metric (4.18) and T i is a normalized (w.r.t. hij) tangent
vector to the RT surface, which can be obtained from eq. (4.10). The vector X i determines
the variation along the brane.

In the absence of a DGP gravity term in the action, this variation must vanish for Xj

along the brane; hence we have a boundary condition that sets the RT surface perpendicular
to the brane. More generally, we must balance the above variation against the variation of
the entropy contribution intrinsic to the brane, as can be seen from eq. (4.21).
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The first contribution to eq. (4.21) is then calculated using eq. (4.22) and yields

∂ρA(ΣR) = 4Ld−1volHd−2

ζ∗(1 + ζ2∗ )
d−2
2

ζ2 sin θB

(√
ζ2 + 1

tan2 θB ζ2 − 1
±

√
ζ2(1 + ζ2)d−2

ζ2∗ (1 + ζ2∗ )
d−2

− 1

)
,

(4.23)

which is evaluated at ζ = ζQES. Here we have used the brane angle θB defined in eq. (4.9).

If the brane DGP coupling is turned on, the variation of the area also obtains a contri-
bution from the second term in eq. (4.21),

∂ρA(σR) = 2Ld−2volHd−2

ζ∗(1 + ζ2∗ )
d−2
2

ζ2
√
ζ2 sin2 θB − cos2 θB

(d− 2)(ζ2 + 1)
d−2
2 . (4.24)

Substituting eqs. (4.23) and (4.24) into eq. (4.21), we obtain the following relation between
the QES position ζQES and the deepest point ζ∗ reached by the RT surface:

ζ∗(1 + ζ2∗ )
d−2
2 = (ζ2QES + 1)

d−3
2

√
ζ2QES sin

2 θB − cos2 θB

×
[
λb cos(θB)

√
1 + ζ2QES +

√
1 + ζ2QES − λ2b

(
ζ2QES sin

2 θB − cos2 θB

)]
,

(4.25)

where λb was defined in eq. (2.54).

A final relation associating ζQES and the belt width ξΣ comes from integrating eq. (4.19)
from the boundary to the brane,

ξQES =ξΣ +

∫ ∞

ζ∗

dζ

∣∣∣∣dζdξ
∣∣∣∣−1

±
∫ ζQES

ζ∗

dζ

∣∣∣∣dζdξ
∣∣∣∣−1

. (4.26)

After using eq. (4.25), this can then be rewritten as a relation between the location of the
entangling surface ξΣ and the QES ζQES only, if we further use eq. (4.10) together with
eq. (4.13) to find the brane trajectory in ζ, ξ coordinates and determine the relationship
between ξ and ζ on the brane

ζ2 sin2 ξ = cot2 θB . (4.27)

In section 4.9, we will use eqs. (4.20), (4.25) and (4.26) to produce the late-time part of
the Page curve for a topological black hole coupled to a bath in higher dimensions.
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4.5 No-island phase for τΣ = 0

We can use the result of the previous subsection to obtain a solution for the no-island
phase. The first order equation (4.19) (where we choose the minus sign) again determines
the shape of extremal surface. By symmetry, we know that ζ∗ must lie on the bifurcate
horizon and is thus determined by solving∫ ζ∗

∞

∣∣∣∣dζdξ
∣∣∣∣−1

dζ = −π
2
− ξΣ. (4.28)

Here we have implicitly chosen to perform the calculation in the asymptotic CFT which
sits at negative ξ, i.e., to a particular side of the brane. By symmetry the calculation on
the other side of the brane yields the same result. The total area of the two RT surfaces
which connect both CFTs through the horizon is then given by

A(ΣR) = 4Ld−1volHd−2

∫ ∞

ζ∗

dζ
ζ(1 + ζ2)d−

5
2√

ζ2(1 + ζ2)d−2 − ζ2∗ (1 + ζ2∗ )
d−2

, (4.29)

with ζ∗ given by eq. (4.28). In the case of small brane angle θB this phase always dominates
at early times. The reason is that the RT surface in the competing phase, i.e., the phase
where the RT surface crosses the brane, has to travel a large distance to the brane before
it can return to the asymptotic boundary across the brane. This additional distance can
be made arbitrarily small by choosing a small enough brane angle. We will furthermore
see in section 4.7 how the time evolution of an RT surface at early times can be mapped
to this case.

4.6 No-island phase for χΣ = 0

Lastly, we will consider the case of a zero-width belt, i.e., the case where the location of
the entangling surface is taken towards the defect, so that the RT surface falls straight
through the bulk along a constant value of the boundary slicing coordinate χ = χΣ, c.f.
figure 4.7. Note that this setup is essentially the same as considered in [161], which studied
EE of identical half-spaces in the two sides of a time-evolved TFD.

Due to symmetry, the trajectory of the RT surface is determined by its radial coordinate
r as a function of time τ . However, it is convenient to introduce Eddington-Finkelstein
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Figure 4.7: The RT surface of an entangling surface located at the defect in the no-island
phase.

coordinates to avoid the coordinate singularity at r = 1. Hence, describing ingoing null
rays, we have

v = τ + rtor(r) where rtor(r) =
1

2
log

(
|r − 1|
r + 1

)
, (4.30)

where rtor(r) denotes the usual tortoise coordinate.7 Note that with the above definitions,
rtor(r → ∞) → 0 and hence v = τ at the asymptotic AdS boundary. Then the metric
becomes

ds2 = L2
(
−(r2 − 1) dv2 + 2 dv dr + r2 dH2

d−1

)
. (4.31)

Now the extremal surface will fall from the asymptotic boundary, through the exterior,
across the Rindler horizon, reaching a minimal radius at r∗, within the interior. Then the
surface will continue emerging into the second exterior region. Due to reflection symmetry,
we need only track the trajectory of the RT surface until it reaches r∗. Using eq. (4.31),
the area functional can be written as

A(ΣR) = 4 volHd−2
Ld−1

∫ λUV

λ∗

dλ rd−2
√

−(r2 − 1)v̇2 + 2v̇ṙ , (4.32)

where λ is a radial coordinate intrinsic to the surface, which increases along the surface
moving from the left asymptotic AdS boundary to the right boundary. The limits of
integration here correspond to λ∗, the value at the minimal radius r∗, and λUV, the value
at the UV cutoff near the right boundary — see figure 4.7. We have also included a factor

7We extend our definition of rtor(r) across the horizon using the standard prescription given in [159].
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of 4 to account for the fact that we only integrate from the Z2 symmetric point λ∗ out to
the right boundary, and the fact that there are two such RT surfaces, one on either side of
the brane. Of course, we have also integrated out the directions along the belt, i.e., along
the Hd−2. Now, we fix the reparametrization symmetry of the area functional with the
following convenient gauge choice√

−(r2 − 1)v̇2 + 2v̇ṙ = rd−2 . (4.33)

The integrand in eq. (4.32) is independent of v and so we have a conserved ‘v-momentum’

Pv =
∂L
∂v̇

=
rd−2(ṙ − (r2 − 1)v̇)√
−(r2 − 1)v̇2 + 2v̇ṙ

= ṙ − (r2 − 1)v̇ , (4.34)

where the second expression results from substituting in the gauge choice (4.33). Using
eqs. (4.33) and (4.34) to solve for ṙ and v̇, we find

ṙ [Pv, r] =
√

(r2 − 1) r2(d−2) + P 2
v ,

v̇ [Pv, r] =
ṙ − Pv

r2 − 1
=

1

r2 − 1

(
−Pv +

√
(r2 − 1) r2(d−2) + P 2

v

)
. (4.35)

Note that we have implicitly chosen a positive sign for ṙ indicating that r is increasing as
we move along the surface out towards the asymptotic boundary.

An intuitive picture of the dynamics of the extremal surfaces is given by recasting the
ṙ equation above as a Hamiltonian constraint,

ṙ2 + U(r) = P 2
v , (4.36)

where the effective potential is given by

U(r) = −(r2 − 1) r2(d−2) . (4.37)

In this framework, P 2
v plays the role of the conserved energy and the minimum radius r∗

corresponds to the turning point where ṙ = 0, i.e.,

(1− r2∗) r
2(d−2)
∗ = P 2

v . (4.38)

The area (4.32) of the extremal surface becomes

A(ΣR) = 4 volHd−2
Ld−1

∫ rUV

r∗

dr
r2(d−2)√

(r2 − 1) r2(d−2) + P 2
v

, (4.39)
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using eqs. (4.33) and (4.35). Note that rUV denotes the position of the UV cutoff surface
near the asymptotic AdS boundary.

With eq. (4.38), the extremal surface can be specified by the integration constant Pv

or the boundary condition r∗. However, we want to examine the time evolution of the EE
and so we must determine a relation between these constants and the boundary time. In
particular, using eq. (4.35), we can integrate out to the right boundary to determine

vbound − v∗ =

∫ rUV

r∗

dr
v̇

ṙ
=

∫ rUV

r∗

dr
1

r2 − 1

[
1− Pv√

(r2 − 1) r2(d−2) + P 2
v

]
, (4.40)

where v∗ denotes the value of the Eddington-Finkelstein time at the turning point. How-
ever, because of the Z2 symmetry of the extremal surface, we know that the turning point
lies on the surface t = 0, and so we may use eq. (4.30) to write

v∗ = rtor(r∗) =
1

2
log

(
1− r∗
1 + r∗

)
. (4.41)

Further, we know that vbound = τ [Pv] and hence we find

τ [Pv] =
1

2
log

(
1− r∗
1 + r∗

)
+

∫ rUV

r∗

dr
1

r2 − 1

[
1− Pv√

(r2 − 1) r2(d−2) + P 2
v

]
. (4.42)

Note that the integrand is nonsingular in the vicinity of the horizon, i.e., near r = 1.

The time derivative of the area (4.32) admits a very simple form

dA(ΣR)

dτΣ
= 4volHd−2

Ld−1 Pv = 4volHd−2
Ld−1 rd−2

∗
√

1− r2∗ , (4.43)

where τ is the boundary time parameter.8 Further, we also observe that the critical radius
where ∂rU = 0 is given by

r2c =
d− 2

d− 1
. (4.44)

8A quick derivation of this result follows by considering a small variation of the surface profile in
eq. (4.32). The bulk contributions naturally vanishes by the equations of motion determining the extremal
surface. However, deriving the latter requires an integration by parts which produces boundary terms.
These are usually eliminated by fixing the boundary conditions at infinity. In the above result, we instead
allow for a small variation in the boundary time.
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At late times, the turning point is very close to this critical radius, i.e., , the critical surface
lies near the surface r = rc for a long time, and so we can replace r∗ → rc into eq. (4.43).
Hence we expect the growth of the area is fixed at late times, i.e.,

dA(ΣR)

dτΣ
= 4volHd−2

Ld−1 (d− 2)(d−2)/2

(d− 1)(d−1)/2
. (4.45)

As we will see momentarily, the late time behaviour of the entropy of any subregion
bounded by constant χ in the no-island phase is determined by a zero-belt width calcula-
tion. Thus, as in the two-dimensional case studied in [61] (as well as the higher dimensional
case [58]), the entropy corresponding to the no-island phase grows without bound.

4.7 Time-evolution for general χΣ, τΣ ̸= 0

Given the region R of interest,9 we can ask how the RT surface changes under time evo-
lution. If we are in the island phase, the RT surface is completely contained inside the
Rindler patch so that time translations are a symmetry and the entropy is a constant.
On the other hand, in the no-island phase, the RT surface connects to both bath CFTs.
Forward time evolution of both sides is not a symmetry and the area of the RT surface
changes.

Obtaining RT surfaces in the no-island phase that are anchored on symmetric entan-
gling surfaces of arbitrary width and at arbitrary times in higher dimensions is generally
difficult. However, as we will now show, our choice of entangling surfaces with the hyper-
bolic symmetry of Hd−2 allows us to map the RT surface at any (χΣ, τΣ) either to some
RT surface in the τ = 0 slice, i.e., with (χ′

Σ, τ
′
Σ = 0) or to the case where the entangling

surface is at χ = 0, i.e., with (χ′
Σ = 0, τ ′Σ). In particular, this means that the solutions

obtained in the last two subsections are sufficient to discuss the full time evolution of the
symmetric entangling surfaces of interest.

The strategy we will employ in this chapter is the following. We will perform a co-
ordinate change from Rindler space to a particular Poincaré coordinate system defined
below. In the new coordinates, the entangling surfaces are straight lines. By exploiting
the boost symmetry of the Poincaré patch and mapping back to Rindler space, the task
of calculating EE of a subregion with χΣ at time τΣ can be reduced to one of the cases
discussed in sections 4.5 and 4.6.

9Recall that R consists of all points more than a distance χΣ away from the defect in both CFTs.
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To understand the required coordinate changes it is convenient to embed AdSd+1 into
Rd,2, i.e., we are looking for a parameterization of (parts of) the hyperboloid defined via

−T 2
1 − T 2

2 +X2
1 + · · ·+Xd = −L2 . (4.46)

Our original two Rindler patches correspond to the parameterization

T1 = ±L
√
r2 − 1 sinh τ , T2 = Lr coshχ cosh η ,

X1 = ±L
√
r2 − 1 cosh τ , X2 = ±Lr sinhχ , (4.47)

Xi = Lr coshχ sinh η µi with i = 3, 4, . . . , d ,

where µi denotes further angular coordinates, e.g., µ3 = cosϕ1, µ4 = sinϕ1 cosϕ2, . . .,
which, together with η parametrize the Hd−2 slice of the metric (4.8). The AdS boundary
is located at r → ∞, and each sign corresponds to one of the two Rindler wedges. On a
fixed r slice, we can reach the boundary by taking χ→ ±∞ or η → ±∞. For any constant
Rindler time (i.e., fixed τ), the bifurcation surface reached with r → 1. The defect in the
CFT is located at χ = 0 = X2. The entangling surfaces are defined to be at χ = ±χΣ in
both CFTs.

We will now consider a particular Poincaré coordinate system, which covers both
Rindler wedges and is defined in terms of embedding coordinates as

T1 = L
t̃

z̃
, X1 = L

x̃1
z̃
, X2 = L

x̃2
z̃
, · · ·

Xd =
z̃2 + x̃2 − t̃2 − L2

2z̃
, T2 =

z̃2 + x̃2 − t̃2 + L2

2z̃
, (4.48)

where x̃2 = x̃21 + x̃22 + · · · + x̃2d−1. In these coordinates, the bifurcation surface intersects
the boundary (z̃ → 0) at x̃1 = t̃ = 0,10 while the defects are located at x̃2 = 0. The two
CFTs are mapped to the regions x̃1 > 0 and x̃1 < 0, respectively. We will denote the CFT
at x̃1 > 0 as the right CFT, and the one at x̃1 < 0 as the left CFT. Comparing eqs. (4.47)
and (4.48) in the boundary limit, it is easy to see that the entangling surfaces in the right
CFT get mapped to

x̃2 = ±sinhχΣ

cosh τΣ
· x̃1 , t̃ = tanh τΣ · x̃1 . (4.49)

This shows the convenient property of the new Poincaré coordinates: entangling surfaces
lie along rays (i.e., straight lines) in the positive half-space with x̃1 > 0, whose slope

10The full Rindler horizons reach the boundary along x̃2
1 − t̃2 = 0.
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boundary
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Figure 4.8: A time-slice of our setup. The spatial boundary Sd−1 (in global coordinates)
is split into two hyperbolic discs Hd−1, shown in pink and aqua, which are glued together
at infinity. At the same location, the bifurcate horizon intersects the boundary. The CFT
on either disc is dual to a Rindler wedge in the bulk. The defect (green) is a great circle
on the global boundary. As indicated in the figure, the Poincaré coordinates introduced in
this section cover the full sphere, with the point at infinity appearing on the south pole of
the sphere. Entangling surfaces are the semi-circles shown in red.

depends on the spatial location χΣ and the Rindler time τΣ at which the entangling surfaces
are defined. Further, flipping the sign of x̃1 to −x̃1 in the above expressions yields the
entangling surfaces in the left CFT. The relation between the Rindler coordinate given in
eq. (4.47) and the new Poincaré coordinates of eq. (4.49) is illustrated in figure 4.8.

We now need to choose cutoffs in order to regulate the area integrals of the RT surfaces.
First, we need to regulate the UV divergence in the entanglement entropy by introducing a
maximum radius in both AdS-Rindler patches rUV ≫ 1. This translates to a z̃-dependent
cutoff in the new coordinates,

z̃2 > z̃2min =
x̃21 − t̃2

r2UV − 1
∼ x̃21 − t̃2

r2UV

, (4.50)

where in the last step, we used that rUV ≫ 1.

Second, we need an IR cutoff which we impose in the transverse directions along the
entangling surface. Since the solution is independent of shifts in all directions along the
brane, the transverse directions should just contribute an overall volume factor. We choose
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τΣ = 0τΣ ̸= 0

boost

Figure 4.9: The left panel shows two components of the entangling surface (red) at non-
zero Rindler time τΣ in the right CFT in the Poincaré coordinates (4.48). In the island
phase, these two rays in the boundary geometry are connected by an RT surface in the
bulk. We can perform a boost in x̃1 direction to map this set of entangling surfaces to the
t = 0 slice, which also corresponds to τ = 0 slice of the hyperbolic boundary geometry.
The boost is a symmetry of the defect (green).

ηmax =
ℓIR
R

≫ 1, which translates to

z̃2 − t̃2 + x̃2 + L2√
z̃2 − t̃2 + x̃21 + x̃22

< 2L cosh
ℓIR
R
. (4.51)

4.7.1 Island phase

As a warm-up exercise, we will show that the entropy on the island phase is in fact invariant
under time evolution. This is obviously true, since the RT surface is completely contained
within one Rindler wedge and τ is a Killing coordinate for the corresponding metric (4.11).
Hence the corresponding time evolution of a single Rindler wedge is an isometry of that
wedge. In this case, we are looking for an extremal surface that ends on the boundary at
the location defined by eq. (4.49) for either x̃1 > 0 or x̃1 < 0, depending on which Rindler
wedge we are interested in. Here, we choose x̃1 > 0. We can express the problem in a
boosted coordinate systems

t̃′ = γ(t̃− βx̃1) , x̃′1 = γ(x̃1 − βt̃) , (4.52)

with boost parameter β = tanh τΣ. This is depicted in figure 4.9. This boost leaves the
cutoffs given in eqs. (4.50) and (4.51) invariant, and changes the equation for the entangling
surface to

x̃′2 = ±x̃′1 sinhχΣ , t̃′ = 0 . (4.53)

This is precisely the entangling surface of the same region at τ = τ ′Σ = 0 with the appro-
priate cutoffs. We may thus conclude that entropy of the region R remains constant in the
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x̃1

τ ′Σ ̸= 0, χ′
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τΣ ̸= 0, χΣ ̸= 0

τ ′Σ = 0, χ′
Σ ̸= 0

τΣ < χΣ
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Figure 4.10: The left panel shows two components of the entangling surface (red) at non-
zero Rindler time τΣ in the right CFT in the Poincaré coordinates (4.48). These two rays
are located in different CFTs so that in the no-island phase, they are joined by an RT
surface in the bulk, which passes through the Rindler horizon. In this case, we can now
boost in x̃2 direction to map these two rays to τ ′Σ = 0 when τΣ < χΣ or to χ′

Σ = 0 when
τΣ > χΣ.

island or connected phase, as anticipated. Again because we have a pure state globally, we
can see that the entropy of the complementary region, i.e., the two belts centred on the
conformal defects in each of the two CFTs, is independent of τΣ in this connected phase.

4.7.2 No-island phase

For the no-island phase, we focus on the case in which the RT surface connects entangling
surfaces in the CFTs dual to different Rindler patches. The entangling surfaces are located
at

t̃ = − sinh τΣ
sinhχΣ

x̃2, x̃1 = ± cosh τΣ
sinhχΣ

x̃2, (4.54)

where we have chosen to focus on x̃2 < 0, i.e., to the region on one side of the defect.
Similarly to the island phase, we want to go to a new coordinate system in which the
calculation becomes simpler. Now, however, we have to distinguish two cases.
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Case 1: If τΣ < χΣ,11 we can boost this problem in x̃2 direction with boost parameter
β = − sinh τΣ

sinhχΣ
. This is depicted in the upper panel of figure 4.10. The new entangling

surfaces are then located at

t̃′ = 0, x̃′1 = ±x̃′2

√
cosh2 τΣ

sinh2 χΣ − sinh2 τΣ
, (4.55)

where x̃′2 < 0. Expressing the result in Rindler coordinates, we are dealing with the case of
an entangling surface in the τ = τ ′Σ = 0 plane. The new location of the entangling surface
χ′
Σ is given by

coshχ′
Σ =

coshχΣ

cosh τΣ
. (4.56)

Note that as cosh τΣ → coshχΣ (and so as | sinh τΣ
sinhχΣ

| → 1), the new entangling surface gets
closer and closer to the defect, i.e., χ′

Σ → 0.

Importantly, the cutoffs are not boost invariant in this case. The IR cutoff given in
eq. (4.51) remains unchanged, but the UV cutoff in eq. (4.50) changes along the trajectory
of the entangling surface to

r′UV = rUV cosh τΣ . (4.57)

We should caution the reader that we arrived at eq. (4.57) by substituting the trajectory
of the entangling surface into the boosted cutoff. This means that eq. (4.57) is only correct
for a small cutoff. Luckily, the corrections to the new cutoff only change the EE at order
O(1/rUV).

In conclusion, we found that if τΣ < χΣ, the entanglement entropy of the region |χ| > χΣ

at time τ = τΣ is the same as that of a region |χ| > χ′
Σ given in eq. (4.56) at time τ = τ ′Σ = 0

calculated with a different cutoff, given by eq. (4.57).

Case 2: The other case, τΣ > χΣ, is shown in the lower panel of figure 4.10. Now we can
boost in the x̃2 direction again, but using β̃ = − sinhχΣ

sinh τΣ
. The new entangling surfaces are

located at

x̃′2 = 0 , x̃′1 = ±t̃′
√

cosh2 τΣ

sinh2 τΣ − sinh2 χΣ

. (4.58)

11We are assuming that both τΣ and χΣ are positive (or zero). Let us also note here that τΣ = χΣ is a
special case, where the entangling surfaces lie in the null plane t̃ = −x̃2. Our approach of boosting in the
x̃2 direction fails in this case, but the results for the time evolution are smooth across this point.
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While this does not reduce to a surface lying in the τ ′ = 0 plane, in Rindler coordinates it
reduces to an entangling surface for a belt width χ′

Σ = 0 and

cosh τ ′Σ =
cosh τΣ
coshχΣ

. (4.59)

Again, the IR cutoff in eq. (4.51) is unchanged, however, the UV cutoff changes to12

r′UV = rUV coshχΣ . (4.60)

Let us note that the cutoff location still is continuous. In the previous case, the new cutoff
was the old cutoff multiplied by cosh2 τΣ. The latter was reliable as long as τΣ < χΣ.
However, we see here that once τΣ > χΣ, the cutoff is no longer time-dependent.

4.8 The information paradox

Now the preceding results can be combined to give a qualitative description of the time
evolution of the EE. Following the discussion in section 4.1 for two dimensions, at time
τ = 0, we have a standard thermofield double state of the two CFTs on hyperbolic spatial
geometries, including the conformal defects at χ = 0. If we restrict the observations to
either the left or right side, the reduced state is a thermal one and in particular, the bath
CFT is in thermal equilibrium with the corresponding conformal defect, with temperature
T = 1/(2πR).

Using the brane perspective and an appropriate choice of parameters,13 we can describe
the conformal defects as replaced by (two copies of) the boundary CFT coupled to Einstein
gravity on an AdSd region. For the configuration described above, this yields a topological
black hole solution shown in eq. (4.11). We emphasize that the latter really describes an
AdSd geometry in AdS-Rindler coordinates, and hence the thermal equilibrium between
this ‘black hole’ and the finite temperature CFT on the asymptotic boundary can be
understood as arising because the two systems are coupled along an accelerated trajectory
in the region of dynamical gravity. While the black hole is in equilibrium with the bath
CFT, under time evolution, the two systems are constantly exchanging thermal quanta.

12Note that, like above, we have substituted the trajectory of the entangling surface into the boosted
expression. Thus, this equation is only strictly correct in the rUV → ∞ limit, but the corrections are
subleading to the finite part of the EE.

13Recall that we obtain a good approximation to (semiclassical) Einstein gravity on the brane if we
choose L

ℓB
≪ 1 and λb not too close to −1 — see chapter 2.
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The immediate effect of this process after τ = 0 is to increase the entanglement between one
side of the black hole, i.e., one of the AdS-Rindler wedges on the brane, and its respective
bath CFT.

A standard measure for the entanglement between both AdS-Rindler wedges and their
respective baths is given by the EE of the complement of two belt subregions centred
around the conformal defects in the boundary as discussed above. In section 4.7, we saw
that by a judicious change of coordinates (and cutoff), the calculation of the EE of these
regions can be mapped at late times (i.e., τΣ ≥ χΣ) to the case of a zero-width belt.
Further, in section 4.6, we found that the entanglement entropy grows linearly in time, as
shown in eq. (4.45).14

As in the two-dimensional case [50,165], this linear growth of entropy would lead to an
information paradox for our eternal black holes, if it was valid for all times. The reason
is that the entanglement entropy must be bound from above by the defect entropy, since
the defects need to purify the bath system. In the case of interest, the theory is well
approximated by weakly coupled Einstein gravity. This allows us to view the quantum
fields on the gravitational background as giving a small correction to the entropy and thus,
the defect entropy is well-approximated by two times the black hole entropy.15

The appearance of an island in the effective gravity theory from the brane perspective
is simply related to a phase transition of the RT surfaces in the bulk description of our
system. The RT surface changes from the no-island phase, in which it connects both CFTs
through the horizon, to the island phase, in which it connects both sides of the defect in a
single Rindler wedge. The fact that there will always be an extremal surface crossing the
brane is easy to see: Before we invoke the extremization condition at the brane, there is
an infinite family of candidate RT surfaces, which start in the bath and meet at the brane.
To get the correct RT surface, we need only extremize the area by varying the position
of the surface where they meet the brane. Subregion duality and the homology constraint
guarantee that there will be one extremal surface for every belt configuration (although
the boundary of the island might sit at the horizon or at the CFT defect).

14Implicitly, to apply eq. (4.45), we must also show ∂τ ′
Σ
≃ ∂τΣ . The latter follows at late times from

eq. (4.59), which yields
∂

∂τ ′Σ
=

(
1− sinh2 χΣ

sinh2 τΣ

)1/2
∂

∂τΣ
. (4.61)

Alternatively, the same result also follows by simply observing that eq. (4.59) implies that at late times:
τ ′ = τ − log (coshχΣ) +O(e−2τ ). Let us add that this linear growth is analogous to that found for planar
black holes in [161].

15The black hole entropy is proportional to the horizon area of the black hole, which in our case is
infinite. Hence to be precise, we must consider an IR regulated entropy, as discussed with eq. (4.51).
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In order to establish unitarity of the Page curve, we still need to argue that the island
appears before the black hole fails to purify the bath region R under consideration. In the
case of interest here, we have that ℓB

L
≫ 1. In this approximation, it follows from eq. (4.25)

that

ζQES = ζhor

(
1 +

ζ2∗ (1 + ζ2∗ )
d−2

2ζ
(2d−4)
hor (1 + λb)2

+ . . .

)
. (4.62)

In deriving this equation, we have used that the location of the horizon on the brane is at
ζhor ∼ ℓB

L
≫ 1 and that ζ∗ cannot scale with ℓB

L
at leading order. The reason is that ζ∗ is

bounded from above by a function of the belt width. We can see that the location of the
new quantum extremal surface will always be close to the horizon — see also section 4.9
for numerical plots. The leading order contribution to the generalized entropy is given by
the area of the horizon which gives the black hole entropy. While a more involved analysis
is needed to demonstrate that the appearance of the island saves unitarity, this shows that
the island mechanism has the right qualitative behaviour to unitarize the Page curve.

4.9 Numerical results

In the previous sections, we found a phase transition between the no-island and island
phases that has the right qualitative properties to yield a Page curve consistent with
unitarity. The calculations involved differential equations that have no known closed form
solution. However, the reader might have realized that all of these equations were ordinary
differential equations and are thus easily solved numerically. In this section, we will first
present numerical solutions to the equations for the RT surface in the island phase, and
then use the arguments of the previous sections to obtain the Page curve for massless,
topological black holes in equilibrium with a bath.

4.9.1 General behaviour of the islands

As discussed previously, by choosing entangling surfaces with the hyperbolic symmetry of
Hd−2, the problem of finding the corresponding RT surfaces reduces to a two-dimensional
problem. Choosing the convenient coordinates in eq. (4.13), we can express the profile
of the RT surface as ζ(ξ). We start here by discussing examples of extremal surfaces in
the island phase for different choices of parameters. Instead of working with ζ as a radial
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coordinate, we conformally compactify the geometry and use the coordinate

κ = arctan(ζ) , (4.63)

which maps time slices of AdS to a finite region. In order to calculate the profile of the RT
surface, we fix the location of the entangling surface χΣ at the boundary. Applying the
large r limit of eq. (4.13), we relate this to ξΣ, the location of the entangling surface in ζ, ξ
coordinates. We can then use eqs. (4.25) and (4.26) to determine ζ∗ and ζQES numerically
as a function of ξΣ. The shape of the RT surface is obtained by integrating eq. (4.19) from
the boundary.

Figure 4.11 shows a few examples of RT surfaces in the connected phase for d = 3,
4 and 5, i.e., in four, five and six bulk dimensions, respectively. Here, we only show the
geometry on one side of the brane. The other side is determined by a reflection across the
brane. Since the RT surfaces do not cross the horizon, the configuration is independent of
the choice of Rindler time τ .

Figure 4.11a shows RT surfaces with fixed χΣ for different values of the dimension and
selected values of the DGP coupling λb. We can see that positive DGP coupling pushes
the point of intersection between brane and RT surface towards the horizon, i.e., it reduces
the area of the island’s boundary. Similarly, negative DGP coupling causes the island to
become bigger. This behaviour is readily explained through eq. (2.55) which shows that by
increasing (decreasing) the value of λb, the gravitational coupling in the brane theory, i.e.,
the effective Newton’s constant, becomes smaller (bigger). In turn, the coefficient of the
Bekenstein-Hawking contribution is bigger (smaller) in the island rule (1.7) and therefore
creating an island of fixed size becomes harder (easier).

Figure 4.11b shows how the RT surface in the island phase behaves as we vary the
brane angle given by sin θB = L/ℓB (or equivalently the brane tension — see eqs. (2.12)
and (2.18)). Recall that Einstein gravity is a good approximation when θB is small. As we
depart from the limit of small brane angle, the island grows.

Finally, figure 4.11c shows that the size of the island varies with χΣ, the location of the
entangling surface in the bath. Moreover, as we will discuss momentarily, we see that an
island phase for the RT surface seems to exist for all values of the belt width, although of
course it will generally not dominate at early times.

We can get an even better idea of the qualitative features of the islands in higher
dimensions by plotting the turning point ζ∗ and the QES position (ζQES, ξQES) as a function
of the brane angle θB for different dimensions — see figure 4.12. A general feature is that
in the θB → 0 limit, the QES always approaches the horizon on the brane at ξ = π/2, as
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(a) RT surfaces for the island phase in (left to right) d = 3, 4, 5. The DGP coupling λb is chosen
to be 1/0/−0.9 for the dashed/solid/dotted curves. The brane angle is θB = π

4 and the location
of the entangling surface is χΣ = 1.

(b) RT surfaces in d = 4 with χΣ = 1 and brane angle of (left to right) θB = 1
8π,

1
4π,

1
2π. The

DGP coupling is set to zero.

(c) RT surfaces in d = 4 with brane angle θB = π
4 and (left to right) χΣ = 1

3 , 1, 3. The DGP
coupling is set to zero.

Figure 4.11: RT surfaces in the island phase in higher dimensions. We only show one side
of the brane. The asymptotic boundary of the spacetime is shown in blue, the Planck
brane in green and the RT surfaces in red. The radial coordinate is κ defined in eq. (4.63).
On each side of the horizon (dashed purple line) the angular coordinate ξ runs between
−π

2
and π

2
.
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discussed around eq. (4.62). In terms of ξQES and the distance from the horizon on the
brane, ρQES, we have

ξQES =
π

2
− ζ∗(1 + ζ2∗ )

d−2
2

1 + λb
θd−2

B +O(θdB) (4.64)

ρQES =1 +
ζ2∗ (1 + ζ2∗ )

d−2

2(1 + λb)2
θ
2(d−2)
B +O(θ

2(d−1)
B ), (4.65)

where the first terms on the RHSs give the location of the horizon. Granted ζ∗ tends
towards a finite value as θB → 0, the above formulas tell us that the QES tends towards
the horizon on the brane. Applying eq. (4.64) to eq. (4.26) and noting from eq. (4.19) that

dζ

dξ
∼ ∓ ζd+1

ζ∗(1 + ζ2∗ )
d−2
2

for ζ ≫ 1 , (4.66)

we find that ζ∗ at small θB is determined by the equation

π

2
− ζ∗(1 + ζ2∗ )

d−2
2

1 + λb
θd−2

B +O(θdB) =ξQES = ξΣ + 2

∫ ∞

ζ∗

dζ

∣∣∣∣dζdξ
∣∣∣∣−1

+O(θdB), (4.67)

with dζ/dξ given by eq. (4.19). At leading order in θB, the second term on the LHS can be
ignored and the above equation is just the statement that the RT surface should stretch
from the belt boundary to approximately the bifurcation surface on the brane.

4.9.2 The Page curve in d > 2

As discussed in section 4.2, the benefit of our model is that calculating the entropy of (the
complement of) the belt-shaped subregions centred on the conformal defects reduces to
calculating areas in an effectively two-dimensional geometry. Further we produced explicit
formulas for the areas of a number of special RT surfaces, which — as shown in section 4.7
— are sufficient to calculate the full time evolution of the RT surfaces and thus of the EE.

Figure 4.13a shows the Page curves for d-dimensional topological black holes, coupled
to a bath on a hyperbolic background, for the cases d = 3, 4, 5. More precisely, we consider
the entropy of the region defined by χΣ = 1, which is given by

4GbulkS(τ) = min

([
A(ΣR) +

2Lλb
(d− 2)

A(σR)

]
isl.

, [A(ΣR)]��isl.

)
. (4.68)
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Here A(Σ) are the regulated areas of the RT surfaces, and the subscript indicates whether
we consider the extremal surface in the island or no-island phase. Since eq. (4.68) is a cutoff
dependent quantity, it is convenient to subtract off [A(ΣR)]��isl. ,τ=0. That is, we subtract off
the value of the entropy at τ = 0, at which point the minimal RT surfaces in the no-island
phase, to define

∆S(τ) = S(τ)− S(τ = 0). (4.69)

Even though the UV divergences have been removed, eq. (4.68) would still be infinite, as a
result of the infinite extent of the entangling surface. Hence the plots in figure 4.13 show
the change in the entropy density,

∆s =
∆S

volHd−2
Ld−2

, (4.70)

with respect to the entropy at τ = 0.16 The kinks in the plots of figure 4.13 indicate the
time at which the island phase of the RT surface begins to dominate. The corresponding
time is, of course, the natural analog of the Page time for eternal black holes coupled to a
bath at finite temperature. The slope of the (linearly) rising portion of the Page curve has
been determined in section 4.6 and is given by

4GN∆s/τ ∼ 4
(d− 2)(d−2)/2

(d− 1)(d−1)/2
. (4.71)

Moreover, recall that τ is a dimensionless time such that the temperature of the hyperbolic
black hole is 1

2π
(cf. the discussion in section 4.3). The dimensionful time t is related to τ

by

t = τR =
τ

2πT
, (4.72)

where R is the curvature scale for the spatial sections in the bath CFT, as defined in
eq. (4.4), and the bath CFT is taken at temperature T = 1

2πR
.

The calculation of the RT surfaces is performed as follows: the area in the island phase
is computed by substituting eqs. (4.25) and (4.27) into eq. (4.26) and numerically solving
for ζQES. The result is then used together with eq. (4.25) to numerically integrate the
area in eq. (4.20). There are three different regimes for the calculation in the no-island
phase. At early times, τΣ ≤ χΣ, the calculation of the entropy of the subregion with

16Note that we are actually plotting 4Gbulk ∆s, which is a dimensionless quantity. For the horizontal
axes, also recall that the AdS-Rindler time τ is also dimensionless — see further comments below.
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boundaries at ±χΣ can be translated to the calculation of the entropy of a belt with
boundary χ′

Σ = ±arccosh
(

coshχΣ

cosh τΣ

)
in the τ = 0 time-slice, as explained in section 4.7. As

also explained in the same section, we need to choose a different cutoff on r in this case.
However, working in ζ, ξ coordinates, it turns out that the cutoff on ζ does not change. At
intermediate times, τΣ ≳ χΣ, the entropy can be computed by calculating the area of an RT
surface for a zero-belt-width entangling surface at a time given in eq. (4.59). Accidentally,
the relation between r and ζ works out in such a way that the cutoff of r agrees with the
cutoff on ζ in the previous calculation. As τΣ becomes larger, the numerics become less
reliable. However, for moderately sized belt widths we are already well into the regime in
which the area of the RT surface grows linearly in time. Therefore, we use a linear fit to
extrapolate the last few numeric data points to late times, τΣ ≫ χΣ. We verified that the
resulting slope agrees with the analytic result given in eq. (4.71).

In figure 4.13b, we show how the Page curve and Page time change as we vary the
brane angle. As we see, increasing θB decreases the Page time, or in other words decreases
the number of microstates available to the black hole on the brane. This can also be
understood from the CFT point of view where the defect entropy is given in terms of an
RT surface in the island phase [91,92]. As the brane angle approaches zero, the Page time
diverges. The reason is that in this limit the area of the island diverges. The absence of
islands in this limit was already noted in [60]. The divergence as θB → 0 goes like θ2−d

B ,
and in the small-angle approximation we find that

τP ∼ (d− 1)
d−1
2

(d− 2)
d
2

1

θd−2
B

. (4.73)

For example, the numerical coefficient which multiplies θ2−d
B can be estimated from the

above formula to be 1.30 for d = 4. A fit to the numerical data plotted in figure 4.13b
agrees with this value.

Figure 4.13c shows the dependence of the Page curve and Page time on the DGP
coupling. As we decrease the DGP coupling (i.e., increase Geff) the Page time goes to
zero. The linearity can be easily explained be recalling that in the small θB regime we are
interested in the island sits close to the horizon and thus has a fixed location for varying
values of λb. The Page transition occurs whenever the area of the RT surface in the no-
island phase exceeds the area of the RT surface in the island phase. Since the area in
the no-island phase approximately grows linearly with time and the area in the island
phase depends approximately linearly on λb, c.f. eq. (4.68), we obtain a linear relationship
between the Page time τP and λb. Based on this argument, we can estimate the slope of
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the graph to be

τP/λb ∼ (d− 1)
d−1
2

(d− 2)
d
2

1

θd−2
B

, (4.74)

which for the parameters in 4.13c (i.e., θB = 0.1 and d = 4) evaluates to τP ∼ 130λb and
agrees with the fitted value of the slope.

The Page curve and Page time only depends very weakly on the belt size. In fact, the
only significant effect can be seen at very early times of the evaporation. Figure 4.14a
shows that for wide belts, the entanglement between the belts and baths starts growing
convexly (i.e., ∂2∆s/∂τ 2Σ > 0), then enters a period of concave growth (i.e., ∂2∆s/∂τ 2Σ < 0)
before entering the linear regime.

Generally, we can separate the time-dependence of the Page curve into four different
regimes. At times of the order of the thermal scale β (∼ 0.16 in figure 4.14a) the entan-
glement growth increases until it enters a phase of fast growth between τΣ ∼ O(β) and
τΣ ∼ O(χΣ). This fast growth depends on the belt size. At time τΣ ∼ O(χΣ) a universal,
linear behaviour takes over, which is independent of the belt width. The entanglement
keeps growing until at the Page time τP it saturates and stays constant.

In the following we will explain the region of fast growth and its transition into the
region of universal linear growth. To understand the behaviour of the Page curve, first
consider a few characteristics of our belt geometries. As can be seen from the metric in
eq. (4.8), points on any of our entangling surfaces are a fixed distance χΣ from the surface
at χ = 0, where the defect is located, i.e., where the bath is coupled to the black hole.17

However, the extrinsic curvature of the entangling surfaces which we consider depends on
this distance. Similarly, the entangling surfaces with larger χΣ have a larger regulated
volume.

In [166], it was proposed that the growth of entropy S[Σ] for an arbitrary entangling
surface Σ is bound by

1

R

dS[Σ]

dτ
=
dS[Σ]

dt
≤sth ventA(Σ) , (4.75)

where A(Σ) is the area of the entangling surface Σ, as measured by the boundary metric
in eq. (4.8). The thermal entropy density sth and the entanglement velocity vent are region
independent constants. The entropy density is given by the black hole entropy (i.e., 1

4Gbulk

17The proper distance would be RχΣ in the boundary metric (4.4).
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times horizon area) divided by the CFT volume of the spatial slices (again, measured by
the metric (4.8)):

sth =
1

4Gbulk

Ld−1

Rd−1
. (4.76)

In [166] which primarily considers flat space, vent is defined such that eq. (4.75) is
saturated at times just above the thermal scale for sufficiently straight entangling surfaces
– this definition is well-defined in the sense that vent turns out to be independent of the
shape of the entangling surface, provided it is sufficiently straight [167,168]. In hyperbolic
space, vent can be similarly defined by demanding that the straight surface χ = 0 saturates
eq. (4.75) — we shall justify this choice further below — specifically,

vent =
(d− 2)

d−2
2

(d− 1)
d−1
2

, (4.77)

obtained by comparison of eq. (4.75) with the zero-width belt result in eq. (4.45).

It is clear that (4.75) cannot be tight at late times for belts of finite width. The reason
is that the area factor on the right hand side A[χ > 0] is exponentially large compared
to A[χ = 0], while, as can be seen from figure 4.14a, all belts share the same rate of
entanglement growth at late times. To more tightly bound the late time behaviour of
finite width belts, we will therefore need to combine eq. (4.75) with the monotonicity of
mutual information. It will turn out that the optimal bound obtained in this way for finite-
width belts uses eq. (4.75), but always evaluated for the χ = 0 surface Σ at late times;
thus we will find that the χ = 0 surface acts as a bottleneck for entanglement growth even
for finite width belts.

To see why the surface at χΣ = 0 acts as a bottleneck, let us formulate the more refined
combined bound now, following closely [166]. To this end, it will be less helpful to consider
the EE of the bath intervals R; instead we will consider their complement R̄, i.e., belts
surrounding the defects, whose entropy is the same as R since the state of both Rindler
patches is pure. Considering R̄ instead of R is equivalent to looking at the Page curve of
the black hole instead of that of the radiation. It is useful to rewrite the entropy displayed
in the Page curve as

∆S = I[R̄L : R̄R](0)− I[R̄L : R̄R](τ), (4.78)

where I[R̄L : R̄R](τ) = S(R̄L) + S(R̄R)− S(R̄L ∪ R̄R) is the mutual information between
the regions R̄ in the left (L) and right (R) CFT at time τ .
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Similar to [166], we now assume that information is only transported with the butterfly
velocity vbut or less.18 For the hyperbolic geometries considered here and the temperature
T = 1

2πR
, this velocity is given by [170,171]

vbut =
1

d− 1
. (4.79)

This implies that a belt region R̄′ at time τ ′ can be considered a subsystem of the original
belt R̄ at τ if χΣ−χ′

Σ

vbut
≥ |τ − τ ′|. We can then use monotonicity of mutual information

I[R̄L : R̄R](τ) ≥ I[R̄′
L : R̄′

R](τ
′) = S[R̄′

L](τ
′) + S[R̄′

R](τ
′)− S[R̄′

L ∪ R̄′
R](τ

′). (4.80)

In our setup, we have that the one-sided entropies are time-independent, S[R̄′
R/L](τ

′) =

S[R̄′
R/L](0). Using eq. (4.75) we can then bound S[R̄′

L ∪ R̄′
R](τ

′) from above

S[R̄′
L ∪ R̄′

R](τ
′) ≤ Rsth ventA(∂R̄

′) τ ′ + S[R̄′
L ∪ R̄′

R](0). (4.81)

Collecting everything, we find a bound on the Page curve of the black hole,

∆S[R̄L ∪ R̄R] ≤ Rsth ventA(∂R̄
′) τ ′ + I[R̄L : R̄R](0)− I[R̄′

L : R̄′
R](0) . (4.82)

To find a tightest bound this has to be minimized over all choices of χ′
Σ, see below. For any

fixed χ′
Σ it is sufficient to focus on the case where τ ′ < τ , which will always give the smaller

bound. The mutual information terms appearing on the right hand side are evaluated on
the initial time slice and can be obtained numerically by using the results of section 4.5.

From eq. (4.82), it is now easy to see why the entanglement growth becomes universal
at late times. Note that eq. (4.82) is in fact a family of inequalities, parametrized by a
choice of regions R̄′. The time τ ′ is chosen such that R̄′ at τ ′ is just barely a subsystem
of R̄ at τ , in the sense described below eq. (4.79). For times before τ ′ we assume that the
mutual information of subregions R̄′ is allowed to decrease as fast as possible, while still
compatible with eq. (4.75). Since the regions R̄′ at time τ ′ are subregions of R̄ at time
τ , their mutual information bounds the mutual information of regions R̄. We can find a
tight bound on the Page curve by minimizing over all choices of R̄′, or in other words, by
minimizing over all χ′

Σ with τ ′ = τ − χΣ−χ′
Σ

vbut
. It turns out that, for sufficiently large τ , the

tightest bound is obtained for χ′
Σ = 0, yielding the prescription stated below eq. (4.77).

We thus see from the first term on the right hand side of eq. (4.82) that this surface acts
18The butterfly velocity is defined as the spread of the region in which the commutator of an operator

O1(t) with O2(t) is bigger than 1 [169].
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as a bottle neck for information transfer and thus controls the late time growth of entropy.
Matching this behaviour to the late time rate of growth of the exact Page curve provides
further justification, a posteriori, for the choice of the entanglement velocity stated in
eq. (4.77).

The bounds found in this way are presented in figure 4.14b. We see that a fast growth
at early times is allowed by the bounds, before the linear growth phase is entered. Further,
as can be seen from the figure, these bounds are fairly loose. It would be interesting to
understand how to make them tighter. Note that the blue curve in figure 4.14b behaves
qualitatively different than the other curves. The reason is that the early convex onset
of the curve is controlled by the thermal scale and thus lasts for roughly ∆τ ∼ O(β),
independent of the belt width. The rescaling in figure 4.14b magnifies the early time
behaviour of belts with χΣ < 1 while it reduces the early time behaviour of belts of width
χΣ < 1. Thus, while all other curves show the linear entanglement spreading for time
scales τ ∼ O(χΣ) > O(β), the behaviour of the blue curve is dominated by entanglement
spreading through thermalization, since the belt width is of order of the thermalization
scale. The quadratic19 growth at times below the thermal scale is reminiscent of the ‘pre-
local-equilibration growth’ described in [167,168].

Let us end with a few observations regarding the structure of entanglement spreading
in our system. First, we note that the entanglement velocity (4.77) for Rindler spacetime
with hyperbolic spatial slices differs from the analogous velocity

√
d(d−2)

1
2
− 1

d/[2(d−1)]1−
1
d

in flat space [161] dual to AdS planar black holes. Furthermore, for d > 3, the entangling
velocity for a CFT on hyperbolic space exceeds the butterfly velocity, eq. (4.79). Typically,
whenever vent > vbut, one might worry about contradictions to entanglement monotonicity
laws [166,172], which apply above the thermal scale. However, no immediate contradictions
appear in the present case, as we now explain.

For concreteness, let us interpret eq. (4.45) as describing the entanglement growth in
hyperbolic space without defects, specifically, computing the entropy for a region consisting
of half-spaces χ > 0 on either side of the TFD.20 This growth saturates eq. (4.75) with
vent > vbut in d > 3 so one might worry that entanglement is spreading faster than the speed

19Note that time-reflection symmetry demands that the Page curve have an early time expansion con-
taining only even powers of τ . For the zero-width, it is easily verified, at least numerically, from eq. (4.42)
that

√
1− r∗ ∼ τ so that the growth is indeed quadratic by eq. (4.43). For finite-width belts, plugging

eqs. (4.56) and (4.57) into eq. (4.13) shows that early time evolution is equivalent to holding the cutoff
at fixed ζ and shifting the ξ of the entangling surface by ∼ τ2, again leading to quadratic entanglement
growth.

20To be precise, we should multiply eq. (4.45) by 1
2 · 1

4Gbulk
with the factor of 1/2 due to our focus on

just two copies of the entangling surface χ = 0 — one on either side of the TFD.
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vbut permitted by operator commutator growth [169]. Specifically, by applying an analysis
similar to the one reviewed around eq. (4.79) to thermal relative entropies, [166,172] argue
that, for regions and times above the thermal scale, entanglement growth must be bounded
by the thermal entropy density sth times the volume between the entangling surface and
a tsunami wavefront propagating with speed vbut away from the entangling surface (in
either direction). Said differently, the rate dS/dt of entanglement growth is bounded by
sthvbut times the area of the tsunami wavefront — this is essentially eq. (4.75) with vbut
replacing vent and the tsunami wavefront replacing the entangling surface. In flat space,
the tsunami wavefront can be typically chosen to propagate in a direction away from the
entangling surface such that it shrinks or does not grow in time (e.g., propagating inward
from a spherical entangling surface). Thus, for the flat space equivalent of eq. (4.75) to be
saturated, one must require vent < vbut. In hyperbolic space however, it is possible for the
tsunami wavefront to grow in both directions away from the entangling surface. Indeed,
this is precisely what happens for the hyperbolic half-space which has an entangling surface
χ = 0 of minimal area; within a few thermal times, the tsunami wavefront propagating in
either direction grows to an area exponentially large compared to the entangling surface.
We thus see that, though the hyperbolic half-space saturates eq. (4.75) with vent > vbut,
this does not contradict the bound on entanglement spreading due to the butterfly velocity.
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(a) The dependence of RT surface parameters on the brane angle θB for d = 3.
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(b) The dependence of RT surface parameters on the brane angle θB for d = 4.
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(c) The dependence of RT surface parameters on the brane angle θB for d = 5.

Figure 4.12: The dependence of the RT surface and the quantum extremal surface on the
brane angle θB for d = 3, 4 and 5. The location of the entangling surface is chosen to be
χΣ = 1. 103
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(a) The Page curve for dimensions d = 3, 4, 5 (left to right). The entangling surface is located at
χΣ = 1 and the DGP coupling is set to zero. The brane angle is chosen as θB = 0.1.
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(b) Left: The Page curve for selected brane angles θB = 0.07, 0.10, 0.15 (top to bottom). Right:
The Page time τP as a function of the brane angle θB. The constant parameters are set to λb = 0,
χΣ = 1, and d = 4.
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(c) Left: The Page curve for selected values of the DGP coupling λb = 0.5, 0,−0.5 (top to bottom).
Right: The Page time τP as a function of the DGP coupling λb. The constant parameters are set
to θB = 0.1, χΣ = 1, and d = 4.

Figure 4.13: The Page curve in various dimensions. The solid blue line indicates the
physical Page curve. The dashed orange lines correspond to entropies calculated by non-
minimal extremal surfaces. At early times, the RT surface in the no-island phase is the
minimal surface. After some time, the minimal surface transitions to the RT surface in the
island phase.
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(a) This figure shows the onset of the Page
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Figure 4.14: The initial behaviour of the Page curve in four dimensions (left) and a rescaled
version of the same plot with bounds (dashed) on the onset (right).
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Chapter 5

Extremal horizon in equilibrium with
T = 0 bath

Here we turn our attention to extremal black holes. In particular, we consider the same
bulk geometry described in chapter 2, i.e., a backreacting codimension-one brane extending
across the spacetime which locally has the geometry of AdSd+1. However, we replace the
AdS-Rindler coordinates introduced in eq. (4.7) with Poincaré coordinates,

ds2 =
L2

z2
(
dz2 − dt2 + dx21 + · · ·+ dx2d−1

)
. (5.1)

Of course, the coordinate singularity at z → ∞ corresponds to an extremal T = 0 horizon.
Figure 5.1 illustrates the Poincaré patch in our bulk geometry.

For the most part, we will be interested in limit of large tension (i.e., ℓB ≫ L), for
which the brane theory can be described as Einstein gravity coupled to two copies of the
boundary CFT. As we describe in a moment, the brane geometry naturally inherits a
Poincaré metric from the bulk geometry. Hence the brane supports an extremal black hole
which is equilibrium with the T = 0 bath CFT on the asymptotic AdS boundary. We note
that with Poincaré coordinates, we are examining the system in a new conformal frame
where the bath CFT is living on flat d-dimensional Minkowski space,

ds2CFT = −dt2 + dx21 + · · ·+ dx2d−1 . (5.2)

This brane perspective is illustrated in figure 5.2a.

Of course, we may also have the boundary perspective where the d-dimensional CFT
in Minkowski space is coupled to a codimension-one conformal defect. For simplicity, we
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Figure 5.1: The Poincare patch models a zero temperature extremal black hole. The brane
intersects the CFT Poincaré patch at the origin and infinity.

insert the latter at x1 = 0 for the metric in eq. (5.2) and so the induced geometry on the
defect is also flat, i.e., (d–1)-dimensional Minkowski space. The Penrose diagram for this
perspective is shown in figure 5.2b. Note that in contrast to the finite temperature TFD
state (entangling two copies of the bath CFT) in section 4.2, here for the T = 0 scenario,
we only have a single copy of the bath CFT, e.g., compare the above to figures 4.3 and
4.4. Of course, at T = 0, we are simply studying the vacuum state of the defect CFT in
flat space.1

We may recall from [50] that for the extremal case in d = 2, one always finds islands for
the analogous belt regions. This result is a consequence of two features that hold for d = 2:
firstly, there always exists a bulk RT surface intersecting the brane to produce an island;
secondly, the alternative no-island RT candidate surface has an additional IR divergence2

and this surface is therefore subdominant. However, neither of these statements hold in
d ≥ 3. Indeed, we will find in higher dimensions that QEIs do not appear in the large
tension limit. Nonetheless, no information paradox arises since extremal black holes do
not radiate, i.e., the black hole and the bath are not exchanging radiation. This contrasts

1Of course, this is a pure state, as is manifest in bulk since the Poincaré time slices constitute complete
Cauchy slices.

2Coming from integrating the length of the surface down to the extremal horizon.
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horizon

defect

t = 0

defect
a. b.

Figure 5.2: The brane and boundary perspectives of the extremal black hole setup. (As
visible in fig. 5.1 but suppressed here, the brane also intersects the non-gravitational bound-
ary of the AdSd+1 spacetime at the left edge of panel (a) here.)

with the non-extremal case in section 4.2, where the information paradox for the eternal
black hole in the effective d-dimensional gravity theory arises because of the continuous
exchange of quanta between the black hole and the bath. Of course, the paradox is avoided
by the appearance of QEIs.

The remainder of this section is organized as follows. We shall begin by first explicitly
constructing the bulk and brane metrics to be used in the extremal case and by introduc-
ing the EE calculation which we wish to consider. Then, in subsections 5.1 and 5.2, we
carry out this calculation using RT surfaces corresponding to island and no-island phases,
respectively. Finally, we collect these results in subsection 5.3 to determine when each
phase dominates.

The Poincaré coordinates (5.1) cover a wedge of the AdSd+1 vacuum geometry. How-
ever, in the present geometry with a backreacting brane, a portion of two such wedges
would appear on either side of the brane — see figure 5.1. If we consider the coordinate
transformation

z = y sin θ, x1 = y cos θ , (5.3)

the metric (5.1) is transformed to the form given in eq. (2.7), where the AdSd slices each
inherit a Poincaré metric. As described in chapter 2, the brane spans one such slice at
a fixed θ = θB determined by the brane tension To according to eq. (2.12). The induced

108



Figure 5.3: The bulk dual to a d-dimensional Minkowski CFT with a defect (green dot)
along a line x1 = 0. The CFT lives on the asymptotic boundary of a Poincaré AdSd+1

spacetime with a brane (green line) running through it. We consider the EE of the comple-
ment R = (−∞,−b] ∪ [b,∞) of a belt geometry in the CFT. As considered in section 5.1,
one candidate RT surface ΣR, shown in red, intersects the brane at a QES σR, forming an
island on the brane belonging to the entanglement wedge of R. Various quantities defined
in section 5.1 are marked in this figure.

metric on the brane then becomes

ds2AdSd
=

L2

y2 sin2θB

(
dy2 − dt2 + dx22 + · · ·+ dx2d−1

)
, (5.4)

and we may then read off the curvature scale of the brane as ℓB = L/ sin θB, as expected
from eq. (2.18). Here, y is interpreted as the radial Poincaré coordinate running along the
brane, and the Poincaré horizon on the brane, located at y → ∞, is inherited from the
bulk. As usual, we wish to work in the regime L2/ℓ2B ≪ 1, or alternatively θB ≪ 1.

Following the brane perspective described above (and in chapter 2 and section 2.5),
eq. (5.4) is interpreted as an extremal black hole solution of the gravity theory induced
brane at θ = θB and the CFT of the flat asymptotic boundary at z = 0 becomes the zero
temperature bath. This then provides a direct extension of the extremal scenario in [50]
to d dimensions. The question which interests us here is then whether the entanglement
wedge of certain subregions in the bath includes islands residing on the brane.

Specifically, we consider the EE calculation for a boundary region R that is the com-
plement of a “belt" geometry centred on the defect at x1 = 0, i.e., the boundary subregion
R = (−∞,−b]∪ [b,∞). According to the RT formula we should consider codimension-two
surfaces V sharing the same boundary ∂V = ∂R ≡ ΣCFT. To determine RT surface can-
didates among these surfaces, we must search for surfaces that extremize their area. As
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(a) Heading into the bulk ± = +. (b) Heading out of the bulk ± = −.

Figure 5.4: Definitions for the choice of ± in eq. (5.6) and for the corresponding ∆x1 (> 0)
from eq. (5.7) on the two branches of the RT surface.

we discussed in the introduction, there are generally two sets of surfaces that achieve this
extremization; the RT prescription then instructs us to choose the one with the smallest
area. The first class of surfaces are those that intersect the brane, forming a QEI on the
brane, which belongs to the entanglement wedge of R — see figure 5.3. We will say that
this RT surface is in the island phase. The second set of surfaces fall trivially into the bulk
and do not produce islands on the brane, i.e., these surfaces are in the no-island phase.

5.1 Island phase

As a starting point, let us review the calculation for RT surfaces of belt geometries in pure
AdS [13]. That is, we are considering the complement of R, but the RT calculations for this
region and for its complement, R = [−b, b], are equivalent. Integrating out the x2, . . . , xd−1

directions in which the brane is constant, the area functional of a codimension-2 surface
V becomes

A(V) =Ld−1vol⊥d−2

∫
V

dx1

√
1 +

(
dz
dx1

)2
zd−1

, (5.5)

where vol⊥d−2 is the volume of transverse directions {x2, . . . , xd−1}.3

The RT surface ΣR is obtained by extremizing the area functional (5.5) with respect to
the profile z(x1). This functional, viewed as a Lagrangian, contains no explicit dependence

3Note that in contrast to volHd−2
introduced in section 4.2, vol⊥d−2 has the dimensions of lengthd−2 and

so is essentially given by ℓd−2
IR where ℓIR is an IR cutoff in the x2, . . . , xd−1 directions.
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on x1 and hence the corresponding Hamiltonian is a constant along ΣR, allowing us to
deduce

dz

dx1
=±

√
z
2(d−1)
∗ − z2(d−1)

zd−1
(5.6)

for some constant z∗. Further, the sign ± above is determined by whether we are on the
portion of the RT surface heading into the bulk (+) or heading out of the bulk (−) with
increasing x1 — see figures 5.3 and 5.4.4 From eq. (5.6), we see that dz/dx1 = 0 at z = z∗
and therefore z∗ is the maximal z-value attained by ΣR. We can integrate eq. (5.6) to
obtain the trajectory of the RT surface:

∆x1 =
zd

d zd−1
∗

F2 1

[
1

2
,

d

2(d− 1)
;

d

2(d− 1)
+ 1;

(
z

z∗

)2(d−1)
]

(5.7)

Here ∆x1 > 0 is the absolute x1-separation between a point on the RT trajectory and
the initial (final) endpoint on the asymptotic boundary, on the portion of the RT surface
heading into (out of) the bulk — see figure 5.4. If we evaluate this expression at z = z∗,
we obtain half of the width of the boundary strip (in the x1 direction) defined by the RT
surface. Denoting this width as D, which we emphasize is in the empty AdS vacuum (see
figure 5.3), we have

D

2
=

√
π Γ
[

d
2(d−1)

]
Γ
[

1
2(d−1)

] z∗. (5.8)

Now returning to the geometry with the backreacting brane, each half of the RT surface
ΣR on either side of the brane will follow the trajectory given in eq. (5.7) for pure AdS
prior to meeting the brane. We have placed the defect at x1 = 0 and the RT surface begins
on the asymptotic boundary at x1 = −b. Further, if we were to extend the RT surface
past the brane, it would hit the asymptotic boundary again at x1 = −b +D. In terms of
eq. (5.7), x1 along the trajectory is then given by

x1 =− b+

{
∆x1 when heading into bulk (towards z = z∗)
D −∆x1 when heading out of bulk (away from z = z∗)

. (5.9)

4As noted previously, if we restrict our attention to positive tension To, we will have 0 < θB < π/2. In
this case, the RT surface must be increasing in x1 as one heads away from the boundary (z, x1) = (0,−b),
in order for the RT surface to meet the brane.
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In general, as illustrated in figure 5.3, D
2
̸= b, rather, the relation between D (or z∗)

and b must be determined by demanding that the choice of the intersection σR of the
RT surface with the brane should extremize the RT surface’s area (plus the area of the
QES, when brane action includes an extra DGP term). As described in section 3.2, this
extremization leads to a boundary condition restricting the angle at which the RT surface
meets the brane. Again, we may reduce this to a two-dimensional problem where we view
the RT surface as a geodesic in an effective two-dimensional geometry

ds22D =L2(d−1) (vol⊥d−2)
2 dz

2 + dx21
z2(d−1)

, (5.10)

and the area becomes the length of the geodesic in this geometry.

As before, we may use eq. (4.22) to determine the variation of the RT surface area
under perturbations of σR, the QES on the brane. Here, hij is given by eq. (5.10), the
deviation vector Xj is chosen to be ∂y, and the tangent T i determined from eq. (5.6), with
both Xj and T i normalized with respect to hij. Hence, upon perturbing the intersection
of the RT surface with the brane, the RT area varies as

∂A(ΣR)

∂yQES

=
2Ld−1vol⊥d−2

zd−1
QES

cos θQES = 2Ld−1vol⊥d−2

(
cos θB

zd−1
∗

±
√

1

z
2(d−1)
QES

− 1

z
2(d−1)
∗

sin θB

)
,

(5.11)

where θQES is the angle between the RT surface and the brane, yQES is the y coordinate
of σR — see figure 5.3 — and the ± sign is the same one as introduced in eq. (5.6) and
illustrated in figure 5.4. An extra factor of 2 is included to account for the two components
of the RT surface on either side of the brane. From eq. (5.4), we read off the area of σR:

A(σR) =vol⊥d−2

(
L

yQES sin θB

)d−2

,
∂A(σR)

∂yQES

=−
(d− 2)vol⊥d−2L

d−2 sin θB

zd−1
QES

. (5.12)

The extremality condition

0 =
∂

∂yQES

(
A(ΣR)

4Gbulk

+
A(σR)

4Gbrane

)
(5.13)

is satisfied if

cos θQES =λb sin θB ⇐⇒ zQES =z∗

[
sin θB

(
λb cos θB +

√
1− λ2b sin2θB

)] 1
d−1

, (5.14)
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Figure 5.5: Plots of the position of σR, the intersection of the RT surface with the brane,
and the critical brane angle at which this surface runs off to yQES → +∞.

where λb is defined in eq. (2.54). The relationship between z∗ and bmay then be determined
by substituting (x1, z) = (zQES cot θB, zQES) into eq. (5.9), and using eqs. (5.8), (5.7) and
(5.14) to find

b =±∆x1 +
1∓ 1

2
D − zQES cot θB = F(d, λb, θB) z∗ (5.15)

F(d, λb, θB) ≡±
zdQES

d zd∗
F2 1

[
1

2
,

d

2(d− 1)
;

d

2(d− 1)
+ 1;

(
zQES

z∗

)2(d−1)
]

+ (1∓ 1)

√
πΓ
[

d
2(d−1)

]
Γ
[

1
2(d−1)

] − zQES

z∗
cot θB

(5.16)

where the top (bottom) signs chosen above if the RT surface intersects the brane to the
left (right) of the extremal point z = z∗. We have noted in the second equality of eq. (5.15)
that all terms of the previous expression are linear in z∗; in particular, note in eq. (5.16)
that the ratio zQES/z∗ is determined by eq. (5.14). In figure 5.5a, we have plotted the
position of the intersection σR between the RT surface and the brane as a function of the
brane angle θB for various λb and d = 3. In section 5.3, we shall discuss the fact that, for
θB below some critical angle θc, the extremal surfaces discussed here fail to exist. That is,
yQES, the position of the QES on the brane, runs off to infinity as θB → θc from above.

Having determined the profile of the RT surfaces, we may proceed to evaluate their
corresponding entropies using the RT formula (1.8) — keeping in mind that we have not
shown that these surfaces minimize the entropy functional yet. Inserting eqs. (5.6) and
(5.12) into the generalized entropy functional, we find that the entropy of the belt geometry
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R and hence of the complementary bath region R is given by

A(ΣR)

4Gbulk

+
A(σR)

4Gbrane

=
Ld−2

4Gbrane

vol⊥d−2

zd−2
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+
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{
(1∓ 1)

√
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]
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[
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] vol⊥d−2
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∗
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[
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δd−2
∓
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F2 1

(
1
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,

d

2(d− 1)
− 1;

d
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;

(
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zQES

)2(d−1)
)]} (5.17)

where z = δ defines the UV cutoff surface near the asymptotic AdS boundary, and zQES and
z∗ are linearly related to b by eqs. (5.14) and (5.16). For zQES ≪ z∗, the hypergeometric
function becomes 1 +O[(zQES/z∗)

2(d−1)], giving

A(ΣR)

4Gbulk

+
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4Gbrane

=
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4Gbulk
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1

2(d−1)

]
d−1

vol⊥d−2

Dd−2

}

+ vol⊥d−2

(
L

zQES

)d−2
{

1

4Geff

+O

[
1

Gbulk

(
zQES

z∗

)2(d−1)
]}

,

(5.18)

where we have used eq. (5.8) to replace z∗ with D in the first line. Note from eq. (5.14)
that zQES/z∗ ∼ [(λb + 1)θB]

1/(d−1) so the correction is indeed smaller than the other terms
shown here in high tension limit.

Using the brane perspective, let us examine the various contribution to the generalized
entropy on the right-hand side of eq. (5.18). Beginning with the leading term of the second
line in eq. (5.18), we find that it corresponds to the BH entropy of the QES, i.e., 1

4Geff
times

the area of σR. It is interesting to note that that there are no higher curvature corrections
to the generalized entropy of the QES as might have been expected from the Wald-Dong
entropy formula.5 Turning to the first term in the first line of eq. (5.18), we have the

5One can argue that all of the higher curvature corrections to the Wald-Dong entropy must cancel
against one another as follows: In the present case, these terms would arise from integrating out the
boundary CFT on the gravitating brane and so should be conformally invariant, e.g., see [173]. However,
by a simple Weyl transformation, the brane metric becomes flat and further both the intrinsic and the
extrinsic curvatures of σR vanish. Hence in this flat conformal frame, the higher curvature corrections to
the Wald-Dong entropy individually vanish. Hence while these curvatures do not vanish in the original
conformal frame, the higher curvature entropy corrections must all cancel against one another.
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area law divergence associated with the two components of the entangling surface ΣCFT at
x1 = ±b. This leaves us with the second term in the first line. Upon closer examination,
this can be recognized as the finite contribution to the EE for a belt of width D, up to an
additional factor of 2, e.g., see [13, 14]. Further, we note that both contributions on the
first line of eq. (5.17) contain a prefactor proportional to Ld−1/Gbulk ∼ cT , which measures
the number of degrees of freedom in the boundary CFT, e.g., [132].

We can see that these results correspond approximately to the expected entropy from
the brane perspective as follows: We begin by considering the contribution from the CFT
to one side of the conformal defect, say x1 < 0. Imagine we begin with a single copy of
the CFT in flat space (5.2), and evaluate the entropy of a belt of width D with entangling
surfaces at x1 = −b and x1 = D−b. For this geometry, the holographic EE becomes [13,14]

SEE =
Ld−1

4Gbulk

{
1

d− 2

vol⊥d−2

δd−2
+

1

d− 2

vol⊥d−2

δd−2
− 1

d− 2

 2
√
π Γ
[

d
2(d−1)

]
(d− 2) Γ

[
1

2(d−1)

]
d−1

vol⊥d−2

Dd−2

}
,

(5.19)
where we have separated the area law contributions of the two components of the entangling
surface. Now from the brane perspective in our system, the bath CFT resides in flat space
for x1 < 0 but the corresponding copy of the CFT resides on the AdSd geometry of the brane
for x1 > 0. However the latter can be produced by making a local Weyl transformation in
the positive x1 domain:

ds2 =
δ2

x21 sin
2 θB

ds2CFT =
δ2

x21 sin
2 θB

(
−dt2 + dx21 + · · ·+ dx2d−1

)
. (5.20)

Note that this is geometry is not the induced metric (5.4) but rather we are considering
the standard conformal frame where one strips off the factor of (L/δ)2 from the bulk
metric.6 Now the net effect of this Weyl transformation on the EE (5.19) is to modify
the cutoff appearing in the area law contribution for the surface at x1 = D − b, i.e.,
δ → (D− b) sin θB ≃ zQES, where the latter assumes that θB ≪ 1. Hence the entropy (5.19)
becomes

S ′
EE ≃ Ld−1

4Gbulk

{
1

d− 2

vol⊥d−2

δd−2
− 1

d− 2

 2
√
π Γ
[

d
2(d−1)

]
(d− 2) Γ

[
1

2(d−1)

]
d−1

vol⊥d−2

Dd−2

}

+
1

4

L

(d− 2)Gbulk

(
L

zQES

)d−2 vol⊥d−2

δd−2
. (5.21)

6Further, we are only performing the Weyl transformation (5.20) for x1 > δ/ tan θB , which corresponds
to the intersection of the brane with the UV cutoff surface z = δ.
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Now using eq. (2.54), the term on the second line can be recognized as the contribution of
one of the boundary CFTs to the Bekenstein-Hawking entropy of the quantum extremal
surface on the brane. Hence combining the above contribution (5.21) with that from
the other copy of the boundary CFT (which extends to the bath for x1 > 0) and the
DGP contribution to the Bekenstein-Hawking entropy, we precisely recover the leading
contributions in eq. (5.18). Hence this simple CFT argument allows us to match the
leading contributions in the holographic result with the expected EE.

5.2 No-island phase

Above, we studied the set of candidate RT surfaces that intersect the brane. In fact (for
θB < π/2), there exists another set of simple extremal surfaces that must also be considered
under the RT prescription (1.8). These surfaces are constant x1 planes anchored on the
entangling surface ΣCFT on the asymptotic boundary and fall straight into the bulk. By
reflection symmetry about x1 = ±b, these planes trivially extremize the area functional,
which becomes

A(V) = 2Ld−1vol⊥d−2

∫
V

dz

zd−1
. (5.22)

A factor of 2 has been included above to account for the two planes at x1 = ±b.7 Unlike
the surfaces considered in section 5.1, these planes do not intersect the brane and thus no
islands are formed on the brane. The entropy in this no-island phase is easily obtained
from evaluating the area functional (5.22), which then yields

A(ΣR)

4Gbulk

=
Ld−1

2(d− 2)Gbulk

vol⊥d−2

δd−2
, (5.23)

where δ is again the UV cutoff in the boundary CFT.

5.3 Islands at T = 0 for d > 2

Altogether, we have two candidate RT surfaces: the extremal surfaces described in sec-
tion 5.1, which intersect the brane to form a quantum extremal island, and the extremal
planes described in section 5.2 corresponding to the no-island phase. To determine which

7Further, let us note that for the special case d = 2, the integral produces an IR divergence at z → ∞.
However, there is no such IR divergence for d ≥ 3.
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is the correct RT surface, we must first study the parameter space for which each surface
exists. When both types of surfaces exist simultaneously, the correct RT surface is given
by the one that has the smallest generalized entropy, as in eq. (1.8). Below, we first observe
that on a brane at angle θB < π/2, an island can only possibly exist when −1 < λb < 1;
more specifically, for this range of the DGP parameter λb, there is a critical angle θc < π/2
that gives the minimum θB which supports the island phase — recall that this critical
angle was plotted in figure 5.5b. For θB > θc, the island phase exists and is dominant. At
θB = θc the entropies computed by the island and no-island RT surfaces equalize, leading
to a transition to the no-island phase below θc. As we shall find that θc scales as (1+λb)

1
d−2

at its smallest, this precludes the possibility of islands in the regime where the brane is
well-described by QFT on semiclassical gravity — see section 2.5. This differs from the
d = 2 case, where the island phase always exists; furthermore, while the no-island RT
surface in d > 3 has an IR-finite area, the analogous surfaces in d = 2 produce an IR
divergence and thus are never dominant.

Let us begin our analysis by constraining the parameter space in which each type of RT
candidate surface exists. It is easy to see that the extremal planes of the no-island phase
exist if and only if θB ≤ π/2.8 It is slightly more involved to determine when the extremal
surfaces in the island phase exist. For a start, the first equality of eq. (5.14) indicates
that for θB < π/2, sensible extremal surfaces intersecting the brane can only possibly exist
when −1 < λb < 1.9 From figure 5.5a, we see that this is the range of λb for which there
exists some θB < π/2 such that the DGP gradient has not overpowered the bulk term of
eq. (5.13) to push the QES to the asymptotic boundary y = 0 or to the horizon y = ∞.

To be more precise, we must consider properties of the F function introduced in
eq. (5.16). For −1 < λb < 1, some (numerically deduced) facts about F(d, λb, θB) are

8Of course, this was our regime of interest, as this was the regime where a (nearly) massless graviton
is induced on the brane.

9Specifically, this can be seen as follows: Let us take the extreme case of λb = 1 (λb = −1). Then
eq. (5.14) indicates that θQES = θB−π/2 (θQES = θB+π/2). For λb = 1, this implies that when θB > π/2,
the RT surface falls straight into the bulk until it hits the brane, i.e., z∗ = ∞ — see figure 5.3. Now
as θB → π/2 from above, the QES runs off towards the horizon and consequently no QES exists for
θB < π/2. For λb = −1, one can argue that for θB < π/2, the QES is stuck to the defect, i.e., zQES = ∞.
As increasing (decreasing) λb beyond 1 (−1) means the DGP entropy contribution exerts a greater force
pushing the QES towards the horizon (the defect), it follows that no QES exists for θB < π/2 when λb > 1
(λb < −1). In these parameter ranges, the naive ‘solutions’ obtained from eq. (5.14) are unphysical, i.e.,
have the RT surface anchored in the unphysical region behind the brane.
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that it is decreasing in λb and increasing in θB. Moreover,

F(d, λb, θB close to 0) = − (1 + λb)
1

d−1 θ
− d−2

d−1
B [1 +O(θ2B)] +

D

z∗
(5.24)

F(d, λb, θB close to π) = (1− λb)
1

d−1 (π − θB)
− d−2

d−1{1 +O[(π − θB)
2]}. (5.25)

Since the former diverges negatively while the latter diverges positively, it follows that
there exists a critical angle θc for which F(d, λb, θc) = 0. For −1 < λb < 1, we have
0 < θc < π/2 with θc → 0, π/2 as λb → −1, 1, respectively.10 The physical significance of
θc can be seen from the second equality of eq. (5.15): for θB above θc, there exist extremal
surfaces that intersect the brane; as θB → θc from above, z∗, zQES, yQES run off to +∞ as
∼ (θB − θc)

−1; finally, for θB < θc, no extremal surfaces exist which intersect the brane. In
Figure 5.5b, we plot the critical angle θc as a function of λb for various d.

Before continuing, let us briefly note a number of peculiarities which arise when |λb| > 1.
First, for λb > 1, there exists a range of θB ≳ π/2 for which no extremal surfaces of any
kind exists, i.e., the RT prescription fails completely. This may indicate that there is no
CFT plus defect theory that can be dual to a bulk with this range of parameters – of
course, the brane has a negative tension in this regime and so there is no effective gravi-
tational theory on the brane. Second, recall that as λb → −1 from above, the coefficient
of the Einstein-Hilbert action vanishes, leading to a breakdown of semiclassical Einstein
gravity, as mentioned in section 2.5. Further taking λb < −1 then corresponds leads to
an unphysical ghost-like gravity action in the brane theory. At any rate, from here on, we
shall restrict our focus to −1 < λb < 1.

Now we have two competing possible RT surfaces: for θB ≤ π/2, extremal planes
anchored on the entangling surfaces to either side of the brane, which correspond to a no-
island phase; and, for θB > θc, extremal surfaces that intersect the brane, corresponding
to an island phase. As both types of surfaces exist for θc < θB < π/2, the RT formula
instructs us to choose the surface with the smallest area in this parameter space. Thus,
we consider the area difference:[

A(ΣR)

4Gbulk

+
A(σR)

4Gbrane

]
isl.

−
[
A(ΣR)

4Gbulk

]
��isl.

=−
Ld−1vol⊥d−2

2(d− 2)Gbulkz
d−2
∗

F(d, λb, θB) (5.26)

10In particular then, no islands form with λb > 1 in the regime of interest with θB ≤ π/2.
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where we have used eqs. (5.16), (5.17), (5.23), and the hypergeometric function identity11

F2 1

[
1

2
,

d

2(d− 1)
− 1;

d

2(d− 1)
;w

]
=
√
1− w +

(w
d

)
F2 1

[
1

2
,

d

2(d− 1)
;

d

2(d− 1)
+ 1;w
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(5.27)

From eq. (5.26), we see that whenever the island- and no-island-type surfaces coexist, the
island-type surface always gives a lower area and is thus the surface picked out by the RT
formula. Moreover, we see that entropy transitions continuously between the island and
no-island phases at the critical angle θc where F(d, λb, θc) = 0. Altogether, we find that,
for θB < θc, we are in the no-island phase where the RT surface is given by planes falling
straight into the bulk, and, for θB > θc, we transition to an island phase where the RT
surface is given by extremal surfaces which intersect the brane and form an island.

To gain intuition for the critical angle θc from the brane perspective, we note from
eq. (5.18) that eq. (5.26) can may be approximated as[
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]} (5.28)

in the small θB limit. Building upon the discussion given below eq. (5.18), we interpret
the RHS as giving a change in generalized entropy due to the introduction of the island in
the effective theory of the asymptotic boundary and brane. Namely, comparing with the
island rule (1.7), the first term on the RHS of eq. (5.28) gives the change in SQFT due to the
introduction of the island, and the second term gives BH entropy of the QES. Hence, for
θB > θc, the island phase is favoured as the introduction of the island reduces generalized
entropy. For θB < θc, the QES ceases to exist and only the no-island phase is possible.

We briefly comment that, unlike for the CFT region considered in chapter 3, the ad-
dition of topological terms to the bulk gravity theory does not change the favourability
between the island and no-island phases of the belt geometry. This is because such a mod-
ification can only effect a topological contribution to the Wald-Dong entropy formula and,

11This can be proven using eq. (15.1.8) and (15.2.25) of [174].
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for the belt geometry, the RT surfaces in both phases have vanishing Euler characteristic.
Namely, the RT surface of the island phase has the topology of an infinite strip while
the RT surface of the no-island phase consists of two half-planes. Thus, the topological
contribution would not favour one phase over the other.

In closing, we note that, unlike the d = 2 case [50], we have found that in the small
θB limit, where an effective theory of gravity plus quantum matter emerges on the brane,
islands typically do not exist for extremal black holes in d ≥ 3. To be more precise,
eq. (5.24) and figure 5.5b suggest that θd−2

c ∼ 1 + λb. It is still possible to stay in the
island phase by tuning 1 + λb to scale as ∼ θd−2

B . However, from eq. (2.55), we see that
this limit λb → −1+ corresponds to Geff → +∞, leading to a breakdown of the semiclas-
sical description of the effective brane theory (as described in section 2.5). We remark
that, unlike for non-extremal black holes discussed in section 4.2, there is no immediate
information paradox that arises as a result of the lack of islands in the extremal case here.

120



Chapter 6

Two dimensions revisited with black
holes

In this chapter, we study the black hole information paradox in the specialized case of
d = 2 which, as previously described in section 2.3, requires a slightly different treatment.
We begin by introducing some field redefinitions relative to section 2.3, to facilitate more
direct comparisons with the results of [50]. Next, we review the bulk AdS3 and brane
AdS2 geometries. Finally, we study extremal surfaces serving as candidate RT surfaces to
determine the entropy in the two phases, with and without an island, leading to the Page
curve. At leading order in an expansion in terms of small brane angles, i.e., θB → 0, our
results precisely agree with those of [50]. However, we can also retain the subleading terms,
which produce corrections due to the finite UV cutoff on the brane.

6.1 Field redefinitions

A goal of this chapter is to compare our results for the quantum extremal surfaces and the
Page curve to those derived in [50]. To facilitate this comparison, we make the following
field redefinitions

ϕ0 =
Φ0

4Gbrane

, ϕ = ϕ0 +
Φ

4Gbrane

, (6.1)

ϕ̃0 = ϕ0 −
1

2Geff

log

(
L

ℓJT

)
, ϕ̃ = ϕ− 1

2Geff

log

(
L

ℓJT

)
, (6.2)
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giving the bare and renormalized values of the dilaton — we shall clarify the meaning of
this renormalization shortly. In terms of the latter, induced action (2.44) now reads

Iinduced =
1

16πGeff

∫
d2x

√
−g̃
[
−R̃ log

(
−ℓ

2
JT

2
R̃

)
+ R̃ +
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8
R̃2 + · · ·

]
+

1

4π

∫
d2x

√
−g̃
[
ϕ̃ R̃ +

2

ℓ2JT
(ϕ̃− ϕ̃0)

]
.

(6.3)

Here, the first line eq. (6.3) may be interpreted as the renormalized effective action produced
by integrating out the brane CFT, and the second line contains the renormalized JT action,
which can be compared to eq. (2) in [50]. Here, ‘renormalized’ means that we have absorbed
the logarithmic UV divergence that would otherwise appear in the induced action1 as
L/ℓB → 0 into the JT action, which was achieved by the renormalization of ϕ0 → ϕ̃0 in
eq. (6.2).

As before, the dilaton ϕ̃ acts as a Lagrange multiplier which fixes the brane geometry to
be locally AdS2 with radius of curvature ℓB = ℓJT. The equation of motion for the induced
metric g̃ij, on the other hand, yields the dilaton equation of motion

−∇i∇jϕ̃+ g̃ij

(
∇2ϕ̃− ϕ̃− ϕ̃0

ℓ2JT

)
= 2π T̃ CFT

ij = − g̃ij
4L2Geff

f

(
L2

ℓ2JT

)
. (6.4)

In the final expression, we evaluated the renormalized CFT stress tensor T̃ CFT
ij using the

function f defined in eq. (2.47). The standard discussions of JT gravity (e.g., [34,127]) refer
to the source-free dilaton equation, i.e., the RHS vanishes, but this is easily accommodated
by a further shift2

ϕ̂0 = ϕ̃0 +
ℓ2JT

4L2Geff

f

(
L2

ℓ2JT

)
. (6.5)

6.2 Bulk and brane geometries

Let us now review the geometry for our current setup. Due to the simplicity of AdS3, we
will find it convenient to describe RT surfaces using global coordinates, even though we

1Recall that we also removed the power law divergence corresponding to the induced cosmological
constant term by introducing the counterterm (2.43).

2Note that implementing this shift in the action (6.3) introduces a new cosmological constant term.
Hence an alternative approach would be to introduce a general brane tension To in eq. (2.43) and then
tune the latter to absorb both the corresponding (power law) UV divergence in the induced action and
the RHS of the dilaton equation (6.4).
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will be considering Rindler time evolution, as in the main text. In global coordinates, we
may write the bulk AdS3 metric as

ds2 =
L2

cos2 r̃

[
−dτ̃ 2 + dr̃2 + sin2 r̃ dφ2

]
(6.6)

where τ̃ ∈ R, r̃ ∈ [0, π/2] and φ ∈ [−π, π].
In the AdS-Rindler coordinates, the AdS3 geometry becomes

ds2 = L2

(
−(r2 − 1) dτ 2 +

dr2

r2 − 1
+ r2dχ2

)
, (6.7)

which is just the special case of eq. (4.7) for d=2. Here, τ, χ ∈ (−∞,∞) and one exterior
region is given by r > 1. As described in section 4.1, the AdS-Rindler coordinates are useful
for the description of vacuum AdS as a topological black hole, such that the boundary
CFT is in a TFD state. The inverse temperature with respect to time τ is 2π, giving the
periodicity of iτ necessary for a smooth Euclidean continuation — we shall also define a
dimensionful time and temperature shortly. Indeed, these coordinates describe a horizon
at r = 1. Note that in d = 2, the boundary geometry is flat, i.e., it is simply two copies of
R2. The AdS-Rindler coordinates (τ, r, χ) are related to the global coordinates (τ̃ , r̃, φ) in
eq. (6.6) by

tanh τ =
sin τ̃

cosφ sin r̃
, tanhχ =

sinφ sin r̃

cos τ̃
, r2 =

cos2 τ̃ − sin2 φ sin2 r̃

cos2 r̃
. (6.8)

As described above in section 2.3, extremizing the brane action in eq. (2.44) with respect
to Φ (or eq. (6.3) with respect to ϕ̃) fixes the intrinsic brane geometry to be AdS2 with
radius of curvature ℓB = ℓJT. This becomes the θ = θB slice of the AdS3 metric written as
in eq. (2.7), where θB is determined by

sin θB =
L

ℓJT
, (6.9)

as in eq. (4.9). We write the induced metric on the brane as

ℓ2JTds
2
AdS2

= ℓ2JT

(
−(ρ2 − 1) dτ 2 +

dρ2

ρ2 − 1

)
= −4π2 ℓ2JT

β2

dy+dy−

sinh2
(

π(y+−y−)
β

) . (6.10)

The first line element with (τ, ρ) is simply the special case of AdS-Rindler coordinates given
in eq. (4.11) with d = 2. The light-cone coordinates (y+, y−) in the second line element are
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those used by [50], whose results we wish to compare against. The relationship between
(τ, ρ) and (y+, y−) is given by

τ =
π(y+ + y−)

β
=

2πt

β
, ρ =coth

[
π(y+ − y−)

β

]
. (6.11)

Given that the TFD has temperature 1
2π

with respect to dimensionless time τ , we have
introduced the dimensionful time t = y++y−

2
where the temperature becomes T = 1/β.3

On the brane, eq. (6.4) is easily solved for the dilaton profile in terms of ρ or y±:

ϕ̃ = ϕ̂0 +
2πϕr

β
ρ = ϕ̂0 +

2πϕr

β
coth

[
π(y+ − y−)

β

]
, (6.12)

where ϕr is a constant introduced in [50] (see eq. (18) and discussion below (2) there).

In the AdS-Rindler metric given in eq. (6.7), we introduce a surface of large constant
r = rUV which will serve as the UV cutoff surface. Then following [50], we take the induced
metric on this surface as the background metric for the bath CFT, i.e.,

ds2CFT = L2r2UV(−dτ 2 + dχ2) , (6.13)

with the conformal defect at χ = 0. Now the light-cone coordinates y± can be extended to
describe the geometry of the AdS3 bulk, and in particular the bath region on the asymptotic
boundary near θ = π as well as the brane geometry given in eq. (6.10) at θ = θB, by taking
an AdS3 metric in the form eq. (2.7). Indeed, on the asymptotic boundary, with metric
given in eq. (6.13), y± are related to (τ, χ) with4

y± =
β(τ ∓ χ)

2π
, ds2CFT =−

(
2πLrUV

β

)2

dy+dy− . (6.14)

As in higher dimensions, we are interested in computing the EE of a boundary region
R comprised of all of the points with |χ| ≥ χΣ in the two baths (associated with the two

3This is the same time coordinate introduced below eq. (4.7), though the relation β = 2π R loses its
meaning as there is no spatial curvature in d = 2.

4We should note that the geometry in [50] can be seen as a Z2 orbifold of our setup (see section 4.1).
Hence they would only consider χ < 0 of the flat boundary geometry in eq. (6.13). Therefore, the extension
of the null coordinates that we are discussing here has to be considered separately for each side of the
conformal defect. As a technical point, let us add that in [50], the sign of the spatial coordinate on the
brane is reversed so that y+ − y− > 0 describes the asymptotic boundary while y+ − y− < 0 describes the
brane. Here, y+ − y− is always positive and θ = π, θB correspond respectively to the bath and brane.
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copies of the CFT entangled in the TFD state). That is, this region is the complement
of two intervals (‘belts’) centred on the conformal defects in the two boundaries (which
corresponds to the intersection of the brane with the asymptotic boundary — see figure
6.1). Focusing on a single Rindler wedge and on one side of the brane, the entangling
surface is located at a fixed χ = −χΣ < 0, which we define as

y+ − y−

2
= b > 0 with b =

β

2π
χΣ , (6.15)

for all Rindler times τ . Similar assignments apply for the patches covering the other
portions of the boundary.

Finally, we note that going to the asymptotic boundary (with r̃ → π/2 and r → ∞),
eq. (6.8) yields the relation of the global and Rindler coordinates on the boundary:

tanφ =
sinhχ

cosh τ
, tan τ̃ =

sinh τ

coshχ
, (6.16)

which allow us to simplify some calculations below. It will be useful to denote the (time-
dependent) global coordinate angle of the entangling surface at χ = −χΣ as φΣ.

6.3 Entropies: Island and no-island phases

Now we turn to the problem of computing entropies using the RT formula in the background
of the hyperbolic AdS3 black hole coupled to the AdS2 brane with JT gravity. Specifically,
we wish to compute the entropy of the region R complementary to belts centred on the
defects, as described at the end of subsection 6.2. In the island and no-island phases the
RT formula equates the entropy to:[

A(ΣR)

4Gbulk

+ ϕQES

]
isl.

,

[
A(ΣR)

4Gbulk

]
��isl.
. (6.17)

The RT variational problem instructs us to consider extremal co-dimension two surfaces
ΣR in the bulk, which in AdS3 are simply geodesics. Although we are primarily concerned
with evolution in Rindler time, the boundaries of the entangling surface are simply four
points; these can always be simultaneously placed on a surface of constant global time.
This property, not present in higher dimensions, allows us to simplify the analysis by using
global coordinates5 as seen below.

5The fact that the endpoints reside at constant global time, together with the conservation of the charge
associated with the global time Killing vector (obtained by dotting with the RT tangent) implies that the
RT surfaces themselves must reside on constant global time slices.
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Now just as in higher dimensions, the minimization procedure yields two competing
phases. At early times, the minimal surfaces cross the Rindler horizon avoiding the brane
and the entropy is given purely by the bulk length of the RT surface, as in the second of the
expressions (6.17). This length stretches with Rindler time and leads to a growing entropy.
At late times the RT surfaces go across the brane instead, leading to an island where the
contribution of the dilaton becomes important, as shown in the first of the expressions
(6.17). As in the rest of the paper, we restrict to the regime of small brane angle θB.

We begin by considering geodesics and their lengths in global coordinates. As is well
known, a convenient way to parametrize the RT surfaces on constant global time τ̃ is by
using two anchoring points φ1, φ2, where geodesics are given by

sin(r̃) cos

(
φ− φ1 + φ2

2

)
=cos

(
φ2 − φ1

2

)
. (6.18)

such that the curves hit the boundary r̃ → π/2 at φ1 and φ2. The area (length in d = 2)
of an RT surface with this trajectory is given by

A =L
∑

i∈{1,2}

tanh−1

[
csc

(
∆φ

2

)√
− cos

(
∆φ

2
+ r̃i

)
cos

(
∆φ

2
− r̃i

)]
(6.19)

=L log

[
4 sin2 (∆φ/2)

ϵ1ϵ2

]
− L

12

(
1 + 3 cot2

∆φ

2

)
(ϵ21 + ϵ22) +O(ϵ41) +O(ϵ42) , (6.20)

where

∆φ =|φ1 − φ2|, ϵi =
π

2
− r̃i (i ∈ {1, 2}) (6.21)

are respectively the opening angle of the RT surface and the UV cutoffs (in the global
radial coordinate) at which the area integral is terminated, see figure 6.1.

The leading order term in eq. (6.20) corresponds to the standard EE formula of an
interval on the circle [14, 175] (but allowing now for two different UV cutoffs). We have
also included the next-to-leading order terms as these will be important for computing
corrections to entropy formulas on the brane.

Now as usual, one must appropriately regularize the areas of the RT surfaces. As
explained above, we place the cutoff surface at a large holographic radius r = rUV in the
Rindler radial coordinate. In terms of global coordinates, this describes the surface

sin2(τ̃) = (sin r̃ cosφ)2 − (r2UV − 1) cos2(r̃) . (6.22)
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ϵ1

ϵ2

φ

r = rUV
UV cutoff

φQES

φ2

φ1 = −φb

Figure 6.1: A slice of constant global time in AdS3, showing the two phases of the gener-
alized entropy. The two cutoffs ϵ1,2 involved in the computation are associated with the
UV cutoff at the asymptotic boundary and the brane, respectively. The global coordinate
angles φ1, φ2 relate to the RT surface opening angle, while φQES is the angle at which the
RT surface intersects the brane and corresponds to the boundary of the island. Recall the
geometry is cut at the brane and continued by gluing it to another copy.

Expanding to leading order in rUV, one finds that the UV cutoff is associated with a length
in eq. (6.21) given by

ϵ1 =
1

rUV

√
2

cosh(2τ) + cosh(2χ)
+O(r−3

UV) . (6.23)

where we have used eq. (6.16). Here and below, we shall use ϵ1 to denote the cutoff at
the end-point of the RT surface at the asymptotic boundary; ϵ2, on the other hand, will
either be a cutoff at the asymptotic boundary or due to the brane, depending on whether
we are in the no-island or island phase. Note that although the entropies diverge with the
regulator rUV, these contributions will cancel once we consider the difference between the
island and no island phases, as seen below.

Equipped with this, we can now compute the generalized entropy in the two phases
and reproduce the Page curve found in [50].
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No-island phase. We begin with the no-island phase. Here once again due to the
simplicity of AdS3, the minimal surfaces lie on constant global time slices. The RT surface
consists of two pieces, one connected piece on either side of the brane with trajectory
given by eq. (6.18) where φ1 = −φΣ and φ2 = −π + φΣ (recall the definition of φΣ below
eq. (6.16)). The total RT length is given by doubling eq. (6.20) (due to the two pieces) with
both cutoffs ϵ1, ϵ2 given by eq. (6.23). Substituting this into eq. (6.20) with ∆φ = π− 2φΣ

and using eq. (6.16), the associated EE in the no-island phase is

[
A(ΣR)

4Gbulk

]
��isl.

=
L

Gbulk

log (2rUV cosh τ)

=
2c

3
log

[
β

πδ
cosh

(
2πt

β

)]
, (6.24)

where we used the Brown-Henneaux central charge

c =
3L

2Gbulk

. (6.25)

In the second line of eq. (6.24), we have expressed the answer in terms of the dimensionful
time t, as in eq. (6.11) (see also below eq. (4.7)) and the short-distance cutoff in the
boundary CFT

δ =
β

2π rUV

(6.26)

in the y± coordinates on the boundary6. Eq. (6.24) matches the entropy from eq. (29)
of [50], accounting for the fact that here the central charge is doubled since we include the
regions on both sides of the brane7. For times much larger than the thermal scale,[

A(ΣR)

4Gbulk

]
��isl.

=
2c

3

[
log

(
β

2πδ

)
+

2πt

β

]
+O

(
ce−4πt/β

)
, (6.30)

which corresponds to the linear growth predicted by Hawking.
6To be precise, eq. (6.24) computes the entropy of R in a CFT with metric −dy+dy− and short

distance cutoff δ — here, δ is both the proper distance cutoff and the cutoff in y±. We may equivalently
take the CFT metric to be the induced metric −

(
L
δ

)2
dy+dy−, in eq. (6.14), with coordinate cutoff δ in

y±, corresponding to a proper distance cutoff L as measured by the induced metric.
7There is a typo in eq. (29) of [50]: inside the logarithm, it should be β/π rather than π/β. The UV

cutoff δ is also hidden. The full answer is obtained by applying the conformal transformation

w± =tanh

(
πy±R
β

)
= − coth

(
πy±L
β

)
(6.27)
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Island phase. Let us next consider the island phase. Since translations in Rindler time
are an isometry, we can use this symmetry to bring the problem to the τ̃ = 0 = τ slice.
Notice that this is also a symmetry of the dilaton profile as is clear from eq. (6.12).

We will leave point 1 anchored on the cutoff surface near the asymptotic boundary at
global coordinate φ1 = −φΣ, as in the no-island phase. But, the RT surface will now
intersect the brane at its other endpoint. Here it is important to distinguish between two
different angles appearing in the island calculation — see figure 6.1. First, φ2 (together with
φ1) characterize the trajectory of the RT surface, as in eq. (6.18), such that the trajectory,
when maximally extended (even behind the brane), reaches the asymptotic boundary at
φ1 and φ2. The opening angle ∆φ appearing in eq. (6.20) is defined in terms of φ1 and
φ2 as per eq. (6.21). Second, there is the global angular coordinate φ = φQES of the QES
where the RT surface intersects the brane. In the limit of vanishing brane angle θB → 0,
φQES → φ2 but, at finite θB, φQES ̸= φ2.

While ϵ1 is still given by eq. (6.23), the regulator ϵ2 is now provided by the brane
position and is given by

ϵ2 =tan−1 [tan(θB) sin(φQES)] (6.31)

=θB sin(φQES) +
θ3B
3
sin(φQES) cos

2(φQES) +O(θ5B) , (6.32)

which we use below perturbatively in the regime of θB ≪ 1. From eq. (6.20), the area of
the RT surface (including the pieces to either side of the brane and to either side of the

(mapping the vacuum to a TFD) to the entropy formula

S[−dw+dw−, δ] =
c

6
log

[
−
(w+

R − w+
L )(w

−
R − w−

L )

δ2

]
(6.28)

→ S[−dy+dy−, δ] =S[−dw+dw−, δ]− c

12
log(∂y+

R
w+

R∂y−
R
w−

R∂y+
L
w+

L∂y−
L
w−

L ), (6.29)

where y±R = t ± b and y±L = t ∓ b are the entangling surfaces on the R and L sides respectively. We
have used the notation S[ds2, δ] to denote entropy in a CFT living in ds2 with proper distance cutoff δ
as measured by ds2. Eq. (6.29) gives the length of the piece of the RT surface to one side of the brane;
eq. (6.24) is then exactly double eq. (6.29).
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horizon) is given in terms of φΣ and φQES by

[
A(ΣR)

4Gbulk

]
isl.

=
L

Gbulk

log

 4

ϵ1θB

sin2
(

φΣ+φQES

2

)
sin(φQES)


+

Lθ2B
Gbulk

−1

3
+

sin2 φQES

4 sin2
(

φΣ+φQES

2

)
+O

(
Lθ4B
Gbulk

)
.

(6.33)

We can also write this in terms of the y± coordinates of [50], reviewed around eqs. (6.10)
and (6.14) (see also footnote 4). Placing the belt boundary at θ = π, y+−y−

2
= b and the

QES at θ = θB, y+−y−

2
= a (matching the a and b of [50]), we find[

A(ΣR)

4Gbulk

]
isl.

=
L

Gbulk

log

4rUV

θB

sinh2
[
π(a+b)

β

]
sinh 2πa

β

+
Lθ2B

12Gbulk

3 sinh2
[
π(a−b)

β

]
sinh2

[
π(a+b)

β

] − 1

+O

(
Lθ4B
Gbulk

)
(6.34)

=
2c

3
log

2βℓJT

πδδ̃

sinh2
[
π(a+b)

β

]
sinh 2πa

β

− cδ̃2

6ℓ2JT

sinh
(

2πa
β

)
sinh

(
2πb
β

)
sinh2

[
π(a+b)

β

] +O

(
cδ̃4

ℓ4JT

)
, (6.35)

where, in the second line, we have written the answer in terms of the CFT central charge
c and cutoff δ (in y±) in the bath, given in eqs. (6.25) and (6.26); we have also used the
proper distance UV cutoff δ̃ = L on the brane (hinted at earlier below eq. (6.4)) with the
induced metric given in eq. (6.10). Using eq. (6.9) (as well as ℓB = ℓJT), we can write

θB =
δ̃

ℓJT

(
1 +

δ̃2

6ℓ2JT
+O

(
δ̃4

ℓ4JT

))
. (6.36)

Eq. (6.35) is to be interpreted as the von Neumann entropy of the effective CFT spanning
the asymptotic boundary and the brane. The first term of eq. (6.35) precisely recovers the
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expected CFT result8, while the higher orders in δ̃/ℓJT may be interpreted as corrections due
to the finite UV cutoff on the brane. Curiously, the leading order correction in eq. (6.35)
vanishes for the case of a zero-width belt b = 0, i.e., when R completely contains the
baths. We may add eq. (6.35) to the bare dilaton profile ϕ, given by eqs. (6.2) and (6.12),
evaluated at the QES, to obtain the generalized entropy[

A(ΣR)

4Gbulk

+ ϕQES

]
isl.

=2ϕ̂0 +
4πϕr

β
coth

(
2πa

β

)
+

2c

3
log

2β

πδ

sinh2
[
π(a+b)

β

]
sinh 2πa

β


− cδ̃2

6ℓ2JT

sinh
(

2πa
β

)
sinh

(
2πb
β

)
sinh2

[
π(a+b)

β

] +O

(
cδ̃4

ℓ4JT

)
,

(6.39)

where we have included dilaton contributions from the QES points on both the left and the
right of the TFD. Recall that ϕ̂0 conveniently absorbs the part of eq. (6.35) which becomes
logarithmically divergent on the brane as we take the UV limit δ̃/ℓJT → 0 — see eqs. (6.2)
and (6.5). This is unsurprising given that the renormalized entropy is derivable from the
renormalized matter effective action, and that the renormalization of ϕ0 → ϕ̃0 ∼ ϕ̂0 is
precisely designed to eliminate the UV divergence of the matter effective action on the
brane. The first line of eq. (6.39) matches exactly9 eq. (19) of [50], accounting for the
doubling and quadrupling of the dilaton and von Neumann entropies here (since eq. (19)
of [50] considers only one side of the TFD and they work with an end of the world brane
with bulk spacetime only to one side). The terms of higher order in δ̃/ℓJT are the corrections
due to the UV cutoff, inherited from the von Neumann entropy in eq. (6.35).

8To see this, we may apply the transformation between w and yR written in eq. (6.27) to

S

−L2dw+dw−

δ2 bath

− 4ℓ2JTdw+dw−

(w+−w−)2 brane

 , L

 =
c

6
log

[
2ℓJT

L(w+
QES − w−

QES)

−(w+
Σ − w+

QES)(w
−
Σ − w−

QES)

δ

]
(6.37)

→ S

−L2dy+dy−

δ2 bath

− 4ℓ2JTdw+dw−

(w+−w−)2 brane

 , L

 =S

−L2dw+dw−

δ2 bath

− 4ℓ2JTdw+dw−

(w+−w−)2 brane

 , L

− c

12
log(∂y+

Σ
w+

Σ∂y−
Σ
w−

Σ ), (6.38)

where we have used the notation S[•, •] introduced in footnote 7, and y±Σ = t ± b and y±QES = t ∓ a
correspond to the entangling surface and the QES respectively. (In this footnote, we have swapped the
sign of y+ − y− on the AdS2 brane relative to the main text, so that here y+ − y− > 0 and y+ − y− < 0
correspond respectively to the bath and brane.) Then, the first term of eq. (6.35) is precisely four times
eq. (6.38).

9In fact, the match between the first line if eq. (6.39) and (19) in [50] is exact even after keeping all
terms collected in their “constant”. This can be checked by keeping all constant terms in the von Neumann
entropy calculation, described in eq. (6.38), as well as the topological dilaton contribution ϕ̂0.
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To find the location y+−y−

2
= a of the QES, the RT prescription instructs us to extremize

the generalized entropy given in eq. (6.39). Symmetry has already allowed us to restrict
the QES to the same slice of Rindler time τ ∝ t = y++y−

2
as the anchoring point on the

asymptotic boundary. It thus remains only to extremize eq. (6.39) in the spatial direction.
Setting the derivative of eq. (6.39) in y+−y−

2
= a to zero, we obtain the extremization

condition:

6πϕr

cβ
=
sinh

(
2πa
β

)
sinh

[
π(a−b)

β

]
sinh

[
π(a+b)

β

]
1 +

δ̃2

4ℓ2JT

sinh
(

2πa
β

)
sinh

(
2πb
β

)
sinh2

[
π(a+b)

β

]
+O

(
δ̃4

ℓ4JT

)
. (6.40)

At leading order in δ̃/ℓJT, this matches eq. (20) in [50] accounting for the fact that we have
two copies of the CFT versus a single copy of JT gravity. This equation can be solved
for the QES position a in terms of the belt width b numerically or analytically with an
additional expansion in ϕr

cβ
≫ 1:

a =b+
β

2π

[
log

(
12πϕr

cβ

)
− δ̃2

4ℓ2JT

(
1− e−

4πb
β

)
+O

(
δ̃4

ℓ4JT

)
+O

(
cβ

ϕr

)]
, (6.41)

matching eq. (21) in [50] at leading order in δ̃/ℓJT, again accounting for the doubling of
the CFT. We see that the leading order correction due to finite δ̃/ℓJT is to push the QES
further from the bifurcation point at y+−y−

2
= +∞.

Having found the location of the QES, we may re-evaluate the generalized entropy of
the island phase by substituting eq. (6.41) into eq. (6.39), obtaining[

A(ΣR)

4Gbulk

+ ϕQES

]
isl.

= 2

(
ϕ̂0 +

2πϕr

β

)
+

2c

3
log

(
β

πδ

)
+

4πcb

3β
− cδ̃2

6ℓ2JT

(
1− e−

4πb
β

)
− c2β

18πϕr

e−
4πb
β + c

[
O
(
δ̃4/ℓ4JT

)
+O

(
c2β2/ϕ2

r

)]
. (6.42)

(We have also dropped terms of order c2βδ̃2

ϕrℓ2JT
as these are inherently smaller than either the

cδ̃4/ℓ4JT or c3β2/ϕ2
r corrections.) The first line simply evaluates the generalized entropy,

given in eq. (6.39), at the bifurcation surface, i.e., taking a → +∞. In particular, we
recognize the first term as giving the Bekenstein-Hawking result for the coarse-grained
entropy of two black holes

2SBH = 2

(
ϕ̂0 +

2πϕr

β

)
. (6.43)
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This classical contribution dominates eq. (6.42) in the limit SBH ≫ c and corresponds to
eq. (30) in [50]. The other terms on the first line of eq. (6.42) evaluate the von Neumann
entropy, given in eq. (6.35), after re-absorbing the UV divergence on the brane into ϕ̂0.
Specifically, the second term gives the UV contribution from the entangling surface on
the asymptotic boundary (also appearing in the no-island phase in eq. (6.24)), and the
third and fourth terms give finite contributions to the renormalized entropy including a
δ̃2/ℓ2JT correction. Moving to the second line in eq. (6.42), we have a correction due to
the displacement of the QES location a from the bifurcation point. Here, the dilaton
and von Neumann components of generalized entropy both receive contributions at order
ϕr

β
· c2β2

ϕ2
r

∼ c2β
ϕr

. Note that there are no dilaton corrections at orders ϕr

β
· cβ
ϕr

and ϕr

β
· cβδ̃2

ϕrℓ2JT

because the bifurcation point extremizes the dilaton profile10. The order δ̃2/ℓ2JT correction
in the QES location given in eq. (6.41) is not visible at the order shown in eq. (6.42).

6.4 Page curve

Collecting together the results of the previous section, we have two phases. At early times,
we have the no-island phase, with generalized entropy given by eq. (6.24). Over time, this
entropy grows at a rate proportional to the temperature 1/β and the number c of matter
degrees of freedom participating in Hawking radiation, as emphasized in eq. (6.30). This
growth, however is capped off by an island phase, where quantum extremal surfaces on the
brane just outside the black hole horizon surround an island, containing a portion of the
black hole interior, now belonging to the entanglement wedge of the bath. In this latter
phase, generalized entropy is given by the constant value written in eq. (6.42) which is
dominated by double the Bekenstein-Hawking black hole entropy, as given in eq. (6.43).
Viewing eq. (6.43) as the coarse-grained entropy for the two sides of the black hole, this is
precisely the expected maximal entropy of the system.

To find the Page time τP = 2πtP/β marking the transition between the two phases, we

10It is helpful to consider the coordinate ρ̃ =
√
ρ2 − 1, in terms of which eq. (6.12) reads ϕ̃ = ϕ̂0 +

2πϕr

β

√
1 + ρ̃2 and the brane metric ℓ2JTds

2
AdS2

= ℓ2JT

(
−ρ̃2dτ2 + dρ̃2

ρ̃2+1

)
, near the horizon ρ̃ = 0, resembles

the standard flat metric −ρ̃2dτ2+dρ̃2 in polar coordinates with ρ̃ the usual radial coordinate. The dilaton
and the von Neumann entropy in eq. (6.39) should then have an expansion in terms of non-negative integer
powers of ρ̃QES. Eq. (6.41) gives the first corrections to ρ̃QES = 0 at orders cβ

ϕr
and cβδ̃2

ϕrℓ2JT
, leading to the

corrections mentioned in the main text.
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∆S

2SBH

t

Figure 6.2: Page curve for the equilibration of our topological black hole in d = 2. We
plot the entropy ∆S = S(t)−S(0) of the subregion on the CFT which is associated to the
radiation, where we subtract the value of the entropy at t = 0.

equate the corresponding generalized entropies given in eqs. (6.30) and (6.42):

τP =
2πtP
β

=
3

c

(
ϕ̂0 +

2πϕr

β

)
+ log(2) +

2πb

β
− δ̃2

4ℓ2JT

(
1− e−

4πb
β

)
− cβe−

4πb
β

12πϕr

+O
(
δ̃4/ℓ4JT

)
+O

(
c2β2/ϕ2

r

)
. (6.44)

Overall, we recover a Page curve, with entropy growing linearly in a no-island phase up
to the Page time, and saturating to a constant maximal value in an island phase after the
Page time. In figure 6.2, we plot the Page curve after subtracting off the initial entropy
(which includes the UV divergences from the asymptotic boundary).
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Chapter 7

Discussion

In this thesis, we have described a holographic framework where quantum extremal surfaces
and the island rule (1.7) can be examined in higher dimensions, i.e., for gravity theories
in d ≥ 2. In particular, the background is simple enough that the construction given in
chapter 2 is straightforward and purely analytic, in contrast to the numerical approach
of [58]. In section 2.5, we were also able to describe the system from three different
perspectives, analogous to the three descriptions of the two-dimensional system examined
in [7]. In particular, we have the boundary perspective, where the system is described as
a d-dimensional CFT coupled to a (d− 1)-dimensional conformal defect; the bulk gravity
perspective, where (d + 1)-dimensional gravity with a negative cosmological constant is
coupled to a codimension-one brane; and the brane perspective, where the boundary CFT
is coupled to an AdSd region which supports Einstein gravity and two copies of the same
CFT, which are weakly coupled to each other. As we emphasized, this last perspective is
an effective theory, as is made clear by the cut-off arising in this RS brane world scenario.
As discussed and examined in some detail in chapter 3, this effective gravity theory lends
itself to the appearance of quantum extremal islands in the brane perspective, although
these have a conventional interpretation from the bulk gravity perspective, in terms of RT
surfaces which cross the brane for certain of choices of the entangling geometry on the
boundary.

We have considered the vacuum state of the system with respect to global time, which
simplifies the bulk geometry to be pure AdS. However, as discussed in chapter 4, by viewing
this setup in AdS-Rindler coordinates, the global vacuum can be re-interpreted as in terms
of a massless hyperbolic black hole. This induces a similar description of the brane geometry
as a black hole of one lower dimension. The ‘two’ asymptotic boundaries then play the
role of bath CFTs in equilibrium with the black hole on the brane at a finite temperature
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T = 1
2πR

. Similarly, as explained in chapter 5, viewing our setup in Poincaré coordinates,
we have an extremal horizon in the bulk and on the brane. The latter was coupled to a
(single) T = 0 bath CFT on the asymptotic boundary.

While islands have been numerically studied previously in [58], our approach provides
a relatively simple setting in which analytic calculations are possible. In particular, the
doubly holographic nature of our model reduces the entropy calculations involving islands
in the presence of massless hyperbolic, or extremal black holes of arbitrary dimension to
holographic EE calculations in (locally) pure AdS in one dimension higher. From the d-
dimensional brane perspective, when computing the entropy of a boundary region R in
the island phase, a quantum extremal surface σR marks the boundary of an island on
the brane; this island belongs to the entanglement wedge of the bath region R. From
the bulk perspective, the RT surface of R runs into the bulk from its anchoring surface
ΣCFT = ∂R and intersects the brane at σR. As noted in [58], the entanglement wedge
of σR stretches through the bulk and is manifestly connected to the island on the brane
in this higher-dimensional picture, despite the apparent disconnection in the effective d-
dimensional theory. To determine the RT surface in an island phase, we must not only
extremize the area functional locally within the bulk, but also extremize with respect to
the intersection of the RT surface and the brane. Since the deep bulk (IR) and near-brane
(UV) contributions (further modified by DGP contributions) to the RT area, respectively,
can be interpreted as renormalized von Neumann and gravitational Wald-Dong entropies,
this bulk calculation is equivalent to the island prescription of extremizing generalized
entropy over candidate quantum extremal surfaces.

The most striking difference between our holographic construction and the two-dimensional
model of [50] is that, as detailed in chapter 6, JT gravity does not appear automatically
but has to be added by hand to the brane theory for d = 2, in analogy to the DGP terms
in higher dimensions. However, this may be contrasted with the induced gravity on the
branes in higher dimensions, where adding a DGP term provides finer control over the
model, but is not strictly necessary for interpreting the brane perspective as an effective
CFT coupled to gravity. Having added JT gravity as a DGP term, we showed in chapter 6
that applying the RT formula in the AdS3 bulk and including the DGP entropy, as in the
d = 2 analogue of eq. (1.8), correctly reproduces the results of [50] at leading order in an
expansion in terms of small brane angles, i.e., θB ≪ 1. A finite θB imposes a finite UV
cutoff in the effective brane theory, as shown in eq. (6.36), and therefore subleading cor-
rections to entropy formulas appear in the island phase — see eq. (6.42). Of course, with
a finite UV cutoff, we would not, for instance, expect the holographic entropy to precisely
satisfy the CFT transformation rules of the entanglement entropy used by [50] in deriving
their results. These corrections have the effect of pushing the QES slightly further from
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the horizon, lowering the entropy of the island phase, and shifting the Page transition to
an earlier time.

Below in sections 7.1 and 7.2, we provide further discussion of the results presented
in this thesis and summarized above. Finally, we end in section 7.3 by suggesting future
directions in which to extend our work.

7.1 Comments on the brane world model

Setting black holes to the side for now, let us begin our more detailed discussion by con-
sidering various features of the brane world model, introduced and examined in the first
half of this thesis.

7.1.1 Unconventional features

The analysis presented in the first half of this thesis is somewhat unusual in that we are
finding QEIs but there are no black holes, no horizons and no Hawking radiation involved.
Rather we simply considered the EE of various entangling regions in the vacuum state of
the boundary system. However, to favour the formation of these quantum extremal islands,
and at the same time have the brane in the ‘Einstein gravity regime,’ i.e., L/ℓeff ≪ 1, we
had to introduce somewhat unconventional couplings. That is, we considered a negative
Newton’s constant on the brane λb < 0 and nonzero Gauss-Bonnet coupling λGB for a four-
dimensional bulk. Both of these choices were enhancing the connected RT surfaces over
the disconnected RT surfaces in calculating the holographic EE. Of course, an interesting
question is the interpretation of these ‘exotic’ bulk couplings in terms of data describing the
boundary CFT (and the conformal defect). While we do not have a precise interpretation,
some qualitative results can be stated below. Before continuing, let us emphasize that
these unconventional features introduced to favour QEIs are unnecessary in the discussion
of black holes in the second half of this thesis, where islands always arise at late times for
(non-extremal) black holes, even with conventional parameters.

As observed in section 2.5, using standard holographic techniques, one finds that the
gravitational coupling in the DGP brane action (2.50) affects the spectrum of defect op-
erators in the boundary theory [128]. Now let us reiterate that there is no a priori reason
not to consider λb < 0. For example, integrating out quantum fields on the brane could
produce either a positive or negative shift of Newton’s constant. In particular, the shift
can be negative for gauge fields or non-minimally coupled scalar fields, as was discussed
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in the context of EE in [153, 154] — see also discussion in appendix B. However, this sce-
nario is not the one we are describing here. In particular, additional brane fields such as
these would make significant contributions to the EE which are not accounted for in our
calculations. Hence, implicitly, we simply assume that the gravitational coupling 1/Gbrane

(either positive or negative) is induced by some unknown UV physics.

Introducing the Gauss-Bonnet term (3.43) does not modify the gravitational dynamics
in the four-dimensional bulk, considered in section 3.4, and hence the correlators of the
stress tensor are not modified in the dual three-dimensional boundary theory.1 However,
the topological coupling λGB affects the entanglement structure of the boundary CFT states.
To see this, consider calculating the entanglement entropy holographically for two nearby
regions in the boundary. The phase transition between connected and disconnected phases
of the RT surfaces is sensitive to a Gauss-Bonnet term. For positive λGB, the transition
from the disconnected to connected phase takes place earlier (and vice versa for negative
λGB). This means that with λGB > 0, the mutual information between these two regions
remains of order cT for larger separations, e.g., [96]. Note, however, that choosing positive
λGB favours higher genus surfaces. A concern with this choice might be if higher genus
extremal surfaces exist, they may produce unusual results. Finally, we note that the
topological coupling appears directly in the expressions for the holographic EE, e.g., see
eq. (3.47). Therefore to have an appreciable effect, we must choose this coupling to be of
the order of the central charge of the boundary theory, i.e., λGB ∼ L2/Gbulk ∼ cT.

Let us add that in section 3.4, we focused on the example of d = 3 with a four-
dimensional bulk. In this case, the natural topological term to add to the bulk gravity is
the Gauss-Bonnet term (3.43). Of course, the scenario extends straightforwardly to any
d = 2n− 1 for which there is a corresponding topological term which can be added to the
bulk gravity action, i.e., the Euler character for 2n-dimensional manifolds, e.g., see [151].
Similarly, for even boundary dimensions (d = 2n), the analogous topological terms could
be added to the brane action, where they would not modify the dynamics of gravity on
the brane but they would modify the gravitational entropy associated with the boundary
of the QEIs.

In light of these unconventional features, a natural question therefore is whether we find
QEIs in our analysis with both λb = 0 = λGB. The answer is affirmative; however, one must
reduce the tension of the brane to reduce its backreaction and the extent of the additional
geometry in the vicinity of the brane’s location. As a result, the connected RT surfaces
will have a smaller (bulk) area contribution as they cross the brane. However, in this case,
the curvature of the AdS geometry on the brane is also smaller, and hence the effective

1Of course, such modifications arise for holographic constructions in higher dimensions [132].

138



description of the brane theory in terms of Einstein gravity breaks down. That is, with
ℓeff ∼ L, the contributions of the higher curvature corrections in the induced action (2.24)
are no longer suppressed relative to the Einstein term and these new interactions play
an important role in the dynamics of gravity in the brane perspective. Furthermore, the
cutoff of the corresponding CFT on the brane will be much lower. Alternatively, one could
think about computing the EE in settings beyond the vacuum state. Indeed, reinterpreting
the global vacuum as eternal black holes in equilibrium with external heat baths, we have
already seen in chapter 4 how QEIs appear without additional Gauss-Bonnet or DGP
couplings.

Let us conclude here by comparing our approach, as described in chapter 2, with that
of [60], which appeared while our work in [1] was being completed. The latter examines
essentially the same model (with no DGP term) but concentrates on a very different regime.
The authors of [60] focused on the formation of islands for the case of a tensionless brane,
where the brane gravity becomes very nonstandard, as explained above. Further, in the
limit where the graviton becomes massless, i.e., ℓeff → ∞, they observe that no islands
form [60]. On the other hand, the present work focuses the regime of large brane tension,
where the theory on the brane can be well approximated by Einstein gravity (i.e., the
graviton mass and higher curvature interactions are negligible). We moreover show that
by allowing either a topological term or a negative Gbrane, islands can appear even in the
absence of horizons.

7.1.2 Resolving Puzzles

Our construction clarifies certain conceptual puzzles that arose in early discussions of QEIs
in a holographic framework, e.g., for the two-dimensional gravity models introduced in [7]
and studied in [4,50]. For example in these models the Planck brane, which supports the JT
gravity theory, appears as part of the boundary of the three-dimensional bulk spacetime.
Hence one might have wondered if the brane degrees of freedom (including the JT gravity)
are a part of the boundary theory or part of the bulk theory. In our construction, the
Planck brane is in the middle of the spacetime geometry and so this question does not
arise — these degrees of freedom belong to the bulk. An important corollary of this
observation is that when a QEI appears on the brane, e.g., see the lower panel in figure
3.4, we are able to recover information about the island with data from the boundary
CFT in the corresponding boundary subregion, by applying standard entanglement wedge
reconstruction [137–143]. Of course, the latter would not apply if the brane degrees of
freedom were a part of the boundary theory.
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Further, our construction circumvents the question of whether RT surfaces are allowed
to end on the Planck brane. Rather in our paper, the extremal surfaces just pass through
the bulk and only end on the asymptotic boundary as usual. It is simply that in certain
situations, the RT surfaces will pass through the brane, which of course, corresponds to
the formation of a quantum extremal island.

Another ‘novel’ feature of the two-dimensional JT gravity model of [7] was that the
holographic EE included an extra boundary term, i.e., the gravitational entropy of the JT
model, where the RT surface terminated on the Planck brane. That is, the holographic
entanglement entropy was given by extremizing the sum of the bulk area of the RT surface
and this additional boundary term. An analogous gravitational entropy term on the brane
arises in our construction with a DGP brane — see eq. (3.1). In fact, our derivation in
appendix A suggests that if the brane supports intrinsic gravitational interactions then the
corresponding Wald-Dong entropy on the brane is part of the holographic EE formula, as
shown in eq. (A.7). Hence this general result agrees with the boundary term introduced in
the two-dimensional JT gravity models, mentioned above. A shortcoming of the derivation
in appendix A is that the geometric configuration involved a high degree of symmetry,
which precluded finding the expected extrinsic curvature terms [95]. Therefore it would be
interesting to extend our construction there to more general configurations along the lines
of [176,177].

We want to emphasize the above discussion is distinct from the finding in section 3.2
that the leading contribution to the holographic EE where the RT surface crosses the brane
matches the Wald-Dong entropy of the induced gravitational action on the brane(2.24).2
For example, the leading contribution is A(σR)/4Geff, where σR is the cross-section of
the RT surface on the brane. As shown in eq. (3.27), the DGP term is one important
contribution to this result, but the bulk area of the RT surface in the vicinity of the brane is
also necessary. Of course, we still find the leading contributions reproduce the gravitational
entropy of the induced gravity theory on the brane even without the DGP term, i.e., with
1/Gbrane = 0. This must be closely related to the fact that the bulk Einstein equations
combined with the Israel junction conditions are equivalent to the gravity equations of
motion on the brane in the RS scenario [108].

In passing, we note here that d = 2 is distinguished in the above discussion. In this case,
the leading contribution corresponds to the Wald-Dong entropy for the Polyakov-Liouville
action (2.31) and takes the form given in eq. (3.31). However, since it only depends on the
curvature scalar which is constant across the AdS2 geometry of the brane, this contribution

2Recall that this analysis was general enough to see the extrinsic curvature contributions coming from
the higher curvature interactions in eq. (2.24).
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takes the same value no matter where the RT surface crosses the brane. This contrasts
with the higher dimensional result A(σR)/4Geff, which rapidly grows as the position of σR
moves to larger radii on the brane. That is, there is an enormous penalty against forming
large QEIs for d ≥ 3. In contrast, no such penalty arises for d = 2 facilitating the formation
of islands, as discussed in detail in [47]. Of course, if one adds JT gravity (2.42) to the
two-dimensional brane action, as in eq. (2.41), then the gravitational entropy on the brane
includes (Φ0 + Φ(x)) /4Gbrane, which will favour smaller quantum extremal islands because
the dilaton profile grows with the radius on the brane [127].

Of course, we can modify our higher dimensional construction to make it more analogous
to the two-dimensional model introduced in [7] by taking a Z2 orbifold quotient across
the brane. With this orbifold, the brane appears as the edge of the bulk geometry but
clearly the association with the bulk degrees of freedom has not changed. The brane now
only supports a single copy of the boundary CFT and there are factors of 1/2 appearing
in various expressions, e.g., we make the following replacement in eq. (2.25): 1/Geff =
L/((d − 2)Gbulk). Similarly, the RT surfaces will now end on the orbifolded brane while
satisfying the boundary condition,

0 = g̃j
ν

(
gµν ∂nX

µ +
Gbulk

Gbrane

K̃i ∂νx
i

)
, (7.1)

which replaces eq. (3.17). Further, the conformal defect becomes a conformal boundary in
the orbifolded theory, i.e., the spatial geometry on which the CFT lives is now a (d− 1)-
dimensional hemisphere with the conformal boundary being the Sd−2 at the edge of the
hemisphere.

Other questions that may have arisen from the early discussions of quantum extremal
islands which focused on JT gravity might include the importance of having a low spacetime
dimension, i.e., d = 2, or of the JT model itself. The early work of [35] considered black hole
evaporation with Einstein gravity in higher dimensions, and the holographic model of [7]
was extended to a holographic framework with d = 4 in [58] using numerical calculations.
Hence our paper reinforces these results by describing QEIs in a new setting, in particular,
in higher dimensions and with Einstein gravity. Our construction is also simple enough
that further investigations of the role of QEIs in higher dimensions are straightforward.
Let us add that JT gravity can be seen as the gravitational dual of the so-called SYK
model [178–181]. This duality involves an ensemble average over the couplings in the
boundary quantum mechanics and so one may expect that this averaging plays a role in
the appearance of QEIs. However, it seems that this is not the case as our construction
relies on the standard holographic rules of the AdS/CFT correspondence where there is no
such averaging of the couplings in the boundary theory.
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One other perplexing issue with the island rule (3.2) is the appearance of the entan-
glement of the CFT degrees of freedom in the region R on both sides of the equation [7].
As explained in [50], we should distinguish the “full quantum description” of, e.g., the
Hawking radiation in the presence of black holes on the left-hand side from the “semiclas-
sical description” which includes the outgoing radiation and purifying partners on the QEI
on the right-hand side. Our holographic construction makes clear that the description of
quantum states with islands in the brane picture is on a different footing than that solely
in terms of the boundary theory. In particular, referring to the three perspectives discussed
in section 2.5, it is clear that the boundary perspective (with the boundary CFT coupled
to a conformal defect) gives a complete description of quantum state. By the standard
rules of the AdS/CFT correspondence, the bulk perspective (where Einstein gravity with a
negative cosmological constant is coupled to a codimension-one brane) gives an equivalent
description.3 However, the brane perspective has a different character. In particular, the
description in terms of a CFT coupled to the dynamical AdSd region is only an effective
one. Indeed, as emphasized in section 2.5, the RS gravity is only valid down to the short
distance cutoff δ̃ ∼ L, i.e., see eqs. (2.62) and (2.63). Beyond this cutoff, gravity is no
longer localized to the brane and the additional ‘Kaluza-Klein’ modes of the graviton are
strongly coupled to the brane and their contribution cannot be ignored.

Further, this brane perspective also provides an effective description of the coupling to
the defect CFT. That is, it only accounts for the couplings localized at the defect, which
dominate at low energies, but ignores the subtle nonlocal couplings, which could be seen
as coming through the bulk AdS geometry in the dual description. Of course, the QEIs
in the effective description of the brane perspective are a clear example of this. These
islands are a remnant of replica wormholes in the limit n → 1 [47–49]. However, in the
replica trick construction of the corresponding Rényi entropies in the bath CFT, one can
ask why the gravity on the different branes in the replica copies should connect with one
another. However, these effective gravity theories are UV completed by a single theory of
gravity in the bulk and so it is natural to consider geometries connecting the branes, i.e.,
replica wormholes if the effective theory. Hence the connection of the brane and boundary
through the bulk provides a simple explanation of these wormholes. Given the simplicity
of our construction, it may provide a useful framework in which to further understand the
nonlocal couplings which implicitly provide subtle correlations between the island degrees

3In this paper, we modelled the CFT defect with a simple brane in the bulk. This bottom-up approach
is neither sufficient, nor completely correct. For example, in the case of N = 4 SYM theory on S4,
the presence of an interface breaks at least half of the supersymmetry generators and the R symmetry.
In a complete description, this will result in a deformation of the bulk S5. For top-down models, see
[88–90,182–187].
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Figure 7.1: Left: In the brane perspective, the bath CFT on the asymptotic boundary
(blue) is connected to two copies of the effective CFT on the brane (green) but the resulting
geometry is not a manifold. Right: For excitations below the effective CFT cutoff the
system behaves as if it consists of two systems on a manifold which are weakly coupled in
the gravitational region (green).

of freedom and those in the bath CFT [128].

As a final note here, we observe that the finite cutoff for the CFT on the brane has
noticeable effects even for d = 2, e.g., see eq. (2.49). In contrast, the early discussions
of e.g., [4, 7, 34, 48, 50, 65] assumed that one could use standard formulae for conformal
transformations in the d = 2 CFT in the gravitational region (i.e., on the brane). It would
be interesting to understand if the cutoff modifies any of this analysis in a significant way.

7.1.3 Coupling across the defect and brane

The geometry of the setup presented in this paper might look unconventional. As seen from
the brane perspective, we have the bath CFT on the asymptotic boundary with geometry
Sd−1 × R, and two copies of the same CFT on the brane with an AdSd geometry. These
two geometries are joined by introducing a cutoff surface (with topology Sd−2×R) near the
asymptotic boundary of the AdSd geometry and gluing it to the equator of the Sd−1 × R
geometry. In particular, the resulting geometry is not a manifold in the vicinity of the
gluing region — see the left panel of figure 7.1. Of course, we can obtain a manifold by
taking the Z2 quotient which identifies the two halves of the bath CFT, such that the
theory is again defined on a manifold with topology Sd−1 × R. However, we will ignore
this simplification here. Rather, we want to comment on the theory before taking the Z2

quotient.

First, we note that constructions where multiple CFTs are joined at a common defect
are not rare. For example they appear in the study of boundary and interface CFTs (e.g.,
see [185]), and sometimes seem to be required to remove anomalies [188].

Second, we would like to argue that in the regime where the defect theory can be
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described by two copies of the boundary CFT coupled to Einstein gravity, we can approx-
imately think of the full theory as two copies of the orbifolded theory (each living on a
manifold), which are weakly coupled in the gravitational region — see the right panel of
figure 7.1. This is particularly easy to see from the bulk perspective. For brevity we restrict
ourselves to the discussion of graviton modes, but a similar story applies to all bulk fields.

Let us begin by recalling that for ε ≪ 1, the spectrum of graviton fluctuations in the
bulk is almost unchanged with respect to the modes in (two copies of) empty AdS space.
Hence much of the corresponding physics should be very similar that of two copies of the
AdSd+1, or to two copies of the dual CFTd on the boundaries of two independent AdSd+1

geometries. Of course, one exception to the preceding is that, upon gluing the two AdSd+1

geometries together, a new set of very light graviton states appear localized in the vicinity
of the brane [84–86, 112], as discussed in section 2.5. For simplicity, we refer to the latter
as the brane graviton modes, while we refer to the former as the standard normalizable
modes.4

On a fixed time slice, as shown in the right panel of figure 2.1, the standard normalizable
modes will describe stress energy excitations in the dual CFT on both the left and right
halves of the asymptotic boundary. If we assume an approximate extrapolate dictionary
[189] for the brane theory as well, these normalizable modes will also describe analogous
excitations for the effective CFT on the brane. However, there will be two sets of such
excitations: those described by bulk excitations5 with support primarily in the right copy
of the AdSd+1 geometry, and those described by the analogous excitations primarily in
the left AdSd+1 geometry. Hence, the stress tensor on the brane can be decomposed into
two pieces that correspond to subsectors of the brane theory, each of which is determined
by bulk excitations that essentially live on one side of the brane or the other. If these
subsectors were truly superselection sectors (e.g., as one might imagine arises in the limit
ε→ 0), our brane theory would contain two independent copies of the boundary CFT and
each of these copies would only interact with the bath CFT on the corresponding half of
the asymptotic boundary. That is, each of these systems would live on an independent
manifold with topology Sd−1 × R.

However, this is not strictly correct and the two copies of the CFT on the brane are
4These bulk modes are Z2 graded under reflection across the Planck brane, and the even modes survive

the Z2 orbifold discussed above include the brane graviton states as well as half of the standard normalizable
modes. However, this organization of the modes is not useful for the following discussion.

5We stress here that the localized excitations considered here do not correspond to individual energy
eigenmodes, which were implicit in the previous paragraph. Rather they will consist of linear combinations
of such eigenmodes evaluated on the fixed time slice being examined here. Of course, having superpositions
of energy eigenmodes is what produces the complicated time evolution described below.
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weakly coupled with ε ≪ 1 but finite. In particular, localized stress energy excitations of
the form considered above will not remain localized with time evolution. Rather they will
eventually spread across the entire asymptotic boundary after a sufficiently long time. For
example, an excitation localized on the right asymptotic boundary will evolve to eventually
produce excitations of the stress tensors on the left asymptotic boundary and on the brane
as well. From the boundary perspective, excitations moving onto the brane correspond to
excitations that are absorbed by the conformal defect (and remain there for a long time).

The spreading of the localized excitations can be seen to arise through two physical
effects: First, the bulk excitations can tunnel between the two AdSd+1 regions shown in
figure 2.1. Recall that (the radial part of) the linearized bulk equation of motion can
be reduced to a Schrödinger equation with a double-well potential, where the height of
the barrier is determined by the brane tension [86]. With ε ≪ 1 but finite, the barrier
height while large remains finite and there will be a finite probability for a bulk excitation
on one side of the Planck brane to tunnel to the other. A second independent coupling
comes because the stress tensors of the two copies of the CFT couple to the same gravity
theory on the brane. From the bulk perspective, the nonlinear Einstein equation produces
interactions between the brane graviton modes with excitations on either side of the brane.
Hence, bulk excitations on one side can leak to the other side by scattering process involving
the brane gravitons. However, we note that both effects become smaller as the brane tension
approaches its critical value, i.e., as ε approaches zero. Thus, to a good approximation,
the brane theory can be treated as two copies of the boundary CFT, which only interact
weakly.

7.1.4 Ryu-Takayanagi Bubbles and Wormholes

In appendix B, we consider a surprising class of RT surfaces with the topology of a sphere,
i.e., Sd−1 in the (d + 1)-dimensional bulk. The appearance of these extremal ‘bubbles’
is quite unusual as they are homologous to the entire boundary. Hence the standard RT
prescription would assign an entropy to the ground state of the dual boundary system.
Further, presence of a ‘zero mode’ that allows the bubbles to be translated along the brane
makes their interpretation even more puzzling. An essential feature for the appearance of
the RT bubbles was that the gravitational coupling in the DGP term (2.50) was negative,
i.e., λb < 0. We also noted that the bubbles do not appear to be macroscopic objects in
the brane theory. Rather, as shown in eq. (B.9), their size is always of order of the effective
cutoff δ̃.

Despite the unusual features of these RT bubbles, the discussion in appendix B high-
lights a general feature of the QEIs in a simple way. In particular, as discussed below
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eq. (B.5), there are two competing terms contributing to the generalized entropy of these
surfaces: the bulk area, which describes the entropy of the CFT fields on the brane en-
closed by the bubble, and the area of the boundary where they intersect the brane, which
appears in the gravitational entropy of the DGP term. The bulk contribution naturally
acts to contract the bubble but with λb < 0, the brane contribution acts to expand the
bubble. As described in the appendix, there is an equilibrium radius where these two effects
balance one another. Of course, with λb > 0, the brane contribution also acts to contract
the boundary of the bubble and so no closed extremal surfaces appear, as expected.

As noted above, a similar competition is a general feature in the formation of QEIs.
However, in this case as discussed in section 3.2, the bulk and brane contributions combine
to produce a Bekenstein-Hawking term A(σR)/4Geff on the boundary of the island. This
contribution, of course, imposes a large penalty to the formation of a large island and
acts to contract the boundary towards a smaller (i.e., vanishing) radius. For an island to
appear, this contraction must be balanced by an expanding contribution. From the bulk
perspective, this is simply coming from the remaining6 bulk area contribution of the RT
surface, which we can ascribe to the quantum EE of the CFT state from the brane perspec-
tive. The point to be noted here is that for this to provide an expansion the RT surface
must be anchored far from the island, i.e., in the asymptotic (nongravitational) region
associated with the boundary CFT. While perhaps self-evident, this discussion highlights
the nonlocal nature of the physics producing the QEIs.

Let us add that the QEIs discussed here (as well as the RT bubbles) are remnants of
replica wormholes in the limit n→ 1. This follows from the fact that we are simply studying
holographic EE with RT surfaces in a new bulk background, i.e., with a back-reacted
brane. Hence, the analysis of [176]7 introduces a smooth n-fold covering geometry for the
corresponding Rényi entropies with positive integer indices. These covering geometries
produce smooth wormhole geometries on the brane analogous to those discussed in [48,65]
for two dimensions.

Now assuming replica symmetry, one can then take a Zn orbifold quotient which leaves
a single copy of the boundary geometry but the bulk solution now contains a codimension-
two cosmic brane with tension Tn = (n − 1)/(4Gbulk n). In the presence of a DGP brane,
we expect that there is an additional contribution where the two branes intersect, i.e., the
intersection surface carries an intrinsic tension T̂n = (n−1)/(4Gbrane n). In this setting, our
discussion above for the formation of QEIs extends to the Rényi entropies in a relatively
straightforward way. In particular, we expect that an area contribution associated with

6We combined part of the bulk area into the Bekenstein-Hawking term above.
7Following [142,177], the same applies for general time dependent situations.
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the boundary of the island now carries an effective tension T̃n = (n − 1)/(4Geff n), which
combines the intrinsic tension of this intersection surface and the contribution of the cosmic
brane in the vicinity of the Planck brane. The contraction created by this term must be
balance by the expansion provided by the remaining cosmic brane contributions. However,
to provide an expansion the cosmic brane must be anchored by a twist operator in the
asymptotic (nongravitational) boundary. Again, this highlights the nonlocal nature of the
physics that implicitly supports the replica wormholes.

Of course, these dynamical considerations are emergent in the topological models con-
sidered in [48, 77]. Hence it would be interesting to understand the implications of this
dynamics to extend the new discussions of baby universes and ensembles to higher di-
mensions. Some recent work describing baby universes and the Page curve in arbitrary
dimensions can be found in [190,191].

7.2 Black holes and the information paradox

Let us now turn to our analysis of black holes and the information paradox considered in
the second half of this thesis using our brane world model.

7.2.1 Non-extremal black holes in higher dimensions

As previously mentioned, in section 4.2, we considered AdS-Rindler coordinates in the
bulk, providing a description of the pure AdS spacetime as a two-sided massless non-
extremal black hole. A similar black hole geometry is induced on the brane, coupled to
and in equilibrium with bath regions on the asymptotic boundary in both Rindler wedges.
We considered the entropy of bath regions R complementary to belts centred around the
defects in the two Rindler wedges. This setup, from the perspective of the effective theory
on the brane and asymptotic baths, is analogous to the two-dimensional setup at finite
temperature considered in [50].

We find, in particular, that the information paradox for eternal black holes and its reso-
lution studied in [50] makes an expected re-appearance in higher dimensions, as reviewed in
section 4.8. Again, this information paradox is resolved by the appearance of a QEI when
a second quantum extremal surface minimizes the generalized entropy in the island rule
(1.7). Our holographic construction translates this competition between quantum extremal
surfaces to the usual competition between different possible RT surfaces in the holographic
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formula (1.8). In particular, at late times, the minimal RT entropy is provided by a sec-
ond extremal surface with components that cross the brane, as illustrated in figure 1.7.
From the brane perspective, the intersection of this RT surface with the brane becomes the
quantum extremal surfaces bounding the island in the black hole background. The island
belongs to the entanglement wedge of the bath region R. Without the appearance of is-
lands, the entropy of bath subregions would grow ad infinitum. With the islands however,
the ever-growing entropy of the no-island phase is eventually capped off by the constant
finite entropy of this island phase at late times. Further, our higher-dimensional discussion
provides a simple explanation for the saturation of entropy: the connected pieces of the RT
surface in the island phase are isolated to individual Rindler wedges and are thus invariant
under time translation (i.e., forward boosts in both wedges).

Recall that the global state is pure, i.e., from the boundary perspective, it is a TFD
state of two copies of the boundary CFT plus conformal defect. Hence the entropy of R is
identical to that of its complement R. This gives a useful alternative view of the evolution
of the entropy. The region R consists of a belt region centred on the conformal defect in
the two bath regions. Hence from this point of view, we are considering the EE of two
isolated boundary regions A and B on either side of the corresponding eternal black hole in
the bulk. This is essentially the same system studied in [161], except that here the spatial
sections of the bath geometry are hyperbolic in the present case. As in [161], the entropy
grows at early times but then quickly thermalizes. In this case, the growth of the entropy
stops, because it is bounded by subadditivity, i.e., S(A ∪ B) ≤ S(A) + S(B). In fact, for
the holographic system, the late time entropy saturates this inequality, which erases the
mutual information between two boundary subregions. The primary difference between
the framework studied in [161] and our setup is the addition of a backreacting brane that
creates extra spacetime geometry for the RT surfaces to traverse in this late-time island
phase and so delays the onset of this phase where the entropy is saturated. From the
boundary perspective, this longer thermalization time relative to [161] can be understood
as a consequence of the large number of degrees of freedom introduced by the conformal
defect.

Further, as in [50], we find that the island extends outside the event horizon, i.e., the
quantum extremal surfaces appear outside of the horizon. If we focus on the entropy of R
as above, this feature again has a simple explanation in our holographic setup, in terms
of entanglement wedge nesting. Recall in the island phase, the individual components of
the RT surface yield the entropy of the individual belt regions on the boundary of either
Rindler wedge. Since these belts are subregions of the full hyperbolic slice on which the
corresponding CFT resides, the RT surface must remain within the corresponding Rindler
wedge. That is, the bifurcation surface of the Rindler horizon in the bulk is the RT
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surface corresponding to either of the copies of the CFT in the TFD state [160], and the
Rindler wedge is the corresponding entanglement wedge. Hence, by entanglement wedge
nesting [139,192], the RT surface and entanglement wedge for any subregion of Hd−1 on the
boundary must lie within the corresponding Rindler wedge. Finally it was straightforward
to see from eq. (4.12) that the horizon on the brane is precisely the intersection of the
Rindler horizon in the bulk with the brane. Hence the quantum extremal surface on the
brane, i.e., the intersection of RT surface with the brane, must lie outside of the black hole
horizon. This also means that if we consider regions R far away from the defect, the RT
surface will pass close to the horizon. Thus, analogously to the situation discussed in [50],
information about the horizon seems to be contained in the entanglement of CFT regions
of the bath which are furthest from the black hole.

7.2.2 Extremal black holes in higher dimensions

In chapter 5, by taking a Poincaré patch of the bulk, we considered an extremal black hole
on the brane coupled to a (single) bath CFT in a flat background. As in [50], we calculated
the entanglement entropy for a bath region R which corresponded to points greater than
some distance b from the conformal defect. In the case of extremal black holes, we did not
find a transition as the system was time evolved, but instead found that the appearance of
an island is linked to the choice of brane angle θB (or brane tension) and the DGP coupling.

Due to the scale invariance of Poincaré coordinates, it is clear that as we push the
entangling surface out in the bath region, i.e., increase b, we proportionately reduce the
size of the island. Again, this behaviour reproduces the intuition suggested in [50] that the
region near the extremal horizon deep in the gravitating region (our brane) is contained
within the far-away portion of the bath. Actually, our higher-dimensional picture shows
that these regions are not far from each other at all — they are both close to the spatial
infinity of the Poincaré patch which corresponds to a single point in the global frame. In the
other extreme b→ 0, we find that regions of the brane arbitrarily close to the asymptotic
boundary can be recovered by portions of the bath sufficiently close to the defect. This is
in contrast to the two dimensional JT model, where a maximum island size exists.

Interestingly, a further qualitative deviation from the two-dimensional case is seen at
small brane angles θ. Recall that, in the two-dimensional JT model, the island phase is
always dominant for belt geometries in the extremal case [50]. In contrast, we have found
in d > 3 that islands cease to exist for θB below some critical θc > 0. As θB approaches
θc from above, the quantum extremal surface of the island phase runs off to infinity (i.e.,
towards the extremal horizon). For θB < θc, no quantum extremal surface exists on the
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brane and the bulk RT surface is simply given by two planes on either side of the brane
running straight into the bulk. Since the area of these latter surfaces is IR finite in d > 2,
their candidacy for RT surfaces must be considered even when the alternative island-phase
surfaces exist. In fact, we find that θc is precisely the angle at which the entropies of the
no-island-type and island-type surfaces match — above this angle, the island-type surfaces
remain favourable as RT surfaces. The relevance of small θB (and in particular θB < θc) is
that in this limit, the effective theory on the brane is described by Einstein gravity with
small higher curvature corrections, which is the most interesting parameter regime. While
the lack of islands for θB < θc is strikingly different from the two-dimensional case, we
remark that, in the extremal case, islands are not required from an information-theoretic
standpoint and their absence should perhaps not be terribly surprising. This is to be
contrasted with the non-extremal case, where islands are necessary, at all brane angles, to
tame the otherwise unbounded growth of black hole entropy at late times and avoid the
information paradox.

Of course, an interesting question may be to examine how varying the geometry of the
entangling surface affects the appearance of QEIs at T = 0. For example, rather than belt
geometries, one might consider spherical regions bisected by the conformal defect.

7.2.3 Not an ensemble

In order to derive the island formula, a crucial ingredient was the appearance of wormholes
in the replica trick. In the two-dimensional models involving JT gravity studied so far
[48, 65], the existence of wormholes follows from the fact that JT gravity is defined by
averaging over an ensemble of Hamiltonians. For example, JT gravity emerges as the low
energy effective description of the SYK model [178–181], or has a definition in terms of a
matrix model [193].

On the contrary, our construction relies only on the standard holographic rules of the
AdS/CFT correspondence where there is no such averaging of the couplings in the bound-
ary theory. This is in line with the general expectations for higher dimensional hologra-
phy. This lack of averaging characterizes the UV-complete description of the system, i.e.,
the boundary perspective. Nonetheless, quantum extremal islands appear in the effective
description of the brane perspective and once again one likes to understand them as rem-
nants of replica wormholes in the limit n → 1. One might then wonder why — despite
the absence of ensemble averaging — replica wormholes should appear and connect the
gravitating region in different copies of replica trick calculations.

In fact, this is not a problem: since the different effective gravity theories in the brane
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picture are UV completed by a single theory of gravity in the bulk as discussed above, it is
natural to consider geometries connecting the branes, i.e., replica wormholes in the effective
theory. In fact considering Rényi entropy calculations in the boundary theory, one sees that
the corresponding bulk geometry induces connections between the different copies of the
brane theories, i.e., replica wormholes on the brane. This becomes particularly clear in our
setup where the brane lives in the bulk and does not serve as a boundary of spacetime. We
emphasize that here this discussion implicitly relies on the standard derivation of the RT
prescription for holographic EE [176,177] in the bulk perspective, where again we assume
that there is no ensemble averaging.8

Following the logic of [77], one might be tempted to turn the logic around and, given
the appearance of wormholes in the brane description of our model, conclude that there
is some form of ensemble averaging in the dual boundary theory. However, this line of
argument implicitly assumes a precise equivalence between the boundary theory and the
‘bulk’ gravity theory (containing wormholes). We stress that this equivalence does not
hold in our construction. Rather the gravitational theory on the brane is an effective
theory and so the arguments of [77] do not extend to this situation. Instead, in our
situation replica wormholes appear, but wormholes connecting independent instances of
the boundary theory do not play a role. For example, this implies that higher powers of
the partition function of the boundary CFT with a conformal defect will still factorize.

Nonetheless, this issue is certainly worth further examination since in two dimensions,
replica wormholes have now been shown to play an important role in a variety of situations,
e.g., calculations of Rényi entropies [48,75], the spectral form factor [193,194], correlation
functions [157,195], and overlap of black hole microstate wavefunctions [48,75]. Apart from
Rényi entropies, it is not clear how to reproduce these effects in our construction, or in
higher dimensions more generally. Furthermore, it was suggested in [48, 196] that in non-
averaged theories wormholes might appear as a result of some diagonal approximation. To
obtain a full quantum gravitational answer, additional off-diagonal terms need to be added.
Given that we have a system, where wormholes appear in an approximate formulation,
while at the same time having some control over a UV complete description, one might
hope that studying our system will give an idea of how this suggestion might be realized.

8Ref. [81] formulates a point of view where integrating out the bath CFT generates an averaging over
couplings in the theory of the conformal defect.

151



7.3 Future directions

Having produced a setup in which QEIs can be studied with relative ease, some possible
avenues of further investigation were already suggested above. We shall conclude this thesis
by mentioning below a number of other possible extensions to our work to be explored in
the future.

7.3.1 Questions about entanglement wedges

A few directions for future research may be inspired by information-theoretic questions
similar to those raised in [50]. There, the authors investigated whether a protocol can
be implemented to retrieve information from the island. In particular, the entanglement
wedge of the complete left system plus an interval of the right bath contains an island that
naively appears causally disconnected from the left and the right bath interval. However,
by acting with operators in the left and right baths, it was argued that sufficient negative
null energy can be generated to pull information from this region into the left exterior,
to be picked up by the left defect and bath. One could try to reproduce this protocol in
our higher-dimensional setup using insertions of operators on the left and right asymptotic
boundaries. The negative null energy produced would then shift the bulk horizon and
hence the induced horizon on the brane.

Recall that above, we described how in the present discussion the appearance of the
quantum extremal surfaces outside of the horizon was a simple result of the nesting of
entanglement wedges from the bulk perspective. However, another question raised by [50]
is whether this protrusion of islands outside the horizon violates causality. In particular, the
portion of the island of the baths outside the horizon appears to be causally connected to the
defects. Naively, this appears to allow communication between the baths and defects even
if the coupling between these systems is severed. The resolution of this paradox comes from
noting that a splitting quench between the defect and bath systems would inevitably create
a positive energy shock causing an outward shift of the horizon. It was argued in [50], using
a JT version of the quantum focusing conjecture [197, 198], that this shift would have the
final event horizon swallow the island, preventing post-quench communication between the
bath and defect. It would be interesting to re-create this problem in our setup to probe the
quantum focusing conjecture in higher dimensions. From the bulk perspective, a splitting
quench would be implemented by a bulk end-of-the-world brane anchored asymptotically
on the splitting surface [199]. In d = 2, the splitting surface on the asymptotic boundary
can be obtained by a conformal transformation from a full plane; in the bulk, the end-
of-the-world brane can similarly be obtained by a diffeomorphism from a planar brane in
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pure AdS. In d > 3, however, the calculations will become more complicated, e.g., the
end-of-the-world brane will, in general, backreact on the geometry such that the bulk is no
longer locally pure AdS.

Returning to the issue of extracting information from the island, entanglement wedge
reconstruction [53, 137–143] allows us to recover information about the island with data
from the boundary CFT in the corresponding boundary subregion. One interesting ques-
tion would be to evaluate the expectation value of various CFT operators in the island,
e.g., reconstructing ⟨Tij⟩ in the vicinity of the horizon.9 The latter is particular interesting
because while the appearance of quantum extremal islands pointed out a new resolution of
the information paradox, this does not directly address the issue of firewalls [19,200]. Here
asking if the black hole horizon develops a firewall in the late time phase of the Page curve
can be addressed by evaluating ⟨Tij⟩ on the horizon. While a direct boundary reconstruc-
tion of the latter remains to be done, we are confident that no singularities arise in our
framework. The reason is that in the bulk, the system is in the vacuum state and we are
simply examining this state from a Rindler frame of reference. Hence in fact, we expect
that ⟨Tij⟩ = 0 on the horizon and throughout the black hole solution on the brane.10

7.3.2 Other geometries

Other choices of brane curvature As described in chapter 2, we choose the brane
tension to produce a negative cosmological constant in the gravity theory on the brane, in
accord with eqs. (2.24) and (2.25). As a result, the d-dimensional geometry on the brane is
AdS space. However, it is straightforward to consider the case where the brane tension takes
its critical value, such that 1/ℓ2eff = 0, as is usually done in the RS scenario [84,85]. In this
case, the analogous brane geometry is simply flat space, and the brane is easily embedded
in the bulk AdSd+1 geometry on a slice of constant radius (or constant z) in standard
Poincaré coordinates. An interesting feature of this embedding is that the brane reaches
the asymptotic AdSd+1 boundary along the null boundaries of the flat space geometry (as
well as a timelike and spacelike infinity) e.g., see [182]. Hence we can naturally investigate
quantum extremal surfaces and the island formula in flat space using the usual expressions

9We thank Ahmed Almheiri for raising this question.
10The vanishing of the stress tensor on the brane is an essential feature of our construction as the AdSd

brane geometry must be a solution of the corresponding gravitational equations. That is, the CFT on
the brane cannot provide a source in these equations (at least to leading order for large cT) otherwise the
geometry would deviate from AdS space. Recall that while the brane CFT is in its vacuum state, the
bath CFT is coupled to the brane along an accelerating trajectory — see discussion under eq. (4.12). This
acceleration allows the bath CFT to achieve equilibrium at a finite temperature.
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for holographic entanglement entropy in this construction as long as we consider regions on
null infinity. Notably this matches the approach pursued in [49], but contrasts with studies
of e.g., [51] which considered spacelike regions. It would, of course, be interesting to use this
framework to study QEIs in the context of asymptotically flat brane world black holes, e.g.,
as described in [201, 202]. We should note however that there are undoubtedly subtleties
with the proposed construction, e.g., as the brane completely cuts out the asymptotic
AdSd+1 boundary (except for a single point) on constant time slices.

Of course, one can also consider the case where the brane tension is chosen such that
1/ℓ2eff < 0. That is, the brane gravity theory would have a positive cosmological constant
and the corresponding brane geometry becomes de Sitter space. In this case, one constructs
a foliation of the bulk AdSd+1 geometry in terms of d-dimensional de Sitter slices and the
brane can be embedded along the slice with the appropriate curvature, e.g., see [182].
In this case, the brane reaches the asymptotic AdSd+1 boundary on the future and past
timelike infinities of the de Sitter geometry. Hence, this construction provides a framework
to use holographic entanglement entropy for investigating the island formula in de Sitter
space as long as we consider regions on the timelike future of the latter geometry. Let
us add that this would be similar to the work of [80, 203], which studies related questions
in the context of JT gravity with a positive cosmological constant [204]. The de Sitter
evolution of the Hartle-Hawking vacuum prepares a two-dimensional CFT state on the
circle and the EE of various regions in the latter state are investigated, revealing new
islands in the de Sitter geometry. Further discussions of islands in de Sitter spacetime can
be found in [82,83,205].

Massive black holes In this thesis, for the sake of simplicity, we have chosen to work
with a bulk that is pure AdS, i.e., the temperature was tuned to T = 1

2πR
. The Rindler

horizon in this geometry consequently corresponds to a massless hyperbolic black hole. An
obvious extension would then be to consider massive black holes. Again, calculations will
be made difficult by the fact that the brane and bulk equations of motion must be solved
simultaneously with the former back-reacting on the latter. In particular, the equilibrium
configuration will now involve excitations of the CFT on the brane, i.e., the effective
Einstein equations on the brane will be sourced by the stress tensor of the boundary CFT
residing there. Recently, islands for massive black holes in the doubly holographic model
have been studied by [206] for d = 2; however, as described in section 2.3, this is a rather
special case where Einstein gravity on the brane is topological and one may instead consider
adding intrinsic JT gravity.
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7.3.3 Other information-theoretic objects and considerations

Entanglement wedge cross-sections Recent work [207,208] has drawn attention to the
entanglement wedge cross-section, i.e., for disconnected boundary regions, the codimension-
two surfaces in the bulk which have minimal area and which split the entanglement
wedge in two. In particular, there are a number of proposals relating these holographic
surfaces to various entanglement measures: entanglement of purification [207, 208], odd
EE [209–211], entanglement negativity [212, 213], and (perhaps the most promising) re-
flected entropy [214].

Turning to our model and examining figure 3.4, we see that there are two such minimal
surfaces in the connected phase, for which a quantum extremal island appears on the brane.
These surfaces are simply disks of radius P = P0 on either side of the brane, with area

A =
2Ld−1Ωd−2

d− 1
P d−1
0 2F1

[
1

2
,
d− 1

2
,
d+ 1

2
,−P 2

0

]
, (7.2)

as can be seen from eq. (3.40). The fact that both disks have the same area results
from the fact that the corresponding boundary regions are symmetric on either of the
conformal defect — see figure 3.1. Of course, if one of the two caps comprising the boundary
regions was smaller, the minimal area disk closer to this cap would provide the global
minimum and hence become the entanglement wedge cross-section. It would be interesting
to understand if the second minimal disk also plays an interesting role in characterizing
the entanglement of the boundary state. In this vein, let us add that there are also two
additional extremal disks which divide the entanglement wedge in two but their area is
actually a local maximum. These disks again lie on either side of the brane but end on σR,
the intersection of the RT surface with the brane. Again, it is natural to wonder if these
surfaces have an interpretation in terms of the boundary entanglement.

Tensor networks and complexity Yet another direction to take would be to consider
our setup from the perspective of tensor networks and error correction codes [141, 215–
217]. For instance, as noted in [161], the MERA-like tensor network constructing the
time-evolved CFT TFD state on the asymptotic boundary shares a similar geometry to
codimension-one bulk spatial slices stretching through the bulk wormhole. One might
then be motivated, as in [216], to view these spatial slices as supporting tensor networks
implementing quantum error correction codes between the bulk and boundary. It would
be interesting to see what such a network would tell us about the effective theory (see
e.g., [218, 219]) on the brane and how information on the brane is ultimately encoded
in the asymptotic CFT and defect theory. On a related note, one might also study the
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complexity of these brane configurations, for example, using the higher-dimensional bulk
to probe holographic complexity conjectures [220–223], e.g., see [224].

Entanglement growth Lastly, in order to explain the fast growth of entanglement at
early times for large regions, in section 4.9.2 we computed bounds on entanglement growth
in hyperbolic space. While they display the expected qualitative behaviour, they are not
particularly tight. Instead, the difference between bounds and numerical data becomes
bigger as χΣ grows. It would be interesting to improve these bounds.
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Appendix A

Generalized Entropy on the Brane

In sections 2.3 and 2.4, we introduced intrinsic gravitational terms to the brane action.
Following [7],1 we assumed that these terms contribute to the generalized entropy, e.g., see
eq. (1.8) or (3.1). In this appendix, we present a extended version of an argument in [93],
which will support this assumption and our formula for generalized entropy.

As in the main text, we begin with a d-dimensional holographic CFT on R × Sd−1

with a conformal defect on the equator of the sphere, sweeping out R × Sd−2. On a
fixed time-slice, we choose an entangling surface ΣCFT which divides the sphere into two
equal halves along a maximal Sd−2 which lies orthogonal to the conformal defect. Now we
wish to determine the EE between the two halves of the system, as sketched in figure A.1.
Recall that with the geometric approach [225], we must evaluate the partition function on a
(Euclidean) background geometry with an infinitesimal conical defect. In order to construct
a symmetric geometry where introducing such a defect is well-defined, we perform a Wick
rotation on the boundary time (i.e., tE = it) and then conformally transform the Euclidean
background metric to a round Sd with the conformal defect lying on a maximal Sd−1 on this
background. Now ΣCFT remains a maximal Sd−2 which runs orthogonal to the defect and
pierces the latter on a Sd−3. With this construction, there is a rotational symmetry in the
two dimensions orthogonal to ΣCFT. To evaluate the corresponding entanglement entropy,
we construct M1−ϵ, the ‘n-fold cover’ with n = 1−ϵ, by introducing an infinitesimal conical
defect at ΣCFT. The EE is then given by

S = lim
ϵ→0

(
∂

∂ϵ
+ 1

)
logZ1−ϵ , (A.1)

1See also [4, 34,48,50,65].
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where Z1−ϵ is the partition function of the holographic CFT on the covering space M1−ϵ.
Of course, the latter has a dual description in terms of the bulk gravity, and using the
usual saddle point approximation, eq. (A.1) becomes [93]

S = − lim
ϵ→0

( ∂
∂ϵ

+ 1
)
IE,1−ϵ , (A.2)

where IE,1−ϵ is the Euclidean bulk action evaluated on the appropriate dual solution.

ΣCFT
t

t = 0

Figure A.1: A time slice of our d-dimensional CFT setup with entangling surface ΣCFT

and an equatorial conformal defect (the green line). In the right panel, one dimension is
suppressed relative to the left panel.

Setting n = 1 for a moment, the bulk dual of M1 is simply the Euclidean version
of the geometry constructed in section 2.1, which we denote M̃1. Recall the boundary
geometry is Sd and the conformal defect runs around a maximal Sd−1. In the bulk, the
geometry is locally EAdSd+1 everywhere away from the brane, and the brane has a EAdSd

geometry which extends out to the conformal defect at the asymptotic boundary and with
the curvature scale given by eq. (2.16) — see figure A.2. Now the entangling surface ΣCFT

on the asymptotic AdS boundary is the boundary of an extremal surface ΣR in the bulk,
which runs straight across the bulk solution and has a EAdSd−1 geometry with curvature
scale L. This surface pierces the brane at a right angle and the intersection, another
extremal surface σR, has the geometry of a EAdSd−2 with curvature scale ℓB — see figure
A.2. Now because of the symmetry of this configuration, the rotational symmetry about
the entangling surface in the boundary extends to a rotational symmetry about ΣR in the
bulk. Hence we can calculate the EE with the same geometric approach as we applied in
the boundary. That is, we construct M̃1−ϵ, the n-fold cover (with n = 1 − ϵ) of the bulk
solution with a infinitesimal conical defect at ΣR and by extension, at σR on the brane.

That is, the angle around ΣR runs through a range 2π(1−ϵ). Now [226,227] developed a
description of such conical defects in which the singular geometry is replaced by a ‘regulator’
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ΣR

σR ΣCFT

Figure A.2: A cross-section of the Euclidean geometry M̃1. The orange semicircle and
its complement along a time slice represent the orange shaded region of figure A.1 and its
complement. The rotation that keeps ΣCFT fixed represents euclidean time. An infinitesimal
conical defect ΣR runs through the bulk and intersects the brane at σR.

geometry where the region around the conical singularity is smoothed out. Applying their
key result, we can write the bulk Riemann tensor as a “smooth" contribution away from
ΣR, the conical defect, and a singular order ϵ contribution at ΣR,2

(ϵ)Rab
cd = Rab

cd + 2πϵ εabεcd δΣR
, (A.3)

where εab is the Euclidean volume form in the two-dimensional transverse space to ΣR,
and Rab

cd is the “smooth" curvature piece. The δΣR
is a two-dimensional delta function

defined in [93]. The conical singularity intersects the brane at σR and so we have a similar
decomposition for the Riemann tensor on the brane,

(ϵ)R̃ij
kℓ = R̃ij

kℓ + 2πϵ ε̃ij ε̃kℓ δσR
. (A.4)

Now recall that our aim is to evaluate the Euclidean action in eq. (A.2). This action is
the sum of the Euclidean versions3 of the bulk and brane actions in eqs. (2.1) and (2.50)
(or perhaps eq. (2.42) for d = 2), as well as the associated boundary terms. Equipped with
eqs. (A.3) and (A.4), it can be shown that in the limit of small ϵ that the Euclidean action
can be expanded as

IE,1−ϵ = (1− ϵ)IE,1 +

∫
bulk

dd+1x
√
g 2πϵεabεcd δΣR

∂LE,bulk

∂Rab
cd

(A.5)

+

∫
brane

ddx
√
g̃ 2πϵε̃ij ε̃kℓ δσR

∂LE,brane

∂R̃ij
kℓ

+O(ϵ2) . (A.6)

2This order ϵ contribution is universal, whereas the details of the regulator come into play at order ϵ2

and higher.
3Note that the difference in signs in going between Minkowski and Euclidean signatures [93].
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Noting the symmetry of our configuration, i.e., the curvatures are constant everywhere
along the surfaces ΣR and σR, we then find the entropy in eq. (A.2) is given by

S = −2π
∂LE,bulk

∂Rab
cd

εabεcd

∫
ΣR

dd−1x
√
h− 2π

∂LE,brane

∂R̃ij
kℓ

ε̃ij ε̃kℓ

∫
σR

dd−2x
√
h′ , (A.7)

where h and h′ are the induced metrics along the ΣR and σR, respectively. Hence we see
that there is a contribution of the Wald entropy from both the bulk action and the brane
action. Further, let us note that various signs appear upon analytically continuing back to
Lorentzian spacetime, i.e., in the Lagrangian and the transverse volume form [93].

For the case where the Einstein-Hilbert action appears both in the bulk and on the
brane, as in eqs. (2.1) and (2.50), we find the formula for the generalized entropy (A.7)
becomes

S =
A(ΣR)

4Gbulk

+
A(σR)

4Gbrane

, (A.8)

as given in equation (3.1). The present derivation only applies to special symmetric con-
figuration, as in [93]. The symmetry of this configuration precludes finding any extrinsic
curvature terms in eq. (A.7), as would be expected for the Dong entropy [95]. We note
however that no such terms would correct eq. (A.8) for the generalized entropy coming
from the Einstein-Hilbert term. It would, of course, be interesting to extend our derivation
to more general configurations involving bulk DGP branes, along the lines of [176] or [177].
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Appendix B

Ryu-Takayanagi Bubbles

In this appendix, we consider a simple but surprising class of RT surfaces. In particular,
we show below that there are closed extremal surfaces with the topology of a sphere, i.e.,
Sd−1 in the locally AdSd+1 bulk geometry. In empty AdS space, one could consider such
spherical surfaces, but their area would be extremized when they collapse to zero size. In
the present case, we will show that in certain situations, the spherical RT surfaces can be
supported at finite size by the brane. To illustrate the situation, we continue with the
special case of d = 3 as in section 3.4, and afterwards comment on the situation with
general d.

Figure B.1: An RT ‘bubble’ on the brane: even for the vacuum, when Gbrane < 0 the
competing bulk and brane area terms can lead to a stable extremal surface, which is
homologous to the entire time slice for the boundary CFT. The entanglement wedge then
corresponds to the shaded red region. Since the two sides of the brane are glued together,
the RT surface has the topology of Sd−1.

Consider the geometry illustrated in figure B.1. On either side of the brane, we have
a disk satisfying ς =constant, i.e., satisfying eq. (3.39) with P0 = 0. Hence locally these
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surfaces extremize the entropy functional (3.38) in the bulk. However, rather than extend-
ing out to the asymptotic boundary, as shown in the figure, the two disks intersect the
brane and meet at some radius PB. Hence this RT surface has the topology of a sphere and
we use the nomenclature ‘bubble’ to describe these surfaces. For d = 3, the generalized
entropy (3.1) of this bubble is

Sgen =
πL2

Gbulk

(√
1 + P 2

B − 1 + λb PB

)
+ 2λGB (B.1)

with λb defined in eq. (2.54). We have also included the topological term introduced
in eq. (3.44). Of course, since these surfaces never reach the asymptotic boundary, this
quantity is finite, i.e., there are no UV divergences in eq. (B.1).

Extremizing eq. (B.1) with respect to the radius of the bubble, we find

∂PBSgen = 0 =⇒ PB√
1 + P 2

B

= −λb = − Gbulk

2LGbrane

. (B.2)

Now recall that we will always have Gbulk > 0, but considered the possibility of Gbrane

becoming negative in section 3.4. Let us first consider the case λb ≥ 0, which implies
1/Gbrane ≥ 0. In this case, we cannot satisfy eq. (B.2), since both the bulk and brane
contributions to the generalized entropy (B.1) are positive and monotonically increasing
functions of PB. Therefore the minimum lies at PB = 0, i.e., where the bubble collapses to
zero size — see figure (B.2).

Of course, the more interesting scenario is when λb, and hence 1/Gbrane, are negative.
Then eq. (B.2) has the solution

PB,0 = − λb√
1− λ2b

, (B.3)

for which the generalized entropy (B.1) becomes

Sgen =
πL2

Gbulk

(√
1− λ2b − 1

)
+ 2λGB. (B.4)

We note that these expressions are only sensible for −1 < λb < 0. In fact, for λb < −1,
there is no minimum for the generalized entropy (B.1), i.e., there is no solution for eq. (B.2),
and rather PB runs off to infinity — see figure (B.2). This is, perhaps, not so surprising
since we can see from eq. (2.55) that this regime is pathological, with the graviton localized
on the brane becoming a ghost.
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Therefore we only consider the regime −1 < λb < 0 where eqs. (B.3) and (B.4) apply.
As illustrated in figure (B.2), eq. (B.3) is indeed the global minimum of the generalized
entropy (B.1). We might note that the sum of the bulk and brane terms in eq. (B.4) is
negative. That is, the combined contributions of the two area terms in eq. (3.1) is in fact
negative! Hence we only get a sensible (i.e., positive) result for the generalized entropy
(B.1) with the inclusion of the topological term (3.44) and with λGB sufficiently positive,
which was also favoured in section 3.4.

P04321
0

2

1 λb > 0

−1 < λb < 0

λb < −1

Gbulk
πL2 Sgen

Figure B.2: The generalized area (B.1) for a bubble as a function of its radius. For λb > 0,
the area is minimal for vanishing size, whereas for −1 < λb < 0 it has a finite size. For
λb < −1, there is no global minimum, signalling an instability of the system. Further note
that as P0 approaches zero, Sgen → πL2/Gbulk since we have set λGB = πL2/(2Gbulk).

These calculations are easily extended to higher dimensions, where eq. (B.1) is replaced
by

Sgen =
Ld−1Ωd−2

2(d− 1)Gbulk

P d−1
B 2F1

[
1

2
,
d− 1

2
,
d+ 1

2
,−P 2

B

]
+
Ld−2Ωd−2

4Gbrane

P d−2
B . (B.5)

We have not included contributions from any topological gravity terms in this expression
for general d — see further comments below. To produce a qualitative understanding of
this expression, we note that

F2 1

[
1

2
,
d− 1

2
,
d+ 1

2
,−P 2

B

]
≃

{
1 if PB ≪ 1 ,
d−1
d−2

1
PB

if PB ≫ 1 .
(B.6)

Now, we observe that for large PB, the leading contribution in eq. (B.5) takes the expected
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form

Sgen ≃
A(σR)

4Geff

+ · · · where
A(σR)

4Geff

=
Ld−1Ωd−2

2(d− 2)Gbulk

(1 + λb)P
d−2
B , (B.7)

again using eq. (2.54). Hence, there is a large penalty for having the RT surface meet
the brane at a large radius PB, which will tend to push the intersection σR to smaller
radii. However, for small PB, the bulk contribution to Sgen grows like the volume, i.e., it
is proportional to P d−1

B . Hence in this regime, the brane contribution dominates since it is
proportional to λbP d−2

B , and for λb < 0, this term will favour larger values of PB. Hence
for the interesting case of λb < 0, we can expect that the generalized entropy for general
d is extremized at some finite value of PB of order −λb, just as we found for d = 3. Of
course, the denominator in eq. (B.3) is also important for λb close to −1, but this cannot
be seen with this simple qualitative analysis. Now, in fact, the extremality condition can
in fact be solved exactly for any d. One finds

∂PBSgen =
Ld−1Ωd−2

2Gbulk

P d−3
B

(
PB√
P 2

B + 1
+ λb

)
= 0 . (B.8)

Of course, for λb ≥ 0, the only solution is PB = 0, i.e., the bubble collapses to zero size,
as expected. However, for λb < 0, the minimum is given by PB = PB,0, precisely the same
critical radius as in eq. (B.3). Substituting this critical radius into the generalized entropy
(B.5) does not yield any simplifications, however the result is easily evaluated numerically
as a function of λb. Of course, the generalized entropy (B.5) is negative at this minimum
and so one would really need to add a topological term to the gravitational theory, either
in the bulk or on the brane, to produce a sensible entropy, as we did for the d = 3 example.

Wormholes and Cutoffs

The appearance of these extremal bubbles is quite unusual, of course. Since they are
homologous to the entire boundary, this suggests that the ground state of the dual boundary
system has an entropy by the standard RT prescription. The bulk construction makes clear
that it is the conformal defect which introduces this large degeneracy of ground states.1

1As we see in figure B.2, entropy associated with the zero-size bubble is nonvanishing and higher than
that of the stable finite-size bubble due to the topological contribution. However, we note that it may be
that the correct RT prescription is to choose ‘empty surface’ in this case, giving zero entropy.
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We should note, however, that the evaluation of this ground state entropy presented
above is incomplete. In particular, there is a ‘zero mode’ associated with these bubbles that
allows them to be translated along the brane. Recall that while the empty AdSd+1 geometry
has an SO(2, d) isometry (reflecting the conformal symmetry group of the boundary CFT),
the backreacted brane geometry preserves an SO(2, d− 1) subgroup of these symmetries.
Now our construction places the centre of the bubbles at P = 0, however, by acting with
these symmetries, we can position the centre anywhere on the brane. Further recall that
one arrives at the RT prescription by evaluating (a particular limit of) a saddlepoint in
the gravitational path integral [176]. Hence we have discovered that there is a zero mode
associated with the saddlepoints connected to the bubbles. Hence the integral over this
zero mode would add a contribution to the entropy proportional to the logarithm of the
(regulated) brane volume. It is interesting to speculate that this contribution may lift the
negative value for Sgen(PB,0) to some positive entropy.

An essential feature required for the appearance of these bubbles was that the gravi-
tational coupling associated with the DGP term (2.50) was negative, i.e., 1/Gbrane < 0.
While this may seem unusual, let us note that integrating out quantum fields on the brane
can produce either a positive or negative shift in Newton’s constant. In particular, the
shift is found to be negative for a U(1) gauge field when d < 8 [153,154]. With the connec-
tion between the renormalization of Newton’s constant and the area law contribution in
EE [43, 225], this negative renormalization generates a puzzle which, however, was finally
resolved in terms of edge modes in [228, 229]. There is a similar negative renormalization
for non-minimally coupled scalars [153], for which the resolution of the associated puzzle
appears in [44]. However, we should add that if we imagine 1/Gbrane < 0 is induced by
additional quantum fields on the brane, then our EE calculations are incomplete as they
do not fully include the contributions of these extra fields. Hence our perspective here is to
simply view the DGP term as a counterterm as would appear in the usual quantization of
gravity on the brane, and in this context, the sign of 1/Gbrane is not proscribed but rather
is chosen as needed to produce the ‘observed’ value of 1/Geff.

Another remark in this vein is that the bubble solutions appear as soon as 1/Gbrane

is negative, i.e., these solutions (B.3) exist for very small values of λb as long as λb < 0.
However, it is important to recall that the short distance cutoff is given by eq. (2.63) in
this regime. Hence combining eqs. (3.34) and (B.3), the areal size of the bubbles becomes

LPB,0 =
|λb|L√
1− λ2b

≃ |λb|√
1 + |λb|

δ̃ . (B.9)

where we have substituted eq. (2.59) in the second expression. This expression approaches
the maximum size δ̃/

√
2 as λb → −1. That is, the radius of bubbles is always smaller than
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the cutoff scale δ̃ on the brane! Therefore, these solutions are not reliable in the regime
where Einstein gravity gives a good description of the brane. On the other hand, our
calculations in this appendix involved evaluating RT surfaces in the bulk, i.e., they only
depended on bulk perspective. Further, for |λb| ≳ 1/

√
2, the corresponding RT surfaces

grow much larger than the bulk AdS scale, and so would be seen as valid solutions. However,
one may ask if there are physical constraints which will not allow us to realize theories with
λb which are that negative and so prevent us from considering scenarios where these bubbles
have a macroscopic size.

We close here with two final remarks: These bubbles are a remnant of replica wormholes
in the limit n→ 1 [48,49]. In the discussion of chapter 7, we explore if there are any lessons
that they may hold for the new discussions of baby universes and ensembles [77]. Another
comment is that the bubble surfaces produce an interesting entanglement wedge, which
extends to a band covering a finite time interval on the boundary. Of course, this is
reminiscent of the holographic construction of differential entropy [230–234], which can be
used to evaluate the area of closed surfaces in the bulk. It would be interesting to examine
these connections further.
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