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Abstract

Satisfiability Modulo Theories (SMT) solvers are programs that decide whether a first-
order logic formula is satisfiable. Over the last two decades, these solvers have become
central to many methods and tools in fields as diverse as software engineering, verification,
security, and Artificial Intelligence. Most modern SMT solvers provide user-controllable
strategies, i.e., users can define a strategy that customizes a solving algorithm for their own
problems by combining individual tactics as building blocks. A tactic is a well-defined and
implemented reasoning step provided by the SMT solver, which either simplifies, trans-
forms, or solves the given input SMT formula. The flexibility of customizing a strategy
to a specialized type of formula is important since no existing strategy is considered opti-
mal for all instances. However, finding a good customized strategy is challenging even for
experts.

In this thesis we present a novel class of reinforcement-learning (RL) guided methods,
implemented in the Z3 SMT solver and that we refer to as AlphaSMT, which adaptively con-
structs the expected best strategy for any given input SMT formula. Briefly, the AlphaSMT

RL framework combines deep Monte-Carlo Tree Search (MCTS) and logical reasoning in
a unique way in order to enable the RL agent to learn the best combination of tactics for
a given class of formulas. In more detail, a deep neural network serves as both the value
function and the policy, evaluating state-action pairs and making the decision of which
tactic to choose at each step. The neural network is trained toward the optimal policy
by learning from self-exploring sampling solving processes. MCTS is used as a lookahead
planning step for each decision made in the sampling processes.

We evaluated the performance of AlphaSMT on benchmark sets from three SMT log-
ics, namely, quantifier-free non-linear real arithmetic (QF NRA), quantifier-free non-linear
integer arithmetic (QF NIA), and quantifier-free bit-vector (QF BV). In all these logics,
AlphaSMT outperforms its base solver, Z3, by solving up to 80.5% more instances in a test-
ing set. Evaluation results also show that a reasonably longer tactic timeout helps solve
more instances and a pre-solver contributes significantly to the speedup.
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Chapter 1

Introduction

1.1 Background

First-order logic (FOL) is a formal system used to reason about objects, their properties,
and relationships. It provides a logical framework for expressing statements and making
inferences based on logical connectives, quantifiers, variables, functions, and predicates.
First-order theories, which are built upon the FOL framework, reason about specific do-
mains by defining their own sets of symbols (functions, predicates, constants) and axioms.
For example, the theory of arithmetic reasons about numbers, arithmetic operations, and
their properties. The statement “Infinitely many prime numbers exist” can be expressed
in the integer arithmetic theory as “∀q∃p∀x, y[(p > q) ∧ (x, y > 1 =⇒ xy ̸= p)]”. By
employing first-order theories, one can focus on reasoning within specific domains using
the expressive power of FOL.

SMT solvers, which stand for Satisfiability Modulo Theories solvers, are automated
reasoning tools that determine whether a formula is satisfiable/valid. The input formula
is expressed in FOL, usually within a specific theory. Some common SMT theories are
linear arithmetic, bit vectors, arrays, pointer logic, and strings. High-performance SMT
solvers, which can efficiently solve satisfiability problems in these theories play increasingly
important roles in the fields of hardware and software verification, automated theorem
proving, compiler optimization, security, artificial intelligence, and beyond.

SMT can be seen as an extension of the Boolean satisfiability problem (SAT). SMT
solvers utilize SAT-solving algorithms as a foundation to process the input formula’s
Boolean skeleton and incorporate specialized decision procedures for different theories to
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handle theory-specific constraints. Since the SAT problem is already NP-complete, SMT
problems are generally intractable or undecidable. Although most SMT solvers adopt a
high-level DPLL(T) framework [24], different solvers vary significantly in terms of prepro-
cessing steps, theory-specific decision procedures, implementation details, etc. It is widely
believed that there is no single algorithm that always performs the best on all instances
of a hard problem. This statement certainly matches the observations in the SMT-solving
field: one solver which performs well in one type of instance may perform very poorly in
other types. Thus, there is naturally an algorithm selection problem for SMT practition-
ers: which solver to choose for one’s own instances? An algorithm portfolio, which selects
multiple algorithms and runs them in sequence or in parallel to solve a single instance,
provides a flexible solution to this algorithm selection problem.

However, for SMT problems, there is another level of flexibility: in addition to choos-
ing from a pool of start-to-end algorithms, one can build an algorithm by selecting and
combining tactics. In this thesis, we adopt the concepts of tactic and strategy introduced
in [7]. A tactic is an algorithmic proof method or reasoning step within the whole solving
process, and each can be viewed as a building block of a decision procedure. Tactics are
usually well-defined and implemented in SMT solvers. Some tactics simplify formulas, e.g.,
constant folding; some tactics transform formulas, e.g., bit-blasting; some tactics solve for-
mulas, e.g., Simplex. A strategy refers to the heuristics of how tactics are orchestrated to
form a decision procedure. Modern SMT solvers, e.g., Z3, usually offer user-controllable
strategies. In other words, solver users can build their own solving strategies by connecting
certain tactics sequentially, conditionally, or iteratively, for different instances. Strategies
play a key role in solver performance: one strategy may solve a hard instance in seconds,
but another strategy may not be able to solve the same instance at all. In this thesis, the
problem of crafting a specialized strategy for a given instance is called the “tactic selection
problem”.

1.2 Research Problem and Objectives

This research aims to answer the SMT tactic selection problem: how to construct the
best strategy by sequencing individual tactics for a specific problem instance? Crafting a
suitable strategy often relies on human expertise and extensive trial and error. However,
such expensive efforts are still slow to adapt to the newly emerging instance types and
are unable to capture complex patterns. Machine learning (ML), on the other hand, can
automatically explore and learn from experience and data, and shows promise in improving
the tactic selection heuristics.

2



ML methods have already been contributing to enhancing heuristics in logic solvers
[10, 9]. Liang et al. [19] successfully used reinforcement learning (RL), a type of ML tech-
nique, to improve branching heuristics within the CDCL framework [21] for SAT problems.
Following works, such as NeuroCore [32] and GQSAT [15] also used different ML techniques
for better branching decisions. ML has also been applied to improve other aspects of the
solver heuristics, e.g., how to select a preprocessor [5], how to select a restart/reset strat-
egy [23, 20, 16], how to choose learned clauses to delete [36], and how to choose solver
parameters [13]. Moreover, other than improving heuristics within a solver, ML has been
used to select among different solvers (the algorithm selection problem). SATzilla [42]
and MachSMT [30] built machine learning models to predict solver performance via offline
training, and used such models to select the best solver for each instance. MedleySolver

[25] is an online SMT algorithm selection framework, requiring no prior training. For every
query, it selects a sequence of solvers with an assigned timeout. The algorithm selection
problem is modeled as a Multi-Armed Bandit (MAB) problem, and the tool learns to make
a decision via trial and error. Scott et al. [31] introduced the concept of “meta solver”,
defined as a tool containing a set of subsolvers that get adaptively called, in a sequence,
based on online and offline performances. Goose, a solver for the Verification of Neural
Network (VNN) problem is built based on this concept. See Section 2.4 for a broader and
deeper literature review on this topic.

In this research, we propose to use ML, specifically, RL, to tackle the tactic selection
problem. Learning to solve this problem would be more comprehensive than improving one
specific solver heuristic since different tactics encode different aspects of solver heuristics.
The tactic selection problem is also more granular than the algorithm selection problem.
This increased flexibility offers great richness in how a decision procedure can be con-
structed. This richness also brings difficulties in finding an optimal chain of tactics to
apply: considering the large number of tactics and their combinations, the search space
is vast. FastSMT [1] is one early attempt to learn how to select SMT tactics for a spe-
cialized benchmark set. Its learning is twofold: it first uses RL methods to find a set of
fixed candidate strategies that each works well for certain instances, and then synthesizes
these strategies into one combined strategy based on the performance data of exhaustively
testing all candidate strategies on all training instances. This combined strategy would
be considered a good solution to all the instances in the particular benchmark set. We
argue that there is room for improvement in terms of strategy adaptiveness and training
efficiency of the learning method.

The objective of this thesis is to design and implement a combined learning and logic
framework, which enables an agent to learn how to dynamically select a tactic at each step
through logic feedback. Guided by this trained agent, an SMT solver will be more effective
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and efficient for specialized problem tasks.

1.3 Overview of AlphaSMT

For each input SMT formula that is solvable within a specified timeout, there must exist
(at least) one optimal sequence of tactics which solves this formula in the shortest time.
Therefore, the ideal solution to the tactic selection problem is to ask an oracle each time
when a tactic decision needs to be made, and the oracle always knows the best tactic to
apply given the current formula to solve. Noted that usually multiple sequential tactic
decisions need to be made in order to solve a formula, and the formula is rewritten along
the process. Thus, the tactic selection problem can be nicely framed as a sequential
decision-making problem, as shown in Figure 1.1: an agent sequentially makes decisions
on which tactic to apply, given the current solving status, in order to solve the formula
in the shortest time. In recent years, reinforcement learning (RL) methods have shown
tremendous progress over many sequential decision-making problems [17]. The motivation
of this research is that, through reinforcement learning, an agent learns the optimal policy
for the tactic selection problem, where policy is a mapping from states (current solving
situations) to action (tactic) selections. However, due to the infinite state space (there are
infinitely many possible original and intermediate formulas) and limited training resources,
it is infeasible to learn an optimal policy in the tabular form, which finds the best action
for every possible state. However, we argue that, with (1) lookahead planning methods,
such as Monte-Carlo Tree Search (MCTS), and (2) function approximation methods, such
as training a Deep Neural Network (DNN) to approximate the policy or value function,
reinforcement learning is able to find an increasingly close approximation to the optimal
policy, by efficiently exploring and exploiting more promising paths and generalizing such
experience to construct an approximation for the entire policy/value function. Therefore, it
is feasible to train a good tactic selection policy, which works generally well for a specialized
problem set, by learning from the experience of solving formulas in a relatively small subset.
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Figure 1.1: A simple illustration of framing the tactic selection problem as a sequential
decision problem

Based on this motivation, we present AlphaSMT, an adaptive RL-based SMT solver.
AlphaSMT uses an RL framework that combines MCTS and DNNs to train a tactic selection
agent. This deep MCTS framework is first introduced in AlphaZero [34]. AlphaZero is
an RL-based computer Go program, introduced by DeepMind in 2017. It showed superior
performance over all other human and computer players in the board game GO, which is
considered the most challenging classical game for artificial intelligence. The deep MCTS
framework uses one deep neural network for both policy and value function approximation,
and uses MCTS for lookahead searches inside the neural network training loop, resulting
in rapid improvement and stable learning for problems with vast state and search spaces.
AlphaSMT adapts this framework to the tactic selection problem, with key changes being
made in terms of logic feedback, feature engineering, usage of MCTS, neural network
architecture, etc.

AlphaSMT is currently built upon an established SMT solver Z3 [6]. It selects from Z3

built-in tactics, and uses Z3 as its base solver to execute selected tactics. AlphaSMT is
able to make good tactic choices for a specialized problem set after training on a small
representative subset. AlphaSMT’s decision-making unit is a deep neural network, which
maps solving states to the recommended tactic selection probabilities. The neural network
incorporates techniques such as transformer [40] and batch normalization [11].
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1.4 Contributions

The contributions of this thesis are as follows:

1. Present the tactic selection problem and formally frame it as a full reinforcement
problem. In the framing, an agent iteratively selects a tactic from candidates, ob-
serves how the formula is rewritten, and selects again, for the purpose of solving the
input formula the most efficiently. By formalizing the tactic selection problem as a
sequential decision problem, we can apply RL methods to the problem.

2. AlphaSMT, an adaptive SMT solver, is built based on an RL framework that combines
deep MCTS and logical reasoning. The RL agent in AlphaSMT, in the form of a deep
neural network, learns the best sequence of tactics for a given class of formulas,
by actively attempting to solve sampling instances from a training benchmark set.
The sampling solving processes are guided by MCTS at each step to ensure a steady
policy improvement over the training loop. Logical reasoning, i.e., a base SMT solver,
provides feedback for the learning process.

3. We performed an experimental analysis of AlphaSMT on three benchmark sets of three
SMT logics, i.e., quantifier-free non-linear integer arithmetic (QF NIA), quantifier-
free non-linear real arithmetic (QF NRA), and quantifier-free bit-vector (QF BV).
The tested AlphaSMT solvers were built with various configurations of tactic timeout
and pre-solver time. We found that AlphaSMT solved about 14.4% more QF NIA
instances, 80.5% more QF NRA instances, and 3.6% more QF BV instances than
its base solver Z3, with a 5-minute time limit for each instance. The proposed RL
framework greatly improves the solver’s ability to solve challenging instances, and
with proper configuration, it expedites the solving processes.

1.5 Structure of this Thesis

Chapter 1 introduces the research problem and outlines our objectives and contributions.
The remainder of this thesis is organized as follows:

• Chapter 2 begins by establishing the current state of knowledge in the fields of re-
inforcement learning and SMT solvers. By examining their respective concepts and
paths, we then conduct an in-depth review on their intersection: how do learn-
ing methods help build better logic solvers? This literature review not only walks
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through the existing works on the topic but also provides a critical analysis of the
strengths and limitations of previous research. Our work is motivated by the existing
research gap.

• Chapter 3 demonstrates our proposed RL framework for the SMT tactic selection
problem. We first rigorously formalize the tactic selection problem as an MDP and
then introduce the framework that combines deep MCTS and logical reasoning to
tackle this problem.

• Chapter 4 presents the evaluative experimental designs and results for
AlphaSMT. This Chapter also provides analyses and discussions of the result data, in
light of the research objectives.

• In Chapter 5, we present a summary of the key research findings, provide a thoughtful
reflection on the limitations of the study, and propose potential avenues for future
research.
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Chapter 2

Literature Review

2.1 Reinforcement Learning

Reinforcement learning (RL) is learning what expected actions to take according to the
current situation (state) in order to maximize a quantified reward, via a trial-and-error
search. Commonly in RL problems, one action does not only affect the immediate next-step
reward but also all the subsequent situations (states) and rewards [37]. Such reinforcement
learning problems can be abstractly framed as a mathematically idealized form of Markov
decision processes, or MDPs. As illustrated in Figure 2.1, MDP abstracts a process of
optimization through agent-environment interaction. The agent, which is the learner and
decision maker, interacts with the outside environment. The interaction happens iteratively
by the agent selecting actions, and the environment generating new states and providing
numerical rewards, in response to the agent’s actions. The agent aims to learn an optimal
policy, which tells what is the best action in each state, through the iterative interaction.
[37].

Board games usually fit perfectly into the MDP framework: a player needs to make
decisions on what is the next move based on the current board situation (state) in order to
win the game (reward); all moves contribute to the game dynamics and final results in a
complicated and entangled way. RL has already shown its strong power in board game ap-
plications: in 2016, AlphaGo [35], an RL-based computer program developed by DeepMind,
defeated Lee Sedol, the world champion Go player, in a high-profile match. Go is known as,
by one measure, the most challenging classical game for artificial intelligence because of its
complexity; a computer program defeating a Go world champion is definitely a remarkable
event in the history of artificial intelligence. The searching in AlphaGo uses deep neural
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Figure 2.1: The agent-environment interaction in a Markov decision process [37]

networks to evaluate positions and select the next moves. These neural networks were
trained by supervised learning from human expert moves, and by reinforcement learning
from self-play. In 2017, DeepMind introduced a new version called AlphaZero [34], which
learns solely from self-play, without human guidance or domain knowledge. AlphaZero

won 100-0 against the previous champion-defeating version of AlphaGo.

AlphaZero uses a novel reinforcement learning algorithm, as shown in Figure 2.2, to
train a deep neural network fθ with parameters θ. This neural network serves both to
approximate the policy (mapping from boards to the probability distribution over actions
for the next move) and the state value function (estimating the expected winning proba-
bility starting in a certain state and following a particular policy afterwards). The neural
network is trained via games of self-play, and in each position of a self-play game, a Monte-
Carlo Tree Search (MCTS) [3] is performed as a lookahead search. The MCTS is guided by
the neural network to generate a probability π for each move. This probability is believed
to be a stronger policy than the raw move probabilities p from the input neural network;
thus the MCTS step can be considered as a policy improvement step. The self-play games,
which select moves according to the improved MCTS policy and use the delayed game
winner as a sample return, can be viewed as a policy evaluation step. This reinforcement
learning algorithm also fits into the Generalized Policy Iteration (GPI) framework [37]: a
policy improvement step, which greedily improves the policy with respect to the current
value function, and a policy-evaluation step, which updates the value function towards the
improved policy, interact to achieve an optimal policy after iterations. This GPI frame-
work is one main idea of reinforcement learning. Within each iteration, AlphaZero uses
the improved policy and sample returns as the neural network training labels. Ideally, the
policy and value function approach the optimal ones through iterations.

9



Figure 2.2: The self-play reinforcement learning in AlphaZero [34]

As mentioned in the previous paragraph, MCTS executes a lookahead search at each
position of the self-play games inside the training looping. It takes a neural network fθ
and a root position s as inputs and outputs a probability distribution over moves, which
is regarded as an improved policy at s. Specifically, through simulations starting from
s, MCTS incrementally builds a search tree rooted at s, which stores statistics for state-
action pairs that are likely to be reached in a few steps. Each simulation starts from the
root s, walks through a path in the tree, and exits at a leaf node. In each simulation,
the path within the tree is selected to maximize an upper confidence bound (UCB) value
at each step. The UCB considers both the move probabilities predicted by the neural
network and the statistics collected from the simulations and keeps a balance between
exploitation and exploration. The simulation ends when reaching a leaf node and the leaf
node is expanded and evaluated just once by the neural network. The evaluations are then
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Figure 2.3: Monte-Carlo Tree Search in AlphaZero [34]

backed up to update the action values for the state-action pairs along the path. As in
any Monte Carlo methods, the action value for one state-action pair is estimated as the
average of all simulated sample returns. MCTS continues this four-step process (selection-
expansion-evaluation-backup) until it reaches a time or resource threshold. Then, finally,
a probability distribution proportional to the visiting counts for all actions at the root s,
π = αθ(s), is returned. This probability distribution is considered a recommended policy
at s and a target for the neural network to learn. Figure 2.3 also explains how the MCTS
works in AlphaZero.

Neural network training samples are generated from numerous self-play episodes. In
each self-play episode, MCTS, guided by the neural network from previous iterations, is
used to play each move. The episode ends when the Go game ends, and the episode receives
a final reward, rt, regarding the winner of the game. One training sample will be created
for one step in the episode: (st, πt, zt). st is the state representation at step t, πt is the
MCTS output at the step, and zt = ±rt is the final reward with respect to each player.
The neural network is trained from the dataset of (st, πt, zt) sampled uniformly among all
time steps of all self-play episodes in the iteration. The goal of the training is to minimize
a loss function that measures the errors in both move probabilities and value estimations
between the neural network predictions and the self-play sample data.

This neural network training process will be iterated multiple times. Each neural
network trained in iteration i, fθi , will be evaluated against the previous best network, fθ∗ ;
only if fθi beats fθ∗ , fθi will become the incumbent best network and be used subsequently
for self-play guidance and performance comparison. Such a mechanism guarantees a steady
improvement.

11



2.2 SMT Solver

Satisfiability Modulo Theories, or SMT for short, is the field of determining the sat-
isfiability of formulas in first-order logic. First-order logic, or predicate logic, can be
seen as an extension of propositional logic. First-order logic introduces additional sym-
bols of quantifiers, functions, and predicates, enlarging the expressiveness of the logic
language. For example, Fermat’s Last Theorem can be expressed in first-order logic
(∀a, b, c, n[(a, b, c > 0 ∧ n > 2) → an + bn ̸= cn]), but not in propositional logic. Sat-
isfiability refers to whether there exists an assignment of the variables in the formula
under which the formula evaluates to True: if yes, the formula is satisfiable (SAT); if not,
the formula is unsatisfiable (UNSAT).

SMT is usually concerned with the formulas of an arbitrary theory or combinations
thereof. Every theory is defined over a set of symbols (functions, predicates, constants),
and the formulas of the theory are restricted to the symbols of the theory. Some common
first-order theories are linear arithmetic, bit vectors, arrays, pointer logic, and strings.
The satisfiability problem for these theories and their combinations is critical to the field
of formal verification, which is a subfield of software engineering dedicated to proving
the correctness of computer programs with respect to a given formal specification [14].
Thus, SMT solvers, which implement algorithms for solving satisfiability problems of first-
order formulas, are widely used in fields of software and hardware verification, theorem
proving, compiler optimization, etc. Modern SMT solvers mainly adopt a DPLL(T) [24]
architecture. DPLL(T) is a theoretical framework that abstractly defines how satellite
theory-specific solvers (e.g., arithmetic, bit-vector, array) and the SAT solver are integrated
to solve an SMT problem in a specific theory. This abstract framework still leaves a large
room for different heuristic designs. Strategies describe the recipe for heuristics in the
SMT solver.

A strategy refers to a solving algorithm that is constructed by combining individual
tactics as building blocks of the said algorithm [7]. A tactic is a well-defined and imple-
mented reasoning step in an SMT solver. For example, in the SMT solver Z3 [6], the tactic
simplify is a preprocessing step that simplifies input formulas; the tactic solver-eqs

eliminates variables using Gaussian elimination; the tactic smt wraps the core DPLL(T)
solver as a tactic. Every tactic rewrites the input formula, so the whole solving process
can be viewed as sequentially applying rewrite rules (tactics) until the rewritten formula
is trivially satisfiable or unsatisfiable (see an example in Figure 2.4). A strategy uses com-
binators, such as then, repeat, or-else, to group tactics into a decision procedure. For
example, the strategy (then simplify solver-eqs smt) describes a decision procedure
of sequentially applying the tactics simplify, solver-eqs, and smt.
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Figure 2.4: One example of solving an input formula by sequentially applying tactics in Z3

Strategies are crucial to the effectiveness and efficiency of an SMT solver: a change
in strategy can make an originally unsolvable instance to be solved in seconds. Default
strategies in solvers are usually handcrafted by solver developers for known and limited
classes of problems. Such default strategies may perform poorly on new or specific classes
of problems. These days, more SMT solvers are offering user-controllable strategies, allow-
ing users to exert fine-grained control over the heuristic aspects of the solver. However,
the work of finding the appropriate strategy for specific problems requires both expert
knowledge and extensive effort.

2.3 Algorithm Selection and Tactic Selection

In most logic solving fields, no single solver prevails for all instances. This, practitioners are
usually facing an ”algorithm selection problem” [27]: how to choose a solver that best suits
one’s particular needs. One common solution is to choose the solver with the best average
performance on a representative benchmark set. For example, solver users can choose the
winning solver from the SAT and SMT competitions [8, 41] for all their instances. However,
this ”winner-take-all” approach does not leverage the strength of solvers which may not
perform well on average but have a significant edge on particular types of instances.

The ideal solution would be to have an oracle that knows how long it takes for each can-
didate solver to solve a particular instance and selects the solver with the best performance
predicted by the oracle. Despite the absence of such an oracle, a learned approximate run-
ner predictor, in place of the oracle, performs fairly well to select one algorithm in many
settings [42, 30]. Other than choosing one solver for each instance, one can also build a
portfolio solver combining multiple solvers. Broadly speaking, a portfolio solver refers to
any solver that utilizes multiple different solver algorithms to solve a single instance. A
portfolio solver can choose solvers in the portfolio to be executed in sequence or in parallel.
Additionally, the decision of which solver algorithm to be executed can be made on the
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fly, leveraging information collected along the solving process. Portfolio solvers provide
flexibility to the algorithm selection problem.

In SMT, customizable strategies provide another level of flexibility. Each tactic is a
building block of the solving algorithms. The solver users can not only choose which start-
to-end algorithm to use, but also control how individual reasoning steps are combined to
build an algorithm. For example, in Z3, one can attempt to solve a nonlinear arithmetic
formula using the strategy (then simplify smt). Alternatively, she can also add an-
other preprocessing step, changing the strategy into (then simplify solve-eqs smt);
or replaces the general solving tactic smt with one particular solving tactic qfnra-nlsat,
resulting in the strategy (then simplify qfnra-nlsat). The strategy (then nla2bv

bit blast sat) shows another option to solve a nonlinear arithmetic formula: first con-
verting it to a bit-vector formula, and then solving the resultant formula using a bit-blasting
based method. In this thesis, the problem of constructing an SMT strategy by sequencing
candidate tactics to solve a particular instance is called the “tactic selection problem”. It
can be viewed as a generalization of the “algorithm selection problem”, with more granu-
larity.

2.4 Learning to Solve Logic Formulas

Machine learning (ML) now plays a key role in many logical reasoning tools, helping them
become more powerful and efficient. The functionality of ML in solvers ranges from directly
predicting satisfiability, and optimizing solver heuristics, to algorithm selection [9, 10]. The
tactic selection problem is most related to the last category; however, it also shares many
similarities with the second type of problem, e.g., requiring step-wise decisions during one
solving process. Therefore, in this section, we first provide a concise review of relevant
research that uses learning to optimize certain solver heuristics, and then walk through
the works that apply learning methods to algorithm/tactic selection problems in greater
detail. Although we do not directly discuss the ML application in satisfiability prediction,
this technique is leveraged in some research that attempts to improve solver heuristics.
One such example [32] is covered in the review.

2.4.1 Learning Solver Heuristics

Conflict-Driven Clause Learning (CDCL) [21] is the dominant framework for modern SAT
solvers, and numerous attempts have been made to improve various aspects of CDCL
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solver heuristics [22, 43]. Liang et al. [19] first successfully implemented an RL-guided
SAT solver, MapleSAT, which learns to improve branching heuristics. Specifically, they
modeled the branching variable selection problem as an online multi-armed bandit prob-
lem, where the optimization objective is to maximize the learning rate, defined as the
propensity for variables to generate learned clauses. A novel branching heuristic called
learning rate branching (LRB) is developed based on a multi-armed bandit algorithm
exponential recency weighted average. The SAT solver, built upon LRB, won 1st in the
SAT Competition 2016 Application category. NeuroCore [32] also aims to improve the
branching heuristics, but in a very different way. NeuroSAT [33] is a neural-network-based
tool that predicts propositional formula properties. NeuroCore is built based on a trained
NeuroSAT model that predicts the unsatisfiable core. It incorporates this prediction into its
branching heuristics. GQSAT [15] is another SAT solver that applies RL to improve branch-
ing heuristics. It models the SAT problem as a full reinforcement learning problem and
applies Deep Q-Learning (DQN) algorithm to train a branching decision agent. Moreover,
there are works that use ML to learn how to select a preprocessor [5], how to select a
restart/reset strategy [23, 20, 16], how to choose learned clauses to delete [36], and how to
select solver parameters [13].

2.4.2 Learning to Select Algorithms

Now let us shift our focus to the algorithm selection problem. SATzilla [42] is one of the
first algorithm selection tools for logic solvers. It automatically constructs a per-instance
algorithm portfolio for SAT. The choice of algorithm, or solver, is based on an Empirical
Hardness Model (EHM), which is trained by the performance of solvers on the benchmark.
SATzilla won five medals in both the 2007 and 2009 SAT Competition, proving the tool’s
effectiveness.

MachSMT [30] is a algorithm selection tool for SMT solvers. Upon facing an instance,
it selects an existing solver which is predicted to be the best algorithm for solving this
particular instance. The prediction is based on both empirical hardness models (EHMs)
and pairwise ranking comparators (PWCs). These models are trained upon samples of
applying various solver algorithms to SMT instances. Experimental results show that
MachSMT outperforms the SMT-COMP 2019 and 2020 competition winners in 54 out of 85
divisions, notably in important logics, e.g., BV, LIA, NRA.

FastSMT [1] is one prominent previous work of applying learning algorithms to optimize
SMT solving strategy. It learns an efficient synthesized SMT strategy for a specialized
benchmark set. The learning process is twofold: (1) train a policy that searches for the

15



best strategies for each formula and create a dataset of strategies for the benchmark;
(2) synthesize one combined strategy, which captures the trained policy in a language
interpretable to the solver (in their case, Z3), from the strategy dataset. In the first
step, FastSMT explores training various types of policy models (e.g., bilinear model, neural
network model) using the DAgger framework [29]. In the second step, a combined strategy
is synthesized from the set of candidate strategies using decision tree learning in a top-
down manner. FastSMT’s experiment results show that their synthesized strategy solves
17% more formulas and is up to 100× faster than the default Z3 strategy, based on tests
on five benchmarks of varying complexity across three SMT logics (i.e., QF NRA, QF BV,
and QF NIA).

Pimpalkhare et al. [25] developed an online algorithm selection framework for SMT,
MedleySolver. They framed the algorithm selection problem, i.e., choosing an SMT solver
for a particular instance, as a Multi-Armed Bandit (MAB) problem. MAB models a class
of problems which repeated choices need to be made among multiple actions, and the
actions only affect immediate rewards. In their problem framing, the action space is the
set of candidate solvers and the reward is the solver performance for each instance. They
also extend the MAB problem: instead of choosing one single solver, MedleySolver selects
a sequence of solvers and assigns each solver in the sequence with a predicted timeout.
The tool learns to make better algorithm selection decisions via balancing exploration and
exploitation along the solving processes. An empirical evaluation on 2,000 benchmarks
shows that MedleySolver without pre-training solves 93.9% of the queries solved by the
virtual best solver selector.

Scott et al. [31] introduced a novel concept of ”meta solver”. They defined a meta solver
as ”a tool containing a set of subsolvers that get adaptively called, in a sequence, based on
online and offline information collected about their performance histories on a given input”.
Goose, a meta-solver for the Verification of Neural Network (VNN) problem, is presented
in this paper. The solver built its adaptive sequential portfolio using three synergizing
techniques, i.e., algorithm selection, probabilistic satisfiability inference, and time-iterative
deepening. The authors found a 25.6% improvement over the VNN-COMP’22 winner in
PAR-2 score across more than 1500 benchmarks.

2.4.3 Summary

All the research above involves augmenting the logical solver with learning techniques.
Here, I want to summarize the key similarities and differences among these methods, to help
readers have a clearer understanding of the development of the field and the contribution of
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this thesis research. Such summaries are also presented in Table 2.1. One major difference
among these learning solvers is whether the learning happens in a supervised learning or in
a reinforcement learning manner. Supervised learning is learning from a provided training
set of labeled examples, and the system is expected to learn how to predict labels for
situations not present in the training set. SATzilla and MachSMT are supervised learning
tools: a dataset of the performance of all solvers running on some instances is given, and
a machine learning model learns to predict the running time or the best solver for unseen
instances. In other words, supervised learning learns the correct action as instructed by
the provided training data. In contrast, reinforcement learning learns through its own
active interactions with the environment. For example, MedleySolver initially applies
different algorithms to instances almost randomly and observes their performance; these
observations help the agent gain a growing knowledge and, over time, make better educated
guess on which algorithm to use. Moreover, FastSMT applies a mixed methodology: it
uses reinforcement learning to explore the strategy space, and uses supervised learning to
synthesize one combined strategy using a training dataset created from the strategy space.
One important feature of reinforcement learning is the onlineness. Here, an online solver
refers to a solver constantly learning from its solving experiences at runtime. Such a solver,
e.g., MedleySolver may not require a pre-training stage.
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Table 2.1: Summaries of Existing Learning Solvers

Solver Problem Learning Methods Online Adaptive Transferable

SATzilla
algorithm
selection

supervised learning N N Y

MapleSAT branching MAB Y Y N

FastSMT
tactic

selection
reinforcement learning
& supervised learning

N N Y

NeuroCore branching supervised learning N Y Y

GQSAT branching reinforcement learning N Y Y

MachSMT
algorithm
selection

supervised learning N N Y

MedleySolver
algorithm
selection

MAB Y N Y

Goose
algorithm
selection

supervised learning N Y Y

AlphaSMT
tactic

selection
reinforcement learning N Y Y

Note: online: learning happens at solver runtime; adaptive: solving heuristics are adjusted accord-
ing to the status quo situation during the solving process of one input formula; transferable: the
model learned from the experience of solving certain formulas can be applied to other formulas.

Different tools listed above apply learning techniques to tackle different decision prob-
lems. For CDCL solvers, we have listed research that applies ML to improve heuristics
about branching, preprocessor selection, restart strategy, learned clauses deletion, and
solver parameter selection. For algorithm/tactic selection problems, the agent learns to pre-
dict the best algorithm for each instance. However, the granularity differs: while SATzilla,
MachSMT, and Goose select from start-to-end algorithms, FastSMT and AlphaSMT build an
algorithm from tactics.

Furthermore, some learning happens within the solving process of one single instance,
while some happen across instances. In the former scenarios, there are usually many
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decisions to make to solve one formula, and the agent is observing and learning from
early decisions and their effects. For example, there are tons of branching decisions to
make in the CDCL algorithm [21] for SAT problems. MapleSAT learns to make better
branching decisions from early experience of exploring different decision options. We call
a solver adaptive if it has this property of adjusting solving heuristics during the process
of solving one particular instance. Also, some solvers learn more general knowledge of
what strategies may work better for certain types of instances, and apply this knowledge
to future unseen formulas. We define a learning solver to be transferable if what it learns
can be applied across instances. SATzilla is a transferable learning solver. It learns which
algorithm performs the best for different types of formulas from a training set, and achieved
remarkable performance when applying this knowledge to formulas unseen in the training
set. Noted that adaptiveness and transferability are not contrasting with each other. For
example, MachSMT is both adaptive and transferable.

In this research, our goal is to build an RL-guided SMT solver, AlphaSMT, which adap-
tively selects tactics during the solving process. Because different tactics encode different
aspects of solver heuristics, learning to solve the tactic selection problem is more com-
prehensive than the research problems that improve one specific solver heuristic (as listed
in Section 2.4.1. The tactic selection problem is also more granular than the algorithm
selection problem (listed in Section 2.4.2). One early work in the field of learning to se-
lect SMT tactics is FastSMT. As mentioned earlier, its learning is twofold: it first uses
RL methods to find a set of fixed candidate strategies that each works well for certain
instances, and then synthesizes these strategies into one combined strategy based on the
performance data of exhaustively testing all candidate strategies on all training instances.
This combined strategy is their solution to a particular benchmark set. We argue that
AlphaSMT is more adaptive since it constructs strategies dynamically instead of choosing
from a set of fixed strategies. Moreover, AlphaSMT is more efficient in training as it uses a
deep MCTS framework that actively explores more promising paths instead of exhaustive
searching and testing.
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Chapter 3

Reinforcement Learning for SMT
Tactic Selection

In this chapter, we present a novel reinforcement learning framework for the adaptive
tactic selection problem for SMT solvers. Section 3.1 thoroughly examines how the tactic
selection problem is formalized as a Markov Decision Process (MDP) and what are the
characteristics of this formalization, and Section 3.2 proposed a reinforcement learning
framework for this formalized problem.

3.1 Framing the Tactic Selection Problem as a Markov

Decision Process (MDP)

3.1.1 Formalization

The Markov Decision Process (MDP) is a mathematical framework that formalizes the
process of an agent learning from interactions with the outside environment, in order to
achieve a goal. The MDP framework is abstract and flexible, leaving much design room
to accommodate various problems. This section explains how the tactic selection problem
is formalized as an MDP, mapping the elements in the tactic selection problem to MDP
components. A high-level illustration of the formalization is shown in Figure 3.1.
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Figure 3.1: Formalization of the tactic selection problem

Agent

The agent is both the learner and decision-maker in the MDP framework. In the tactic
selection context, the agent is supposed to make the tactic decision at given the current
solving situation at each step t, and learn to make better choices from the previous solving
experiences. Usually, we express the agent’s decision-making scheme in the form of a policy.
A policy is a mapping from states to probabilities of selecting each possible action.

Environment

In MDP, the environment is a broad and relative concept: anything that cannot be con-
trolled arbitrarily by the agent is considered part of the outside environment. In this
context, the environment is basically a base solver, which is able to apply the selected
tactic a to the formula φ and to collect the results of this application, e.g., formula trans-
formation, consumed time, extra feedback. The environment is also responsible for storing
all historical information if needed, e.g., prior tactics, accumulated time.
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Episode

The process of solving one instance, φ, is called an episode in the tactic selection problem.
As with industrial applications and in the SMT-COMP, there is an episode timeout, Ceps,
associated with each solving process: after a time of Ceps, the solver will give up solving
the instance. Consequently, every episode will end at a final time step T , either when the
instance is solved, or when the episode timeout is reached.

Action

Naturally, in the tactic selection problem, the actions are the tactics of choice. The action
space, i.e., the tactic set Tactics, is dependent on the theory/logic to which the benchmarks
belong. At each step of the episode, the agent chooses one action/tactic, a ∈ Tactics. The
agent can also assign a timeout value, Ctactic, for each tactic in selection: if the tactic
application is not completed after Ctactic, this tactic attempt would be forcefully given
up and the formula remains the same. A timeout scheme called time iterative deepening
[31] can be applied. This scheme exponentially increases the wall-clock timeout for tactics
throughout the whole solving process. This scheme encourages trying more tactics with
short timeouts at early stages, and then applies tactics with increasingly longer timeouts
when more information is collected during the solving process. Also, a tactic may not be
applicable to a certain formula, e.g., applying the SAT solving engine sat to a QF NIA

formula. In our modeling, an inapplicable tactic is considered a valid action, and just the
formula remains the same after the application.

State

A state should include all the information that makes a difference in the decision-making.
In the tactic selection problem, we identify two main sources of such information: the
current (transformed) formula φt and the solving history statistics. In the specific design,
the state at time step t is represented as:

st = (φt, rt,Ht)

where, rt is the solver running wall time from the beginning until the current step, and
Ht is the history of the prior actions [a0, a1, ..., at−1].

The episode ends when a terminal state is reached. In this formulation, a state is
a terminal one when (1) the current formula, φt, is trivially solved, either satisfiable or
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unsatisfiable; or (2) the accumulated solving time, rt exceeds the episode timeout, Teps.
We call the first case a winning terminal state, and the second case a losing one.

Reward and Return

The goal of the tactic selection problem is to sequentially make the best tactic choice so
that the instance is solved the most efficiently. This goal should be formalized in terms of
maximizing an episode return G, which is the sum of step-wise numerical rewards Rt. In
this formalization, the reward will be given only at the end of the episode. If the instance is
solved within the time limit, the agent will receive a positive reward; otherwise, the agent
will receive a negative reward:

Rt =


1 − rt(1−Rm)

Teps
, when st is a winning terminal state

0, when st is not a terminal state

−1, when st is a losing terminal state

where Rm specifies the minimum positive reward in a winning state (in this research

we pick 0.5), and rt(1−Rm)
Teps

is a time penalty. Generally, the longer time the agent takes to

solve the formula, the less reward it will receive at the end.

In summary, the tactic selection problem is formalized as an agent learning to select the
best tactic in each step of the SMT solving process, in order to solve each formula effectively
and efficiently. The agent learns by actively trying various tactics on different formulas in
different situations.

3.1.2 Characteristics of the Tactic Selection Problem

After the tactic selection problem has been clearly framed as an MDP, it can be solved using
reinforcement learning techniques. There exist tons of reinforcement learning algorithms,
each is effective for certain sorts of problems. This section carefully examines the nature and
features of the tactic selection problem, for the purpose of choosing the most appropriate
reinforcement learning algorithm.

A list of the problem features is as follows:
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• Associativity refers to whether the current situation affects the optimality of actions.
The tactic selection problem is an associative task, given that the most basic as-
sumption of the problem is that tactics that work best for one type of instance may
not work well for others. The goal of the tactic selection problem is to learn a policy
that maps the current solving situation to the best tactic.

• Tactic selection is a sequential decision-making problem, where actions have not
only immediate but also long-term consequences. There is a class of problems in
reinforcement learning called multi-armed bandits (MAB) problems, where the action
only has immediate rewards. It is not suitable for the tactic selection problem to be
modeled as an MAB problem, because every tactic in the sequence transforms the
formula, and all of them together determine the final solving result and time. It is
impossible to separate the influences between steps.

• The tactic selection problem is episodic. The process of solving one query, from the
start to the end, is viewed as one episode. Since a total timeout is defined for the
whole solving process, all episodes eventually terminate no matter what actions are
selected. Moreover, every episode usually deals with a different instance. Thus, we
can consider that each episode starts with a sample from a starting state set.

• In the MDP modeling, the state includes the current formula and some prior solving
statistics. Since there are infinite possible SMT queries, the state set for the tactic
selection problem is infinite.

• The number of relevant tactic options for a formula is relatively large. The action
space gets even much larger when we consider various parameter combinations for a
tactic. It usually takes multiple steps to solve an instance.

• A base solver, which executes the selected tactic, is an essential part of the environ-
ment, and can be used as a model to generate simulations. Depending on the base
solver, this model can be stochastic. One key difficulty of solving the tactic selection
problem is that the simulation transition from state to state may be slow because
the tactic application sometimes takes a very long time.

Overall, the tactic selection problem is a challenging reinforcement learning problem.
We cannot model it as a simplified MAB problem, because every tactic has long-term
impacts. The decision is associated with the current state and each episode starts with a
different starting state, i.e., the target instance. The infinite state space requires the use
of function approximation methods, both for prediction and for control. The large state
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space and the large action space together create a vast search space, making exhaustive
search methods infeasible. Exploring and exploiting more wisely are needed. A model for
simulating experiences, i.e., a base SMT solver, is available for the problem. However, the
slow transition between states prohibits the use of planning methods at solver run-time.
Planning methods can, however, be used in the training phase.

3.2 Reinforcement Learning Framework

AlphaSMT mainly adopts a reinforcement learning framework that integrates Monte Carlo
Tree Search (MCTS) and neural networks. The framework was introduced by DeepMind
to train a computer Go in [34]. Key changes have been made to adapt the AlphaZero

framework to the tactic selection problem. First, logical reasoning, i.e., a base SMT solver,
is used to provide feedback, in the means of state transition and final reward. Second,
because SMT solving is a time-critical task, MCTS, as the lookahead search, is used in the
training stage only, but not in validation or at solver runtime. Third, the feature engineer-
ing (e.g., action embedding) and reward mechanism (e.g., winning and losing conditions)
have been carefully redesigned to suit the needs of the tactic selection problem. The archi-
tecture of the neural network has also been dramatically altered, e.g., the addition of the
transformer. Lastly, the framework is modified for the single-agent tactic selection problem
instead of the two-player board game, Go.

In the following parts, Section 3.2.1 presents an overview of the proposed RL training
algorithm, and Section 3.2.2 and Section 3.2.3 give a more detailed introduction to the
two main components of the algorithm, i.e., Monte Carlo Tree Search and Deep Neural
Network, respectively. Section 3.2.4 describes how, after training, the agent works at solver
runtime.

3.2.1 Overview of the Reinforcement Learning Algorithm

The objective of our RL framework is to train an agent which makes good tactic choices
at each step of solving a particular instance. The agent is trained over benchmarks that
are representative of the future benchmarks of interests. The proposed RL framework for
the tactic selection problem is summarized in Figure 3.2.
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Figure 3.2: Reinforcement learning training framework in AlphaSMT

The key to reinforcement learning is a generalized policy iteration loop, which consists
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of two processes, i.e., policy evaluation and policy improvement. In each loop, the value
function is driven towards an evaluation of the policy, and the policy is then improved based
on the value function. Through iteratively learning from experiences of agent-environment
interaction, both the policy and the value function stabilize towards the optimal ones. In
this framework, the policy and the value function are combined into a neural network with
parameters θ, fθ. The neural network fθ is a function approximation of both the policy,
a mapping from state to action (tactic) probability distribution, and the value function,
a mapping from state to state value estimation. Specifically, p, v = fθ(s), where p is the
action probability distribution at s, and v is the value estimation, both at s.

The goal is to train a neural network fθ∗ that approximates the optimal policy and
value function. The training happens by iterations. In each iteration, multiple sampling
episodes are executed to collect neural network training samples. Each episode works on
one formula φ picked from the training benchmark set and sequentially applies tactics until
the formula is solved, or the episode time exceeds a threshold timeout. Optionally, a time
iterative deepening scheme is adopted. The tactic applied at each step is selected by a
lookahead search algorithm, MCTS. See Section 3.2.2 for a more detailed description of
the MCTS algorithm. The episode receives a final reward R at the end, according to the
terminal state status described in Section 3.1.1. This reward would be used as the sample
return for all steps in the episode. Specifically, at the end of an episode, for every step t in
this episode, one neural network sample dt = (st, πt, R) is generated, where st is the state
representation, and πt is the tactic probability distribution output by the MCTS. When
all sampling episodes of an iteration end, the neural network fθ will be trained upon the
training samples from all episode steps. After the training, a validation step follows: the
neural network fθi from iteration i will compete with the incumbent winner neural network
from the previous iterations, over the validation benchmark set. The winner is the one that
solves more instances in the validation set, or the one that solves faster if the two policies
solve exactly the same number of instances. This criterion is also the one adopted in the
SMT-COMP. Only the winning neural network will be used to guide future explorations.
The purpose of this validation step is to ensure steady policy progress through learning.

The rationale behind the whole RL framework is as follows: MCTS, which looks ahead
and makes better selections, is a policy improvement step; the sampling episodes, which
enable the neural network to make better value predictions, are doing the policy evaluation,
based on the logic feedback provided the base SMT solver. Thus, each training iteration
is considered as one policy iteration loop. Over iterations, the neural network is expected
to be closer to the optimal policy and the optimal value function.

27



3.2.2 MCTS Search Algorithm

MCTS is a decision-time planning algorithm, which helps make a better decision at the
current environment state through simulations. Simulated trajectories all begin at the
current environment state, and action values are estimated by averaging the returns of all
traversing trajectories. The accumulated action value estimates from past simulations will
guide future simulations toward more rewarding trajectories.

Specifically in this framework, MCTS serves as a lookahead search at each step t of
the sampling episodes. MCTS takes two inputs, i.e., the current state st and the neural
network fθ with parameters θ from the previous iteration. By accumulatively collecting and
updating value estimations from simulations starting at st, MCTS outputs a probability
distribution recommending tactics to apply at st, π(·|st) = αθ(st).

MCTS itself may be viewed as a self-play algorithm, exploring and exploiting different
combinations of tactics in a search tree. MCTS incrementally builds and expands a tree
rooted at st through simulation runs. In the search tree, every state node s has edges (s, a)
for all legal tactics a ∈ A(s), and every edge (s, a) stores a set of statistics:

{N(s, a),W (s, a), Q(s, a), P (s, a)},

where N(s, a) is the visit count, W (s, a) is the sum of action-values, Q(s, a) is the
mean action-value, and P (s, a) is the prior probability of selecting a at s. The search tree
information accumulates through all steps in a sampling episode, but is not shared between
iterations.

Every simulation run consists of four stages: select, expand, evaluate, and backup.

Select

Each simulation starts from the root node st, and traverses a path in the search tree until
reaching a leaf node sL at time-step L. At every step t′ between t and L, the transition
is made by a tree policy that chooses the action with the highest upper confidence bound
value Q(st′ , a) + U(st′ , a) [28],

U(s, a) = cpuctP (s, a)

√∑
bN(s, b)

1 + N(s, a)

where cpuct is a constant controlling the exploration level. This tree policy initially favors
actions with high prior probability P (s, a) and encourages exploration (where visit count
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N(s, a) is low), but asymptotically the policy prefers actions with high value estimation
Q(st′ , a).

When the simulation trajectory reaches the leaf node sL, the in-tree traverse ends, and
sL is considered to be selected.

Expand

If the selected leaf node sL is not a terminal one, the search tree is expanded by adding
the edges (sL, a), for all legal action a at sL.

Evaluate

Unlike traditional MCTS methods that use a rollout strategy, the proposed algorithm
evaluates the expanded edges (sL, a) using the input neural network fθ. The neural network
will evaluate the selected leaf node sL, and outputs p, v = fθ(sL) (see Section 3.2.3 for more
info on the neural network), where p is the prior probability distribution of tactics and v
is the estimated value at sL. Then the newly expanded edge (sL, a) would be initialised to

{N(sL, a) = 0,W (sL, a) = 0, Q(sL, a) = 0, P (sL, a) = pa}

Backup

The neural network output v would be considered as the final return of the simulated
trajectory (if the simulation reaches a terminal state, the real final reward R will be used
instead). This value would be backed up to update the action value of all the edges
that traversed by the simulation path prior to the simulation reaching sL, i.e., (s′t, a

′
t) for

t < t′ < L. Every simulation run is considered as a Monto Carlo trial. Specifically, all edge
statistics are updated as:

N(s′t, a
′
t) := N(s′t, a

′
t) + 1

W (s′t, a
′
t) := W (s′t, a

′
t) + v

Q(s′t, a
′
t) :=

W (s′t, a
′
t)

N(s′t, a
′
t)
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Every simulation runs through these four steps, and the MCTS runs a user-defined number
of simulations. After all simulations are completed, the MCTS outputs π = αθ(st), a
probability distribution of tactics at st. The probability of each tactic is proportional to
its exponentiated visit count:

π(a|st) =
N(st, a)1/γ∑
bN(st, b)1/γ

where γ is a temperature parameter controlling the level of exploration.

The MCTS output π is considered an improved policy over the prior distribution p,
which is predicted by the neural network.

3.2.3 Deep Neural Network

The deep neural network fθ with parameters θ takes as an input a state embedding x, and
outputs a tactic probability distribution p and a value estimation v, i.e., p, v = fθ(x).

The neural network input x is an embedding of the state s. As described in Section
3.1.1, at time step t, st = (φt, rt,Ht), where φt is the formula at step t, rt is the wall time
past since the start of the episode, and Ht is the prior action/tactic history. Then, xt is
derived from st:

xt = (Mt, rt,H
f
t )

where, Mt is a vector of feature statistics describing the current formula φt, such as
the number of expressions, the number of non-Boolean constants; Hf

t is a fixed-size prior
action list, recording the most recent N tactic attempts in sequence, where N can be
specified (padding will be applied if the current history is shorter than N).

The neural network output p is a probability distribution, representing the probability
of selecting each tactic at state s; v is a scalar, estimating the expected return from s.
The neural network is an integrated policy and value function, which maps the state to its
tactic selection recommendation and value estimation.

Architecture

The numerical part of the input, Mt and rt, are first concatenated and scaled into an input
vector I1 with the size of (|Tactics|+1). Then I1 is connected to a hidden layer L1,1. For the
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embedding of the recent prior action vector Hf
t , each action a in Hf

t is encoded as a vector
of size E, and a Transformer is used to encode the time series relationship among them.
Vector embedding is a very popular technique in the natural language processing (NLP)
field, which is usually used to encode words. This technique is adopted to encode tactics
in this research, in an effort to gain a deeper understanding of the ”natural language of
tactics” [4, 38]. We also use transformers [40], another technique prevalent in the NLP field,
to capture the time series relationship between tactic applications. Transformer is a deep-
learning model that processes sequential input data. It uses a self-attention mechanism to
deferentially weight each part of the input, in our case, each tactic a in Hf

t . Thus, Hf
t is

encoded by the action embedding and the transformer into a vector I2 of size E×N , where
E is the tactic embedding size and N is the size of Hf

t . Subsequently, I2 is connected to a
hidden layer L1,2. The concatenation of the outputs of L1,1 and L1,2 is then connected to
another hidden layer L2. Every layer applies dropout, batch normalization [12], and ReLU
activation.

The output of L2 is passed into two separate ”heads” for computing the policy p
and the value v, respectively. The policy head applies a fully connected linear layer that
outputs a vector of size equal to the number of candidate tactics |Tactics| and a softmax

function. The value head uses a fully connected linear layer to a scalar, and a tanh function
outputting a value in [−1, 1].

Figure 3.3 shows the architecture of the deep neural network proposed in this research.

Training Pipeline

As described earlier, in every sampling episode e, one training sample, de,t = (st, πt, R) will
be recorded at each time step t, where πt is the tactic probability distribution output by
MCTS, and R is the episode final reward. Thus, in every iteration i, the training dataset
Di consists of all de,t, where e is a sampling episode within the iteration i, and t is a step
within the episode e.

Noted that if a formula has never been solved in previous attempts, either in MCTSs
or in sampling episodes, the training samples from its associated episodes will not be used
for neural network training. The reason is that there is nothing to learn if a formula is
unsolvable by any combination of the available tactics. Including samples from unsolvable
formulas can discourage potentially good strategies.

In each iteration, the aim of the neural network training is to adjust the neural network
parameters θ, so that the differences between the neural network predicted p and the MCTS
output π, and between the predicted v and the recorded R, are minimized. Specifically,
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Figure 3.3: Deep neural network architecture

gradient descent is used to tune the parameters θ to minimize a loss function l over the
training dataset. The loss function l is the sum of a mean square error of the value
estimation, a cross-entropy of the policy, and a regularization term:

l = (z − v)2 − π⊤ logp + c∥θ∥2

where c is a parameter controlling the level of L2 weight regularization.

3.2.4 Runtime Design

Lookahead search is not applied at runtime. At each time step t, the trained neural
network fθ serves as the policy, outputting a tactic probability p. The tactic with the
highest probability is chosen for at. This runtime framework is shown in Figure 3.4.

Specifically, upon each formula φ0 to solve, the neural network fθ iteratively selects the
expected best tactic, until either the formula is solved or the whole solving process times
out. Starting from the initial state s0 = (φ0, 0, ()), AlphaSMT derives x0 = (M0, 0,H

′
0)

from s0, and calculates p as p, vs0 = fθ(x0). The tactic at the first step, a0, is selected as
a0 = argmaxa∈Tactics pa. A base solver then applies a0 to φ0, causing the state transition
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into s1 = (φ1, r1, (a0)). If s1 is not terminating, a tactic a1 is then picked by the probability
output of fθ(x1), and the state moves into s2. This process of selecting a tactic will repeat
until a terminal state, sT , is reached.

Furthermore, there is always an overhead cost to extract the state features and call
the neural network. Some easy instances can be quickly solved, regardless of the choice
of tactic combinations. Thus, we optionally use a pre-solver scheme, i.e., trying a selected
pre-solver on the instance for some short time period, before incurring the neural network.
This scheme helps save the overheads for easy instances.

Figure 3.4: AlphaSMT at runtime
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Chapter 4

Experiment Design and Results

4.1 AlphaSMT Specifications

AlphaSMT1 is an adaptive RL-guided SMT solver, built based on the framework proposed in
Section 3.2. For each instance, AlphaSMT sequentially and adaptively selects the expected
best tactic to apply, for the purpose of efficiently solving the satisfiability of the instance.

AlphaSMT is implemented in Python 3.7. It interacts with the base solver Z3 using
Z3 Python APIs. Actions are selected from Z3 built-in tactics, and formula features are
calculated by Z3 built-in probes [7]. The implementation of the RL framework has greatly
benefited from the work of [39]. Within the framework, the neural network engine part is
built with the assistance of PyTorch.

AlphaSMT has a pre-training stage. The general procedure is described in Section 3.2.
The decision agent of AlphaSMT, a neural network, is trained over iterations. In each
iteration, training samples are collected from running sampling episodes, one episode for
one formula in a training benchmark set. Episodes in one iteration are executed in parallel,
and the neural network is trained after all episodes are complete. At the end of each
iteration, the trained neural network is validated on a validation benchmark set to ensure
progress. Due to practical reasons, we set a step limit Kmax for sampling episodes: if
an instance is not solved within Kmax tactic attempts, the episode will end and receive a
losing reward. The reason is that an episode may take an extremely large number of steps
if the only losing condition is timeout. Some tactics return very quickly. Since MCTS is

1The solver source code, experiment settings, and result datasets are available at https://github.

com/JohnLyu2/AlphaSMT.
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executed at each step, without a step limit, some episodes would take an extremely long
time to complete.

The general architecture of the deep neural network is described in Section 3.2.3. An
embedding size of 128 is used to encode the tactic actions. The sizes of both L1,1 and L1,2

are 64, and the size of L2 is 32. A dropout rate of 0.3 is used.

At runtime, the user can choose to run the pre-solver, Z3, for a specified time period.
Such a pre-solving period helps reduce the overheads caused by the feature extraction and
neural network for relatively easy instances.

4.2 Experiment Setup

AlphaSMT is evaluated over three benchmark sets, i.e., CInteger2, a quantifier-free non-
linear integer arithmetic (QF NIA) set, LassoRanker3, a quantifier-free non-linear real
arithmetic (QF NRA) set, and Sage24, a quantifier-free bit-vector (QF BV) set. These
three datasets all come from the official SMT-LIB benchmark library [2]. Table 4.1 sum-
marizes their statistics.

2https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF NIA/-/tree/master/20170427-
VeryMax/CInteger

3https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF NRA/-/tree/master/LassoRanker
4https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF BV/-/tree/master/Sage2
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Table 4.1: Experimental Benchmark Dataset Statistics

CInteger LassoRanker Sage2

Logic QF NIA QF NRA QF BV

Size(#Instances) 1818 821 7602

#Assertions

Ave. 26.8 18430.1 330.5

Max. 167 1539363 3944

Min. 5 197 1

#Expressions

Ave. 1439.1 67300.4 1845.3

Max. 69582 4966570 168350

Min. 98 772 52

#Variables

Ave. 154.9 10298.3 278.3

Max. 7399 868840 14155

Min. 12 110 2

We divided each benchmark set into training, validation, and testing sets. We select
100 instances for training and 100 for validation from each benchmark set. These instances
are randomly selected from a relatively hard subset of the whole benchmark set. All the
remaining instances constitute the testing set (due to the large size of Sage2, we only
randomly picked 1000 instances from the remaining set for testing). In each iteration, the
neural network is trained on the data generated from the training instances, and validated
on the validation instances. After all the training iterations, the trained neural network
will act as the core of AlphaSMT, to be evaluated on the testing set.

All the experiments use a 300-second episode timeout. For each experiment, the training
iterates 10 times. In each iteration, we ran one sampling episode for each instance in the
training set. The action space Tactics and the selected formula features M (used for the
neural network input) for experiments are shown in Table 4.2 and Table 4.3, respectively.
We design experiments with different fixed tactic timeouts (45s, 60s, 90s), and with the
iterative time deepening scheme. The window size of Hf for all experiments is set to
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6. After training, the AlphaSMT solver is tested both with and without a pre-solver. For
each benchmark set, the performance of AlphaSMT solvers with different configurations are
compared with the performance of the original Z3. All parameters in Z3 (both for the base
solver in AlphaSMT and the original one for comparison) are set to default. We do not
run tests with different Z3 random seeds since empirical analyses show that random seeds
(both in the module sat and smt) have negligible effects on solving performance in terms
of these tested benchmark sets.

Table 4.2: Candidate Tactics (Action Space) for Experiments in Different SMT Logics

Logic Candidate Tactics

QF NIA
simplify, smt, bit-blast, propagate-values, ctx-simplify,
elim-uncnstr, solve-eqs, qfnia, lia2card, max-bv-sharing,
nla2bv, qfnra-nlsat, cofactor-term-ite

QF NRA
simplify, smt, bit-blast, propagate-values, ctx-simplify,
elim-uncnstr, solve-eqs, qfnra, lia2card, max-bv-sharing,
nla2bv, qfnra-nlsat

QF BV

simplify, smt, bit-blast, bv1-blast, solve-eqs, aig,
qfnra-nlsat, sat, max-bv-sharing, reduce-bv-size,
purify-arith, propagate-values, elim-uncnstr,
ackermannize bv, qfbv
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Table 4.3: Formula Features M included in the Neural Network Inputs for Experiments in
Different SMT Logics

Logic Formula Features (Z3 Probes)

QF NIA

is-unbounded, arith-max-deg, arith-avg-deg, arith-max-bw,
arith-avg-bw, is-qfnra, is-qfbv-eq, memory, size,
num-exprs, num-consts, num-bool-consts, num-arith-consts,
num-bv-consts, is-propositional, is-qfbv

QF NRA

is-unbounded, arith-max-deg, arith-avg-deg, arith-max-bw,
arith-avg-bw, is-qfnia, is-qfbv-eq, memory, size,
num-exprs, num-consts, num-bool-consts, num-arith-consts,
num-bv-consts, is-propositional, is-qfbv

QF BV
is-pb, is-qflia, memory, size, num-exprs, num-bool-consts,
num-bv-consts, is-propositional

The training and testing tasks were run on the Graham cluster provided by the Digital
Research Alliance of Canada (alliancecan.ca). 15 GB of memory per node is requested for
all tasks.

4.3 Experimental Results in QF NIA

Table 4.4 summarizes the experimental results on the QF NIA benchmark set CInteger.
The solving time statistics are based on instances that can be solved by all solvers in the
table (same for the results in Table 4.5). Figure 4.1a and Figure 4.1b show the results of
the solver without and with a 10-second Z3 pre-solver, respectively. All the listed versions
of AlphaSMT solvers are trained on a 100-instance set, validated on a 100-instance set, and
evaluated on a 1618-instance set.

It is obvious that all AlphaSMT solvers perform significantly better than the default Z3
solver. AlphaSMT solvers solve around 14% more instances than Z3. Among the AlphaSMT

solvers with different configurations, the solver with a 90-second tactic timeout and a 10-
second pre-solver time solves the most instances (1286/1618 instances); however, the lead
ahead of other AlphaSMT solvers is minor (within 2% of the total testing instances). We
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observed a trend that solvers with longer tactic timeout solve more formulas. Also, the
time-iterative-deepening solvers are also among the best ones.

It also has been observed that the pre-solver tends to accelerate the solving process.
The time-iterative-deepening AlphaSMT solver equipped with a 10-second pre-solver has the
fastest average solving speed. The figures show that the lines for the fixed-tactic-timeout
AlphaSMT solvers all have a zigzagged shape, while the lines for time-iterative-deepening
solvers are smoother, which is an indication that the time-iterative-deepening scheme makes
better use of time.

Table 4.4: Experimental Results on CInteger in terms of Formulas Solved and Solving Time

Formulas Solved Solving Time

Number Percentage Ave. (s)
Speedup Percentile against Z3

90th 50th 10th

AlphaSMT tt45 pre0 1262 78.0% 28.4 0.04× 0.63× 22.47×

AlphaSMT tt45 pre10 1261 77.9% 19.4 0.35× 1.02× 2.64×

AlphaSMT tt60 pre0 1250 77.3% 21.4 0.28× 0.63× 1.69×

AlphaSMT tt60 pre10 1277 78.9% 17.1 0.73× 1.17× 1.55×

AlphaSMT tt90 pre0 1286 79.5% 18.8 0.08× 0.56× 6.85×

AlphaSMT tt90 pre10 1288 79.6% 15.9 0.77× 1.15× 2.43×

AlphaSMT TID pre0 1272 78.6% 19.3 0.06× 0.43× 8.22×

AlphaSMT TID pre10 1270 78.5% 15.5 0.67× 1.02× 3.03×

Z3 1126 69.6% 23.0 / / /

Note: (1) the first column describes the solver configurations: tt refers to the tactic timeout and
TID refers to the time-iterative-deepening tactic timeout scheme. pre denotes the pre-solver time. For
example, AlphaSMT tt45 pre0 is the AlphaSMT solver that uses a tactic timeout of 45 seconds and
applies no pre-solver; (2) the statistics of solving time are based on instances that can be solved by all
listed solvers.
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Figure 4.1: The cactus plot for the experimental results on the benchmark set CInteger
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4.4 Experimental Results in QF NRA

Table 4.5 summarizes the experimental results on the QF NRA benchmark set LassoRanker.
Same with the experiments on CInteger, all AlphaSMT solvers are trained on a 100-instance
set and validated on a 100-instance set. There are 621 instances in the testing set.

Table 4.5: Experimental Results on LassoRanker in terms of Formulas Solved and Solving Time

Formulas Solved Solving Time

Number Percentage Ave. (s)
Speedup Percentile against Z3

90th 50th 10th

AlphaSMT tt45 pre0 425 68.4% 31.3 0.03× 0.10× 2.62×

AlphaSMT tt45 pre10 428 68.9% 11.3 0.31× 0.84× 0.99×

AlphaSMT tt60 pre0 435 70.0% 37.6 0.02× 0.09× 2.75×

AlphaSMT tt60 pre10 445 71.7% 12.8 0.27× 0.81× 0.97×

AlphaSMT tt90 pre0 461 74.2% 47.2 0.02× 0.08× 2.61×

AlphaSMT tt90 pre10 471 75.8% 5.0 0.94× 1.09× 1.30×

AlphaSMT TID pre0 464 74.7% 51.5 0.02× 0.11× 2.30×

AlphaSMT TID pre10 473 76.2% 7.6 0.81× 1.03× 1.27×

Z3 262 42.2% 11.4 / / /

Note: (1) the first column describes the solver configurations: tt refers to the tactic timeout and
TID refers to the time-iterative-deepening tactic timeout scheme. pre denotes the pre-solver time. For
example, AlphaSMT tt60 pre10 is the AlphaSMT solver that uses a tactic timeout of 60 seconds and a
pre-solver time of 10 seconds; (2) the statistics of solving time are based on instances that can be solved
by all listed solvers.

The general patterns are similar to but more exaggerated than the ones observed in
the QF NIA logic. In this harder benchmark set, the best AlphaSMT solver solves 76.2%
(473/621) of the total testing instances, while Z3 can only solve 42.2% (262/621). Figure
4.2a and Figure 4.2b compare the performance of all AlphaSMT solvers and Z3. We first
observed that very few instances are solved by Z3 after 20 seconds, while for AlphaSMT,
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the turning points appear much later. We have also observed that longer tactic timeout
helps solve more benchmarks and the pre-solver significantly expedites the average solving
speed. The AlphaSMT solver with the time-iterative-deepening scheme and the pre-solver
solves more instances than all other solvers with a competitive speed.
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Figure 4.2: The cactus plot for the experimental results on the benchmark set LassoRanker
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4.5 Experimental Results in QF BV

For the QF BV benchmark set Sage2, we compared the performance of AlphaSMT and
Z3 on a 1000-instance testing set. The AlphaSMT solver under test has a tactic timeout
of 90 seconds and a pre-solving time of 10 seconds. Figure 4.3 shows the evaluation
results. We found that AlphaSMT solves more instances than Z3 (AlphaSMT: 753/1000;
AlphaSMT: 727/1000), while Z3 solves faster on average (for instances that solved by both
solvers, AlphaSMT average time: 38.9 seconds; Z3 average time: 32.4 seconds). Due to time
constraints, we only tested AlphaSMT for Sage2 with one specific configuration. Fine-tuning
AlphaSMT configurations could potentially boost its speed.
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Figure 4.3: The cactus plot for the experimental result on the benchmark set Sage2

4.6 Tactic Selection Insights from AlphaSMT

In this section, we look into what exact strategies that AlphaSMT uses to solve testing
benchmarks; these strategies help explain the performance of AlphaSMT and may provide
tactic selection insight for practitioners. AlphaSMT uses a trained neural network to se-
quentially select a tactic to apply during the solving process. This tactic selection depends
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on a combination of factors, i.e., the current formula features, the tactic application his-
tory, and the solving time already spent. Although it is hard to interpret all the neural
network’s decision criteria, we have extracted the effective strategies that AlphaSMT uses
for each benchmark set, shown in Table 4.6. We define an effective strategy as a sequence
of tactics that has successfully solved certain benchmarks in the test set, and each tactic
in the sequence effectively rewrites the formula (tactics that fail or timeout are excluded).

Table 4.6: Effective Strategies used by AlphaSMT during Testing

Benchmark Set Effective Strategies

CInteger

[qfnra-nlsat]

[qfnia]

[smt]

[solve-eqs, qfnia]

LassoRanker

[qfnra-nlsat]

[smt]

[propagate-values, smt]

[solve-eqs, smt]

[solve-eqs, qfnra-nlsat]

[propagate-values, solve-eqs, smt]

[propagate-values, solve-eqs, qfnra-nlsat]

Sage2

[qfnra-nlsat]

[smt]

[qfbv]

[purify-arith, qfbv]

[purify-arith, max-bv-sharing, solve-eqs, smt]

We found that there are not many unique effective strategies for each benchmark set: 4
for CInteger, 7 for LassoRanker, and 5 for Sage2. Also, every effective strategy is not long
(at most 4 steps) and only a small number of tactics appear in all the effective strategies.
The improved performance of AlphaSMT may stem from its ability to (1) sequentially
choose the appropriate next tactic, and (2) adaptively switch to the next-best strategy
after one fails or timeouts. We also observed that AlphaSMT uses much fewer tactics and
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shorter strategies in the testing phase than in the training. The reason is that in testing all
decisions are purely made by the trained neural network, while in training the decisions are
made jointly by the neural network and the Monte Carlo Tree Search (MCTS) step. The
MCTS helps find better next-step tactics tailored to the status quo formula by lookahead
planning. However, such lookahead steps are too expensive to use in the testing phase, as
the solving process is time critical. Our future emphasis would be to improve the runtime
framework so that it can explore a larger and more complex space without the expensive
lookahead costs.

4.7 Result Summaries

In the training phase, AlphaSMT’s performance on the validation set is usually dramatically
improved in the first several iterations and becomes more stabilized in the later iterations.
It shows that AlphaSMT is learning towards an optimal policy within and across training
iterations. As for the testing results, AlphaSMT solves substantially more instances than its
base solver Z3, for all the tested logics. This achievement is impressive since the RL only
selects and orders the existing built-in tactics. The improvement is largest in the QF NRA

benchmark set: AlphaSMT solves 80.5% more instances in LassoRanker than Z3.

AlphaSMT configurations affect the performance; the difference is also more obvious
in the QF NRA results. In general, longer tactic timeout help solve more instances, and
the time-iterative-deepening works well. This finding meets our expectations, because the
tactic timeout constraints the power of each tactic. However, the differences in the number
of solved formulas are not big among all AlphaSMT solvers, which suggests that all listed
AlphaSMT solvers effectively explored the searching space during the training. We expect
that AlphaSMT will work well on relatively hard benchmark sets as long as there exists
improvement space in terms of tactic selection.

On the other hand, having a pre-solving stage definitely improves the solving speed,
especially for easy instances. This outcome is expected, as the rationale behind the pre-
solver is to save the overheads for simple instances. Furthermore, the AlphaSMT solvers were
trained on relatively harder benchmarks, and the reward mechanism mainly encouraged
solving more instances. They are not tailored for fast speed for easy instances. We also
observed the zigzagged shape for lines of the fixed-tactic-timeout solvers in the cactus plots.
Each turning point represents a shift of tactics after a tactic timeout. The time-iterative-
deepening scheme helps smooth the curve and is expected to perform well once we have a
longer or shorter total timeout for the solving process.
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When looking into the exact strategies that AlphaSMT applies, we found that there
are not many unique effective strategies used by AlphaSMT. The current performance
supremacy of AlphaSMT over Z3 may come from AlphaSMT’s ability of (1) sequentially
choosing the appropriate next tactic, and (2) adaptively switching to the next-best strat-
egy after one fails or timeouts. Future work will explore how to explore more strategy
space at runtime.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

This thesis research starts with raising the question of tactic selection: for each SMT
instance to solve, how to craft a good strategy by sequencing tactics? To answer this
question, we first formalize this problem as a reinforcement problem (RL) and propose
to solve the problem using a RL framework that combines deep Monte-Carlo Tree Search
(MCTS) and logical reasoning. Then, an SMT solver, AlphaSMT, is built based on this
proposed framework. The evaluation of AlphaSMT on three SMT benchmark sets shows
positive results that the RL guided strategy solves significantly more benchmarks than the
default strategy.

The main findings and contributions of this research are as follows:

• This thesis formally brings up the tactic selection problem for SMT solving. The
problem shares similarity with the algorithm selection problem, but with more flex-
ibility: the solving strategy can be built by sequentially choose a tactic to apply,
instead of only choosing one start-to-end algorithm.

• The tactic selection problem is rigorously formalized as a Markov Decision Process in
the RL context. The key RL elements, e.g., agent, environment, action, state, reward,
are clearly defined in the tactic selection problem. In essence, the formalization
describes the iterative process of a decision agent interacting with a base SMT solver
to learn how to solve the formula the most effectively and efficiently.
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• We propose an RL framework that combines deep MCTS and logical reasoning for
the tactic selection problem. In the framework, a deep neural network is served as
both the value function and the policy, evaluating state-action pairs and making
the tactic decision. The neural network is trained on training samples collected from
sampling solving episodes. The sampling episodes use MCTS as a lookahead planning
step, and receive feedback from the base SMT solver. After iteratively trained on a
training benchmark set, the neural network is expected to make wise tactic choices
for a specialized type of SMT tasks.

• An RL-guided adaptive SMT solver, AlphaSMT was built based on the proposed
framework. We evaluated its performance on three benchmark sets: CInteger, a
QF NIA set, LassoRanker, a QF NRA set, and Sage2, a QF BV set. Solvers with
various configurations (tactic timeout time, pre-solver time...) were tested. We found
that AlphaSMT solved significantly more instances than its base solver Z3, with an
improvement of 10% on CInteger and of 34% on LassoRanker. It was also observed
that a reasonably longer tactic timeout helped solve more instances and a pre-solver
setting accelerated the solving process for many easy instances.

5.2 Limitations

Due to time constraints, we have only tested AlphaSMT in the SMT logics of QF NIA,
QF NRA, and QF BV. We plan to test it on a larger scale covering more benchmark
sets and logics in the future, to demonstrate its robustness and generality. Also, we only
verbally argue our method’s superiorness over FastSMT, but have not provided relevant
experimental results to prove this argument. Such evaluation experiments are also on our
to-do list.

5.3 Future Work

Reinforcement learning for tactic selection is a rich topic, and the current version of
AlphaSMT is just the groundwork on this idea. The tactic selection problem can be viewed
as a specific program synthesis problem, which aims to automatically build an algorithm
for a given problem. The program synthesis problem has been considered a holy grail
of the field of Computer Science and one of the most central problems in the theory of
programming [26]. Advances in the tactic selection problem could potentially lend insights
and significantly help the more general program synthesis problems.
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Some specific future directions are as follows:

• AlphaSMT is currently built upon Z3, and only selects tactics provided by Z3. Combin-
ing tactics from different solvers seems to be a more powerful idea, and the problem
could be considered a mixture of algorithm selection and tactic selection.

• There are some prefixed parameters in AlphaSMT, e.g., pre-solver time, the timeout
structure in time iterative deepening. These parameters can also be learned during
training and be picked dynamically upon inference.

• Now AlphaSMT is not an online solver, since the policy does not change at runtime.
The current training process involving the MCTS lookahead step is too expensive to
apply at solver runtime. We are exploring a new runtime design to make AlphaSMT

an online solver, which also learns upon inference.

• The tactic selection problem is now modeled as a sequential decision problem. In
this modeling, once a formula is transformed by a tactic, there is no means to get
back to the original formula. For example, if an NLA formula is converted to a BV
formula using the Z3 tactic nla2bv, AlphaSMT cannot work on the NLA formula any
longer. A different strategy structure could potentially provide more flexibility on
this issue. Parallelism is another direction of future work.

• Currently, each tactic is treated as a ”blackbox” and the reinforcement learning is not
tied intimately to the solver’s inner workings. Little internal information is shared
between steps. For example, if a tactic is timed out, the formula remains the same
and no solving information has been passed over; however, valuable insight could
have been learned during this failed process. How to better leverage internal solver
information is worth exploring.

• AlphaSMT now only works with big reasoning engines provided by Z3, such as Gaus-
sian Elimination, Tseitin transformation, SAT solvers. Most of these reasoning steps
are modularizable. Future work can explore working with lower-level aspects of the
tactics or even creating new tactics.
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