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Abstract

Anomalies have proven to be an important tool for unraveling the enigmatic properties
of strongly-coupled condensed matter systems. Especially, it provides powerful constraints
on the emergibility problem, i.e., whether a quantum phase or phase transition can emerge
in a many-body system. In this thesis, the focus is mainly on (2 + 1)-dimensional bosonic
systems, and we explain how to identify the anomaly of various interesting systems in
this category. We then apply these results to study the emergibility of a class of quantum
critical states known as Stiefel Liquid, and discuss several interesting realizations uncovered
using results from anomaly.

First of all, for a (2 + 1)-d lattice spin system, we derive the topological partition
functions that characterize the Lieb-Schultz-Mattis constraints with Gs ×Gint symmetry,
where Gs is an arbitrary space group in two spatial dimensions, and Gint is any internal
symmetry whose projective representations are classified by (Z2)

k with k an integer. This
LSM anomaly will be matched with the anomaly of IR states. We then calculate the
anomaly of several IR states. One class of IR states we discuss is the recently-proposed
Stiefel Liquid, with the well-known Deconfined Quantum Critical Point (DQCP) and U(1)
Dirac Spin Liquid (DSL) unified as two special examples. We introduce the description
of Stiefel Liquid using non-linear Sigma Model and explain how to get the anomaly from
such description. Another class of IR states we consider is (2 + 1)-d symmetry-enriched
topological order. And we explain the framework of getting the anomaly of topological
order with a general symmetry action by identifying a (3 + 1)-d topological quantum field
theory whose boundary hosts the original (2 + 1)-d symmetry-enriched topological order.

Finally, we apply these results and the framework of anomaly-matching to understand
the emergibility of Stiefel Liquid, including DQCP, DSL, and the so-called non-Lagrangian
Stiefel liquid. These states can emerge as a consequence of the competition between a
magnetic state and a non-magnetic state. We identify all possible realizations of these
states on systems with SO(3) × ZT2 internal symmetry and either p6m or p4m lattice
symmetry. Many interesting examples are discovered, including a DQCP adjacent to a
ferromagnet, stable DSLs on square and honeycomb lattices, and a class of quantum critical
spinquadrupolar liquids of which the most relevant spinful fluctuations carry spin-2. In
particular, there is a realization of spin-quadrupolar DSL that is beyond the usual parton
construction.
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Chapter 1

Introduction

1.1 Exotic Quantum Phases of Matter

Understanding quantum phases of matter and phase transitions is the central area of study
in condensed matter physics. A groundbreaking result in this field is the Landau theory,
which characterizes different phases and phase transitions according to whether symmetries
are spontaneously broken or not [5]. However, modern condensed matter physics has
revealed numerous intriguing phases and phase transitions that cannot be explained by
Landau’s paradigm [6, 7]. These phases and transitions often involve emergent low-energy
degrees of freedom, and many theories, especially strongly interacting field theories, have
been proposed to explain their kinematics and dynamics. As a result, the study of these
systems has become a hotbed of exciting research in the field of condensed matter physics.

In particular, quantum spin liquids [8–10] are exotic states of matter that arise in certain
materials at low temperatures. In these materials, the electrons responsible for magnetism
(known as spins) do not settle into the usual ordered patterns that are observed in most
magnets. Instead, the spins remain disordered even at very low temperatures, and exhibit
long-range entanglement and other unusual quantum properties.

Quantum spin liquids are of great interest to physicists because they challenge our
understanding of how materials behave at the quantum level. They also have potential
applications in quantum computing and other advanced technologies. However, they are
still not well understood, and much of their behavior remains a mystery. This suggests that
to understand the behavior of these exotic states of matter, new concepts and theoretical
frameworks are necessary and even unavoidable. In this thesis, we focus on (2 + 1)-d
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bosonic quantum many-body systems, with an eye toward its application in understanding
exotic phenomena surrounding quantum spin liquids and quantum magnetism.

From the theoretical point of view, quantum states with low-energy excitations de-
scribed by well-defined quasiparticles, especially Landau symmetry-breaking orders, are
relatively well-understood because of the weakly interacting nature of these theories in the
IR. However, understanding quantum states that remain strongly coupled even at the low-
est energy scale and therefore do not admit descriptions in terms of quasiparticles remains
a great challenge theoretically.

When dealing with such states, one usually starts from a non-interacting mean-field
theory and introduces fluctuations that are weak at some energy scale. Fluctuations may
grow under renormalization group (RG) flow, in which case the low-energy theory will
eventually become strongly coupled. Here, the mean-field theory can be formulated in
terms of the original physical degrees of freedom (DOFs), such as spins, as is done for
Landau symmetry-breaking orders. It can also be formulated in terms of more interesting
objects called partons, which are “fractions” of local DOFs, examples of which include
composite bosons/fermions in fractional quantum Hall effects and spinons in spin liquids.
Fluctuations on top of a parton mean-field theory typically lead to a gauge theory, which
forms the theoretical basis of a large number of exotic quantum phases in modern condensed
matter physics. However, it is natural to envision that such perturbative arguments may
fail to give quantitative or even qualitative predictions, and we may need fundamentally
new tools to tackle systems beyond the perturbative regime.

1.1.1 Topological Order

One canonical example of such exotic states is topological order. Topological orders are
interesting gapped quantum phases of matter beyond the conventional paradigm, and their
discovery is one of the main forces that revolutionized modern quantum many-body physics
[7]. Instead of being characterized by local order parameters associated with symmetries,
in (2 + 1)-d they are characterized by anyons, quasiparticle excitations with nontrivial
statistics that may be neither bosonic nor fermionic. The physical properties of a topo-
logical order are nicely summarized using the language of tensor category [11–14], and in
particular in (2 + 1)-d bosonic systems the data of anyons forms an elegant mathemati-
cal structure called unitary modular tensor category (UMTC). In this thesis, we focus on
bosonic topological orders in (2+1)-d, and will use the terms topological order and UMTC
interchangeably.
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1.1.2 Stiefel Liquid

Another interesting class of states we consider is called Stiefel Liquid (SL), proposed in
Ref. [15]. The Stiefel Liquid is proposed to describe the quantum criticality resulting from
the competition between magnetic and non-magnetic orders in quantum spin systems.
Their effective theories are formulated in terms of a non-linear Sigma Model (NLSM)
defined on a target space SO(N)/SO(4) (N ⩾ 5), called Stiefel manifold, supplemented
with a Wess-Zumino-Witten (WZW) term at level k (k 6= 0) [16, 17]. We refer to an
SL labeled by integers (N, k) as SL(N,k), and SL(N,k=1) may also be simply written as
SL(N). Stiefel Liquids are supposed to be an infinite family of quantum critical states. The
well-known deconfined quantum critical point (DQCP) [18–21] and U(1) Dirac spin liquid
(DSL) [22–24] are unified as the two simplest SLs, with N = 5 and N = 6, respectively.
SL(N⩾7) are conjectured to be non-Lagrangian, i.e., they are so strongly interacting, such
that they cannot be described by any weakly-coupled continuum Lagrangian at any energy
scale. Such non-Lagrangian states are beyond the paradigm of parton gauge mean-field
theory familiar in the study of exotic quantum liquids in condensed matter physics.

1.2 Symmetry and Anomaly

The classification and understanding of exotic quantum phases does not necessarily depend
on the presence of symmetry. However, it is well-known that symmetry can largely enrich
the story of exotic quantum phases, leading to the concept of symmetry-enriched quantum
phases, and there is rich interplay between exotic quantum phases and symmetry. For
example, a non-trivial aspect of symmetry actions on a topological order is symmetry frac-
tionalization, in the sense that symmetry actions on anyons may not form a representation
of the symmetry group, but a projective representation. So we sometimes say that anyons
carry “fractional” quantum numbers.

To be more specific, by now it is well appreciated that the universal long-distance and
low-energy physics of most (if not all) quantum many-body systems are specified by two
levels of data. The first level is characterized by what we refer to as the emergent order. In
the language of renormalization group (RG), the emergent order is described by properties
of the RG fixed point corresponding to this system, which are independent of the exact
microscopic symmetry. For example, the RG fixed point corresponding to gapped states
are described by certain topological quantum field theory (TQFT), or variants of it. Short-
range entangled (SRE) states, i.e., states smoothly connected to a product state without
quantum entanglement, are related to a trivial TQFT. In contrast, long-range entangled
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Figure 1.1: If two states have the same emergent order and exact microscopic symmetry,
and if they can be smoothly connected when symmetry-breaking perturbations are allowed,
but are necessarily separated by a phase transition when the relevant symmetries are
preserved, then these states are said to have symmetry-protected distinction.

gapped states, which cannot be smoothly connected to product states, correspond to some
nontrivial TQFT. On the other hand, gapless states have different emergent orders, and
many of their RG fixed points are described by a conformal field theory (CFT). States
described by different RG fixed points are distinct at the level of their emergent orders.

Even if two states have the same emergent order (RG fixed point), their exact mi-
croscopic symmetries provide a second level of data that may distinguish them. Two
states with the same emergent order but different exact microscopic symmetries are con-
sidered distinct. If they have the same emergent order and the same exact microscopic
symmetries, they may still have symmetry-protected distinction: they are not smoothly
connected if certain symmetries are imposed, while they are if these symmetries are bro-
ken (see Fig. 1.1). Two SRE states with symmetry-protected distinction are referred
to as different symmetry-protected topological phase (SPT), two topological orders with
symmetry-protected distinction are referred to as different symmetry-enriched topological
states (SETs), and two quantum critical states with symmetry-protected distinction are
referred to as different symmetry-enriched criticality.

Given some emergent order and some exact microscopic symmetries, different real-
izations can be characterized by their symmetry embedding pattern (SEP), i.e., how the
microscopic symmetries embed into the emergent symmetries of low-energy DOFs. This
characterization has a number of advantages. First and most fundamentally, it captures
the symmetry actions in an intrinsic and direct way. This is in contrast to the more com-
mon treatment of emergent gauge theories in condensed matter physics (e.g., for DQCP
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and DSL), where one first considers the symmetry actions on gauge non-invariant operators
(such as spinons) and then converts them into actions on local operators, which is indirect
and sometimes complicated, especially when there is a (2 + 1)-d U(1) gauge field where
the quantum numbers of the local monopole operators cannot be identified with those
of any gauge-invariant composite of the matter fields, and when some symmetries act as
duality between different gauge-theoretic formulations of the same critical state. Second,
especially in the context of Stiefel Liquid, using this characterization we can easily read
off the symmetry-breaking patterns of the ordered phases adjacent to the exotic quantum
criticality. This information provides valuable guidance on where to look for these quan-
tum critical states: if the corresponding ordered phases are found in a material or model,
then exploring the vicinity of the phase diagram may result in the critical state. Third,
using this characterization it is easy to check the stability of the critical state under various
perturbations, e.g., spin-orbit couplings (SOC).

Interestingly, some realization of symmetry-enriched states are anomalous, in the sense
that the corresponding symmetry action cannot be realized in a purely (2 + 1)-d style
with on-site symmetry actions. On the contrary, it has to be realized on the boundary
of a (3 + 1)-d SPT, so that the symmetry actions can be on-site. This is believed to be
equivalent to the notion of a ’t Hooft anomaly [25]. Given a symmetry group G, possible
anomalies are classified by group cohomology or cobordism, and these different classes are
in one-to-one correspondence with the SPT states in the (3+1)-d bulk that can potentially
cancel the anomaly and host this anomalous state on its boundary [26–28].

Understanding the anomaly of quantum many-body systems is very important because
the anomaly constrains the low-energy dynamics in a powerful way. If the system has
some ’t Hooft anomaly, then its ground state cannot be trivial, i.e., either the symmetries
are spontaneously broken, or the ground state is gapless or topologically ordered. Going
one step further, even more powerful constraint comes from anomaly matching. Since the
anomaly can be viewed as a property of the higher dimensional bulk, it is an invariant under
deformations of the original system. In particular, it is an invariant under renormalization
group that should be the same in the UV and IR. For strongly interacting field theories,
we do not have too many handles on their low-energy dynamics so far, and understanding
their ’t Hooft anomalies and considering anomaly matching serve as a powerful approach
[15, 21, 29, 30]. In this thesis we systematically develop frameworks to calculate the
anomaly of NLSMs (in Chapter 3) and SETs (in Chapter 4), which may serve as the starting
point to study many exotic quantum phases using the concept of anomaly. We identify the
anomaly as an element in the relevant cohomology or cobordism group, which can also be
thought of as a topological partition function (TPF) characterizing the topological data of
the system.
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Such constraint imposed by ’t Hooft anomaly on quantum many-body systems is rem-
iniscent of Lieb-Schultz-Mattis (LSM) type constraint [31–33]. For instance, a simple
example of LSM constraints states that in a (d+ 1)-d lattice spin system with SO(3) spin
rotation and lattice translation symmetries that are not explicitly or spontaneously broken,
if each unit cell hosts an odd number of spin-1/2 moments, then the ground state must be
exotic (i.e., topologically ordered or gapless).

In fact, there has been great progress in understanding LSM constraints in recent
years [34–40], and in particular it was realized that LSM constraints can be captured
by LSM anomalies, the quantum anomalies carried by the boundaries of some higher-
dimensional topological crystalline phases. The LSM anomaly serves as the anomaly of
the UV lattice system. Therefore, such relations between LSM constraints and anomalies
can be very powerful in constraining the emergibility of a phase or phase transition, because
the quantum anomaly of this phase or phase transition, which we refer to as its IR anomaly,
must match with the LSM anomaly (in a sense to be sharpened later). In order to utilize
these constraints, we need to compare the TPF of an LSM anomaly and an IR anomaly,
and these constraints have been applied to various systems and shed important insights
into the emergibility of some states [41–44]. In Chapter 2, we systematically identify the
TPFs of the LSM anomaly relevant to our study. This topological characterization of the
LSM constraints is the basis of a systematic framework that uses the LSM constraints
to understand the emergibility of quantum phases and phase transitions in a many-body
system.

1.3 The Hypothesis of Emergibility

A crucial question in condensed matter physics is what we call the question of emergibility:
given an IR effective theory, can it emerge at low energies in a lattice system described
by a local Hamiltonian? This question is generically rather challenging in strongly cor-
related systems, both theoretically and experimentally, due to the lack of i) theoretical
tools to exactly solve the many-body ground state in the generic setting, and ii) experi-
mentally accessible signatures that can unambiguously diagnose the nature of the phase
or phase transition. In light of Lieb-Schultz-Mattis type constraint on emergibility, we
will utilize the hypothesis of emergibility: given a (d + 1)-dimensional IR effective theory
with symmetry GIR, a necessary and sufficient condition for it to emerge from a lattice
system with symmetry GUV is that there is a symmetry embedding pattern (SEP), i.e., a
homomorphism φ

φ : GUV → GIR, (1.1)
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such that the anomaly of this IR effective theory matches with the anomaly of the lattice
system coming from the LSM-like constraint, in the sense that

ΩUV = φ∗ (ΩIR) (1.2)

where ΩUV describes the LSM-like anomaly of the lattice system, ΩIR is the anomaly of the
IR effective theory, and φ∗ is the pullback induced by φ (see Appendix A.2 for a review). In
fact, the necessity of this condition has been established (i.e., ’t Hooft anomaly-matching
condition), and only the sufficiency of it is hypothetical. Although this hypothesis has not
been proved so far, it is supported by many nontrivial examples. In the following we will
assume the correctness of the hypothesis of emergibility. 1

The hypothesis of emergibility provides an intrinsic characterization of the emergibil-
ity of an IR effective theory, without relying on any of its specific constructions. It is
especially useful when there is no known lattice construction of this IR effective theory,
but its anomaly is known. In Chapter 5 we will utilize this hypothesis to understand the
emergibility of Stiefel Liquids (SLs). Due to the intrinsic absence of a weakly-coupled de-
scription, it is difficult to construct Stiefel Liquid states, especially non-Lagrangian Stiefel
Liquids, on a lattice system by usual means. However, the anomalies of these SLs can be
derived. With ΩUV derived in Chapter 2 (given by Eqs. (2.1) or (2.2)), we can check the
emergibility of these states in various lattice spin systems, by checking the existence of
SEPs that can match the anomalies. Based on this approach, some interesting realizations
of the non-Lagrangian SLs on triangular and kagome lattices are proposed [15]. Here we
will explore this problem more systematically.

1.4 Plan of the Thesis

The rest of the thesis is organized as follows:

• In Chapter 2, we derive the topological partition functions of the LSM constraints
of the lattice spin systems of our interest. Motivated by the studies of quantum
magnetism, we consider (2 + 1)-d spin systems with Gs × Gint symmetry, where
the lattice symmetry Gs is any of the 17 wallpaper groups, and Gint is any internal
symmetry whose projective representations are classified by Zk2 with k some integer,

1When GUV is trivial, the hypothesis says that every IR effective theory free from gravitational anomaly
can be put on some discretized lattice system, which is generally believed to be true. Still, this statement
can be thought of as the simplest yet nontrivial check or consequence of the hypothesis.
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e.g., Gint = SO(3) × ZT2 , the combination of SO(3) spin rotational symmetry and
time reversal symmetry. Given Gs × Gint, there are still topologically distinct LSM
constraints, specified by the projective representation (PR) under Gint carried by
DOF of the system, and the spatial distribution of these DOF. For all cases, we
derive the TPFs of the LSM anomalies. Similar analysis is also performed for (1+1)-
d lattice spin systems. The structure of these topological partition functions is given
in Eq. (2.1), where η is determined by the projective representation carried by the
local degrees of freedom under the internal symmetry, and λ is determined by the
locations of the local degrees of freedom. The characterization of λ for different space
groups can be found in Sec. 2.2 and Appendix 2.E.

• In Chapter 3, we review the formulation of Stiefel liquid in terms of NLSM, in-
dexed by two integers, N ⩾ 5 and k 6= 0. The NLSM is defined on target manifold
SO(N)/SO(4), known as Stiefel manifold VN,N−4 (or simply VN in this thesis), sup-
plemented with a Wess-Zumino-Witten (WZW) term at level k. The Stiefel manifold
can be parameterized using an N × (N − 4) matrix nji satisfying nTn = IN−4, where
IN−4 is the (N − 4)-dimensional identity matrix. The NLSM is defined using the
action

S(N,k)[n] =
1

2g

∫
d2+1x(∂µn

T∂µn) + k · S(N)
WZW.

We identify the symmetries of the Stiefel Liquids to be the standard Poincaré sym-
metry group plus

O(N)T ×O(N − 4)T

Z2

. (1.3)

whose precise meaning is described in detail in Sec. 3.2. We then calculate the
anomaly of the SLs using the NLSM formulation, discussed in detail in Sec. 3.3.

• In Chapter 4, for any SET with any symmetry group G (which may be discrete or
continuous, Abelian or non-Abelian, contain anti-unitary elements and/or permute
anyons), we develop a (3+1)-d topological quantum field theory (TQFT) defined on
manifolds with a G-bundle structure, which describes the SPT state whose boundary
can host this SET. Based on this TQFT, we establish a framework to calculate the
anomaly of a (2 + 1)-d topological order with symmetry group G, by calculating
the partition function of the corresponding TQFT on certain manifolds with some
G-bundle structure. This procedure is spelled out in great detail for finite group
symmetries and connected Lie groups, and is expressed compactly in Eq. (4.44) and
(4.65), respectively.
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We then apply this framework to specific examples. In particular, we calculate the
anomaly indicators of various symmetry groups, including ZT2 (see Eqs. (4.46),(4.50)),
Z2 × Z2 (see Eqs. (4.53),(4.54)), ZT2 × ZT2 (see Eqs. (4.55),(4.56)), SO(N) (see
Eq. (4.78)), O(N)T (see Eqs. (4.95),(4.96)) and SO(N)×ZT2 (see Eq. (4.106)), where
Z2 and ZT2 refer to a unitary and anti-unitary order-2 symmetry group, respectively,
and O(N)T denotes a symmetry group O(N) such that elements in O(N) with de-
terminant −1 are anti-unitary. Here anomaly indicators of symmetry group G refer
to a family of quantities, expressed in terms of the data characterizing an SET,
that can completely determine the anomaly of any topological order enriched by
the symmetry group G. In addition, a byproduct of our analysis is an explicit for-
mula for the SO(N) Hall conductance of an SO(N) symmetric topological order,
expressed in terms of the data characterizing this SET (up to contributions from
(2+ 1)-d invertible states) (see Eqs. (4.80),(4.81)). Moreover, for O(N)T , N ⩾ 5 and
SO(N)×ZT2 , N ⩾ 4, we show that certain anomalies cannot be realized by any SET,
demonstrating the phenomenon of “symmetry-enforced gaplessness” [45].

• In Chapter 5, we apply these results to study the emergibility of Stiefel Liquids,
including the well-known deconfined quantum critical point (DQCP), U(1) Dirac
spin liquid (DSL), and the non-Lagrangian Stiefel liquid. We sketch how to use
anomaly-matching to understand the emergibility of various Stiefel liquids. Detailed
examples of caculations are presented in Sec. 5.1 and also in Appendix 5.A. We then
present some interesting realizations of SLs in Secs. 5.2 and 5.3, while the complete
results are summarized in the attached codes, which can be read with the instruction
in Appendix 5.B. Table 5.1 records the total numbers of realizations in different
cases, and Table 5.2 records the numbers of realizations that are adjacent to classical
regular magnetic orders. The stability of each realization is also analyzed, which is
recorded in the attached codes. In Appendix 5.C, we present all stable realizations on
various familiar lattice systems. The highlighted examples in the main text include
i) a deconfined quantum critical point between a ferromagnet and a valence bond
solid, ii) stable U(1) Dirac spin liquids in spin-1/2 square and honeycomb lattices, iii)
various realizations of the non-Lagrangian Stiefel liquid, and iv) realizations of SLs
where the most relevant spinful excitations carry spin-2, which, in particular, include
a U(1) Dirac spin liquid that cannot be desribed by the usual parton approach. We
also demonstrate how to use our formalism to study the stability of these states under
symmetry-breaking perturbations in Sec. 5.4, where we argue that the DSL can be
stable in NaYbO2. More analysis regarding NaYbO2 and twisted bilayer WSe2 is
presented in Appendix 5.E.
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• Multiple appendices are included at the end of each chapter or the whole thesis. They
either provide further details or collect results that may be of general interest. For
example, Appendix A is a review of the basic mathematical tools we use. Appendix
2.D contains descriptions of all 17 wallpaper groups, as well as information about their
Z2 cohomology, including their Z2 cohomology rings and all representative cochains
at degree 1 and 2.
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Chapter 2

Topological Characterization of LSM
Constraints and LSM Anomaly

In this chapter, we develop a topological characterization of the LSM constraints applicable
to a (2 + 1)-d lattice spin system, whose Hilbert space is a tensor product of local bosonic
Hilbert spaces, and whose Hamiltonian is also local. We assume that the system has a
symmetry group G = Gs × Gint, where Gs is one of the 17 wallpaper groups and Gint is
an internal symmetry group. Throughout this thesis, we consider Gint whose projective
representations (PR) are classified by Zk2 with some k ∈ N+, i.e., H2(Gint,U(1)ρ) = Zk2 1,
with the subscript ρ indicating the complex conjugation action of any spacetime orientation
reversal symmetry on the U(1) coefficient. Typical examples of such Gint include SO(3),
SO(3) × ZT2 , ZT2 , O(2), Z2 × Z2, etc. These choices of G and Gint are motivated by
the systems and models relevant to quantum magnetism. We will also perform a similar
analysis for (1 + 1)-d lattice spin systems.

Some Gint may have multiple types of PR. For example, for Gint = SO(3) × ZT2 ,
H2(SO(3)×ZT2 ,U(1)ρ) = Z2

2, so there are 3 different types of nontrivial PR, corresponding
to spinor under SO(3) while Kramers singlet under ZT2 , singlet under SO(3) while Kramers
doublet under ZT2 , and spinor under SO(3) while Kramers doublet under ZT2 . In this thesis,
we will mainly consider systems with at most one type of nontrivial PR, i.e., there may
be some DOF carrying trivial PR under Gint, but all DOF with nontrivial PR carry the
same type of nontrivial PR which we refer to as the PR type of the system. If all DOF

1In this thesis, a few different objects have the structure of Zk
2 with some k ∈ N. These k’s are

independent unless explicitly claimed, and we will abuse the notation to use the same k when we make a
statement about this Zk

2 structure.

11



carry trivial PR, then the PR type of the system is said to be the trivial type. Many of our
results can be straightforwardly generalized to the case where the system has DOF with
different types of nontrivial PR, on which we sometimes explicitly comment.

This chapter is adapted from Section 2 of Ref. [1].

2.1 Review of lattice homotopy and the connection to
SPT

To be self-contained, we begin by reviewing lattice homotopy [35], in a way that will lead
to our topological characterization of the LSM constraints most easily.

All LSM constraints should be fully determined by the spatial distribution of the DOF
in the system. The key idea of lattice homotopy is that, to characterize the LSM constraints
for a given lattice system, one can always first smoothly deform the system so that all DOF
are moved to the high-symmetry points of the corresponding wallpaper symmetry group,
while preserving the G = Gs × Gint symmetry during the process. These high-symmetry
points are called the irreducible Wyckoff positions (IWP); their precise definition can be
found in Ref. [35] and they are well documented for each space group in the standard
crystallographic literature. All distributions of DOF that can be smoothly deformed into
each other are referred to be in the same lattice homotopy class. Below we always assume
that a smooth deformation has been performed, such that all DOF are located at some
IWP. Then to determine the presence or absence of an LSM constraint, one can invoke one
or multiple of the following 3 types of basic no-go theorems that preclude symmetric SRE
(sym-SRE) ground states in various cases [35, 46]:

1. Define a fundamental domain to be a region that tiles the 2D space under the actions
of translation and glide symmetries. When the total PR within a fundamental domain
is nontrivial, a sym-SRE ground state is forbidden.

2. When there is a translation symmetry along a mirror axis, and the total PR within
a translation unit along this mirror axis is nontrivial, a sym-SRE ground state is
forbidden.

3. In our case, the PR of Gint are classified by Zk2. Then if the total PR at a C2 rotation
center is nontrivial, a sym-SRE ground state is forbidden. However, PR at a Cn
rotation center for odd n does not forbid a sym-SRE ground state.
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Note that these no-go theorems do not require the full wallpaper symmetry to be applica-
ble. In particular, the first applies whenever there are translation or glide symmetries, the
second applies whenever there are commuting translation and mirror symmetries, and the
last applies whenever there is a rotation symmetry. When a full wallpaper symmetry is
present, there are often multiple translations, glide reflections, mirror and rotation symme-
tries, so a given distribution of DOF may trigger multiple of these basic no-go theorems.
It is straightforward to check that knowing which no-go theorems are triggered is actually
also sufficient to know which lattice homotopy class this distribution of DOF is in.

One can see that, for a given wallpaper group Gs and a PR type of the system, the
spatial distributions of DOF form an Abelian group, denoted by ALH. Each group element
in ALH corresponds to a lattice homotopy class of distributions of DOF, the multiplication
between two group elements corresponds to physically stacking two such distributions of
DOF together, and the trivial group element corresponds to a distribution of DOF that is
free of all 3 basic no-go theorems above (i.e., a distribution of DOF with no net nontrivial
PR in any fundamental domain, any translation unit on any mirror axis, or any C2 rotation
center). Due to the Z2 nature of the PR, the inverse of each group element is itself, so
ALH = Zk2 with k ∈ N.

It turns out that elements in ALH are in one-to-one correspondence with different LSM
constraints [35], i.e., the ground states emergible in systems with distributions of DOF
corresponding to different group elements of ALH must be different, in the sense that
they have different emergent order or symmetry-protected distinction. As an example,
the trivial element represents the absence of any LSM constraint, i.e., a sym-SRE ground
state is allowed if the microscopic DOF of the system are arranged in a configuration
corresponding to the trivial element. Therefore, the intuitive geometric picture based on
lattice homotopy gives an elegant characterization and classification of LSM constraints.
An important observation that will be very useful later is that the structure of ALH only
depends on Gs and the fact that all PR of Gint has a Z2 nature, but not on other details
of Gint.

When PR of Gint are Zk2-classified with k > 1, the above discussion applies to the case
where at most one type of nontrivial PR is present in the system. If all nontrivial PR
are allowed to be present, all LSM constraints are classified by AkLH, i.e., each nontrivial
PR can result in LSM constraints classified by ALH, and nontrivial LSM constraints from
different nontrivial PR are all different.

To make this discussion more concrete, below we consider two specific examples that
will be relevant for the later part of the thesis.
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Figure 2.1: Panel (a) shows the generators of the wallpaper group p6m. In panel (b),
the hexagon is a translation unit cell of the wallpaper group p6m. It has three IWP,
usually labelled by a, b and c in crystallography, and they form the sites of the triangular,
honeycomb and kagome lattices, respectively. The C6 rotation center is at the type-a IWP.

2.1.1 Gs = p6m

We start with the example where Gs = p6m, which is the symmetry group of triangular,
kagome and honeycomb lattices. The generators, a translation unit cell and IWP of p6m
are shown in Fig. 2.1. The translation vectors of T1 and T2 have the same length, and
their angle is 2π/3. There is also a 6-fold rotational symmetry, denoted by C6. Finally,
there is a mirror symmetry M , whose mirror axis passes through the C6-center and bisects
the translation vectors of T1 and T2.

We wish to understand how to identify the distributions of DOF with the elements in
ALH in this example. First consider the case where all DOF in the system are in the trivial
PR. This distribution of DOF is free of all the 3 basic no-go theorems, so it corresponds
to the trivial element of ALH, which physically implies that there is no LSM constraint
associated with this distribution of DOF, and sym-SRE ground states are allowed. This is
indeed the common belief.

Next, consider putting DOF with nontrivial PR on any of the three types of IWP. First,
imagine putting DOF with nontrivial PR on the type-b IWP. One can check that none of
the 3 basic no-go theorems is triggered, so this distribution of DOF also corresponds to
the trivial group element, and there should be no associated LSM constraint. Indeed, this
configuration is where the DOF are on a honeycomb lattice, and it is known that sym-SRE
ground states are allowed in this case [47–50], consistent with the absence of any LSM
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constraint. Second, imagine putting DOF with nontrivial PR on the type-a IWP. One can
check that all 3 basic no-go theorems are triggered, so this configuration should correspond
to a nontrivial element in ALH, and such a system has a nontrivial LSM constraint that
precludes any sym-SRE ground state. The same is true if DOF with nontrivial PR are put
on the type-c IWP. Moreover, one can also check that the distributions of DOF on type-a
and type-c IWP are in different lattice homotopy classes, i.e., they cannot be smoothly
deformed into each other. So they correspond to different group elements in ALH, which
indicates different LSM constraints. These two types of IWP form a triangular and kagome
lattice, respectively, and there is indeed no known example of symmetric states that can
emerge in both triangular and kagome lattices, without showing any difference in emergent
order or symmetry-protected distinction.2

Finally, one can also consider putting DOF with nontrivial PR on multiple of the three
types of IWP. For instance, putting these DOF on both type-a and type-c IWP is equivalent
to stacking systems with DOF arranged on a triangular lattice and kagome lattice together,
which corresponds to multiplying the two nontrivial group elements in the last paragraph.

Taken together, the above analysis indicates that the LSM constraints on a lattice
with p6m symmetry are classified by ALH = Z2

2, and the two generators can be taken to
correspond to distributions of DOF on triangular and kagome lattices, respectively.

In the above, we have worked out ALH by examining whether any of the basic no-go
theorems is triggered by a distribution of DOF. To finish the discussion of this case with
Gs = p6m, we demonstrate how the information about which basic no-go theorems are
triggered can uniquely determine the lattice homotopy class. In this case, we just need to
consider the third type of the basic no-go theorems. For this type of no-go theorems, there
are two independent ones, triggered by putting DOF with nontrivial PR on the type-a and
type-c IWP, respectively. So if we know which of the no-go theorems are triggered, we also
know whether there are nontrivial PR carried by type-a and type-c IWP. From the previous
discussion, this can uniquely determine the lattice homotopy class. This observation will
be very useful when we construct a topological characterization of the LSM constraints
later.

2In fact, even spontaneously-symmetry-breaking states (such as ferromagnetic states) realized on these
two lattices should be distinct, because they have different anomalies. However, to the best of our knowl-
edge, it is still an open problem to explicitly calculate the complete anomalies for these spontaneously-
symmetry-breaking states, which is an interesting problem beyond the scope of the current paper.
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Figure 2.2: Panel (a) shows the generators of the wallpaper group p4m. In panel (b), the
square is a translation unit cell of the wallpaper group p4m. It has three IWP, usually
labelled by a, b and c in crystallography. Type-a and type-b both form a square lattice.
The C4 rotation center in panel (a) is taken to be at the type-a IWP.

2.1.2 Gs = p4m

Warmed up with the example where Gs = p6m, now we can easily apply the similar
analysis to the other 16 wallpaper groups. Here, we examine the case where Gs = p4m,
which will be relevant to our later discussion.

The p4m group describes the symmetry of square and checkerboard lattices. The
generators, a translation unit cell and IWP of p4m are shown in Fig. 2.2. The translation
vectors of T1 and T2 have the same length and are perpendicular. There is also a 4-fold
rotational symmetry, denoted by C4. Finally, there is a mirror symmetry M , whose mirror
axis passes through the C4-center and is parallel to the translation vector of T2. There are
3 types of IWP. The type-a IWP is the 2-fold rotation centers of C2

4 , the type-b IWP is the
2-fold rotation centers of T1T2C2

4 , and the type-c IWP includes the 2-fold rotation centers
of both T1C

2
4 and T2C

2
4 . Note that the type-a and type-b are actually also 4-fold rotation

centers, and all three IWP lie on some mirror axes.
Below, we enumerate some distributions of DOF that correspond to different elements

in ALH in this case:
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1. All DOF have trivial PR: trivial element in ALH.

2. DOF with nontrivial PR at one of the three types of IWP: three different elements
in ALH.

3. DOF with nontrivial PR at multiple of the IWP: product of elements in the previous
case.

This analysis implies that the LSM constraints on a lattice with p4m symmetry are
classified by ALH = Z3

2, and the three generators can be taken to correspond to distributions
of DOF on the three types of IWP. Note that both the type-a and type-b IWP form a
square lattice, and type-c IWP form a checkerboard lattice. Again, it is easy to see that
knowing which of the basic no-go theorems are triggered can uniquely determine the lattice
homotopy class.

Before finishing the review, we note that it has also been realized that LSM constraints
are intimately related to anomalies and higher dimensional SPTs [34, 36–39]. In the present
context, our (2 + 1)-d system with DOF carrying PR can be viewed as a boundary of a
(3+1)-d system made of stacked (1+1)-d SPTs protected by Gint, which are also classified
by H2(Gint,U(1)ρ) = Zk2. The spatial extension of these (1 + 1)-d SPTs is along the
extra dimension. The boundaries of these SPTs carry the PR, whose types and locations
precisely match with the DOF of the original (2 + 1)-d system, which have been moved
to the IWP using lattice homotopy. Furthermore, the wallpaper symmetry Gs can be
naturally extended into a symmetry of the (3 + 1)-d system. Then the (3 + 1)-d system
is an SPT protected by Gs × Gint, and a sym-SRE boundary of such a nontrivial SPT
is forbidden due to the nontrivial quantum anomaly, which implies the LSM constraints.
Moreover, different SPTs have different anomalies on the boundary, so their corresponding
LSM constraints must be different, such that ground states emergible in systems with
different LSM constraints must have distinction in their emergent order or symmetry-
protected distinction. For these reasons, in the following we will view an LSM constraint
and the (3 + 1)-d Gs ×Gint SPT corresponding to this LSM constraint on equal footing.

2.2 Topological characterization of the LSM constraints

The above picture of lattice homotopy and higher dimensional SPTs allows us to derive
a topological characterization of the LSM constraints. In particular, we will identify the
topological partition function (TPF) of the (3+1)-d SPT corresponding to each nontrivial
LSM constraint for a given Gs and Gint.
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To do it, we use the fact that the SPT of interest can be constructed by stacking the
nontrivial (1+1)-d Gint SPT at various IWP. Suppose, in the language of Dijkgraff-Witten
theories [26, 51, 52], the TPF of this (1 + 1)-d SPT is encoded in a nontrivial cocycle in
H2(Gint,U(1)ρ) ∼= Zk2, which can be represented by exp (iπη(a1, a2)), where a1,2 ∈ Gint and
η takes values in {0, 1} (taking η ∈ {0, 1} is valid since such SPTs are Zk2-classified). To
write down the TPF of the relevant (3 + 1)-d Gs×Gint SPT, we view Gs on equal footing
with Gint, keeping in mind that any orientation-reversal element in Gs should also complex
conjugate the U(1) coefficient, in accordance with the crystalline equivalence principle [53].
Then the TPF can be encoded in a cocycle Ω(g1, g2, g3, g4) in H4(Gs ×Gint,U(1)ρ), where
g1,2,3,4 ∈ Gs × Gint. The picture based on lattice homotopy and stacks of (1 + 1)-d Gint

SPT strongly suggests that Ω(g1, g2, g3, g4) takes the form

Ω(g1, g2, g3, g4) = eiπλ(l1,l2)η(a3,a4) (2.1)

where gi ∈ Gs×Gint is written as gi = li⊗ ai, with li ∈ Gs and ai ∈ Gint, and λ also takes
values in {0, 1}. Physically, λ encodes the information of which IWP host the (1 + 1)-d
Gint SPT. The lattice homotopy picture further suggests that λ is completely determined
by Gs and the lattice homotopy class corresponding to the particular LSM constraint, and
should be the same for all Gint with Zk2-classified PR and all PR types of the system. Such
a cocycle implies that the TPF, in terms of lattice gauge theory on a triangulated manifold,
takes the form

Z = e
iπ

∫
M4

λ[As]∪η[Aint] (2.2)

where M4 is the 4 dimensional spacetime manifold of the SPT, As and Aint are the (1-
form) gauge fields resulting from gauging Gs and Gint, respectively, and exp(iπ

∫
η[Aint])

gives the TPF of the (1+ 1)-d Gint SPT. Note that although the TPF is constructed from
a cup product of λ and η, generically λ (or η) itself cannot be written as a cup product of
As (or Aint).

In Appendix 2.A, we show that the above expectation is indeed correct. Furthermore,
λ(l1, l2) can be viewed as a representative cochain in H2(Gs,Z2). Assuming that the (1+1)-
d Gint SPT is already understood (i.e., the η corresponding to the PR type of the system
is known), the task to identify the TPF for the (3 + 1)-d Gs × Gint SPT corresponding
to the LSM constraints becomes identifying λ(l1, l2) for a given Gs and lattice homotopy
class.

Before proceeding, let us pause to clarify what it means to identify λ(l1, l2). After all,
as reviewed in Appendix A.1, λ(l1, l2) changes under coboundary transformations, so it is
not an invariant characterization of the LSM constraints. However, inequivalent λ’s can be
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diagnosed by quantities related to it that are invariant under coboundary transformations.
So identifying λ(l1, l2) really means identifying these topological invariants. To relate to
some known results of such topological invariants, we define ω(l1, l2) ≡ eiπλ(l1,l2), which
encodes the same information as λ(l1, l2). Then a topological invariant takes the form of
α[ω], a functional of ω.

Now we proceed to derive these topological invariants. Because λ(l1, l2) or ω(l1, l2) is
the same for all Gint, it suffices to derive it in a particularly simple and illuminating case,
i.e., Gint = SO(3). According to Sec. 2.1, in this case the (3+1)-d Gs×Gint SPTs related
to the LSM constraints are fully characterized by the spatial distribution of Haldane chains,
i.e., (1 + 1)-d SPT protected by the SO(3) symmetry. Therefore, to characterize the LSM
constraints, all we have to do is to identify topological invariants for H2(Gs,Z2) that can
tell us which IWP host Haldane chains. To this end, we utilize the fact that, for a given
spatial distribution of Haldane chains, which IWP host Haldane chains is fully encoded
in which of the 3 basic no-go theorems are triggered. So if we can characterize the 3
basic no-go theorems using some topological invariants, we can further get the topological
invariants corresponding to the LSM constraints.

To obtain the topological invariants corresponding to the 3 basic no-go theorems, it is
useful to consider coupling the system to a probe gauge field of the SO(3) symmetry and
examine the monopoles of this SO(3) gauge field, which is a method proven to be extremely
powerful [44, 45, 54–58]. Because the wave function of the system acquires a −1 topological
phase factor when an SO(3) monopole circles around a Haldane chain3, we will see below
that if any of the 3 basic no-go theorems is triggered, the Gs symmetry will fractionalize
on the SO(3) monopole in a specific way, i.e., the SO(3) monopole will carry a specific
projective representation of Gs. The symmetry fractionalization pattern of Gs on the
SO(3) monopole will thus completely encode the LSM constraint. Since the fusion rule of
the SO(3) monopole is determined by π1(SO(3)) = Z2 [59], the symmetry fractionalization
patterns of Gs on the SO(3) monopole are classified by H2(Gs,Z2) [42, 43, 60, 61]. So
the LSM constraints can be characterized by elements in H2(Gs,Z2), consistent with the
previous general discussion. This also implies that when Gint = SO(3), for a given Gs

and lattice homotopy class, the λ(l1, l2) in Eq. (2.1) should be precisely the element
3Consider moving a Haldane chain around an SO(3) monopole. The topological phase factor generated

in this process is given by the topological partition function of the Haldane chain, calculated on the manifold
defined by the spacetime trajectory it moves along, with a background SO(3) gauge bundle exerted by the
SO(3) monopole. It is known that the topological partition function of a Haldane chain is eiπ

∫
M w

SO(3)
2 ,

where w
SO(3)
2 is the second Stiefel-Whitney class of the SO(3) gauge bundle. Furthermore,

∫
M w

SO(3)
2 = 1

around an SO(3) monopole. Therefore, there is a −1 phase factor generated in this process, which also
implies that moving an SO(3) monopole around a Haldane chain results in a −1 topological phase factor.
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in H2(Gs,Z2) that describes the symmetry fractionalization pattern of Gs on the SO(3)
monopole in the corresponding SPT. However, one should not expect that all symmetry
fractionalization patterns captured by H2(Gs,Z2) are related to LSM constraints. To see it,
consider breaking the SO(3) symmetry to U(1). Then the original LSM-related Gs×SO(3)
SPT will become a trivial Gs ×U(1) SPT, since the Haldane chain is trivialized upon this
symmetry breaking. Therefore, the U(1) monopole, which is the descendent of the SO(3)
monopole after symmetry breaking, should carry no nontrivial symmetry fractionalization
pattern. It implies that certain nontrivial symmetry fractionalization pattern on the SO(3)
monopoles, or certain elements in H2(Gs,Z2), may be unrelated to LSM constraints. We
will see this explicitly below.

We start with the first no-go theorem, and focus on the case where only translation
symmetry is important, and defer a similar discussion where the glide reflection is also
important to Appendix 2.B. Denote the two translation generators by T1 and T2, and apply
the operation T−1

2 T−1
1 T2T1 to an SO(3) monopole, which moves it around a translation unit

cell. If each translation unit cell constains an odd (even) number of Haldane chains, this
process results in a −1 (1) phase factor, which precisely characterizes how the translation
symmetry fractionalizes on the SO(3) monopole. By slightly abusing the notation, we
write the subgroup of Gs generated by T1 and T2 as T1×T2. The fractionalization patterns
of the T1×T2 symmetry should be classified by H2(T1×T2,Z2) = Z2, so the aforementioned
phase factor must be given by the unique nontrivial topological invariant in H2(T1×T2,Z2),
i.e., α1[ω] = ω(T1,T2)

ω(T2,T1)
. Denote two elements in this subgroup by l1 = T x11 T y12 and l2 =

T x21 T y22 , with x1,2, y1,2 ∈ Z, a representative cochain that triggers this topological invariant
is ω(l1, l2) = (−1)y1x2 .

Next, consider the second no-go theorem. Denote the generator of the relevant mirror
symmetry by M , and suppose T generates a translation symmetry on the mirror plane.
Note that this implies TM =MT . Apply the operation MT−1MT to an SO(3) monopole,
which moves it along a trajectory that encloses a translation unit along the mirror plane.
Suppose there is an odd (even) number of Haldane chains in this translation unit, this
process results in a −1 (1) phase factor, which precisely characterizes how the symmetry
group generated by M and T fractionalizes on the SO(3) monopole. Write the subgroup of
Gs generated by M and T as M×T , the fractionalization patterns of the M×T symmetry
are classified by H2(M × T,Z2) = Z2

2. So there are two nontrivial topological invariants in
H2(M×T,Z2), and they can be written as α2[ω] =

ω(T,M)
ω(M,T )

and αnon−LSM = ω(M,M)
ω(1,1)

, where in
the denominator 1 stands for the trivial group element in M×T . Note that αnon−LSM = −1
would imply when the SO(3) symmetry is broken to U(1), the resulting Gs×U(1) state is
a nontrivial SPT, since this represents a nontrivial symmetry fractionalization pattern of
a U(1) monopole [56, 57]. According to the previous general discussion, αnon−LSM should
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be unrelated to LSM constraints of interest.
We can also directly see that αnon−LSM is unrelated to the LSM constraints without con-

sidering breaking the SO(3) symmetry. Denote two elements in M × T by l1 = T x1Mm1

and l2 = T x2Mm2 , with x1,2 ∈ Z and m1,2 ∈ {0, 1}, representative cochains that trig-
ger these two topological invariants are ω(l1, l2) = (−1)m1x2 and ω(l1, l2) = (−1)m1m2 ,
respectively. Suppose λ in Eq. (2.1) constains a piece λ(l1, l2) = m1m2, such that
αnon−LSM = −1, from Eq. (2.2), we see the TPF of the (3 + 1)-d SPT contains a part
given by exp(iπ

∫
(wTM1 )2w

SO(3)
2 ), where wTM1 is the first Stiefel-Whitney class of the tan-

gent bundle of the spacetime manifold, and w
SO(3)
2 is the second Stiefel-Whitney class of

the SO(3) gauge bundle. In writing this down, we have used that M is an orientation
reversal symmetry and that the TPF of a Haldane chain is exp(iπ

∫
w
SO(3)
2 ). This means

that when the symmetry is broken down to M × SO(3), the system is still a nontrivial
SPT.4 However, all SPTs corresponding to LSM constraints become trivial when the lat-
tice symmetry contains only a mirror symmetry (as can be seen from lattice homotopy,
or simply from the lack of basic no-go theorem that only requires a mirror symmetry as
the lattice symmetry), and hence a contradiction. This again means αnon−LSM = 1 for
SPTs corresponding to LSM constraints (see Appendix 2.C for the physics of the SPTs
that trigger αnon−LSM). Therefore, the phase factor resulted from acting MT−1MT to an
SO(3) monopole must be given by α2.

Finally, consider the third no-go theorem. Denote the generator of the relevant 2-fold
rotational symmetry by C2, and apply C2 to an SO(3) monopole twice, which moves it
around a C2 rotation axis. Suppose there is an odd (even) number of Haldane chains in this
C2 rotation axis, this process results in a −1 (1) phase factor, which precisely characterizes
how the C2 rotational symmetry fractionalizes on the SO(3) monopole. Write the subgroup
of Gs generated by C2 also as C2. The fractionalization patterns of the C2 symmetry are
classified by H2(C2,Z2) = Z2, so the aforementioned phase factor must be given by the
unique topological invariant in H2(C2,Z2), i.e., α3[ω] =

ω(C2,C2)
ω(1,1)

. Denote two elements in
this subgroup by l1 = Cc1

2 and l2 = Cc2
2 , with c1,2 ∈ {0, 1}, a representative cochain that

triggers this topological invariant is ω(l1, l2) = (−1)c1c2 .
In summary, we have found 4 basic types of symmetry fractionalization patterns of Gs,

characterized by the above 4 types of topological invariants, α1,2,3 and αnon−LSM. The first
4In this SPT, the symmetry M fractionalizes on the SO(3) monopole, i.e., acting M twice on an SO(3)

monopole yields a −1 phase factor. This symmetry fractionalization pattern is captured by H2(M,Z2) =
Z2, whose unique topological invariant is αnon−LSM. So αnon−LSM should be identified as this phase factor.
In Appendix 2.C, we further show that such an SPT can be constructed by putting on its M mirror plane
a (2 + 1)-d Z2 × SO(3) SPT, whose Z2 domain walls are decorated with Haldane chains.
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three are related to the 3 basic no-go theorems, thus to the LSM constraints, while the last
is a non-LSM symmetry fractionalization pattern. As mentioned before, if Gint = SO(3)
is broken to U(1), αnon−LSM detects a nontrivial symmetry fractionalization pattern of a
U(1) monopole, captured by a nontrivial element in H2(Gs, Uρ(1))

5. One can also see that
α1,2,3 = −1 does not imply that the descendent Gs × U(1) SPT is nontrivial, since they
correspond to trivial elements in H2(Gs, Uρ(1)). These 4 basic fractionalization patterns
are clearly independent of each other, as they correspond to completely different (3 + 1)-
d SPTs. Furthermore, for all 17 wallpaper groups Gs, these 4 types of fractionalization
patterns give a complete set of topological invariants that can distinguish all elements of
H2(Gs,Z2), as explicitly checked in Appendix 2.E. These actually mean that

ALH = ker[̃i : H2(Gs,Z2) → H2(Gs,U(1)ρ)] (2.3)

where ĩ is the map defined in Eq. (A.13).
With this in mind, to further derive the topological invariants corresponding to an

LSM constraint, we just need to write down the complete set of independent topological
invariants of H2(Gs,Z2), and bridge the combinations of these topological invariants with
distributions of DOF. Then each combination is a topological invariant for an LSM con-
straint, which determines λ in Eq. (2.1). Combined with η corresponding to the PR type
of the system, Eq. (2.1) or (2.2) gives the TPF of the (3 + 1)-d Gs × Gint SPT corre-
sponding to this LSM constraint. An advantage of this approach is its intuitive nature,
i.e., everything can be done by simply inspecting the IWP. Below we perform this analysis
in detail for the cases with Gs = p6m and Gs = p4m, which will be relevant to the discus-
sion of symmetry-enriched criticality later in the thesis. In Appendix 2.E, we present all
topological invariants that characterize H2(Gs,Z2), with Gs being any of the 17 wallpaper
groups.

Before moving on, we stress again that the topological characterization of the LSM
constraints obtained here applies to all Gint with Zk2-classified PR and all PR types of the
system, although it is derived in a special case with Gint = SO(3).

2.2.1 Gs = p6m

All fractionalization patterns of p6m are classified by H2(p6m,Z2) = Z4
2. As discussed in

Sec. 2.1, p6m has two IWP related to LSM constraints, type-a and type-c. The former
is the 2-fold rotation center of C3

6 , and the latter includes the 2-fold rotation centers of
5More precisely, H2

Borel(Gs,U(1)ρ). Especially, H2
Borel(p1,U(1)ρ) ∼= H3(p1,Zρ) = 0.
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T1C
3
6 , T2C3

6 and T1T2C
3
6 . In addition, p6m also has two independent mirror symmetries,

M and C3
6M . Using the 4 types of basic topological invariants discussed above, we can

immediately write down the complete set of independent topological invariants which can
distinguish all elements in H2(p6m,Z2):

αp6m1 [ω] =
ω(C3

6 , C
3
6)

ω(1, 1)

αp6m2 [ω] =
ω(T1C

3
6 , T1C

3
6)

ω(1, 1)

αp6m3 [ω] =
ω(M,M)

ω(1, 1)

αp6m4 [ω] =
ω(C3

6M,C3
6M)

ω(1, 1)

(2.4)

Physically, αp6m1 and αp6m2 measure the PR at the type-a and type-c IWP, respectively,
while αp6m3 and αp6m4 determine whether the (3 + 1)-d Gs ×Gint SPT contains a non-LSM
component. Mathematically, the correctness, completeness and independence of these
topological invariants can be checked using the representative cochains in Appendix 2.D.

Therefore, when αp6m3 = αp6m4 = 1, the combinations (αp6m1 , αp6m2 ) are the sought-for
topological invariants that characterize the LSM constraints in a lattice with Gs = p6m.
In particular, (αp6m1 , αp6m2 ) = (−1, 1) and (αp6m1 , αp6m2 ) = (1,−1) imply that there are DOF
with nontrivial PR at the type-a and type-c IWP, respectively, which are the generators of
ALH, as discussed in Sec. 2.1. When at least one of αp6m3 and αp6m4 is −1, this combination
does not correspond to any LSM constraint.

We remark that the choice of topological invariants is not unique. For example, the
expression of αp6m2 [ω] can be replaced by either ω(T2C3

6 ,T2C
3
6 )

ω(1,1)
or ω(T1T2C3

6 ,T1T2C
3
6 )

ω(1,1)
, because

ω(T1C3
6 ,T1C

3
6 )

ω(1,1)
=

ω(T2C3
6 ,T2C

3
6 )

ω(1,1)
=

ω(T1T2C3
6 ,T1T2C

3
6 )

ω(1,1)
for a cocycle ω(g1, g2) in H2(p6m,Z2), as can

be checked by using the representative cochains in Appendix 2.D. Physically, this just
means that the 2-fold rotation centers of T1C3

6 , T2C3
6 and T1T2C3

6 are related by symmetry,
so the PR at these three rotation centers should be the same. We can also replace the
expression of αp6m2 [ω] by ω(T1,T2)

ω(T2,T1)
, which tells us whether there is a net nontrivial PR in a

translation unit cell and equals αp6m1 [ω] ·αp6m2 [ω]. This information combined with αp6m1 [ω]
also completely specifies which IWP host Haldane chains.

It is useful to notice some interesting relations between LSM constraints with Gs =
p6m and those with Gs being a subgroup of p6m. In particular, consider the case where
Gs = cmm, which is a subgroup of p6m generated by T1, T2, C2 ≡ C3

6 and M . That is,
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the 3-fold rotational symmetry generated by C2
6 is absent. This wallpaper group has 3

IWP, where the first is the 2-fold rotation center of C2, the second is the 2-fold rotation
center of T1T2C2, and the last includes the 2-fold rotation centers of both T1C2 and T2C2.
Furthermore, there are two independent mirror symmetries, generated by M and C2M .
Similar analysis as before indicates that, for cmm, the 3 LSM fractionalization patterns
and 2 non-LSM fractionalization patterns are detected by topological invariants

αcmm1 [ω] =
ω(C2, C2)

ω(1, 1)

αcmm2 [ω] =
ω(T1T2C2, T1T2C2)

ω(1, 1)

αcmm3 [ω] =
ω(T1C2, T1C2)

ω(1, 1)

αcmm4 [ω] =
ω(M,M)

ω(1, 1)

αcmm5 [ω] =
ω(C2M,C2M)

ω(1, 1)

(2.5)

So when αcmm4 = αcmm5 = 1, the combinations (αcmm1 , αcmm2 , αcmm3 ) are the topological
invariants that characterize the LSM constraints in a lattice with Gs = cmm.

It is easy to see that the first IWP of cmm is just the descendent of the type-a IWP
of p6m, and the second and third IWP of cmm are descendent of the type-c IWP of p6m.
Moreover, the mirror symmetries of cmm are also the descendent mirror symmetries of
p6m. This means that the fractionalization pattern of p6m can be completely specified by
that of its cmm subgroup. More precisely, for a cmm subgroup of p6m, we have

αp6m1 = αcmm1 , αp6m2 = αcmm2 = αcmm3 ,

αp6m3 = αcmm4 , αp6m4 = αcmm5

(2.6)

These relations allow us to focus on the cmm subgroup of a p6m group when we consider
its fractionalization classes, which sometimes simplifies the analysis.

2.2.2 Gs = p4m

Using similar analysis as before, it is easy to see that the LSM constraints for the case with
Gs = p4m are classified by Z3

2, generated by distributions of DOF with nontrivial PR on
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the 3 IWP. The 3 root LSM constraints can be detected by topological invariants

αp4m1 =
ω(C2

4 , C
2
4)

ω(1, 1)

αp4m2 =
ω(T1T2C

2
4 , T1T2C

2
4)

ω(1, 1)

αp4m3 =
ω(T1C

2
4 , T1C

2
4)

ω(1, 1)

(2.7)

Again, the p4m symmetry requires that ω(T1C2
4 ,T1C

2
4 )

ω(1,1)
=

ω(T2C2
4 ,T2C

2
4 )

ω(1,1)
. There are also non-

LSM fractionalization patterns classified by Z3
2, with the following topological invariants

for the corresponding generators:

αp4m4 [ω] =
ω(M,M)

ω(1, 1)

αp4m5 [ω] =
ω(T1M,T1M)

ω(1, 1)

αp4m6 [ω] =
ω(C4M,C4M)

ω(1, 1)

(2.8)

In the case with Gint = SO(3), these three topological invariants imply that acting M ,
T1M and C4M on an SO(3) monopole twice yields a −1 phase factor, respectively.

Therefore, when αp4m4 = αp4m5 = αp4m6 = 1, the combinations (αp4m1 , αp4m2 , αp4m3 ) are the
topological invariants that characterize the LSM constraints in a lattice with Gs = p4m.

Again, it is useful to note the relation between the LSM constraints for Gs = p4m and
those for its subgroups. Let us consider the pmm subgroup of p4m, generated by T1, T2,
M and C2 ≡ C2

4 . That is, the 4-fold rotation is absent while the 2-fold rotation is retained
in pmm. By inspecting the IWP of pmm, we can immediately write down the topological
invariants corresponding to the LSM constraints

αpmm1 [ω] =
ω(C2, C2)

ω(1, 1)

αpmm2 [ω] =
ω(T1T2C2, T1T2C2)

ω(1, 1)

αpmm3 [ω] =
ω(T1C2, T1C2)

ω(1, 1)

αpmm4 [ω] =
ω(T2C2, T2C2)

ω(1, 1)

(2.9)
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and the topological invariants for the non-LSM fractionalization patterns

αpmm5 [ω] =
ω(M,M)

ω(1, 1)

αpmm6 [ω] =
ω(C2M,C2M)

ω(1, 1)

αpmm7 [ω] =
ω(T1M,T1M)

ω(1, 1)

αpmm8 [ω] =
ω(T2C2M,T2C2M)

ω(1, 1)

(2.10)

So when all αpmm5 = αpmm6 = αpmm7 = αpmm8 = 1, the combinations (αpmm1 , αpmm2 , αpmm3 , αpmm4 )
are the topological invariants that characterize the LSM constraints in a lattice with
Gs = pmm.

Furthermore, by examining the relation between IWP of p4m and the IWP of its pmm
subgroup, we get

αp4m1 = αpmm1 , αp4m2 = αpmm2 ,

αp4m3 = αpmm3 = αpmm4 ,

αp4m4 = αpmm5 = αpmm6 ,

αp4m5 = αpmm7 = αpmm8

(2.11)

So 5 of the 6 topological invariants for p4m can be determined by examining its pmm sub-
group. To further determine the last topological invariant, αp4m6 , one can simply examine
the subgroup generated by C4M . This observation will also simplify some analysis.

2.2.3 Topological characterization of the LSM constraints in (1+
1)-d

In the above we have derived the topological characterization of LSM constraints in (2+1)-d
systems. Similar derivation can be carried out for (1+1)-d systems withGs×Gint symmetry,
where Gs is one of the two line groups, and Gint is an internal symmetry group whose PR
are Zk2-classified. In this case, the lattice homotopy picture still applies in an analogous
way, and there are (2+1)-d Gs×Gint SPTs corresponding to each LSM constraint. Here we
present the cocycle and TPF of these SPTs, and leave the details of derivation to Appendix
2.F.
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When Gs = p1, the line group that contains only translation generated by T , the
classification of LSM constraints is Z2, detected by the total PR inside each translation
unit cell. The cocycle describing the (2+1)-d p1×Gint SPT related to the nontrivial LSM
constraint is

Ω(g1, g2, g3) = eiπx1η(a2,a3) (2.12)

where gi = T xi ⊗ ai, with xi ∈ Z and ai ∈ Gint, for i = 1, 2, 3. The corresponding TPF can
be written as

Z = e
iπ

∫
M3

x∪η[Aint] (2.13)

where M3 is the (2 + 1)-d spacetime manifold the SPT lives in, and x is the gauge field
corresponding to the translation symmetry.

When Gs = p1m, the line group that contains both translation T and mirror M , the
classification of LSM constraints is Z2

2, detected by the total PR at the mirror centers of
M and TM . For the case where only the mirror center of M has a net nontrivial PR, the
corresponding cocycle is

Ω(g1, g2, g3) = eiπ(x1+m1)η(a2,a3) (2.14)

where gi = T xiMmi ⊗ ai, with xi ∈ Z, mi ∈ {0, 1} and ai ∈ Gint, for i = 1, 2, 3. The
corresponding TPF can be written as

Z = e
iπ

∫
M3

(x+m)∪η[Aint] (2.15)

where x is still the gauge field of translation, and m is the gauge field of mirror symmetry.
For the case where only the mirror center of TM has a net nontrivial PR, using similar
notations, the corresponding cocycle and TPF are respectively

Ω(g1, g2, g3) = eiπx1η(a2,a3) (2.16)

and

Z = e
iπ

∫
M3

x∪η[Aint] (2.17)

2.A Topological partition function corresponding to
LSM

In this appendix, we provide a more rigorous argument that the cocycle corresponding to
the topological partition function (TPF) of the (3 + 1)-d Gs ×Gint SPT, whose boundary
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has some LSM constraint, can indeed be written in the form of Eq. (2.1). 6

To start, first recall that the lattice homotopy picture indicates that all LSM constraints
for a given wallpaper group Gs are classified by a group ALH = Zk2 with some integer k.
This means that the sought-for cocycle in H4(Gs ×Gint,U(1)ρ) can be written as

Ω(g1, g2, g3, g4) = eiπκ(g1,g2,g3,g4) (2.18)

with κ taking values in {0, 1}. This allows us to view κ(g1, g2, g3, g4) as a representative
cochain inH4(Gs×Gint,Z2), where the multiplication between two elements is implemented
by the mod 2 addition of their corresponding representative cochains. Since H4(Gs ×
Gint,Z2) ' ⊕4

i=0H
i(Gs,Z2)⊗H4−i(Gint,Z2), we can always write Ω as

Ω(g1, g2, g3, g4) =
4∏
i=0

eiπλi(l1,··· ,li)η4−i(ai+1,··· ,a4) (2.19)

where each gi ∈ Gs × Gint is again written as gi = li ⊗ ai, with li ∈ Gs and ai ∈ Gint.
Both λi and η4−i take values in {0, 1}, and they can be viewed as representative cochains
in H i(Gs,Z2) and H4−i(Gint,Z2), respectively. Furthermore, we can view eiπη4−i(ai+1,··· ,a4)

as a representative cochain in H4−i(Gint,U(1)ρ), which can be physically interpreted as a
Gint SPT living in 3− i spatial dimensions.

Previous studies of Gs × Gint SPTs indicate that all these SPTs have a real-space
construction, in which various lower dimensional SPTs (or invertible states) are decorated
into various submanifolds of the entire crystal [39, 62, 63]. Indeed, the SPT relevant to LSM
constraints can be constructed by putting copies of (1 + 1)-d Gint SPTs at various IWP of
the wallpaper group Gs. Combining these two observations together, we conclude that in
Eq. (2.19) only the factor with i = 2 can possibly be related to LSM constraints, because
only that factor can possibly be related to putting (1+1)-d Gint SPTs at various positions,
while other factors involve SPTs living in the wrong dimension (e.g., the i = 1 term means
that some (2 + 1)-d Gint SPT is decorated into the system in some way). Moreover, for a

6Since the (3 + 1)-d Gs × Gint SPT is captured by an element in H4(Gs × Gint,U(1)ρ), one
may attempt to show the validity of Eq. (2.1) by combining the Kunneth decomposition H4(Gs ×
Gint,U(1)ρ) ∼= ⊕4

i=0H
i(Gs,H

4−i(Gint,U(1)ρ)) and the fact that the relevant (1 + 1)-d Gint SPT
is captured by H2(Gint,U(1)ρ), which suggests that in the Kunneth decomposition only the term
H2(Gs,H

2(Gint,U(1)ρ)) is relevant to the LSM constraints. Although intuitively appealing, this ar-
gument is flawed, because there is generically no unambiguous way to determine whether an element in
H4(Gs × Gint,U(1)ρ) is in H2(Gs,H

2(Gint,U(1)ρ)). Our argument below does not suffer from this am-
biguity. Furthermore, even if we know that the relevant cocycle is in H2(Gs,H

2(Gint,U(1)ρ)), it requires
an explanation why its representative cochain can necessarily be written as Eq. (2.1).
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given PR type of the system, eiπη2(a3,a4) should be the cocycle corresponding to the (1+1)-d
Gint SPT whose boundary hosts this particular PR.

Therefore, the cocycle related to LSM constraints can always be written in a form given
by Eq. (2.1), and λ(l1, l2), which is written as λ2(l1, l2) in Eq. (2.19), can be viewed as
a representative cochain in H2(Gs,Z2). Furthermore, according to the lattice homotopy
picture, λ or λ2 should just encode the information of which IWP host (1+1)-d Gint SPTs,
so it should be completely determined by Gs and the lattice homotopy class corresponding
to each LSM constraint, and be the same for all Gint and all PR types of the system.

We remark that the above argument does not show that all cocycles in the form of Eq.
(2.1) must be related to LSM constraints. In fact, in Sec. 2.2 we have found that some of
them are not. Those SPTs can be constructed by inserting a (2 + 1)-d Z2 × Gint SPT on
the mirror plane, such that the Z2 domain wall is decorated with a (1 + 1)-d Gint SPT.
See Appendix 2.C for more detail.

We also remark that although we have assumed that the projective representations
of Gint are Zk2-classified with k some integer in the above argument, we expect that the
topological partition functions corresponding to LSM constraints can always be written in
a form similar to Eq. (2.1), for any Gint. Specially, if a PR type of Gint has order n, then
the LSM-related cocycle takes the form

Ω(g1, g2, g3, g4) = ei
2π
n
λ(l1,l2)η(a3,a4) (2.20)

where λ and η take integral values, and e
2πi
n
η(a3,a4) is the cocycle corresponding to the

relevant (1+1)-d Gint SPT. Moreover, this statement, including its special form Eq. (2.1),
has been derived in the special cases where Gs contains only translation or only point
group, using equivariant homology [40], and we expect that the method in Ref. [40] can
be generalized to an arbitrary lattice symmetry group Gs. A systematic proof of this
statement is beyond the scope of this thesis and we leave it for future work.

2.B Fractionalization pattern involving both transla-
tion and glide symmetries

Among all 17 wallpaper groups, there is only one group, pg, in which the fractionalization
pattern has to be specified in a way that necessarily invokes the glide symmetry. In this
appendix, we present its corresponding physical picture.
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The group pg is generated by T1 and G, a translation and a glide reflection. The
translation vector of T1 is flipped under G, and G2 is another translation along a direction
perpendicular to the translation vector of T1. These generators satisfy G−1T1GT1 = 1.

Figure 2.3: Acting G−1T1GT1 on an SO(3) monopole. The first T1 action is marked in
blue, the following G action is marked in red, the next T1 action is marked in green, and
the last G−1 action is marked in purple. The dashed line is the reflection axis of G. This
figure shows that the operation G−1T1GT1 moves an SO((3) monopole along a trajectory
that encloses a fundamental domain.

Consider the case where Gint = SO(3). Just as in the main text, we gauge the SO(3)
symmetry and examine the fractionalization pattern of pg on the SO(3) monopole by ap-
plying the operation G−1T1GT1 to an SO(3) monopole, which moves the monopole around
the fundamental domain (see Fig. 2.3). If the fundamental domain contains an odd (even)
number of Haldane chains, this process results in a −1 (1) phase factor, which is a signa-
ture of nontrivial (trivial) symmetry fractionalization pattern of the pg symmetry carried
by the SO(3) monopole. Because H2(pg,Z2) = Z2, there is only one nontrivial symme-
try fractionalization pattern. A topological invariant detecting the nontrivial element in
H2(pg,Z2) is given in Eq. (2.118), so this must be the topological invariant that diagnoses
the fractionalization pattern of the pg symmetry on an SO(3) monopole.

2.C Non-LSM fractionalization patterns

In this appendix, we discuss in more detail theM×SO(3) SPT corresponding to αnon−LSM =
ω(M,M)
ω(1,1)

= −1, which has TPF exp(iπ
∫
(wTM1 )2w

SO(3)
2 ). In particular, we will show that this

SPT can be constructed by inserting into the mirror plane of M a (2 + 1)-d Z2 × SO(3)
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SPT, whose Z2 domain walls are decorated with Haldane chains. Moreover, we will show
that for any Gint with Zk2-classified PR, the (3 + 1)-d M ×Gint SPTs with αnon−LSM = −1
can always be constructed by inserting into the mirror plane of M a (2 + 1)-d Z2 × Gint

SPT, whose Z2 domain walls are decorated with the relevant nontrivial (1+1)-d Gint SPT.
Focusing on the case with Gint = SO(3), let us enumerate all (3+1)-d M×SO(3) SPTs.

According to the crystalline equivalence principle [53], the classification of these SPTs is
the same as the classification of (3 + 1)-d ZT2 × SO(3) SPTs, where ZT2 is a time reversal
symmetry. It is known that the latter are classified by Z4

2 (e.g., see Appendix F of Ref. [56]
for the descriptions of the physical properties of these SPTs). So (3+1)-d M×SO(3) SPTs
are Z4

2-classified. According to Ref. [64], these SPTs can all be constructed by putting on
the mirror plane of M some (2 + 1)-d invertible states that have at most a Z2 × SO(3)
symmetry (note that this Z2 symmetry does not reverse the spacetime orientation). The
(2 + 1)-d Z2 × SO(3) SPTs are classified by H3(Z2 × SO(3),U(1)) = Z2 × Z× Z2, where
the Kunneth formula is used in calculating this classification. It is easy to read off the
physical meaning of the root states of these (2+ 1)-d SPTs: one Z2 factor represents SPTs
protected purely by the Z2 symmetry, the Z factor represents spin quantum Hall states
[65], which are SPTs protected purely by the SO(3) symmetry and has a TPF given by
SO(3) Chern-Simons theories, and the other Z2 factor must represent an SPT protected
by both Z2 and SO(3). The decorated-domain-wall method [66] allows us to construct the
SPT by decorating the Z2 domain walls with a Haldane chain.

All the (2 + 1)-d Z2 × SO(3) SPTs can be inserted into the mirror plane of M to
construct a (3 + 1)-d M × SO(3) SPT, and one can also insert an E8 state to the mirror
plane. In total, these give the Z4

2 classification of (3+1)-d M×SO(3) SPTs. Note inserting
a Z2 SPT or an E8 state to the mirror plane results in a (3+1)-d SPT protected by M only,
so these states will not have a TPF exp(iπ

∫
(wTM1 )2w

SO(3)
2 ), which shows that this SPT

requires both M and SO(3) for protection. Now we are only left with the cases where the
bosonic spin quantum Hall state and/or the state constructed from decorated domain wall
is inserted into the mirror plane. To understand the physical properties of these states, we
can refer to the corresponding (3+ 1)-d ZT2 ×SO(3) SPTs. If a spin quantum Hall state is
decorated into the time reversal domain wall, the resulting state will have fermionic SO(3)
monopoles. Using the correspondence between ZT2 × SO(3) SPTs and M × SO(3) SPTs,
this indicates that if the spin quantum Hall state is inserted into the mirror plane, the
SO(3) monopole will also be fermionic. However, the TPF exp(iπ

∫
(wTM1 )2w

SO(3)
2 ) means

that the SO(3) monopole is a boson (but carries nontrivial fractionalization pattern of
the M symmetry). This means that the (3 + 1)-d SPT of interest must be obtained from
inserting to the mirror plane the (2 + 1)-d SPT constructed from decorated domain wall.

In fact, one can explicitly demonstrate that a (3 + 1)-d M × SO(3) SPT constructed

31



in this way indeed has an SO(3) monopole carring the nontrivial fractionalization pattern
of the M symmetry. To this end, it suffices to show a simpler version of this statement:
suppose we break the SO(3) symmetry in this SPT to U(1), the U(1) monopole in the
resulting state will carry the nontrivial fractionalization pattern of M . This statement can
be explicitly shown using the method in Ref. [57] (see Appendix B therein). This also
means that upon this symmetry breaking, the resulting M × U(1) symmetric state is a
nontrivial SPT. According to the general discussion in Sec. 2.2, this implies that αnon−LSM

is unrelated to LSM constraints of interest.
The above discussion concerns about the case where Gint = SO(3). Now we argue

that for any Gint with Zk2-classified PR, αnon−LSM can be triggered in a (3 + 1)-d M ×Gint

SPT constructed in a way similar to the above, and all we need to modify is to replace
the Haldane chain decorated into the Z2 domain wall by a (1 + 1)-d Gint SPT. To this
end, it suffices to show that the TPF of this (3 + 1)-d M ×Gint SPT is eiπ

∫
(wTM

1 )2η, where
η ∈ H2(Gint,Z2) and eiπ

∫
η is the TPF of the (1 + 1)-d Gint SPT. This can be shown by

noting i) this SPT is its own inverse, and ii) this construction works for all such Gint. Then
an argument very similar to that in Appendix 2.A suggests that the TPF of this SPT can
indeed be written as eiπ

∫
(wTM

1 )2η.

2.D Group Cohomology and Z2 Cohomology ring of
wallpaper groups

In this appendix, we list the Z2 cohomology rings of all 17 wallpaper groups. The cal-
culation is done with the help of spectral sequence. See Appendix A.3 for some brief
mathematical introduction of the relevant concepts, and Refs. [67–69] for more details. It
turns out that for all wallpaper groups Gs except p4g, the cohomology ring can be written
as

H∗(Gs,Z2) = Z2[A•, · · · , B•, · · · ]/relations (2.21)

with A• and B• the generators belonging to H1(Gs,Z2) and H2(Gs,Z2), respectively. Sub-
scripts “•” are the names of generators which differ for different Gs, and their meanings will
often be clear in the context. As a result, all elements of the cohomology ring H∗(Gs,Z2)
can be written as cup product of the generators A• and B•, but there are some relations
that dictate that certain sums of cup products actually yield a trivial cohomology element.
We will present all elements of H1(Gs,Z2) and H2(Gs,Z2) together with their representa-
tive cochains, as well as the complete set of the relations. This encodes the full information
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of the cohomology ring H∗(Gs,Z2). The situation for p4g is similar, but we need an extra
degree-3 generator C ∈ H3(p4g,Z2), which, together with the generators in H1(p4g,Z2)
and H2(p4g,Z2), forms a complete set of generators of H∗(p4g,Z2).

For later usage, we define a set of functions that take integers as their arguments:

P (x) =

{
1, x is odd
0, x is even

, Pc(x) = 1− P (x), Q(x) = (−1)x,

[x]a = {y = x (mod a)|0 ⩽ y < a}, Pab(x) =
{

1, x = b (mod a)
0, otherwise

(2.22)

• Wallpaper group 1: p1
This group is generated by T1 and T2, two independent translations which are com-
mutative,

T1T2 = T2T1. (2.23)

An arbitrary group element in p1 can be written as g = T x1 T
y
2 , with x, y ∈ Z. For

g1 = T x11 T y12 and g2 = T x21 T y22 , the group multiplication rule gives

g1g2 = T x1+x21 T y1+y22 . (2.24)

The Z2 cohomology ring of p1 is

Z2[Ax, Ay]/(A
2
x = 0, A2

y = 0). (2.25)

Here H1(p1,Z2) = Z2
2, with generators ξ1 = Ax, ξ2 = Ay, which have representative

cochains,

ξ1(g) = x, ξ2(g) = y. (2.26)

H2(p1,Z2) = Z2, with generators λ1 = AxAy, which have representative cochains,

λ1(g1, g2) = y1x2 (2.27)

Indeed λ1 generates the LSM constraint.

• Wallpaper group 2: p2
This group is generated by T1, T2 and C2, two independent translations and a C2

rotational symmetry, with the following relations among generators

C2
2 = 1, C2T1C2 = T−1

1 , C2T2C2 = T−1
2 , T1T2 = T2T1. (2.28)
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An arbitrary group element in p2 can be written as g = T x1 T
y
2C

c
2, with x, y ∈ Z and

c ∈ {0, 1}. For g1 = T x11 T y12 C
c1
2 and g2 = T x21 T y22 C

c2
2 , the group multiplication rule

gives

g1g2 = T
x1+Q(c1)x2
1 T

y1+Q(c1)y2
2 C

P (c1+c2)
2 . (2.29)

The Z2 cohomology ring of p2 is

Z2[Ax, Ay, Ac]/(A
2
x = AxAc, A

2
y = AyAc) (2.30)

Here H1(p2,Z2) = Z3
2, with generators ξ1 = Ax, ξ2 = Ay, ξ3 = Ac, which have

representative cochains,

ξ1(g) = x, ξ2(g) = y, ξ3(g) = c. (2.31)

H2(p2,Z2) = Z4
2, with generators λ1 = (Ax + Ac)(Ay + Ac), λ2 = Ax(Ay +

Ac), λ3 = (Ax + Ac)Ay, λ4 = AxAy, which have representative cochains,

λ1(g1, g2) = y1x2 + c1(x2 + y2 + c2)

λ2(g1, g2) = (y1 + c1)x2

λ3(g1, g2) = y1x2 + c1y2

λ4(g1, g2) = y1x2

(2.32)

The generators are chosen so that they have a 1-1 correspondence with topologi-
cal invariants presented in Appendix 2.E. There we will also see that all of them,
λ1, λ2, λ3, λ4, generate LSM constraints.

• Wallpaper group 3: pm
This group is generated by T1, T2 and M , where T1 and T2 are translations with
perpendicular translation vectors, and M is a mirror symmetry such that

M2 = 1, MT1M = T−1
1 , MT2M = T2, T1T2 = T2T1. (2.33)

An arbitrary element in pm can be written as g = T x1 T
y
2M

m, with x, y ∈ Z and
m ∈ {0, 1}. For g1 = T x11 T y12 M

m1 and g2 = T x21 T y22 M
m2 , the group multiplication

rule gives

g1g2 = T
x1+Q(m1)x2
1 T y1+y22 MP (m1+m2). (2.34)
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The Z2 cohomology ring of pm is
Z2[Ax, Ay, Am]/(A

2
x = AxAm, A

2
y = 0) (2.35)

Here H1(pm,Z2) = Z3
2, with generators ξ1 = Ax, ξ2 = Ay, ξ3 = Am, which have

representative cochains,
ξ1(g) = x, ξ2(g) = y, ξ3(g) = m. (2.36)

H2(pm,Z2) = Z4
2, with generators λ1 = (Ax + Am)Ay, λ2 = AxAy, λ3 = (Ax +

Am)Am, λ4 = AxAm, which have representative cochains,
λ1(g1, g2) = y1x2 +m1y2

λ2(g1, g2) = y1x2

λ3(g1, g2) = m1(x2 +m2)

λ4(g1, g2) = m1x2

(2.37)

In Appendix 2.E, we will see that λ1, λ2 generate LSM constraints, while λ3, λ4
correspond to non-LSM fractionalization patterns.

• Wallpaper group 4: pg
This group is generated by T1 and G, where T1 is a translation and G is a glide
reflection, such that

G−1T1G = T−1
1 . (2.38)

Note that G2 is a translation along the direction perpendicular to the translation
vector of T1. An arbitrary element in pg can be written as g = T x1G

s, with x, s ∈ Z.
For g1 = T x11 Gs1 and g2 = T x21 Gs2 , the group multiplication rule gives

g1g2 = T
x1+Q(s1)x2
1 Gs1+s2 . (2.39)

The Z2 cohomology ring of pg is
Z2[Ax, As]/(A

2
x = AxAs, A

2
s = 0) (2.40)

Here H1(pg,Z2) = Z2
2, with generators ξ1 = Ax, ξ2 = As, which have representative

cochains,
ξ1(g) = x, ξ2(g) = s. (2.41)

H2(pg,Z2) = Z2, with generators λ1 = AxAs, which have representative cochains,
λ1(g1, g2) = s1x2 (2.42)

In Appendix 2.E, we will see that λ1 generates LSM constraints.
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• Wallpaper group 5: cm
This group is generated by T1, T2 and M , two independent translations and a mirror
symmetry whose mirror axis bisects the translation vectors of T1 and T2. They satisfy

M2 = 1, MT1M = T2, MT2M = T1, T1T2 = T2T1. (2.43)

An arbitrary element of cm can be written as g = T x1 T
y
2M

m, with x, y ∈ Z and
m ∈ {0, 1}. For g1 = T x11 T y12 M

m1 and g2 = T x21 T y22 M
m2 , the group multiplication

rule gives

g1g2 = T
x1+Pc(m1)x2+P (m1)y2
1 T

y1+Pc(m1)y2+P (m1)x2
2 MP (m1+m2). (2.44)

The Z2 cohomology ring of cm is

Z2[Ax+y, Am, Bxy]/(A
2
x+y = 0, Ax+yAm = 0, BxyAx+y = 0, B2

xy = 0) (2.45)

Here H1(cm,Z2) = Z2
2, with two generators ξ1 = Ax+y, ξ2 = Am, which have

representative cochains

ξ1(g) = x+ y, ξ2(g) = m. (2.46)

H2(cm,Z2) = Z2
2, with generators λ1 = Bxy, λ2 = A2

m, which have representative
cochains

λ1(g1, g2) = Pc(m1)y1x2 + P (m1)y2(x2 + y1)

λ2(g1, g2) = m1m2

(2.47)

In Appendix 2.E, we will see that λ1 generates LSM constraints, while λ2 corresponds
to non-LSM fractionalization patterns.

• Wallpaper group 6: pmm
This group is generated by T1, T2, C2 and M , two translations with perpendicular
translation vectors, a C2 rotation and a mirror symmetry such that

M2 = 1, MC2M = C2, MT1M = T−1
1 , MT2M = T2

C2
2 = 1, C2T1C2 = T−1

1 , C2T2C2 = T−1
2 , T1T2 = T2T1.

(2.48)

Note that C2M is another mirror symmetry that flips the translation vector of T2.
An arbitrary element in pmm can be written as g = T x1 T

y
2C

c
2M

m, with x, y ∈ Z
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and c,m ∈ {0, 1}. For g1 = T x11 T y12 C
c2
2 M

m1 and g2 = T x21 T y22 C
c2
2 M

m2 , the group
multiplication rule gives

g1g2 = T
x1+Q(c1+m1)x2
1 T

y1+Q(c1)y2
2 C

P (c1+c2)
2 MP (m1+m2). (2.49)

The Z2 cohomology ring of pmm is

Z2[Ax, Ay, Ac, Am]/(A
2
x = Ax(Am + Ac), A

2
y = AyAc) (2.50)

Here H1(pmm,Z2) = Z4
2, with generators ξ1 = Ax, ξ2 = Ay, ξ3 = Ac, ξ4 = Am,

which have representative cochains,

ξ1(g) = x, ξ2(g) = y, ξ3(g) = c, ξ4(g) = m. (2.51)

H2(pmm,Z2) = Z8
2, with generators λ1 = (Ax+Ac+Am)(Ay+Ac), λ2 = AxAy, λ3 =

Ax(Ay + Ac), λ4 = (Ax + Ac + Am)Ay, λ5 = (Ax + Ac + Am)Am, λ6 = (Ay +
Ac)Am, λ7 = AxAm, λ8 = AyAm, which have representative cochains,

λ1(g1, g2) = (y1 + c1)x2 + (c1 +m1)(y2 + c2)

λ2(g1, g2) = y1x2

λ3(g1, g2) = (y1 + c1)x2

λ4(g1, g2) = y1x2 + (c1 +m1)y2

λ5(g1, g2) = m1(x2 + c2 +m2)

λ6(g1, g2) = m1(y2 + c2)

λ7(g1, g2) = m1x2

λ8(g1, g2) = m1y2

(2.52)

In Appendix 2.E, we will see that λ1, λ2, λ3, λ4 generate LSM constraints, while
λ5, λ6, λ7, λ8 correspond to non-LSM fractionalization patterns.

• Wallpaper group 7: pmg
This group is generated by T1, T2, C2 and M , two translations with perpendicular
translation vectors, a 2-fold rotation and a mirror symmetry with mirror axis parallel
to the translation vector of T2, and displaced from the C2 rotation center by a quarter
of the unit translation vector of T1. They satisfy

M2 = 1, MC2M = T1C2, MT1M = T−1
1 , MT2M = T2,

C2
2 = 1, C2T1C2 = T−1

1 , C2T2C2 = T−1
2 , T1T2 = T2T1.

(2.53)
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An arbitrary element in pmg can be written as g = T x1 T
y
2C

c
2M

m, with x, y ∈ Z
and c,m ∈ {0, 1}. For g1 = T x11 T y12 C

c1
2 M

m1 and g2 = T x21 T y22 C
c2
2 M

m2 , the group
multiplication rule gives

g1g2 = T
x1+Q(c1+m1)x2+Q(c1)c2m1

1 T
y1+Q(c1)y2
2 C

P (c1+c2)
2 MP (m1+m2). (2.54)

The Z2 cohomology ring of pmg is

Z2[Ay, Ac, Am]/(A
2
y = AcAy, AcAm = 0) (2.55)

Here H1(pmg,Z2) = Z3
2, with generators ξ1 = Ay, ξ2 = Ac, ξ3 = Am, which have

representative cochains,

ξ1(g) = y, ξ2(g) = c, ξ3(g) = m. (2.56)

H2(pmg,Z2) = Z4
2, with generators λ1 = Ac(Ay + Ac), λ2 = AcAy, λ3 = AyAm,

λ4 = A2
m, which have representative cochains,

λ1(g1, g2) = c1(y2 + c2)

λ2(g1, g2) = c1y2

λ3(g1, g2) = m1y2

λ4(g1, g2) = m1m2

(2.57)

In Appendix 2.E, we will see that λ1, λ2 generate LSM constraints, while λ3, λ4
correspond to non-LSM fractionalization patterns.

• Wallpaper group 8: pgg
This group is generated by T1, T2, C2 and G1, two translations with perpendicular
translation vectors, a C2 rotation, and a glide reflection whose reflection axis is
parallel to the translation vector of T2, and displaced from the C2 center by a quarter
of the unit translation vector of T1. They satisfy

C2
2 = 1, G1C2G

−1
1 = T1T2C2, C2T1C2 = T−1

1 , G1T1G
−1
1 = T−1

1 , G2
1 = T2.(2.58)

An arbitrary element in pgg can be written as g = T x1 T
y
2C

c
2G

s
1, with x, y ∈ Z and c, s ∈

{0, 1}. For g1 = T x11 T y12 C
c1
2 G

s1
1 and g2 = T x21 T y22 C

c2
2 G

s2
1 , the group multiplication rule

gives

g1g2 = T
x1+Q(c1+s1)x2+Q(c1)c2s1
1 T

y1+Q(c1)y2+Q(c1)c2s1+Q(c1+c2)s1s2
2 C

P (c1+c2)
2 G

P (s1+s2)
1 .(2.59)
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The Z2 cohomology ring of pgg is

Z2[Ac, As, Bc(x+y)]/(A
2
s = 0, AsAc = 0, AsBc(x+y) = 0, B2

c(x+y) = A2
cBc(x+y))(2.60)

Here H1(pgg,Z2) = Z2
2, with generators ξ1 = Ac, ξ2 = As, which have representa-

tive cochains,

ξ1(g) = c, ξ2(g) = s. (2.61)

H2(pgg,Z2) = Z2
2, with generators λ1 = Bc(x+y) + A2

c , ω2 = Bc(x+y), which have
representative cochains,

λ1(g1, g2) = c1(x2 + y2 + c2) + (c1 + c2)s1s2 + s1x2

λ2(g1, g2) = c1(x2 + y2) + (c1 + c2)s1s2 + s1x2
(2.62)

In Appendix 2.E, we will see that λ1, λ2 generate LSM constraints.

• Wallpaper group 9: cmm
This group is generated by T1, T2, C2 andM , two translations with translation vectors
not perpendicular to each other, a C2 rotation, and a mirror symmetry whose mirror
axis bisects the translation vectors of T1 and T2. They satisfy

M2 = 1, MC2M = C2, MT1M = T2, MT2M = T1,

C2
2 = 1, C2T1C2 = T−1

1 , C2T2C2 = T−1
2 , T1T2 = T2T1.

(2.63)

Note that C2M is another mirror symmetry whose mirror axis bisects the trans-
lation vectors of T1 and T−1

2 . An arbitrary element in cmm can be written as
g = T x1 T

y
2C

c
2M

m, with x, y ∈ Z and c,m ∈ {0, 1}. For g1 = T x11 T y12 C
c1
2 M

m1 and
g2 = T x21 T y22 C

c2
2 M

m2 , the group multplication rule gives

g1g2 = T
x1+Q(c1)X
1 T

y1+Q(c1)Y
2 C

P (c1+c2)
2 MP (m1+m2), (2.64)

where X and Y are defined as

X = Pc(m1)x2 + P (m1)y2,

Y = Pc(m1)y2 + P (m1)x2.
(2.65)

The Z2 cohomology ring of cmm is

Z2[Ax+y, Ac, Am, Bxy]/
(
A2
x+y = AcAx+y, Ax+yAm = 0, BxyAx+y = 0,

B2
xy = (A2

c + AcAm)Bxy

) (2.66)
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Here H1(cmm,Z2) = Z3
2, with generators ξ1 = Ax+y, ξ2 = Ac, ξ3 = Am, which

have representative cochains,

ξ1(g) = x+ y, ξ2(g) = c, ξ3(g) = m. (2.67)

H2(cmm,Z2) = Z5
2, with generators λ1 = Bxy + AcAx+y + A2

c + AmAc, λ2 =
Bxy, λ3 = AcAx+y, λ4 = (Ac + Am)Am, λ5 = AcAm, which have representative
cochains,

λ1(g1, g2) = Pc(m1)y1x2 + P (m1)y2(x2 + y1) + c1(x2 + y2 + c2 +m2)

λ2(g1, g2) = Pc(m1)y1x2 + P (m1)y2(x2 + y1)

λ3(g1, g2) = c1(x2 + y2)

λ4(g1, g2) = m1(c2 +m2)

λ5(g1, g2) = m1c2

(2.68)

In Appendix 2.E, we will that λ1, λ2, λ3 generate LSM constraints, while λ4, λ5 cor-
respond to non-LSM fractionalization pattern.

• Wallpaper group 10: p4
This group is generated by T1, T2 and C4, two translations with perpendicular trans-
lation vectors that have equal length, and a 4-fold rotational symmetry, such that

C4
4 = 1, C4T1C

−1
4 = T2, C4T2C

−1
4 = T−1

1 , T1T2 = T2T1. (2.69)

An arbitrary element in p4 can be written as g = T x1 T
y
2C

c
4, with x, y ∈ Z and

c ∈ {0, 1, 2, 3}. For g1 = T x11 T y12 C
c1
4 and g2 = T x21 T y22 C

c2
4 , the group multiplication

rule gives

g1g2 = T
x1+∆x(x2,y2,c1)
1 T

y1+∆y(x2,y2,c1)
2 C

[c1+c2]4
4 (2.70)

where

∆x(x, y, c) =


x, c = 0
−y, c = 1
−x, c = 2
y, c = 3

, ∆y(x, y, c) =


y, c = 0
x, c = 1
−y, c = 2
−x, c = 3

(2.71)

The Z2 cohomology ring of p4 is

Z2[Ac, Ax+y, Bc2 , Bxy]/
(
A2
c = 0, AcAx+y = 0,

BxyAx+y = BxyAc, Bc2Ax+y = A3
x+y +BxyAx+y,

B2
xy = Bc2Bxy

) (2.72)

40



Here H1(p4,Z2) = Z2
2, with generators ξ1 = Ax+y, ξ2 = Ac, which have represen-

tative cochains,

ξ1(g) = x+ y, ξ2(g) = c. (2.73)

H2(p4,Z2) = Z3
2, with generators λ1 = Bxy + A2

x+y + Bc2 , λ2 = Bxy, λ3 = A2
x+y,

which have representative cochains,

λ1(g1, g2) = λ2(g1, g2) + λ3(g1, g2) +
[c1]4 + [c2]4 − [c1 + c2]4

4
λ2(g1, g2) = Pc(c1)y1x2 + P (c1)y2(x2 + y1)

λ3(g1, g2) = P41(c1)x2 + P42(c1)(x2 + y2) + P43(c1)y2

(2.74)

In Appendix 2.E, we will see that λ1, λ2, λ3 generate LSM constraints.

• Wallpaper group 11: p4m
This group is generated by T1, T2, C4 and M , where the first three generators have
the same properties as those in p4, and the last generator M is a mirror symmetry
that flips the translation vector of T1, such that

M2 = 1, MC4M = C−1
4 , MT1M = T−1

1 , MT2M = T2,

C4
4 = 1, C4T1C

−1
4 = T2, C4T2C

−1
4 = T−1

1 , T1T2 = T2T1.
(2.75)

An arbitrary element in p4m can be written as g = T x1 T
y
2C

c
4M

m, with x, y ∈ Z,
c ∈ {0, 1, 2, 3} and m ∈ {0, 1}. For g1 = T x11 T y12 C

c1
4 M

m1 and g2 = T x21 T y22 C
c2
4 M

m2 ,
the group multiplication rule gives

g1g2 = T
x1+∆x(Q(m1)x2,y2,c1)
1 T

y1+∆y(Q(m1)x2,y2,c1)
2 C

[c1+Q(m1)c2]4
4 MP (m1+m2) (2.76)

where ∆x(x, y, c) and ∆y(x, y, c) are defined in Eq. (2.71).
The Z2 cohomology ring of p4m is

Z2[Ac, Ax+y, Am, Bc2 , Bxy]/
(
Ac(Ac + Am) = 0, AcAx+y = 0,

BxyAx+y = Bxy(Ac + Am),

Bc2Ax+y = A3
x+y + AmA

2
x+y +BxyAx+y,

B2
xy = Bc2Bxy

) (2.77)

Here H1(p4m,Z2) = Z3
2, with generators ξ1 = Ax+y, ξ2 = Ac, ξ3 = Am, which

have representative cochains,

ξ1(g) = x+ y, ξ2(g) = c, ξ3(g) = m. (2.78)
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H2(p4m,Z2) = Z6
2, with generators λ1 = Bxy + Ax+y(Ax+y + Am) + Bc2 , λ2 =

Bxy, λ3 = Ax+y(Ax+y+Am), λ4 = Am(Am+Ax+y+Ac), λ5 = AmAx+y, λ6 =
AmAc, which have representative cochains,

λ1(g1, g2) = λ2(g1, g2) + λ3(g1, g2) +
[c1]4 +Q(m1)[c2]4 − [c1 +Q(m1)c2]4

4
λ2(g1, g2) = Pc(c1)y1x2 + P (c1)y2(x2 + y1)

λ3(g1, g2) = P41(c1)x2 + P42(c1)(x2 + y2) + P43(c1)y2 +m1y2

λ4(g1, g2) = m1(x2 + y2 + c2 +m2)

λ5(g1, g2) = m1(x2 + y2)

λ6(g1, g2) = m1c2

(2.79)

In Appendix 2.E, we will see that λ1, λ2, λ3 generate LSM constraints, while λ4, λ5, λ6
correspond to non-LSM fractionalization patterns.

• Wallpaper group 12: p4g
This group is generated by T1, T2, C4 and G. The first three generators have the
same properties as those in p4, and the last generator G is a glide reflection whose
reflection axis passes through the rotation center of C4 and bisects the translation
vectors of T1 and T2, such that

C4
4 = 1, C4T1C

−1
4 = T2, C4T2C

−1
4 = T−1

1 , T1T2 = T2T1, (2.80)
G2 = T1T2, GT1G

−1 = T2, GT2G
−1 = T1, GC4G

−1 = T2C
−1
4 .(2.81)

Note that there is also a mirror symmetry M = T−1
1 G. An arbitrary element in p4g

can be written as g = T x1 T
y
2C

c
4G

s, with x, y ∈ Z, c ∈ {0, 1, 2, 3} and s ∈ {0, 1}. For
g1 = T x11 T y12 C

c1
4 G

s1 and g2 = T x21 T y22 C
c2
4 G

s2 , the group multiplication rule gives

g1g2 = T
x1+∆x(X,Y,c1)
1 T

y1+∆y(X,Y,c1)
2 C

[c1+Q(s1)c2]4
4 GP (s1+s2) (2.82)

where ∆x(x, y, c) and ∆y(x, y, c) are defined in Eq. (2.71), and

X = Pc(s1)x2 + P (s1)y2 + (P42(c2) + P43(c2)) s1 +∆x(s1s2, s1s2, [Q(s1)c2]4)

Y = Pc(s1)y2 + P (s1)x2 + (P41(c2) + P42(c2)) s1 +∆y(s1s2, s1s2, [Q(s1)c2]4)
(2.83)
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The Z2 cohomology ring of p4g is
Z2[Ac, As, Bc2 , Bc(x+y), Cc2(x+y)]/

(
A2
c = 0, AcAs = 0, AcBc(x+y) = 0,

AsBc(x+y) = AsBc2 ,

B2
c(x+y) = Bc2Bc(x+y), AcCc2(x+y) = 0,

Bc(x+y)Cc2(x+y) = Bc2Cc2(x+y),

C2
c2(x+y) = B3

c(x+y) + AsBc2Cc2(x+y)
)

(2.84)

Here H1(p4g,Z2) = Z2
2, with generators ξ1 = Ac, ξ2 = As, which have representa-

tive cochains,
ξ1(g) = c, ξ2(g) = s. (2.85)

H2(p4g,Z2) = Z3
2, with generators λ1 = Bc(x+y) + Bc2 , λ2 = Bc(x+y), λ3 = A2

s,
which have representative cochains,

λ1(g1, g2) = λ2(g1, g2) +
[c1]4 +Q(s1)[c2]4 − [c1 +Q(s1)c2]4

4

λ2(g1, g2) = P40(c1)s1(P43(c2) + (c1 − c2)s2) + P41(c1)[Pc(s1)y2 + s1(x2 + 1− P40(c2) + (c1 − c2)s2)]

+ P42(c1)[Pc(s1)(x2 + y2) + s1(x2 + y2 + P41(c2) + (c1 − c2)s2)]

+ P43(c1)[Pc(s1)x2 + s1(y2 + P42(c2) + (c1 − c2)s2)]

λ3(g1, g2) = s1s2

(2.86)

In Appendix 2.E, we will see that λ1, λ2 generate LSM constraints, while λ3 corre-
sponds to non-LSM fractionalization patterns.
Pay attention that there is a degree-3 generator Cc2(x+y) ∈ H3(p4g,Z2). We do
not have the explicit form of its representative cochain, but it can be determined
by its pullback to the subgroup p4 generated by T1, T2, C4, which is A3

x+y, as well
as its pullback to the subgroup cmm generated by T1, T2, T2C2, T−1

1 G, which is
A3
x+y + A3

c +BxyAm + A2
cAm.

• Wallpaper group 13: p3
This group is generated by T1, T2 and C3, two translations with translation vectors
that have the same length and an angle of 2π/3, and a 3-fold rotational symmetry,
such that

C3
3 = 1, C3T1C

−1
3 = T2, C3T2C

−1
3 = T−1

1 T−1
2 , T1T2 = T2T1. (2.87)

An arbitrary element in p3 can be written as g = T x1 T
y
2C

c
3, with x, y ∈ Z and

c ∈ {0, 1, 2}. For g1 = T x11 T y12 C
c1
3 and g2 = T x21 T y22 C

c2
3 , the group multiplication rule

gives

g1g2 = T
x1+∆x(x2,y2,c1)
1 T

y1+∆y(x2,y2,c1)
2 C

[c1+c2]3
3 (2.88)
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where

∆x(x, y, c) =


x, c = 0
−y, c = 1
−x+ y, c = 2

, ∆y(x, y, c) =


y, c = 0
x− y, c = 1
−x, c = 2

(2.89)

The Z2 cohomology ring of p3 is

Z2[Bxy]/(B
2
xy = 0) (2.90)

Here H1(p3,Z2) = 0, while H2(p3,Z2) = Z2, with generator λ1 = Bxy, which have
representative cochain,

λ1(g1, g2) =P30(c1)y1x2 + P31(c1)

(
y2(y2 − 1)

2
+ y2(x2 + y1)

)
+ P32(c1)

(
x2(x2 − 1)

2
+ y1x2 + y2(x2 + y1)

) (2.91)

In Appendix 2.E, we will see that λ1 generates LSM constraints.

• Wallpaper group 14: p3m1

This group is generated by T1, T2, C3 and M , where the first three generators have
the same properties as those in p3, and the last one is a mirror symmetry whose
mirror axis passes through the C3 center, and is perpendicular to the angle that
bisects the two translation vectors of T1 and T2, such that

M2 = 1, MC3M = C−1
3 , MT1M = T−1

2 , MT2M = T−1
1 ,

C3
3 = 1, C3T1C

−1
3 = T2, C3T2C

−1
3 = T−1

1 T−1
2 , T1T2 = T2T1.

(2.92)

An arbitrary element in p3m1 can be written as g = T x1 T
y
2C

c
3M

m, with x, y ∈ Z,
c ∈ {0, 1, 2} and M ∈ {0, 1}. For g1 = T x11 T y12 C

c1
3 M

m1 and g2 = T x21 T y22 C
c2
3 M

m2 , the
group multiplication rule gives

g1g2 = T
x1+∆x(X,Y,c1)
1 T

y1+∆y(X,Y,c1)
2 C

[c1+Q(m1)c2]3
3 MP (m1+m2) (2.93)

where ∆x(x, y, c) and ∆y(x, y, c) are defined in Eq. (2.89), and

X = Pc(m1)x2 − P (m1)y2

Y = Pc(m1)y2 − P (m1)x2
(2.94)
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The Z2 cohomology ring of p3m1 is

Z2[Am, Bxy]/(B
2
xy = 0) (2.95)

Here H1(p3m1,Z2) = 0, with generator ξ1 = Am, which have representative cochain,

ξ1(g) = m. (2.96)

H2(p3m1,Z2) = Z2
2, with generators λ1 = Bxy, λ2 = A2

m, which have representative
cochains,

λ1(g1, g2) = P30(c1)[Pc(m1)y1x2 +m1y2(x2 + y1)]

+ P31(c1)

[
Pc(m1)

(
y2(y2 − 1)

2
+ y2(x2 + y1)

)
+m1

(
x2(x2 + 1)

2
+ y1x2

)]
+ P32(c1)

[
Pc(m1)

(
x2(x2 − 1)

2
+ y1x2 + y2(x2 + y1)

)
+m1

(
y2(y2 + 1)

2
+ y1(x2 + y2)

)]
λ2(g1, g2) = m1m2

(2.97)

In Appendix 2.E, we will see that λ1 generates LSM constraints, while λ2 corresponds
to non-LSM fractionalization pattern.

• Wallpaper group 15: p31m
This group is generated by T1, T2, C3 and M , where the first three generators have
the same properties as those in p3 and p3m1, and the last one is a mirror symmetry
whose mirror axis passes through the C3 center and bisects the translation vectors
of T1 and T2, such that

M2 = 1, MC3M = C−1
3 , MT1M = T2, MT2M = T1,

C3
3 = 1, C3T1C

−1
3 = T2, C3T2C

−1
3 = T−1

1 T−1
2 , T1T2 = T2T1.

(2.98)

An arbitrary element in p31m can be written as g = T x1 T
y
2C

c
3M

m, with x, y ∈ Z,
c ∈ {0, 1, 2} and M ∈ {0, 1}. For g1 = T x11 T y12 C

c1
3 M

m1 and g2 = T x21 T y22 C
c2
3 M

m2 , the
group multiplication rule gives

g1g2 = T
x1+∆x(X,Y,c1)
1 T

y1+∆y(X,Y,c1)
2 C

[c1+Q(m1)c2]3
3 MP (m1+m2) (2.99)

where ∆x(x, y, c) and ∆y(x, y, c) are defined in Eq. (2.89), and

X = Pc(m1)x2 + P (m1)y2

Y = Pc(m1)y2 + P (m1)x2
(2.100)
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The Z2 cohomology ring of p31m is

Z2[Am, Bxy]/(B
2
xy = 0) (2.101)

Here H1(p31m,Z2) = 0, with generator ξ1 = Am, which have representative cochain,

ξ1(g) = m. (2.102)

H2(p31m,Z2) = Z2
2, with generator λ1 = Bxy, λ2 = A2

m, which have representative
cochains,

λ1(g1, g2) = P30(c1) [Pc(m1)y1x2 + m1y2(x2 + y1)]

+ P31(c1)

[
Pc(m1)

(
y2(y2 + 1)

2
+ x2 + y2(x2 + y1)

)
+ m1

(
x2(x2 + 1)

2
+ y2 + y1x2

)]
+ P32(c1)

[
Pc(m1)

(
x2(x2 − 1)

2
+ y2 + y1x2 + y2(x2 + y1)

)
+ m1

(
y2(y2 − 1)

2
+ x2 + y1(x2 + y2)

)]
λ2(g1, g2) = m1m2

(2.103)

In Appendix 2.E, we will see that λ1 generates LSM constraints while λ2 corresponds
to non-LSM fractionalization pattern.

• Wallpaper group 16: p6
This group is generated by T1, T2 and C6, two translations with translation vectors
that have the same length and an angle of 2π/3, and a 6-fold rotational symmetry,
such that

C6
6 = 1, C6T1C

−1
6 = T1T2, C6T2C

−1
6 = T−1

1 , T1T2 = T2T1. (2.104)

An arbitrary element in p6 can be written as g = T x1 T
y
2C

c
6, with x, y ∈ Z and c ∈

{0, 1, 2, 3, 4, 5}. For g1 = T x11 T y12 C
c1
6 and g2 = T x21 T y22 C

c2
6 , the group multiplication

rule gives

g1g2 = T
x1+∆x(x2,y2,c1)
1 T

y1+∆y(x2,y2,c1)
2 C

[c1+c2]6
6 (2.105)

where

∆x(x, y, c) =



x, c = 0
x− y, c = 1
−y, c = 2
−x, c = 3
−x+ y, c = 4
y, c = 5

, ∆y(x, y, c) =



y, c = 0
x, c = 1
x− y, c = 2
−y, c = 3
−x, c = 4
−x+ y, c = 5

(2.106)
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The Z2 cohomology ring of p6 is

Z2[Ac, Bxy]/(B
2
xy = A2

cBxy) (2.107)

Here H1(p6,Z2) = Z2, with generator ξ1 = Ac, which have representative cochain,

ξ1(g) = c. (2.108)

H2(p6,Z2) = Z2
2, with generators λ1 = Bxy + A2

c , λ2 = Bxy, which have represen-
tative cochains,

λ1(g1, g2) = λ2(g1, g2) + +
[c1]6 + [c2]6 − [c1 + c2]6

6

λ2(g1, g2) = P60(c1)y1x2 + P61(c1)

(
x2(x2 − 1)

2
+ y1x2 + y2(x2 + y1)

)
+ P62(c1)

(
y2(y2 + 1)

2
+ x2 + y2(x2 + y1)

)
+ P63(c1)(x2 + y2 + y1x2)

+ P64(c1)

(
x2(x2 − 1)

2
+ y2 + y1x2 + y2(x2 + y1)

)
+ P65(c1)

(
y2(y2 + 1)

2
+ y2(x2 + y1)

)
(2.109)

In Appendix 2.E, we will see that λ1, λ2 generate LSM constraints.

• Wallpaper group 17: p6m
This group is generated by T1, T2, C6 and M , where the first three generators have
the same properties as those in p6, and the last one is a mirror symmetry whose
mirror axis passes through the C6 center and bisects T1 and T2, such that

M2 = 1, MC6M = C−1
6 , MT1M = T2, MT2M = T1,

C6
6 = 1, C6T1C

−1
6 = T1T2, C6T2C

−1
6 = T−1

1 , T1T2 = T2T1.
(2.110)

An arbitrary element in p6m can be written as g = T x1 T
y
2C

c
6M

m, with x, y ∈ Z, c ∈
{0, 1, 2, 3, 4, 5} and m ∈ {0, 1}. For g1 = T x11 T y12 C

c1
6 M

m1 and g2 = T x21 T y22 C
c2
6 M

m2 ,
the group multiplication rule gives

g1g2 = T
x1+∆x(X,Y,c1)
1 T

y1+∆y(X,Y,c1)
2 C

[c1+Q(m1)c2]6
6 MP (m1+m2) (2.111)

where ∆x(x, y, c) and ∆y(x, y, c) are defined in Eq. (2.106), and X and Y are defined
in Eq. (2.100).
The Z2 cohomology ring of p6m is

Z2[Ac, Am, Bxy]/
(
B2
xy = (A2

c + AcAm)Bxy

)
(2.112)
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Here H1(p6m,Z2) = Z2
2, with generator ξ1 = Ac, ξ2 = Am, which have representa-

tive cochains,

ξ1(g) = c, ξ2(g) = m. (2.113)

H2(p6m,Z2) = Z4
2, with generators λ1 = Bxy + A2

c + AcAm, λ2 = Bxy, λ3 =
(Ac + Am)Am, λ4 = AcAm, which have representative cochains,

λ1(g1, g2) = λ2(g1, g2) +
[c1]6 + Q(m1)[c2]6 − [c1 + Q(m1)c2]6

6

λ2(g1, g2) = P60(c1) [Pc(m1)y1x2 + m1y2(x2 + y1)]

+ P61(c1)

[
Pc(m1)

(
x2(x2 − 1)

2
+ y1x2 + y2(x2 + y1)

)
+ m1

(
y2(y2 − 1)

2
+ y1(x2 + y2)

)]
+ P62(c1)

[
Pc(m1)

(
y2(y2 + 1)

2
+ x2 + y2(x2 + y1)

)
+ m1

(
x2(x2 + 1)

2
+ y2 + y1x2

)]
+ P63(c1) [Pc(m1)(x2 + y2 + y1x2) + m1(x2 + y2 + y2(x2 + y1)]

+ P64(c1)

[
Pc(m1)

(
x2(x2 − 1)

2
+ y2 + y1x2 + y2(x2 + y1)

)
+ m1

(
y2(y2 − 1)

2
+ x2 + y1(x2 + y2)

)]
+ P65(c1)

[
Pc(m1)

(
y2(y2 + 1)

2
+ y2(x2 + y1)

)
+ m1

(
x2(x2 + 1)

2
+ y1x2

)]
λ3(g1, g2) = m1(c2 + m2)

λ4(g1, g2) = m1c2

(2.114)

In Appendix 2.E, we will see that λ1, λ2 generate LSM constraints, while λ3, λ4
correspond to non-LSM fractionalization patterns.

2.E Topological invariants for all LSM constraints

In this appendix, for each of the 17 wallpaper groups, we present the topological invariants
for all LSM constraints and topological invariants for all non-LSM fractionalization pat-
terns. These topological invariants can all be written down by simply inspecting the IWP
and/or the mirror axes of the relevant wallpaper groups, and they correspond to various
(3 + 1)-d Gs × Gint SPTs that can be constructed in a manner described in Sec. 2.2.
This physics-based reasoning implies that the topological invariants we present here are
complete and independent. In Appendix 2.D, we also provide explicit expressions of the
representative cochains that correspond to each of the topological invariants, which show
mathematically that the topological invariants here are indeed complete and independent.

• Wallpaper group 1: p1
All points in space correspond to the same IWP for p1. The fractionalization patterns
of p1 are classified by H2(p1,Z2) = Z2. There is only one nontrivial fractionalization

48



pattern T1T2 = −T2T1, detected by the topological invariant

α1[ω] =
ω(T1, T2)

ω(T2, T1)
. (2.115)

This fractionalization pattern is related to the first of the 3 basic no-go theorems
in Sec. 2.1, so it corresponds to an LSM constraint, and the classification of LSM
constraints is Z2. It is straightforward to check that α1[(−1)λ1 ] = −1, where λ1 is
defined in Appendix 2.D.

• Wallpaper group 2: p2
There are 4 different IWP for p2, which are rotation centers for C2, T1C2, T2C2

and T1T2C2, respectively. The fractionalization patterns of p2 are classified by
H2(p2,Z2) = Z4

2. All fractionalization patterns are generated by 4 root patterns,
detected by the topological invariants,

α1[ω] =
ω(C2, C2)

ω(1, 1)

α2[ω] =
ω(T1C2, T1C2)

ω(1, 1)

α3[ω] =
ω(T2C2, T2C2)

ω(1, 1)

α4[ω] =
ω(T1T2C2, T1T2C2)

ω(1, 1)

(2.116)

corresponding to C2
2 = −1, (T1C2)

2 = −1, (T2C2)
2 = −1 and (T1T2C2)

2 = −1 respec-
tively. All these topological invariants are related to the third of the 3 basic no-go
theorems in Sec. 2.1, so they all correspond to LSM constraints, and the classification
of LSM constraints is Z4

2. It is straightforward to check that αi[(−1)λj ] = (−1)δij for
i, j = 1, . . . , 4, where λi is defined in Appendix 2.D.

• Wallpaper group 3: pm
There are 2 different IWP for pm, which are the mirror axes for M and T1M , respec-
tively. The fractionalization patterns of pm are classified by H2(pm,Z2) = Z4

2. All
fractionalization patterns are generated by 4 root patterns, detected by the topolog-
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ical invariants

α1[ω] =
ω(T2,M)

ω(M,T2)

α2[ω] =
ω(T2, T1M)

ω(T1M,T2)

α3[ω] =
ω(M,M)

ω(1, 1)

α4[ω] =
ω(T1M,T1M)

ω(1, 1)

(2.117)

The first two topological invariants are related to the second of the 3 basic no-
go theorems, so they correspond to LSM constraints, and the classification of LSM
constraints is Z2

2. The last two are non-LSM fractionalization patterns. It is straight-
forward to check that αi[(−1)λj ] = (−1)δij for i, j = 1, . . . , 4, where λi is defined in
Appendix 2.D.

• Wallpaper group 4: pg
All points in space belong to one IWP of pg. The fractionalization patterns of pg are
classified by H2(pg,Z2) = Z2. There is only one nontrivial fractionalization pattern,
detected by the topological invariant

α1[ω] =
ω(T1G

−1, T1G)ω(T1, G)

ω(G−1, G)ω(T1, G−1)
(2.118)

corresponding to the symmetry fractionalization pattern G−1T1GT1 = −1. This
topological invariant is related to the first of the 3 basic no-go theorems, so it corre-
sponds to an LSM constraint, and the classification of LSM constraints is Z2. It is
straightforward to check that α1[(−1)λ1 ] = −1, where λ1 is defined in Appendix 2.D.

• Wallpaper group 5: cm
The group cm has one IWP, which includes points along the mirror axis of M . The
fractionalization patterns of cm are classified by H2(cm,Z2) = Z2

2. All fractionaliza-
tion patterns are generated by 2 root patterns, detected by the topological invariants

α1[ω] =
ω(T1T2,M)

ω(M,T1T2)

α2[ω] =
ω(M,M)

ω(1, 1)

(2.119)

50



The first topological invariant is related to the second of the 3 basic no-go theorems,
so it corresponds to an LSM constraint, and the classification of LSM constraints is
Z2. The second one is a non-LSM fractionalization pattern. It is straightforward to
check that αi[(−1)λj ] = (−1)δij for i, j = 1, 2, where λi is defined in Appendix 2.D.

• Wallpaper group 6: pmm
There are 4 different IWP for pmm, which are the intersecting point of M and C2M ,
the intersecting point of T1M and C2M , the intersecting point of M and T2C2M ,
and the intersecting point of T1M and T2C2M . Note that these 4 IWP can also
be respectively viewed as the rotation centers for the following four C2 rotations:
C2, T1C2, T2C2 and T1T2C2. The fractionalization patterns of pmm are classified by
H2(pmm,Z2) = Z8

2. All fractionalization patterns are generated by 8 root patterns,
detected by the topological invariants

α1[ω] =
ω(C2, C2)

ω(1, 1)

α2[ω] =
ω(T1T2C2, T1T2C2)

ω(1, 1)

α3[ω] =
ω(T1C2, T1C2)

ω(1, 1)

α4[ω] =
ω(T2C2, T2C2)

ω(1, 1)

α5[ω] =
ω(M,M)

ω(1, 1)

α6[ω] =
ω(C2M,C2M)

ω(1, 1)

α7[ω] =
ω(T1M,T1M)

ω(1, 1)

α8[ω] =
ω(T2C2M,T2C2M)

ω(1, 1)

(2.120)

The first four topological invariants are related to the third of the 3 basic no-go
theorems, so they correspond to LSM constraints, and the classification of LSM con-
straints is Z4

2. The last four are non-LSM fractionalization patterns. It is straight-
forward to check that αi[(−1)λj ] = (−1)δij for i, j = 1, . . . , 8, where λi is defined in
Appendix 2.D.
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• Wallpaper group 7: pmg
There are 3 different IWP for pmg. The first includes the rotation centers of C2 and
T1C2, the second includes the rotation centers of T2C2 and T1T2C2, and the third
includes the mirror axes of M and T1M . The fractionalization patterns of pmg are
classified by H2(pmg,Z2) = Z4

2. All fractionalization patterns are generated by 4
root patterns, detected by the topological invariants

α1[ω] =
ω(C2, C2)

ω(1, 1)

α2[ω] =
ω(T1T2C2, T1T2C2)

ω(1, 1)

α3[ω] =
ω(T2,M)

ω(M,T2)

α4[ω] =
ω(M,M)

ω(1, 1)

(2.121)

The first two topological invariants are related to the third of the 3 basic no-go
theorems, and the third is related to the second of the 3 basic no-go theorems, so
they correspond to LSM constraints, and the classification of LSM constraints is
Z3

2. The fourth topological invariant is a non-LSM fractionalization pattern. It is
straightforward to check that αi[(−1)λj ] = (−1)δij for i, j = 1, . . . , 4, where λi is
defined in Appendix 2.D.

• Wallpaper group 8: pgg
There are 2 different IWP for pgg. The first includes the rotation centers of C2 and
T1T2C2, and the second includes the rotation centers of T1C2 and T2C2. The frac-
tionalization patterns of pgg are classified by H2(pgg,Z2) = Z2

2. All fractionalization
patterns are generated by 2 root patterns, detected by the topological invariants

α1[ω] =
ω(C2, C2)

ω(1, 1)

α2[ω] =
ω(T1C2, T1C2)

ω(1, 1)

(2.122)

Both topological invariants are related to the third of the 3 basic no-go theorems, so
they both correspond to LSM constraints, and the classification of LSM constraints
is Z2

2. It is straightforward to check that αi[(−1)λj ] = (−1)δij for i, j = 1, 2, where λi
is defined in Appendix 2.D.
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• Wallpaper group 9: cmm
There are 3 different IWP for cmm. The first is the 2-fold rotation center of C2,
the second is the 2-fold rotation center of T1T2C2, and the third inlcudes the 2-fold
rotation centers of T1C2 and T2C2.
The fractionalization patterns of cmm are classified by H2(cmm,Z2) = Z5

2. All frac-
tionalization patterns are generated by 5 root patterns, detected by the topological
invariants

α1[ω] =
ω(C2, C2)

ω(1, 1)

α2[ω] =
ω(T1T2C2, T1T2C2)

ω(1, 1)

α3[ω] =
ω(T1C2, T1C2)

ω(1, 1)

α4[ω] =
ω(M,M)

ω(1, 1)

α5[ω] =
ω(C2M,C2M)

ω(1, 1)

(2.123)

The first three topological invariants are related to the third of the 3 basic no-
go theorems, so they correspond to LSM constraints, and the classification of LSM
constraints is Z3

2. The last two are non-LSM fractionalization patterns. It is straight-
forward to check that αi[(−1)λj ] = (−1)δij for i, j = 1, . . . , 5, where λi is defined in
Appendix 2.D.

• Wallpaper group 10: p4
There are 3 different IWP for p4. The first is the 2-fold rotation center of C2

4 , the
second is the 2-fold rotation center of T1T2C2

4 , and the third includes the 2-fold
rotation centers of T1C2

4 and T2C
2
4 . Note that the first two IWP are also 4-fold

rotation centers. The fractionalization patterns of p4 are classfied by H2(p4,Z2) =
Z3

2. All fractionalization patterns are generated by 3 root patterns, detected by the
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topological invariants

α1[ω] =
ω(C2

4 , C
2
4)

ω(1, 1)

α2[ω] =
ω(T1T2C

2
4 , T1T2C

2
4)

ω(1, 1)

α3[ω] =
ω(T1C

2
4 , T1C

2
4)

ω(1, 1)

(2.124)

All these topological invariants are related to the third of the 3 basic no-go theorems,
so they all correspond to LSM constraints, and the classification of LSM constraints
is Z3

2. It is straightforward to check that αi[(−1)λj ] = (−1)δij for i, j = 1, . . . , 3,
where λi is defined in Appendix 2.D.

• Wallpaper group 11: p4m
There are 3 different IWP for p4m, just like p4. The first is the 2-fold rotation center
of C2

4 , the second is the 2-fold rotation center of T1T2C2
4 , and the third includes

the 2-fold rotation centers for T1C2
4 and T2C

2
4 . All these IWP are also on some

mirror axes, and the first two are also 4-fold rotation centers. The fractionalization
patterns of p4m are classified by H2(p4m,Z2) = Z6

2. All fractionalization patterns
are genereated by 6 root patterns, detected by the topological invariants

α1[ω] =
ω(C2

4 , C
2
4)

ω(1, 1)

α2[ω] =
ω(T1T2C

2
4 , T1T2C

2
4)

ω(1, 1)

α3[ω] =
ω(T1C

2
4 , T1C

2
4)

ω(1, 1)

α4[ω] =
ω(M,M)

ω(1, 1)

α5[ω] =
ω(T1M,T1M)

ω(1, 1)

α6[ω] =
ω(C4M,C4M)

ω(1, 1)

(2.125)

The first three topological invariants are related to the third of the 3 basic no-go
theorems, so they correspond to LSM constraints, and the classification of LSM
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constraints is Z3
2. The last three are non-LSM constraints. It is straightforward to

check that αi[(−1)λj ] = (−1)δij for i, j = 1, . . . , 6, where λi is defined in Appendix
2.D.

• Wallpaper group 12: p4g
There are 2 different IWP for p4g. The first includes the 2-fold rotation centers
of C2

4 and T1T2C
2
4 , and the second includes the 2-fold rotation centers of T1C2

4 and
T2C

2
4 . Note that the first IWP are also 4-fold rotation centers, and they do not lie

on any mirror axis. The second IWP lies on some mirror axes. The fractionalization
patterns of p4g are classified by H2(p4g,Z2) = Z3

2. All fractionalization patterns are
generated by 3 root patterns, detected by the topological invariants

α1[ω] =
ω(C2

4 , C
2
4)

ω(1, 1)

α2[ω] =
ω(T1C

2
4 , T1C

2
4)

ω(1, 1)

α3[ω] =
ω(T−1

1 G, T−1
1 G)

ω(1, 1)

(2.126)

The first two topological invariants are related to the third of the 3 basic no-go
theorems, so they correspond to LSM constraints, and the classification of LSM
constraints is Z2

2. The last one is a non-LSM fractionalization pattern. It is straight-
forward to check that αi[(−1)λj ] = (−1)δij for i, j = 1, . . . , 3, where λi is defined in
Appendix 2.D.

• Wallpaper group 13: p3
There are 3 IWP for p3, and they are all 3-fold rotation centers. The fractionalization
patterns of p3 are classified by H2(p3,Z2) = Z2. All fractionalization patterns are
generated by a root pattern, detected by the topological invariant

α[ω] =
ω(T1, T2)

ω(T2, T1)
(2.127)

This topological invariant is related to the first of 3 basic no-go theorems, so it
corresponds to an LSM constraint, and the classification of LSM constraints is Z2.
It is straightforward to check that α1[(−1)λ1 ] = −1 for i, j = 1, . . . , 8, where λ1 is
defined in Appendix 2.D.
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• Wallpaper group 14: p3m1

There are 3 different IWP for p3m1, and they are all 3-fold rotation centers, just as
in p3, but they also lie on the mirror axes. The fractionalization patterns of p3m1
are classified by H2(p3m1,Z2) = Z2

2. All fractionalization patterns are generated by
2 root patterns, detected by the topological invariants

α1[ω] =
ω(T1, T2)

ω(T2, T1)

α2[ω] =
ω(M,M)

ω(1, 1)

(2.128)

The first topological invariant is related to the first of the 3 basic no-go theorems,
so it corresponds to an LSM constraint, and the classification of LSM constraints is
Z2. The second one is a non-LSM fractionalization pattern. It is straightforward to
check that αi[(−1)λj ] = (−1)δij for i, j = 1, 2, where λi is defined in Appendix 2.D.

• Wallpaper group 15: p31m
There are 3 different IWP for p31m, and they are all 3-fold rotation centers, just
as in p3, but only one of them also lies on the mirror axes. The fractionalization
patterns of p31m are classified by H2(p31m,Z2) = Z2

2. All fractionalization patterns
are generated by 2 root patterns, detected by the topological invariants

α1[ω] =
ω(T1T2,M)

ω(M,T1T2)

α2[ω] =
ω(M,M)

ω(1, 1)

(2.129)

The first topological invariant is related to the second of the 3 basic no-go theorems,
so it corresponds to an LSM constraint, and the classification of LSM constraints
is Z2. The second is a non-LSM fractionalization pattern. It is straightforward to
check that αi[(−1)λj ] = (−1)δij for i, j = 1, 2, where λi is defined in Appendix 2.D.

• Wallpaper group 16: p6
There are 3 different IWP for p6, and they are centers of 6-fold, 3-fold and 2-
fold rotations, respectively. The fractionalization patterns of p6 are classified by
H2(p6,Z2) = Z2

2. All fractionalization patterns are generated by 2 root patterns,
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detected by the topological invariants

α1[ω] =
ω(C3

6 , C
3
6)

ω(1, 1)

α2[ω] =
ω(T1C

3
6 , T1C

3
6)

ω(1, 1)

(2.130)

Both topological invariants are related to the third of the 3 basic no-go theorems, so
they both correspond to LSM constraints, and the classification of LSM constraints
is Z2

2. It is straightforward to check that αi[(−1)λj ] = (−1)δij for i, j = 1, 2, where λi
is defined in Appendix 2.D.

• Wallpaper group 17: p6m
There are 3 different IWP for p6m. Just as p6, they are 6-fold, 3-fold and 2-fold ro-
tation centers, respectively. Here all IWP also lie on some mirror axes. The fraction-
alization patterns of p6m are classified by H2(p6m,Z2) = Z4

2. All fractionalization
patterns are generated by 4 root patterns, detected by topological invariants

α1[ω] =
ω(C3

6 , C
3
6)

ω(1, 1)

α2[ω] =
ω(T1C

3
6 , T1C

3
6)

ω(1, 1)

α3[ω] =
ω(M,M)

ω(1, 1)

α4[ω] =
ω(C3

6M,C3
6M)

ω(1, 1)

(2.131)

The first two topological invariants are related to the third of the 3 basic no-go
theorems, and they correspond to LSM constraints, and the classification of LSM
constraints is Z2

2. The last two are non-LSM fractionalization patterns. It is straight-
forward to check that αi[(−1)λj ] = (−1)δij for i, j = 1, . . . , 4, where λi is defined in
Appendix 2.D.

2.F Topological characterization of LSM constraints
in (1 + 1)-d

In this appendix, we present the derivation of the topological characterization of the LSM
constraints for (1 + 1)-d Gs × Gint symmetric spin systems, where the results are already
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given in Sec. 2.2.3.
First, we note that an argument similar to the one in Appendix 2.A for the (2 + 1)-d

case shows that in this case the relevant cocycle can be written as

Ω(g1, g2, g3) = eiπλ(l1)η(a2,a3) (2.132)

where gi ∈ Gs ×Gint is written as gi = li ⊗ ai, with li ∈ Gs and ai ∈ Gint. The cocycle for
the nontrivial (1 + 1)-d Gint SPT is precisely eiπη(a1,a2), and λ can be viewed as a cocycle
in H1(Gs,Z2). Furthermore, λ is determined completely by Gs and the lattice homotopy
class, and it is the same for all Gint with Zk2-classified PR and for all PR type of the system.

When Gs = p1, the line group that only contains translation generated by T , the lattice
homotopy picture implies that the LSM constraints in this case are classified by Z2, and
the only nontrivial LSM constraint corresponds to the case where the total PR inside each
translation unit cell is nontrivial. On the other hand, H1(p1,Z2) = Z2, so there is also
only one nontrivial cocycle. Writing an elment in p1 as T x with x ∈ Z, λ(T x) = [x]2 is
a representative cochain of the nontrivial element in H1(p1,Z2). So we can identify the
cocycle corresponding to the nontrivial LSM constraint as

Ω(g1, g2, g3) = eiπx1η(a2,a3) (2.133)

When Gs = p1m, the line group that contains a translation generated by T and a
mirror symmetry generated by M , with commutation relation MTM = T−1, there are two
IWP in each translation unit cell, which are the mirror centers of M and TM , respectively.
The lattice homotopy picture implies that the LSM constraints in this case are classified
by Z2

2, and the two root LSM constraints can be taken to correspond to the cases where the
total PR at one of the two IWP is nontrivial. On the other hand, H1(p1m,Z2) = Z2

2, so
all nontrivial cocycles in H1(p1m,Z2) must correspond to some nontrivial LSM constraint.
These cocycles can be generated by two roots represented by λ1(T

xMm) = x + m and
λ2(T

xMm) = x, with x ∈ Z and m ∈ {0, 1}. So the cocycles corresponding to the LSM
constraints can also be generated by

Ω1(g1, g2, g3) = eiπ(x1+m1)η(a2,a3)

Ω2(g1, g2, g3) = eiπx1η(a2,a3)
(2.134)

where gi ∈ Gs ×Gint is written as gi = T xiMmi ⊗ ai, with ai ∈ Gint.
Now our task is just to identify Ω1 and Ω2 with the distributions of DOF that trigger the

LSM constraint. To this end, first note that if M is broken while T is preserved, both Ω1
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and Ω2 reduces to Eq. (2.133), which implies that both of them correspond to a distribution
of DOF with a net nontrivial PR inside each translation unit cell. So one of them must
correspond to the case where the mirror center of M hosts a nontrivial PR, while the other
corresponds to the case where the mirror center of TM hosts a nontrivial PR. Suppose the
mirror center of TM hosts a nontrivial PR, then after breaking the translation symmetry
while keeping M unbroken, the system should have no LSM constraint. Only Ω2 satisfies
this condition, so this distribution of DOF is identified with Ω2, and Ω1 corresponds to the
case where the mirror center of M hosts a nontrivial PR.
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Chapter 3

Stiefel Liquid, non-linear Sigma
Model and its Anomaly

In this chapter, we discuss a particular class of quantum spin liquid, called Stiefel Liquid
(SL), which is described in the IR by a non-linear Sigma Model (NLSM) with the target
manifold Stiefel manifold, supplemented with a nontrivial Wess-Zumino-Witten (WZW)
term. The motivation for SLs is to describe exotic quantum criticality arising from the
competition between magnetic orders and non-magnetic orders, which we will discuss in
detail in Section 5. Recall that each SL will be labeled by two integers (N, k), with N ⩾ 5
and k 6= 0. We will denote a SL corresponding to (N, k) by SL(N,k). Since we will mostly
focus on the case with k = 1, we will also use the shorthand SL(N) to denote SL(N,k=1).
We propose that (N = 5, k = 1) corresponds to DQCP and (N = 6, k = 1) corresponds to
U(1) DSL. We argue that SLs have a large emergent symmetry which is anomalous. The
anomaly of a NLSM with a nontrivial WZW term can be calculated by a standard trick
in mathematics called transgression, and we illustrate the calculation in SL and derive its
anomaly. We end with a few comments on the dynamics of SLs.

Part of this chapter is adapted from Refs. [1, 15] while the calculation of the anomaly
directly using the formulation of NLSM is newly written.
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3.1 Stiefel Liquids as a NLSM

Recall that a NLSM with the target manifold V has fields corresponding to maps from the
spacetime manifold M to the target manifold V , i.e.,

f : M → V (3.1)

where M is the (d+ 1)-dimensional spacetime manifold.
Now suppose that V is the Stiefel manifold VN,N−4 (N ⩾ 5) [70]. For simplicity, in this

thesis we will mostly use the abbreviated notation VN if we want to emphasize the explicit
N -dependence. One way to define the manifold VN is as the coset space SO(N)/SO(4). It
can also be defined as the manifold constructed from (N − 4)-frames in the N -dimensional
Euclidean space. Accordingly, a point on the Stiefel manifold can be labeled by an N -
by-(N − 4) real matrix, denoted by n, such that the columns of n are orthonormal, i.e.,
nTn = IN−4, with IN−4 the (N − 4)-dimensional identity matrix. Therefore, the DOF
of a SL can be characterized by a spacetime-dependent matrix n, supplemented with the
orthonormal condition nTn = IN−4. A canonical action for the fields n can be simply

S0[n] =
1

2g

∫
dd+1x Tr(∂µnT∂µn) (3.2)

where the n in the square bracket indicates the dependence of the action on the configu-
ration of n.

Interestingly, becauseH4(VN ,Z) ∼= Z is nontrivial, a nontrivial WZW term based on the
closed 4-form on V can be defined for any N ⩾ 5 in three dimensional spacetime [16, 17, 71].
To define this WZW term, we will first add one more dimension to the physical spacetime
and extend the matrix n into this extra dimension. Denote the coordinate of the extra
dimension by u, and the extended matrix by ne, such that ne(x, y, t, u = 0) = n(x, y, t)
and ne(x, y, t, u = 1) = nr, with nr a fixed reference matrix with entries (nr)ji = δji,
where (·)ji represents the entry in the jth row and ith column of the relevant matrix.
For notational brevity, in the following we will drop the superscript “e” in the extended
matrix and simply write it as n, and the meaning of the matrix n should be clear from the
context. This amounts to putting the three-dimensional spacetime on the boundary of a
four-dimensional manifold D3.

Then it is proposed in Ref. [15] that the WZW term on VN can be given by the following
(real-time) action:

S
(N)
WZW[n] =

2π

Ω4

∫ 1

0

du

∫
d3x

N−4∑
i,i′=1

det
(
ñ(ii′)

)
(3.3)

61



where the N -by-N matrix ñ(ii′) is given by

ñ(ii′) = (n, ∂xni, ∂yni, ∂tni′ , ∂uni′) (3.4)

where ni represents the ith column of n (the repeated indices i and i′ are not summed over
on the right hand side of Eq. (3.4)). That is, the first N − 4 columns of ñii′ are just n,
and its last 4 columns are derivatives of the columns of n arranged in the above way. More
explicitly,

det(ñ(ii′)) =
1

(N − 4)!
ϵi1i2···iN−4ϵj1j2···jNnj1i1nj2i2 · · ·njN−4iN−4

∂xnjN−3i∂ynjN−2i∂tnjN−1i′∂unjN i′ (3.5)

where the ϵ’s are the fully antisymmetric symbols with rank N − 4 and N , respectively.
And Ω4 is the volume of a four-dimensional sphere S4.

Taken together, the effective action of SL(N) is given by

S(N)[n] = S0[n] + S
(N)
WZW[n] (3.6)

The effective action of SL(N,k) is the level-k generalization of Eq. (3.6):

S(N,k) = S0 + k · S(N)
WZW. (3.7)

3.2 Symmetry

In addition to the Poincaré symmetry, the actions in Eqs. (3.6) and (3.7) are invariant
under an SO(N) transformation, which acts as:

n→ Ln,L ∈ SO(N), (3.8)

and another SO(N − 4) transformation, which acts as

n→ nR,R ∈ SO(N − 4). (3.9)

Notice that for evenN , the two Z2 centers L = −IN and R = −IN−4 act identically. So S(N)

and S(N,k) have a continuous symmetry group Ĩ(N), where Ĩ(N) = (SO(N)×SO(N−4))/Z2

for even N and Ĩ(N) = SO(N)× SO(N − 4) for odd N .
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Besides this continuous symmetry, S(N) and S(N,k) also have discrete charge conjuga-
tion, reflection, and time reversal symmetries, i.e., C, R and T . A particular implementa-
tion of these discrete symmetries for N ⩾ 6 is

C : nji → (−1)fjinji

R : nji →
{
nji, j ⩽ N − 1
−nji, j = N

T : nji →
{
nji, i ⩽ N − 5
−nji, i = N − 4

(3.10)

with fji = 1 if (j = N & i < N −4) or (j < N & i = N −4), and fji = 0 otherwise. Notice
that R and T also need to flip a spatial or temporal coordinate, respectively.

To combine the continuous symmetry with the discrete symmetry, an illuminating
procedure is to enlarge the symmetry group SO(N) and SO(N − 4) in Ĩ(N) to O(N)
and O(N − 4), respectively. However, the improper rotation of neither the O(N) nor
the O(N − 4) is a symmetry due to the WZW term, but the combination of an improper
rotation with a reversal of a spatial or temporal coordinate is still a symmetry of the theory.
Moreover, notice that the operation with L = −IN ∈ O(N) and R = −IN−4 ∈ O(N − 4)
has no action on n, no matter whether N is even or odd. Hence, the full symmetry group
of SL is the Poincaré symmetry plus

I(N) =
O(N)T ×O(N − 4)T

Z2

(3.11)

The O(N) acts as n → Ln with L ∈ O(N), and the O(N − 4) acts as n → nR with
R ∈ O(N − 4). The superscript “T” represents a locking condition: an improper rota-
tion of either the O(N) or O(N − 4) is a symmetry if and only if it is combined with a
spacetime orientation reversal symmetry. This locking condition is one of the reasons why
SL(N⩾7) may be non-Lagrangian (see Section 3.4.3). The Z2 subgroup that is modded out
is generated by (−IN ,−IN−4) ∈ O(N)×O(N−4). For N = 5, n reduces to a 5-component
vector, and I(5) is simply O(5)T symmetry that acts by left multiplication on n, such that
the improper rotation is combined with a spacetime orientation reversal symmetry.

3.3 Anomaly

In this section, we calculate the anomaly of SLs using the formulation of NLSM. The
calculation essentially follows the general recipe in Ref. [71]. See also Refs. [51, 72, 73].
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First, let us recall the concept of transgression in algebraic topology. We start with a
fibration

F E Bi p (3.12)
with total space E, fibre F and base manifold B. Given an element ω ∈ Hd+1(B,Z) such
that p∗(ω) = 0 ∈ Hd+1(E,Z). Then for a specific cochain representative ω ∈ Cd+1(B,Z)
representing ω, we can find a cochain Γ̃ ∈ Cd(E,Z) such that dΓ̃ = p∗(ω). Restrict Γ̃ to
the fibre F we get an element Γ ∈ Cn(F,Z) such that dΓ = 0, i.e., Γ ∈ Zn(F,Z) and
defines an element Γ ∈ Hn(F,Z). It is straightforward to check that Γ defined this way
is independent of the choice of specific cochain representatives ω and Γ̃. We say that ω is
the transgression of Γ.

Now we go to a d-dimensional NLSM with the target manifold V and we specialize
to the case where V = G/H, with natural G action on V . The WZW term in (d + 1)-
dimension is captured by an element Γ ∈ Hd+1(V,Z). Suppose that we want to gauge
the symmetry G. This means that we want to extend the WZW term Γ[f ] to Γ̃[f, A] to
account for the nontrivial background G gauge field. However, Γ̃[f, A] may not define a
proper WZW term in the following sense. Consider the following fibration

G/H → BH → BG (3.13)
where BG and BH are classifying spaces of G and H, respectively. Before gauging the
fields of the NLSM correspond to maps f : M → G/H where M is the spacetime manifold.
Now after gauging the allowed fields do not have to be the original fields, i.e., do not have
to correspond to maps f : M → G/H, since points on G/H can be identified by G-action.
Still, they should correspond to maps f̃ : M → BH. Then Γ̃ should correspond to an
element in Cd(BH,Z). But Γ̃ is not necessarily closed and we must have dΓ̃ = p∗(ω)
for some ω ∈ Hd+2(BG,Z). This ω can be thought of as the TPF of a bulk SPT that
cancels the anomaly on the boundary, described by the NLSM. Hence the ω, which is the
transgression of Γ, is the anomaly we seek for.

For our purpose, V = SO(N)/SO(4) and we wish to gauge the full symmetry with
symmetry group I(N). Therefore, we can take G to be I(N) and H to be O(4)T×O(N−4)

Z2
,

which embedds into G as follows:

(g1, g2) →

((
g1

g2

)
, g2

)
(3.14)

where we treat g1 ∈ O(4) and g2 ∈ O(N − 4) as a 4 × 4 and (N − 4) × (N − 4) matrix,
which combine into one N ×N matrix in O(N). Here the superscript “T” also represents
the locking condition.
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In the context of SLs, we have H4(V,Z) ∼= Z while H i(V,Z) = 0, i = 1, 2, 3. Consider
the Serre spectral sequence associated to the fibration G/H → BH → BG, we immediately
see that in this case the transgression of an element Γ ∈ H4(V,Z) is the image of Γ under
the differential at the fifth page, i.e.,

d5 : H
4(V,Z) → H5(BG,Zρ) (3.15)

where now we use ρ to emphasize that Z is a module twisted by ρ : G → Z2 denoting
the anti-unitary elements. Moreover, every element in H5(BG,Zρ) whose pullback to
H5(BH,Zρ) is trivial must be in the image of d5. Combining this fact with the fact
that H4(V,Z) ∼= Z, we see that such elements must form a group Zn with some integer
n. Therefore, to identify the transgression, we simply need to identify all elements in
H5(BG,Zρ) such that its pullback to H5(BH,Zρ) is trivial. Then the transgression of
k ∈ H4(V,Z) is nothing but k times the generator of such elements.1 In this way, we
obtain the anomaly of SL(N,k) described by a NLSM supplemented with a level k WZW
term.

From the explicit calculation of group cohomology, we see that for k = 1, when N is
odd the anomaly is Z2 classified, while when N is even the anomaly is Z4 classified. To
obtain a more explicit formula for the anomaly, we can consider the projection

pSL : Ĩ(N) ≡ O(N)T ×O(N − 4)T → O(N)T ×O(N − 4)T

Z2

(3.16)

and the pullback of Ω induced by the projection is given by Ω̃ = eiπL̃ ∈ H4(Ĩ(N),U(1)ρ) ∼=
H5(Ĩ(N),Zρ), where

L̃ = w
O(N)
4 + w

O(N−4)
4 +

[
w
O(N−4)
2 +

(
w
O(N−4)
1

)2](
w
O(N)
2 + w

O(N−4)
2

)
+
(
w
O(N−4)
1

)4
(3.17)

supplemented with a constraint wTM1 + w
O(N)
1 + w

O(N−4)
1 = 0 (mod 2), which originates

from the locking between the spacetime orientation reversals and the improper rotations
of O(N) and O(N −4). Here wO(N)

i , wO(N−4)
i and wTMi are the i-th Stiefel-Whitney classes

of the O(N), O(N − 4) gauge bundles and the tangent bundle of the spacetime manifold,
respectively.

1In principle there can be multiple generators, which have to be differentiated by e.g., explicit topological
invariants. For our purpose, when N is odd, the anomaly is Z2 classified and we do not need to address
this issue. When N is even, the anomaly is Z4 classified, but in most of our applications we will pullback
the element to a Z2 quotient group, where the images of the two Z4 generators are the same. Therefore,
fortunately in this thesis we do not have to address this ambiguity.
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Still, for even N , Ω̃ does not capture the full anomaly since the anomaly is Z4 classified.
Especially, when N is even and k is an odd multiple of 2, there is still nontrivial anomaly
but its pullback to Ĩ(N) is trivial. The anomaly can only be trivialized for even N with k
a multiple of 4.

For odd N , Ω̃ completely characterizes Ω. Moreover, because O(N)T = SO(N) × ZT2 ,
H4(GIR,U(1)ρ) has the structure of Zk2 with some k ∈ N, and there exists LIR ∈ H4(GIR,Z2)
such that ΩIR = eiπLIR . Now notice that the pullback from H4(GIR,Z2) to H4(G̃IR,Z2)
induced by pSL is injective, and hence we can uniquely identify LIR from L̃IR. The result is

LIR =w
SO(N)
4 + w

SO(N−4)
4 +

(
w
SO(N)
2 + w

SO(N−4)
2

)
w
SO(N−4)
2

+


w2

1w
SO(N)
2 , N = 1 ( mod 8)

w2
1w

SO(N−4)
2 , N = 3 ( mod 8)

w2
1(w

SO(N)
2 + w2

1), N = 5 ( mod 8)

w2
1(w

SO(N−4)
2 + w2

1), N = 7 ( mod 8)

(3.18)

where wSO(N)
i and wSO(N−4)

i are the i-th Stiefel-Whitney class of the SO(N) and SO(N−4)
gauge bundles. Considering enlarging SO(N) and SO(N−4) to O(N) and O(N−4), w1 is
sum of the first Stiefel-Whitney classes of the O(N) and O(N − 4) gauge bundles. Due to
the locking between spacetime orientation reversals and improper rotations of O(N) and
O(N − 4), w1 can also be viewed as the first Stiefel-Whitney class of the tangent bundle
of the spacetime manifold.

3.4 Dynamics of Stiefel Liquids

In this section, we first argue that the special case SL(5) and SL(6) correspond to the
canonical examples of DQCP and U(1) DSL, which partly motivate the proposal of SL.
We then discuss some dynamical properties of Stiefel Liquids, based on both numerics and
theoretical arguments.

3.4.1 SL(5): DQCP

The classic DQCP was proposed as a critical theory for a quantum phase transition between
a Neel antiferromagentic order (AF) and a valence-bond solid (VBS) on a square lattice
[18, 19]. This transition is considered to be beyond the Landau-Ginzburg-Wilson-Fisher
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paradigm if it is continuous, since the symmetry respected by either of these two phases is
not a subgroup of the symmetry of the other.

The original formulation of the DQCP is in terms of two flavors of bosons coupled
to a dynamical U(1) gauge field, and over the years many dual formulations have been
proposed [20, 21]. Especially, there is a formulation written in terms of a NLSM with
target manifold S4 supplemented with a nontrivial WZW term. Recall that S4 is precisely
the Stiefel manifold V5, then we immediately see that SL(5) exactly corresponds to DQCP.

In the context of DQCP, the field n is a 5-component unit vector, whose first 3 and
last 2 components can be thought of as the order parameters of the AF and the VBS,
respectively. So this is a formulation directly based on local DOFs.

The Neel-VBS transition is driven by a rank-2 anisotropy term λ(n2
1+n

2
2+n

2
3−n2

4−n2
5),

with λ < 0 favoring the Neel order and λ > 0 favoring the VBS order. At weak coupling the
sigma model orders spontaneously and the Neel-VBS transition driven by the anisotropy
will be first order. The DQCP, as a continuous Neel-VBS transition, then requires a
nontrivial fixed point at strong coupling. This fixed point must have a full emergent O(5)T

symmetry with anomaly exp(πiw
O(5)T

4 ).
It is now widely accepted [21, 74–77] that the hypothesized strong-coupling fixed point

does not exist, and the theory flows all the way to the weakly coupled, first-order transition
regime. However, there exists a region, around a nontrivial coupling strength g∗, where
the RG flow is slow, also known as “walking” [78]. Consequently, the system behaves
almost like a critical point up to a large length scale. A theory for the walking behavior
in the sigma model has been proposed in Refs. [75, 76]. In the critical regime, which can
be approximated by a CFT, the relevant operators are the SO(5) vector and symmetric
traceless rank-2 tensor, and possibly time-reversal breaking SO(5) singlet.

3.4.2 SL(6): U(1) Dirac spin liquid

The U(1) DSL was introduced as a critical quantum liquid that can emerge in certain
spin systems [22, 23]. We wish to argue that it corresponds precisely to SL(6). Its stan-
dard formulation is in terms of 4 flavors of gapless Dirac fermions minimally coupled to a
dynamical U(1) gauge field, with the Lagrangian

L =
4∑
i=1

ψ̄ii /Daψi +
1

4e2
fµνf

µν (3.19)
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where /Da is the covariant derivative of the Dirac fermions, ψ, which are coupled to the
dynamical U(1) gauge field, a, whose field strength is fµν = ∂µaν−∂νaµ. The Dirac fermion
ψ is not a local (gauge invariant) excitation here. Naively the simplest local operators are
fermion biliners like ψ̄iψj. It turns out that the most important local operators are the
monopole operators [79, 80] – these are operators that insert U(1) gauge flux, in units of
2π, into the system.

The symmetries of the DSL are discussed in detail in Refs. [79–81]. In particular, it
indeed has an Ĩ(6) = (O(6)T × O(2)T )/Z2 symmetry. In particular, the Dirac fermions
transform under a flavor SU(4) which is the spinor group of the SO(6). The fermion
bilinears ψ̄iψj form a “singlet ⊕ adjoint” representation under SO(6). The U(1)top ∈ O(2)
corresponds to the conservation of gauge flux, with conserved current jµ = ϵµνλ∂

νaλ/(2π)
(the subscript “top” is due to the fact that this current conservation does not rely on the
detailed equations of motion and is therefore “topological”). By definition only monopole
operators are charged under the U(1)top. It turns out [79] that the most fundamental
monopoles also transform as a vector under the SO(6). More concretely, the monopole
can be represented by a 6-component complex bosonic field Φ, such that the SO(6) rotates
the components of Φ, and the U(1)top acts by multiplying Φ by a phase factor. Hence we
can identify the monopole operators Φ as the fields n appearing explicitly in the formu-
lation of NLSM. Therefore, the DOF and symmetries match between the gauge-theoretic
formulation and the NLSM formulation

Naturally, the Φ operators are supposed to be the most fundamental local operators
in the theory, in the sense that any other local operator can be built up using the Φ’s.
In particular, according to the formulation of NLSM, we can classify (the most relevant)
operators according to the representations of these operators under SO(6) and SO(2)
symmetry, and denote them as (RL, RR), where RL and RR denote representations under
SO(6) and SO(2), respectively. In this notation the Φ operators can be denoted as (VL, VR),
where VL and VR stand for vector representations under SO(6) and SO(2), respectively.
The singlet mass operator ψ̄ψ is identified as

ψ̄iψi ∼ iϵabcdef (Φ†
aΦb − ΦaΦ

†
b)(Φ

†
cΦd − ΦcΦ

†
d)(Φ

†
eΦf − ΦeΦ

†
f )

where a, b, c, d, e, f = 1, 2, 3, 4, 5, 6. This is a singlet under SO(6) and SO(2) but breaks
time-reversal symmetry. The adjoint mass operator (i.e., ψ̄iψj − ψ̄kψkδij/4) is identified
as the rank-2 antisymmetric tensor of Φ that is neutral under the U(1)top, i.e., i(Φ†

aΦb −
Φ†
bΦa). Hence, we can identify the adjoint mass operator as the operator (AL, AR) in the

formulation of NLSM, where AL and AR represent antisymmetric rank-2 tensor of SO(6)
and SO(2), respectively.
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Various numerical studies of DSL (e.g. see a recent conformal bootstrap study [82]
and references therein) give (indirect) support that the only relevant operators in these
states are either conserved currents as well as the three operators listed above, i.e., time-
reversal-breaking operators (singlet mass operator), or Lorentz scalar operators in the
representations (VL, VR) (Φ) and (AL, AR) (adjoint mass). The effects of these relevant
operators are complicated: some of them change the emergent order of the state, but
others do not (see Appendix 3.A for more details).

3.4.3 SL(N⩾7): non-Lagrangian Theory

The dynamics of SL(N⩾7) have not been fully established yet. In particular, we cannot find
any gauge-theoretic formulation for SL(N) with N ⩾ 7. In fact, due to their delicate sym-
metry structure, we conjecture that the conformally invariant fixed points corresponding
to SL(N⩾7) are non-Lagrangian, i.e., they have no description in terms of a weakly-coupled
renormalizable continuum Lagrangian at any scale.

A suggestive argument, but not rigorous proof, supporting that SL(N>6) are non-
Lagrangian is as follows. The key observation is that it appears unlikely for such La-
grangians to realize the SO(N), SO(N − 4) and reflection symmetries of SL(N). To see
it, let us start with even N . Usually in such a Lagrangian, symmetries like SO(N) and
SO(N − 4) are flavor symmetries, and there is a reflection symmetry that commutes with
flavor symmetries. However, due to the locking between spacetime orientation reversals
and improper rotations of O(N) and O(N − 4), SL(N) has no such a reflection symmetry.
This suggests that SO(N) and SO(N − 4) cannot be simultaneously flavor symmetries.
In the special case of N = 6, which does have a renormalizable Lagrangian description,
indeed only SO(6) but not SO(2) can be identified as a flavor symmetry. In this example,
the SO(2) is realized as the flux conservation symmetry in the gauge theoretic formulation.
For N > 6, there is no known generalization of the flux conservation symmetry that can
give rise to symmetries like SO(N − 4). This indicates SL(N>6) with an even N may be
non-Lagrangian. Due to the cascade structure of SLs [15], it also suggests all SL(N>6) are
non-Lagrangian.

We emphasize that the above is just a suggestive argument, but not a rigorous proof.
There can be ways to get around the above obstruction, by, e.g., implementing some sym-
metries via dualities, considering Lagrangians in very complicated forms, showing that
Lagrangians with smaller symmetries can have emergent symmetries of the SLs, etc. After
finding a Lagrangian that can realize the symmetries of a SL, one still needs to make sure
that its anomaly and low-energy dynamics match with the SL, which appears also challeng-
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ing. If all these nontrivial challenges can be overcome and a renormalizable Lagrangian can
be found to describe the SL at the end, we believe this process can generate new insights
and teach us some valuable general lessons of quantum field theories.

Numerical studies [82] suggests that the only relevant operators in these states are
the same as the case for N = 6, i.e., they are either conserved currents, or time-reversal-
breaking operators, or Lorentz scalar operators in the representations (VL, VR) and (AL, AR),
where VL (VR) and AL (AR) represent the vector and antisymmetric rank-2 tensor of SO(N)
(SO(N −4)), respectively. We discuss the effects of these relevant operators in more detail
in Appendix 3.A.

3.A Effects of Relevant Operators on SL

In this appendix, we discuss the effects of relevant operators on the DQCP (SL(5)), DSL
(SL(6)) and SL(7). Because the low-energy dynamics of these states are not fully settled
down, this discussion is also conjectural, and it is important to study these issues in a
more rigorous manner in the future. However, given our understanding of these states, we
believe the expectations below are reasonable.

For all SLs, the (VL, VR) operator (or the SO(5) vector for DQCP) should change the
emergent order of the state. Due to the cascade structure among SLs [15], it is natural
that this operator will just drive SL(N) to SL(N−1) (for DQCP, it simply gaps out the
state). The time-reversal breaking operator that is a flavor singlet is likely to drive the
state into a semion topological order, and this expectation is supported by the gauge-
theoretic formulations of DQCP and DSL, as well as the fact that the semion topological
order can match the anomaly of SL(N) if time reversal is broken (for all N ⩾ 5) [15]. The
(AL, AR) operator (for all N ⩾ 6) is expected to convert SL(N) into certain spontaneous-
symmetry-breaking state, as supported from the gauge-theoretic formulation of DSL [20,
81, 83]. For DQCP, the traceless symmetric rank-2 tensor of SO(5) drives the state into
a spontaneous-symmetry-breaking state, and this operator is the tuning operator of the
Neel-VBS transition in the standard realization of DQCP [18, 19]. All these operators
change the emergent order of the states.

The remaining relevant operators to be discussed are the conserved current operators,
whose effects on various states are complicated. It turns out that some of them can change
the emergent order of the states, while others only shift the “zero momenta”.

The simplest way to discuss it is perhaps to start from DSL, which has a relatively
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simple gauge-theoretic formulation in terms of Nf = 4 QED3:

L =
4∑
i=1

ψ̄ii /Daψi −
1

4e2
fµνf

µν (3.20)

There are conserved currents due to the SO(6) and SO(2) symmetries, where a natural
basis of the SO(6) currents is ψ̄γµT su(4)ψ, with γµ the Dirac matrices and T (su(4)) the gener-
ators of su(4) in its fundamental representation, and the SO(2) currents are ϵµνλ∂νaλ/(2π),
with a the emergent U(1) gauge field. If the time component of the SO(6) currents is added
as a pertubation to the DSL, the Dirac fermions will be doped and acquire a finite Fermi
surface, so the emergent order of the state changes. If the time component of the SO(2)
currents is added, the Dirac fermions will experience magnetic fields, Landau levels will
form, and the emergent order of the state also changes. Below we discuss the effect of the
spatial components of the currents.

For the SO(6) spatial currents, depending on the choice of T (su(4)) and γµ, various
effects can be triggered. For example, the current ψ̄γxσ30ψ merely shifts the positions
of the Dirac cones in the momentum space in a flavor-dependent way, which does not
really change the emergent order of DSL (here σij ≡ σi ⊗ σj, where σi=0,1,2,3 are the
identity and standard Pauli matrices). The same is true for ψ̄(γxσ30 + γyσ03)ψ. However,
as another example, ψ̄(γxσ23 + γyσ33)ψ actually converts the 4 Dirac cones into 2 pairs
of quadratic band touching (and another 2 pairs of gapped bands), which does change
the emergent order of the state. By examining the effect of different spatial currents,
one can see more complicated patterns. Although a systematic description of the effects
of these spatial currents is lacking, it can be analyzed in a case-by-case manner. These
spatial currents can all be converted into the language of SL(6), in terms of the 6 × 2
matrix n. For example, using Appendix E of Ref. [15], we see that ψ̄γxσ30ψ ∼ n3i∂xn4i,
ψ̄(γxσ30 + γyσ03)ψ ∼ n3i∂xn4i + n1i∂yn2i, and ψ̄(γxσ23 + γyσ33)ψ ∼ n4i∂xn6i + n5i∂yn6i.

Next we turn to the SO(2) spatial current, which in the language of SL(6) is ni1∂x,yni2,
and in the gauge theory is the electric field of the emergent U(1) gauge field. It is not
obvious what this perturbation does to the DSL. However, we argue that its effect is also
to shift the zero momenta. To see it, we consider Nf = 2 QED3, with Lagrangian

L =
2∑
i=1

ψ̄ii /Daψi −
1

4e2
fµνf

µν (3.21)

This theory is argued to describe the easy-plane DQCP, which has an emergent O(4)
unitary symmetry (not to be confused with the DQCP we have been discussing, which has
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an emergent SO(5) unitary symmetry) [21]. In this theory, ψ̄γx,yσ3ψ clearly only shifts
the zero momenta without changing the emergent order of the state. On the other hand,
the improper Z2 rotation of the O(4) symmetry maps this operator into the electric fields
of the emergent U(1) gauge fields [21], which means that the electric fields also play the
role of shifting the zero momenta without changing the emergent order. So we propose
that in DSL (i.e., SL(6)), the SO(2) spatial currents also only shift the zero momenta, but
maintain the emergent order.

Now we turn to DQCP (SL(5)), which has a couple of gauge-theoretic formulations [21].
From any of these formulations, one can see that the time component of the SO(5) currents
changes the emergent order of the state. The formulation that has a manifest O(5)T
symmetry is an SU(2) gauge theory with 2 flavors of Dirac fermions, where the SO(5)
symmetry is the flavor symmetry of these Dirac fermions. Under similar consideration of
the SO(6) spatial currents in DSL, we see that the effects of the SO(5) spatial currents in
DQCP are also complicated and need to be analysed in a case-by-case manner: some of
them changes the emergent order of the states, while others only shift the zero momenta
without changing the emergent order.

We remark that the effects of the spatial currents actually impose very strong con-
straints on the possible results of our anomaly-based framework of emergibility. Within
this framework, it is easy to see that all realizations of DQCP and DSL on p6m × O(3)T

and p4m×O(3)T symmetric lattice spin systems must have all entries of n locating at some
high-symmetry momenta in the Brillouin zone, because all possile symmetry embedding
patterns satisfy this condition. This means that in all realizations, it is impossible to have
a spatial current operator that is allowed by the microscopic symmetries and can shift
the zero momenta. As we have explicitly checked, this is indeed true for all realizations
obtained in our anomaly-based framework, which can be viewed as a highly nontrivial
sanity check of this framework – It nicely corroborates the validity of the hypothesis of
emergibility, the proposal that DSL can indeed be described by SL(6), and the dynamics
of DSL.

Finally, we turn to SL(7), whose low-energy dynamics is poorly understood so far. It
is still likely that the time component of the SO(7) and SO(3) currents will change the
emergent order. For the spatial currents, we propose the following rule. Writing an SO(7)
spatial current operator as a sum of terms of the form ni1j∂x,yni2j, then we consider the
effect of the same operator in DSL (it turns out that all such operators allowed by our
microscopic symmetries only involve at most 4 rows of n, so its corresponding operator in
DSL can always be found). If this operator changes the emergent order of DSL, then it also
changes the emergent order of SL(7), and if it only shifts the zero momenta of DSL, it also
only shifts the zero momenta of SL(7). For the SO(3) spatial currents, it can be expanded
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as a sum as ∼ a1ni1∂xni2 + a2ni1∂xni3 + a3ni2∂xni3 + b1ni1∂yni2 + b2ni1∂yni3 + b3ni2∂yni3.
We propose to first convert it into an SO(7) spatial current ∼ a1n1i∂xn2i + a2n1i∂xn3i +
a3n2i∂xn3i + b1n1i∂yn2i + b2n1i∂yn3i + b3n2i∂yn3i. If this SO(7) spatial current changes the
emergent order (only shifts zero momenta) using the the above criterion, then the original
SO(3) spatial current also changes the emergent order (only shifts zero momenta).

The above proposal is of course conjectural, and more rigorous work is needed to fully
settle it down. However, this proposal is supported by our results of anomaly-matching.
We have checked all realizations of SL(7) obtained from the anomaly-based framework of
emergibility, and found that the current operators that can shift zero momenta (according
to the above proposal) are allowed by microscopic symmetries in a realization if and only
if this realization belongs to a family where the momenta of some entries of n can change
continuously.
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Chapter 4

Anomaly of (2 + 1)-Dimensional
Symmetry-Enriched Topological
Order

In this chapter, we construct a (3+1)-d TQFT given the data of a UMTC and G-action on
the UMTC. This TQFT is supposed to correspond to the SPT which hosts the symmetry-
enriched topological order described by the UMTC with given G-action on its boundary.
The partition functions of this TQFT on certain representative manifolds equipped with
appropriate G bundles give the anomaly indicators of (2 + 1)-d bosonic topological orders
enriched with a finite group symmetry G, which may be Abelian or non-Abelian, contain
anti-unitary elements and permute anyons. Via this framework, besides reproducing the
known anomaly indicators of G = ZT2 , we have calculated the anomaly indicators of G =
Z2 × Z2 and G = ZT2 × ZT2 , which have not been previously derived as far as we know.
The usage of these anomaly indicators have been demonstrated in the example of all-
fermion Z2 topological orders. This framework is generalized to the case where the relevant
symmetry is a connected Lie group, and we use it to derive the anomaly indicator for
SO(N). As a byproduct, we also obtain the expressions of the Hall conductance of an
SO(N) symmetric topological order, written in terms of data characterizing this symmetry-
enriched topological order. We explain how to use these results to calculate the anomaly
indicators for some other symmetry groups without the need of further calculation, and
explicitly derive the anomaly indicators for symmetry groups O(N)T and SO(N) × ZT2 .
In particular, we show that certain anomalies associated with these symmetries cannot be
realized by any topological order.

This chapter is adapted from Ref. [2]
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4.1 Review of topological order with symmetry G

4.1.1 Review of UMTC notation

In this subsection we briefly review relevant concepts and notations that we use to describe
UMTCs. For a more comprehensive review of these concepts and notations, see e.g.,
Refs. [60, 84, 85] for a more physics oriented introduction, or Refs. [11, 12, 86, 87] for a
more mathematical treatment.

A category consists of objects and morphisms between those objects. In a UMTC C,
there is a finite set of simple objects a. They are referred to as (simple) anyons in the
context of topological orders. The set of morphisms Hom(a, b) between two objects a and
b in a UMTC C forms a C-linear vector space. The vector space is referred to as the
topological state space in the context of topological order. For example, Hom(a, b) can
be viewed as the Hilbert space of states on a 2-sphere that hosts anyons a and b̄ (see
Eq. (4.35)).

Moreover, a UMTC C has the structure of fusion and braiding. Fusion means that
there is a bifunctor × such that acting it on anyons a and b we have

a× b ∼=
∑
c

N c
abc (4.1)

where N c
ab is interpreted as the dimension of the topological state space of two anyons a

and b fusing into a third anyon c. There are two related vector spaces, V c
ab and V ab

c , referred
to as the fusion and splitting vector spaces, respectively. The two vector spaces are dual
to each other, and depicted graphically as:

(dc/dadb)
1/4

c

ba

µ
= 〈a, b; c|µ ∈ V c

ab, (4.2)

(dc/dadb)
1/4

c

ba
µ

= |a, b; c〉µ ∈ V ab
c , (4.3)

where µ = 1, . . . , N c
ab, da is the quantum dimension of a, and the factors

(
dc
dadb

)1/4
are a

normalization convention for the diagrams.
In this thesis, we will use the convention that the splitting space is referred to as the

vector space, corresponding to “ket” in Dirac’s notation, while the fusion space is the dual
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vector space, corresponding to “bra” in Dirac’s notation. Diagrammatically, inner products
of the vector space are formed by stacking vertices so the fusing/splitting lines connect

a b

c

c′

µ

µ′

= δcc′δµµ′

√
dadb
dc

c, (4.4)

which can be applied inside more complicated diagrams.
More generally, for any integer n and m there are vector spaces V a1,a2,...,an

b1,b2,...,bm
, which are

referred to as the fusion space of m anyons into n anyons. These vector spaces have a
natural basis in terms of tensor products of the elementary splitting spaces V ab

c and fusion
spaces V c

ab. For instance, we have

V abc
d

∼=
∑
e

V ab
e ⊗ V ec

d
∼=
∑
f

V af
d ⊗ V bc

f (4.5)

The two vector spaces are related to each other by a basis transformation referred to as
F -symbols, which is diagrammatically shown as follows

a b c

e

d

α

β

=
∑
f,µ,ν

[
F abc
d

]
(e,α,β),(f,µ,ν)

a b c

f

d

µ

ν

(4.6)

The basis transformations are required to be unitary transformations, i.e.[(
F abc
d

)−1
]
(f,µ,ν)(e,α,β)

=
[(
F abc
d

)†]
(f,µ,ν)(e,α,β)

=
[
F abc
d

]∗
(e,α,β)(f,µ,ν)

. (4.7)

There is also a trivial anyon denoted by 1 such that 1 × a = a × 1 = a. We denote a
as the anyon conjugate to a, for which N1

aa = 1, i.e.

a× a = 1 + · · · (4.8)

Note that ā is unique for a given a.
The R-symbols define the braiding properties of the anyons, and are defined via the

the following diagram:

c

ba
µ

=
∑
ν

[
Rab
c

]
µν

c

ba
ν

. (4.9)
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Under a basis transformation, Γabc : V ab
c → V ab

c , the F and R symbols change according
to:

F abc
def → F̃ abc

d = Γabe Γ
ec
d F

abc
def [Γ

bc
f ]

†[Γafd ]†

Rab
c → R̃ab

c = Γbac R
ab
c [Γ

ab
c ]

†. (4.10)

where we have suppressed splitting space indices and dropped brackets on the F -symbol
for shorthand. In this thesis, we refer to this basis transformation as a vertex basis trans-
formation.

On the other hand, physical quantities, like the topological twist θa and the modular S-
matrix Sab, should always be basis-independent combinations of the data. The topological
twist θa is defined via the diagram:

θa = θa =
∑
c,µ

dc
da

[Raa
c ]µµ =

1

da
a

(4.11)

Finally, the modular S-matrix Sab, is defined as

Sab = D−1
∑
c

N c
ab

θc
θaθb

dc =
1

D
a b

, (4.12)

where D =
√∑

a d
2
a is the total dimension of the UMTC.

4.1.2 Global symmetry

We now consider a UMTC C which is equipped with a global symmetry group G. Math-
ematically speaking, by definition, G associates a monoidal functor ρg modulo natural
isomorphism to each g ∈ G, which should satisfy various consistency conditions. In this
subsection we break down the definition and review the concepts and notations related to
global symmetry G. For a more comprehensive review, see e.g., Refs. [60, 86, 88].

First of all, as a functor, ρg acts on the anyon labels and the topological state spaces.
For an individual element g ∈ G, g can permute the anyons and we use ga to denote the
(simple) anyon we get after the g action on the (simple) anyon labeled by a. Moreover,
g also has an action on the topological state space, which is a C-linear or C-anti-linear
operator on the fusion space, depending on whether g is unitary or anti-unitary. We denote
this action on individual topological state space as ρg as well:

ρg : V ab
c → V

ga gb
gc . (4.13)
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And in particular we have

N
gc
ga gb = N c

ab (4.14)

To account for anti-unitary symmetry, we associate a Z2 grading q(g) (and related σ(g))
as follows

q(g) =

{
0 if g is unitary
1 if g is anti-unitary (4.15)

σ(g) =

{
1 if g is unitary
∗ if g is anti-unitary (4.16)

where ∗ denotes complex conjugation.
Assembling the above information in the component form, we can write the action of

ρg on the topological state space as a matrix Ug(
ga, gb; gc)µν

ρg|a, b; c〉µ =
∑
ν

Ug(
ga, gb; gc)µνK

q(g)| ga, gb; gc〉ν , (4.17)

where Ug(
ga, gb; gc) is an N c

ab × N c
ab matrix, and K denotes complex conjugation which

appears when q(g) = 1 and the action ρg is C-anti-linear. As a convention, we will also use
U−1
g ( ga, gb; gc) to denote the matrix inverse of Ug(

ga, gb; gc), even when g is anti-unitary.
Under a vertex basis transformation, Γabc : V ab

c → V ab
c , Ug(a, b; c)µν transforms to

Ũg(a, b, c) =
[
Γ

ga gb
gc

]σ(g)
Ug(a, b, c)

[
(Γabc )

−1
]
, (4.18)

with the shorthand g = g−1. Moreover, to preserve the structure of braiding and fusion,
under the action of ρg, the F and R symbols should transform according to the following
rules:
ρg[F

abc
def ] = Ug(

ga, gb; ge)Ug(
ge, gc; gd)F

ga gb gc
gd ge gfU

−1
g ( gb, gc; gf)U−1

g ( ga, gf ; gd) = Kq(g)F abc
defK

q(g)

ρg[R
ab
c ] = Ug(

gb, ga; gc)R
ga gb
gc Ug(

ga, gb; gc)−1 = Kq(g)Rab
c Kq(g),

(4.19)

where we have suppressed the additional indices that appear when N c
ab > 1. Accordingly,

the basis-independent quantity, including the topological twist θa and the modular S-
matrix Sab, should be invariant or complex-conjugated under the action of ρg, i.e.,

S ga gb = S
σ(g)
ab ,

θ ga = θσ(g)a , (4.20)
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Finally, we demand that ρg satisfy the group multiplication rule up to a natural iso-
morphism denoted by η(g,h), i.e.,

η(g,h) : ρg ◦ ρh =⇒ ρgh (4.21)

By the definition of natural isomorphism, first of all, for every anyon a, η(g,h) assigns
a morphism η gha(g,h) ∈ Hom(g

(
ha
)
, gha) to gha. In order for this morphism to be an

isomorphism, we need to have
g
(
ha
)
= gha, (4.22)

and accordingly, η gha(g,h) can be identified with just a U(1) phase for simple anyon a.
Secondly, the definition of natural isomorphism demands that, on the topological state
space | gha, ghb; ghc〉µ, the action of ρg ◦ ρh should be equal to the action of ρgh up to a
phase ηa(g,h)ηb(g,h)

ηc(g,h)
, i.e., we should have

ηa(g,h)ηb(g,h)

ηc(g,h)
= Ug(a, b; c)

−1Kq(g)Uh(
ga, gb; gc)−1Kq(g)Ugh(a, b; c), (4.23)

This phase is often denoted by κg,h(a, b; c) in the literature [60].
We also wish to impose a third constraint on η(g,h) coming from the constraint of

associativity of symmetry actions. Namely, we wish that the two different ways of con-
necting ρg ◦ ρh ◦ ρk with ρghk through natural isomorphism η are identically the same, i.e.,
we wish to have

ηa(g,h)ηa(gh,k) = ηa(g,hk)η ga(h,k)
σ(g), (4.24)

The action ρg above defines an element O ∈ H3
[ρ](G,A) [60, 88, 89]. Eq. (4.24) can be

satisfied only when O is trivial. If O is non-trivial, then O is referred to as the obstruction
to symmetry fractionalization1. Different solutions ηa(g,h) of Eq. (4.23) together with
(4.24) corresponding to the same ρg are referred to as different symmetry fractionalization
classes.

Finally, we identify different choices of ρg up to natural isomorphism γ(g), i.e., we
identify two sets of functors ρg and ρ̃g if they are connected to each other by some natural
isomorphism γ(g)

γ(g) : ρg =⇒ ρ̃g, (4.25)
1In this thesis, we will always assume that this obstruction is absent, and it can be straightforwardly

checked for specific examples that we consider in the paper.
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and this changes Ug(a, b; c) and ηa(g,h) in the following way [60]:

Ug(a, b; c) →
γa(g)γb(g)

γc(g)
Ug(a, b; c)

ηa(g,h) →
γa(gh)

γa(g)(γ ga(h))σ(g)
ηa(g,h) (4.26)

In this thesis we refer to this transformation as the symmetry action gauge transforma-
tion. Different gauge inequivalent choices of {η} and {U} characterize distinct symmetry
fractionalization classes [60]. In this thesis we will always fix the gauge

η1(g,h) = ηa(1,g) = ηa(g,1) = 1

Ug(1, b; c) = Ug(a, 1; c) = 1. (4.27)

Moreover, we choose ρ1 to always be the identity functor. When G is continuous, we
further choose ρg such that ρg’s for different g’s in the same connected component are the
same functor.

One can show that distinct symmetry fractionalization classes form a torsor over
H2
ρ(G,A). That is, different possible symmetry fractionalization classes can be related

to each other by elements of H2
ρ(G,A), where A is an Abelian group whose group elements

correspond to the Abelian anyons in this UMTC, and the group multiplication corresponds
to the fusion of these Abelian anyons. In particular, given an element [t] ∈ H2

ρ(G,A), we
can go from one symmetry fractionalization class with data ηa(g,h) to another with data
η̃a(g,h) given by

η̃a(g,h) = ηa(g,h)Ma,t(g,h) (4.28)

where t(g,h) ∈ A is a representative 2-cocyle for the cohomology class [t] and Ma,t(g,h) =
θ
a×t(g,h)

θaθt(g,h)
is the double braid between a and t(g,h) [90].

In the case where the permuation ρ is trivial, there is always a canonical notion of a
trivial symmetry fractionalization class, where ηa(g,h) = 1 for all anyon a and all g,h ∈ G.
In this case, an element of H2(G,A) is sufficient to completely characterize the symmetry
fractionalization class.

As the take-home message, the data {ρg;Ug(a, b; c), ηa(g,h)} defines a categorical G
action on C, satisfying various consistency conditions, especially Eqs. (4.19),(4.23) and
(4.24).

Sometimes we need to consider the symmetry actions of two different groups G1 and
G2 on a UMTC C, with data {ρ(1)g ;U

(1)
g (a, b; c), η

(1)
a (g,h)} and {ρ(2)g ;U

(2)
g (a, b; c), η

(2)
a (g,h)},
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respectively. We say that a map f : G1 → G2 is compatible with these symmetry actions
on C if for any g1 ∈ G1, ρ(1)g1 and ρ

(2)
f(g1)

are two functors connected to each other by a
natural isomorphism γ(g1) as in Eq. (4.25), i.e.,

γ(g1) : ρ(1)g1
=⇒ ρ

(2)
f(g1)

, (4.29)

In particular, g1 and f(g1) are either both unitary or both anti-unitary, and they permute
anyons in exactly the same way. Moreover, up to a symmetry action gauge transformation
their actions on the topological state space satisfy

U
(2)
f(g1)

(a, b; c) = U (1)
g1

(a, b; c) (4.30)

for any anyons a, b, c ∈ C. All maps between symmetries considered in this thesis are in
fact maps compatible with symmetry actions on some UMTC C if not stated explicitly.

Given such a map, we say that the symmetry fractionalization class η(1) of G1 is the
pullback of the symmetry fractionalization class η(2) ofG2, if, under the gauge choice leading
to Eq. (4.30), we have

η(1)a (g,h) = η(2)a (f(g), f(h)) (4.31)

for any g,h ∈ G1 and any a ∈ C. It is straightforward to see that η(1)a (g,h) defined this
way satisfies Eqs. (4.23) and (4.24), as long as η(2)a (g,h) does.

4.2 (3 + 1)-d TQFT with finite group symmetry G

A UMTC C defines a (3 + 1)-d TQFT via a path integral state sum construction due
originally to Crane and Yetter [91], and the state sum construction is extended to orientable
or nonorientable manifolds with G-bundle structure in Ref. [92], where G is a finite group.
In this section, after explaining the relation of the partition function to anomaly, we review
the approach of Refs. [93–95] to give a more formal definition of the TQFT along the lines
of Refs. [96, 97], and demonstrate how to compute the partition function of this TQFT. In
particular, we also extend the approach to allow for an extra G-bundle structure, where G is
a finite group symmetry that may contain anti-unitary elements, in which case the manifold
under consideration can be non-orientable. While Ref. [92] explictly uses a cellulation of
a manifold, our approach here utilizes a handle decomposition of a manifold, which is
reviewed in Sec. 4.2.3. As a result, our calculation is simpler and will produce closed-form
expressions for partition functions and anomaly indicators.
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In this section, usually when we refer to a manifold M, we assume that there is a
G-bundle structure G defined on it as well, and an orientation has been chosen if M is
orientable.2

4.2.1 Characterizing the anomaly by bulk-boundary correspon-
dence

In the field theoretic language, a (d+1)D G-symmetric theory is anomalous if it cannot be
gauged, i.e., its partition function evaluated on a (d+1)D manifold with a G-bundle cannot
be made gauge invariant by local deformations. However, there exists an appropriate
(d + 1 + 1)D G-symmetric invertible bulk theory [99, 100] whose boundary can host the
original (d + 1)D theory, such that the combined theory is anomaly-free. So we can
characterize the anomaly of the boundary utilizing properties of the bulk. Specifically,
the topological part of the partition function of the (d + 1)D theory (i.e., the part of the
partition function that is insensitive to dynamical details and only concerns the anomaly)
on some (d + 1)D manifold N can be defined as the partition function of a (d + 1 + 1)D
invertible bulk theory on some (d+ 1 + 1)D manifold M with ∂M = N , i.e.,

Zd+1(N ) ≡ Zd+1+1(M; ∂M = N ) (4.32)

Yet as an intrinsic (d+1)D theory the partition function for fixed N should be independent
of the choice of M. Hence on closed (d + 1 + 1)D manifold M we are supposed to have
Zd+1+1(M; ∂M = ∅) = 1. Therefore, any Zd+1+1(M; ∂M = ∅) 6= 1 suggests that the
boundary theory on N is anomalous, and the class of anomaly is encoded in the bulk
partition function, which should be a gauge invariant U(1) phase factor. Below we will use
this bulk partition function to characterize the boundary anomaly. 3

The case that concerns us is a (2+1)-d symmetry-enriched topological order described
by a UMTC C and a global symmetry G. In the case where G is trivial, the UMTC indeed
defines a (3 + 1)-d invertible TQFT called the Crane-Yetter model [91]. However, the
physical system that the Crane-Yetter model defines is trivial in the sense that the partition
function on any close 4-manifold can be tuned to 1 without closing the gap or breaking

2Even for non-orientable M, we still need to choose an orientation of TM⊕ξ, where TM is the tangent
bundle of M and ξ denotes the associated vector bundle of the gauge bundle G [98, 99]. See Appendix 4.D.

3In the literature, we usually say that there exists a bulk G-SPT that can “cancel” the anomaly on
the boundary, such that the total partition function of the combined bulk and boundary system is gauge
invariant. According to our convention, the partition function of such bulk G-SPT should be the inverse
of Zd+1+1(M; ∂M = ∅) that we present here.
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any symmetry (in fact no symmetry is imposed at all in this model). Mathematically, the
partition function corresponds to some element that belongs to Hom(ΩSO

4 (⋆),U(1)) ∼= U(1),
and all these elements are smoothly connected to the trivial element. This means that there
is no intrinsic topological order in the bulk defined by the UMTC C in this way [13, 101–
103]. Nevertheless, the (3 + 1)-d theory on a manifold with boundary hosts a (2 + 1)-d
topological state at its boundary, whose anyon excitations are described by the UMTC C
[104]. Moreover, the partition function of the Crane-Yetter model is related to the framing
anomaly of the (2 + 1)D topological state, as discussed in Refs. [94, 105].

In the presence of symmetries, the (3 + 1)-d bulk is generically an SPT state. The
partition function of this SPT state corresponds to some element of the cobordism group
Ω4
SO((BG)

q−1), with q : G → Z2 as in Eq. (4.15) labeling anti-unitary symmetries (see
Appendix 4.D for the precise definition)4. Therefore, in order to understand the SPT, we
just need to calculate the partition function on a few representative manifolds, given by
the generators of the dual bordism group ΩSO

4 ((BG)q−1). A complete set of such parti-
tion functions, expressed in terms of the data characterizing (2 + 1)-d symmetry-enriched
topological orders, are the anomaly indicators. The values of these anomaly indicators for
a given symmetry-enriched topological order characterize its anomaly, corresponding to
an element in the relevant cohomology or cobordism group.5 Namely, there is an injec-
tion that maps the possible values of the anomaly indicators to elements of the relevant
cohomology or cobordism group. 6

4.2.2 General construction of TQFT

In this subsection we review the basic facts about TQFT that concern us in the context of
topological order, which ultimately lead to our recipe for calculating the partition function
in Sec. 4.2.4. The presentation here loosely follows Refs. [94, 97, 108]. See also Ref. [95].
This subsection is rather formal, and readers uninterested in the origin of various rules of
the calculations can skip this subsection and take the recipe in Sec. 4.2.4 as the definition
of our TQFT.

4To ease the notation, we will omit the superscript q − 1 when G contains unitary symmetries only.
5More precisely, after choosing a basis of the cohomology or cobordism group, the anomaly indicators

are the expansion coefficients of the element under this basis.
6For a finite group G, because any (3 + 1)-d SPT can have symmetric topologically ordered boundary,

this injection should be a bijection [106, 107]. However, for a continuous group G, because sometimes the
(3 + 1)-d SPT cannot have any symmetric topologically ordered boundary [45, 56, 57], this injection is
generically not surjective.
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According to Ref. [96], an n-dimensional TQFT for oriented manifolds (with no G-
bundle structure), taking values in C, requires the specification of the following information:

a. For every closed oriented n-dimensional manifold M, a C-number Z(M) ∈ C.

b. For every closed oriented (n − 1)-dimensional manifold N , a C-linear vector space
V(N ). When N is empty, the vector space V(N ) is canonically isomorphic to C.

c. For every oriented n-dimensional manifold M, a vector |Z(M)〉 of the vector space
V(∂M). When ∂M = ∅, this vector space is cannonically identified with C, and
gives the same C-number as we get in [a].

They should satisfy a series of consistency conditions that we do not specify here. We
usually choose a set of orthonormal basis vectors {|β∂M〉} for V(∂M), and then |Z(M)〉
can be written as sum of basis vectors, i.e., |Z(M)〉 =

∑
β〈β∂M|Z(M)〉|β∂M〉. We call the

inner product 〈β∂M|Z(M)〉 the partition function of M with label |β∂M〉 put on ∂M, and
denote it by Z(M; β∂M).

One of the most important facts of TQFT is that the partition function Z(M) of some
n-manifold M can be evaluated via the gluing formula. Let us cut a closed n-manifold
M along some (n − 1)-manifold N , then we get a new n-manifold Mcut with boundary
∂Mcut = N ∪ N , where N is the same manifold N with opposite orientation. From the
axioms of TQFT we have the following gluing formula:

Z(M) =
∑
β

Z (Mcut; βN )

〈βN |βN 〉V(N )

. (4.33)

Here {βN} is a set of orthonormal basis for V(N ).
From the gluing formula, it is clear that in order to calculate the partition function on

some complicated manifold M, we can chop M up into simpler pieces and calculate the
partition functions of the individual pieces, so that we can obtain the partition function
of the original manifold M with the help of the gluing formula Eq. (4.33). Therefore, in
order to understand the TQFT, which in principle is defined on any manifold that can
be arbitrarily complex, the hope is that it suffices to specify a relatively small amount of
information about Mcut and N .

Yet the manifold N as an (n− 1)-manifold can be very complicated as well, and thus
V(N ) can be very complicated. The idea of 2-extended TQFT is to extend the construction
once down, i.e., we wish to extend the construction of TQFT properly to incorporate the
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case where N has boundaries as well, and V(N ) can also be obtained by gluing relatively
simple pieces together. This extension will further simplify the analysis and the calculation
of the partition function. We will also immediately see that the data of a UMTC can be
manifestly incorporated into the construction, since we will soon put anyons on an (n−2)-
manifold O.

Specifically, to specify the data of a 2-extended TQFT, beyond the data of an ordinary
TQFT, we need to put an object of some C-linear category, reminiscent of anyons, on “the
boundary of the boundary”. More precisely, on top of the information defining an ordinary
TQFT, this further information includes

d. For every closed oriented (n− 2)-manifold O, a C-linear category C(O). When O is
empty, the category C(O) is canonically isomorphic to the category of C-linear vector
spaces.

e. For every oriented (n−1)-manifold N , an object V(N ) of the category C(∂N ). When
∂N = ∅, this object is canonically identified with a C-linear vector space, and gives
the same C-linear vector space as we get in [b].

Similar to the fact that a vector can be written as sum of basis vectors, an object can be
written as a (direct) sum of simple objects {βO} for C(O) a semisimple category. Therefore,
similar to the previous analysis of ordinary TQFT, we will also associate an object β∂N
to ∂N and call Hom (β∂N ,V(N )) the vector space of N with label β∂N put on ∂N , and
denote it by V(N ; β∂N ).

From this construction, we define the vector space V(N ; β∂N ) associated to N with
boundary ∂N 6= ∅, after putting labels β∂N on the boundary. Moreover, V(N ; β∂N ) can
be obtained by chopping N along some (n − 2)-manifold O and using “gluing formula”
similar to Eq. (4.33).

Now we specialize to the TQFT that concerns us the most, i.e., a TQFT defined on
4-dimensional manifolds from the data of a UMTC C. We can start using the language
of anyons and topological state spaces. We define C(O) as C⊗n where n is the number of
connected components of O. In particular, when O = ∅, we say n = 0 and C⊗0 is defined as
the UMTC with only object 1, i.e., a trivial anyon. Therefore, for closed (n− 1)-manifold
N with ∂N = ∅, e.g., S3, V(N ) is a 1-dimensional C-vector space, i.e., we have

V(S3) ' C (4.34)

To finish the definition of the TQFT, we associate the object 1 to N = D3. When
writting down the vector space of D3 given some label on ∂D3 = S2, sometimes we need to
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associate a direction of the flow of anyons, i.e., whether an anyon comes into or out of the
S2 ball. This choice is similar to the choice of an orientation of N , and when N = ∂M it
can be the same as or opposite to the orientation induced from M. Now we assign a1, . . .
anyons coming out of S2 and b1, . . . anyons coming into S2, and we have the canonical
identification of the vector space given such labels as the topological state space of fusing
b1, . . . anyons into a1, . . . anyons, i.e.,

V
(
D3; (a1, . . . ; b1, . . . )

)
' V a1,...

b1,...
(4.35)

After this assignment, we can in principle identify all vector spaces associated to N with
some label on ∂N . For example, for S2 ×D1 with trivial anyon on the boundary, we have

V
(
S2 ×D1; ∅

)
' C (4.36)

For S1 ×D2 with trivial anyon on the boundary, we have

V
(
S1 ×D2; ∅

)
' C|C| (4.37)

where |C| denotes the number of simple anyons in C, and ∅ denotes the trivial anyon on the
boundary. A basis vector in V(S1 × D2; ∅) corresponds to putting an anyon loop labeled
by a ∈ C along S1 × {pt} ⊂ S1 ×D2, where {pt} denotes a point in D2.

We mention that in Ref. [94], V(N ; β∂N ) is defined as the space of formal linear super-
positions (with complex coefficients) of all anyon diagrams, which can end on the anyons
labed by β∂N on the boundary ∂N , modulo the equivalence from local relations given by
fusion of anyon lines, F -moves, and R-moves, i.e.,

V(N ; β∂N ) = C[C(N ; β∂N )]/ ∼, (4.38)

where C(N ; β∂N ) denotes the set of all such anyon diagrams and ∼ is the equivalence given
by these local relations. This serves as a nice diagrammatic illustration of the vector spaces
defined above, as simply illustrated in Fig. 4.1. (See also Ref. [104] for the connection to
Hamiltonian formalism.) In Appendix 4.A.1 we rederive various vector spaces mentioned
using the above definition, which serves as a nice consistency check.

Another piece of information that we should attribute to the vector space is the inner
product in V(N ; β∂N ). Following the expectation from gluing formula as in Eq. (4.40), the
inner product in V(N ; β∂N ) is supposed to be the partition function of N ×D1 with the
labels on the boundary of N and N attached to each other:

〈x|y〉V(N ;β∂N ) = Z(N ×D1; x ∪ y), (4.39)
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Figure 4.1: The illustration of some anyon diagram on D2 × D1, with some anyon lines
ending on anyon a and a put on the boundary.

where x, y are two vectors in V(N ; β∂N ) and x is the dual vector of x in the dual vector
space V(N ; β∂N ).

For our purpose, we have to deal with manifold M with an additional G-bundle struc-
ture G. Now we specialize to a finite symmetry group G, and thus a G-bundle G is fully
characterized by the holonomy around all noncontractible cycles of M. Such noncon-
tractible cycles are generators of π1(M) that we call 1-cycles, and the holonomy assigns a
group element g ∈ G to every generator of π1(M). To facilitate the usage of gluing for-
mula, we can use a defect network to represent the holonomy, and the G-bundle structure
is completely determined by which group elements (i.e., defects) we put on noncontractible
cycles of M, up to conjugation by elements in G.

According to the general recipe in Ref. [97], the category C(O) and the vector space
V(N ) should be equipped with a categorical G-action. This is precisely the data {ρg;
Ug(a, b; c), ηa(g,h)} in Sec. 4.1.2 that defines a categorical G action on C. Labels should be
acted by ρg or ρ−1

g when crossing a defect corresponding to the group element g (whether it
is ρg or ρ−1

g will be explained later). Moreover, a 1-cycle of M, thought of as a 1-morphism
in the language of higher category, should be assigned a functor acting on vector spaces,
while a 2-cycle of M, thought of as a 2-morphism in the language of higher category, should
be assigned a natural isomorphism acting on objects. The former precisely gives an extra
piece Ug(a, b; c) in the partition function, which will be refered to as a U -factor; the latter
gives an extra piece ηa(g,h) in the partition function, which will be refered to as an η-
factor. Because of Eq. (4.24), we do not need 3- or higher morphisms to connect different
compositions of 2-morphisms, hence introducing appropriate U -factors and η-factors is
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enough to determine such TQFT and calculate the partition function of it.
Finally, we collect the above results to write down the gluing formula for the TQFT,

which is the main tool for the calculation of the partition function of the TQFT

Z(M,G) =
∑
β

Z (Mcut,Gcut; βN , β∂N )

〈βN |βN 〉V(N ;β∂N )

. (4.40)

Here, M is an n-dimensional closed manifold with a G-bundle structure G, and we cut M
along N to get a new manifold Mcut with boundary and corner. {β∂N} is a set of simple
anyons we put on ∂N after the cut, while {βN} is a set of orthonormal basis states for
V(N ; β∂N ). Notice that we should sum up both kinds of labels, collectively denoted by β.

Figure 4.2: Illustration of the usage of gluing formula, where orange, green and blue faces
are attached to each other while the red line denotes the (common) boundary of the faces.

With the help of the language of higher category [97], this definition of TQFT can
be extended all the way to 0-dimensional points, giving rise to a fully-extended TQFT.
For example, Crane-Yetter model has already been established as a fully-extended TQFT
[95, 109, 110]. Although it is cumbersome to directly check that our construction satisfies
all the consistency conditions of a fully-extended TQFT, we believe the TQFT that we
are working with is indeed a fully-extended TQFT, given the infinity category presented
in Ref. [95], equipped with G action. For most of our exposition, it is enough to consider
2-extended TQFT. But being a fully-extended TQFT does allow us to chop the target
4-manifold M up in any way we like, without worrying about some small-dimensional
submanifold on the boundary of which no data is defined. In particular, we can chop M
up into D4 pieces, which is essentially the handle decomposition that we will review in the
next subsection.
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4.2.3 Handle decomposition

In this section, we review basic facts about handle decomposition that will be used in
this thesis. Some standard textbooks of handle decomposition and 4-manifold topology
are Refs. [111–113]. Handle decompositions of specific manifolds used in this thesis are
summarized in Appendix 4.E.

Handle decomposition is nothing but a canonical way of chopping an n-dimensional
manifold up into simple pieces of Dn, where every Dn piece is called a handle. Every
smooth manifold admits a handle decomposition [111]. A handle decomposition of an
n-manifold M is a decomposition of M into 0-handles, 1-handles, · · · , n-handles. The
union of all 0-handles, 1-handles, · · · , m-handles is called the m-handlebody of this handle
decomposition for m ⩽ n, temporarily denoted by M(m) here. A handle decomposition can
always be done such that lower-handles are first specified, and higher handles are attached
along their attaching regions to the boundary of the already-specified lower handlebodies by
embedding maps. Specifically, for an n-dimensional k-handle, it is topologically equivalent
to Dk × Dn−k and its attaching region is the part of its boundary that is topologically
equivalent to ∂(Dk) ×Dn−k ∼= Sk−1 ×Dn−k. The attaching region is attached to M(k−1)

via an embedding map 7:

φ : Sk−1 ×Dn−k → ∂M(k−1) (4.41)

A handle decomposition is specified by specifying all handles and the embedding maps
that attach all handles together. See Fig. 4.3 for an illustration of 1-handles and 2-handles
together with their attaching regions.

There is some formal analogy between handle decompositions and cell decompositions.
In fact, it is often useful to think of a handle decomposition as a “thickened” version of
a cell decomposition. For example, one can take a triangulation or cellulation of an n-
dimensional manifold M, and thicken the 0-cells into n-balls Dn. Next, one can thicken
the 1-cells to n-balls as well, and glue them to the boundary of 0-cells along two Dn−1

pieces of S0 × Dn−1 ⊂ ∂(Dn). The 2-cells can be thickened to n-balls, and glued to the
boundary of 0- and 1- cells along S1 ×Dn−2, and so on.

For a connected n-manifold M, we can choose to have only one 0-cell. A handle
decomposition of M with a unique 0-handle then determines a presentation of π1(M).

7When there are multiple k-handles, the first of them is attached to M(k−1) in this way, which results
a manifold M(k−1),1. Then one needs to attach the second k-handle to M(k−1),1 in a similar way. This
procedure continues until all k-handles are attached to result in M(k). The manifold obtained this way is
independent of the sequence of attachment.
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Namely, each 1-handle together with the 0-handle forms an S1 × Dn−1 and determines a
generator of π1(M), and the attaching region S1 ×Dn−2 of each 2-handle gives a relation
among the generators (as this S1 is always contractible). This is also what we expect
from cell decompositions. We will sometimes call the cycle formed this way from joining a
1-handle with the 0-handle the induced (1-)cycle of the 1-handle, as shown in Fig. 4.4.

Given a k-handle, in order to specify how it is attached to lower handles M(k−1), we just
need to specify the attaching region, which requires the following two pieces of information:

1. How Sk−1 × {pt} is embedded in ∂M(k−1), where {pt} ∈ Dn−k is any point in the
interior of Dn−k.

2. How to choose a trivialization in the tubular neighborhood of Sk−1 × {pt} in ∂M′

that is supposed to be identified with ∂(Dk)×Dn−k.

The second piece of information is called the framing of the k-handle. This information
is not directly present in cell decomposition. In particular, the framing of a 1-handle is
classified by π0 (O(1)) ∼= Z2, and is given by whether the induced cycle of the 1-handle is
orientable or not. With slight abuse, if this induced cycle is orientable (non-orientable),
we will say that the 1-handle is orientable (non-orientable). The framing of 2-handle is
classified by π1 (O(2)) ∼= Z, which is the self-intersection number of S1 × {pt} on the
boundary of the 0-handle (see Ref. [112] for more information regarding this).

Now let us specialize to 4-dimensional manifolds. In order to illustrate the handle
decomposition, we introduce Kirby diagrams. Suppose we have some 4-dimensional closed
connected manifold M. We assume that there is a unique 0-handle D4, whose boundary
S3 can be thought of as R3 ∪ {∞}. We then try to draw the attaching regions of the
remaining handles in R3. The attaching region of each 1-handle is two copies of D3, which
we draw as a pair of round balls. For 2-handles whose attaching regions are S1 ×D2, we
draw the image of S1 ×{pt} ⊂ S1 ×D2 on R3, and pay attention that in R3 circles can be
knotted and linked. It is known that 3-handles and 4-handles are uniquely defined once
we have determined how 1-handles and 2-handles are attached.

We must then deal with framings. Specifically, given whether the induced cycle of
some 1-handle is orientable or non-orientable, we need to connect points on the two balls
in different ways. Specifically, the two balls are glued together by the 1-handle with the
opposite (same) orientation if the cycle is orientable (non-orientable). In this thesis, for
an orientable 1-handle points related to each other by mirror reflection through the plane
perpendicularly bisecting the lines joining their centers are connected to each other, as in
Ref. [111, 112]. For a non-orientable 1-handle, we use the convention that parallel points,
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e.g., the bottom points or the top points of two balls, are connected to each other by the
1-handle, in contrast to the convention in Ref. [112]. These are illustrated in Fig. 4.4.
For 2-handles, we need to add the correct amount of topological twists to account for the
correct framing. One important way to determine the linking and framing of 2-handles
is through the intersection form and mod-2 intersection form of M [111], which can be
calculated relatively easily in algebraic topology.

Figure 4.3: Illustration of a blue 0-handle, a green 1-handle and a purple 2-handle together
with labels assigned to their attaching regions. The green shaded regions are the attaching
regions S0 ×D3 of the 1-handle, and the purple shaded regions are the attaching regions
S1 × D2 of the 2-handle. The red line displays a defect, which crosses the 1-handle with
the section being D3. We associate an anyon a to the 2-handle. We also associate a vector
|a1, . . . ; b1, . . . 〉 and a dual vector 〈a1, . . . ; b1, . . . | to the attaching regions living on the 0-
handle side and 1-handle side, respectively (these two sides are identified by the embedding
map that attaches the 1-handle to the 0-handle).

4.2.4 Recipe for calculating the partition function

Having laid down the foundation, in this subsection we spell out the recipe for calculating
the partition function on any (3 + 1)-d manifold M equipped with a G-bundle G, given
the data of a UMTC C and the data of symmetry action of some finite group G on C. This
recipe is summarized by Eq. (4.44). Note that G is fully characterized by the holonomy
around all noncontractible cycles of M, and we will use a defect network to represent
the holonomy. In Appendix 4.C, without resorting to its origin or its relation to gluing
formula, we directly check that the partition function constructed here indeed satisfies
various desired properties, including the independence on the handle decomposition, gauge
invariance, cobordism invariance, etc., by directly manipulating the formula in Eq. (4.44).
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Figure 4.4: Left: Illustration of a greeen orientable 1-handle and a purple non-orientable
1-handle, attached to the blue 0-handle. The manifold is supposed to be 4-dimensional but
we draw a 2-dimensional plane for illustration. The dashed green circle and the the dashed
purple circle are the induced cycles of the two 1-handles. Right: the Kirby diagrams for
the green and purple 1-handles (the two figures in the middle), together with the anyon
diagrams associated with these Kirby diagrams (the two figures in dashed ellipses). Pay
attention how points on the two D3 components of attaching regions S0×D3 are connected
to each other via the 1-handle.
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The basic formula for the calculation is the gluing formula Eq. (4.40). For a specific
handle decomposition of the manifold M, we have [95]

Z(M,G) =
∑
β∈L

4∏
j=0

∏
h∈j-handle

Z(h; β∂h)

〈β∂̃h|β∂̃h〉V(∂̃h;β∂(∂̃h))
(4.42)

Here β ∈ L denotes all labels on the attaching regions of all j-handles, Z(h; β∂h) is the parti-
tion function of some j-handle h with label β∂h on the boundary ∂h, and 〈β∂̃h|β∂̃h〉V(∂̃h;β∂(∂̃h))
is the squared norm of the state |β∂̃h〉 in the vector space V

(
∂̃h; β∂(∂̃h)

)
associated with

the 3D manifold of the attaching region ∂̃h of h. From the formula we need to calculate
various norms and the partition function on various handles given a prescribed label. We
repeat the calculation of Refs. [93–95] in Appendix 4.A, which concerns manifolds without
a general G-bundle structure. A major innovation we introduce in this thesis is how to
deal with a G-bundle structure, and we discuss it in detail for finite group G below.

The recipe for calculating the partion function Z(M,G) of the manifold M with a
G-bundle structure G on M, with G a finite group, is summarized here.

1. Identify a handle decomposition of the manifold M. On each 1-handle put appro-
priate defects according to the G-bundle structure G, as in Fig. 4.3.

2. The S1 boundary of each 2-handle is separated by the defects into segments. As-
sociate an anyon a to an arbitrary segment on the S1 boundary of each 2-handle,
and the anyons on the other segments are related to a by the G-actions given by the
defects. Write down the η-factor coming from the natural isomorphism for a that
connects the functor of successive G-actions and the identity functor. (See Remark
g below for more details.)

3. Associate a dual vector 〈a1, . . . ; b1, . . . |µ...Kq(g) 8 and a vector |ga1, . . . ;g b1, . . . 〉µ̃... to
the two D3 planes of the attaching region S0 ×D3 of every 1-handle as in Fig. 4.5,
where a1, . . . and b1, . . . are labels of anyons running out of and into the lower D3

plane of the attaching region of the 1-handle, respectively. Write down the U -factor
from9

〈a1, . . . ; b1, . . . |µ...Kq(g)ρ−1
g |ga1, . . . ;g b1, . . . 〉µ̃... = U−1

g (ga1, . . . ;
g b1, . . . )µ̃...,µ... (4.43)

8See Remark e in the following paragraphs for some further explanation of the factor Kq(g).
9The assignment of ρ−1

g instead of e.g., ρg is just to match the convention of Ref. [92].
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4. Evaluate the anyon diagram from the Kirby diagram 〈K〉 of M, given the prescribed
anyon labels associated to the S1 lines corresponding to 2-handles and vectors asso-
ciated to the D3 balls corresponding to 1-handles as in Fig. 4.3.

5. Assemble the result as follows:

Z (M,G) = D−χ+2(N4−N3) ×
∑
labels

( ∏
2 handle i

dai

∏
1 handle x

( ∏
2 handle j across x

daj

)1/2

×
(∏

i

(η-factors)i
)
×
(∏

x

(U -factors)x
)
× 〈K〉

) (4.44)

Here Nk is the number of k-handles in this handle decomposition, and χ ≡ N0 −
N1 +N2 −N3 +N4 is the Euler number of M.

There are a few extra points that may clarify the meanings or ease the computation.
We summarize them below:

a. Without loss of generality, we assume that M is connected. Then the numbers of
0- and 4-handles in the handle decomposition of M can be chosen to be 1. If M is
disconnected, then the partition function is the product of the partition functions on
each of its disconnected components.

b. Since G is finite, the G-bundle is fully characterized by the holonomy around non-
contractible cycles. Recall that noncontractible cycles are the induced cycles of some
1-handles. Therefore, we interpret a holonomy labeled by group element g around
such a cycle as a defect we put across the associated 1-handle along its D3 plane,
such that each anyon gets acted upon by g when crossing this defect. Without loss
of generality, we assume that no defect intersects the 0-handle, which can always be
achieved.

c. If G contains unitary symmetries only, M is always oriented. On the other hand, in
the presence of anti-unitary symmetries, M can be an unorientable manifold with
a nontrivial first Stiefel-Whitney class wTM1 . Moreover, there must be a g-defect
on each non-orientable cycle, where g is an anti-unitary symmetry. On the anyon
diagram, anyons should flip the direction of the flow after crossing such g-defect, as
illustrated in Figs. 4.4 (pay special attention to the right two graphs of the lower
figure).
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Figure 4.5: Illustration of the 1-handle. The 1-handle has the topology of a D4 but we draw
it as a D3 for illustration. The shaded region represents a g-defect for unitary g, which
cuts through the 1-handle along its D3 plane (drawn as a D2 plane here). The lower plane
displays a dual vector 〈a1, a2, a3; b1, b2|(x,y,µ,ν,ρ) that lives in the vector space associated
to D3, i.e., V (D3; (a1, a2, a3; b1, b2)) ' V a1,a2,a3

b1,b2
, while the upper plane displays a vector

| ga1, ga2,
ga3;

gb1,
gb2〉(gx,gy,µ̃,ν̃,ρ̃). The evaluation of the diagram is given by Eq. (4.114) if

no defect is present. In the presence of the g-defect we just need to add the U -factor as in
Eq. (4.43). See Remarks d,e for further treatment when g is anti-unitary.
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d. It is of paramount importance to keep track of the framing of 1-handles and 2-handles
when drawing and evaluating the Kirby diagram. Let us emphasize that we use the
convention according to which, for an orientable 1-handle, points on each pair of D3

balls related to each other by a reflection with respect to the plane perpendicularly
bisecting the centers of these D3 balls are connected to each other by the 1-handle,
while, for a non-orientable 1-handle, points on the pair of D3 balls are connected to
each other by the 1-handle, if these points are related to each other by a translation
that relates the two D3 balls. This convention is illustrated in Fig. 4.4. For 2-
handles, we should pay special attention to whether we should add extra topological
twists/kinks to the Kirby diagram as in Eq. (4.11), accounting for the correct self-
intersection number of the S1 loop associated to the 2-handle.

e. We further comment on assigning vectors and dual vectors to 1-handles and 0-
handles. Note that when we attach a 1-handle and a 0-handle, we should assign
a vector and a dual vector to the 1-handle and the 0-handle respectively as in
Fig. 4.3. In a Kirby diagram, we can put the two D3 balls corresponding to a
single 1-handle on the upper and lower parts of the diagram, and associate the dual
vector 〈ga1, . . . ;g b1, . . . | and the vector Kq(g)|a1, . . . ; b1, . . . 〉 to the upper and lower
ball, respectively. As illustrated in the lower figure of Fig. 4.4, according to the con-
vention in Remark d, if g is anti-unitary we draw Kq(g)|a1, . . . ; b1, . . . 〉 in the same
way as a dual vector on the anyon diagram. According to this convention, on the
1-handle we assign a dual vector 〈a1, . . . ; b1, . . . |Kq(g) and a vector |ga1, . . . ;g b1, . . . 〉,
and therefore the U -factor is given by Eq. (4.43), as illustrated in Fig. 4.5.

f. In this convention, anyons running “upward” in the 1-handles are acted upon by ρg
while anyons running “downward” in the 1-handles are acted upon by ρ−1

g , when we
put a g-defect across the 1-handle, as in Fig. 4.6.

g. Here we explain how to get η-factors in detail. In general, the S1 line of a 2-handle is
separated into multiple segments by the defects. Starting from an arbitrary segment
on this S1 line with anyon label a, we move along the S1 line on the Kirby diagram
and use the above prescription to get a functor describing the successive symmetry
actions, which takes the form ρs1g1

◦ ρs2g2
◦ · · · , where g1,2,··· denotes the defect and

s1,2,··· = 1 (s1,2,··· = −1) if the anyon crosses this defect in the “upward” (“down-
ward”) direction. Note that this S1 is contractible, so consistency requires that the
combination of all these defects is a trivial defect, i.e., gs11 gs22 · · · = 1. The η-factor
associated with this 2-handle comes from the natural isomorphism that connects
ρs1g1

◦ ρs2g2
◦ · · · and the identity functor. The explicit expression of the η-factor is not

unique, and different expressions can be converted into each other using Eq. (4.24).
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Figure 4.6: Suppose a g-defect is on the green 1-handle. Following their arrows, anyons in
the red and yellow (blue and purple) lines enter the upper (lower) D3 ball and exit from
the lower (upper) D3 ball, and they are said to move “downward” (“upward”) and are
acted by ρ−1

g (ρg).

In Appendix 4.B, we present such an expression explicitly. In the following, we
demonstrate this analysis via concrete examples.
First consider the situation where C is a Z2 generator and some anyon a associated
to a 2-handle crosses a C-defect twice. Then there is a natural isomorphism η(C,C)
connecting ρC ◦ ρC to the identity functor, which gives the desired η-factor to be
ηa(C,C). With slight abuse of notation, we will say that ρC ◦ ρC acting on a gives
a phase ηa(C,C). As another example, consider the situation where C1, C2 are any
two generators of a unitary symmetry such that C1C2 = C2C1, and a is acted upon
by ρC2 ◦ ρC1 ◦ ρ−1

C2
◦ ρ−1

C1
. Then connecting ρC2 ◦ ρC1 to ρC2C1 gives a phase ηa(C2, C1),

while connecting ρC2C1 to ρC1 ◦ ρC2 gives another phase 1/ηa(C1, C2). By definition,
the composition of ρC1 ◦ ρC2 with ρ−1

C2
◦ ρ−1

C1
is the identity functor. Therefore, the

desired η-factor is ηa(C2,C1)
ηa(C1,C2)

.
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4.3 Examples: finite group symmetry

After spelling out the recipe for calculation, in this section we go to specific examples of
finite group symmetries that concern us the most, including the case of no symmetry (i.e.,
Crane-Yetter model), ZT2 , Z2×Z2 and ZT2 ×ZT2 . We will calculate the anomaly indicators of
these symmetries, which are the partition functions defined in Sec. 4.2 evaluated on appro-
priate manifolds with certain bundle structures (see Appendix 4.D for how to identify the
manifolds and bundle structures that are relevant to the anomaly indicators). Especially,
the calculation of the anomaly indicators of the mutual anomaly of Z2 × Z2 and ZT2 × ZT2
is new, and their results are given by Eq. (4.53) and Eq. (4.55), respectively.

Manifold M Orientability 0-handles 1-handles 2-handles 3-handles 4-handles
CP2 Yes 1 0 1 0 1
RP4 No 1 1 1 1 1

RP3 × S1 Yes 1 2 2 2 1
RP2 × RP2 No 1 2 3 2 1

Table 4.1: Basic Information about handle decomposition of various manifolds used in
Section 4.3. See Appendix 4.E for more information about their handle decomposition.

4.3.1 No symmetry

Even in the absence of any symmetry, the partition function is not completely trivial and
it reduces to the original Crane-Yetter model [91, 102]. Since the partition function is a
cobordism invariant, to evaluate the partition function on any oriented 4D manifold, we
just need to evaluate it on the generating manifold of ΩSO

4 (⋆) ∼= Z, which is CP2.
The minimum handle decomposition of CP2 contains 1 0-handle, 1 2-handle and 1 4-

handle, as listed in Table 4.1. No symmetry defect is present, so there is no appearance of
η-factor or U -factor. Given label a to the anyon associated with the 2-handle, the Kirby
diagram is evaluated as ⟨

a

⟩
= daθa (4.45)
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The topological twist reflects the +1 intersection number of CP2. Assembling all factors
as in Eq. (4.44), we have

Z
(
CP2

)
=

1

D

∑
a

d2aθa (4.46)

It is well-known that the right hand side of this expression is related to the chiral central
charge c mod 8, i.e.,

e2πic/8 =
1

D

∑
a

d2aθa (4.47)

Physically, the partition function Z(CP2) and the chiral central charge gives the ther-
mal Hall conductance of the (2 + 1)-d topological order, which is very well-known in the
literature [84, 114].

An important fact in 4-dimensional topology is that any oriented manifold M is cobor-
dant with #

(
CP2

)σ(M), i.e., the connected sum of σ(M) copies of CP2, where σ(M) is
the intersection number of M [113]. Then the partition function on any oriented manifold
M is given by

ZCY (M) = e(2πic/8)·σ(M), (4.48)

which is indeed the correct form of the Crane-Yetter model [101, 102, 115].

4.3.2 ZT
2

For the group ZT2 , the bordism group that we should consider is ΩO
4 (⋆)

∼= Z2 ⊕ Z2, and
the two Z2 factors are generated by CP2 and RP4, respectively. I0 ≡ Z

(
CP2

)
has been

calculated in Section 4.3.1 and given by Eq. (4.46), which is referred to as the “beyond-
cohomology” anomaly indicator for ZT2 . In fact, in the presence of anti-unitary symmetry,
there is always this “beyond-cohomology” anomaly indicator I0 = Z

(
CP2

)
. Below we

present the calculation for the partition function on RP4, which is referred to as the “in-
cohomology” anomaly indicator for ZT2 . These anomaly indicators are first conjectured in
Ref. [116] and derived in Ref. [94]. We will see that this is the simplest example involving
1-handle in the handle decomposition of the manifold.

The minimal handle decomposition of RP4 contains 1 0-handle, 1 1-handle, 1 2-handle,
1 3-handle and 1 4-handle, as listed in Table 4.1. Since RP4 is non-orientable, we should
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Figure 4.7: The Kirby diagram of RP4. The two blue balls illustrate the attaching region of
the 1-handle and the red lines illustrate the attaching region of the 2-handle. The 1-handle
is nonorientable.

consider the effect of the “ZT2 -defect”, or more commonly referred to as a crosscap, across
the 1-handle. Namely, in the Kirby diagram shown in Fig. 4.7, the 1-handle (represented
by the pair of blue balls) is crossed by such a T -defect, with T the generator of ZT2 .

Now we put anyon a and T a on the S1 line of the 2-handle. Following remark g
in Sec. 4.2.4, the η-factor from the 2-handle is given by action ρT ◦ ρT on a, which is
ηa (T , T ). On the 1-handle we associate a dual vector 〈T a; a| and a vector |a;T a〉, and
they are nonzero only when T a = a. Pay attention that after touching the crosscap, the
direction of the flow of one of the anyons should change. Specifically, comparing Fig. 4.7
and the diagram in Eq. (4.49), the curvy red line changes the direction of the flow. Also
note that when T a = a, ηa (T , T ) is invariant under the gauge transformation Eq. (4.26).
According to Eq. (4.27), the U -factor from the 1-handle is simply 1. Finally, the Kirby
diagram in Fig. 4.7 can be translated to the following anyon diagram and evaluated as

⟨
b

b

b

b

T a

a

T a

a

⟩
= daθa (4.49)
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Again, there is a factor of θa coming from the +1 framing of the 2-handle.
Assembling all factors, we have

Z
(
RP4; T

)
=

1

D

∑
a

T a=a

daθa × ηa(T , T ) (4.50)

This is preciesly the in-cohomology anomaly indicator for ZT2 symmetry [94, 116].
In summary, the beyond-cohomology anomaly indicator for ZT2 symmetry is I0 =

Z(CP2), given by Eq. (4.46), while the in-cohomology anomaly indicator for ZT2 symmetry
is I1 = Z

(
RP4; T

)
, given by Eq. (4.50). 10 As such, the anomaly/partition function O

can be written as

O = (I0)
(wTM

2 )
2

· (I1)
t4 (4.51)

where t is the generator of H1(Z2,Z2), and
(
wTM2

)2 is the generator of the beyond-
cohomology piece of anomaly.

4.3.3 Z2 × Z2

Let us go to the simplest non-trivial group involving unitary symmetry only: Z2×Z2. The
anomalies of Z2 ×Z2 in (2+ 1)-dimension are classified by Z2 ⊕Z2, and the representative
manifold is RP3 × S1 with two different Z2 × Z2-bundles, one with a C1 defect across the
noncontractible cycle of RP3 and a C2 defect across S1, and the other with a C2 defect
across the noncontractible cycle of RP3 and a C1 defect across S1, where C1 and C2 are
two Z2 generators of Z2 × Z2.

Without loss of generality, let us first put a C1 defect across the noncontractible cycle of
RP3 and a C2 defect across S1. The minimum handle decomposition of RP3 × S1 contains
1 0-handle, 2 1-handle, 2 2-handle, 2 3-handle and 1 4-handle, as listed in Table 4.1.
The Kirby diagram and the associated anyon diagram are drawn in Figs. 4.8 and 4.9,
respectively.

Now we put anyon a and b on a red and orange segment of the 2-handles, respectively,
and anyons on other segments can be obtained by symmetry actions on a and b, as shown
in Fig. 4.9. From the two 1-handles we have two constraints C1a = a and a×b× C1b→ C2a.
The second constraint means that C2a should be in the fusion channel of a, b and C1b.

10Notice that I0 and I1 are numbers that will serve as coefficients in front of a certain basis in the
expression of the anomaly.
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Figure 4.8: The Kirby diagram of RP3 × S1. The blue balls and dark blue balls illustrate
the two 1-handles, and the red lines and orange lines illustrate the two 2-handles. Both
1-handles are orientable.

The η-factor from anyon a is given by action ρ−1
C1

◦ρC2 ◦ρC1 ◦ρ−1
C2

on a, which is ηa(C2,C1)
ηa(C1,C2)

.
The η-factor from anyon b is given by action ρ−1

C1
◦ ρ−1

C1
on b, which is 1

ηb(C1,C1)
. The U -

factor from the blue 1-handle is U−1
C1

(a, b; x)µµ̃U
−1
C1

(x,C1 b;C2 a)νν̃ , while the U -factor from
the darkblue 1-handle is simply 1 according to Eq. (4.27). Finally, we need to evaluate the
anyon diagram Fig. 4.8, which is

dadb
θx
θa

(
Rb,C1b
u

)
ρσ

(
F a,b,C1b

C2a

)∗
(x,µ̃,ν̃)(u,σ,α)

(
F a,C1b,b

C2a

)
(C1x,µ,ν)(u,ρ,α)

(4.52)

Assembling all factors as in Eq. (4.44), we have

Z
(
RP3 × S1;C1, C2

)
=

1

D2

∑
a,b,x,u

µνµ̃ν̃ρσα
C1a=a

a×b×C1 b→C2a

db
θx

θa

(
Rb,C1 b

u

)
ρσ

(
Fa,b,C1 b

C2a

)∗

(x,µ̃,ν̃)(u,σ,α)

(
Fa,C1 b,b

C2a

)
(C1x,µ,ν)(u,ρ,α)

× U−1
C1

(a, b;x)µ̃µU
−1
C1

(x,C1 b;C2 a)ν̃ν ×
1

ηb(C1, C1)

ηa(C2, C1)

ηa(C1, C2)

(4.53)

It is straightforward to check that this expression is invariant under the vertex basis trans-
formation Eqs. (4.10),(4.18) and the symmetry action gauge transformation Eq. (4.26).
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b

b

b

b

b

b

b

b

b

b

b

b

a

C1a

b

C1b

C2a

C1C2a

C1b

b

a

C1a

C2a

C1C2a

C1x

x

µ

µ̃

ν

ν̃

Figure 4.9: Anyon diagram from the Kirby diagram of RP3×S1 in Fig. 4.8. Pay attention to
the extra topological twist of the orange line from the correct framing of the corresponding
2-handle.
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The general proof of the cobordism invariance and invertibility of this partition function
(see Appendix 4.C) indicates that this expression is ±1.

Therefore, the two anomaly indicators of Z2×Z2 symmetry are I1 = Z
(
RP3 × S1;C1, C2

)
and I2 = Z

(
RP3 × S1;C2, C1

)
, given by Eq. (4.53), and the anomaly O ∈ H4(Z2 ×

Z2,U(1)) can be written as

O = (I1)
c13c2 · (I2)

c23c1 , (4.54)

where c1 and c2 are two generators of H1(Z2×Z2,Z2) corresponding to C1 and C2, respec-
tively.

4.3.4 ZT
2 × ZT

2

Finally, let us consider the group ZT2 ×ZT2 . The anomalies of ZT2 ×ZT2 in (2+1)-dimension
are classified by (Z2)

4. Suppose the two anti-unitary generators of ZT2 ×ZT2 are T1 and T2.
The representative manifold for the four Z2 pieces are CP2, RP4 with a T1 defect across
the crosscap, RP4 with a T2 defect across the crosscap, and RP2 × RP2 with a T1 defect
across the crosscap of the first RP2 piece and a T2 defect across the crosscap of the second
RP2 piece. Given the result Eq. (4.50), we just need to focus on the last manifold.

Figure 4.10: The Kirby diagram of RP2×RP2. The blue balls and dark blue balls illustrate
two 1-handles and the red, orange and sand-dune lines illustrate three 2-handles. Both 1-
handles are nonorientable.

The minimum handle decomposition of RP2 × RP2 contains 1 0-handle, 2 1-handle, 3
2-handle, 2 3-handle and 1 4-handle, as listed in Table 4.1. The Kirby diagram and the
associated anyon diagram are drawn in Figs. 4.10 and 4.11, respectively.

Now we put anyon a, b and c on a red, orange and sand-dune segment of the 2-handles,
respectively, and anyons on other segments can be obtained by symmetry actions on a, b and
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c, as shown in Fig. 4.11. From the two 1-handles we have two constraints T1a× T2c×c→ a
and T1c× c× b→ T2b.

The η-factor from anyon a is given by action ρT1 ◦ ρT1 on a, which is ηa(T1, T1). The
η-factor from anyon b is given by action ρT2 ◦ ρT2 on b, which is ηb(T1, T1). The η-factor
from anyon c is given by action ρT2 ◦ ρT1 ◦ ρ−1

T2 ◦ ρ−1
T1 on c, which is ηc(T2,T1)

ηc(T1,T2) . The U -factor
from the blue 1-handle is U−1

T1 (
T1a,T2 c; x)µxµ̃xU

−1
T1 (x, c; a)νxν̃x , and the U -factor from the

darkblue 1-handle is U−1
T2 (

T1c, y;T2 b)∗µyµ̃yU
−1
T2 (c, b; y)

∗
νy ν̃y . Finally, we need to evaluate the

anyon diagram Fig. 4.10.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

a

T1a

T1a

a

b

T2b
T2b

b

T1T2c

T1c c

T1c

T2c

T2c

T1T2c

c

T2y

ν̃y

µ̃y

y

νy

µy

T1x
µ̃x

ν̃x

x
µx

νx

Figure 4.11: Anyon diagram from the Kirby diagram of RP2 × RP2 in Fig. 4.10.

105



Assembling all factors, we have

Z
(
RP2 × RP2; T1, T2

)
=

1

D3

∑
a,b,c,x,y,u,v

µxνxµyνy µ̃xν̃xµ̃y ν̃yρσταβγδ
T1a×T2c×c→a
T1c×c×b→T2 b

dcdv
θv

θaθb

(
R

T1c,T2c
u

)
ρσ

×
(
Fa,T1T2c,T2y
v

)∗

(T1x,µ̃x,α)(b,µ̃y,τ)

(
F

T2c,T1c,y
T2y

)∗

(u,ρ,β)(T2 b,µy,ν̃y)

×
(
F

T1x,T1c,T2c
x

)∗

(T1a,ṽx,µx)(u,σ,γ)

(
F

T1x,u,y
v

)∗

(x,γ,δ)(T2y,β,α)

(
Fx,c,b
v

)∗

(a,νx,τ)(y,νy,δ)

× U−1
T1

(T1a,T2 c;x)µxµ̃xU
−1
T1

(x, c; a)νxν̃xU
−1
T2

(T1c, y;T2 b)∗µy µ̃y
U−1
T2

(c, b; y)∗νy ν̃y × ηa(T1, T1)ηb(T2, T2)
ηc(T2, T1)
ηc(T1, T2)

(4.55)

It is straightforward to check that this expression is invariant under the vertex basis trans-
formation Eqs. (4.10),(4.18) and the symmetry action gauge transformation Eq. (4.26).
Again, the general proof of the cobordism invariance and invertibility of this partition
function (see Appendix 4.C) indicates this expression is ±1.

Therefore, the four anomaly indicators of ZT2 × ZT2 symmetry are I0 = Z
(
CP2

)
,

given by Eq. (4.46), I1 = Z
(
RP4; T1

)
, I2 = Z

(
RP4; T2

)
, given by Eq. (4.50), and

I3 = Z
(
RP2 × RP2; T1, T2

)
, given by Eq. (4.50). When extracting the cohomology ele-

ment from the anomaly indicators, we should be careful that the manifold RP2 ×RP2 has
nontrivial

(
wTM2

)2 as well. As a result, the anomaly/partition function O can be written
as

O = (I0)
(wTM

2 )
2

· (I1)
t14 · (I2)

t24 · (I0I3)
t21t

2
2 , (4.56)

where t1 and t2 are two generators of H1(ZT2 ×ZT2 ,Z2) corresponding to T1 and T2, respec-
tively, and

(
wTM2

)2 is the generator of the beyond-cohomology piece of anomaly.

All-fermion Z2 topological order

In order to demonstrate the power of the new anomaly indicators, in this subsection we
systematically study a concrete example, the all-fermion Z2 topological order, which is
a cousin of the standard Z2 topological order but all its nontrivial anyons are fermions
[54, 84, 117, 118]. We will classify all ZT2 × ZT2 symmetry fractionalization classes for this
topological order, and calculate the anomaly for each class. We will see that the anoma-
lies of some symmetry fractionalization classes can be obtained using (generalizations of)
methods developed in the previous literature, but we also point out examples of symme-
try fractionalization classes whose anomalies can only be calculated using the anomaly
indicators derived here, as far as we can tell.
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The data of the underlying UMTC of the all-fermion Z2 topological order is collected
in Ref. [84]. In particular, it has four simple anyons, 1, e, m, ψ = e×m. We can label an
anyon a by two Z2 numbers a = (ae, am) as eae ×mam . In a choice of gauge, the F -symbols
are all trivial and the nontrivial R-symbols are given by

Ree = Rmm = Rψψ = Rψe = Rmψ = Rem = (−1) (4.57)

Here we omit the subscript of the R-symbol since the outcome of the fusion rules is unique.
A ZT2 × ZT2 symmetry fractionalization class is specified by the data {ρ;U, η}, which will
be classified below.

First we consider the situation where the ZT2 ×ZT2 symmetry does not permute anyons.
In this case, to satisfy Eq. (4.19) all U -symbols can be set to 1. Different symmetry
fractionalization classes are then classified by

H2(Z2 × Z2,Z2 × Z2) = Z6
2, (4.58)

Denoting a representative cocycle of an element in H2(Z2 × Z2,Z2 × Z2) by t(g,h) with
g,h ∈ ZT2 × ZT2 , different cohomology elements are distinguished by t(T1, T1), t(T2, T2),
t(T1T2, T1T2). Here we use the gauge convention that t(g,1) = t(1,h) = 1, in order to be
compatible with the gauge choice Eq. (4.27). Relatedly, we have

ηa(T1, T1) =Ma,t(T1,T1), ηa(T2, T2) =Ma,t(T2,T2), ηa(T1T2, T1T2) =Ma,t(T1T2,T1T2)(4.59)

These three η-phases characterize whether anyon a is a Kramers doublet under T1, a
Kramers doublet under T2 and charge 1/2 under T1T2, respectively. In total, there are 36
inequivalent symmetry fractionalization classes in this situation (Of the 64 possible classes
associated with H2(Z2 × Z2,Z2 × Z2) = (Z2)

6, relabeling e and m gives 36 inequivalent
classes).

Substituting the UMTC data to the previously derived expressions of I0,1,2,3, the
anomaly indicators become

I0 =
1

2

∑
a

θa

I1 =
1

2

∑
a

θaηa(T1, T1)

I2 =
1

2

∑
a

θaηa(T2, T2)

I3 =
1

8

∑
abc

θa×bθc
θaθb

ηa(T1, T1)ηb(T2, T2)
ηc(T2, T1)

ηc(T1, T2)
(4.60)
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In particular, I3 simplifies dramatically in this context.
Following Ref. [119], we make Table. 4.2 to summarize the anomalies for all of the 36 in-

equivalent symmetry fractionalization classes. In Table. 4.2 we use the labeling convention
of Ref. [54]: If an excitation carries half charge under the unitary Z2 symmetry generated
by T1T2, it is followed by a C in the labeling. If it carries Kramers degeneracy under T1 or
T2, then it is followed by a T1 or T2 in the labeling.11

From Table 4.2, we see that, when the symmetry fractionalization class is trivial, i.e.,
ηa(g,h) = 1 for all anyon a and all group elements g,h, I0 = I1 = I2 = I3 = −1, signaling
nontrivial anomaly. This is to be contrast to the case of the Z2 toric code with the trivial
symmetry fractionalization class, where I0 = I1 = I2 = I3 = 1 and no anomaly is present
[119].

We mention that this result can also be achieved by considering the projection p :
ZT2 × ZT2 → ZT02 , where ZT02 is thought of as an anti-unitary symmetry on C that does not
permute anyons as well. The anomaly indicators of ZT02 are already known in previous
literature [94, 116] and reproduced in Eqs. (4.46) and (4.50). Notice that the trivial
symmetry fractionalization class of ZT2 ×ZT2 denoted by efmf here is the “pullback” of the
trivial symmetry fractionalization class of ZT02 , denoted by efmf as well in the literature.
The anomaly of efmf for ZT2 × ZT2 is the pullback of the anomaly of efmf for ZT02 .
From Eqs (4.46) and (4.50), the latter anomaly is (wTM2 )2 + t4 where t is the generator
of H1(ZT02 ,Z2), whose pullback to ZT2 × ZT2 is (wTM2 )2 + t41 + t42. Comparing this result
with Eq. (4.56), we get the first line of Table 4.2. Based on the anomaly of this symmetry
fractionalization class, the rest of the Table 4.2 can be achieved from relative anomaly as
in Ref. [119].

Next consider the situation where anyons are permuted under some elements of ZT2 ×ZT2
symmetry. There are two possibilities:

(a) T1 and T2 both exchange two of three nontrivial anyons.

(b) T1 and T1T2 both exchange two of three nontrivial anyons.

Without loss of generality, we will take the anyons being exchanged as e and m.
In either case, if some (unitary or anti-unitary) element g ∈ ZT2 × ZT2 permutes e and

m, to satisfy Eq. (4.19), we can demand that ρg action on |a, b; c〉 be such that

Ug(a, b; c) = (−1)aebm , (4.61)
11I3 in Table II of Ref. [119] is in fact our I1I2I3.
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Label t(T1T2, T1T2), t(T1, T1), t(T2, T2) (I1, I2, I0I3)

efmf (1, 1, 1) (−1,−1, 1)
efmfT2 (1, 1,m) (−1, 1,−1)
efT2mfT2 (1, 1, ψ) (−1, 1,−1)
efT1mf (1,m, 1) (1,−1,−1)
efT1mfT2 (1,m, e) (1, 1, 1)
efT1T2mf (1,m,m) (1, 1, 1)
efT1T2mfT2 (1,m, ψ) (1, 1, 1)
efT1mfT1 (1, ψ, 1) (1,−1,−1)
efT1T2mfT1 (1, ψ,m) (1, 1, 1)
efT1T2mfT1T2 (1, ψ, ψ) (1, 1, 1)

efmfC (e, 1, 1) (−1,−1,−1)
efmfCT2 (e, 1, e) (−1, 1, 1)
efT2mfC (e, 1,m) (−1, 1,−1)
efT2mfCT2 (e, 1, ψ) (−1, 1,−1)
efmfCT1 (e, e, 1) (1,−1, 1)
efmfCT1T2 (e, e, e) (1, 1,−1)
efT2mfCT1 (e, e,m) (1, 1, 1)
efT2mfCT1T2 (e, e, ψ) (1, 1, 1)
efT1mfC (e,m, 1) (1,−1,−1)
efT1mfCT2 (e,m, e) (1, 1, 1)
efT1T2mfC (e,m,m) (1, 1,−1)
efT1T2mfCT2 (e,m, ψ) (1, 1,−1)
efT1mfCT1 (e, ψ, 1) (1,−1,−1)
efT1mfCT1T2 (e, ψ, e) (1, 1, 1)
efT1T2mfCT1 (e, ψ,m) (1, 1,−1)
efT1T2mfCT1T2 (e, ψ, ψ) (1, 1,−1)

efCmfC (ψ, 1, 1) (−1,−1,−1)
efCT2mfC (ψ, 1,m) (−1, 1,−1)
efCT2mfCT2 (ψ, 1, ψ) (−1, 1, 1)
efCmfCT1 (ψ, e, 1) (1,−1,−1)
efCmfCT1T2 (ψ, e, e) (1, 1,−1)
efCT2mfCT1 (ψ, e,m) (1, 1,−1)
efCT2mfCT1T2 (ψ, e, ψ) (1, 1, 1)
efCT1mfCT1 (ψ, ψ, 1) (1,−1, 1)
efCT1T2mfCT1 (ψ, ψ,m) (1, 1, 1)
efCT1T2mfCT1T2 (ψ, ψ, ψ) (1, 1,−1)

Table 4.2: Anomalies for all-fermion Z2 topological order with ZT2 × ZT2 symmetry, where
symmetries do not permute anyons. efmf refers to the trivial symmetry fractionalization
class. All classes have I0 = −1 and hence the beyond-cohomology anomaly.
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Label t(T1T2, T1T2), t(T1, T1), t(T2, T2) (I1, I2, I0I3)

(efmf)T1,T2ψfT1T2 (1, 1, 1) (1, 1, 1)
(efCmfC)T1,T2ψfT1T2 (ψ, 1, 1) (1, 1,−1)

Table 4.3: Anomalies for all-fermion Z2 topological order with ZT2 ×ZT2 symmetry, where T1

and T2 permute anyons, which is the reason for the subscripts for e and m. The meanings
of the other symbols are the same as in Table 4.2. All classes have I0 = −1 and hence the
beyond-cohomology anomaly.

Label t(T1T2, T1T2), t(T1, T1), t(T2, T2) (I1, I2, I0I3)

(efmf)T1,T1T2ψfT1C (1, 1, 1) (1,−1,−1)
(efT2mfT2)T1,T1T2ψfT1C (1, 1, ψ) (1, 1, 1)

Table 4.4: Anomalies for all-fermion Z2 topological order with ZT2 × ZT2 symmetry, where
T1 and T1T2 permute anyons, which is the reason for the subscripts for e and m. The
meanings of the other symbols are the same as in Table 4.2. All classes have I0 = −1 and
hence the beyond-cohomology anomaly.

with (ae, am), (be, bm) the Z2 labels of a, b. For any element g that does not permute anyons,
we can take Ug(a, b; c) = 1. To satisfy Eqs. (4.23) and (4.24), a specific valid choice of the
η-symbols is

η
(1)
ψ (g,g) = −1 (4.62)

where g is an element that permutes anyons, while all other η-symbols (such as η(1)e (g,g)

and η
(1)
ψ (g,g′) with g′ 6= g) are 1. To get all possible valid choices of the η-symbols, note

that H2
ρ(Z2 ×Z2,Z2 ×Z2) ∼= Z2 for both case (a) and case (b), which means that in either

case there is one more symmetry fractionalization class. Denoting the nontrivial element
in H2

ρ(Z2 ×Z2,Z2 ×Z2) ∼= Z2 by t(g,h) with g,h ∈ ZT2 ×ZT2 , the other valid choice of the
η-symbols is related to the one above via Eq. (4.28), i.e., η(2)a (g,h) = η

(1)
a (g,h)Ma,t(g,h).

Under the gauge choice t(1,g) = t(h,1) = 1, in both cases (a) and (b) t(g,h) is fully
characterized by t(g,g) where g is the nontrivial group element that does not permute
anyons. Now we discuss the two cases separately in detail.

(a) When T1 and T2 exchange e and m, the representative cocycle t of the nontrivial
element in H2

ρ(Z2 × Z2,Z2 × Z2) ∼= Z2 can be chosen as

t(T1T2, T1T2) = ψ, t(T1, T1) = t(T2, T2) = 1 (4.63)
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The physical meaning of these symmetry fractionalization classes is as follows. In
both classes ψ is a Kramers doublet under both T1 and T2, and both e and m carry
integer charge (half charge) under T1T2 in the class characterized by η(1) (η(2)). So we
denote the classes η(1) and η(2) by (efmf)T1,T2ψfT1T2 and (efCmfC)T1,T2ψfT1T2, re-
spectively. We see that (I0, I1, I2, I3) = (−1, 1, 1,−1) and (I0, I1, I2, I3) = (−1, 1, 1, 1)
for (efmf)T1,T2ψfT1T2 and (efCmfC)T1,T2ψfT1T2, respectively, as summarized in
Table 4.3.
We mention that this result can also be achieved by considering the projection p :
ZT2 × ZT2 → ZT02 , where ZT02 is now an anti-unitary symmetry on C that permutes e
and m. Notice that (efmf)T1,T2ψfT1T2 class of ZT2 ×ZT2 symmetry is the pullback of
(efmf)T ψfT of ZT02 symmetry (the meaning of this notation is similar to others),
hence the anomaly of (efmf)T1,T2ψfT1T2 for ZT2 ×ZT2 is the pullback of the anomaly
of (efmf)T ψfT for ZT02 . From Eqs. (4.46) and (4.50), the latter anomaly is just
(wTM2 )2 hence the former anomaly is (wTM2 )2 as well. Comparing this result with
Eq. (4.56), we get the first line of Table 4.3. Based on the anomaly of this symmetry
fractionalization class, the second line of Table 4.2 can be achieved from relative
anomaly as in Ref. [119].

(b) When T1 and T1T2 exchange e and m, the representative cocycle t of the nontrivial
element in H2

ρ(Z2 × Z2,Z2 × Z2) ∼= Z2 can be chosen as

t(T2, T2) = ψ, t(T1, T1) = t(T1T2, T1T2) = 1 (4.64)

The physical meaning of these symmetry fractionalization classes is as follows. In
both classes ψ is a Kramers doublet under T1 and carries half charge under T1T2, and
both e and m are Kramers singlets (doublets) under T2 in the class characterized by
η(1) (η(2)).
So we denote the classes η(1) and η(2) by (efmf)T1,T1T2ψfT1C and (efT2mfT2)T1,T1T2ψfT1C,
respectively. We see that (I0, I1, I2, I3) = (−1, 1,−1, 1) and (I0, I1, I2, I3) = (−1, 1, 1,−1)
for (efmf)T1,T1T2ψfT1C and (efT2mfT2)T1,T1T2ψfT1C, respectively, as summarized
in Table 4.4.
For this particular case, because the unitary symmetry T1T2 exchanges e and m, we
are aware of no other method to get the anomaly besides the complete knowledge of
anomaly indicators of ZT2 × ZT2 .
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4.4 Generalization to connected Lie group symmetry

We believe that the construction and recipe presented in Sec. 4.2 can be generalized to
arbitrary group G. Comparing general group symmetry and finite group symmetry, what
concerns us the most in the calculation of the partition function Z(M,G) is how to write
down the U -factors and η-factors. Manifestly, given a G-bundle G, there is an associated
map f : M → BG, with BG the classifying space of G. In particular, the map f maps a
1-chain of M to a 1-chain of BG, and then assigns an element ρg to this 1-chain of M,
which in turn gives the desired U -factors. Moreover, the map f maps a 2-chain of M to a
2-chain of BG, and then assigns an element ρg ◦ ρh ◦ . . . to this 2-chain of M, which gives
the desired η-factors. This serves as a formal construction of the partition function of the
TQFT with a general symmetry G. However, such a construction seems to be dependent
on a specific choice of f and BG. We believe that the partition function ultimately only
depends on the G-bundle itself (but not the specific choice of f and BG), although we are
unable to prove it using arguments similar to what we present in Appendix 4.C. Moreover,
this construction is hard to work with for a general group G. Fortunately, for a connected
Lie group G, there is a more operational method to write down the η-factors and eventually
calculate Z(M,G). We discuss it in this section.

Specifically, for a connected Lie group G, to calculate the partition function Z(M,G)
of the manifold M with a G-bundle structure G on M, we can still start with a handle
decomposition of the manifold M. Since now G cannot permute anyons, we can associate
a single anyon a to the S1 boundary of each 2-handle. Moreover, no U -factors are involved.
Now, given the prescribed labels, we need to calculate the correct η-factor, evaluate the
anyon diagram from the Kirby diagram 〈K〉 of M, and assemble the result in a way similar
to Eq. (4.44):

Z (M,G) = D−χ+2(N4−N3) ×
∑

labels

( ∏
2 handle i

dai

∏
1 handle x

 ∏
2 handle j across x

daj

1/2
×
(∏

i

(η-factors)i
)
× 〈K〉

)
(4.65)

Here Nk is the number of k-handles of this handle decomposition, and χ ≡ N0−N1+N2−
N3 +N4 is the Euler number of M.

The only nontrivial part compared with previous examples of finite group symmetry
is the calculation of the η-factor for a 2-handle. In the presence of a connected Lie group
symmetry G, we have the following prescription. For every 2-handle, there is an associated
2-chain [h]. The map f : M → BG associated to the G-bundle G then gives f∗[h], which
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is a 2-chain in BG. The symmetry fractionalization class is characterized by an element
w ∈ H2(G,A) ∼= H2(BG,A), and pairing it with f∗[h] gives an anyon w(f∗[h]) ∈ A. If
we associate an anyon a to the S1 boundary of a 2-handle, the η-factor of this 2-handle
is Ma,w(f∗[h]), i.e., the double braid between a and w(f∗[h]). Intuitively, such a phase can
be viewed as the phase the anyon a experiences when traveling along the S1 boundary,
given the nontrivial background G-bundle structure G. Therefore, it can be written down
in terms of the charge of a.

To illustrate this recipe regarding a connected Lie group symmetry G, now we go to
the example of SO(N). We will see that this recipe gives the correct partition function on
manifolds with an SO(N)-bundle structure, and eventually provides us with the anomaly
indicators, together with the SO(N) Hall conductance.

4.4.1 Example: SO(N)

The relevant bordism group for symmetry group SO(N) is [120]

ΩSO
4 (BSO(N)) =


(Z)2 , N = 2, 3

(Z)3 , N = 4

(Z)2 ⊕ Z2, N ⩾ 5

(4.66)

The first generating manifold is CP2 with a trivial SO(N) bundle. The second generating
manifold is CP2 with a nontrivial SO(N) bundle such that the associated map f1 : CP2 →
BSO(N) is given by

f1 : CP2 ⊂ CP∞ ∼= BU(1)
Bf̃1−→ BSO(N), (4.67)

and f̃1 : U(1) → SO(N) is

eiθ →

 cos(θ) sin(θ)
− sin(θ) cos(θ)

diag(1, 1, . . . )

 (4.68)

Its associated vector bundle is simply the tautological line bundle of CP2 [69] (together with
an (N − 2)-dimensional trivial bundle), and thus we denote it by At. When N ⩾ 4, there
exists a third generating manifold, which is CP2 with another nontrivial SO(N) bundle
such that the associated map f2 : CP2 → BSO(N) is given by

f2 : CP2 ⊂ CP∞ ∼= BU(1)
Bf̃2−→ BSO(N), (4.69)
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and f̃2 : U(1) → SO(N) is

eiθ →


cos(θ) sin(θ)
− sin(θ) cos(θ)

cos(θ) sin(θ)
− sin(θ) cos(θ)

diag(1, . . . )

 (4.70)

Its associated vector bundle is the direct sum of two tautological line bundles of CP2

(together with an (N − 4)-dimensional trivial bundle), and thus we denote it by A⊕2
t .

The partition function corresponds to an element in

Ω4
SO(BSO(N),U(1)) ≡ Hom(ΩSO

4 (BSO(N)),U(1)) =


(U(1))2 , N = 2, 3

(U(1))3 , N = 4

(U(1))2 ⊕ Z2, N ⩾ 5

(4.71)

Similar to the case in Sec. 4.3.1, because all elements corresponding to U(1) are smoothly
connected to the trivial element, the ’t Hooft anomaly is absent when N = 2, 3, 4 and
classified by Z2 when N ⩾ 5. Still, the partition function is not completely trivial even for
N = 2, 3, 4. To evaluate the partition function on an oriented 4-dimensional manifold with
an SO(N)-bundle structure, we just need to evaluate it on the generating manifolds.

Since the underlying manifold is always CP2, compared with the calculation that leads
to Eq. (4.46), the calculation of the partition function of CP2 with nontrivial bundle At or
A⊕2
t just requires us to add an appropriate η-factor for the 2-handle.

First consider At. The extra η-factor can be seen as follows. The 2-handle [h] here is the
generator of H2(CP2,Z), the pushforward of which under f1, i.e., f1∗[h], gives the generator
of H2(BSO(N),Z). According to the recipe, given the anyon label a in Eq. (4.45), the
correct η-factor should be Ma,w([f1∗[h]). Since f1∗[h] is the generator of H2(BSO(N),Z),
physically this phase factor is related to the SO(N) charge qa of anyon a by ei2πqa , where
for N = 2 qa ∈ [0, 1) is the (fractional) SO(2) ∼= U(1) charge of a, and for N ⩾ 3 qa ∈ {0, 1

2
}

labels whether a carries linear (qa = 0) or spinor (qa = 1
2
) representation under SO(N).

Consequently, we have

ZSO(N)(CP2;At) =
1

D

∑
a

d2aθae
i2πqa (4.72)

Secondly, for A⊕2
t , there is no extra η-factor. This is simply because f̃2 defines a trivial

element in π1(SO(N)) ∼= Z2, which suggests that A⊕2
t can be constructed from attaching a
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4-handle to lower handlebody with a trivial SO(N) bundle on it. Therefore, the partition
function of CP2 with the SO(N) bundle A⊕2

t is identical to the partition function of CP2

with a trivial SO(N) bundle, i.e.,

ZSO(N),N⩾4(CP2;A⊕2
t ) =

1

D

∑
a

d2aθa (4.73)

When N = 2, 3, 4, even though there is no nontrivial ’t Hooft anomaly, the partition
function is still nontrivial and can be written down in terms of various theta terms. In
particular, when N = 2, we have

ZSO(2) (M;A) = Z(CP2)σ(M) ·

(
Z
(
CP2;At

)
Z(CP2)

)(
CSO(2)
1

)2

(4.74)

where σ(M) is the intersection number of M and CSO(2)
1 ∈ H2(SO(2),Z) is the first Chern

class of SO(2). When N = 3, we have

ZSO(3) (M;A) = Z(CP2)σ(M) ·

(
Z
(
CP2;At

)
Z(CP2)

)p
SO(3)
1

(4.75)

where p
SO(3)
1 ∈ H4(SO(3),Z) is the first Pontryagin class of SO(3). When N = 4,

when writing down the term corresponding to the Euler class eSO(4), pay attention that
given Eq. (4.69), the pullback of Pontryagin class pSO(4)

1 should be twice the generator of
H4(CP2,Z). Therefore, we have

ZSO(4) (M;A) = Z(CP2)σ(M) ·

(
Z
(
CP2;At

)
Z(CP2)

)p
SO(4)
1

·

( Z
(
CP2

)
Z(CP2;At)

)2
eSO(4)

(4.76)

where pSO(4)
1 ∈ H4(SO(4),Z) is the first Pontryagin class of SO(4), and eSO(4) ∈ H4(SO(4),Z)

is the Euler class of SO(4). When N ⩾ 5, similarly we have

ZSO(N),N⩾5 (M;A) = Z(CP2)σ(M) ·

(
Z
(
CP2;At

)
Z(CP2)

)p
SO(N)
1

·

( Z
(
CP2

)
Z(CP2;At)

)2
w

SO(N)
4

(4.77)

where p
SO(N)
1 ∈ H4(SO(N),Z) is the first Pontryagin class of SO(N), and w

SO(N)
4 ∈

H4(SO(N),Z2) is the fourth Stiefel-Whitney class of SO(N).
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Anomaly indicator for N ⩾ 5

As discussed before, there is no nontrivial SO(N) anomaly if N < 5. When N ⩾ 5, the
SO(N) anomalies are classified by Z2, whose anomaly indicator is given by

I =

(
Z
(
CP2

)
Z(CP2;At)

)2

=

( ∑
a d

2
aθa∑

b d
2
bθbe

i2πqb

)2

(4.78)

As before, the general proof of the cobordism invariance and invertibility of this partition
function indicates that this expression is ±1. The anomaly O can be written as

O = (I)w
SO(N)
4 , (4.79)

where wSO(N)
4 is the fourth Stiefel-Whitney class belonging to H4(SO(N),Z2).

SO(N) Hall conductance

Besides giving the anomaly indicator, the above partition functions also encode various
Hall conductance in a topological order with an SO(N) symmetry. First, as discussed in
Sec. 4.3.1, they reproduce the thermal Hall conductance from the chiral central charge (up
to contributions from (2 + 1)-d invertible states). Moreover, they also yield the SO(N)
Hall conductance. Concretely, let us consider threading a 2π SO(N) flux into the system,
which breaks the SO(N) symmetry to SO(2)×SO(N−2). The Hall conductance measures
the charge under SO(2)×SO(N − 2) that this flux attracts. For N > 4, the charge under
SO(N − 2) means the representation under SO(N − 2). For N = 4, the flux breaks the
SO(4) symmetry to SO(2) × SO(2)′, and it can attract charge under either SO(2) or
SO(2)′. We will use the unit where ~ = 1 and the elementary charge of local excitations
in the system under SO(2) (and also under SO(2)′ when N = 4) is 1.

Let us first consider the amount of SO(2) charge being attracted, denoted by σxy. We
start with the case where N = 2. In the partition function, this can be read off from the

factor
(

Z(CP2;At)
Z(CP2)

)(
CSO(2)
1

)2

. Denoting eiΘ =
Z(CP2;At)
Z(CP2)

, and using
(
CSO(2)
1

)2
= 1

4π2dA ∧ dA

where A is the SO(2) gauge field, this factor can be written as eiΘπ · 1
4π
d(A∧dA). The standard

argument (see, e.g., Ref. [117]) then shows that

σxy =
Θ

π
, eiΘ ≡

Z
(
CP2;At

)
Z(CP2)

=

∑
a d

2
aθae

i2πqa∑
b d

2
bθb

. (4.80)
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Notice that this formula only captures the “fractional” part of the Hall conductance, and
there can be extra contributions to the Hall conductance from a (2 + 1)-d invertible state,
which are integral multiples of 2.

For N > 2, σxy can be extracted from the factor
(

Z(CP2;At)
Z(CP2)

)pSO(N)
1

. Consider the inclu-

sion map that maps SO(2) into SO(N), because pSO(N)
1 becomes precisely

(
CSO(2)
1

)2
under

the pullback induced by this inclusion map, using the above result for N = 2 we get the
SO(N) Hall conductance for N > 2 with the same formula as Eq. (4.80).

For the special case of N = 4, there can be an additional SO(2)′ being attracted, whose

amount σ′
xy can be read off from the factor

((
Z(CP2)

Z(CP2;At)

)2
)eSO(4)

. Consider the inclusion

map that maps SO(2)×SO(2)′ into SO(4). It turns out that eSO(4) becomes dA∧dA′

4π2 under
the pullback induced by this inclusion map, where A and A′ are the gauge fields for SO(2)
and SO(2)′, respectively. Similar analysis as above then shows that the fractional part of
this Hall conductance is

σ′
xy =

Θ′

2π
, eiΘ

′
=

(
Z
(
CP2

)
Z(CP2;At)

)2

=

( ∑
a d

2
aθa∑

b d
2
bθbe

i2πqb

)2

(4.81)

There can be extra contributions to the Hall conductance from a (2 + 1)-d invertible state
as well, which are integral multiples of 1.

For N > 4, the flux can also attract certain representation under SO(N − 2), which

can be read off from the factor Iw
SO(4)
4 =

((
Z(CP2)

Z(CP2;At)

)2
)w

SO(N)
4

. Consider the inclusion

map that maps SO(2) × SO(N − 2) into SO(N). It turns out that wSO(N)
4 becomes

w
SO(2)
2 ∪wSO(N−2)

2 . So when the topological order is anomaly-free (anomalous), i.e., I = 1
(I = −1), the flux attracts a linear (spinor) representation under SO(N − 2).

Combining the above results of the Hall conductance and the fact that I takes values
in ±1, we see that the possible values of the Hall conductance σxy of an SO(N) symmetric
topological order with N > 4 is severely constrained. In particular, if this topological order
is anomaly-free, then σxy = 0 or σxy = 1. If it is anomalous, then σxy = ±1

2
, which means

that this topological order is incompatible with a further time reversal symmetry. This
is related to the phenomenon of “symmetry-enforced gaplessness” [45, 56, 57, 121–123]
discussed in the Sec. 4.5.
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4.5 Other symmetry groups

The examples presented in Sec. 4.3 and Sec. 4.4 contain many interesting and physically
relevant examples. However, for some symmetries, the calculation of the anomaly indica-
tors may be more technically involved, whose expressions may also be more complicated.
Moreover, for disconnected Lie group G, the identification of η-factors and U -factors is not
as straightforward, and the partition function appears to explicitly depend on a specific
choice of the map f : M → BG associated to a G-bundle G (although we believe that the
partition function actually only depends on the homotopy class of f).

However, it turns out that even if we consider other symmetry groups, examples pre-
sented before can be very useful. Specifically, we discuss symmetries whose anomaly indi-
cators nevertheless can be obtained by simply copying results that we have already derived
without any need of further calculations. The common properties of these symmetries G
are that i) they have subgroups like ZT2 , Z2 ×Z2, ZT2 ×ZT2 and/or SO(N), whose anomaly
indicators have already been obtained, and ii) by restricting G to its various subgroups
and considering the pullbacks of its anomaly, its anomaly can be uniquely determined.
Such symmetries G include O(N)T , SO(N)× ZT2 , Zn × ZT2 , Zn oZT2 , Zn oZ2, O(N), etc.
Here O(N)T means that the symmetry group is O(N), and the superscript T denotes that
elements in O(N) with determinant −1 are anti-unitary. For an odd N , the groups O(N)T

and SO(N)× ZT2 are actually the same.
In the following two subsections, we illustrate this strategy by calculating the anomaly

indicators of O(N)T and SO(N)×ZT2 . Especially, we demonstrate that for O(N)T , N ⩾ 5
and SO(N) × ZT2 , N ⩾ 4, certain ’t Hooft anomaly cannot be realized by any symmetry-
enriched topological order, illustrating the phenomenon of “symmetry-enforced gapless-
ness”, first discussed in Ref. [45]. The anomaly indicators of O(2)T and SO(2)× ZT2 were
first proposed in Ref. [124], while the anomaly indicators of O(3)T = SO(3) × ZT2 were
purposed in Ref. [123].

4.5.1 O(N)T

The relevant bordism group for symmetry group O(N)T is [120]

ΩSO
4 ((BO(N))q−1) =


(Z2)

3 , N = 2

(Z2)
4 , N = 3

(Z2)
4 ⊕ Z, N = 4

(Z2)
5 , N ⩾ 5

(4.82)
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First consider the case where N = 2 and the symmetry group is O(2)T . The anomalies
of O(2)T in (2+1)-dimension are classified by (Z2)

3, whose basis elements can be chosen
as (wTM2 )2, (w

O(2)
1 )4, (w

O(2)
2 )2, where w

O(2)
1 and w

O(2)
2 are the first and second Stiefel-

Whitney class belonging to H1(O(2)T ,Z2) and H2(O(2)T ,Z2), respectively, and (wTM2 )2

is the generator of the beyond-cohomology piece of anomaly. We can write down the
anomaly/partition function as

O = (I0)
(wTM

2 )2 · (I1)

(
w

O(2)
1

)4

· (I0I2)

(
w

O(2)
2

)2

(4.83)

Here the appearance of I0I2 is just to make the final expression nicer and match with the
known literature. Denote the anti-unitary element diag(−1, 1) by T . When pulled back to
the ZT2 subgroup generated by T , the anomaly becomes

Õ = (I0)
(wTM

2 )2 · (I1)
t4 (4.84)

Therefore, compared with Eq. (4.51), we immediately have I0 = Z(CP2), given by Eq. (4.46),
and I1 = Z(RP4; T ), given by Eq. (4.50). When pulled back to the subgroup SO(2), the
anomaly becomes

Õ = (I0)
σ(M) · (I0I2)

(
CSO(2)
1

)2

(4.85)

Therefore, compared with Eq. (4.74), we have I2 = Z
(
CP2;At

)
, given by Eq. (4.72).

Next consider N = 3. The anomalies of O(3)T in (2+1)-dimension are classified by
(Z2)

4, whose basis elements can be chosen as (wTM2 )2, (w
O(3)
1 )4, (w

O(3)
1 )2w

O(3)
2 , (w

O(3)
2 )2,

where wO(3)
1 and wO(3)

2 are the first and second Stiefel-Whitney class belonging to H1(O(3)T ,Z2)
and H2(O(3)T ,Z2), respectively, and (wTM2 )2 is the generator of the beyond-cohomology
piece of anomaly. We can write down the anomaly as

O = (I0)
(wTM

2 )
2

· (I1)

(
w

O(N)
1

)4

· (I0I1I2I3)
w

O(N)
2

(
w

O(N)
1

)2

· (I0I3)

(
w

O(N)
2

)2

(4.86)

Again, such a choice of coefficients is just to make the final expression nicer. Denote
the anti-unitary element diag(−1, 1, 1) of O(3)T by T , and another anti-unitary element
diag(−1,−1,−1) of O(3)T by T ′ = T Uπ, where Uπ is a π rotation in the 2-3 plane. When
pulled back to the subgroup generated by T , the partition function becomes

Õ = (I0)
(wTM

2 )2 · (I1)
t4 (4.87)
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Therefore, compared with Eq. (4.51), we immediately have I0 = Z(CP2), given by Eq. (4.46),
and I1 = Z(RP4; T ), given by Eq. (4.50). When pulled back to the subgroup generatd by
T ′, the partition function becomes

Õ = (I0)
(wTM

2 )2 · (I2)
t4 (4.88)

Therefore, compared with Eq. (4.51), we have I2 = Z(RP4; T ′), again given by Eq. (4.50),
which also can be written in the following form

Z
(
RP4; T ′) = 1

D

∑
a

T ′
a=a

daθa × ηa(T ′, T ′) =
1

D

∑
a

T a=a

daθa × ηa(T , T )ei2πqa (4.89)

where qa ∈ {0, 1
2
} labels the symmetry fractionalization class of anyon a under the SO(N)

symmetry. Finally, when pulled back to the subgroup generated by SO(N), the partition
function becomes

Õ = (I0)
σ(M) · (I0I3)

p
SO(N)
1 (4.90)

Therefore, compared with Eq. (4.75), we have I3 = Z
(
CP2;At

)
, given by Eq. (4.72).

When N = 4, the anomalies of O(4)T in (2+1)-dimension are classified by (Z2)
4, whose

basis elements can be chosen as (wTM2 )2, (w
O(4)
1 )4, (w

O(4)
1 )2w

O(4)
2 , (w

O(4)
2 )2, where wO(N)

1

and w
O(N)
2 are the first and second Stiefel-Whitney class belonging to H1(O(N)T ,Z2) and

H2(O(N)T ,Z2), and (wTM2 )2 is the generator of the beyond-cohomology piece of anomaly.
There is an extra U(1) piece in the cobordism group, which is associated to eO(4)T

4 , i.e., the
twisted Euler class belonging to H4(O(N)T ,Zq). We can write down the partition function
as

O = (I0)
(wTM

2 )
2

· (I1)

(
w

O(N)
1

)4

· (I0I1I2I3)
w

O(N)
2

(
w

O(N)
1

)2

· (I0I3)

(
w

O(N)
2

)2

· (Ĩ)e
O(N)T

4 (4.91)

Denote the anti-unitary element diag(−1, 1, 1, 1) of O(N)T by T , and another anti-unitary
element diag(−1,−1,−1, 1) of O(N)T by T ′ = T Uπ, where Uπ is a π rotation in the 2-3
plane. From pullback to the subgroup generated by T and T ′, we still have I0 = Z

(
CP2

)
,

given by Eq. (4.46), I1 = Z
(
RP4; T

)
, given by Eq. (4.50), I2 = Z

(
RP4; T ′), given by

Eq. (4.50) or (4.89). When pulled back to the subgroup generated by SO(4), the partition
function becomes

Õ = (I0)
σ(M) · (I0I3)

p
SO(N)
1 · (Ĩ)e

O(4)T

4 (4.92)
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Therefore, compared with Eq. (4.77), we have I3 = Z
(
CP2;At

)
, given by Eq. (4.72), and

Ĩ = (I0/I3)
2. Because both I0 and I3 here must take values only in ±1, Ĩ is always 1.

Therefore, the (fractional part of) SO(4) Hall conductance σ′
xy as in Eq. (4.81) is always

0.
Finally, when N ⩾ 5, the anomalies of O(N)T in (2+1)-dimension are classified by

(Z2)
5, whose basis elements can be chosen as (wTM2 )2, (wO(N)

1 )4, (wO(N)
1 )2w

O(N)
2 , (wO(N)

2 )2

and wO(N)
4 , where wO(N)

1 , wO(N)
2 and wO(N)

4 are the first, second and fourth Stiefel-Whitney
class belonging to H1(O(N)T ,Z2), H2(O(N)T ,Z2) and H4(O(N)T ,Z2), respectively, and
(wTM2 )2 is the generator of the beyond-cohomology piece of anomaly. We can write down
the anomaly as

O = (I0)
(wTM

2 )
2

· (I1)

(
w

O(N)
1

)4

· (I0I1I2I3)
w

O(N)
2

(
w

O(N)
1

)2

· (I0I3)

(
w

O(N)
2

)2

· (Ĩ)w
O(N)
4 (4.93)

Denote the anti-unitary element diag(−1, 1, 1, 1, . . . ) of O(N)T by T , and another anti-
unitary element diag(−1,−1,−1, 1, . . . ) of O(N)T by T ′ = T Uπ, where Uπ is a π rotation
in the 2-3 plane. From pullback to the subgroup generated by T and T ′, we still have I0 =
Z
(
CP2

)
, given by Eq. (4.46), I1 = Z

(
RP4; T

)
, given by Eq. (4.50), I2 = Z

(
RP4; T ′),

given by Eq. (4.50) or (4.89). When pulled back to the subgroup generated by SO(N), the
partition function becomes

Õ = (I0)
σ(M) · (I0I3)

p
SO(N)
1 · (Ĩ)w

SO(N)
4 (4.94)

Therefore, compared with Eq. (4.77), we have I3 = Z
(
CP2;At

)
, given by Eq. (4.72), and

Ĩ = (I0/I3)
2. Because both I0 and I3 here must take values only in ±1, we see that Ĩ

is always 1. As a result, given a (3+1)-dimensional theory with global symmetry O(N)T

and nontrivial ’t Hooft anomaly involving wO(N)
4 , the boundary cannot be a topologically

ordered state, i.e., it can either spontaneously break the O(N)T symmetry or be a gapless
state. This phenomenon is called “symmetry-enforced gaplessness”. 12

12For the reader’s convenience, we repeat the argument in Refs. [15, 21] of “symmetry-enforced gapless-
ness” discussed here. Consider an SO(N) monopole, represented as a unit SO(2) ⊂ SO(N) monopole in
the first two components. The w

O(N)
4 anomaly requires the monopole to carry spinor representation for

the remaining SO(N − 2). For a gapped topologically ordered state, this condition can be satisfied only
by attaching a gapped anyon excitation to the monopole, with the anyon carrying spinor representation
under SO(N − 2). But an anyon should carry irreducible representation under the entire SO(N), which
means that the SO(N − 2) spinor anyon should also carry SO(2) charge 1/2. This leads to a nontrivial
Hall conductance for the SO(2), which necessarily breaks time-reversal symmetry. This argument can also
be carried over to the symmetry group SO(N) × ZT

2 , N ⩾ 4 with anomaly involving w
SO(N)
4 . However,

it does not apply to O(4)T , because in that case the charge of the SO(4) monopole under SO(2)′ is not
quantized by time reversal.
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As a summary, there are three anomaly indicators of O(2)T :

I0 =
1

D

∑
a

d2aθa, I1 =
1

D

∑
a

T a=a

daθaηa(T , T ), I2 =
1

D

∑
a

d2aθae
2πiqa (4.95)

There are four anomaly indicators of O(3)T and O(4)T :

I0 =
1

D

∑
a

d2aθa, I1 =
1

D

∑
a

T a=a

daθaηa(T , T ),

I2 =
1

D

∑
a

T a=a

daθaηa(T , T )e2πiqa , I3 =
1

D

∑
a

d2aθae
2πiqa

(4.96)

Here T denotes the anti-unitary element diag(−1, 1, . . . ). For N ⩾ 5, these four expressions
still give the anomaly indicators for O(N)T , and there is one more anomaly indicator,
Ĩ = (I0/I3)

2, which is always 1 and indicates that this anomaly cannot be realized by any
topological order. The full anomaly of the topological order can be written in the form of
Eqs. (4.83), (4.86), (4.91) and (4.93), for N = 2, 3, 4 and N ⩾ 5, respectively.

4.5.2 SO(N)× ZT
2

The relevant bordism group for symmetry group SO(N)× ZT2 is [120]

ΩSO
4 ((B(SO(N)× Z2))

q−1) =

{
(Z2)

4 , N = 2, 3

(Z2)
5 , N ⩾ 4

(4.97)

When N = 2, 3, and the anomalies are classified by (Z2)
4, whose basis elements can

be chosen as (wTM2 )2, t4, t2wSO(N)
2 , (wSO(N)

2 )2, where t is the generator of H1(ZT2 ,Z2) and
w
SO(N)
2 is the second Stiefel-Witney class or the generator of H2(SO(N),Z2). We can write

down the anomaly/partition function as

O = (I0)
(wTM

2 )
2

· (I1)
t4 · (I0I1I2I3)

w
SO(N)
2 t2 · (I0I3)

(
w

SO(N)
2

)2

, (4.98)

Denote the anti-unitary generator of ZT2 as T and a π-rotation of SO(N) as Uπ. When
pulled back to the subgroup generated by T , the anomaly becomes

Õ = (I0)
(wTM

2 )2 · (I1)
t4 (4.99)
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Therefore, compared with Eq. (4.51), we immediately have I0 = Z(CP2), given by Eq. (4.46),
I1 = Z(RP4; T ), given by Eq. (4.50). When pulled back to the subgroup generated by
T Uπ, the anomaly becomes

Õ = (I0)
(wTM

2 )2 · (I2)
t4 (4.100)

Therefore, compared with Eq. (4.51), we have I2 = Z(RP4; T ′), again given by Eq. (4.50),
which can also be written in the following form

Z
(
RP4; T ′) = 1

D

∑
a

T ′
a=a

daθa × ηa(T ′, T ′) =
1

D

∑
a

T a=a

daθa × ηa(T , T )ei2πqa (4.101)

where again qa ∈ {0, 1
2
} labels the symmetry fractionalization class of anyon a under SO(N)

symmetry (even for N = 2, here qa can only take values from {0, 1
2
}). When pulled back

to the subgroup SO(N), the anomaly becomes for N = 2

Õ = (I0)
σ(M) · (I0I3)

(
CSO(2)
1

)2

(4.102)

or for N = 3

Õ = (I0)
σ(M) · (I0I3)

p
SO(N)
1 (4.103)

Therefore, compared with Eq. (4.74) or Eq. (4.75), we have I3 = Z
(
CP2;At

)
, given by

Eq. (4.72).
When N ⩾ 4, the anomalies of SO(N) × ZT2 in (2+1)-dimension are classified by

(Z2)
5, whose basis elements can be chosen as (wTM2 )2, t4, t2wSO(N)

2 , (wSO(N)
2 )2 and wSO(N)

4 ,
where t is the generator of H1(ZT2 ,Z2), and wSO(N)

2 (wSO(N)
4 ) is the second (fourth) Stiefel-

Witney class or the generator of H2(SO(N),Z2) (H4(SO(N),Z2)). We can write down
the anomaly/partition function as

O = (I0)
(wTM

2 )
2

· (I1)
t4 · (I0I1I2I3)

w
SO(N)
2 t2 · (I0I3)

(
w

SO(N)
2

)2

· (Ĩ)w
SO(N)
4 , (4.104)

Denote the anti-unitary generator of ZT2 as T and a π-rotation of SO(N) as Uπ. From
pullback to the subgroup generated by T and T Uπ, we still have I0 = Z

(
CP2

)
, given by

Eq. (4.46), I1 = Z
(
RP4; T

)
, given by Eq. (4.50), I2 = Z

(
RP4; T ′), given by Eq. (4.50) or

(4.101). When pulled back to the subgroup generated by SO(N), the partition function
becomes

Õ = (I0)
σ(M) · (I0I3)

p
SO(N)
1 · (Ĩ)w

SO(N)
4 (4.105)
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Therefore, compared with Eq. (4.76) or (4.77), we have I3 = Z
(
CP2;At

)
, given by

Eq. (4.72), and Ĩ = (I0/I3)
2. Again, because both I0 and I3 here must take values

only in ±1, we see that Ĩ is identically 1. Consequently, given a (3+1)-dimensional theory
with global symmetry SO(N)×ZT2 and nontrivial ’t Hooft anomaly involving wSO(N)

4 , the
boundary cannot be a topologically ordered state, i.e., it can either spontaneously break
the SO(N) × ZT2 symmetry or be a gapless state. We again discover the phenomenon of
“symmetry-enforced gaplessness”.

In summary, there are four anomaly indicators of SO(N)× ZT2 :

I0 =
1

D

∑
a

d2aθa, I1 =
1

D

∑
a

T a=a

daθaηa(T , T ),

I2 =
1

D

∑
a

T a=a

daθaηa(T , T )e2πiqa , I3 =
1

D

∑
a

d2aθae
2πiqa

(4.106)

Here T denotes the generator of ZT2 . For N = 2, 3, these are all the anomaly indicators.
For N ⩾ 4, besides these four anomaly indicators, there is another one Ĩ = (I0/I3)

2, which
is always 1 and implies that such anomaly cannot be realized by any topological order.
The full anomaly of the topological order can be written in the form of Eq. (4.98) and
(4.104), for N = 2, 3 and N ⩾ 4, respectively.

4.A Derivation of Eq. (4.44)

For the reader’s convenience, in this appendix we repeat some explicit computations of
various factors in Eq. (4.42), including partition functions of various handles and inner
products, which ultimately lead to the main formula Eq. (4.44). The presentation here
follows Ref. [94], see also Ref. [95] for the calculation from a higher-category point of view.

4.A.1 Vector Spaces

First of all, in this sub-appendix, we write down V(N ), the vector space associated to some
3-dimensional manifold N which will be defined as the attaching region of some k-handle,
following the diagrammatic definition in Eq. (4.38). This will serve as the starting point
of our diagrammatic treatment and calculation.
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A 4-handle is attached to lower handles along S3, and it is clear that

V(S3) ' C (4.107)

is one-dimensional, spanned by the empty diagram in S3, as all closed anyon diagrams in
S3 can be reduced via local moves to a multiple of the empty diagram.

Similarly, a 3-handle is attached to lower handles along S2 ×D1, and we have

V(S2 ×D1; ∅) ' C (4.108)

We use ∅ to denote that we put only trivial anyon on the boundary.
A 2-handle is attached to lower handles along S1 ×D2. It is also clear that

V(S1 ×D2; ∅) ' C|C| (4.109)

Here, |C| denotes the number of simple anyons in C. The basis vector in V(S1 × D2; ∅)
associated to an anyon a ∈ C corresponds to putting the anyon loop with label a along
S1 × {pt} ⊂ S1 ×D2, where {pt} denotes a point in D2.

Finally, a 1-handle is attached to lower handles along two copies of D3, and we have

V
(
D3; (a1, . . . ; b1, . . . )

)
' V a1,...

b1,...
(4.110)

Here a1, . . . and b1, . . . are used to denote anyons associated to 2-handles running out of
and into the 1-handle along the boundary of D3. And V a1,...

b1,...
is the fusion space of a1, . . .

into b1, . . . . This is illustrated in the upper plane of Fig. 4.12.

4.A.2 Partition functions

In this sub-appendix, we compute the partition functions for different handles. Suppose
for D4 we have

Z(D4; ∅) = λ, (4.111)

where λ is a parameter to be fixed later and ∅ denotes the empty diagram in ∂D4 = S3.
Then if there is some anyon diagram K on S3, we have

Z(D4;K) = λ〈K〉, (4.112)

where 〈K〉 denotes the evaluation of the anyon diagram K.
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Figure 4.12: Illustration of the 1-handle, with no defect present. The 1-handle has
topology of a D4 but we draw it as a D3 for illustration. The lower plane dis-
plays a vector (x, ν, µ)(y, µ, ρ) that lives in the vector space associated to D3, i.e.,
V (D3; (a1, . . . ; b1, . . . )) ∈ V a1,a2,a3

b1,b2
, while the upper plane hosts a dual vector.
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Specifically, first consider the situation where no defect is present. For a 2-handle, there
is a loop la of anyon a on S1 and we have

Z(D4; la) = λda. (4.113)

For a 1-handle there is a Θ-diagram as in Fig. 4.12, and if no defect is present the evaluation
of the diagram gives

Z(D4; Θa1,...;b1,...) = λ

√∏
i

dai
∏
j

dbj . (4.114)

For a 0-handle the anyon diagram K on the boundary S3 is precisely the Kirby diagram of
the manifold M, with correct labels on the attaching regions of 1-handles and 2-handles.

In the presence of defects, for a 2-handle the associated anyon a is acted on by successive
defects, but the combination of all defects along the S1 line of a 2-handle is still a trivial
defect, since this S1 is contractible. Nevertheless, the functor of successive symmetry
actions is not the same as the identity functor, and they are connected to each other by
some natural isomorphism, which when acting on a gives the desired η-factor. This is
explained in detail in Sec. 4.2.4.

For a 1-handle we just need to take account of the symmetry action on the vector
assigned to the boundary, and then calculate the Θ-diagram. In particular, from the
symmetry action we get the desired U -factor in Eq. (4.43).

4.A.3 Inner Products

Next, in this sub-appendix, we calculate the inner products in the vector spaces described
in Appendix 4.A.1.

For a vector in |β〉 ∈ V (D3; (a1, . . . ; b1, . . . )) representing the label on the boundary of
Fig. 4.12, from Eq. (4.39) we see that

〈β|β〉 = Z(D4; Θa1,...;b1,...) = λ

√∏
i

dai
∏
j

dbj (4.115)

Specifically, in the presence of only 2 anyons, dim V (D3; (a; b)) = δab, and when a = b,
V (D3; (a; b)) is 1-dimensional and spanned by an arc that we denote as arca connecting
the two anyons. The inner product is

〈arca|arcb〉V(D3;(a;b)) = Z(D4; la)δab = daλδab. (4.116)
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Then consider the inner product in V(S1 ×D2; ∅). Let |la〉 denote the basis vector in
V(S1 ×D2; ∅) corresponding to anyon loop a along S1. From Eq. (4.39), we have

〈la|lb〉V(S1×D2;∅) = Z(S1 ×D3; la ∪ lb). (4.117)

From the gluing formula Eq. (4.40),

Z(S1 ×D3; la ∪ lb)

=
∑

|β⟩∈V(D3;(a;b))

Z(D4; arcb ∪ β ∪ arca ∪ β)
〈β|β〉V(D3;(a;b))

= δab
Z(D4; arca ∪ arca ∪ arca ∪ arca)

〈arca|arca〉V(D3;(a;b))

= δab
Z(D4; la)

〈arca|arca〉V(D3;(a;b))

= δab. (4.118)

Here we have used the fact that cutting la ∪ lb gives rise to two arcs, arcb and arca, while
V(D3; (a; b)) is spanned by an arc connecting a and b. Thus the combination arca ∪ arca ∪
arca ∪ arca = la. This is illustrated in Fig. 4.13.

Figure 4.13: Illustration of the calculation of 〈la|lb〉V(S1×D2;∅) through Z(S1 ×D3)[la ∪ lb].

Then let us consider the inner product in V(S2 × D1; ∅). For |∅〉 ∈ V(S2 × D1; ∅)
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denoting the empty diagram, we have

〈∅|∅〉V(S2×D1;∅) = Z(S2 ×D2; ∅)

=
∑

|la⟩∈V(S1×D2)

Z(D4; la)Z(D4; la)

〈la|la〉V(S1×D2;∅)

=
∑
a

d2aλ
2 = D2λ2 (4.119)

where D is the total dimension.
Finally, for V(S3) and a basis vector |∅〉 denoting the empty diagram, we have

〈∅|∅〉V(S3) = Z(D1 × S3; ∅)

=
Z(D4; ∅)Z(D4; ∅)
〈∅|∅〉V(S2×D1;∅)

=
1

D2
. (4.120)

4.A.4 Requirement from Invertibility

A further constraint comes from our wish to define an invertible TQFT [99, 100], given a
suitable choice of λ. This means that on every closed 3-manifold N the associated vector
space V(N ) is one-dimensional, and on every closed 4-manifold the partition function is a
pure phase factor.

Consider Z(S4), the gluing formula Eq. (4.40) gives

Z(S4) =
Z(D4; ∅)Z(D4; ∅)

〈∅|∅〉V(S3)

= λ2D2 (4.121)

In order for |Z(S4)| = 1, we must choose |λ| = 1
D

.
Furthermore, we have found in Eq. (4.116) that the norm of the state |arc0〉 is λ. In a

unitary TQFT, norms are always positive definite, so λ > 0. Therefore we have determined

λ =
1

D
. (4.122)

As a result we also have Z(S4) = 1.
Assembling all these factors together, we finally arrive at Eq. (4.44).
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4.B An explicit expression of the η-factor

In Remark g of Sec. 4.2.4, we have explained that, for a finite group symmetry G, the
η-factor associated with a 2-handle comes from the natural isomorphism connecting the
functor ρs1g1

◦ ρs2g2
◦ · · · and the identity functor, where g1,2,··· are defects the S1 line of this

2-handle crosses, starting from a segment with anyon label a, and s1,2,··· are determined
by whether the S1 crosses the defect upward or downward, according to the convention
in Remark f. In this appendix, we give an explicit expression of this η-factor. We stress
again that the expression of this η-factor is not unique, and different expressions can be
converted into each other via Eq. (4.24). The expression presented here is obtained by
“combining from left to right” of the functor ρs1g1

◦ ρs2g2
◦ · · · .

To describe this expression, we first write down the η-factor we get after connecting
ρs1g1

◦ ρs2g2
to a single functor ρs12g12

, i.e.,

H12 : ρs1g1
◦ ρs2g2

=⇒ ρs12g12
(4.123)

where g12 and s12 are defined as follows

g12 ≡
{

g2g1, s1 = s2 = −1
gs11 gs22 , else

(4.124)

s12 ≡
{

−1, s1 = s2 = −1
1, else

(4.125)

and H12 acting on anyon a gives the following η-factor

(H12)a =


ηa(g1,g2), s1 = s2 = 1
η g2g1a(g2,g1)

−σ(g2g1), s1 = s2 = −1
ηa(g1g

−1
2 ,g2)

−1, s1 = 1, s2 = −1
η g1a(g1,g

−1
1 g2)

−σ(g1), s1 = −1, s2 = 1

(4.126)

Then we have an expression of the form ρs12g12
◦ρs3g3

◦· · · , and we can iterate the above process
until we get the identity functor. Finally, simply multiplying all individual η-factors we
get the η-factor associated with the 2-handle,

(H1,2)a · (H12,3)a · (H123,4)a · . . . (4.127)
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4.C Consistency check of TQFT

There are multiple consistency checks that we need to perform in order to confirm that, for
finite group symmetry G, the recipe in Sec. 4.2.4, especially Eq. (4.44), indeed gives rise to
a well-defined partition function Z(M,G), defined on a target manifold M together with a
G-bundle structure G on it. In this appendix we explicitly perform the consistency checks
and prove that the recipe in Sec. 4.2.4 does give rise to a well-defined partition function, in
the sense that we will make explicit in the following subsections. Most of our exposition will
utilize similar proofs for the Crane-Yetter model, as in Refs. [94, 95, 101, 125] for example.
However, we need to understand the roles played by symmetry defects. These checks
provide further evidence that the partition function Z(M,G) constructed in Sec. 4.2.4 is
indeed exactly the same partition function of the TQFT decribed in Sec. 4.2.2.

The checks we perform include:

1. Independence of the partition function on the handle decomposition in Appendix
4.C.1.

2. Invariance of the partition function under changes of defects in Appendix 4.C.2.

3. Gauge invariance of the partition function in Appendix 4.C.3.

4. Cobordism invariance of the partition function in Appendix 4.C.4.

5. Invertibility of the partition function in Appendix 4.C.5.

For connected Lie group symmetry G, we also need to prove that Eq. (4.65) gives rise
to a well-definied partition function. Such a proof follows closely the proof for a finite
group symmetry G but is much easier, since we just need to focus on η-factors. This proof
is presented in Appendix 4.C.6.

4.C.1 Independence on the handle decomposition

First of all, our construction explicitly uses a handle decomposition of the target manifold
M. In this sub-appendix, we prove that the partition function Z(M,G) we get in Eq. (4.44)
is in fact independent of the handle decomposition.

Two different handle decompositions of a given manifold are related to each other by
the following handle moves: isotopies, handle slides and creating/annihilating cancelling
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handle pairs [111]. In order to prove the independence of the partition function on the
handle decomposition, we just need to show its invariance under all handle moves. Fortu-
nately, most handle moves do not involve G-defects, and therefore the partition function
is automatically invariant under these handle moves, according to our knowledge of the
Crane-Yetter model [95, 101]. Here we just need to analyze handle moves which do explic-
itly involve G-defects, and they are either 1-1 handle slides (see Fig. 4.14), isotopies where
some 2-handles cross some defects (see Fig. 4.15) or 2-2 handle slides (see Fig. 4.16).

• 1-1 handle slide.

Figure 4.14: An illustration of the effect of 1-1 handle slide on the Kirby diagram, where
the blue 1-handle slides past the darkblue 1-handle. On the anyon diagram the two red
lines running upward become a bubble.

The effect of a 1-1 handle slide on a Kirby diagram is explicitly shown in Fig. 4.14.
Suppose that before the handle slide, a g-defect is present across the blue 1-handle,
and an h-defect is present across the darkblue 1-handle. Then after the handle slide,
an h−1g defect is present across the blue 1-handle while an h defect is still present
across the darkblue 1-handle. We wish to prove the invariance of the partition func-
tion Z(M,G) by proving the invariance of each individual summand of Eq. (4.44),
which has a given set of labels β.
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Suppose anyons labeled by {ai} cross the blue 1-handle before the handle slide.
Without loss of generality, suppose that they are running downward in the blue 1-
handle of the Kirby diagram as in Fig. 4.14. After the handle slide, anyons {ai}
cross both the blue 1-handle and the darkblue 1-handle. Accordingly, the prefactor
of quantum dimension in the individual summand of Eq. (4.44) is modified by an
extra 1/

√∏
i dai after the handle slide. This is canceled by the contribution from

the extra bubble in the Kirby diagram, formed e.g., by the two red lines running
upward in Fig. 4.14, as can be seen by using Eq. (4.4). After accounting for this
extra bubble, the contribution of the Kirby diagram is invariant before and after the
handle move. Then we just need to analyze the change of the η-factors and U -factors
For the sake of presentation, let us first assume that all symmetry defects involved
are unitary. Now consider the change of the η-factors. Before the handle slide, {ai}
are acted upon by ρ−1

g while after the handle slide, {ai} are acted upon by ρ−1
h−1g◦ρ

−1
h .

This gives an extra η-factor ∏
i

(
ηai
(
h,h−1g

))−1 (4.128)

Next we consider the change of U -factors. Before the handle slide, the vector and
the dual vector assigned to the two disconnected D3 balls of the blue 1-handle are
|ai, . . . ; 1〉µ̃... and 〈 gai, . . . ; 1|µ..., respectively, which give the U -factor from the red
lines

〈 gai, . . . ; 1|µ...ρ−1
g |ai, . . . ; 1〉µ̃... = U−1

g (ai, . . . ; 1)µ̃...,µ... (4.129)

After the handle slide, the vector assigned to the upper ball of the darkblue 1-handle
is the tensor product of |ai, . . . ; 1〉µ̃... and the original vector corresponding to the
orange lines. The dual vector assigned to the lower ball of the darkblue 1-handle is the
tensor product of 〈 hai, . . . ; 1| ˜̃µ... and the original dual vector corresponding to orange
lines. The vector assigned to the upper ball of the blue 1-handle is | hai, . . . ; 1〉 ˜̃µ...,
and finally the dual vector assigned to the lower ball of the blue 1-handle is still
〈 gai, . . . ; 1|µ.... Then the U -factor relevant to the red lines after the handle slide
becomes ∑

˜̃µ...

〈 gai, . . . ; 1|µ...ρ−1
h−1g|

hai, . . . ; 1〉 ˜̃µ... · 〈 hai, . . . ; 1| ˜̃µ...ρ−1
h |ai, . . . ; 1〉µ̃...

=
∑
˜̃µ...

U−1
h (ai, . . . ; 1)µ̃..., ˜̃µ... · U

−1
h−1g

(
hai, . . . ; 1

)
˜̃µ...,µ...

(4.130)
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According to Eq. (4.23), the product of Eq. (4.128) and Eq. (4.130) is precisely
Eq. (4.129), which means that the changes of the η-factors and U -factors cancel each
other, and each individual summand in Eq. (4.44) is invariant under 1-1 handle slides.
To account for anti-unitary symmetry, we need to pay attention to two special effects:
i) some anyons will change their directions of flow compared with the Kirby diagram;
ii) we need to add proper factors of Kq(h) in front of some vectors to account for
C-anti-linear functor. Without loss of generality, we can still suppose that anyons
labeled by {ai} are running downward in the blue 1-handle of the Kirby diagram. Yet
we should give these anyons an extra label {si}, according to whether the segment
corresponding to labels {ai} has flipped the direction of the flow or not:

si =

{
+1 if ai does not flip
−1 if ai does flip (4.131)

Then after carefully counting the extra contribution from anti-unitary symmetry, the
change of η-factor becomes ∏

i

(
ηai
(
h,h−1g

))−si (4.132)

Before the handle slide, the vector and the dual vector assigned to the two discon-
nected D3 balls of the blue 1-handle are |ai, . . . , {si = +1}; aĩ, . . . , {sĩ = −1}〉µ̃... and
〈 gai, . . . , {si = +1}; gaĩ, . . . , {sĩ = −1}|µ...Kq(g), which gives the U -factor from the
red lines

〈 gai, . . . ;
gaĩ, . . . . . . |µ...Kq(g)ρ−1

g |ai, . . . ; aĩ, . . . 〉µ̃... = U−1
g (ai, . . . ; aĩ, . . . )µ̃...,µ... ,(4.133)

where i and ĩ are indices to label anyons with si = +1 or si = −1, respectively. After
the handle slide, the U -factor relevant to the red lines after the handle slide becomes

∑
˜̃µ...

⟨ g
ai, . . . ;

g
a
ĩ
, . . . |µ...K

q(g)
ρ
−1

h−1g
K

q(h)| hai, . . . ;
h
a
ĩ
, . . . ⟩ ˜̃µ...

⟨ h
ai, . . . ;

h
a
ĩ
, . . . | ˜̃µ...

K
q(h)

ρ
−1
h |ai, . . . ; aĩ

, . . . ⟩µ̃...

=
∑
˜̃µ...

U
−1
h

(
ai, . . . ; aĩ

, . . .
)
µ̃..., ˜̃µ...

· U−1

h−1g

(
h
ai, . . . ;

h
a
ĩ
, . . .

)σ(h)

˜̃µ...,µ...

(4.134)

Again, according to Eq. (4.23), the product of Eq. (4.132) and Eq. (4.134) is precisely
Eq. (4.133), which means that the changes of the η-factors and U -factors cancel each
other, and each individual summand in Eq. (4.44) is invariant under 1-1 handle slides.
Therefore, we have established that the partition function Z(M,G) is invariant under
the 1-1 handle slide.
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Figure 4.15: An illustration of the effect of isotopies where the red 2-handle crosses some
defect on the darkblue 1-handle. On the anyon diagram the red line connecting the lower
darkblue ball to itself becomes a red bubble.
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• Isotopy.
The invariance of the partition function Z(M,G) under an isotopy where a 2-handle
crosses a defect is relatively easy. Suppose that a g-defect is present across the
darkblue 1-handle (see Fig. 4.15). We wish to prove the invariance of the parti-
tion function Z(M,G) by proving the invariance of each individual summand of
Eq. (4.44). Label the red 2-handle by an anyon a. After this isotopy, the prefactor
of quantum dimension in the individual summand of Eq. (4.44) is modified by an
extra 1/da. This is canceled by the contribution from the extra bubble in the Kirby
diagram. There is no change in η-factors and U -factors. Therefore, we see that
Z(M,G) is invariant under the isotopy.

• 2-2 handle slide.
The effect of a 2-2 handle slide on a Kirby diagram is explicitly shown in Fig. 4.16.
We wish to prove the invariance of the partition function Z(M,G) by proving the
invariance of each individual summand of Eq. (4.44).

Figure 4.16: Upper: An illustration of the effect of a 2-2 handle slide on the Kirby diagram,
where the red 2-handle slides past the yellow 2-handle. Lower: An illustration of the change
of framing after 2-2 handle slide.

Let us put anyon a on (a segment of) the red 2-handle and anyon b on the yellow 2-
handle. The strategy is to fuse a and b into another anyon c, such that the expression
involving a and b can be transformed to an expression involving a and c, which turns
out to be manifestly the same as the expression before the 2-2 handle slide.
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First of all, at every 1-handle that the yellow 2-handle crosses, the relevant prefactor
involving quantum dimensions is shifted from 1√

db
to 1√

dadb
. Yet when we fuse a and

b into another anyon c, there is an extra bubble as in Eq. (4.4) which gives
√

dadb
dc

.
Multiplying them together gives 1√

dc
. Therefore, the factors regrading quantum di-

mensions match before and after the handle slide.
Next, we should consider the effect of the change of framing, as illustrated in the
lower figure of Fig. 4.16. Suppose that before the handle slide b has framing n. This
contributes a θnb term in Z (M,G). After the handle slide, the red 2-handle should
have an additional framing n, the yellow 2-handle should still have framing n, and
the red 2-handle should wind around the yellow 2-handle (−n)-times, contributing
an extra factor of

θnaθ
n
b ×

θnc
θnaθ

n
b

= θnc , (4.135)

consistent with the expression before the handle slide.
Now we consider U - and η-factors. Suppose that starting with the segment of the
yellow 2-handle labeled by b, the yellow 2-handle begins crossing some 1-handles, and
the symmetry defects these 1-handles host are g,h, . . . . Moreover, without loss of
generality suppose that on the Kirby diagram the yellow 2-handle runs downward in
these 1-handles. Then consider two consecutive 1-handles that the yellow 2-handle
crosses with g, h-defects on them, the extra U -factor involved is

U−1
g (a, b; c)µµ′′U

−1
h ( ga, gb; gc)

σ(g)
µ′′µ′ (4.136)

The η-factor coming from composing ρ−1
h and ρ−1

g to ρ−1
gh , is

ηa(g,h)
−1ηb(g,h)

−1 (4.137)

Multiplying Eq. (4.136) and Eq. (4.137) and using Eq. (4.23), we get

ηc(g,h)
−1U−1

gh (a, b; c)µµ′ (4.138)

It is then straightforward to see that, after accounting for all 1-handles that the yellow
2-handle crosses, such manipulation will cancel all extra U -factors while reproducing
the correct η-factor from the natural isomorphism for anyon c.
Therefore, we have established that the partition function Z(M,G) is invariant under
the 2-2 handle slide.
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4.C.2 Invariance under change of defects

The partition function Z(M,G) is also dependent on a specific choice of the defect network
defined on M to reflect the G-bundle structure G. There are two important choices that we
have made during calculation in Eq. (4.44). The first choice is that, for a 1-handle hosting
a g-defect, there are two D3 balls on the attaching region, and we need to choose one D3

ball out of the two to be “above” another one, as in Remark e in Sec. 4.2.4. It amounts
to choosing an orientation of the defect, i.e., whether this defect is g or ḡ. Another choice
is that even for the same G-bundle G on M, we can choose a different set of defects put
across 1-handles by changing each defect g to hgh−1, where h is an arbitrary fixed element
in G. Remember that G-bundles on M are classified by

Hom (π1(M), G) /G (4.139)

Here Hom(π1(M), G) is nothing but identifying the holonomy we put on noncontractible
cycles, yet there is an equivalence relation due to G-action by conjugation on the holonomy.
Therefore, we need to prove that the partition function Z(M,G) is the same if the defect
we put on 1-handles are conjugated by elements in G. This amounts to showing the gauge
invariance of the partition function under gauge transformation of G.

Let us start by considering the first choice, i.e., the choice of the orientation of the
defect. Again, we wish to prove the invariance of the partition function Z(M,G) by
proving the invariance of each individual summand of Eq. (4.44). Suppose anyons labeled
by {ai} cross the blue 1-handle which hosts a defect labeled by g. Without loss of generality
suppose that at the beginning they are all running downward in the blue 1-handle of the
Kirby diagram. Now we flip the relative position of the two balls. Then anyons crossing
the 1-handles upwards are acted upon by ρg instead of ρ−1

g , which gives the extra η-factor∏
i

(ηai(g,g))
si (4.140)

Again, to account for the fact that some anyons will flip the direction of the flow, we
introduce an extra factor si as in Eq. (4.131). Before the flip, the vector and the dual
vector assigned to the two disconnected D3 balls of the blue 1-handle are |ai, . . . , {si =
+1}; aĩ, . . . , {sĩ = −1}〉µ̃... and 〈 gai, . . . , {si = +1}; gaĩ, . . . , {sĩ = −1}|µ...Kq(g), which
gives the U -factor

〈 gai, . . . ;
gaĩ, . . . . . . |µ...Kq(g)ρ−1

g |ai, . . . ; aĩ, . . . 〉µ̃... = U−1
g (ai, . . . ; aĩ, . . . )µ̃...,µ... , (4.141)

where again i and ĩ are indices to label anyons with si = +1 or si = −1, respectively.
After the flip, the vector and the dual vector assigned to the two disconnected D3 balls of
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the blue 1-handle are Kq(g)| gaĩ, . . . , {sĩ = −1}; gai, . . . , {si = +1}〉µ... and 〈aĩ, . . . , {sĩ =
−1}; ai, . . . , {si = +1}|µ̃..., which gives the U -factor

〈aĩ, . . . ; ai, . . . . . . |µ̃...ρ−1
g Kq(g)| gaĩ, . . . ; gai, . . . 〉µ... =U−1

g

(
gaĩ, . . . ;

gai, . . .
)σ(g)
µ...,µ̃...

=Ug

(
gai, . . . ;

gaĩ, . . .
)σ(g)
µ̃...,µ...

(4.142)

According to Eq. (4.23), the product of Eq. (4.140) and Eq. (4.142) is precisely Eq. (4.141).
Therefore, we have established that the partition function Z(M,G) is independent of the
first choice.

Now consider the second choice. Suppose that all defects are conjugated by an element
h in G, i.e., all g-defects become hgh−1. We need to consider the case where h is unitary
or anti-unitary separately.

Suppose that h is unitary. First we change the labels {ai} of all anyons to { hai}.
Then we wish to prove the invariance of the partition function Z(M,G) by proving the
invariance of each individual summand of Eq. (4.44). First consider the Kirby diagram,
whose evaluation schematically takes the form(

F ·R · F ·R · · ·
)
µ1...µ2...,µ̃1...µ̃2...···

(4.143)

where µ1 . . . and µ̃1 . . . are indices corresponding to vectors and dual vectors on the anyon
diagram associated to the Kirby diagram, respectively. After relabeling, according to
Eq. (4.19) the Kirby diagram changes to∑

µ′1...µ̃
′
1...

U−1
µ1µ′1

. . . U−1
µ2µ′2

· · · ·
(
F ·R · F ·R · · ·

)
µ′1...µ

′
2...··· ,µ̃′1...µ̃′2...···

· Uµ̃′1µ̃1 . . . Uµ̃′2µ̃2 . . .(4.144)

We have suppressed all anyon labels, but pay attention that in the above formula anyon
labels in F - and R- symbols are from {ai} while anyon labels in U -symbols are from { hai}.

Now we focus on a single 1-handle. Suppose anyons labeled by {ai} cross the 1-handle
which hosts a defect labeled by g, and without loss of generality suppose that they are all
running downward in the Kirby diagram. Before the change of defects, the vector and the
dual vector assigned to the two disconnected D3 balls are |ai, . . . , {si = +1}; aĩ, . . . , {sĩ =
−1}〉µ̃... and 〈 gai, . . . , {si = +1}; gaĩ, . . . , {sĩ = −1}|µ...Kq(g), which gives the U -factor

〈 gai, . . . ;
gaĩ, . . . . . . |µ...Kq(g)ρ−1

g |ai, . . . ; aĩ, . . . 〉µ̃... = U−1
g (ai, . . . ; aĩ, . . . )µ̃...,µ... , (4.145)
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where again i and ĩ are indices to label anyons with si = +1 or si = −1, respectively. After
the change of defects (and relabeling), the vector and the dual vector assigned to the two
disconnected D3 balls are | hai, . . . , {si = +1}; haĩ, . . . , {sĩ = −1}〉µ̃... and 〈 hgai, . . . , {si =
+1}; hgaĩ, . . . , {sĩ = −1}|µ...Kq(g), which gives the U -factor

〈 hgai, . . . ; hgaĩ, . . . . . . |µ...K
q(g)ρ−1

hgh−1 | hai, . . . ; haĩ, . . . 〉µ̃... = U−1
hgh−1

(
hai, . . . ;

haĩ, . . .
)
µ̃...,µ...

.(4.146)

Together with the extra U -factor in Eq. (4.144), we have∑
µ′µ̃′

Uh(
hai, . . . ;

haĩ, . . . )µ̃µ̃′ · U−1
hgh−1(

hai, . . . ;
haĩ, . . . )µ̃′µ′ · U−1

h ( hgai, . . . ;
hgaĩ, . . . )

σ(g)
µ′µ (4.147)

Finally, after conjugation by h, anyons are now labeled by { hai}, and acted by ρ−1
hgh−1 .

Comparing with ρh ◦ ρ−1
g ◦ ρ−1

h , this gives an extra η-factor to be

∏
i

(
η hai(h,g)

η hai(hgh
−1,h)

)si
(4.148)

According to Eq. (4.23), the product of Eq. (4.148) and Eq. (4.147) is precisely Eq. (4.145),
which means that each individual summand in Eq. (4.44) is invariant.

Finally, suppose that h is anti-unitary. Then conjugation by h needs to be accompanied
by change of orientation of the manifold M.13 Then the partition function Z(M,G) is
complex conjugated under the change of orientation. The rest analysis is similar to the
case where h is unitary. Compared with Eq. (4.143) and according to Eq. (4.19), after
relabeling the Kirby diagram changes to

∑
µ′
1...µ̃

′
1...

(
U−1
µ1µ′

1
. . . U−1

µ2µ′
2
. . .
)∗

·
(
F ·R · F ·R · · ·

)
µ′
1...µ

′
2...··· ,µ̃′

1...µ̃
′
2...···

·
(
Uµ̃′

1µ̃1
. . . Uµ̃′

2µ̃2
. . .
)∗

(4.149)

Again pay attention that in the above formula anyon labels in F - and R- symbols are from
{ai} while anyon labels in U - symbols are from { hai}. Then focus on a single 1-handle.
Again suppose anyons labeled by {ai} cross the 1-handle which hosts a defect labeled by
g, and without loss of generality suppose that they are all running downward in the Kirby

13For M orientable the meaning is clear. For M non-orientable note that since we have cut across
crosscaps, we also choose an orientation of M except at the cut, where two orientations on two faces of
the cut are opposite to each other, and this is reflected in the change of the direction of the flow of anyons.
A more formal way of thinking it is via a more precise definition of G-bordism in terms of the associated
vector bundle ξ of the gauge bundle G [98], and we need to choose an orientation of TM⊕ ξ, where TM
is the tangent bundle of M, as mentioned in Footnote 3.
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diagram. After the change of defects (and relabeling), together with the extra U -factor in
Eq. (4.149), the U -factor relevant to the 1-handle becomes∑

µ′µ̃′

Uh(
hai, . . . ;

haĩ, . . . )
∗
µ̃µ̃′ · U−1

hgh−1(
hai, . . . ;

haĩ, . . . )
∗
µ̃′µ′ · U−1

h ( hgai, . . . ;
hgaĩ, . . . )

∗σ(g)
µ′µ (4.150)

Finally, after conjugation by h, anyons are now labeled by { hai}, and acted by ρ−1
hgh−1 .

Comparing with ρh ◦ ρ−1
g ◦ ρ−1

h , this gives an extra η-factor to be

∏
i

(
η hai(h,g)

η hai(hgh
−1,h)

)−si
(4.151)

According to Eq. (4.23), the product of Eq. (4.151) and Eq. (4.150) is precisely Eq. (4.145),
which means that each individual summand in Eq. (4.44) is invariant.

Therefore, we have established that the partition function Z(M,G) is invariant under
the change of defects.

4.C.3 Gauge invariance

Another important check we need to perform is the “gauge invariance” of Eq. (4.44).
Specifically, we need to prove that Eq. (4.44) is invariant under vertex basis transformation
Eqs. (4.10) and (4.18), as well as symmetry action gauge transformation Eq. (4.26). In
this sub-appendix, we explicitly perform this check.

To show the invariance under vertex basis transformation, we can think of the result
of the Kirby diagram as a giant matrix, which schematically takes the form(

F ·R · F ·R · · ·
)
µ1...µ2...··· ,µ̃1...µ̃2...···

(4.152)

where µ1 . . . and µ̃1 . . . are indices corresponding to vectors and dual vectors on the
anyon diagram associated to the Kirby diagram, respectively. Then we can schematically
write down what the giant matrix Eq. (4.152) becomes after vertex basis transformation
Eq. (4.10), which is

(Γ··
· )µ1µ′1

· · · (Γ··
· )µ2µ′2

· · · ×
(
F ·R · F ·R

)
µ′1...µ

′
2...··· ,µ̃′1...µ̃′2...···

× (Γ··
· )

†
µ̃′1µ̃1

· · · (Γ··
· )

†
µ̃′2µ̃2

· · ·(4.153)
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On the 1-handles, we have U -factors U−1
g (. . . )µ̃1...,µ1..., which under vertex basis transfor-

mation transforms according to Eq. (4.18), i.e., it becomes

(Γ··
· )µ̃1µ̃′′1

· · · × U−1
g (. . . )µ̃′′1 ...,µ′′1 ...

×
(
(Γ··

· )
†
µ′′1µ1

)∗
(4.154)

Here we substitute all anyon labels by · and hopefully they will be clear in specific contexts.
Now we immediately see that after multiplying Γ-matrices and summing over µ, µ̃ indices,
we have δµ′1µ′′1 · · · δµ̃′1µ̃′′1 · · · and the expression becomes the original expression.

Next consider symmetry action gauge transformation. Again let us focus on a single
1-handle, and without loss of generality suppose that all anyons {ai} crossing the 1-handle
are running downward in the Kirby diagram. Again, to account for the fact that some
anyons will flip the direction of the flow, we introduce an extra factor si as in Eq. (4.131).
The vector and the dual vector assigned to the two disconnected D3 balls are |ai, . . . , {si =
+1}; aĩ, . . . , {sĩ = −1}〉µ̃... and g〈ai, . . . , {si = +1}; gaĩ, . . . , {sĩ = −1}|µ...Kq(g), which
gives the U -factor

〈 gai, . . . ;
gaĩ, . . . . . . |µ...Kq(g)ρ−1

g |ai, . . . ; aĩ, . . . 〉µ̃... = U−1
g (ai, . . . ; aĩ, . . . )µ̃...,µ... , (4.155)

where i and ĩ are indices to label anyons with si = +1 or si = −1, respectively. Under the
transformation in Eq. (4.26), it becomes∏

i

(γai(g))
−si U−1

g (ai, . . . ; aĩ, . . . )µ̃...,µ... (4.156)

All {ai} crossing the 1-handle are acted by ρ−1
g , and therefore following Eq. (4.25) under

symmetry action gauge transformation we have extra γ parts:∏
i

(γai(g))
si (4.157)

Then we immediately see that the extra γ part in Eq. (4.157) exactly cancels the extra γ
part in Eq. (4.156).

Therefore, we have established that the partition function Z(M,G) is invariant under
vertex basis transformation Eqs. (4.10),(4.18) and symmetry action gauge transformation
Eq. (4.26).

4.C.4 Cobordism invariance

In order to demonstrate that the construction gives the TQFT that reflects the anomaly of
the symmetry-enriched topological order, in this sub-appendix we prove that the partition
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function in Eq. (4.44) on a closed 4-manifold M with G-bundle structure G is in fact a
cobordism invariant.

Two closed, oriented n-dimensional manifolds M and M̃ are cobordant if and only if
they are related to each other by a sequence of surgeries [111]. In 4 dimensions, cobordisms
of 4-manifolds can be generated by the following types of surgery moves:

• Removing or adding an S4.

• Replacing an S1 × D3 by S2 × D2 and vice versa. Note that they have the same
boundary S1 × S2.

• Replacing S0×D4 by D1×S3 and vice versa. Note that they have the same boundary
S0 × S3.

In the Crane-Yetter model, in order to prove that the partition function is a cobordism
invariant, we need to prove that the pratition function Z(M) is invariant under these three
surgery moves.

Now in the presence of G-bundle structure G, we need to consider G-bordism [69, 99],
and therefore we need to pay special attention to whether defects can be extended or not
during the surgery. Let us enumerate the effect of the three surgery moves one by one.

• Removing or adding an S4.
This surgery move will not involve G-defects because S4 is simply connected (i.e.,
π1(S

4) = 0) and a G-bundle on it must be trivial. Then the partition function is
invariant because we can directly see from Eq. (4.44) that Z(S4) = 1.

• Replacing an S1 ×D3 by S2 ×D2 and vice versa.
We can interpret this surgery move as “trading” a 1-handle with a 2-handle as follows.
Decompose S1 into S1

+ and S1
− which are both homeomorphic to D1. Interpret the

S1
+ ×D3 part as a 1-handle that is attached to S1

− ×D3 which is interpreted as a 0-
handle. (Now we do not assume that there is only 1 0-handle.) Similarly, decompose
S2 into S2

+ and S2
− which are all homeomorphic to D2. Interpret the S2

+ ×D2 part
as a 2-handle that is attached to S2

− ×D2 which is interpreted as a 0-handle. Then
before and after the surgery move that replaces an S1 ×D3 by S2 ×D2, a 1-handle
is removed and a 2-handle is added.
An important observation is that for a G-bordism, there can be no G-defect that is
put on the 1-handle before the trading. This fact can be proven as follows. Consider
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S1 × {pt} ⊂ S1 × ∂(D3) ∼= S1 × S2, which is a loop that survives before and after
the trading. Even though it can be a noncontractible loop before the trading, it is
a contractible loop after the trading, because we can shrink it to a point as it lives
on the boundary of the 2-handle D2 ×D2. Therefore, G-bordism demands that no
g-defect can be present on such S1 loop.
It is immediate that now we can carry over the proof of the invariance in the Crane-
Yetter model [95] to prove the invariance of Z(M,G) under the surgery move.

• Replacing S0 ×D4 by D1 × S3 and vice versa.
We can interpret this surgery move as adding a 1-handle and removing a 4-handle.
Note that we can introduce some G-defect as well, including crosscap, to the newly
introduced non-contractible cycle.
To consider the effect of this surgery move, we can choose a handle decomposition
such that S0 × D4 before the surgery move are two 4-handles. Then D1 × S3 can
be thought of as a 1-handle and a 4-handle. In particular, no 2-handle is attached
to the newly introduced 1-handle. We can also directly see this by noting that the
cycle corresponding to the newly introduced 1-handle is a free generator in π1(M̃),
therefore we can make handle moves such that no 2-handle touches the 1-handle. It is
then straightforward to see that the partition function is invariant under the handle
move just by inspecting Eq. (4.44). Namely, after replacing S0 × D4 by D1 × S3,
N4 is decreased by 1 while N1 is increased by 1. Moreover, all other factors do not
change. Therefore, the partition function Z(M,G) is invariant under the surgery
move.

Therefore, we have established that the partition function Z(M,G) is invariant under
G-bordism.

4.C.5 Invertibility

A TQFT is invertible if on every closed 4-manifold the partition function is a pure phase fac-
tor, and on every closed 3-manifold N the associated vector space V(N ) is one-dimensional.
We prove that Eq. (4.44) is indeed a pure phase factor on closed 4-manifolds, due to the
cobordism invariance proved previously. To see it, first note that there is a Z piece in
ΩSO

4 (BG) when G contains unitary symmetry only, the generator of which is CP2 with
trivial G-bundle structure on it. Moreover, the partition function Z(CP2) is a pure phase
factor (see Eq. (4.47)). If G is finite, besides the Z piece in ΩSO

4 (BG) when G contains
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unitary symmetry only, all elements in the relevant bordism group are torsion elements.
Accordingly, several copies of M together with G-bundle structure G on it have to be bor-
dant to S4 with trivial G-bundle structure on it. Since Z (S4) = 1 from Appendix 4.A.4,
the norm of Z(M,G) has to be 1. This further means that the anomaly indicators we
calculate have norm 1, which is not at all obvious from the explicit formulae, as given by,
for example, Eqs. (4.50),(4.53),(4.55). Now we see that they actually take values only in
±1.

As a side remark, according to a theorem by Freed and Teleman from Ref. [126] (see
footnote 10 therein), in order for a fully-extended TQFT to be invertible, we just need to
prove that Z(S4) is nonzero and V(S1 × S2) as well as V(S3) are all 1-dimensional. They
are all straightforward to check for the theory proposed in Sec. 4.2.2.

4.C.6 Generalization to connected Lie groups

In this sub-appendix, we generalize the consideration to connected Lie groups G, and prove
that the partition function Z(M,G) in Eq. (4.65), defined on a target manifold M together
with a G-bundle structure G on it with associated map f : M → BG, is a well-defined
partition function as well. Given the results from the Crane-Yetter model, we just need to
focus on η-factors, which greatly simplifies the analysis.

• Independence on the handle decomposition
In order to prove the independence of the partition function Z(M,G) on the handle
decomposition, again we just need to show its invariance under all handle moves.
Moreover, we also just need to focus on the handle moves that explicitly alter η-
factors. Such handle moves contain 2-2 handle slides only, which are illustrated in
Fig. 4.16.
Let us put anyon a on the red 2-handle and anyon b on the yellow 2-handle. Suppose
that the yellow 2-handle corresponds to a 2-chain [h] of M. Then if we fuse a and b
into another anyon c, the extra η-factors for the red 2-handle and the yellow 2-handle
become

Ma,w(f∗[h])Mb,w(f∗[h]) =Mc,w(f∗[h]), (4.158)

consistent with the expression before the handle slide.

• Independence on the choice of f : M → BG
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The prescription to write down the η-factors explicitly uses a specific choice of f :
M → BG. Yet two maps f : M → BG and f̃ : M → BG that are homotopic to each
other should give rise to a topologically equivalent bundle G. Because f and f̃ are
homotopic to each other, for a 2-handle with its associated 2-chain [h], f∗[h] and f̃∗[h]
should be related to each other by some 3-chain v, i.e., f∗[h] = f̃∗[h]+∂v. Therefore,
given the symmetry fractionalization class w ∈ H2(G,A), w(f∗[h]) = w(f̃∗[h]) and
η-factors are indeed independent of the specific choice of f : M → BG.

• Cobordism invariance
To prove that the partition function is a cobordism invariant, we also need to prove
that the partition function Z(M,G) is invariant under the three surgery moves.
Especially, the first surgery move, i.e., removing or adding an S4, does not change
the partition function because we can directly see from Eq. (4.65) that Z(S4,G) = 1,
no matter what G-bundle G we put on S4. The third surgery move does not involve
any 2-handles. The second surgery move, i.e., replacing an S1 ×D3 by S2 ×D2 and
vice versa, involves a 2-handle. Now consider S2×{pt} ⊂ S2×∂(D2) ∼= S2×S1. Such
an S2 lives on the boundary of D3 before the surgery, hence the G-bundle on this
S2 can be thought of as trivial. Denoting the 2-chain associated to the 2-handle by
[h], we then see that f∗[h] is accordingly also trivial and thus no η-factor is involved.
This argument is in a similar spirit to the argument presented in Appendix 4.C.4.
Now we can carry over the proof of cobordism invariance in the Crane-Yetter model
to prove cobordism invariance of Z(M,G) under the surgery moves.

• Invertibility
For torsion elements in ΩSO

4 ((BG)q−1), cobordism invariance and the fact that Z(S4) =
1 from Eq. (4.65) also dictate that the norm of the partition function Z(M,G) on
such manifolds is 1. However, for a connected Lie group G, there can be many
Z pieces in ΩSO

4 ((BG)q−1) which do not correspond to CP2 with trivial G-bundle
structure. We conjecture that partition functions of these manifolds according to the
construction in Eq. (4.65) still have norm 1, but we do not have a direct proof (but
see Appendix 4.C.5 for an argument based on properties of a fully-extended TQFT).

4.D Identifying the manifold M from bordism

In this appendix, we say more about which (3+1)D manifolds M concern us, given a
symmetry group G equipped with a Z2 grading q : G→ Z2 to denote anti-unitary elements
as in Eq. (4.15).
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First of all, the manifolds M should be the generating manifolds of ΩSO
4 ((BG)q−1)

[69, 98], which we define in detail below by identifying its tangential structure.
Let H be the tangential structure that concerns us, given the symmetry group G

together with a Z2 grading q to denote anti-unitary symmetries. Then for any integer n
we have

1 G/Z2 Hn On 1

1 G/Z2 G Z2 1

∼= det

q

(4.159)

where det denotes the determinant map. Here H is a nontrivial extension of O by G/Z2,
and Hn → G is the pullback of the determinant map det : On → Z2 by the Z2 grading
q : G → Z2. In this paper we use ΩSO

4 ((BG)q−1) to denote the bordism group with this
tangential strcutrure H.

An informative example is when G is ZT4 with the generator of Z4 an anti-unitary sym-
metry. Then q : ZT4 → Z2 is just the projection from Z4 to Z2. According to Eq. (4.159),
we see that H is a nontrivial extension of O by Z2. But pay attention that H is not
the same as Pin+ or Pin−, because the extension for H corresponds to w2

1 in H2(On,Z2),
while the extension for Pin+ or Pin− corresponds to w2 or w2 + w2

1 in H2(On,Z2), re-
spectively. Accordingly, for G = ZT4 the manifold M as the generator of the bordism
group ΩSO

4 ((BG)q−1) should have w2
1 = 0. It is also straightforward to see that when G is

ZT2 ×ZT2 , H is a trivial extension of O by Z2. Given H2(On,Z2) ∼= Z2 ×Z2, we have listed
all tangential structures associated to the four extensions of On by Z2.

From the right box in Eq. (4.159), we also see that H-tangential structure is equivalent
to a (BG, q)-twisted orientation of M, hence the notation ΩSO

4 ((BG)q−1). Namely, to
identify some H-structure on M, we can first put a principal G bundle G on M. The
map q : G→ Z2 induces an associated 1-dimensional line bundle on M that we denote by
ξ, then we must have w1(ξ) = w1(M) and we need to choose an orientation of ξ ⊕ TM,
where TM is the tangent bundle of M.

Secondly, it turns out that most elements in the group are “in-cohomology” in the
following sense. When G only contains unitary symmetry, ΩSO

4 (BG) contains a special
Z piece, generated by CP2. When G also contains anti-unitary symmetry, ΩSO

4 ((BG)q−1)
contains a special Z2 piece, also generated by CP2. The rest elements are (Pontraygin)
dual to the image of the natural map from group cohomology to cobordism group, i.e.,

H4(BG,U(1)q) −→ Ω4
SO((BG)

q−1), (4.160)
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where q as subscript of U(1) denotes the nontrivial G action on U(1) associated with
q. Therefore, we call the Z piece or Z2 piece “beyond-cohomology”, while the rest piece
“in-cohomology” [27].

Therefore, as an easier step to identify a complete list of (3+1)D manifolds needed for
the calculation, first we calculate H4(BG,U(1)q) and identify a set of generators Oi. For
G containing unitary symmetry only, we proceed by searching for some oriented manifold
Mi together with a map fi : Mi → BG corresponding to some G-bundle for each i, such
that f ∗(Oi) is dual to the fundamental cycle [Mi] ∈ H4(Mi,Z).

For G containing anti-unitary symmetry, we also need to search for some manifold Mi

together with a map fi : Mi → BG corresponding to some G-bundle for each i, with the
following two constraints:

1. The following diagram commute

Mi BG

BZ2

w

fi

q (4.161)

where w is the map corresponding to the orientation bundle. In particular, we allow
Mi to be non-orientable.

2. f ∗(Oi) is dual to the twisted fundamental cycle [Mi] ∈ H4(Mi,Zw) twisted by the
orientation character w [69].

We call such a manifold Mi (together with a G-bundle structure Gi on it) a representative
manifold of Oi. Moreover, we also need CP2 for the “beyond-cohomology” piece of the
bordism group.

Finally, we refer the reader to Ref. [92] for an algorithm to get the cellulation of the
representative manifolds given a finite symmetry group G.

4.E More information about handle decomposition of
manifolds

In this appendix, we give more information about the handle decomposition of various
manifolds that appear in the main text, i.e., those manifolds listed in Table 4.1. More
information about them can be found in Refs. [111, 112].
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4.E.1 CP2

Let us start with CP2. The manifolds CPn have a handle decomposition with n+1 handles.
There is one handle of each even index from 0 to 2n. Such a decomposition for CPn can
be constructed as follows. Recall that each point p ∈ CPn has homogeneous coordinates
[z0 : · · · : zn], zi ∈ C, which we can normalize so that maxi |zi| = 1. Let D be the closed
unit disk in C, which is homeomorphic to D2 = [−1, 1]2. Then CPn can be covered by
n+ 1 balls Dn through the following map

ψi : Dn → CPn, i = 0, . . . , n, (4.162)

where

ψi(z1, . . . , zn) = [z1 : · · · : zi : 1 : zi+1 : · · · : zn] (4.163)

Let the image of Dn under the map ψi be B2i. Then p ∈ B2i if and only if |zi| = 1, and
p ∈ int B2i if and only if |zj| < 1 for all j 6= i. It follows immediately that the balls B2i

cover CPn, and that they only intersect along their boundaries. Moreover, B2k intersects
∪i<kB2i precisely on ψk(∂(Dk) × Dn−k). Therefore, we can interpret B2k as a 2k-handle
attached to ∪i<kB2i, exhibiting the required handle decomposition.

Now specialize to CP2. To draw the Kirby diagram as in Eq. (4.45) we just need to
understand the appearance of the topological twist reflecting the self-intersection number
+1. We can see the fact from the intersection form of CP2, which is [+1]. We can
also directly determine the attaching region of the 2-handle. A point p in B0 ∩ B2 can
be written in two ways: p = ψ0(w1, w2) = [1 : w1 : w2] and p = ψ1(z1, z2) = [z1 :
1 : z2]. Comparing homogeneous coordinates, we find that w1 = z−1

1 and w2 = z−1
1 z2,

so φ(z1, z2) = (z−1
1 , z−1

1 z2) defines the attaching map φ : ∂D × D → ∂D × D ⊂ ∂B0.
Parametrize z1 = e2πit, 0 ≤ t ≤ 1, as we travel once around ∂D, t goes from 0 to 1
while the identification of the fibers (z2 7→ e−2πitz2) rotates once, realizing a generator
of π1(O(2)) ∼= Z. As a result, there is a +1 framing of the 2-handle, reflecting the self-
intersection number +1.

4.E.2 RP4

The handle decomposition of manifolds RPn is very similar to CPn. The manifolds RPn
have a handle decomposition with n + 1 handles. There is one handle of each index from
0 to n. A decomposition for RPn can be constructed from the construction of CPn simply
by changing C to R and D to D. More specifically, recall that each point p ∈ RPn
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has homogeneous coordinates [x0 : · · · : xn], xi ∈ R, which we can normalize so that
maxi |xi| = 1. Then RPn can be covered by n+ 1 balls Dn through the following map

ψi : D
n → RPn, i = 0, . . . , n, (4.164)

where

ψi(x1, . . . , xn) = [x1 : · · · : xi : 1 : xi+1 : · · · : xn] (4.165)

Let the image of Dn under the map ψi be Bi. Then we see that Bi as an i-handle is the
required handle decomposition.

Now specialize to RP4. To draw the Kirby diagram as in Fig. 4.7 we need to determine
the self-intersection number of the line reflecting the 2-handle. We can see this from
the mod-2 intersection form of RP4, which is [+1]. We can also directly determine the
attaching region of the 2-handle. A point p in ∂(D2) × D2 ⊂ ∂B2 can be written as:
p = ψ2(x1, x2, x3, x4) = [x1 : x2 : 1 : x3 : x4] and either |x1| = 1, p ∈ ∂B0 or |x2| = 1, p ∈
∂B1. Comparing the fibre (x3, x4), we see that when we travel along the boundary ∂(D2),
(x3, x4) changes sign twice after the identification. As a result, there is a +1 framing of
the 2-handle as well.

Notice that when attaching a 2-handle to a 1-handle, the framing may not be a well-
defined integer because some isotopy involving the 1-handle may change the framing. But
it is a well-defined integer mod-2 [112].

4.E.3 RP3 × S1

The handle decomposition of a product manifold A × B is easy to achieve if we know
the handle decomposition of A and B individually. In this way, we can get the handle
decomposition of RP3 × S1 and RP2 × RP2 that concerns us in this thesis.

For RP3×S1, the handle decomposition of RP3 has been worked out in Appendix 4.E.2,
which consists of 1 0-handle, 1 1-handle, 1 2-handle and 1 3-handle, and the handle de-
composition of S1 can just consist of 1 0-handle D1 and 1 1-handle D1 attached along the
two end points. Therefore, the handle decomposition of RP3 × S1 consists of 1 0-handle,
2 1-handle, 2 2-handle, 2 3-handle and 1 4-handle, and the Kirby diagram is drawn in
Fig. 4.7. The blue 1-handle comes from the product of 0-handle of S1 and 1-handle of
RP3, and the darkblue 1-handle comes from the product of 0-handle of RP3 and 1-handle
of S1. The orange 2-handle comes from the product of 0-handle of S1 and 2-handle of RP3,
and we can determine its framing either by mod-2 intersection form or from the Heegard
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diagram of RP3. Finally, the red 2-handle comes from the product of 1-handle of S1 and
1-handle of RP1. The explicit ways of drawing the 2-handles on the Kirby diagram can be
worked out by following closely the construction of the handle decomposition.

4.E.4 RP2 × RP2

The handle decomposition of RP2×RP2 can be achieved in a similar manner to RP3×S1.
Specifically, the handle decomposition of RP2 has been worked out in Appendix 4.E.2,
which consists of 1 0-handle, 1 1-handle and 1 2-handle. Therefore, the handle decom-
position of RP2 × RP2 consists of 1 0-handle, 2 1-handle, 3 2-handle, 2 1-handle and 1
4-handle, and the Kirby diagram is drawn in Fig. 4.10. The blue 1-handle and the red
2-handle come from one RP2 piece while the darkblue 1-handle and the orange 2-handle
come from the other RP2 piece. There is another sanddune 2-handle, coming from the
product of 2 1-handles of two RP2 pieces. The explicit ways of drawing the 2-handles on
the Kirby diagram can be worked out by following closely the construction of the handle
decomposition.
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Chapter 5

Emergibility of Symmetry-Enriched
Quantum Criticality

Motivated by the study of quantum magnetism, we collect the results in Chapter 2 and
Chapter 3 to study the emergibility of Stiefel Liquids in (2+ 1)-d lattice systems, utilizing
the hypothesis of emergibility. We will focus on lattice systems with GUV = Gs × Gint

symmetry, where Gs is p4m or p6m, and Gint = O(3)T ≡ SO(3) × ZT2 , the product of
spin rotation and time reversal symmetries. We further demand that the PR type of the
system correspond to half-integer spin, i.e., spinor under SO(3) while Kramers doublet
under ZT2 , which implies that the (1 + 1)-d SPT related to the LSM constraints has a
TPF exp

(
iπ
∫
M2

(w
SO(3)
2 + t2)

)
= exp

(
iπ
∫
M2
w
O(3)T

2

)
. For the IR effective theory, we

focus on DQCP, DSL, and the simplest non-Lagrangian SL, denoted by SL(7). We will
exhaustively search SEP that can match the anomalies of these IR theories with the LSM
anomalies on these lattices, assuming that the IR theories can emerge as a consequence of
the competition between a magnetic state (a state that breaks the SO(3) spin rotational
symmetry, e.g., a Neel state) and a non-magnetic state (an SO(3) symmetric state, e.g.,
a valance bond solid (VBS)). We will utilize the hypothesis of emergibility discussed in
Section 1.3 to obtain various realizations.

This chapter is adapted from Ref. [1].
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5.1 Methods of Calculation

The IR theory we want to analyze is SL proposed in Ref. [15] and discussed in Chapter 3.
For the reader’s convenience, first we collect the symmetry and anomaly of SLs relevant
to our calculation. See Chapter 3 and Ref. [15] for more details.

The DOF of SL(N) is represented by an N×(N−4) matrix n with orthonormal columns.
The symmetry GIR of SL(N) includes Poincaré symmetry and

O(N)T ×O(N − 4)T

Z2

(5.1)

The O(N) acts as n → Ln with L ∈ O(N), and the O(N − 4) acts as n → nR with
R ∈ O(N − 4). The superscript “T” represents the locking between an improper rotation
of either O(N) or O(N − 4) and a spacetime orientation reversal action. The Z2 subgroup
that is modded out is generated by (−IN ,−IN−4) ∈ O(N)×O(N − 4) since they have no
action on n.

The anomaly of SL(N) is captured by ΩIR, an element in H4(GIR,U(1)ρ). It is useful to
consider the projection from G̃IR ≡ O(N)T × O(N − 4)T to GIR, and the pullback of ΩIR

induced by the projection is given by Ω̃IR = eiπL̃IR ∈ H4(G̃IR,U(1)ρ), where

L̃IR = w
O(N)
4 + w

O(N−4)
4 +

[
w
O(N−4)
2 +

(
w
O(N−4)
1

)2](
w
O(N)
2 + w

O(N−4)
2

)
+
(
w
O(N−4)
1

)4
(5.2)

supplemented with a constraint wTM1 +w
O(N)
1 +w

O(N−4)
1 = 0 (mod 2), which originates from

the locking condition. Here wO(N)
i , wO(N−4)

i and wTMi are the i-th Stiefel-Whitney classes
of the O(N), O(N − 4) gauge bundles and the tangent bundle of the spacetime manifold,
respectively. Again, for even N , Ω̃IR misses some important information. Fortunately, it
turns out that Ω̃IR is still adequate for the following discussion, even for the case with
N = 6 (see Appendix 5.A.2 and discussions below Eq. (5.44)). Below we will view Ω̃IR as
the IR anomaly of SLs and omit the tilde symbol, i.e., we rewrite Ω̃IR and L̃IR as ΩIR and
LIR for simplicity.

We are interested in the stability of these states in a specific lattice realization, whose
symmetry is GUV. Some perturbations that are not GIR-symmetric can be GUV-symmetric
and drive the states unstable. For a realization to be stable, we demand that GUV forbid
all the relevant perturbations mentioned in Section 3.4 that change the emergent order of
the state.

153



Now we sketch a streamlined method to check the emergibility condition Eq. (1.2), for
a given symmetry embedding pattern (SEP) φ. This method crucially relies on the fact
that H4(GUV,U(1)ρ) = Zk2 with some k ∈ N, which always holds if GUV = G′ × ZT2 with
some group G′. In our case, G′ = Gs × SO(3). More generally, as long as GUV = G′ × ZT2
for any G′, we expect this method to be useful in matching the LSM anomaly of a lattice
system with the anomaly of any IR effective theories. This subsection is relatively formal
and abstract, and readers more interested in the physical results can skip to the next
section.

To motivate this method, first note that ΩUV and φ∗(ΩIR) are elements inH4(GUV,U(1)ρ).
To compare two elements in H4(GUV,U(1)ρ), generically we need a complete set of topo-
logical invariants (or some equivalents) for H4(GUV,U(1)ρ), which is often difficult to
obtain. This difficulty comes from the fact that we are considering cohomology with U(1)
coefficients.

Nevertheless, simplification occurs when GUV = G′ × ZT2 and hence H4(GUV,U(1)ρ) =
Zk2 with some k ∈ N. This enables us to connect ΩUV and φ∗(ΩIR) to elements in
H∗(GUV,Z2), which simplifies the analysis due to the salient features of cohomologies
with Z2 coefficients.

To see the connection to H∗(GUV,Z2), first recall that ΩUV takes the form of Eq. (2.1).
We can view λ and η as elements in H2(Gs,Z2) and H2(Gint,Z2), respectively. Then
λ(l1, l2)η(a3, a4) is in fact the cup product λ∪η 1, which is an element in H4(GUV,Z2) that
we denote by LUV. As a group, here the group operation of two elements in H4(GUV,Z2)
is realized as the mod 2 addition of the representative cochains of these elements, which
take values in Z2 = {0, 1}. Then ΩUV can be written as eiπLUV , or more formally as ĩ(LUV),
where ĩ is a map induced by the inclusion i : Z2 → U(1) introduced in Eq. (A.13). That
is, the LSM anomaly ΩUV can be expressed as an image of an element LUV ∈ H4(GUV,Z2)
under ĩ. 2

Furthermore, there is an injective map from H4(GUV,U(1)ρ) to H5(GUV,Z2), given
by p̃ ◦ β, i.e., the combination of the Bockstein homorphism β : H4(GUV,U(1)ρ) →
H5(GUV,Zρ) and an injective map p̃ : H5(GUV,Zρ) → H5(GUV,Z2) (see Appendix A.2
for a brief introduction of these maps). Here the fact that p̃ is injective is again guaranteed
by H4(GUV,U(1)ρ) = Zk2, which is crucial for this method. This means that checking Eq.
(1.2) is equivalent to checking

(p̃ ◦ β)ΩUV = (p̃ ◦ β)φ∗(ΩIR) (5.3)
1More specifically, the cross product λ× η, defined in Eq. (A.23) in Appendix A.3.
2In fact, since GUV = G′ × ZT

2 , which implies that Hn(GUV,U(1)ρ) = Zk
2 for any n ∈ N, any element

in Hn(GUV,U(1)ρ) can be written as the image of an element in Hn(GUV,Z2) under ĩ.
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where both sides are elements in H5(GUV,Z2).
Now we discuss the relevant simplifying features of cohomology with Z2 coefficient.

First, for any group G, H∗(G,Z2) has a ring structure, where the addition is the mod 2
addition as above, and the multiplication between two elements is realized as their cup
product. The entire cohomology ring H∗(G,Z2) can be presented by generators and re-
lations, such that any of its elements can be written as sum of cup products of these
generators, while the relations dictate that some sums are in fact the trivial element.

Moreover, H∗(Gs × Gint,Z2) ∼= H∗(Gs,Z2) ⊗H∗(Gint,Z2) for any Gs and Gint, which
allows us to understand H∗(Gs ×Gint,Z2) by understanding H∗(Gs,Z2) and H∗(Gint,Z2)
separately.

We are interested in the case with Gint = O(3)T ≡ SO(3) × ZT2 . The cohomology
ring H∗(O(3)T ,Z2) is generated by the Stiefel-Whitney classes of O(3)T , i.e., wO(3)T

1 ∈
H1(O(3)T ,Z2), wO(3)T

2 ∈ H2(O(3)T ,Z2) and w
O(3)T

3 ∈ H3(O(3)T ,Z2), with no relation
among the generators. Sometimes we also need to write H∗(O(3)T ,Z2) as H∗(SO(3),Z2)⊗
H∗(ZT2 ,Z2), where H∗(SO(3),Z2) is generated by the Stiefel-Whitney classes wSO(3)

2 and
w
SO(3)
3 of SO(3), and H∗(ZT2 ,Z2) is generated by t ∈ H1(ZT2 ,Z2). These two sets of

generators are related by

w
O(3)T

1 = t

w
O(3)T

2 = w
SO(3)
2 + t2

w
O(3)T

3 = w
SO(3)
3 + tw

SO(3)
2 + t3 (5.4)

As for H∗(Gs,Z2), we have calculated the Z2 cohomology ring, i.e., the generators and
relations, of all 17 wallpaper groups (see Appendix 2.D). It turns out that for all wallpaper
groups Gs except p4g, all generators belong to H1(Gs,Z2) and H2(Gs,Z2). For p4g, besides
elements in H1(p4g,Z2) and H2(p4g,Z2), another element in H3(p4g,Z2) is also needed to
form a complete set of generators.

The above observations motivate us to consider the following diagram, where each
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rectangular sub-diagram is commuting 3:

H4(GIR,Z2) H4(GIR,U(1)ρ) H5(GIR,Zρ) H5(GIR,Z2)

H4(GUV,Z2) H4(GUV,U(1)ρ) H5(GUV,Zρ) H5(GUV,Z2)

φ∗

ĩ

φ∗

β

φ∗

p̃

φ∗

ĩ β p̃

(5.5)

From the commutativity of the diagram, checking Eq. (5.3) is equivalent to checking

SQ1(LUV) = φ∗(p̃ ◦ β)(ΩIR) (5.6)

in H5(GUV,Z2), where

SQ1 ≡ p̃ ◦ β ◦ ĩ. (5.7)

Some important properties and calculations of SQ1 are given in Appendix A.4. Because
of the salient features of cohomologies with Z2 coeffiecients, checking Eq. (5.6) is expected
to be simpler than directly checking Eq. (1.2) for a generic IR effective theory.

For SLs, a further simplification takes place since ΩIR = eiπLIR ∈ H4(GIR,U(1)ρ) for
SLs. Here LIR can also be viewed as an element in H4(GIR,Z2), in a way similar to
LUV ∈ H4(GUV,Z2). Then ΩIR is the image of LIR under the map ĩ : H4(GIR,Z2) →
H4(GIR,U(1)ρ). Therefore, Eq. (5.6) becomes

SQ1(LUV) = φ∗(SQ1(LIR)) (5.8)

Below we will use this equation to check the emergibility of various SLs. We remark that
to check Eq. (1.2), one may attempt to check if LUV = φ∗(LIR). However, since ĩ is
not injective, this is just a sufficient but unnecessary condition of Eq. (1.2). As we have
checked, LUV 6= φ∗(LIR) in many examples where Eq. (5.8) holds.

5.1.1 Example: anomaly matching for DQCP

To make this discussion more concrete, we showcase this method in a concrete example in
detail (see Appendix 5.A for more examples, including an example in (1 + 1)-d).

3The reason to use dashed lines to connect the left corner of the diagram to the rest is because
H4(GIR,Z2) is relevant in this analysis only for theories like SLs, where ΩIR is the image of an ele-
ment in H4(GIR,Z2) under ĩ. For a generic IR effective theory, the left corner is irrelevant to the analysis
of anomaly-matching. See Appendix 5.A.1 for an IR effective theory (the SU(2)1 CFT) where this is the
case.
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Consider the classic realization of DQCP (SL(5)) on a square lattice [18, 19, 21]. For
DQCP, GIR = O(5)T and Eq. (5.2) becomes

ΩIR ≡ exp(iπLIR) = exp
(
iπw

O(5)
4

)
. (5.9)

In this realization, GUV = p4m×O(3)T and the SEP φ reads [15, 21],

T1 →

 −I3
−1

1

 , T2 →

 −I3
1

−1

 ,

C4 →

 I3
1

−1

 , M →

 I3
−1

1

 ,

O(3)T →
(
O(3)T

I2

)
,

(5.10)

where Ik denotes the k × k identity matrix. Note that the locking between the spacetime
orientation reversals and improper rotations of O(5) is satisfied above. The LSM anomaly
Eqs. (2.1) or (2.2) in this case can be written as

ΩUV ≡ exp(iπLUV) = exp
(
iλ1w

O(3)T

2

)
(5.11)

where λ1 ∈ H2(p4m,Z2) triggers αp4m1 in Eq. (2.7), i.e., define ω1 ≡ ĩ(λ1) = eiπλ1 , then
αp4m1 [ω1] = −1 while αp4mi [ω1] = 1 for i = 2, . . . , 6. As a concrete realization of the DQCP,
Eq. (1.2) must hold. Below we check it by checking its equivalent form, Eq. (5.8).

According to Appendix A.2,

SQ1(LIR) = w
O(5)
5 , (5.12)

and

SQ1(LUV) = λ1w
O(3)T

3 , (5.13)

where wO(3)T

3 = w
SO(3)
3 + tw

SO(3)
2 + t3 and t ∈ H1(ZT2 ,Z2) corresponds to the gauge field of

time reversal symmetry ZT2 , when pulled back to the spacetime manifold M4.
It remains to calculate the pullback φ∗(SQ1(LIR)). Since the embedding φ is block-

diagonal with a 3 × 3 block and a 2 × 2 block, invoking the Whitney product formula,
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w
O(5)
5 = w

O(3)
3 w

O(2)
2

4, we get

φ∗ (SQ1(LIR)
)
= φ∗

(
w
O(3)
3

)
∪ φ∗

(
w
O(2)
2

)
(5.14)

Hence we just need to calculate φ∗(w
O(3)
3 ) and φ∗(w

O(2)
2 ). The calculation of φ∗(w

O(3)
3 ) is

straightforward,

φ∗
(
w
O(3)
3

)
= w

SO(3)
3 + (t+ Ax+y)w

SO(3)
2 + (t+ Ax+y)

3, (5.15)

where Ax+y ∈ H1(p4m,Z2) corresponds to the sum of gauge fields of T1 and T2, when
pulled back to the spacetime manifold M4 (see Appendix 2.D).

The pullback of wO(2)
2 needs more consideration. As φ∗

(
w
O(2)
2

)
∈ H2(p4m,Z2), it is

completely determined by its action on the 6 topological invariants identified in Eqs. (2.7)
and (2.8), i.e., αp4mi [ω] with ω = ĩ(φ∗(w

O(2)
2 )), for i = 1, · · · 6. To obtain αp4mi [ω], consider

the six Z2 subgroups, denoted by Z(i)
2 with i = 1, · · · , 6, generated by C2, T1C2, T1T2C2,

M , T1M and C4M , respectively. Their embedding into O(2) reads:

C2 →
(

−1
−1

)
, T1T2C2 →

(
1

1

)
T1C2 →

(
1

−1

)
, M →

(
−1

1

)
T1M →

(
1

1

)
, C4M →

(
1

1

)
.

The pullback under the embedding Z(i)
2 → O(2) results in an element in H2(Z(i)

2 ,Z2) = Z2,
which is precisely detected by the topological invariant αp4mi [ω]. Calculating these six
pullbacks via the Whitney product formula, we find αp4m1 [ω] = −1, while other topological
invariants are +1. Hence, we establish that 5

φ∗(w
O(2)
2 ) = λ1 (5.16)

4Technically speaking, what we are doing is factorizing φ into an embedding φ̃ : GUV → O(3) × O(2)
composed with an embedding φ0 : O(3) × O(2) → O(5). Then this equation should be thought of as the
pullback of wO(5)

5 under φ0, which can be proven by considering the diagonal Z5
2 symmetry. In this thesis

we will omit this fine detail for simplicity.
5In practice, to obtain this result, it suffices to only consider the pmm subgroup and Z2 subgroup

generated by C4M , as argued in Section 2.2.2. Since the embedding of pmm is also in the diagonal form,
the calculation is as straightforward.

158



Finally, combining Eqs. (5.13-5.16) and λ1Ax+y = 0, a relation among the cohomology
generators in H∗(p4m,Z2) (see Appendix 2.D), we establish that Eq. (5.8) indeed holds,
as expected.

We mention that some previous works have performed anomaly-matching for this ex-
ample, but some of them only did it by restricting both GUV and GIR to a few subgroups
[38], and some used non-rigorous method [15]. To the best of our knowledge, the analysis
above is the first that performs this anomaly-matching via a rigorous method, while keep-
ing track of the full GUV and GIR. When checking emergibility below, we always maintain
such completeness and rigor.

5.2 Deconfined quantum critical point and quantum
critical spin liquids

With the formalism developed in the previous sections, we perform an exhaustive search of
realizations of SL(N=5,6,7) that can match certain LSM constraints on lattice spin systems
with p6m×O(3)T or p4m×O(3)T symmetry, if this realization is adjacent to a magnetic
state and a non-magnetic state (this means that the SO(3) symmetry acts on some but not
all entries of n, the N × (N − 4) matrix representing the DOF of SL(N)). This search can
be efficiently done using a computer, and the complete results can be found in the attached
codes [127] with the help of Appendix 5.B. The numbers of different types of realizations
are in Table 5.1, where each row represents a distinct LSM constraint, or lattice homotopy
class, labeled by the IWP that hosts half-integer spins (see Figs. 2.1 and 2.2 for the symbols
of IWP), and 0 means there is no nontrivial LSM constraint, which applies to systems with
integer-spin moments or honeycomb lattice half-integer spin systems. Note that for p4m,
situations a and b always have the same number of realizations in each case, since they
both correspond to square lattice half-integer spin systems and they are related to each
other via a redefinition of the C4 center. However, these two situations should still be
viewed as distinct, because they cannot be smoothly deformed into each other once the
p4m symmetry is specified, which means, in particular, the C4 centers are fixed. The same
holds for situations a&c and b&c. In terms of symmetry-enriched quantum criticality, we
have found 12 different p6m × O(3)T symmetry-enriched DQCP, 105 + 1 = 106 different
p6m × O(3)T symmetry-enriched DSL, 705 + 14 = 719 different p6m × O(3)T symmetry-
enriched SL(7), 26 different p4m×O(3)T symmetry-enriched DQCP, 372+1 = 373 different
p4m× O(3)T symmetry-enriched DSL, and 3819− 27 + 29 = 3821 different p4m× O(3)T

symmetry-enriched SL(7). The reason for subtracting 27 in the last case is explained at the
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end of this section. Many of these realizations are unstable, in the sense that they require
fine-tuning due to the existence of one or more microscopic symmetry allowed relevant
operators (see Appendix 5.C for all stable realizations on various systems).

Below we present some interesting examples. To the best of our knowledge, none of
these examples has been discussed before. When we discuss a realization of a SL, we will
also comment on its nearby phases, which are often (but not always) some simple ordered
states and relatively easy to detect. This provides useful guide for the search of an SL,
since if such an ordered state can be found in a material or model, perturbing this ordered
state may result in an SL. A smoking-gun signature of the SLs is their large emergent
symmetries, which can manifest themselves in a set of singular correlation functions with
the same critical exponent. Moreover, for all classical regular magnetic orders [128], i.e.,
classical magnetic orders in which any broken lattice symmetry can be compensated by a
spin operation (see Appendix 5.D for their spin configurations), we identify the numbers
of realizations of SLs adjacent to them (see Table 5.2).

In this section, we focus on realizations where the most relevant spinful excitations have
spin-1. In particular, we describe examples of realizations of DQCP as a (pseudo-)critical
point, which has a single relevant perturbation allowed by the microscopic symmetries,
and stable realizations of DSL, which has no relevant perturbation allowed by the micro-
scopic symmetries. For SL(7), we discuss a realization without symmetry-allowed relevant
perturbation, and another example with a single symmetry-allowed relevant perturbation
that nevertheless does not change the state. We view both realizations of SL(7) as stable.

5.2.1 DQCP

It is known that there are two types of DQCPs proximate to classical regular magnetic
orders [19], both are transitions from an anti-ferromagnetic state to a VBS state, i.e., the
columnar VBS for square spin-1/2 systems [129, 130] and the Kekule VBS for honeycomb
spin-1/2 systems [131]. Interestingly, we find another realization of DQCP on a honeycomb
lattice spin-1/2 system, as a transition between a ferromagnetic state and a staggered VBS
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Gs = p6m
spin-1/2
position DQCP DSL SL(7) DSLquad SL(7)

quad

0 10(2) 76(1) 453(0) 1(1) 12(2)
a 0 3(3) 41(8) 0 0
c 0 3(3) 35(9) 0 0

a&c 2(1) 23(5) 176(2) 0 2(0)

total 12
(3)

105
(12)

705
(19)

1
(1)

14
(2)

Gs = p4m
spin-1/2
position DQCP DSL SL(7) SL(7)

incom DSLquad SL(7)
quad

0 19(0) 217(0) 1849(0) 2(0) 1(1) 22(4)
a 1(1) 23(3) 299(2) 3(2,1) 0 1(1)
b 1(1) 23(3) 299(2) 3(2,1) 0 1(1)
c 3(0) 56(4) 632(0) 2(2) 0 3(1)

a&b 1(1) 22(0) 279(0) 11(11) 0 1(0)
a&c 0 6(6) 117(6) 0 0 0
b&c 0 6(6) 117(6) 0 0 0

a&b&c 1(1) 19(2) 227(0) 6(6) 0 1(0)

total 26
(4)

372
(24)

3819
(16)

27
(23,2)

1
(1)

29
(7)

Table 5.1: Numbers of realizations for DQCP, DSL and SL(7) in spin systems with a p6m (upper) or
p4m (lower) lattice symmetry. Two realizations with symmetry actions related by a similarity transfor-
mation are considered as a single realization. The columns without (with) subscript “quad” represent
realizations where the most relevant spinful excitations, i.e., the n modes that transform nontrivially un-
der the SO(3) spin rotational symmetry, carry spin-1 (spin-2). No realization of DQCP has the n modes
carrying spin-2. The numbers in parenthesis are the numbers of stable realizations. Here a stable DQCP
means a realization that has a single relevant perturbation allowed by the microscopic symmetry, and a
stable DSL, SL(7), DSLquad and SL(7)

quad means a realization that has no relevant perturbation allowed by
the microscopic symmetry. For all columns except SL(7)

incom, the n modes are at high-symmetry momenta
in the Brillouin zone. For SL(7) realized on p4m symmetric lattices, there are realizations with some n

modes at incommensurate momenta, and the column SL(7)
incom documents the numbers of families of these

realizations, where each family includes infinitely many realizations labeled by a momentum, which con-
tinuously interpolate between two realizations in the column SL(7). Two continuous families of realizations
may share a common high-symmetry momentum, at which these two realizations turn out to be always
distinct, in that symmetries other than translation are implemented distinctly. (23, 2) means that there
are 23 families of realizations, such that as long as a given realization is in the “interiors” of the family
(i.e., not all n modes are at high-symmetry momenta), the only symmetric relevant perturbation is the one
that shifts the momenta of n modes, and there are 2 other families, such that this is still the case except
at two exceptional points in the interior, where there is an additional symmetric relevant perturbation
that changes the emergent order. The symmetry actions of the stable realizations are explicitly listed in
ReadMe.nb.
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Lattice Colinear order spin-1/2 spin-1
Triangular F 0 2(1)
Kagome F 0 2(1)

Honeycomb F 2(1) 2(1)
AF 2(1) 2(1)

Square F 0 2(0)
AF (Neel) 1(1) 2(0)

Lattice Coplanar order spin-1/2 spin-1
Triangular 120◦ 1(1) 3(0)

Kagome q = 0 1(1) 2(0)√
3×

√
3 0 3(0)

Honeycomb V 3(0) 3(0)

Square V 1(0) 3(0)
Orthogonal 1(0) 1(0)

Lattice Non-Coplanar order spin-1/2 spin-1

Triangular Tetrahedral 8(4) 2(0)
F umbrella 1(0) 4(0)

Kagome

Octahedral 0 2(0)
Cuboc1 3(2) 1(0)
Cuboc2 4(3) 1(0)

q = 0 umbrella 2(1) 3(0)√
3×

√
3 umbrella 1(1) 4(0)

Honeycomb Tetrahedral 2(0) 2(0)
Cubic 1(0) 1(0)

Square Tetrahedral umbrella 1 Incom 2(0)
F umbrella 2(0) 2(0)

Table 5.2: Numbers of realizations for DQCP (top), DSL (middle) and SL(7) (bottom) adjacent to some
colinear, coplanar and non-coplanar magnetic orders, respectively, of triangular, kagome, honeycomb and
square lattice spin-1/2 (or general half-integer-spin) systems (third column) and spin-1 (or general integer-
spin) systems (fourth column). The numbers in parenthesis are the numbers of stable realizations (defined
in the same way as in Table 5.1). F stands for Ferromagnetic while AF stands for Anti-ferromagnetic.
“1 Incom” means that realizations of SL(7) adjacent to tetrahedral umbrella order on the square lattice
spin-1/2 systems belong to a continuous family of realizations, where the non-magnetic components of n
can have continuously changing momenta. See Appendix 5.D for the spin configurations of these magnetic
orders, and the attached code ReadMe.nb for the explicit symmetry actions.
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state. 6 The symmetries are realized as

T1,2 : n→ n

C6 : n→

 I3
−1

2

√
3
2

−
√
3
2

−1
2

n

M : n→

 I3
−1

1

n

O(3)T : n→
(
O(3)T

I2

)
n

(5.17)

The components of n can be identified with microscopic operators that transform identically
under the above symmetries. Denote the microscopic spin-1/2 operator on the A and B
sublattices as SA(r) ≡ S

(
r + 2T1+T2

3

)
and SB(r) ≡ S

(
r + T1−T2

3

)
, respectively, where

r is the position of the C6 center of each unit cell, and T1,2 is the translation vector of
T1,2. Then SA,i(r) = SB,i(r) ∼ ni for i = 1, 2, 3. Denote the dimer operators as Dx(r) ≡
S(r + −T1+T2

3
) · S

(
r + T1+2T2

3

)
, Dy(r) ≡ S

(
r + T1+2T2

3

)
· S(r + 2T1+T2

3
), and Dz(r) ≡

S
(
r + 2T1+T2

3

)
·S
(
r + T1−T2

3

)
. Then Dx(r)+ e

i 2π
3 Dy(r)+ e

i 4π
3 Dz(r) ∼ e−i

5π
6 (n4− in5). So

n1,2,3 and n4,5 can be identified as the order parameters of a ferromagnet and a stacked VBS,
respectively. For examples below, one can perform similar analysis to identify components
of n with microscopic operators, but we will not explicitly showcase them.

Since this ferromagnetic DQCP is the simplest example of new states discovered using
our approach, it will be reassuring to also have a traditional parton-based construction
[7]. Indeed this DQCP can be constructed using Schwinger bosons S = 1

2
b†ασαβbβ, where

the bosonic spinons bα couple to a dynamicsl U(1) gauge field aµ. To realize the stag-
gered VBS, we put the Schwinger bosons into the “featureless Mott insulator” discussed in
Ref. [47] – effectively this state is constructed by putting a spin-singlet, gauge-charge Q = 2
spinon “Cooper pair” at each C6 center. When coupled to the dynamical U(1) gauge field,
the monopole operator acquires nontrivial lattice symmetry quantum numbers due to the
charged insulating background. For example, the gauge charge Q = 2 at each C6 rotation
center gives the monopole a C6 angular momentum ei2π/3 from the Aharanov-Bohm effect.
Other lattice symmetry quantum-numbers can be analyzed in a similar fashion, following
methods develped in Ref. [81]. It turns out that the monopole carries exactly the symmetry

6Due to the fact that a fully polarized ferromagnetic state is always an exact eigenstate of any SO(3)
symmetric Hamiltonian, the ferromagnetic state immediately adjacent to this DQCP, which is partially
polarized, must be separated from a fully polarized one by a level crossing, i.e., first-order transition.
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quantum numbers of the staggered VBS. At low energies the monopole will spontaneously
condense and confine the gauge theory, resulting in the staggered VBS phase. To access
the magnetically ordered phase, we drive the spinons bα through an insulator-superfluid
transition and Higgs the U(1) gauge field. The fact that bα do not carry any nontrival
projective representation in this construction means that they can be condensed without
breaking any lattice symmetry, which means that the magnetically ordered phase obtained
this way is a ferromagnet. The effective field theory at the phase transition is the standard
(non-compact) CP1 theory for DQCP [18], described by an SU(2)-fundamental complex
Wilson-Fisher boson coupled to a dynamical U(1) gauge field aµ.

We remark that, compared to the standard DQCP realization where the magnetic side is
anti-ferromagnetic, in this realization there is one more perturbation that is likely irrelevant
at the transition, but relevant in the ferromagnetic phase and responsible for making the
dispersion of the magnon quadratic. In the CP1 formulation of the DQCP with Schwinger
bosons b [18, 19], this operator is (ib†σ∂tb) · (b†σb). In the CPN generalization of this
theory, this operator is indeed dangerously irrelevant in the large-N limit.

The simple nature of the magnetic and VBS phases here suggests that this DQCP
may be realizable in relatively simple spin models. It will be interesting to find a sign-
problem-free lattice model and simulate this transition with the quantum Monte Carlo
approach.

5.2.2 DSL

DSLs have been constructed for various lattices using the parton construction. There are
two widely studied DSLs: one is on the kagome lattice spin-1/2 system proximate to the
q = 0 coplanar magnetic order [24, 132–135]; the other is on the triangular spin-1/2 lattice
proximate to the 120◦ coplanar order [81, 83, 136–140]. On the other hand, the previously
constructed DSLs on the honeycomb and square lattices are unstable due to the presence
of GUV-symmetric monopole (i.e., the n modes) [81, 83, 141, 142]. Interestingly, we find
new stable DSLs on square and honeycomb lattices. Our complete classification also shows
that there is no DSL proximate to the

√
3 ×

√
3 coplanar order on the kagome spin-1/2

system.
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For the honeycomb lattice spin-1/2 system, the symmetries act as:

T1,2 : n→


I3

−1
2

√
3
2

−
√
3
2

−1
2

1

n

C6 : n→


I3

1
−1

−1

n

(
1
2

−
√
3
2√

3
2

1
2

)

M : n→


I3

−1
−1

1

n

(
−1

1

)

O(3)T : n→
(
O(3)T

I3

)
n

(5.18)

The magnetic order adjacent to this DSL is a regular magnetic order, i.e., a magnetic
order in which any broken lattice symmetry can be compensated by a spin operation [128].
However, the magnetic order here appears missing in the classification in Ref. [128], which
is possibly because all magnetic orders in Ref. [128] are assumed to be realizable by product
states. It is known that some SRE states in a honeycomb lattice spin-1/2 system cannot be
realized by product states, so we do not make this assumption [47–50]. This DSL should
also be emergible in a triangular or kagome lattice integer-spin system. In these cases, the
adjacent magnetic orders are also regular but not realizable by product states. See Ref.
[143] for a recent study of these entanglement-enabled symmetry-breaking orders.
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For the square lattice spin-1/2 system, the symmetries act as:

T1 : n→


I3

−1
1

−1

n

(
−1

−1

)
,

T2 : n→


I3

1
−1

−1

n

(
−1

−1

)
,

C4 : n→


I3

1
−1

1

n

(
−1

−1

)
,

M : n→


I3

1
−1

−1

n

(
−1

1

)
,

O(3)T : n→
(
O(3)T

I3

)
n,

(5.19)

The magnetic order adjacent to this DSL is also an entanglement-enabled regular magnetic
order.

One interesting aspect of these realizations is that all perturbations proportional to
the entries of n are forbidden by symmetries, and the lack of this property is the reason
why the previous constructions on these systems are unstable [81, 83, 141, 142]. This
property implies that these realizations cannot be obtained as a descendent state of an
SU(2) DSL [81], which is described by 2 flavors of Dirac fermions coupled to an emergent
SU(2) gauge field (including the 2 colors, there are in total 4 Dirac fermions). To see it,
note that the emergent symmetry of the SU(2) DSL is just O(5)T , so if a U(1) DSL is its
descendent, all microscopic symmetries will be embedded into the O(5)T symmetry, which
necessarily leaves some components of n symmetry-allowed. The previous constructions of
the U(1) DSL on a square and honeycomb lattice spin-1/2 systems are indeed descendents
of an SU(2) DSL, and it would be interesting to find a parton construction of our new
realizations.
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5.2.3 SL(7)

Two realizations of the conjectured non-Lagrangian state SL(7) are given in Ref. [15]. Here
we describe some other interesting realizations.

On a kagome lattice spin-1/2 system, there is a realization with the following symmetry
actions:

T1 : n→


I3

−1
2

√
3
2

−
√
3
2

−1
2

1
1

n

 1
−1

−1



T2 : n→


I3

−1
2

√
3
2

−
√
3
2

−1
2

1
1

n

 −1
1

−1



C6 : n→


I3

1
−1

−1
−1

n

 −1
1

1



M : n→


I3

−1
−1

1
1

n

 −1
−1

1



O(3)T : n→
(
O(3)T

I4

)
n

(5.20)

The magnetic order adjacent to this SL(7) is the cuboc1 order, a good classical ground
state for Heisenberg like models [128], and was found in a J1-J2-J3 model [144].

We also note that, in contrast to the DQCP and DSL, where all realizations are prox-
imate to some commensurate states, i.e., n have commensurate momenta in those realiza-
tions, SL(7) can have realizations with n at incommensurate momenta. For example, on a
square lattice spin-1/2 system, there is a family of realization with the following symmetry
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actions:

T1 : n→

 I3
exp(−iσyk)

−I2

n

 −1
1

−1


T2 : n→

 I3
−I2

exp(iσyk)

n

 1
−1

−1



C4 : n→


I3

1
1

1
1

n

 1
1

1



M : n→


I3

1
1

1
1

n

O(3)T : n→
(
O(3)T

I4

)
n

(5.21)

where k ∈ [−π, π) is a generic momentum. The magnetic order adjacent to this realization
is the tetrahedral umbrella order [128].

The above represents an infinite family of realizations, where the momenta of some n
modes continuously change in the Brillouin zone. Among the relevant operators discussed
in Sec. 3.4.3, there is only a single one allowed by the microscopic symmetries in this
family of realizations, i.e., the SO(7) current ∼ (n4i∂xn5i + n6i∂yn7i). We believe all these
realizations can actually be smoothly connected without encountering a phase transition,
so they all represent the same symmetry-enriched SL. This also imposes some constraints
on the low-energy dynamics of SL(7), i.e., although the above SO(7) conserved current is
relevant, it can merely shift the “zero momentum”, but not really change the state (see
Appendix 3.A for more discussions).
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5.3 Quantum critical spin-quadrupolar liquids

Besides the previous case, we also find realizations where the most relevant spinful excita-
tions carry spin-2. We dub these states quantum critical spin-quadrupolar liquids.

We have identified an interesting realization of the DSL as a quantum critical spin-
quadrupolar liquid. This realization can actually be realized on any lattice that has no
nontrivial LSM constraint, including spin-1 systems on any lattice, spin-1/2 systems on
honeycomb lattice, etc. If the lattice has a p6m or p4m symmetry, this is the only spin-
quadrupolar realization of DSL. The lattice translation and rotation symmetries leave n
invariant, and SO(3), time reversal T and lattice reflection M (if any) act as

SO(3) : n→
(
φ5(SO(3))

1

)
n,

T : n→
(
I5

−1

)
n

M : n→
(
I5

−1

)
n

(5.22)

where φ5(SO(3)) represents the spin-2 representation of SO(3). For this realization, if
SO(3) × ZT2 and an arbitrary lattice rotational symmetry are preserved, all relevant per-
turbations listed in Sec. 3.4.2 are forbidden. Even if only SO(3)×ZT2 is preserved while all
lattice symmetries are broken, the only symmetry-allowed relevant perturbations are the
spatial components of the conserved current associated with the SO(2) emergent symme-
try, which are expected to retain the emergent order (see Appendix 3.A). So this realization
represents a rare example of quantum critical liquid that requires only internal symmetry
(but not lattice symmetry) to be stable. The magnetic state adjacent to this DSL is a
spin-quadrupolar order where the Goldstond modes are at the Γ point of the Brillouin
zone. For the non-magnetic state, it is possible to have 〈n61〉 6= 0 while all other entries of
n have zero expectation value. This is a spin-quadrupolar realization of the DQCP, and
the only possible relevant perturbation is an SO(5) singlet that breaks time reversal, which
may drive the system to forming a chiral spin liquid.

Usually, a DSL is constructed by fermionic partons that have a non-interacting mean
field with 4 Dirac cones, which are coupled to an emergent U(1) gauge field. Below we
show that the realization above cannot be constructed in this way, which may be its most
interesting property.

To see it, let us consider how the Dirac fermions transform under the SO(3) spin
rotational symmetry. Denote the Dirac fermion operator as ψi with i = 1, · · · 4, which
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transforms in the fundamental representation of the emergent SU(4) flavor symmetry. It
is known that ψ̄iψj− 1

4
ψ̄ψδij, which is the fermion mass in the SU(4) adjoint representation,

is identified with Ai1i2ϵj1j2ni1j1ni2j2 , with A and ϵ an anti-symmetric 6 × 6 and 2 × 2 real
matrix, respectively [15, 81, 83]. Because under SO(3) spin rotational symmetry, part of
the latter operators transforms in the spin-3 representation, the former operator must also
contain components in the spin-3 representation, which implies that the Dirac fermions
must transform in the spin-3/2 representation of the SO(3) symmetry, i.e., all 4 flavors of
Dirac fermions together form this spin-3/2 object.

Now suppose this state can be realized by a non-interacting parton mean field with
4 Dirac cones (coupled to an emergent U(1) gauge field), the mean-field Hamiltonian of
the partons must have an on-site U(4) symmetry. In the presence of this U(4) and time
reversal symmetries, there must be at least 8 Dirac cones in the mean field. To see it, it
suffices to consider one of the 4 flavors, whose mean field has on-site U(1) and time reversal
symmetries. To avoid the parity anomaly, there are necessarily an even number of Dirac
cones. So taken 4 flavors together, there are at least 8 Dirac cones, which contradicts our
starting point, i.e., the mean field has only 4 Dirac cones.

The above argument shows that this realization is beyond the simplest parton mean
fields. However, it is still possible to realize it if the partons are strongly interacting
(even without considering their coupling to the emergent gauge field), so that at low
energies 4 flavors of Dirac fermions emerge out of the strong interactions. This might be
theoretically described, say, by a further parton decomposition of the partons themselves.
This is possible because if besides time reversal the on-site symmetry is only SO(3) but
not U(4), there is no anomaly, and hence no contradiction with having 4 Dirac cones while
realizing these symmetries in an on-site fashion.7 It is an interesting challenge to find such
a concrete construction in the future. This situation is similar to the Standard Model
in particle physics: the Standard Model cannot be realized through lattice free fermions
coupled to gauge fields due to fermion doubling, but it is believed to be realizable using
strongly interacting fermions since all the quantum anomalies vanish [145–152].

Finally, we give an interesting realization of SL(7) as a quantum critical spin-quadrupolar
liquid, on a honeycomb lattice half-integer-spin system or any integer-spin system with p6m

7One can in principle also try to implement some of these symmetries on the partons in a non-on-site
fashion, but then it is challenging to have all on-site symmetries acting on the physical operators in an
on-site fashion.
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symmetry. The symmetries act as follows:

SO(3) : n→
(
φ5 (SO(3))

I2

)
n
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 I5
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(5.23)

The nearby phases of this SL(7) can be very interesting. It is possible to have 〈n73〉 6= 0
while all other entries of n have zero expectation value. This results in the spin-quadrupolar
DSL (see Eq. (5.22)), except that the C2 ≡ C3

6 symmetry is broken, while all other
symmetries (including C3 ≡ C2

6) are intact. We can also view the above realization of SL(7)

as an unnecessary phase transition in a p31m × O(3)T symmetric DSL phase. This DSL
is still stable, but the n modes are at the ±K points. It is also possible to have 〈n13〉 6= 0
while all other entries of n have zero expectation value, where our choice of basis is such
that this condensation pattern breaks the SO(3) symmetry to U(1). This results in a
stable p6m×ZT2 ×U(1) symmetric DSL that simultaneously has a spin-quadrupolar order.
Again, the above realization of SL(7) can be regarded as an unnecessary phase transition
in a p6m× ZT2 × U(1) symmetric DSL phase.8

8Strictly speaking, the DSL states on the two sides of this SL(7) are slightly different, since they have
different quantum anomalies if the entire emergent symmetry is taken into account. In Ref. [15], these
two DSLs are denoted by SL(6,1) and SL(6,−1), respectively. However, if we only look at the remaining
exact symmetries, there is no difference between them. Furthermore, even if the entire emergent symmetry
is considered, all correlation functions in these two cases are simply related by a unitary transformation
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5.4 Stability under symmetry breaking

In this section we demonstrate how to use the SEP to analyse the stability of these real-
izations under symmetry-breaking perturbations. As a concrete example, we focus on a
realization of DSL on a triangular lattice spin-1/2 system that is perturbed by spin-orbit
coupling (SOC), which may be relevant to NaYbO2. In Appendix 5.E, we give a few
other examples of such analysis, which may be relevant to twisted bilayer WSe2, a recently
realized quantum simulator for triangular lattice spin-1/2 models [153–155].

Without considering the SOC, the triangular lattice spin-1/2 system has a p6m×O(3)T
symmetry, which acts on this DSL as:
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O(3)T : n→
(
O(3)T

I3

)
n

(5.24)

This realization was discussed in Refs. [15, 81, 83, 136–140], and it is shown in Appendix
5.A.2 that the anomaly-matching condition Eq. (1.2) is indeed satisfied. From this symme-
try action, it is straightforward to check that all the relevant operators listed in Sec. 3.4.2
are symmetry-forbidden, so this realization is expected to be stable if the full p6m×O(3)T
symmetry is preserved.
(which is not a symmetry of the DSL), so practically the DSL in the two sides can be viewed as in the
same phase [15]. The same is true for the p31m×O(3)T symmetric DSL.
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Recently, a quantum disordered liquid was reported in NaYbO2 [156–160] (similar phe-
nomena were reported in related materials including NaYbS2 and NaYbSe2 [161–165]). In
particular, there is evidence that this state is gapless with a low-temperature specific heat
scaling as temperature squared, and that it has a critical mode located at the ±K points
in the Brillouin zone, which are consistent with the above DSL realization. So it was
proposed that a DSL may be realized in NaYbO2. However, due to SOC, the symmetry
of NaYbO2 is smaller than p6m × O(3)T , and an important question is whether there is
symmetry-allowed relevant perturbation that would destabilize a DSL in NaYbO2.

NaYbO2 is a layered material with space group symmetry R3̄m. Restricted to a single
layer, the remaining symmetries are [166]

T1,2, C
∗
6 ≡ S3 · C6, M

∗ ≡ SM ·M, T (5.25)

where S3 and SM act in the spin space:
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(5.26)

with Sx,y,z the microscopic (effective) spin-1/2 operators.
Using Eq. (5.24), it is straightforward to extract the actions of the remaining symmetry

Eq. (5.25), from which one can see that all relevant operators in Sec. 3.4.2 are still
symmetry-forbidden. This means that the DSL can be stably realized on NaYbO2. Of
course, whether NaYbO2 actually realizes a DSL requires futher investigation.

5.A More examples of the calculation of pullback

In this appendix, we give three more examples of the analysis of anomaly matching, for
SU(2)1, DSL and SL(7). In Appendix 5.A.4, we also provide relevant formula for the
calculation of pullback involving 5-dimensional representation of SO(3).
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5.A.1 SU(2)1 and emergent anomaly

First let us consider a representative (1 + 1)-d quantum critical state, i.e., the (1 + 1)-d
SU(2)1 conformal field theory, which describes the spin-1/2 antiferromagnetic Heisenberg
chain at low energies [167–169]. The IR symmetry of the theory is SU(2)×SU(2)

Z2
oZT2 ∼= O(4).

Ref. [170] works out the anomaly term of SU(2)1 after gauging the SO(4) part of
GIR = O(4), which corresponds to the interger Euler class of SO(4), e ∈ H4(SO(4),Z).
The bulk topological partition function capturing this anomaly is the Chern-Simons theory
at level (+1,−1) for the two su(2) factors of so(4) ∼= su(2)× su(2), which can be written
in terms of two su(2) gauge fields A(1), A(2) as follows

S =
i

4π

∫
tr

(
A1 ∧ dA(1) +

2

3
A(1) ∧A(1) ∧A(1)

)
− tr

(
A(2) ∧ dA(2) +

2

3
A(2) ∧A(2) ∧A(2)

)
(5.27)

It is straightforward to inspect that after gauging the ZT2 part of GIR, the anomaly term
should correspond to the twisted Euler class of O(4), and we denote it by ẽ ∈ H4(O(4),Zρ).
Note that this anomaly does not correspond to any element in H3(GIR,U(1)ρ), i.e., the
group cohomology (not the Borel cohomology in Ref. [26]) of GIR acting nontrivially
on the U(1) coeffficient – this is the only example in this thesis where the Bockstein
homomorphism in Eq. (A.18) is not an isomorphism. Hence we need some special care to
write down the TPF of the bulk SPT theory. 9

9In this footnote we briefly review how to write down the TPF worked out in Ref. [51]. Suppose
a (2+1)-d IR theory has gauge symmmetry G and is defined on the manifold M3, which serves as the
base space of some principal bundle of G. Given an element ω ∈ H4(G,Z), it is possible to define a 3d
topological gauge theory of G as follows

S =
1

n

(∫
B4

Ω− 〈γ∗ω, [B4]〉
)

mod 1, (5.28)

where Ω is the de Rham representative of the image of ω in H4(BG,R), [B4] ∈ H4(B4,Z) is the fundamental
class of the manifold B4 that bounds n copies of the manifold M3 with some extension of the principle
bundle of G, and γ is the classifying map of the extension. When ω is a torsion element, Ω = 0, and we
retrieve the more familiar form of TPF

S = 〈γ∗(β−1(ω)), [M3]〉, (5.29)

where β is the Bockstein homomorphism associated to the short exact sequence 1 → Z → R → U(1) → 1.
In particular, when G = SO(4) and ω corresponds to the Euler class e, Ω can be explicitly written as
follows,

Ω =
1

8π2

(
tr
(
F (1) ∧ F (1)

)
− tr

(
F (2) ∧ F (2)

))
. (5.30)
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Consider the following homomorphism φ from GUV = p1m×O(3) to GIR = O(4),

T →
(

−I3
−1

)
, M →

(
I3

−1

)
, O(3) →

(
O(3)T

1

)
(5.31)

The LSM anomaly of a 1D chain has been worked out in Appendix 2.F, i.e.,

ΩUV ≡ exp(iπLUV) = exp
(
iπ(x+m)w

O(3)T

2

)
. (5.32)

We aim to prove that under the homomorphism φ, the pullback of the IR theory is the
UV theory. Specifically, we need to prove that 10

β(ΩUV) = φ∗(ẽ), (5.33)

where β is the Bockstein homomorphism associated to the short exact sequence 1 → Z →
R → U(1) → 1.

From the commutativity of the square in the diagram below

H4(GIR,Zρ) H4(GIR,Z2)

H3(GUV,Z2) H3(GUV,U(1)ρ) H4(GUV,Zρ) H4(GUV,Z2)

φ∗

p̃

φ∗

ĩ β p̃

(5.34)

we just need to prove that

SQ1(LUV) = φ∗(p̃(ẽ)). (5.35)

In particular, on the left hand side we have

SQ1(LUV) = (x+m)w
O(3)T

3 (5.36)

according to Appendix A.4, where w
O(3)T

3 = w
SO(3)
3 + tw

SO(3)
2 + t3 and t ∈ H1(ZT2 ,Z2)

corresponds to the gauge field of time-reversal symmetry when pulled back to the spacetime
manifold M3. On the right hand side we have p̃(ẽ) = w

O(4)
4 , and

φ∗
(
w
O(4)
4

)
= (x+m)

(
w
SO(3)
3 + (t+ x)w

SO(3)
2 + (t+ x)3

)
(5.37)

In the presence of anti-unitary symmetries, the manifold M3 is assumed to be non-orientable. Then we
have to choose B4 to be non-orientable as well, and demand [B4] ∈ H4(B4,Zw) to be the fundamental class
of the non-orientable manifold B4 twisted by the orientation character w [69].

10There are two terms in Eq. (5.28). The first term will become 0 when pulled back to GUV, which
can be explicitly checked by considering the diagonal embedding of the Lie-algebra of so(3) ∼= su(2) into
so(4) ∼= su(2)× su(2). Then we just need to consider the pullback of the second term.
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Finally, using the cohomology relation x2 = xm, we see that both sides are equal to each
other. Hence we establish that the pullback of the anomaly of IR CFT SU(2)1 under the
homomorphism φ as in Eq. (5.31) is the LSM anomaly of (1+1)-d spin chain.

Below we discuss the phenomenon of emergent anomalies. Following Ref. [38], by
imposing an extra constraint T 2 = 1, we can factorize φ acting on p1m into two pieces,
i.e., a projection p on Z2 × Z2 generated by T̃ or M , where T̃ acts trivially on U(1) or Z
while M acts nontrivially on U(1) or Z, composed with an embedding φ̃ of the Z2 × Z2

into O(4).

φ = φ̃ ◦ p : p1m = Z o Z2 Z2 × Z2 O(4)
p φ̃ (5.38)

With slight abuse of notation, we denote the gauge field of T̃ as x as well. Then we have

φ̃∗
(
w
O(4)
4

)
= (x+m)

(
w
SO(3)
3 + (t+ x)w

SO(3)
2 + (t+ x)3

)
= SQ1

(
(x+m)w

O(3)T

2 + (x+m)x2
) (5.39)

in H4(Z2 × Z2 × O(3)T ,Z2). According to the terminology in Ref. [38], the first term
(x+m)w

O(3)T

2 as in Eq. (5.32) is the intrinsic anomaly, while the second term (x+m)x2 is
identified as the emergent anomaly. The emergent anomaly should be absent when pulled
back to p1m, which is guaranteed by the relation (x+m)x = 0 present in p1m. As a sanity
check, in the absence of mirror symmetry, i.e., in the line group p1, the intrinsic anomaly
becomes xwO(3)T

2 and the emergent anomaly becomes x3, consistent with the example in
Ref. [38].

We envision that similar emergent anomaly will be present in IR theories emerging
from a 2d lattice system with wallpaper group Gs, because a lot of cohomology relations
of Gs will be absent when projected to a finite group by imposing T n1 = T n2 = 1 for some
integer n. More precisely, write Gs = (Z× Z)o Os, if we can find an integer n such that
φ : Gs → GIR factorizes as the composition of projection and another embedding

φ = φ̃ ◦ p : Gs = (Z× Z)oOs G̃s ≡ (Zn × Zn)oOs GIR,
p φ̃ (5.40)

then φ̃∗(ΩIR) ∈ H4(G̃s × Gint,U(1)ρ) will generically not be in the form of exp(iπλη)
with λ ∈ H2(G̃s,Z2) and η ∈ H2(Gint,Z2), but contains a nonzero piece that nevertheless
vanishes when pulled back to Gs, using certain cohomology relations of Gs that is not
present in G̃s. Specifically, when n = 2, of the 3 important relations displayed in Appendix
2.D, the first two relations, i.e., x2 = 0 in p1 and x2 = xm in p1m, will be absent when
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projected to G̃s, while the third relation, i.e., Ax+yAm = 0 in cm, will still be present when
projected to G̃s.

For example, when the IR effective theory is the DQCP emergent from a square lattice
spin-1/2 system with wallpaper group p4m, we can choose n = 2 and G̃s = (Z2×Z2)oD4.
The Z2 cohomology ring of G̃s is

Z2[Ax+y, Am, Ac,Bxy, Bc2 , Bc(x+y)]/
(
Ax+yAc = 0, (Am + Ac)Ac = 0, Bc(x+y)Ac = 0,

Bc(x+y)

(
Bc(x+y) + Ax+y(Am + Ac)

)
= (A2

m + A2
c)Bxy + A2

x+yBc2
)
,

(5.41)

with the pullback of Bc(x+y) equal to Ax+y(Ax+y+Am) in H∗(p4m,Z2), and the pullback of
Ax+y, Am, Ac, Bxy, Bc2 their namesake. Then from the fact that the IR anomaly of DQCP
corresponds to wO(5)

5 ∈ H5(O(5),Z2), we have

φ̃∗
(
w
O(5)
5

)
=
(
Bxy +Bc(x+y) +Bc2

) (
w
SO(3)
3 + (t+ Ax+y)w

SO(3)
2 + (t+ Ax+y)

3
)

= SQ1
((
Bxy +Bc(x+y) +Bc2

)
w
O(3)T

2 +
(
Bxy +Bc(x+y) +Bc2

)
A2
x+y

)
.
(5.42)

The first term
(
Bxy +Bc(x+y) +Bc2

)
w
O(3)T

2 is again the intrinsic anomaly, while the second
term

(
Bxy +Bc(x+y) +Bc2

)
A2
x+y is the emergent anomaly that vanishes when pulled back

to Gs = p4m. This is a slight generalization of the result in Ref. [38] to the whole group
p4m.

5.A.2 DSL

Next consider DSL [15, 81, 171], whose IR symmetry GIR is O(6)×O(2)
Z2

, where an improper
rotation of either O(6) or O(2) complex conjugates the U(1) coefficient of H4(GIR,U(1)ρ).
The precise form of the anomaly term for GIR is unknown, yet it is possible to write down
its pullback to O(6)×O(2) under the projection p : O(6)×O(2) → O(6)×O(2)

Z2
[15]

Ω̃IR ≡ exp(iπL̃IR)

= exp

[
iπ
(
w

O(6)
4 + w

O(6)
2

(
w

O(2)
2 + (w

O(2)
1 )2

)
+
(
(w

O(2)
2 )2 + w

O(2)
2 (w

O(2)
1 )2 + (w

O(2)
1 )4

))] (5.43)
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where L̃IR ∈ H4(O(6) × O(2),Z2). On a triangular lattice, we consider the following
example embedding φ of GUV = p6m×O(3)T into GIR,

T1 : n→


I3

1
−1

−1

n

(
−1

2
−

√
3
2√

3
2

−1
2

)

T2 : n→


I3

−1
−1

−1

n

(
−1

2
−

√
3
2√

3
2

−1
2

)

C6 : n→


I3

1
1

−1

n

(
1

−1

)

M : n→


I3

−1
−1

1

n

O(3)T : n→
(
O(3)T

I3

)
n

(5.44)

Note that φ factorizes into an embedding φ̃ into O(6)×O(2) composed with the projection
p, i.e., φ = p◦φ̃. In fact, for GUV = Gs×O(3)T with any Gs, if φ satisfies the condition that
some but not all entries of n are left invariant under SO(3), then φ can always factorize
into p ◦ φ̃, where φ̃ is a homomorphism from GUV to O(6)×O(2). Therefore, we can think
of the IR symmetry as O(6)×O(2) for simplicity in the calculation of pullback. Moreover,
we can always choose φ̃ such that Gs acts as identity and ZT2 acts as minus identity in the
block where SO(3) acts.

The LSM anomaly of a triangular lattice spin-1/2 system has been obtained in Ap-
pendix 2.D, and we repeat it here

ΩUV ≡ exp(iπLUV) = exp
(
iπ (Bxy + Ac(Ac + Am))w

O(3)T

2

)
, (5.45)

where LUV ∈ H4(GUV,Z2). We wish to prove that ΩUV = φ∗ΩIR, which amounts to
proving ΩUV = φ̃∗Ω̃IR. Again, from the commuting diagram Eq. (5.5) (with GIR changed
to O(6)×O(2) and φ changed to φ̃), we just need to prove that

SQ1(LUV) = φ̃∗
(
SQ1(L̃IR)

)
. (5.46)
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According to Lemma A.4.1, we have
SQ1(L̃IR) =w

O(6)
5 + w

O(6)
4 w

O(2)
1 + w

O(6)
3

(
w

O(2)
2 + (w

O(2)
1 )2

)
+ w

O(6)
2 (w

O(2)
1 )3

+ w
O(6)
1

(
(w

O(2)
2 )2 + w

O(2)
2 (w

O(2)
1 )2 + (w

O(2)
1 )4

)
+
(
(w

O(2)
2 )2w

O(2)
1 + (w

O(2)
1 )5

)
.

(5.47)

On the other hand,

SQ1(LUV) = ((Bxy + Ac(Ac + Am))w
O(3)T

3 , (5.48)

where wO(3)T

3 = w
SO(3)
3 + tw

SO(3)
2 + t3 and t ∈ H1(ZT2 ,Z2) corresponds to the gauge field of

time-reversal symmetry when pulled back to the spacetime manifold M4.

What remains is the calculation of the pullback φ̃∗
(
SQ1(L̃IR)

)
, which is a straight-

forward application of the Whitney product formula. In particular, considering the O(2)
block, the pullback gives

φ̃∗
(
w
O(2)
1

)
= Ac

φ̃∗
(
w
O(2)
2

)
= 0

(5.49)

On the other hand, O(6) factorizes into two 3× 3 blocks, and for the lower 3× 3 block we
have

φ̃∗
(
w
O(3)
1

)
= Ac + Am

φ̃∗
(
w
O(3)
2

)
= Bxy + A2

c

φ̃∗
(
w
O(3)
3

)
= AcBxy + A2

c(Ac + Am)

(5.50)

Assembling the Stiefel-Whitney class of the lower O(3) and upper O(3)T into the Stiefel-
Whitney class of O(6), we have

φ̃∗
(
w
O(6)
5

)
= w

O(3)T

3 (Bxy + A2
c) + w

O(3)T

2 (AcBxy + A2
c(Ac + Am))

φ̃∗
(
w
O(6)
4

)
= w

O(3)T

3 (Ac + Am) + w
O(3)T

2 (Bxy + A2
c) + t(AcBxy + A2

c(Ac + Am))

φ̃∗
(
w
O(6)
3

)
= w

O(3)T

3 + w
O(3)T

2 (Ac + Am) + t(Bxy + A2
c) + (AcBxy + A2

c(Ac + Am))

φ̃∗
(
w
O(6)
2

)
= w

O(3)T

2 + t(Ac + Am) + (AcBxy + A2
c(Ac + Am))

φ̃∗
(
w
O(6)
1

)
= t+ (Ac + Am)

(5.51)

Combining Eqs. (5.47), (5.48), (5.49) and (5.51), indeed we get Eq. (5.46). Hence we
establish that ΩUV = φ∗ΩIR.
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5.A.3 SL(7)

The next examples we want to consider are two realizations of N = 7 Stiefel liquid, i.e.
SL(7), proposed in Ref. [15] (see Sec. VII D therein). The IR symmetry GIR of the theory
is O(7)×O(3)

Z2
, and the precise form of the anomaly is given in Eq. (3.18) for N = 7. However,

following the example in Appendix 5.A.2, for the sake of the analysis of anomaly-matching,
we can again think of the IR symmetry as O(7) × O(3) and consider the pullback of the
anomaly under the projection p : O(7)×O(3) → O(7)×O(3)

Z2
,

Ω̃IR ≡ exp(iπL̃IR)

= exp
(
iπ
(
w

O(7)
4 + w

O(7)
2

(
w

O(3)
2 + (w

O(3)
1 )2

)
+
(
(w

O(3)
2 )2 + w

O(3)
2 (w

O(3)
1 )2 + (w

O(3)
1 )4

))) (5.52)

where L̃IR ∈ H4(O(7)×O(3),Z2). We will omit the tilde symbol in the following calcula-
tion.

On a triangular lattice, we consider the following embedding φ of GUV = p6m×O(3)T
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into O(7)×O(3),

T1 : n→


I3

−1
2

√
3
2

−
√
3
2

−1
2

−1
2

√
3
2

−
√
3
2

−1
2

n

 1
−1

−1



T2 : n→


I3

−1
2

√
3
2

−
√
3
2

−1
2

−1
2

√
3
2

−
√
3
2

−1
2

n

 −1
1

−1



C6 : n→


I3

1
−1

1
−1

n

 1
1

1



M : n→


I3

−1
−1

1
1

n

 1
1

1



O(3)T : n→
(
O(3)T

I4

)
n

(5.53)

Again, the LSM anomaly of a triangular lattice spin-1/2 system is

ΩUV ≡ exp(iπLUV) = exp
(
iπ (Bxy + Ac(Ac + Am))w

O(3)T

2

)
, (5.54)

where LUV ∈ H4(GUV,Z2). We wish to prove that ΩUV = φ∗ΩIR. From the commuting
diagram Eq. (5.5), we just need to prove that

SQ1(LUV) = φ∗ (SQ1(LIR)
)
. (5.55)

According to Lemma A.4.1, we have
SQ1(LIR) =w

O(7)
5 + w

O(7)
4 w

O(3)
1 + w

O(7)
3

(
w

O(3)
2 + (w

O(3)
1 )2

)
+ w

O(7)
2

(
w

O(3)
3 + (w

O(3)
1 )3

)
+ w

O(7)
1

(
(w

O(3)
2 )2 + w

O(3)
2 (w

O(3)
1 )2 + (w

O(3)
1 )4

)
+

(
w

O(3)
3 (w

O(3)
1 )2 + (w

O(3)
2 )2w

O(3)
1 + (w

O(3)
1 )5

)
.
(5.56)
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Also,

SQ1(LUV) = ((Bxy + Ac(Ac + Am))w
O(3)T

3 , (5.57)

where wO(3)T

3 = w
SO(3)
3 + tw

SO(3)
2 + t3 and t ∈ H1(ZT2 ,Z2) corresponds to the gauge field of

time-reversal symmetry when pulled back to the spacetime manifold M4.
What remains is the calculation of the pullback φ∗ (SQ1(LIR)

)
, which is a straightfor-

ward application of the Whitney product formula. In particular, O(7) factorizes into one
3 × 3 block and two 2 × 2 block, and for the O(3) part and the O(7) part seperately, the
pullback gives

φ∗
(
w
O(3)
1

)
= Am,

φ∗
(
w
O(3)
2

)
= Bxy,

φ∗
(
w
O(3)
3

)
= 0,

φ∗
(
w
O(7)
1

)
= t,

φ∗
(
w
O(7)
2

)
= w

SO(3)
2 + t2 +A2

c +A2
m +AmAc,

φ∗
(
w
O(7)
3

)
=
(
w
SO(3)
3 + tw

SO(3)
2 + t3

)
+ t(A2

c +A2
m +AmAc) +AcAm(Ac +Am),

φ∗
(
w
O(7)
4

)
= (w

SO(3)
2 + t2)(A2

c +A2
m +AmAc) + tAcAm(Ac +Am),

φ∗
(
w
O(7)
5

)
=
(
w
SO(3)
3 + tw

SO(3)
2 + t3

)
(A2

c +A2
m +AmAc) + (w

SO(3)
2 + t2)AcAm(Ac +Am),

(5.58)

Substituting them back into Eq. (5.56), and using the cohomology relation B2
xy = Bc2Bxy,

indeed we get Eq. (5.57) as promised. Hence we establish that ΩUV = φ∗ΩIR.
On a Kagome lattice spin-1/2 system, we consider the following embedding φ of GUV =
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p6m×O(3)T into O(7)×O(3),

T1 : n→ n

 1
−1

−1


T2 : n→ n

 −1
1

−1



C6 : n→


I3

−1
1

−1
−1

n

 −1
1

1



M : n→


I3

−1
−1

1
1

n

 −1
−1

1



O(3)T : n→
(
O(3)T

I4

)
n

(5.59)

The LSM anomaly of a Kagome lattice spin-1/2 system is

ΩUV ≡ exp(iπLUV) = exp
(
iπBxyw

O(3)T

2

)
. (5.60)

Again, we wish to prove that ΩUV = φ∗ΩIR by proving SQ1(LUV) = φ∗ (SQ1(LIR)
)
.

SQ1(LIR) is given in Eq. (5.56), while for SQ1(LUV) we have

SQ1(LUV) = Bxyw
O(3)T

3 . (5.61)

It is now straightforward to calculate the pullback of various Stiefel-Whitney classes in Eq.
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(5.56),

φ∗
(
w

O(3)
1

)
= Am +Ac

φ∗
(
w

O(3)
2

)
= Bxy +A2

c

φ∗
(
w

O(3)
3

)
= A3

c +A2
cAm +AcBxy

φ∗
(
w

O(7)
1

)
= t+Ac,

φ∗
(
w

O(7)
2

)
= w

SO(3)
2 + t2 + tAc +A2

c +AcAm +A2
m,

φ∗
(
w

O(7)
3

)
=

(
w

SO(3)
3 + tw

SO(3)
2 + t3

)
+

(
w

SO(3)
2 + t2

)
Ac + t

(
A2

c +AcAm +A2
m

)
+A3

c ,

φ∗
(
w

O(7)
4

)
=

(
w

SO(3)
3 + tw

SO(3)
2 + t3

)
Ac +

(
w

SO(3)
2 + t2

) (
A2

c +AcAm +A2
m

)
+ tA3

c +A2
cAm(Ac +Am),

φ∗
(
w

O(7)
5

)
=

(
w

SO(3)
3 + tw

SO(3)
2 + t3

) (
A2

c +AcAm +A2
m

)
+

(
w

SO(3)
2 + t2

)
A3

c + tA2
cAm(Ac +Am).

(5.62)

Substituting them into (5.56) and using the cohomology relation B2
xy = Bc2Bxy, indeed we

get Eq. (5.61), and thus establish that SQ1(LUV) = φ∗ (SQ1(LIR)
)
.

5.A.4 Five dimensional representation of SO(3)

In all previous examples presented in this appendix, the SO(3) spin rotation symmetry is
embedded into the IR symmetry GIR as a 3 dimensional representation. It is natural to
consider embedding involving other representations of SO(3), whose physical relevance is
illustrated in Section 5.3. In this sub-appendix, we present formula relevant to mapping
SO(3) into GIR as a 5 dimensional representation of SO(3).

First consider the 5 dimensional representation φ5 : SO(3) → O(5) of SO(3) alone,
which can be thought of as a symmetric traceless tensor V5, whose 5 basis are

1√
2
(n1 ⊗ n2 + n2 ⊗ n1) ,

1√
2
(n2 ⊗ n3 + n3 ⊗ n2) ,

1√
2
(n3 ⊗ n1 + n1 ⊗ n3) ,

1√
2
(n2 ⊗ n2 − n3 ⊗ n3) ,

1√
6
(2n1 ⊗ n1 − n2 ⊗ n2 − n3 ⊗ n3) ,

(5.63)

where n1,2,3 form an SO(3) vector. Consider the Z2
2 subgroup of SO(3), generated by

π-rotations around the x- and y-axes, respectively. Using the above 5 basis, these two π-
rotations are mapped into diag(−1, 1,−1, 1, 1) and diag(−1,−1, 1, 1, 1), respectively, from
which (or from the splitting principle [172]) we see that

φ∗
5

(
w
O(5)
2

)
= w

SO(3)
2 , φ∗

5

(
w
O(5)
3

)
= w

SO(3)
3 ,

φ∗
5

(
w
O(5)
1

)
= 0, φ∗

5

(
w
O(5)
4

)
= 0, φ∗

5

(
w
O(5)
5

)
= 0

(5.64)
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Now go back to GUV = SO(3) × G̃ and consider a 5 dimensional representation
φ5 : GUV → O(5) that can be written as V5 ⊗ V1, where V5 denotes the 5 dimensional
representation of SO(3) while V1 denotes a 1 dimensional real representation of G̃ corre-
ponding to x ∈ H1(G̃,Z2). Again from inspecting the action of the diagonal Z2

2 subgroup,
we have

φ∗
5

(
w
O(5)
1

)
= x,

φ∗
5

(
w
O(5)
2

)
= w

SO(3)
2 ,

φ∗
5

(
w
O(5)
3

)
= w

SO(3)
3 + xw

SO(3)
2 ,

φ∗
5

(
w
O(5)
4

)
= x2w

SO(3)
2 + x4,

φ∗
5

(
w
O(5)
5

)
= x2w

SO(3)
3 + x3w

SO(3)
2 + x5.

(5.65)

5.B Strategy of exhaustive search of SEP and results

In this appendix, we briefly review our strategy of the exhaustive search of SEP. We also il-
lustrate how to check all the SEPs from the csv data files we provide in the Data_and_Codes
folder and the mathematica file embedding.m, which transforms the data in csv files into
matrices representing generators C6/C4, M , T1, T2 and T . Some interesting realizations
have been shown in Sections 5.2 and 5.3.

In order to enumerate all SEPs that match LSM constraints with IR anomaly, we
just need to enumerate all embeddings from GUV to GIR and, following Section 5.1 and
Appendix 5.A, calculate the pullback φ∗(ΩIR) to see if it is identical to ΩUV corresponding
to a particular LSM constraint. Motivated by quantum magnetism, we assume that the
IR theory will emerge as a consequence of the competition between a magnetic state and
a non-magnetic state. Therefore, we only consider embeddings such that, in terms of the
N × (N − 4) matrix n for SL(N), some but not all entries of n transform under the SO(3)
symmetry.

For DQCP, since the IR symmetry is O(5), all embeddings are just composed of rep-
resentations of GUV. For DSL and SL(7), even though the IR symmetry is O(6)×O(2)

Z2
and

O(7)×O(3)
Z2

, respectively, because of the constraints on the embeddings, it suffices to only
consider embeddings into O(6)×O(2)

Z2
and O(7)×O(3)

Z2
which can be respectively lifted to an

embedding into O(6)×O(2) or O(7)×O(3), as discussed below Eq. (5.44). Therefore, all

185



embeddings we consider are just composed of real representations of GUV. In other words,
our task to specify an embedding becomes finding appropriate irreducible representations
of GUV, and fill them into the O(N) and O(N − 4) matrices in a block diagonal form.

Hence let us make a detour and discuss representations of GUV = Gs × SO(3) × ZT2 .
For any two groups G1,2, an irreducible representation V of G1 ×G2 is V1 ⊗ V2, where V1,2
is an irreducible representation of G1,2, respectively. So any irreducible representation V
of GUV takes the form of V = V 2n+1

SO(3) ⊗ Vs ⊗ VT , where V 2n+1
SO(3) is a (2n + 1)-dimensional

irreducible representation of SO(3) with n ∈ N, Vs is an irreducible representation of
Gs, and VT = ±1 is an irreducible representation of ZT2 . The complete list of irreducible
representations Vs of Gs can be found using the method of induced representations [173–
175], and we provide complete lists of irreducible representations of p4m and p6m in the
Mathematica file Representation.nb.

To figure out which representations of GUV are relevant to our discussions, it is useful
to analyze in which blocks the SO(3) can act nontrivially, with the assumption that some
but not all entries of n transform under the SO(3) symmetry. For DQCP, SO(3) must act
nontrivially in a 3-d block, while the rest 2-d block should be a reducible or irreducible
representation of Gs × ZT2 . That is, the relevant representation V of GUV schematically
takes the form

VDQCP =

 (
V 3
SO(3) ⊗ V 1

s ⊗ V 1
T

)3×3 (
V 1
SO(3) ⊗ V 2

Gs×ZT
2

)2×2

 , (5.66)

where V 1
s and V 1

T are 1-d representations of Gs and ZT2 respectively, and V 2
Gs×ZT

2
is a 2-d

(reducible or irreducible) representation of Gs × ZT2 .
For DSL, the block involving nontrivial SO(3) actions can be 3-d or 5-d, and it has

to lie in O(6). For SL(7), the block involving SO(3) should embed into O(7) and can be
3-d, 5-d or 6-d. The 6-d representation takes the form of VSO(3) ⊗ V 2

Gs×ZT
2
, where VSO(3)

is the 3-d representation of SO(3), and V 2
Gs×ZT

2
involves either two 1-d representations of

Gs × ZT2 or one irreducible 2-d representation of Gs × ZT2 . However, it turns out that it
is impossible to match the anomaly with any LSM constraint in the presence of some 6-d
block involving SO(3). Therefore, for DSL and SL(7), we consider two cases, i.e., either
SO(3) embeds as a 3-d representation, corresponding to deconfined quantum criticle points
or quantum critical spin liquids in Section 5.2, or as a 5-d representation, corresponding
to quantum critical spin-quadrupolar liquids in Section 5.3.

For DSL and SL(7), we still have freedom to choose the lifting to O(6)×O(2) or O(7)×
O(3), and different embeddings into O(6) × O(2) or O(7) × O(3) may correspond to the
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same embedding into O(6)×O(2)
Z2

or O(7)×O(3)
Z2

. For embeddings involving 3-d representation of
SO(3), we choose such that only T acts in the 3×3 block as −I3, while Gs acts trivially in
that block. That is, for DSL and SL(7), the relevant representations V of GUV schematically
take the form as follows

VDSL =

 (
V 3
SO(3) ⊗ 1s ⊗ (−1T )

)3×3 (
V 1
SO(3) ⊗ V 3

Gs×ZT
2

)3×3

×
(
V 1
SO(3) ⊗ V 2

Gs×ZT
2

)2×2

(5.67)

and

VSL(7) =

 (
V 3
SO(3) ⊗ 1s ⊗ (−1T )

)3×3 (
V 1
SO(3) ⊗ V 4

Gs×ZT
2

)4×4

×
(
V 1
SO(3) ⊗ V 3

Gs×ZT
2

)3×3

(5.68)

where 1s is the 1-d trivial representation of Gs, and −1T is the 1-d non-trivial representation
of ZT2 . For embeddings involving 5-d representation of SO(3), we choose such that both
ZT2 and Gs act trivially in the 5× 5 block. That is, the relevant representations V of GUV

schematically take the form

VDSL =

 (
V 5
SO(3) ⊗ 1s ⊗ 1T

)5×5 (
V 1
SO(3) ⊗ V 1

Gs×ZT
2

)1×1

×
(
V 1
SO(3) ⊗ V 2

Gs×ZT
2

)2×2

(5.69)

and

VSL(7) =

 (
V 5
SO(3) ⊗ 1s ⊗ 1T

)5×5 (
V 1
SO(3) ⊗ V 2

Gs×ZT
2

)2×2

×
(
V 1
SO(3) ⊗ V 3

Gs×ZT
2

)3×3

(5.70)

where 1s and 1T are 1-d trivial representations of Gs and ZT2 , respectively.
Having identified all possible embeddings, it is a striaghtforward exercise to calculate

the pullback in each case following Section 5.1 and Appendix 5.A. We use Mathematica
to automate the computation and store results in csv files in the ancillary folder [127].
For example, data.csv contains data for matching LSM constraints with IR anomaly of
SL(N=5,6,7) when SO(3) embeds into O(6) as a 3-d representaion, while dataSL5Rep.csv
contains data for matching LSM constraints of p4m with IR anomaly of SL(7) when SO(3)
embeds into O(7) as a 5-d representaion. Moreover, for both p4m and p6m, there is a
single embedding involving 5-d representation of SO(3) that can match IR anomaly of
DSL, shown in Eq. (5.22), which actually matches IR anomaly with zero LSM constraint.
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To read the embeddings, i.e., to read the explicit image of the generators C4/C6, M ,
T1, T2 and T in GIR, we provide a wrapper file Embedding.m. When SO(3) embeds into
GIR as a 3-d representation, it provides two functions

p4mPrintEmbedding[n_Integer, lsm_Integer, p_Integer]

p6mPrintEmbedding[n_Integer, lsm_Integer, p_Integer]
The arguments are n = 5, 6, 7 corresponding to DQCP, DSL and SL(7) respectively, lsm =
1, . . . , 8 in p4m or lsm = 1, . . . , 4 corresponding to a particular LSM constraint with the
order shown in Table 5.1, and p corresponding to a position in the array for a particular
embedding/realization. When SO(3) embeds into GIR as a 5-d representation and the IR
theory is SL(7), it also provides two functions

p4m5dPrintEmbedding[lsm_Integer, p_Integer]

p6m5dPrintEmbedding[lsm_Integer, p_Integer]
with similar arguments and output. Note that in this scenario for DQCP there is no
realization, and for DSL there is a single realization in p4m or p6m shown in Eq. (5.22).
For p4m and SL(7), it also provides a function

IncommensuratePrintEmbedding[lsm_Integer, p_Integer]

to check whether some embedding corresponds to an incommensurate order, and if it does,
output the corresponding incommensurate embedding. An illustration of how to use these
functions is provided in ReadMe.nb.

5.C Stable realizations on various lattice spin systems

In this appendix, we list all stable realizations of DQCP, DSL and SL(7) on triangular,
kagome, and square lattice half-integer spin systems, as well as those on p6m-anomaly-
free systems (including honeycomb lattice half-integer spin systems and all integer-spin
systems with p6m lattice symmetry) and p4m-anomaly-free systems (including all integer-
spin systems with p4m lattice symmetry). For square lattice, we only list the realizations
in lattice homotopy class with PR at the type-a IWP, from which the ones with PR at the
type-b IWP can be obtained by redefining the C4 center. As in the main text, here a stable
DQCP means a realization with only a single relevant perturbation allowed by microscopic
symmetries, so that it can be realized as a generic (pseudo-)critical point. A stable DSL
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means a realization with no relevant perturbation allowed by microscopic symmetries,
so that it can be realized as a stable phase. A stable SL(7) means a realization with
either no relevant perturbation allowed by microscopic symmetries, or a single symmetry-
allowed relevant perturbation that does not change the emergent order but only shifts the
“zero momenta”, so that this realization can still be viewed as a stable phase. All stable
realizations of these states, including those on lattice systems discussed here and also those
on other lattice systems, are explicitly documented in ReadMe.nb.

5.C.1 Stable realizations of DQCP

On all these systems, there is a single new stable realization of DQCP, given by Eq. (5.17),
adjacent to ferromagnetic order on triangular lattice, kagome lattice integer spin systems
or honeycomb lattice half-integer/integer spin systems. There is a known stable realization
of DQCP on the square lattice half-integer spin system, given by Eq. (5.10), adjacent to
anti-ferromagnetic (Neel) order. There is another known stable realization of DQCP on
p6m-anomaly-free system [19], adjacent to anti-ferromagnetic order on honeycomb lattice
half-integer/integer spin systems, given by

T1,2 : n→

 I3
−1

2

√
3
2

−
√
3
2

−1
2

n, C6 : n→

 −I3
1

−1

n,

M : n→

 −I3
1

1

n, O(3)T : n→
(
O(3)T

I2

)
n

(5.71)

These three are all stable realizations of DQCP.

5.C.2 Stable realizations of DSL

On p6m-anomaly-free systems, there is a single stable realization of DSL where the most
relevant spin fluctuations carry spin-1, given by Eq. (5.18). On both p6m-anomaly-free
systems and p4m-anomaly-free systems, there is also a single stable realization of DSL
where the most relevant spinful fluctuations carry spin-2, given by Eq. (5.22). Below we
discuss the other systems.
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Triangular lattice half-integer spin systems

On triangular lattice half-integer spin systems, there are 3 stable realizations of DSL. One
of them is known [15, 81, 83, 136–140], given by Eq. (5.24), adjacent to 120◦ order. The
other two have identical actions of T1,2, C6 and O(3)T :

T1 : n→


I3

1
−1

−1

n, T2 : n→


I3

−1
1

−1

n

C6 : n→


I3

1
1

−1

n

(
−1

1

)
, O(3)T : n→

(
O(3)T

I3

)
n

(5.72)

The action of the mirror symmetry M in these two realizations are respectively

M : n→


I3

−1
−1

1

n (5.73)

and

M : n→


I3

1
1

−1

n

(
−1

1

)
(5.74)
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Kagome lattice half-integer spin systems

On kagome lattice half-integer spin systems, there are 3 stable realizations of DSL. One of
them is known [15, 24, 81, 83, 132–135], adjacent to q = 0 order, given by

T1 : n→


I3

1
−1

−1

n, T2 : n→


I3

−1
1

−1

n,

C6 : n→


I3

1
1

1

n

(
−1

2
−

√
3
2√

3
2

−1
2

)
,

M : n→


I3

−1
−1

−1

n

(
−1

1

)
,

O(3)T : n→
(
O(3)T

I3

)
n

(5.75)

The other two have the same actions of T1,2, C6 and O(3)T :

T1 : n→


I3

1
−1

−1

n, T2 : n→


I3

−1
1

−1

n,

C6 : n→


I3

1
1

1

n, O(3)T : n→
(
O(3)T

I3

)
n

(5.76)

And the action of M in the two realizations are respectively

M : n→


I3

1
1

1

n (5.77)
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and

M : n→


I3

−1
−1

−1

n

(
−1

1

)
(5.78)

Square lattice half-integer spin systems

On square lattice half-integer spin systems, there are 3 stable realizations of DSLs. One of
them is given by Eq. (5.19). The other two have the same actions of T1,2, C4 and O(3)T :

T1 : n→


I3

−1
1

1

n

(
−1

1

)
, T2 : n→


I3

1
−1

1

n

(
−1

1

)

C4 : n→


I3

1
−1

−1

n

(
−1

1

)
, O(3)T : n→

(
O(3)T

I3

)
n

(5.79)

The action of M on these two realizations are respectively

M : n→


I3

1
−1

1

n (5.80)

and

M : n→


I3

−1
1

−1

n

(
−1

1

)
(5.81)

5.C.3 Stable realizations of SL(7)

Below we list the stable realizations of SL(7) on various systems.
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p6m-anomaly-free systems

On p6m-anomaly-free systems, there are two stable realizations of SL(7), both of which
have the most relevant spinful fluctuations carrying spin-2. The symmetry actions of one
of them is given by Eq. (5.23). The other one has symmetry actions:

SO(3) : n→
(
φ5(SO(3))

I2

)
n, T : n→

 I5
−1

−1

n

 −1
1

1

 ,

T1,2 : n→

 I5
−1

2

√
3
2

−
√
3
2

−1
2

n,

C6 : n→

 I5
1

−1

n

 −1
1

1

 ,

M : n→

 I5
−1

−1

n

 −1
1

1

 ,

(5.82)

Triangular lattice half-integer spin systems

On triangular lattice half-integer spin systems, there are 8 stable realizations of SL(7). The
first has appeared in Ref. [15], given by Eq. (5.53).
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The second has symmetry actions:

T1 : n→ n

 1
−1

−1

 , T2 : n→ n

 −1
1

−1

 ,

C6 : n→


I3

−1
1

−1
1

n

 1
1

1

 ,

M : n→


I3

−1
−1

1
1

n

 1
1

1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(5.83)
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The third has symmetry actions:

T1 : n→


I3

−1
2

√
3
2

−
√
3
2

−1
2

1
1

n

 1
−1

−1

 ,

T2 : n→


I3

−1
2

√
3
2

−
√
3
2

−1
2

1
1

n

 −1
1

−1

 ,

C6 : n→


I3

1
−1

−1
1

n

 1
1

1

 ,

M : n→


I3

−1
−1

1
1

n

 1
1

1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(5.84)
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The fourth has symmetry actions:

T1 : n→


I3

−1
2

√
3
2

−
√
3
2

−1
2

1
1

n

 1
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−1

 ,

T2 : n→


I3

−1
2

√
3
2

−
√
3
2

−1
2

1
1

n

 −1
1

−1

 ,

C6 : n→


I3

1
−1

−1
1

n

 1
1

1

 ,

M : n→


I3

1
1

−1
−1

n

 1
1

1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(5.85)

The first to the fourth realization are all adjacent to tetrahedral order.
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The fifth has symmetry actions:

T1 : n→ n

 1
−1

−1

 , T2 : n→ n

 −1
1

−1

 ,

C6 : n→


I3

−1
1

1
−1

n

 1
1

1

 ,

M : n→


I3

−1
−1

−1
1

n

 −1
−1

−1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(5.86)
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The sixth has symmetry actions:

T1 : n→


I3

−1
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√
3
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−
√
3
2

−1
2

1
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n
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 ,

T2 : n→


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√
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n
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−1
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
I3

1
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1
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n

 1
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
I3

−1
−1

−1
1

n

 −1
−1

−1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(5.87)
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The seventh has symmetry actions:

T1 : n→


I3

1
1

−1
−1

n

 −1
2

−
√
3
2√

3
2

−1
2

1

 ,

T2 : n→


I3

1
−1

1
−1

n

 −1
2

−
√
3
2√

3
2

−1
2

1

 ,

C6 : n→


I3

−1
1

1
−1

n

 1
−1

−1

 ,

M : n→


I3

1
1

1
−1

n

 1
1

−1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(5.88)
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The eighth has symmetry actions:

T1 : n→


I3

1
1

−1
−1

n

 −1
2

−
√
3
2√

3
2

−1
2

1

 ,

T2 : n→


I3

1
−1

1
−1

n

 −1
2

−
√
3
2√

3
2

−1
2

1

 ,

C6 : n→


I3

1
1

1
−1

n

 1
−1

1

 ,

M : n→


I3

−1
1

1
−1

n

 −1
−1

1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(5.89)

Kagome lattice half-integer spin systems

On kagome lattice half-integer spin systems, there are 9 stable realizations of SL(7). The
first has appeared in Ref. [15] and is given by Eq. (5.59). The second is given by Eq.
(5.20). Both realizations are adjacent to cuboc1 order.
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The third has symmetry actions

T1 : n→ n

 1
−1

−1

 , T2 : n→ n

 −1
1

−1

 ,

C6 : n→


I3

−1
−1

1
−1

n

 −1
1

1

 ,

M : n→


I3

−1
−1

−1
1

n

 1
1

−1

 ,

O(3)T : n→
(
O(3)T

I4

)

(5.90)
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The fourth has symmetry actions

T1 : n→


I3

−1
2

√
3
2

−
√
3
2

−1
2

1
1

n

 1
−1

−1

 ,

T2 : n→


I3

−1
2

√
3
2

−
√
3
2

−1
2

1
1

n

 −1
1

−1

 ,

C6 : n→


I3

1
−1

−1
−1

n

 −1
1

1

 ,

M : n→


I3

−1
−1

−1
1

n

 1
1

−1

 ,

O(3)T : n→
(
O(3)T

I4

)
n,

(5.91)
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The fifth has symmetry actions

T1 : n→


I3

1
1

−1
2

√
3
2

−
√
3
2

−1
2

n

 1
−1

−1

 ,

T2 : n→


I3

1
1

−1
2

√
3
2

−
√
3
2

−1
2

n

 −1
1

−1

 ,

C6 : n→


I3

1
2

√
3
2

−
√
3
2

1
2

1
−1

n

 −1
1

1

 ,

M : n→


I3

−1
1

−1
−1

n

 1
1

−1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(5.92)

The third to the fifth realization are all adjacent to cuboc2 order.
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The sixth has symmetry actions:

T1 : n→


I3

1
1

−1
−1

n,

T2 : n→


I3

1
−1

1
−1

n,

C6 : n→


I3

1
1

1
1

n

 −1
2

−
√
3
2√

3
2

−1
2

1

 ,

M : n→


I3

−1
1

1
1

n

 −1
1

1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(5.93)

The sixth realization is adjacent to q = 0 umbrella order.
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The seventh has symmetry actions:

T1 : n→


I3

1
1

−1
−1

n

 −1
2

−
√
3
2√

3
2

−1
2

1

 ,

T2 : n→


I3

1
−1

1
−1

n

 −1
2

−
√
3
2√

3
2

−1
2

1

 ,

C6 : n→


I3

−1
1

1
1

n

 1
−1

1

 ,

M : n→


I3

1
1

1
1

n,

O(3)T : n→
(
O(3)T

I4

)
n

(5.94)

The seventh realization is adjacent to q =
√
3×

√
3 umbrella order.
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The eighth has symmetry actions:

T1 : n→


I3

1
1

−1
−1

n

 −1
2

−
√
3
2√

3
2

−1
2

1

 ,

T2 : n→


I3

1
−1

1
−1

n

 −1
2

−
√
3
2√

3
2

−1
2

1

 ,

C6 : n→


I3

−1
1

1
1

n

 1
−1

1

 ,

M : n→


I3

1
−1

−1
−1

n

 1
1

−1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(5.95)
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The ninth has symmetry actions:

T1 : n→


I3

1
1

−1
−1

n

 −1
2

−
√
3
2√

3
2

−1
2

1

 ,

T2 : n→


I3

1
−1

1
−1

n

 −1
2

−
√
3
2√

3
2

−1
2

1

 ,

C6 : n→


I3

−1
1

1
1

n

 1
−1

1

 ,

M : n→


I3

−1
−1

−1
−1

n

 −1
−1

1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(5.96)

p4m-anomaly-free systems

On p4m-anomaly-free systems, there are 4 stable realizations of SL(7), all of which has the
most relevant spinful fluctuations carrying spin-2.
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The first has symmetry actions:

SO(3) : n→
(
φ5(SO(3))

I2

)
n, T : n→

 I5
−1

1

n,

T1,2 : n→

 I5
1

−1

n

 −1
1

1

 ,

C4 : n→

 I5
1

−1

n

 1
−1

1

 , M : n→

 I5
−1

1

n

(5.97)

The second has symmetry actions:

SO(3) : n→
(
φ5(SO(3))

I2

)
n, T : n→

 I5
−1

1

n,

T1,2 : n→

 I5
1

−1

n

 −1
1

1

 ,

C4 : n→ n

 −1
−1

1

 , M : n→

 I5
−1

−1

n

 −1
1

1


(5.98)

The third has symmetry actions:

SO(3) : n→
(
φ5(SO(3))

I2

)
n, T : n→

 I5
−1

−1

n

 −1
1

1

 ,

T1,2 : n→

 I5
−1

1

n

 −1
1

1

 ,

C4 : n→

 I5
−1

−1

n, M : n→

 I5
1

−1

n

(5.99)
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The fourth has symmetry actions:

SO(3) : n→
(
φ5(SO(3))

I2

)
n, T : n→

 I5
−1

−1

n

 −1
1

1

 ,

T1,2 : n→

 I5
−1

1

n

 −1
1

1

 ,

C4 : n→

 I5
1

−1

n

 −1
1

1

 ,

M : n→

 I5
−1

−1

n

 −1
1

1



(5.100)

Square lattice half-integer spin systems

On square lattice half-integer spin systems, there are 2 stable realizations of SL(7) where
the most relevant spinful fluctuations have spin-1 and all n modes are at high-symmetry
momenta in the Brillouin zone. There are also three realizations where some n modes
can have continuously changing momenta, among which two of them have only a single
symmetric relevant perturbation that shifts the momenta of the n modes, as long as these
momenta are not tuned to high-symmetry point. This is the case for the third family
of realizations for most non-high-symmetry momenta, except at two special momentum
points (see below). Furthermore, there is also one stable realization where the most relevant
spinful fluctuations have spin-2 and all n modes are at high-symmetry momenta.

We start with the 2 realizations with the most relevant spinful fluctuations carrying
spin-1 and all n modes locating at high-symmetry momenta. The first has symmetry
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actions:

T1 : n→


I3

−1
1

1
1

n

 −1
1

1

 ,

T2 : n→


I3

1
−1

1
1

n

 −1
1

1

 ,

C4 : n→


I3

1
−1

1
1

n

 1
−1

−1

 ,

M : n→


I3

−1
1

−1
−1

n

 −1
−1

1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(5.101)
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The second has symmetry actions:

T1 : n→


I3

−1
1

−1
1

n

 −1
−1

1

 ,

T2 : n→


I3

1
−1

−1
1

n

 −1
−1

1

 ,

C4 : n→


I3

1
−1

1
1

n

 −1
−1

1

 ,

M : n→


I3

−1
1

1
−1

n

 −1
1

1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(5.102)

Next, we turn to the three realizations with some n modes at continuously changing
momenta. The first has symmetry actions given by Eq. (5.21), adjacent to tetrahedral
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umbrella order, and the second has symmetry actions

C4 : n→


I3

1
1

1
1

n

 1
1

1

 ,

M : n→


I3

−1
−1

−1
−1

n

 −1
−1

1

 ,

T1 : n→


I3

cos k sin k
− sin k cos k

I2

n

 −1
1

−1

 ,

T2 : n→


I3

I2
cos k − sin k
sin k cos k

n

 1
−1

−1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(5.103)

where k ∈ (−π, π) is a generic momentum. In both of these two realizations, the only
relevant perturbation that is allowed by microscopic symmetries is the one that shifts the
momenta of the n modes.
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The third has symmetry actions:

C4 : n→


I3

1
1

1
1

n

 1
1

1

 ,

M : n→


I3

−1
−1

−1
−1

n

 1
1

−1

 ,

T1 : n→


I3

cos k sin k
− sin k cos k

cos k sin k
− sin k cos k

n

 −1
1

−1

 ,

T2 : n→


I3

cos k sin k
− sin k cos k

cos k − sin k
sin k cos k

n

 1
−1

−1

 ,

O(3)T : n→
(
O(3)T

I4

)
n

(5.104)

where k ∈ (−π, π) is a generic momentum. For this family of realizations, as long as
k 6= ±π/2, the only symmetric relevant perturbation is the one that shifts the momenta of
the n modes. When k = ±π/2, besides this symmetric relevant perturbation, there is an
additional one that can change the emergent order of SL(7) and make it unstable.

Finally, there is one realization where all n modes are at high-symmetry momentum,
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and the most spinful fluctuations have spin-2. It has symmetry actions:

SO(3) : n→
(
φ5(SO(3))

I2

)
n, T : n→

 I5
−1

−1

n

 −1
1

1


T1 : n→

 I5
−1

1

n

 −1
1

1

 ,

T2 : n→

 I5
1

−1

n

 −1
1

1

 ,

C4 : n→

 I5
1

−1

n, M : n→

 I5
1

−1

n

(5.105)

5.D Classical regular magnetic orders

Ref. [128] studied regular magnetic orders, i.e., magnetic orders that respect all the lattice
symmetries modulo global O(3)T spin transformations (rotations and/or spin flips). In
particular, on triangular, kagome, honeycomb and square lattices, all classical regular
magnetic orders are classified. These classical orders can all be realized by a product
state, where each spin moment on the lattice can be assigned a definite orientation. In
this appendix, we explicitly write down the spin configurations of these classical regular
magnetic orders, and the lattice symmetry actions on the order parameters.

In terms of the symmetry breaking pattern of the spin O(3)T symmetry, there are three
types of magnetic orders: collinear, coplanar and non-coplanar. The order parameter of
a collinear magnetic order is a three-component vector, n, which transforms in the spin-1
representation of the O(3)T spin symmetry. The order parameters of a coplanar magnetic
order consists of two orthonormal three-component vectors, n1,2, both transforming in
the spin-1 representation of the O(3)T spin symmetry. The order parameters of a non-
coplanar magnetic order consists of three orthonormal three-component vectors, n1,2,3, all
transforming in the spin-1 representation of the O(3)T spin symmetry.

We start from the triangular lattice. We will denote the position r of a site on a
triangular lattice by its coordinates in the basis of translation vectors of T1,2 (see Fig. 2.1),
such that r = xT1 + yT2, where T1,2 is the translation vector of T1,2. Under the p6m
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symmetry,

T1 : (x, y) → (x+ 1, y)

T2 : (x, y) → (x, y + 1)

C6 : (x, y) → (x− y, x)

M : (x, y) → (y, x)

(5.106)

1. There is a single collinear classical regular magnetic order, the ferromagnetic order,
where S(x, y) = n. Under the p6m symmetry, n is invariant.

2. There is a single coplanar classical regular magnetic order, the 120◦ order, where
S(x, y) = (−1)x+y cos π(x+y)

3
n1 + (−1)x+y sin π(x+y)

3
n2. Under the p6m symmetry,

T1,2 : n1 → −1

2
n1 −

√
3

2
n2, n2 →

√
3

2
n1 −

1

2
n2

C6 : n1 → n1, n2 → −n2

M : n1,2 → n1,2

(5.107)

3. There are two non-coplanar classical regular magnetic order. The first is the tetra-
hedral order, where S(x, y) = (−1)xn1 + (−1)yn2 + (−1)x+yn3. Under the p6m
symmetry,

T1 : n1 → −n1, n2 → n2, n3 → −n3

T2 : n1 → n1, n2 → −n2, n3 → −n3

C6 : n1 → n2, n2 → n3, n3 → n1

M : n1 → n2, n2 → n1, n3 → n3

(5.108)

4. The second non-coplanar classical regular magnetic order is the F-umbrella order,
where S(x, y) = (−1)x+y cos π(x+y)

3
sin θn1+(−1)x+y sin π(x+y)

3
sin θn2+cos θn3, with

θ a free parameter. Under the p6m symmetry,

T1,2 : n1 → −1

2
n1 +

√
3

2
n2, n2 → −

√
3

2
n1 −

1

2
n2, n3 → n3

C6 : n1 → n1, n2 → −n2, n3 → n3

M : n1,2,3 → n1,2,3

(5.109)
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Next we turn to the kagome lattice. Each unit cell in a kagome lattice includes three
sites, so the spin configuration will be written as Si(x, y), where (x, y) labels the position
of the unit cell in the same way as the triangular lattice, and i = 1, 2, 3 represents the site
obtained by applying a half translation T1/2, T2/2 and (T1+T2)/2 to the C6 center of the
unit cell, respectively.

1. There is a single collinear classical regular magnetic order, the ferromagnetic order,
where Si(x, y) = n for i = 1, 2, 3. Under the p6m symmetry, n is invariant.

2. There are two coplanar classical regular magnetic orders. The first is the q = 0 order,
where S1(x, y) = n1, S2(x, y) = −1

2
n1 +

√
3
2
n2, and S3(x.y) = −1

2
n1 −

√
3
2
n2. Under

the p6m symmetry,

T1,2 : n1,2 → n1,2

C6 : n1 → −1

2
n1 −

√
3

2
n2, n2 →

√
3

2
n1 −

1

2
n2

M : n1 → −1

2
n1 +

√
3

2
n2, n2 →

√
3

2
n1 +

1

2
n2

(5.110)

3. The second coplanar classical regular magnetic order is the q =
√
3 ×

√
3 order,

where S1(x, y) = (−1)x+y cos π(x+y)
3

n1 + (−1)x+y sin π(x+y)
3

n2, S2(x, y) = S1(x, y),
and S3(x, y) = (−1)x+y cos π(x+y+2)

3
n1+(−1)x+y sin π(x+y+2)

3
n2. Under the p6m sym-

metry,

T1,2 : n1 → −1

2
n1 −

√
3

2
n2, n2 →

√
3

2
n1 −

1

2
n2

C6 : n1 → −1

2
n1 +

√
3

2
n2, n2 →

√
3

2
n1 +

1

2
n2

M : n1,2 → n1,2

(5.111)

4. There are five non-coplanar classical regular magnetic orders. The first is the octahe-
dral order, where S1(x, y) = (−1)yn1, S2(x, y) = (−1)xn2 and S3(x, y) = (−1)x+yn3.
Under the p6m symmetry,

T1 : n1 → n1, n2 → −n2, n3 → (−1)x+yn3

T2 : n1 → −n1, n2 → n2, n3 → −n3

C6 : n1 → n3, n2 → n1, n3 → n2

M : n1 → n2, n2 → n1, n3 → n3

(5.112)
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5. The second non-coplanar classical regular magnetic order is the cuboc1 order, where
S1(x, y) = (−1)xn2 + (−1)x+yn3, S2(x, y) = (−1)yn1 + (−1)x+yn3 and S3(x, y) =
−(−1)xn2 − (−1)yn1. Under the p6m symmetry,

T1 : n1 → n1, n2 → −n2, n3 → −n3

T2 : n1 → −n1, n2 → n2, n3 → −n3

C6 : n1 → −n3, n2 → −n1, n3 → −n2

M : n1 → n2, n2 → n1, n3 → n3

(5.113)

6. The third non-coplanar classical regular magnetic order is the cuboc2 order, where
S1(x, y) = (−1)xn2 − (−1)x+yn3, S2(x, y) = (−1)yn1 + (−1)x+yn3 and S3(x, y) =
(−1)xn2 + (−1)yn1. Under the p6m symmetry,

T1 : n1 → n1, n2 → −n2, n3 → −n3

T2 : n1 → −n1, n2 → n2, n3 → −n3

C6 : n1 → n3, n2 → n1, n3 → −n2

M : n1 → n2, n2 → n1, n3 → −n3

(5.114)

7. The fourth non-coplanar is the q = 0 umbrella order, where S1(x, y) = sin θn1 +

cos θn3, S2(x, y) = −1
2
sin θn1 +

√
3
2
sin θn2 + cos θn3, and S3(x, y) = −1

2
sin θn1 −√

3
2
sin θn2 + cos θn3, with θ a free parameter. Under the p6m symmetry,

T1,2 : n1,2,3 → n1,2,3

C6 : n1 → −1

2
n1 −

√
3

2
n2, n2 →

√
3

2
n1 −

1

2
n2, n3 → n3

M : n1 → −1

2
n1 +

√
3

2
n2, n2 →

√
3

2
n1 +

1

2
n2, n3 → n3

(5.115)

8. The last non-coplanar classical regular magnetic order is the q =
√
3 ×

√
3 um-

brella order, where S1(x, y) = (−1)x+y cos π(x+y)
3

sin θn1+(−1)x+y sin π(x+y)
3

sin θn2+

cos θn3, S2(x, y) = S1(x, y), and S3(x, y) = −(−1)x+y cos π(x+y−1)
3

sin θn1−(−1)x+y sin π(x+y−1)
3

sin θn2+
cos θn3. Under the p6m symmetry,

T1,2 : n1 → −1

2
n1 −

√
3

2
n2, n2 →

√
3

2
n1 −

1

2
n2, n3 → n3

C6 : n1 → −1

2
n1 +

√
3

2
n2, n2 →

√
3

2
n1 +

1

2
n2, n3 → n3

M : n1,2,3 → n1,2,3

(5.116)
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Now we turn to the honeycomb lattice. Each unit cell of a honeycomb lattice includes
two sites, so the spin configuration will be written in terms of SA(x, y) and SB(x, y), where
the A and B sublattice can be obtained by translating by 2T1+T2

3
and T1−T2

3
from the C6

center, respectively.

1. There are two collinear classical regular magnetic orders. The first is the ferro-
magnetic order, where SA(x, y) = SB(x, y) = n. Under the p6m symmetry, n is
invariant.

2. The second collinear classical regular magnetic order is the anti-ferromagnetic order,
where SA(x, y) = −SB(x, y) = n. Under the p6m symmetry,

T1,2 : n → n

C6 : n → −n

M : n → −n

(5.117)

3. There is a single coplanar classical regular magnetic order, the V order, where
SA(x, y) = cos θn1 − sin θn2 and SB(x, y) = cos θn1 + sin θn2, with θ a free pa-
rameter. Under the p6m symmetry,

T1,2 : n1,2 → n1,2

C6 : n1 → n1, n2 → −n2

M : n1 → n1, n2 → −n2

(5.118)

4. There are two non-coplanar classical regular magnetic orders. The first is the cubic
order, where SA(x, y) = (−1)xn1 +(−1)yn2 +(−1)x+yn3 and SB(x, y) = (−1)xn1 −
(−1)yn2 + (−1)x+yn3. Under the p6m symmetry,

T1 : n1 → −n1, n2 → n2, n3 → −n3

T2 : n1 → n1, n2 → −n2, n3 → −n3

C6 : n1 → n2, n2 → −n3, n3 → n1

M : n1 → n2, n2 → n1, n3 → −n3

(5.119)

5. The second non-coplanar classical regular magnetic order is the tetrahedral order,
where SA(x, y) = (−1)xn1 + (−1)yn2 + (−1)x+yn3 and SB(x, y) = −(−1)xn1 +
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(−1)yn2 − (−1)x+yn3. Under the p6m symmetry,
T1 : n1 → −n1, n2 → n2, n3 → −n3

T2 : n1 → n1, n2 → −n2, n3 → −n3

C6 : n1 → −n2, n2 → n3, n3 → −n1

M : n1 → −n2, n2 → −n1, n3 → n3

(5.120)

Finally, we discuss the square lattice. We will denote the position of a site by its
coordinates in the basis of translation vectors of T1,2 (see Fig. 2.2). such that r = xT1+yT2,
where T1,2 is the translation vector of T1,2. Under the p4m symmetry,

T1 : (x, y) → (x+ 1, y)

T2 : (x, y) → (x, y + 1)

C4 : (x, y) → (−y, x)
M : (x, y) → (−x, y)

(5.121)

1. There are two collinear classical regular magnetic orders. The first is the ferromag-
netic order, where S(x, y) = n. Under the p4m symmetry, n is invariant.

2. The second collinear classical regular magnetic order is the anti-ferromagnetic order,
where S(x, y) = (−1)x+yn. Under the p4m symmetry,

T1,2 : n → −n

C4 : n → −n

M : n → n

(5.122)

3. There are two coplanar classical regular magnetic orders. The first is the orthogonal
order, where S(x, y) = (−1)x+(−1)y

2
n1 +

−(−1)x+(−1)y

2
n2. Under the p4m symmetry,

T1 : n1 → n2, n2 → n1

T2 : n1 → −n2, n2 → −n1

C4 : n1 → n1, n2 → −n2

M : n1,2 → n1,2

(5.123)

4. The second coplanar classical regular magnetic order is the V order, where S(x, y) =
cos θn1 − (−1)x+y sin θn2, where θ a free parameter. Under the p4m symmetry,

T1,2 : n1 → n1, n2 → −n2

C4 : n1,2 → n1,2

M : n1,2 → n1,2

(5.124)
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5. There are two non-coplanar classical regular magnetic orders. The first is the tetra-
hedral umbrealla order (also known as the AF umbrella order), where S(x, y) =
(−1)x sin θ√

2
n1 − (−1)y sin θ√

2
n2 − (−1)x+y cos θn3, with θ a free parameter. Under the p4m

symmetry,

T1 : n1 → −n1, n2 → n2, n3 → −n3

T2 : n1 → n1, n2 → −n2, n3 → −n3

C4 : n1 → −n2, n2 → −n1, n3 → n3

M : n1,2,3 → n1,2,3

(5.125)

6. The second non-coplanar classical regular magnetic order is the umbrella order (also
known as the F umbrella order), where S(x, y) = cos θn1+

(−1)x sin θ√
2

n2+
(−1)y sin θ√

2
n3.

Under the p4m symmetry,

T1 : n1 → n1, n2 → −n2, n3 → n3

T2 : n1 → n1, n2 → n2, n3 → −n3

C4 : n1 → n1, n2 → n3, n3 → n2

M : n1,2,3 → n1,2,3

(5.126)

5.E Stability of DSL realizations on NaYbO2 and twisted
bilayer WSe2

In this appendix, we discuss the stability of a few more examples of DSL realizations
on systems with spin-orbit coupling (SOC). The specific systems we have in mind are
NaYbO2 and twisted bilayer WSe2 (tWSe2). Recently, it was pointed out that tWSe2 is
a good quantum simulator of triangular lattice Hubbard model, which can be effectively
described by a triangular lattice spin-1/2 system in the strong coupling regime [153–155].

The symmetries of NaYbO2 are given in Eq. (5.25). The symmetries of tWSe2 are

T1,2, C3 ≡ C2
6 , SO(2), T (5.127)

where SO(2) is a reduced spin rotational symmetry 11.
11These are the symmetries of tWSe2 in the presence of a displacement field, which is satisfied in the

generic experimental setting. If there is no displacement field, there is an extra mirror symmetry.
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On triangular lattice spin-1/2 systems with the full p6m × O(3)T symmetry, our ex-
haustive search finds 3 realizations of DSL, given by Eqs. (5.24), (5.72) and (5.73). Using
these symmetry actions, it is straightforward to see that for all three realizations, the re-
maining symmetries of NaYbO2 are sufficient to forbid all relevant operators of DSL listed
in Sec. 3.4.2. However, for the symmetry setting of tWSe2 and for all three realizations,
the (AL, AR) operator (the fermion mass that transforms in the adjoint representation of
the flavor symmetry) is always symmetry-allowed and will destablize the DSL. This means
if a DSL is stably realized in tWSe2, that realization cannot be compatible with a full
p6m×O(3)T symmetry.
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Chapter 6

Summary and Discussion

In summary, we have developed systematic methods to calculate the anomaly of various
systems relevant to condensed matter physics, primarily in (2 + 1)-d, including i) deriving
the topological partition functions corresponding to the LSM constraints in a large class
of systems relevant to the study of quantum magnetism, ii) anomaly of recently-proposed
Stiefel Liquid, and iii) systematic methods to calculate the anomaly of bosonic topological
orders. We then apply these results, and, motivated by the hypothesis of emergibility,
use the method of anomaly matching to study the emergibility of various Stiefel liquids in
lattice spin systems, and discuss many interesting realizations.

Being able to calculate the anomaly is extremely useful, because the anomaly is powerful
in constraining the possible low-energy dynamics of a strongly interacting field theory,
which is often challenging to understand by other means. For example, if a strongly
interacting field theory with some symmetry has an anomaly different from the ones we
calculate for some IR phase, this field theory cannot flow to this IR phase at low energies
under renormalization group. Moreover, according to the hypothesis of emergibility, the
ability to calculate the anomaly of a quantum phase or phase transition is crucial to
understand whether this phase or transition can emerge in a given quantum many-body
system, whose robust microscopic properties are compactly encoded in their Lieb-Schultz-
Mattis-type anomalies. Going one step further, this hypothesis provides a possible route to
solve the open problem of classifying possible phase diagrams with given lattice symmetries,
in a way similar to the classification of various symmetry-enriched quantum criticality. We
believe that this work is an important step towards these goals.

We remark that our philosophy to study the emergibility of a quantum phase or phase
transition is different from the conventional one. Our strategy is based on anomaly-
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matching, while the conventional one is based on explicit constructions of this phase or
phase transition, often in terms of a mean field (including parton gauge mean field) or a
wave function. We believe that the anomaly-based strategy captures the intrinsic essence of
emergibility. After all, any mean-field construction is also a way of doing anomaly-matching
in disguise, and such a construction by itself cannot rigorously prove the emergibility. On
the other hand, although a microscopic wave function can guarantee the emergibility, it
is generically difficult to read off the universal physics encoded in a wave function, and
there is no guarantee that a proposed wave function indeed describes the quantum phase
or phase transition of interest - in fact, in general there is no guarantee that such a wave
function could be realized as the ground state of any local Hamiltonian. So the signifi-
cance of this work is not only reflected by the specific results, but also by the fact that
it demonstrates the feasibility of the anomaly-based framework of emergibility, and the
fact that this framework can yield interesting results not envisioned before. This anomaly-
based framework of emergibility is established for lattice spin systems in this paper. An
interesting and important open problem is to generalize the topological characterizations
of LSM constraints to other systems, and apply the results to study the emergibility of
other quantum phases and phase transitions. Systems of particular relevance are those in
(3+1)-d, those with spin-orbit coupling, those with a filling constraint due to a U(1) sym-
metry, those with long-range interactions, those with a constrained Hilbert space, fermionic
systems, etc. We leave these for future work.

We have assumed that the hypothesis of emergibility is a necessary and sufficient con-
dition of emergibility. As mentioned before, its necessity has been established, while the
sufficiency is a reasonable conjecture. It is important to further justify or disprove (the suf-
ficiency of) this hypothesis. If it is disproved, it will be extremely interesting and valuable
to identify a correct necessary and sufficient condition of emergibility.
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Appendix A

Review of Mathematical Background

In this appendix, we briefly review various mathematical concepts used in this paper. We
also define some new concepts that will be useful in the paper.

A.1 Group cohomology

In this sub-appendix, we provide a brief review of the fundamentals of group cohomology.
See Refs. [26, 67, 68] for more details.

Given a (discrete) group G, let X be an Abelian group equipped with a G action
ρ : G × X → X, which is compatible with group multiplication, i.e., for any g, h ∈ G, e
the identity element in G and a, b ∈ X, we have

Identity of Group Action : ρe(a) = a,

Compatibility of Group Action : ρg (ρh(a)) = ρgh(a),

Compatibility of Module : ρg(ab) = ρg(a)ρg(b).

(A.1)

We leave the group multiplication symbols implicit in the above. Such an Abelian group
X with G action ρ is called a G-module, denoted by Xρ. In this paper, we will mainly
consider three different cases of X, i.e., Z2, U(1) and Z. In particular, when X = Z2, the
action ρg is always trivial for any g ∈ G. When X = U(1) (X = Z), the action ρg is either
trivial or complex conjugation (multiplication by −1), i.e., a Z2 action. Therefore, ρ can
be defined by a homomorphism ρ̃ : G→ Z2, and whether ρ̃(g) equals +1 or −1 determines
whether the action of ρg on U(1) and Z is trivial or non-trivial.
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Let ω(g1, . . . , gn) ∈ X be a function of n group elements with gi ∈ G for i = 1, . . . , n.
Such a function is called an n-cochain, and the set of all n-cochains is denoted by Cn(G,Xρ).
They naturally form an Abelian group under multiplication,

(ω · ω′)(g1, . . . , gn) = ω(g1, . . . , gn)ω
′(g1, . . . , gn), (A.2)

and the identity element is the trivial cochain ω(g1, . . . , gn) = 1 for every (g1, . . . , gn),
where 1 is the identity element in X.

We now define the coboundary map d : Cn(G,Xρ) → Cn+1(G,Xρ) acting on cochains
to be

(dω)(g1, . . . , gn+1) = ρg1 (ω(g2, . . . , gn+1))
n∏
j=1

(ω(g1, . . . , gj−1, gjgj+1, gj+2, . . . , gn+1))
(−1)j

(ω(g1, . . . , gn))
(−1)n+1

.
(A.3)

One can directly verify that d(dω) = 1 for any ω ∈ Cn(G,Xρ), where 1 denotes the trivial
cochain in Cn+2(G,Xρ). With the coboundary map, we next define ω ∈ Cn(G,Xρ) to
be an n-cocycle if it satisfies the condition dω = 1, and all n-cocycles naturally form an
Abelian group

Zn(G,Xρ) = ker[d : Cn(G,Xρ) → Cn+1(G,Xρ)] = {ω ∈ Cn(G,Xρ) | dω = 1 }. (A.4)

We also define ω ∈ Cn(G,Xρ) to be an n-coboundary if it satisfies the condition ω = dµ for
some (n− 1)-cochain µ ∈ Cn−1(G,Xρ), and all n-coboundaries naturally form an Abelian
group

Bn(G,Xρ) = im[d : Cn−1(G,Xρ) → Cn(G,Xρ)]

= {ω ∈ Cn(G,Xρ) | ∃µ ∈ Cn−1(G,Xρ) : ω = dµ }.
(A.5)

Clearly, Bn(G,Xρ) ⊆ Zn(G,Xρ) ⊆ Cn(G,Xρ), and we define the n-th group cohomology
of G to be the quotient group

Hn(G,Xρ) =
Zn(G,Xρ)

Bn(G,Xρ)
. (A.6)

In other words, Hn(G,Xρ) collects the equivalence classes of n-cocycles, where two n-
cocycles are considered equivalent if they differ by an n-coboundary.

It is instructive to look at the lowest cohomology groups. Let us first considerH1(G,Xρ):

Z1(G,Xρ) = {ω | ω(g1)ρg1 (ω(g2)) = ω(g1g2) }
B1(G,Xρ) = {ω | ω(g) = ρg(µ)µ

−1 }.
(A.7)
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If the G-action on X is trivial, then B1(G,Xρ) = {1} and Z1(G,Xρ) consists of group
homomorphisms from G to X, which, in particular, map elements in the same conjugacy
class to the same image, i.e.,

ω(g−1
2 g1g2) = ω(g1). (A.8)

for any g1,2 ∈ G.
For the second cohomology, we have

Z2(G,Xρ) = {ω | ρg1 (ω(g2, g3))ω(g1, g2g3) = ω(g1, g2)ω(g1g2, g3) }
B2(G,Xρ) = {ω | ω(g1, g2) = ρg1 (µ(g2)) (µ(g1g2))

−1 µ(g1) }.
(A.9)

In particular, H2(G,U(1)ρ) classifies all inequivalent complex projective representations of
G, while H2(G,Z2) classifies all inequivalent real orthogonal projective representations of
G, which will be most useful throughout the paper.

A.2 Maps of group Cohomology

In this sub-appendix, we review various maps of group cohomology, which will be used
throughout the paper.

The first map we consider is the pullback of group cohomology. Consider a map between
two groups φ : G→ H compatible with their respective group action ρG and ρH on X, in
the sense that ρφ(g)(a) = ρg(a) for any a ∈ X and any g ∈ G or, in the case of X = U(1),Z,
ρ̃H ◦φ = ρ̃G. Given such a map, we can define the pullback from Hn(H,Xρ) to Hn(G,Xρ),
which can be defined on the representative cochain ω ∈ Cn(H,Xρ) as follows

(φ∗(ω))(g1, . . . , gn) ≡ ω(φ(g1), . . . , φ(gn)). (A.10)

It is straightforward to check that it maps cocycles to cocycles, and coboundaries to
coboundaries, so it gives a well-defined map from Hn(H,Xρ) to Hn(G,Xρ),

φ∗ : Hn(H,Xρ) → Hn(G,Xρ). (A.11)

The second map we consider is the map of group cohomology induced by a map of
G-modules i : X → Y . Here i is any map from G-module X to G-module Y that preserves
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the action of G, i.e., for any a ∈ X and g ∈ G we have ρg(i(a)) = i(ρg(a)). Then for any
n-cochain ω(g1, . . . , gn) ∈ Cn(G,Xρ), we can map it to another n-cochain ĩ(ω) such that

(̃i(ω))(g1, . . . , gn) ≡ i(ω(g1, . . . , gn)). (A.12)

It is straightforward to check that it maps cocycles to cocycles, and coboundaries to
coboundaries, so it gives a well-defined map from Hn(G,Xρ) to Hn(G, Yρ),

ĩ : Hn(G,Xρ) → Hn(G, Yρ). (A.13)

We will frequently use this map to convert cohomology elements in Hn(G,Z2) to elements
in Hn(G,U(1)ρ), induced by the inclusion i of Z2 = {±1} into U(1). Note that the
representative cochains ω and ĩ(ω) as a function from Gn to Z2 and U(1) are manifestly the
same, but a function representing a nontrivial element in Hn(G,Z2) can represent a trivial
element in Hn(G,U(1)ρ), because the module U(1)ρ in general yields more coboundaries
compared to the module Z2. We also consider the map of group cohomology p̃ induced by
the projection p of Z onto Z2 = {0, 1}

The third map which will be useful in the analysis of anomaly/anomaly-matching is
the Bockstein homomorphism [69, 176]. Consider a short exact sequence of G-modules,

1 X Z Y 1i p (A.14)

with the map i : X → Z injective, the map p : Z → Y surjective and ker[p] = im[i]. There
is a long exact sequence of the cohomology of G associated to this short exact sequence,
such that ker = im at any place of the following chain of maps,

Hn(G,Xρ) Hn(G,Zρ) Hn(G, Yρ) Hn+1(G,Xρ) . . .ĩ p̃ β ĩ (A.15)

The map β, called the Bockstein homomorphism, is defined as follows. For [ω] ∈ Hn(G, Yρ)
and a representative cochain ω, choose a function ω̃ from Gn to Zρ such that

p((ω̃)(g1, . . . , gn)) = ω(g1, . . . , gn). (A.16)

Because p is surjective, ω̃ always exists. For any choice of ω̃, it is straightforward to see
that p((dω̃)(g1, . . . , gn)) = 0 and as a result (dω̃)(g1, . . . , gn) is in the image of i. Then we
define this (unique) preimage to be the image of ω under the Bockstein homomorphism,
i.e., we have

β(ω) ≡ ĩ−1(dω̃). (A.17)
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There are several short exact sequences that we should pay special attention to. The
first one is

1 Z R U(1) 1.
×2π mod 2π (A.18)

WhenHn(G,Zρ) andHn+1(G,Zρ) contain torsion elements only, Hn(G,Rρ) = Hn+1(G,Rρ) =
0, and from Eq. (A.15) we see that the associated Bockstein homomorphism β : Hn(G,U(1)ρ) →
Hn+1(G,Zρ) is an isomorphism. For most discussions in this paper, especially when G is
a finite group (and n > 0), this Bockstein homormorphism is indeed an isomorphism, and
only in the example in Appendix 5.A.1 it is not, on which we will comment explicitly.

The second short exact sequence that is important to us is

1 Z Z Z2 1
×2 mod 2 (A.19)

For x ∈ Hn(G,Z2), the Bockstein homomorphism β2 is sometimes written as

β2(x) =
1

2
dx. (A.20)

When Hn(G,Zρ) = (Z2)
k with some non-negative integer k, ĩ maps Hn(G,Zρ) to 0 in

Hn(G,Zρ). Therefore, from Eq. (A.15), we see that p̃ is injective while β2 is surjective.
We can also consider the natural map from Eq. (A.19) to Eq. (A.18), which is inclusion

for every factor as follows,

1 Z R U(1) 1

1 Z Z Z2 1

×2π mod 2π

×2

∼=

mod 2

×π i (A.21)

where i is again the inclusion of Z2 = {±1} into U(1). As a result, we have a map of long
exact sequences,

. . . Hn(G,Z2) Hn+1(G,Zρ) Hn+1(G,Zρ) . . .

. . . Hn(G,U(1)ρ) Hn+1(G,Zρ) Hn+1(G,Rρ) . . .

ĩ

β2

∼=

β

(A.22)

Here we distinguish the first Bockstein homomorphism by denoting it by β2, and ĩ denotes
the map induced by i : Z2 → U(1) specifically. Hence, we have β2 = β ◦ ĩ. When
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Hn(G,Zρ) = (Z2)
k, since β is an isomorphism while β2 is surjective , ĩ is surjective as well.

It suggests that in this case every element Ω ∈ Hn(G,U(1)ρ) can be written as ĩ(L) or eiπL
for some L ∈ Hn(G,Z2). In fact, every element Ω ∈ Hn(G,U(1)ρ) whose inverse is itself
can be written as eiπL for some L ∈ Hn(G,Z2). We use this fact throughout the paper.

A.3 Cup product and Z2 cohomology ring

In this sub-appendix, we review cup product and Z2 cohomology ring in group cohomology
that we will use [67, 68, 176]. We will specialize to the case where the module is Z2 = {0, 1}
and the group action ρ is trivial. The special feature of Z2, countrary to e.g. U(1), is the
fact that Z2 is a ring. Note that here addition in Z2 is regarded as the group multiplication
used in Eq. (A.2), and we will use + to denote this addition in this sub-appendix. There
is another ring multiplication that will be important later, which should be distinguished
with the group multiplication used in Appendix A.1.

The cross product is defined as the following operation on group cohomology,

× : Hm(G,Z2)⊗Hn(H,Z2) → Hm+n(G×H,Z2), (A.23)

such that for x ∈ Hm(G,Z2) and y ∈ Hn(H,Z2), after choosing cochain representatives x̃
and ỹ, we have the cochain representative of x× y as follows,

x̃× y ((g1, h1), . . . , (gm+n, hm+n)) ≡ x̃(g1, . . . , gm) · ỹ(hm+1, . . . , hm+n), (A.24)

where gi ∈ G, hi ∈ H, i = 1, . . . ,m+ n.
The cup product is defined as the following operation on group cohomology,

∪ : Hm(G,Z2)⊗Hn(G,Z2) Hm+n(G×G,Z2) Hm+n(G,Z2),
× ∆∗

(A.25)

where ∆ : G → G × G is the diagonal embedding g → (g, g). We can also define it
at the cochain level, i.e., for x ∈ Hm(G,Z2) and y ∈ Hn(G,Z2), after choosing cochain
representatives x̃ and ỹ, we have the cochain representative of x ∪ y as follows,

x̃ ∪ y (g1, . . . , gm+n) ≡ x̃(g1, . . . , gm) · ỹ(gm+1, . . . , gm+n). (A.26)

We can prove that cup product is commutative, i.e., x ∪ y = y ∪ x.
The cup product ∪ gives a multiplication on the direct sum of cohomology groups

H∗(G,Z2) =
⊕
k∈N

Hk(G,Z2), (A.27)

246



Together with the fact that 1 ∪ x = x where x is any element in H∗(G,Z2) and 1 here
denotes the nontrivial element in H0(G,Z2) = Z2, the cup product ∪ turns H∗(G,Z2) into
a ring that is naturally N graded and commutative. We call this ring the Z2 cohomology
ring of G.

Moreover, H∗(G,Z2) is also a Z2 algebra, and therefore can be presented by generators
and relations, i.e., all elements in Hn(G,Z2) for any n > 0 are either generators or can
be expressed as sum of (cup) products of generators, and generators satisfy some relations
which dictate that certain sums of (cup) products actually yield a trivial cohomology
element. We will call a generator in Hn(G,Z2) a degree n generator. Hence, the Z2

cohomology ring of G, i.e., H∗(G,Z2), can be written as follows,

H∗(G,Z2) = Z2[A•, · · · , B•, · · · ]/relations (A.28)

with A•(B•) generators in degree 1(2) belonging to H1(G,Z2)(H2(G,Z2)), and • the name
of the generator. Together with potential higher order generators, e.g., C• in degree 3,
they are supposed to form a complete list of generators of the entire cohomology ring.

For example, the Z2 cohomology ring of the group Z2 is

Z2[Ac], (A.29)

where Ac is the nontrivial element in H1(Z2,Z2) and can be thought of as nothing but
the gauge field of e.g., C2 rotation when pulled back to the spacetime manifold. In other
words, for the Z2 cohomology ring of Z2, there is a single generator Ac in degree 1 and
no relation. Accordingly, we can see that Hn(G,Z2) = Z2 for n ∈ N, with the nontrivial
element given by Anc ≡ Ac ∪ Ac ∪ · · · ∪ Ac, the cup product of n Ac’s.

As another example, the Z2 cohomology ring of Z4 is

Z2[Ac, Bc2 ]/
(
A2
c = 0

)
, (A.30)

where here Ac is the nontrivial element in H1(Z4,Z2) and can be thought of as (the Z2

reduction of) the gauge field of C4 rotation when pulled back to the spacetime manifold,
while Bc2 is the nontrivial element in H2(Z4,Z2), which corresponds to the fractionalization
pattern of the Z4 symmetry on an SO(3) monopole, with C4

4 = C2
2 = −1. That is to say,

for the Z2 cohomology ring of Z4, there are two generators at degree 1 and 2 respectively,
with the square of degree 1 generator Ac equal to 0. Then we see that Hn(Z4,Z2) = Z2

for n ∈ N as well, and the nontrivial element is given by Bk
c2 when n = 2k and AcB

k
c2

when n = 2k + 1 (k ∈ N). Note that for both G = Z2 and G = Z4, Hn(G,Z2) = Z2 for
any n ∈ N, but the Z2 cohomology rings give more information that differentiates the two
groups.
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For any two groups G1 and G2, we have H∗(G1 ×G2,Z2) = H∗(G1,Z2)⊗H∗(G2,Z2).
Moreover, if G can be written as G1 o G2, where G1 is a normal subgroup of G and G2

acts on G1 by conjugation, the calculation of the Z2 cohomology ring of G can be achieved
with the help of Lyndon–Hochschild–Serre spectral sequence [67, 68] that also connects
H∗(G,Z2) with H∗(G1,Z2) and H∗(G2,Z2) which we possibly already know. The general
strategy for calculating the Z2 cohomology ring of wallpaper groups G is as follows:

1. Identify all generators and elements in the Z2 cohomology ring of G through Lyndon–
Hochschild–Serre spectral sequence.

2. If there is no relation, given generators A1, A2, B1, C1 . . . , all elements of the form
Am1 A

n
2B

p
1C

q
1 . . . ,m, n, p, q · · · ∈ N will appear explicitly as different elements in the Z2

cohomology ring. Therefore, when e.g., some A2
1 is missing, we should identify some

relation that relates A2
1 to elements that appear explicitly, which can be achieved

through pulling back to (enough) subgroups of G.

To illustrate the strategy, in the following we calculate the Z2 cohomology ring of three
space groups in one or two spatial dimensions, including the generators and relations.

• p1: Z2[x]/(x
2 = 0).

Consider the line group p1, generated by a single translation T . The cohomology of
p1 is H1(p1,Z2) ∼= Z2 while Hn(p1,Z2) ∼= 0, n > 1. Denote the nontrivial element
in H1(p1,Z2) as x, which corresponds to (the Z2 reduction of) the gauge field of
translation, the Z2 cohomology ring of p1 is given by Z2[x]/(x

2 = 0).

• p1m: Z2[x,m]/(x2 = xm).
Consider the line group p1m, generated by translation T and mirror symmetry M
with relation MTM = T−1. The cohomology of p1m is Hn(p1m,Z2) ∼= Z2

2, n ⩾ 1.
Since p1m ∼= ZoZ2, with the help of the corresponding Serre spectral sequence, we
know that Hn(p1m,Z2), n ⩾ 1 is spanned by 2 elements, i.e., mn and mn−1x. where
m,x ∈ H1(p1m,Z2) are two generators that correspond to the gauge field of mirror
symmetry and (the Z2 reduction of) the gauge field of translation, respectively.
The next thing to do is to identify x2, which does not explicitly appear as elements
of the Z2 cohomology ring. Write x2 as a1xm+ a2m

2, a1,2 ∈ {0, 1}. By restricting to
Z2 subgroup generated by M , whose Z2 cohomology ring can be denoted by Z2[m

′],
we see that x becomes 0 while m becomes m′, and thus a2 = 0. By restricting to
the Z2 subgroup generated by TM , whose Z2 cohomology ring can be denoted by
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Z2[m
′′], we see that both x and m become m′′, and thus a1 = 1. Therefore, we have

x2 = xm.
Therefore, the Z2 cohomology ring of p1m is Z2[x,m]/(x2 = xm).

• cm: Z2[Ax+y, Am, Bxy]/(Ax+yAm = 0, A2
x+y = 0, BxyAx+y = 0, B2

xy = 0).
Consider 2d wallpaper group cm, generated by two translation symmetries T1, T2 as
well as mirror symmetry M that interchanges the two translations, i.e., MT1M = T2
and MT2M = T1. The cohomology of cm is Hn(cm,Z2) ∼= (Z2)

2, n ⩾ 1. Since
cm ∼= (Z × Z) o Z2, with the help of the corresponding Serre spectral sequence,
we know that H1(cm,Z2) is spanned by Ax+y and Am, while Hn(cm,Z2), n ⩾ 2 is
spanned by BxyA

n−2
m and Anm. Here Am, Ax+y ∈ H1(cm,Z2) correspond to the gauge

field of mirror symmetry and (the Z2 reduction of) the sum of gauge fields of T1 and
T2, respectively. Note that since T1 and T2 map to each other under conjugation
by M , the gauge field of the two translations x and y individually is not invariant
under conjugation by M , yet their sum that we denote by Ax+y is invariant under
conjugation by M , which is a necessary condition for it to be a cohomology element,
as required by Eq. (A.8). To conform to the notation, we also denote the gauge field
of mirror symmetry by Am when considering wallpaper groups. Moreover, there is an
extra degree-2 generator Bxy, i.e., an element belonging to H2(cm,Z2) that cannot
be written as sum of cup product of elements in H1(cm,Z2). The name xy comes
from the fact that its restriction to subgroup p1 generated by T1, T2 is AxAy (see
Appendix 2.D).
To identify the relations, we note that there are now 4 missing elements: Ax+yAm,
A2
x+y, BxyAx+y, B2

xy. By restricting to the subgroup p1 generated by T1, T2 as well as
the subgroup Z2 generated by M , we see that Ax+yAm = A2

x+y = 0. By restricting
to the subgroup pm generated by T1T

−1
2 , T1T2,M , we see that BxyAx+y = 0 as well

as B2
xy = 0. Note that the pullback of Ax+y, Am and Bxy to the subgroup pm is 0,

Am and AyAm, respectively.
Therefore, the Z2 cohomology ring of cm is

Z2[Ax+y, Am, Bxy]/
(
Ax+yAm = 0, A2

x+y = 0, BxyAx+y = 0, B2
xy = 0

)
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A.4 SQ1

In this sub-appendix, we define a new map we call SQ1, reminiscent of Sq1 in regular
Steenrod algebra, as follows

SQ1 : Hn(G,Z2) Hn(G,U(1)ρ) Hn+1(G,Zρ) Hn+1(G,Z2),
ĩ β p̃ (A.31)

i.e. SQ1 ≡ p̃ ◦ β ◦ ĩ, where ĩ and p̃ are the map of group cohomology induced by the
homomorphism of modules i : Z2 → U(1) and p : Z → Z2, and β is the Bockstein
homomorphism associated with the short exact sequence 1 → Z → R → U(1) → 1. Note
that β ◦ ĩ is the Bockstein homomorphism β2 associated with the short exact sequence
1 → Z → Z → Z2 → 1, and therefore when the action ρ is trivial, SQ1 is exactly Sq1 in
regular Steenrod algebra.

Moreover, SQ1 is related to Sq1 via the following simple fact

Lemma A.4.1. For x ∈ Hn(G,Z2), we have

SQ1(x) = SQ1(1) ∪ x+ Sq1(x). (A.32)

Proof. According to Eq. (A.17), choosing a cochain x̃ ∈ Cn(G,Z) such that the Z2 reduc-
tion of x̃ is x, we have

SQ1(x) =
1

2

(
(−1)ρ̃(g1)x̃(g2, . . . , gn+1) +

n∑
j=1

(−1)jx̃(g1, . . . , gjgj+1, . . . , gn+1)

+ (−1)n+1x̃(g1, . . . , gn)

)
=
1

2

(
(−1)ρ̃(g1) − 1

)
x̃(g2, . . . , gn+1) + Sq1(x)

=SQ1(1) ∪ x+ Sq1(x) mod 2.

(A.33)

■

For example, for ZT2 with nontrivial action on U(1) or Z, we have,

SQ1(t2n+1) = 0, SQ1(t2n) = t2n+1, (A.34)
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where t ∈ H1(ZT2 ,Z2) is the generator of the Z2 cohomology ring of ZT2 . We see that
in the presence of nontrivial ρ, the operation SQ1 is not distributive with respect to the
cup product. Note that SQ1(1) is nonzero and equals t, which when pulled back to the
spacetime manifold M equals w1 as well, i.e., the first Stiefel-Whitney class of M. In
contrast, for Z2 with trivial action on U(1) or Z, we have

SQ1(A2n
c ) = 0, SQ1(A2n+1

c ) = A2n+2
c , (A.35)

where Ac ∈ H1(Z2,Z2) is the generator of the Z2 cohomology ring of Z2 as well.
As another example, consider O(5) with ρ̃ : O(5) → Z2 the determinant, i.e., an O(5)

element complex conjugates an U(1) element or multiplies a Z element by −1 if and only
if the determinant of the O(5) element is −1. From Lemma A.4.1 we immediately have,

SQ1
(
w
O(5)
4

)
= w

O(5)
5 , (A.36)

as suggested by the calculation in the context of DQCP in Refs. [21, 170].
Moreover, even if SQ1 is not distriutive with respect to the cup product, from Lemma

A.4.1 SQ1 is still distributive with respect to the cross product involving two different
groups, i.e., we have

Lemma A.4.2. For x ∈ Hm(G,Z2) and y ∈ Hn(H,Z2), we have x×y ∈ Hm+n(G×H,Z2)
and

SQ1(x× y) = SQ1(x)× y + x× SQ1(y). (A.37)

This lemma is also important when calculating SQ1 because it decomposes the calcu-
lation into different pieces corresponding to different groups. For example, with the help
of Eqs. (A.34) and (A.35), the lemma tells us how to calculate SQ1 for the group (Z2)

k

with every Z2 piece acting trivially or nontrivially on U(1) or Z.
Finally, from the fact that

ALH
∼= ker

[̃
i : H2(Gs,Z2) → H2(Gs,U(1)ρ)

]
, (A.38)

as argued in Section 2.2, for LSM anomaly written as exp (iπλη) where λ ∈ H2(Gs,Z2)
and η ∈ H2(Gint,Z2), we have

SQ1(λ) = 0. (A.39)
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This can also be mathematically checked by considering different representations ρ : Gs →
O(n). For example, consider Gs = p4m. Then ALH is spanned by λ1 = Bxy+Ax+y(Ax+y+
Am) + Bc2 , λ2 = Bxy, λ3 = Ax+y(Ax+y + Am) in H2(p4m,Z2) (see Appendix 2.D), corre-
sponding to LSM anomaly associated to DOF at the site a, plaquette center b, and bond
center c as in Fig. 2.2, repectively. Consider the following three representations of p4m.
The first one is

Tx →

 −1 0 0
0 −1 0
0 0 1

 , Ty →

 −1 0 0
0 1 0
0 0 −1

 ,

C4 →

 1 0 0
0 0 1
0 −1 0

 , M →

 1 0 0
0 1 0
0 0 −1

 (A.40)

The pullback of wO(3)
2 equals Bxy +Bc2 while the pullback of wO(3)

3 is zero (see Section 5.1
and especially Eq. (5.16)). From SQ1

(
w
O(3)
2

)
= w

O(3)
3 , we establish that

SQ1(Bxy +Bc2) = 0. (A.41)

The second representation is

Tx →
(

1 0
0 1

)
, Ty →

(
1 0
0 1

)
, C4 →

(
0 1
−1 0

)
, M →

(
1 0
0 −1

)
(A.42)

The pullback of wO(2)
2 equals Bc2 , and from SQ1

(
w
O(2)
2

)
= 0, we establish that

SQ1(Bc2) = 0 (A.43)

The third representation is

Tx →
(

−1 0
0 −1

)
, Ty →

(
−1 0
0 −1

)
, C4 →

(
1 0
0 1

)
, M →

(
1 0
0 −1

)
(A.44)

and we have

SQ1(Ax+y(Ax+y + Am)) = 0. (A.45)

Since Bxy + Bc2 , Bc2 , Ax+y(Ax+y + Am) span ALH as well, indeed we mathematically show
that SQ1(λ) = 0 for λ ∈ ALH in p4m. Then according to Lemma A.4.2 we also have

SQ1(λη) = SQ1(λ)× η + λ× SQ1(η) = λ× SQ1(η) (A.46)

This equation will be very useful in the analysis of anomaly-matching. Note that this
equation holds for LSM constraints on lattices with any wallpaper group.

252


	Examining Committee
	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Exotic Quantum Phases of Matter
	Topological Order
	Stiefel Liquid

	Symmetry and Anomaly
	The Hypothesis of Emergibility
	Plan of the Thesis

	Topological Characterization of LSM Constraints and LSM Anomaly
	Review of lattice homotopy and the connection to SPT
	Gs=p6m
	Gs=p4m

	Topological characterization of the LSM constraints
	Gs=p6m
	Gs=p4m
	Topological characterization of the LSM constraints in (1+1)-d

	Topological partition function corresponding to LSM
	Fractionalization pattern involving both translation and glide symmetries
	Non-LSM fractionalization patterns
	Group Cohomology and Z2 Cohomology ring of wallpaper groups
	Topological invariants for all LSM constraints
	Topological characterization of LSM constraints in (1+1)-d

	Stiefel Liquid, non-linear Sigma Model and its Anomaly
	Stiefel Liquids as a NLSM
	Symmetry
	Anomaly
	Dynamics of Stiefel Liquids
	SL(5): DQCP
	SL(6): U(1) Dirac spin liquid
	SL(N7): non-Lagrangian Theory

	Effects of Relevant Operators on SL

	Anomaly of (2+1)-Dimensional Symmetry-Enriched Topological Order
	Review of topological order with symmetry G
	Review of UMTC notation
	Global symmetry

	(3+1)-d TQFT with finite group symmetry G
	Characterizing the anomaly by bulk-boundary correspondence
	General construction of TQFT
	Handle decomposition
	Recipe for calculating the partition function

	Examples: finite group symmetry
	No symmetry
	Z2T
	Z2Z2
	Z2TZ2T

	Generalization to connected Lie group symmetry
	Example: SO(N)

	Other symmetry groups
	O(N)T
	SO(N)Z2T

	Derivation of Eq. (4.44)
	Vector Spaces
	Partition functions
	Inner Products
	Requirement from Invertibility

	An explicit expression of the -factor
	Consistency check of TQFT
	Independence on the handle decomposition
	Invariance under change of defects
	Gauge invariance
	Cobordism invariance
	Invertibility
	Generalization to connected Lie groups

	Identifying the manifold M from bordism
	More information about handle decomposition of manifolds
	CP2
	RP4
	RP3S1
	RP2RP2


	Emergibility of Symmetry-Enriched Quantum Criticality
	Methods of Calculation
	Example: anomaly matching for DQCP

	Deconfined quantum critical point and quantum critical spin liquids
	DQCP
	DSL
	SL(7)

	Quantum critical spin-quadrupolar liquids
	Stability under symmetry breaking
	More examples of the calculation of pullback
	SU(2)1 and emergent anomaly
	DSL
	SL(7)
	Five dimensional representation of SO(3)

	Strategy of exhaustive search of SEP and results
	Stable realizations on various lattice spin systems
	Stable realizations of DQCP
	Stable realizations of DSL
	Stable realizations of SL(7)

	Classical regular magnetic orders
	Stability of DSL realizations on NaYbO2 and twisted bilayer WSe2

	Summary and Discussion
	References
	APPENDIX
	Review of Mathematical Background
	Group cohomology
	Maps of group Cohomology
	Cup product and Z2 cohomology ring
	SQ1


