
Efficient Geo-Distributed Transaction
Processing

by

Joshua Hildred

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Joshua Hildred 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Distributed deterministic database systems support OLTP workloads over geo-replicated data.
Providing these transactions with ACID guarantees requires a delay of multiple wide-area net-
work (WAN) round trips of messaging to totally order transactions globally. This thesis presents
Sloth, a geo-replicated database system that can serializably commit transactions after a delay
of only a single WAN round trip of messaging. Sloth reduces the cost of determining the to-
tal global order for all transactions by leveraging deterministic merging of partial sequences of
transactions per geographic region. Using popular workload benchmarks over geo-replicated
Azure, this thesis shows that Sloth outperforms state-of-the-art comparison systems to deliver
low-latency transaction execution.

iii

Acknowledgements

I would first like to thank my supervisor, Professor Khuzaima Daudjee. Without Khuzaima,
none of this would have been possible. Khuzaima’s guidance along with his kind and caring
nature allowed me to grow as a person and as a computer scientist.

I would also like to thank Michael Abebe. Michael’s mentorship was instrumental in helping
me become a fully functioning grad student.

Both Khuzaima and Michael challenged me and my research. Without them, my thesis would
not be the same.

I would also like to thank my thesis readers, Samer Al-Kiswany and Sujaya Maiyya, whose
feedback helped me improve my thesis.

Finally, I would like to thank my family: my mother, Alison, my father, Rob, and my brother,
Eli. Their love and support has meant everything to me. Last but not least, I would like to
gratefully acknowledge my partner Alicia. Alicia was with me through the highs and lows of
being a Master’s student; she celebrated my successes, comforted me in my failures, and lived
through all my stress. For this, I am eternally grateful.

iv

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Geo-Replicated Data . 1

1.2 Deterministic Transaction Processing . 3

1.3 Contributions . 3

2 Related work 5

2.1 Totally or Partially Ordered Sequence of Transactions 5

2.2 WAN Round Trips . 6

2.3 Strongly Connected Components . 7

2.4 Reduced Replication Quorum Size . 8

3 Background 10

v

4 System Design and Architecture 13

4.1 Sloth Overview . 13

4.1.1 System Model . 13

4.1.2 Transaction Ordering . 14

4.1.3 Example . 15

4.2 The Sloth System . 17

4.2.1 Sequencer Architecture . 17

4.2.2 Sequence Merging . 18

4.2.3 Conflict Graph . 21

4.2.4 Resolving Cyclic Conflicts . 22

4.2.5 Generating the Complete Order . 24

4.2.6 Correctness . 27

4.2.7 Fault Tolerance . 28

5 Performance Evaluation 31

5.1 Methodology . 31

5.2 Benchmarks . 32

5.3 Results . 32

5.3.1 Latency . 36

6 Conclusion and Future Work 40

6.1 Conclusion . 40

6.2 Future Work . 40

6.2.1 Snapshot Isolation . 40

6.2.2 Migrating the Primary . 41

References 42

vi

List of Figures

3.1 General architecture of a geo-replicated deterministic database[41] 11

4.1 Example of Calvin, SLOG and Sloth sequencer message passing 16

4.2 Sloth sequencer architecture with three regions: a running example. 19

4.3 Global conflict graph examples . 23

5.1 TPCC Latency & Throughput . 33

5.2 Azure MovR Latency and Throughout . 35

5.3 Calvin, SLOG & Sloth Latency . 37

5.4 Latency breakdown by transaction type . 37

5.5 CDF of transaction latency . 39

vii

List of Tables

1.1 Azure Inter-region latencies for data centers within three continents [2]. 2

viii

Chapter 1

Introduction

Geographically-replicated database systems are used in industry as the backbone to provide
both good performance and fault-tolerance for a range of global client services from advertising
platforms [17] and banking [5] to global travel operations [1]. Replication of data across geo-
distributed data centres provides two benefits when compared with data that is replicated within
only a single data centre. First, geo-replication allows copies of data to be placed geographically
closer to clients. The locality of clients and data supports low-latency access to deliver improved
performance [19]. Secondly, geo-replication allows database systems to be tolerant to data centre
unavailability through zone/region-aware replication. In comparison, replication within a single
data centre can protect against only machine-level failures. The level of fault tolerance provided
by geo-replication is key for being able to handle large-scale failures such as those caused by
natural disasters or core network infrastructure failures [6].

1.1 Geo-Replicated Data

Distributing work across data replicas requires coordination and communication that can pose
significant challenges for geo-replicated database systems compared to on-premise (non-geo-
replicated) systems. Performant ACID transactions over geo-replicated data have become de-
sirable for users of these systems [29, 41]. To provide strong consistency and global atomicity,
transactions need to be coordinated across geo-distributed regions or sites, resulting in multi-
ple rounds of communication over a wide-area network (WAN) that incur significantly higher
latency than over a local-area network (LAN). Although the latency of a LAN round-trip time
(RTT) is usually in the order of milliseconds, the latency of a WAN RTT can be 200× higher. Un-
less a geo-distributed system can mitigate WAN latencies, these high latencies will translate into

1

high transaction response times and low throughput, leading to poor overall distributed system
performance [41].

Early work on geo-replicated database systems that support strongly consistent transactions
uses a combination of Paxos [25] and Two-Phase Commit (2PC) to provide ACID transactional
guarantees. For example, Spanner [17] uses Paxos and 2PC, which can take up to 4.5 WAN
round trips to coordinate distributed transaction commit [29].

The number of WAN round trips for a transaction to commit can be reduced to two by running
2PC within each region while using Paxos to agree on the outcome of 2PC [29]. A geo-replicated
database system can use a primary site architecture, in which a specific single region (primary)
is responsible for enforcing ordered access to data items. This type of architecture can reduce
transactional latency within the primary’s region as communication will happen over a LAN.
However, transactions outside the primary region will still incur high latency for communication
over a WAN (to reach the primary region) [41, 9, 37]. Thus, the challenge of ameliorating the
high cost of transaction latencies in geo-distributed database systems remains.

Systems that rely on Paxos or other consensus approaches for coordination and fault tolerance
generally do not perform well when WAN latencies are large. For example, using Paxos requires
communication with at least a majority of replicated sites, and even the minimum latency within
a majority quorum can result in large latency overheads in the system. Consider a scenario with
5 replicas in Azure Cloud, one in each of East US, East US 2, France Central, West EU and and
East Asia (Table 1.1). Based on these (Table 1.1) latencies, the best case RTT for communication
between a majority quorum in Paxos would be at least 82 ms (East US, East US 2, France Central)
with the worst case (East Asia, France Central, West EU) being 191 ms, resulting in high latency
for geo-replicated transactions.

WAN RTT
Originating region East US East US 2 South

East Asia
East Asia France

Central
West EU

East US 6 ms 228 ms 202 ms 82 ms 82 ms
East US 2 6ms 228 ms 200 ms 83 ms 86 ms

South East Asia 228 ms 228 ms 34 ms 182 ms 159 ms
East Asia 202 ms 200 ms 34 ms 168 ms 191 ms

France Central 82 ms 83 ms 182 ms 168 ms 12 ms
West EU 82 ms 86 ms 159 ms 191 ms 12 ms

Table 1.1: Azure Inter-region latencies for data centers within three continents [2].

2

1.2 Deterministic Transaction Processing

Subsequent work on deterministic database systems has improved upon the performance of geo-
replicated database systems that use 2PC or other distributed commit protocols [41]. Determin-
istic database systems [41, 37] use determinism of transaction outcomes to achieve correctness.
Deterministic execution relies on the creation of a global order of transactions before transaction
execution can begin. The deterministic database system executes transactions in conformance to
this global order. This determinism allows a geo-replicated database system to avoid communi-
cating between regions after transactions have been globally ordered for execution.

An observation of distributed deterministic database systems [41, 37, 36] is that much of
the transaction latency is incurred from WAN communication required to create a global order.
For example, Paxos is used by Calvin [41] to facilitate the creation of the global order resulting
in two round trips over the replicas to reach agreement to add a transaction to the global order.
Calvin cannot take advantage of locality in a workload due to all transactions needing to be added
to the Paxos-coordinated global order. SLOG [37] characterizes transactions into single-region
and multi-region. However, similarly to Calvin, SLOG must globally order all multi-region
transactions over a WAN, thereby also incurring large transaction latencies.

1.3 Contributions

This thesis presents Sloth, a geo-replicated transactional database system that significantly re-
duces transaction latencies by determining regional transaction orders that are consistent with
global transaction execution schedules. To provide low latency ACID transactions over geo-
replicated data, Sloth exhibits three properties:

• Sloth provides low latency ordering for coordination of deterministic transaction execu-
tion.

• Sloth exploits data locality in primary location for low latency transaction execution.

• Sloth provides region-level fault tolerance and durability without prohibitive latency over-
heads.

Sloth uses a transaction ordering protocol that requires at most a single WAN round trip be-
fore any transaction can be committed. Sloth’s protocol deterministically merges partial transac-
tion orders into a globally consistent order that preserves correctness for serializable transaction
isolation and replica consistency.

3

Sloth exploits data locality. The deterministic merging of partial transaction orders allows
any replica to begin transaction execution as soon as all ordering information for the transaction
is received at the replica. The ordering information enables transactions with locality to begin ex-
ecuting with little or no delay as a transaction waits for only the dependent ordering information
(and not all ordering information).

Sloth uses a replication protocol that individually replicates the partial transaction orders to
nearby regions with low latency. The replication overlaps the deterministic merging of the partial
transaction orders and transaction execution. Sloth uses a recovery protocol that guarantees no
transactions will be lost and global serializability will not be violated. Importantly, the replication
protocol does not change the one WAN round trip it takes to commit a transaction.

Finally, this thesis presents an evaluation of Sloth’s performance using OLTP benchmark
workloads TPC-C [7] and MovR [42, 4]. As shown in Chapter 5, Sloth outperforms state-of-art
systems SLOG [37] by 6× and Calvin [41] by up to 38× on transaction latency.

This thesis makes 3 contributions:

• An ordering protocol that requires a single WAN round trip to globally order all trans-
actions and allows for locality to be exploited is provided (Chapter 4). Furthermore, the
correctness of the protocol is shown (Chapter 4.2.6).

• A fault tolerance and recovery scheme for region level failures that does not increase the
one WAN round trip transaction commit, including their correctness, is provided (Chat-
per 4.2.7).

• An empirical comparison of OLTP workload performance against the state-of-the-art in
geo-distributed deterministic transaction execution is provided (Chapter 5).

In addition to the above, Chapter 2 discusses related work, Chapter 3 provides background
relevant to the topic of the thesis, and Chapter 6 concludes the thesis and discusses future work.

4

Chapter 2

Related work

This chapter discusses the work related to this thesis. The chapter is organized based on four key
characteristics of the work in this thesis.

2.1 Totally or Partially Ordered Sequence of Transactions

Many distributed data systems rely on an explicit ordering of transactions for correctness. The
transaction orders can be a total order of transactions or a partial order.

Calvin [41] deterministically executes transactions at replicas according to a predetermined
transaction ordering. As transactions are submitted, Calvin totally orders the transactions against
each other in a distributed log. This ordering of transactions is used to guarantee a globally seri-
alizable execution schedule at each replica. SLOG [37] builds upon Calvin to reduce transaction
latency. SLOG relaxes the need to order all transactions totally but still requires a consistent order
at each replica for global serializable execution. SLOG has a per replica sequencer that sequences
transaction that access data for which the primary copy is located at the replica. SLOG merges
these orderings into a consistent global transaction order to allow globally serializable execution
schedules. SLOG totally orders all transactions with primary data location at two or more repli-
cas (multi-replica transactions); these transactions are then broken into transaction pieces. The
transaction’s pieces are sequenced in the local logs along with the transactions that only access
data at a single primary (single-replica transactions). SLOG waits for all a transaction’s pieces
to appear in the merged order before the transaction can be committed.

Aria [28] and QStore [36] require that all replicas execute batches of transactions in the same
order to guarantee correctness. In both systems, batches of transactions are proposed by replicas

5

in a round-robin fashion.

Hyder [14] is a database built over a shared log with a deterministic meld [15] operation that
runs independently at each site to decide if a transaction commits or aborts. The meld operation
uses the total order of transactions in the shared log to decide if a transaction can commit based
on the state of the database after running all the preceding transactions in the total order, and the
set of data items that the transaction updates.

FuzzyLog [27] shows how to support serializable transactions over its partially ordered log.
FuzzyLog maintains its partially ordered log as a DAG with vertices partitioned by colors (all
vertices within a color are totally ordered). FuzzyLog uses the Tango [12] protocol to support
serializable transactions; Each partition of data is assigned a color. Transaction updates and
commit decisions are represented as a vertex with the colour of the corresponding partition. A
transaction is committed at a replica once the replica has seen the all the commit decisions from
each partition that the transaction modifies. ConfluxDB [16] merges log streams from primary
sites into a unified log stream while maintaining SI. However, ConfluxDB must also wait for
entries in log streams before a commit decision can be made to guarantee correctness.

2.2 WAN Round Trips

One way to decrease the latency of geo-replicated transactions is to reduce the number of WAN
round trips that must occur before a transaction can commit.

A number of consensus systems can be used to sequence transactions in a single round trip of
WAN communication. Fast Paxos [26] introduces a fast round, in addition to the classic round,
that can sequence operations in a single round trip to ⌈3

2
f⌉ + 1 replicas. However, if operations

proposed in the fast rounds are received by replicas in different orders, the fast round fails.

EPaxos [31] is a leaderless protocol that has a fast path quorum which can sequence opera-
tions in a single WAN round trip to f + ⌊f+1

2
⌋ − 1 replicas if all replicas agree on an operation’s

dependencies. A second round of WAN messaging is required if the dependencies returned in
the fast path differ.

CURP [35] can make operations durable in a single round of WAN delay by replicating un-
ordered operations to witnesses. If all witnesses accept the operation (witnesses reject operations
if they do not commute), the operation takes one WAN RTT of delay; Otherwise, CURP needs 2
WAN RTTs to order and replicate the operation.

Mencius [30] alternates replicas, using a predetermined order, as the leader for the round.
Each replica has the option to propose operations when it is the leader, with replicas being able

6

to skip their turn. Mencius can commit operations in a single round trip of WAN delay by allow-
ing non-conflicting operations to commit out of order. However, in the presence of conflicting
operations, the system must wait on the conflicting operations from previous rounds before the
most recent operation can be committed.

Several geo-replicated database systems can commit transactions with a single round of WAN
communication. However, a second round is required if certain conditions do not hold. Janus
[33] reduces the number of WAN round trips to commit transactions to one if all replicas return
identical dependencies for the transaction. Otherwise, Janus requires a second round of WAN
communication with the majority of replicas to agree on the transaction’s dependencies. Starry
[45] can commit transactions in a single round of WAN communication to a supermajority of
⌈3
2
f⌉ + 1 replicas for transactions that do not conflict with concurrent transactions. On conflict,

a second round of WAN communication to a central sequencer is required to resolve the conflict.
Carousel [43], MDCC [24], and TAPIR [44] also commit transactions in a single WAN round
trip to a supermajority, but if there are concurrent conflicting transactions, a second round of
messaging is required.

SLOG [37] commits single-replica transactions in zero WAN RTTs, or one WAN RTT if
replication to other regions is performed. SLOG achieves zero WAN RTT commit for single-
region transactions as they only need to be sequenced in the local log of the corresponding
replica before the transaction can be committed. To handle region-level failures, SLOG must
replicate the local logs to other regions before transactions can commit. This replication results
in one WAN RTT commit for single-replica transactions. For multi-replica transactions, SLOG
requires 1.5 WAN round trips if the total order of multi-region transactions is not replicated and
2.5 if it is (using Paxos).

2.3 Strongly Connected Components

The strongly connected components of a conflict graph provide a convenient mechanism for
database systems to handle circular dependencies.

Janus [33] tracks transaction dependencies in an identical conflict graph at each replica by en-
suring all replicas agree on transaction dependency information before execution via consensus.
After all replicas agree on a transaction’s dependency information (by consensus), each replica
independently computes the strongly connected component for the transaction. The replica ex-
ecutes the transactions in the strongly connected component in a deterministic order. The de-
terministic order of transactions within a strongly connected component allows all replicas to
execute transactions with circular dependencies in a consistent order.

7

Starry [45] uses a central coordinator which globally tracks transaction conflicts in a conflict
graph. When a transaction conflict is discovered, the conflict graph is updated to reflect the con-
flict through messages from replicas to the central coordinator. When a decision must be made
to resolve a cyclic conflict, the central coordinator computes the strongly connected component
and reorders transactions by either aborting or re-committing transactions.

EPaxos [31] uses strongly connected components to resolve conflicts between dependent
operations during execution. To execute an operation, EPaxos builds the dependency graph for all
of the operation’s dependent operations and computes the strongly connected components of this
dependency graph. EPaxos then executes all commands according to a topological ordering of
the strongly connected components, and then according to the deterministic order of transactions
within the strongly connected components.

Rococo [32] uses graph-based dependency tracking with reordering based on strongly con-
nected components but does not consider geo-replicated data. Rococo requires that each trans-
action has a coordinator that performs two rounds of communication with participating servers
before the transaction can be committed. The transaction coordinator is responsible for collecting
and distributing a transaction’s dependency information. Rococo uses offline transaction decom-
position, based on transaction chopping [38], to ensure that transactions’ pieces are reorderable.
To commit a transaction, the transaction coordinator sends a commit request to servers. During
transaction commit, the servers independently find the strongly connected component to which
the committing transaction belongs and execute the transaction according to the deterministic
order within the strongly connected component.

2.4 Reduced Replication Quorum Size

As mentioned previously, replicating data to a quorum of geographically distributed replicas can
incur significant latency. Flexible Paxos [21] proposes reducing the size of the replication quo-
rum while increasing the size of the election quorum. Flexible Paxos takes advantage of the fact
that the quorum for leader election and replication only needs to intersect. Thus, a reduction in
the size of the replication quorum must come with an increase in the size of the election quorum
to ensure that the quorums intersect. Reducing the replication quorums decreases replication
latency if leader elections are rare, for example, if a long-lived leader is used.

SLOG [37] provides fault tolerance against region-level failures by replicating its local logs
to a single geographically close region with low WAN latency. SLOG does not provide details
on how this is performed and how correctness is preserved in the case of failures.

8

WPaxos [10] looks to provide low-latency ordering over geo-replicas by reducing the size
of the replication quorum to include only geographically close replicas with low WAN latency.
WPaxos assigns each object to one of the replicas; a replica can only act as a leader and propose
operations for the objects it is assigned. WPaxos replicates operations to a reduced replication
quorum. WPaxos performs an object-stealing phase if all objects are not local to a replica propos-
ing an operation that accesses these objects. The object-stealing phase must contact a majority
of replicas in the leader election quorum.

9

Chapter 3

Background

A deterministic database system enforces transaction determinism and avoids randomness dur-
ing execution [41, 8]. Deterministic execution means that no communication is required among
replicas during transaction execution and commit to guarantee that the database system stays in
a consistent state. Deterministic transaction execution generally involves the creation of a prede-
termined global order for transaction execution at each replica using transactions’ read and write
sets [41]. A deterministic database system uses this ordering to execute transactions in a globally
serializable order (Definition 3.0.1) at each replica. Once a replica obtains a transaction’s posi-
tion in the global order, the replica can execute and commit the transaction in that order without
further WAN communication. Distributed deterministic database systems therefore avoid expen-
sive distributed commit protocols by eliminating nondeterminism within the system [41].

Definition 3.0.1. Global serializability means that concurrent transactions executing on multiple
copies of a data item have to appear as if they have executed on a single copy of the data item in
some serial order [13].

Distributed deterministic database systems typically have three core components; sequencer,
deterministic scheduler, and storage layer (Figure 3.1).

The sequencer is responsible for generating the global transaction order, meaning the se-
quencer is where all coordination among replicas occurs. When a deterministic database system
is geo-replicated, much of the transaction latency comes from the sequencer component needing
to communicate across a WAN, to create a global transaction order, before execution can begin1

1Transactions that do not wait on WAN communication can execute in as little as 5 ms whereas a single round
trip of WAN communication can be more than 40× higher.

10

Figure 3.1: General architecture of a geo-replicated deterministic database[41]

11

[41, 36, 37]. Typically, the global order is created through agreement by a consensus protocol
such as Paxos [41, 33]. The consensus protocol provides fault tolerance for the sequencer com-
ponent and a mechanism for all replicas to agree on a global ordering of transactions. Consensus-
based approaches come at the cost of multiple round trips to a majority quorum of replicas, which
typically add large latency overheads.

Alternatively, the sequencer can use primary-based ordering; the simplest implementation is
a system with a single machine creating a global order [41]. However, primary-based ordering
schemes are more susceptible to failure than consensus-based approaches. Consensus protocols
replicate both the transaction execution schedule and the transaction logic; if a replica fails, this
information can be safely recovered by reading from a majority of surviving replicas. If the
primary fails in primary-based ordering, the order may not persist past failures, or the time to
recover may be large, leaving the system in an inconsistent state or unable to continue to operate.
Thus, although primary-based ordering can save a round trip of WAN latency compared to using
a consensus protocol, it is not fault tolerant.

The deterministic scheduler ensures that each replica deterministically schedules and exe-
cutes each transaction across the replica’s data partitions. Each deterministic scheduler knows
that all counterpart schedulers at other replicas will execute transactions according to the chosen
global transaction order. Thus, once the deterministic scheduler at a replica knows a transaction’s
position in the global (serializable execution) order, the transaction can be scheduled for execu-
tion and committed independently of other schedulers while ensuring a valid global serialization
order [41].

The Calvin system [41] uses Paxos as the core of its sequencer to totally order all transactions.
The scheduler is a per-replica distributed lock manager. The lock manager guarantees determin-
istic execution if locks are acquired by transactions in conformance to the global transaction
order. The lock manager guarantees serializability through a deterministic locking scheme. The
storage layer is an in-memory key-value store that can create, read, update, and delete data items.

Sloth uses a different design for the sequencer that allows the merging of partial transaction
orders into a globally consistent order that preserves correctness for serializable transaction iso-
lation and replica consistency. The deterministic merging of partial transaction orders allows
transaction execution to begin as soon as all ordering information for the transaction is received
at a replica.

12

Chapter 4

System Design and Architecture

This chapter presents an overview of Sloth and the system details, along with correctness.

4.1 Sloth Overview

An overview of Sloth’s system model and transaction ordering is presented in this chapter. The
chapter also presents some basic terminology used in the rest of the thesis, followed by an exam-
ple that demonstrates how Sloth delivers transaction execution latency savings over its competi-
tors. In Chapter 4.2 the Sloth system design is presented in detail.

4.1.1 System Model

There are ND (unique) data items in the system. The data items are partitioned into NP partitions.
Each partition of data is fully replicated at all of the NR regions. One replica is designated
as a data item’s primary (copy). The remaining copies of the data item are referred to as its
secondaries or replicas. The set of data items for which replica R is the primary is termed R’s
primary set. When presenting Sloth’s sequencer protocol, this thesis considers a single replica
and a single sequencer component per region, which is not a requirement but simplifies the
presentation. Therefore, if the replica at a region R contains the primary copy of a data item D,
R is referred to as D’s primary region or primary. Thus, the set of data items that region R is the
primary for is R’s primary set or ps(R).

A Sloth sequencer has two key responsibilities per region:

13

1. A region R is responsible for ordering all transactions that access data items whose primary
copy is at R. This order is referred to as R’s partial sequence, and R sequences T , or R is
a sequencer for T . A transaction T will appear in the partial sequence of all regions that
are the primary for a data item in T ’s read or write set.

2. A region R performs deterministic merging of all partial sequences into a transaction order
that is consistent with the global order for transaction execution. The partial sequences
are merged independently at each region, with no further communication after the partial
sequence is received. This merging means that each ordering of transactions at a given
region may potentially be different from orders at other regions. However, importantly, if
any two transactions conflict, then their relative (conflict equivalent) order is preserved in
all orderings of transactions at each region (Definition 4.2.1).

4.1.2 Transaction Ordering

The per region deterministic merging of partial sequences into a transactionally consistent, and
complete, order is challenging to achieve. Deterministic merging can result in transactions being
added to the transaction order and executed in different orders across regions. In particular,
as long as a region has all of a transaction T ’s dependency information, i.e., T ’s position in
all partial sequences, T can be added to the globally consistent transaction order at the region.
Deterministic merging allows a region to execute transactions while bypassing some or all of
the delay incurred by coordination between regions. For example, a region R1 can add T to its
transaction order and execute T before another region R2 knows T exists. The details of the
sequencer are presented and discussed in Chapter 4.2.1 and the details of deterministic merging
are described in Chapter 4.2.2.

A fundamental feature of Sloth’s protocol is that it incurs at most a single round trip of
communication to include a transaction in the global execution order, meaning the transaction
can execute and commit with a single RTT of delay. As mentioned above, a region can add a
transaction T to the compete sequence once it has T ’s position in all partial sequences. The
transaction requires half a round trip to send it to each region, and half a round trip to propagate
partial sequences to all regions.

Furthermore, the latency can be reduced significantly if locality exists among the regions
which contain the primary copy of data items in the transaction’s read and write set. In particular,
for a transaction T , region R must wait for communication from only regions that contain the
primary copy of data items in T ’s read and write set before execution can begin. Thus, no WAN
communication will be performed before the transaction can be executed at R if R contains the
primary copy for all data in T ’s read and write set. If R holds the primary copy of only part of

14

T ’s read and write set, with another region R2 containing the primary copies for the rest, R must
wait on communication with only R2, which significantly reduces transaction latency if these
regions are close to each other.

4.1.3 Example

Figure 4.1a exemplifies the performance advantages of the above-mentioned properties. This
example uses three regions and three data items, with each region containing the primary copy
for a single data item. Region R1 contains the primary copy for A, region R2 contains the primary
for B, and region R3 contains the primary for C. For simplicity, the example assumes that the
round trip latency between any two regions from among R1, R2 and R3 is the same.

Transaction T1, that updates data items A and B, can be committed at R1 after only a single
round trip of communication with R2. Once T1 has been added to R1 and R2’s partial sequences,
and the partial sequences have been propagated to R1, T1 can be added to R1’s order of transac-
tions. Once the transaction is part of the transaction order at R1, it can be executed and committed
without communication with other regions. T1 runs and commits independently at R2 and R3

once it has been added to each region’s respective sequence (again without any communication).

A transaction T2 that originates at R3 and updates only data item C can run and commit at R3

with no WAN round trips. Because T2 needs to be sequenced by only R3’s partial sequencer, T2

can be added to the transaction order at R3, executed, and committed with no WAN trips. Similar
to T1, T2 will be executed at R1 and R2 after the partial sequence from R3 has been received, and
T2 has been added to the transaction order at the respective regions.

As transaction T3 originates at R3 and updates all three data items, each partial sequencer
must sequence it. T3 must wait on concurrent round trips to R1 and R2 before being committed
at R3. While such a transaction incurs the worst-case latency as all regions must be contacted,
T3 will still benefit by executing in a single round trip of WAN communication delay, possibly
with just a larger latency.

Figure 4.1b shows SLOG’s sequencer operation. Transaction T2 is single-region and can
execute without a WAN round trip because T2 will appear in a single local log and thus does
not need to be totally ordered. T2 does not wait on transaction pieces from other local logs. T1

and T3 are multi-region and must be totally ordered against all multi-region (MR) transactions
before the transaction pieces can be added to the local logs. Two round trips are needed if Paxos
is used for global ordering. Furthermore, waiting for transaction pieces to be propagated in local
logs requires an extra one-half round trip. Thus, in SLOG, multi-region transactions require two-
and-a-half WAN round trips before they can be committed, compared to only one round trip in
Sloth.

15

(a) Sloth

(b) SLOG

(c) Calvin

Figure 4.1: Example of Calvin, SLOG and Sloth sequencer message passing

16

Figure 4.1c shows how Calvin must order all three transactions using Paxos. In general,
Paxos incurs two round trips, which means that before a replica can execute and commit a
transaction, a delay of two round trips is required. E.g., for transaction T2, SLOG and Sloth
outperform Calvin because no WAN communication is needed for T2 to commit.

As the (Figure 4.1) example demonstrates, Sloth achieves significant latency savings over
both SLOG and Calvin. SLOG and Calvin wait 2× longer than Sloth for T1 to commit. Calvin
waits 2× longer and SLOG waits 2.5× longer than Sloth for T3 to commit. Sloth’s latency
decreases over SLOG and Calvin for T1 and T3 results from Sloth needing only a single round
trip to exchange partial sequences among regions. SLOG performs worse on T3 than Calvin due
to needing to wait for all of T3’s pieces to be propagated from the local logs after T3 is totally
ordered against all MR transactions.

4.2 The Sloth System

In the rest of this chapter, the design of the Sloth system with a focus on its sequencer and related
components including the provision of fault tolerance is described. To provide distributed low-
latency geo-replicated transactions, this thesis presents a novel protocol that the sequencer in
Sloth utilizes to generate a serializable global transaction order (Definition 3.0.1) without needing
to know the total order of all transactions.

4.2.1 Sequencer Architecture

Sloth’s sequencer has three components; the transaction batcher, the partial sequencer, and the
sequencer merger (Figure 4.2). The transaction batcher receives transactions from clients, creates
batches of transactions, and send the batches to all partial sequencers. In particular, transactions
are sent to a region’s partial sequencer only if they access at least one data item for which that
region is the primary.

The partial sequencer for a region R orders all transactions with at least one data item for
which R contains the primary copy. The partial sequencer sends the partial sequence to the
sequence merger at each region. Formally, given the read set rs(Ti) and write set ws(Ti) of
transaction Ti and the set ps(R) of all data items for which region R contains the primary copy,
the partial sequence for region R is an ordering of (all) transactions Ti s.t. (ws(Ti) ∪ rs(Ti)) ∩
ps(R) ̸= ∅. As an optimization, the partial sequencer orders batches of transactions rather than
individual transactions.

17

The sequence merger creates a globally consistent transaction order by performing the deter-
ministic merging of all partial sequences from each regions’ partial sequencer. The ordering of
transactions are conflict equivalent [13] to all other orderings of the transactions at other regions.

Definition 4.2.1. For two orderings of transactions, O1 at region R1 and O2 at region R2, O1 and
O2 are conflict equivalent [13] if for all pairs of transactions Ti and Tj s.t. [ws(Ti)∩ (ws(Tj)∪
rs(Tj))] ∪ [ws(Tj) ∩ (rs(Ti) ∪ ws(Ti))] ̸= ∅, Ti and Tj appear in the same relative order in
each of the transaction orderings O1 and O2.1

The key idea behind the sequencer in Sloth is that a transaction T will appear in the partial
sequence of a region R if and only if R is the primary for a data item that T accesses. This means
that a regions’s sequence merger only needs to wait for T to appear in the partial sequences for the
primary of data items in T ’s read and write set before T can be added to the globally consistent
transaction order. Thus, if T ’s read and write sets have primary copy locality (primary copy is
held by region locally), T can be added to the transaction order with no messaging delay, and
if the regions are close then the messaging delay will be small. In comparison, systems such
as Calvin [41] must incur the full WAN messaging delays of Paxos before a transaction can be
executed and committed at any region.

Next, how Sloth performs the merging of partial sequences to create a globally consistent
transaction order is described. Furthermore, it is shown that the conflict equivalent orderings of
transactions at each region guarantees correctness to provide global serializability for transaction
execution.

4.2.2 Sequence Merging

Sequence merging in Sloth allows transactions at a region to be added to the globally consistent
order as soon as possible without waiting for communication with other regions. Sloth takes
advantage of this property to exploit the locality that exists in workloads. To create a globally
consistent transaction order through deterministic sequence merging, each region’s sequence
merger keeps a copy of a global directed conflict graph that is used to keep track of all conflicts
between transactions. Sequence mergers use the ordering provided by the partial sequences to
dictate the direction of the edges in the global conflict graph. Furthermore, as the sequence
mergers will see the same partial sequences, the global directed conflict graph is the same at
each region. Thus, this graph allows the sequence mergers to reach an identical view of the
ordering of all conflicting transactions.

1As read operations do not conflict with each other, no ordering constraints between them are required within
the global order.

18

Figure 4.2: Sloth sequencer architecture with three regions: a running example.

19

In the directed conflict graph, each transaction is represented as a vertex, and each con-
flict is represented as a directed edge (Vi, Vj) where vertices Vi and Vj represent the conflicting
transactions Ti and Tj . The direction of the edge between two vertices represents which trans-
action comes first in a partial sequence. As transactions are received in the partial sequences,
the sequence mergers continuously add vertices and edges to the directed conflict graph. When
the sequence merger has received all ordering information of a transaction and its conflicts, the
transaction’s vertex is removed from the graph, and the transaction is added to the transaction
order.

When a sequence merger at region R receives a batch of transactions from a partial sequencer,
the sequence merger runs Sloth’s insert algorithm (Algorithm 1) that parses the batch and inserts
transactions into the graph in the order of the partial sequence. When the insert algorithm en-
counters a transaction, it does the following:

1. The first time the sequence merger at R encounters the transaction T in any partial se-
quence, a vertex representing T is added to the graph.

2. Each time the sequence merger at R sees a transaction in a partial sequence, edges repre-
senting conflicts are added to the graph. The edges added depend on the current state of
the graph and the partial sequences (Chapter 4.2.3 describes this in detail).

The sequence mergers remove vertices from the directed conflict graph in topologically
sorted order and add the corresponding transactions to the globally consistent transaction or-
der. In creating the transaction order, cyclic dependencies can form in the directed conflict
graph, in which case a topological ordering may not exist. To derive a topological order, the
sequence merger removes cycles from the directed conflict graph before sequence merging can
be performed. These cycles are removed deterministically to preserve the equivalence of global
directed conflict at each region. The sequence mergers monitor for strongly connected compo-
nents (SCC) which are defined as follows:

Definition 4.2.2. A strongly connected component is maximal subset of vertices C, of a directed
graph G, which ∀V1, V2 ∈ C, ∃ a path from V1 to V2 and a path from V2 to V1 [18].

The sequence mergers then create the condensation of the directed conflict graph to deter-
ministically remove the cyclic conflicts. The condensation of a graph is define as:

Definition 4.2.3. The condensation is the graph when each SCC is represented as a single vertex
with only the edges outside of SCCs remaining [18].

The three main steps of deterministic sequence merging – inserting transactions, resolving
cyclic conflicts, and removing transactions in topologically sorted order are described next. Sub-
sequently, the correctness of the above approach is shown.

20

4.2.3 Conflict Graph

When the sequence mergers receive transactions as part of a region’s partial sequence, each
sequence merger updates its copy of the global conflict graph to reflect the new conflict infor-
mation in the partial sequence. When the sequence mergers receive a transaction T as part of a
partial sequence, any conflicts among data items in T ’s read and write sets are discovered and
the corresponding edges are added to the graph. This gives the following property:

Property 4.2.1. All sequence mergers will identify the same set of transaction conflicts.

Property 4.2.1 ensures that each sequence merger will identify the same set of conflicting
transactions represented by their respective edges in its copy of the global conflict graph as all
other sequence mergers.

There are three types of conflicts between transactions that must be considered: read follows
write (RW) conflicts, write follows read (WR) conflicts, and write follows write (WW) conflicts.
Edges are added for only the most recent conflicts, whereas older conflicts are captured implicitly
through a directed path in the conflict graph. The sequence merger handles the different types of
conflicts as follows:

• For each data item D in a transaction T ’s read set and write set where the primary copy
of D is at region R, a directed edge is added from T ’s vertex to the vertex of the most
recent transaction T ∗ that appears before T in the partial sequence at R and writes D. This
edge ensures that a transaction’s read/write operation must come after any conflicting write
operation on D already represented in the conflict graph.

• For each data item D in a transaction T ’s write set, a directed edge is added from T ’s
vertex to all transactions that read D between T and T ∗ in the partial sequence at R. These
edges ensure that a transaction’s write operations on D will come after any transactions
already represented in the conflict graph that read D.

The distinction among different types of conflicts allows concurrent reads on the same data
item to execute in any order at different regions provided they do not appear out of order with
respect to conflicting writes. A running example is given in Figure 4.3 with the same setup as
in Figure 4.2; three regions with a single data item’s primary copy at each region. Consider
Figure 4.3a. T3 appears in all three partial sequences. When the sequence merger encounters T3

in any particular partial sequence, an edge is added between T3 and the most recent conflicting
transactions in the partial sequence, except when an edge already exists (as would be the case
when a second edge would be added from T3 to T1).

21

For Figure 4.3b, if transactions T1 and T2 are submitted (at different regions) simultaneously,
they may appear in different relative orders in each of the two different partial sequences, result-
ing in the cycle in the global conflict graph as shown in 4.3b. The edge (T3, T2) is added because
T2 is the most recent conflicting transaction on data item A in the partial sequence at R1 when T3

is added. Finally, 4.3c shows how reads are handled. T1 writes A, whereas T2 and T3 read only
A. Thus, no edges are added between T2 and T3, but edges are added to T1 from both T2 and T3.
As T4 also writes A, edges are added from T4 to T2 and T3.

Algorithm 1: Insert Algorithm
Transaction T;
for D in T.ReadSet do

PrevWriter←−MostRecentWriter(D);
if !(PrevWriter.deleted) then

addEdge(T, PrevWriter);
end

end
for D in T.WriteSet do

PrevWriter←−MostRecentWriter(D);
Readers←− GetReaders(D) ;
if !(PrevWriter.deleted) then

addEdge(T, PrevWriter);
end
if Readers ̸= ∅ then

for Reader in Readers do
if !Reader.deleted then

addEdge(T, Reader);
end

end
end

end

4.2.4 Resolving Cyclic Conflicts

Next is description how cycles, such as in the directed conflict graph of Figure 4.3b, are elim-
inated by the sequence merger at each region independently and with no communication with

22

(a) Running example (b) Cyclic conflict

(c) Reads intermixed with writes

Figure 4.3: Global conflict graph examples

23

other regions. The challenging task is to deterministically choose which cycle to reorder at each
region. Sloth uses the global conflict graph’s SCCs, rather than individual cycles, to determin-
istically resolve cyclic conflicts at each region. Rather than have each sequence merger choose
a cycle to be reordered, the sequence mergers choose an SCC (which contains one or more cy-
cles) to reorder. The sequence mergers eliminate SCCs by reordering conflicts. Sloth leverages
two properties of graphs related to SCCs that allow the sequence merger to reorder conflicts
deterministically:

Property 4.2.2. The strongly connected components (Definition 4.2.2) in a graph is unique [18].

Property 4.2.3. The condensation (Definition 4.2.3) of a directed graph is a directed acyclic
graph (DAG) [18].

Property 4.2.1 together with Property 4.2.2 ensures that the set of SCCs will also be the
same at each region, and therefore the condensation graph (Defintion 4.2.3) will also be the
same at each region. Property 4.2.3 ensures that a topological order exists for SCCs. Thus,
if the sequence mergers identify SCCs, they can create an order of transactions at each region
that corresponds to a topological order of the condensation of the global conflict graph. The
sequence mergers use Tarjan’s SCC algorithm [40] to independently find the SCCs in the global
conflict graph. Sequence mergers are continuously adding and removing vertices and edges
from the conflict graph as they receive transactions in the partial sequences. Thus, the algorithm
executes continuously in a loop over the (evolving) global conflict graph. After an SCC has
been identified, topological sort (Algorithm 2) is used to assess whether the SCC can be safely
reordered and added to the globally consistent transaction order, or if the SCC must wait for
further transaction ordering information. This procedure is discussed in greater detail next.

The process of resolving cyclic conflicts can be viewed as explicitly creating the condensation
of the conflict graph and then performing topological sorting on the condensation. However, in
practice, SCCs are identified, and the vertices (of the conflict graph) are dynamically updated
with a reference to which SCC they belong. The topological sort is then performed over the
conflict graph while accounting for the vertices with a reference to an SCC. In particular, if
the topological sort would consider a vertex with a reference to an SCC for removal, it instead
considers the entire SCC. Not explicitly creating the condensation of conflict graph is performant
as it reduces the amount of data manipulation that must occur to resolve cyclic conflicts.

4.2.5 Generating the Complete Order

The sequence merger builds on Khan’s algorithm [22] to create a topologically sorted order of
the condensation of the global conflict graph (Algorithm 2). The algorithm must assess whether

24

the sequence merger can add a transaction to the globally consistent order. The number of partial
sequences a transaction will appear in is extracted from a transaction’s read/write sets. This
allows Sloth to know when no more outgoing edges will be added to the global conflict graph for
a transaction T . Since Sloth assigns each transaction a globally unique ID, this is used to identify
a fixed deterministic order for transactions within an SCC. Thus, the following two properties
hold:

Property 4.2.4. If a transaction T exists in each region’s partial sequence for which the region
holds T ’s primary data item(s), then no new outgoing edges will be added by that region’s se-
quence merger to the vertex representing T in the global conflict graph. T ’s vertex in the graph
is referred to as being complete.

Property 4.2.5. If all vertices in an SCC are complete and no outgoing edges exist from a vertex
within the SCC to a vertex not in the SCC, then the SCC is maximal. Such an SCC is called
complete.

If an SCC is complete, transactions in the SCC can be added to the global order deterministi-
cally by the sequence mergers. The transactions are added in sorted order based on their globally
unique transaction ID. Furthermore, if the vertex for a transaction has no outgoing edges and is
complete, meaning it is in a complete SCC of size 1, the transaction can be immediately added
to the globally consistent transaction order.

Figure 4.3 provides an example. Both T1 and T2 in Figure 4.3a have no outgoing edges,
meaning they do not conflict with any transactions in the graph. Furthermore, as both T1 and T2

are complete, they are in SCCs of size one. Thus, the sequence mergers can add both transactions
in any order to the globally consistent transaction order. T3 conflicts with both T1 and T2 and
therefore must wait until T1 and T2 are added to the transaction order. Hence, T3 will appear
after T1 and T2 in all orders, which gives (T1, T2, T3) and (T2, T1, T3) as valid conflict equivalent
orderings of transactions. A cycle exists in Figure 4.3b, which results in the SCC containing
T1 and T2. T1 and T2 will be added to the global order in sorted order based on their globally
unique transaction IDs. Again, as T3 conflicts with the transactions in the SCC, it must appear
in the transaction order after all transactions in the SCC, which results in a single valid ordering
(T1, T2, T3) for transactions. Finally, in Figure 4.3c, as T3 and T2 are read operations, they can be
added to the transaction order in any order after T1 is added. T4 must be added after both T2 and
T3 are added to the transaction order, which results in both (T1, T2, T3, T4) and (T1, T3, T2, T4)
being valid, conflict equivalent, orderings of transactions.

25

Algorithm 2: Algorithm for topological sort
Q←− Queue for transactions that may be ready to be added to globally consistent
transaction order;

S←− Globally consistent transaction order;
while True do

T←− Q.pop();
if T.SCCSize = 1 then

if T.complete and T.getOutNeighbours() = ∅ then
S.append(T);
Q.push(T.getInNeighbours());

end
else

SCC←− T.getSCC();
if SCC.complete and SCC.outEdges = ∅ then

DetOrder←− Sort(SCC.transactions) ;
for T in DetOrder do

S.append(T);
end
Q.push(SCC.getInNeighbours()) ;

end
end

end

26

4.2.6 Correctness

The correctness of the aforementioned protocols in Sloth is now proven. It is shown that each
ordering of transactions is conflict equivalent to all possible orderings at other replicas. Further-
more it also shown that this property, coupled with the Calvin deterministic scheduler, produces
conflict equivalent serializable transaction schedules at each region.

Lemma 4.2.6. Each region will identify the same set of strongly connected components (Defin-
tion 4.2.2) in their copy of the global directed conflict graph.

Proof. Each sequence merger will see the same transaction conflicts (Property 4.2.1). Thus, for
each transaction, the corresponding vertex and edges will be the same in each copy of the global
conflict graph. As the SCCs of a graph are unique (Property 4.2.2), these SCCs will converge to
be the same at each region’s sequencer.

Theorem 4.2.7. Each ordering of transactions at a region is conflict equivalent to all orders at
the other regions.

Proof. Consider two conflicting transactions in any regions transaction order. There are two
cases for these transactions: either T1 and T2 appear within the same SCC (which is the same at
all regions) in the conflict graph, or they appear within different SCCs.

In the first case, if T1 and T2 appear in the same SCC, then they will appear in the same relative
order in all possible transaction orderings, at all replicas, as each transaction in an SCC is added
to the transaction order in a deterministic ordering according to a globally unique transaction ID.

If T1 and T2 do not appear in the same SCCs then there exists some directed path between
T1 and T2. Assume, without loss of generality, that this path is from T2 to T1. However, these
transactions do not appear in the same SCC so there is no path from T1 to T2. As transactions are
added to the transaction order only after all neighbours have been added, T2 can be added only
after T1 (and all other transactions on the path from T2 to T1) have been added.

By Lemma 4.2.6, each region will see the same SCCs. Thus, the order of transactions will be
conflict equivalent across all regions as all transactions that conflict will have the same relative
order in all possible orderings.

As mentioned in Chapter 3, the Calvin deterministic scheduler executes transactions accord-
ing to the transaction order that it is given. The scheduler employs a locking scheme that guar-
antees serializability for local execution orders [41].

27

Theorem 4.2.8. The global order results in conflict equivalent transaction execution schedules
across all regions.

Proof. By Theorem 4.2.7, the ordering of transactions at each region is conflict equivalent to
all other regions. Given that the deterministic scheduler executes transactions in this order, the
resulting execution schedule will be equivalent at each region.

It should be noted that each ordering of transactions (at a region) is a serial ordering of
transactions. Thus, by Theorem 4.2.8 and Theorem 4.2.7, each transaction execution schedule is
conflict equivalent to a serial order.

4.2.7 Fault Tolerance

Discussed next is how Sloth tolerates failures while still committing transactions in a single WAN
round trip. A two-tier approach is used in Sloth for fault tolerance: one handles failures within a
region, and another handles region failures.

Sloth handles machine-level failures with no WAN RTTs by using Paxos to replicate each
partial sequence within the region from which the partial sequence originates. This scheme is
similar to how SLOG handles machine-level failures [37].

Handling region-level failures is more involved. Sloth utilizes a key observation from Flexi-
ble Paxos [21] for replication. Namely, the election and replication quorums do not need to be the
same; rather, they need to only intersect. Thus, systems can trade-off the size of the replication
quorums for lower latency replication under WAN communication [34, 21, 10].

The Sloth sequencers replicate each partial sequence to K other regions.2 If N is the total
number of regions, (N − K) alive regions are required to recover from a failure (so that the
replication and election quorums intersect [21]). The sequencers already propagate the partial
sequence to all regions. Thus, replication simply requires a region waiting for K acknowledge-
ments to its partial sequence from other regions, which will result in only a small delay if K is
also small. The fault tolerance scheme is equivalent to running Flexible Paxos with a long-lived
leader for each partial sequence among all regions. Importantly, the fault-tolerance scheme does
not change the one WAN RTT transaction commit as a region simply waits for K acknowledge-
ments to its partial sequence, which overlaps with waiting for transaction ordering information
from the other regions. The scheme can lead to transactions incurring at least one WAN round

2K can be a small value to reduce latency.

28

trip to commit, but if K = 1, the transaction needs to wait on WAN communication with only
the closest region, which can be as low as 6 ms (Table 1.1).

A region R that sequences a transaction T must wait for T ’s position in the partial sequence
to be replicated at K regions before R can commit T . If another region R′ is not a sequencer for
T , R′ can commit T as soon as R′ receives T in all partial sequences from regions that sequence
T . For correctness, it is assumed a region notifies a client of the status of a transaction T only
if it is a sequencer for T . In the case of one or more region failures, the surviving regions run a
recovery protocol to resume normal operation. This protocol is presented next.

Recovery protocol

To tolerate region failures, if a region stops receiving the partial sequence from another region3,
it initiates the recovery process. The recovery process needs at least (N −K) regions alive and
thus can recover from K or fewer region failures. If at least (N − K) regions are alive, the
recovery process for a failed region Rf is as follows:

• (N −K) regions agree to elect a new primary region Rn for data items for which Rf is the
primary.

• Each region stops accepting the partial sequence from Rf .

• Each region exchanges its copy of Rf ’s partial sequence to ensure that all other regions
have the most up to date partial sequence.

• The new partial sequencer at Rn includes transactions to the most up to date partial se-
quence.

• Each region resends all missing transactions from the partial sequence to Rn.4

Correctness

If a region Rf fails, other regions will no longer receive transactions as part of the partial se-
quence from Rf . Thus, a region (other than Rf) will not be able to execute any transactions on
data items for which Rf was the primary. So in the case of failure, correctness is not affected.
The recovery process must recover from failures while ensuring that if a transaction T , that is in

3Timeouts are used to detect failures.
4If a transaction is not recoverable, it can be presumed failed and can be safely resubmitted to another replica.

29

a partial sequence from failed region Rf , is also in another region R′’s partial sequence, then as
long as there are fewer than K + 1 failures, T’s position in the partial sequence will not change
and thus the execution order will not change at any region.

Lemma 4.2.9. The recovery process will not change the position of any transactions in the
partial sequence of any active (non-failing) region.

Proof. As the recovery process chooses the most up-to-date partial sequence and sends it to all
active regions, as long as a transaction was in the partial sequence at one region, it will appear in
the partial sequence of every active region.

Lemma 4.2.10. As long as at least (N −K) regions are alive, no transactions can be lost due
to the failure of a region Rf .

Proof. A transaction T ’s position in a region’s partial sequence must be replicated at K other
regions. Thus, as long as there are fewer than K + 1 region failures, then T ’s position in all
partial sequences must be preserved since at least one surviving region will still have T in its
copy of Rf ’s partial sequence.

30

Chapter 5

Performance Evaluation

This chapter evaluates the performance of Sloth. Sloth is compared against two systems: (i)
Calvin [41], a principal system that incorporates deterministic geo-replication, and (ii) SLOG
[37], a state-of-the-art system for low latency transactions in geo-replicated deterministic databases.
Both Sloth and SLOG build on the Calvin code base [3] that implements the scheduler and stor-
age components.

As discussed in Chapter 3, many geo-replicated database systems, including Calvin1 rely on
consensus-based approaches such as Paxos for maintaining consistent replicas. SLOG can use a
variety of methods including Paxos for ordering MR transactions. SLOG’s implementation [3]
orders all transactions via a single region [37]. SLOG is the closest comparison system to Sloth.
Both Sloth and SLOG designate a region as the primary for a data partition. Sloth and SLOG
exploit data locality based on the location of a data item’s primary to reduce transaction latency.
Thus, SLOG is a relevant system to compare against Sloth in terms of leveraging locality to
provide low-latency transactions.

5.1 Methodology

The experiments were conducted on Microsoft’s Azure Cloud using 24 Standard D48 v5 virtual
machines each with 48 vCPUs and 192 GiB RAM. Experimental measurements are shown as
graphs with each graphed data point as the average of three independent runs. Each system
deployment contains six replicas with four data partitions. Each replica is within a different

1Calvin uses Paxos for consensus.

31

region: US East, US East 2, France Central, EU West, Southeast Asia and East Asia. Each
region contains a full replica. The regions within the same continent are referred to as close
regions, e.g., US East and US East 2, and regions in different continents are referred to as far
regions, e.g., US East and France Central. The system load is given by the number of clients,
with each client submitting 200 transactions per second in open loop to the respective system for
execution.

5.2 Benchmarks

This thesis uses the TPC-C [7] and MovR [42, 4] benchmark workloads to evaluate the systems.
The TPC-C benchmark is a popularly used workload representing a business application that
processes orders. As in [37], every warehouse has a primary in a region with all supporting data
(district records, customer records, and so on). Similarly to SLOG, this thesis focuses on the
throughput and latency of NewOrder transactions as these are the transactions from the TPC-C
benchmark that can be multi-region (MR) (through Multi-Warehouse (MW)) transactions. In
the benchmark, each MW NewOrder transaction has a probability to involve two warehouses’
records with primary copies in different regions. 10% of all NewOrder transactions are MW.
Furthermore, each MW NewOrder transaction has a 5/6th chance of being a multi-partition trans-
action. 240 warehouses per region are used in the TPC-C experiments.

MovR is a carsharing application benchmark [42, 4]. For the experiments, locality is added
to MovR, users live in a region but travel to close regions with probability Pc and far regions with
probability Pf . Furthermore, each car belongs to a region. Thus, all user data has a primary copy
in the user’s region, and all vehicle data has a primary copy in the vehicle’s region. Furthermore,
ride data contains a primary in the region where the ride takes place. Thus, all transactions
access primary data in a single region except for the BeginRide transactions that can access
user and vehicle primary data in different regions. When a user travels to another region, the
BeginRide transaction becomes an MR transaction between the user’s primary region and the
vehicle’s primary region. This thesis measures the throughput and latency of the BeginRide
transactions. The MovR experiments use 1 million MovR users per region and 10,000 vehicles
per region.

5.3 Results

The performance of Sloth, SLOG, and Calvin on the TPC-C benchmark as the percentage of
MW transactions that are MR transactions increases – 10% (Figure 5.1c), 50% (Figure 5.1a),

32

0 100 200 300 400 500

101

102

103

104

105

Number of clients

L
at

en
cy

(l
og

sc
al

e)
(m

s)

Latency vs Load

Calvin
SLOG
Sloth

0 100 200 300 400 500
0

2

4

6

8

·104

Number of clients

T
hr

ou
gh

pu
t(

tx
n/

s)

Throughput vs Load

Calvin
SLOG
Sloth

(a) 50% of MW transactions are MR

0 100 200 300 400 500
101

102

103

104

105

Number of clients

L
at

en
cy

(l
og

sc
al

e)
(m

s)

Latency vs Load

Calvin
SLOG
Sloth

(b) 100% of MW transactions are MR

0 100 200 300 400 500

101

102

103

104

105

Number of clients

L
at

en
cy

(l
og

sc
al

e)
(m

s)

Latency vs Load

Calvin
SLOG
Sloth

(c) 10% of MW transactions are MR

Figure 5.1: TPCC Latency & Throughput

33

and 100% (Figure 5.1b) is studied. The throughput graph for 50% MW transactions that are MR
is shown (the throughput graphs for 10% and 100% are omitted as all 3 systems are bottlenecked
by the scheduler, resulting in similar throughput graphs). Sloth has significantly lower latency
than Calvin and SLOG until the saturation point (408 clients), while transaction throughput is
comparable for all systems. As the number of clients increases, the gap resulting from Sloth’s
(lower) transaction latency and SLOG’s latency also increases.

Under all load conditions, Sloth incurs significantly lower latency than the other systems
(Figures 5.1b, 5.1a and 5.1c). For 100% MR transactions, these latency gains range from about
3.7× lower than SLOG and 18× lower than Calvin to almost 3× lower than SLOG and 38×
lower than Calvin for 10% MR transactions.

As each client (in an open loop) continuously submits 200 transactions per second, most of
the transaction latency comes from waiting on WAN communication for ordering. In particular,
after all ordering information for a transaction is received, the transaction does not wait to be
executed; i.e., all three systems execute and commit transactions as fast as they are received,
causing throughput to be the same. As Sloth incurs the lowest latency for ordering, it performs
the best on transaction latency. However, the deterministic scheduler becomes the bottleneck for
all three systems past the saturation point, which means that the systems can no longer execute
transactions as fast as they are submitted (and throughput is capped by the maximum throughput
of the deterministic schedulers). After the saturation point, transaction latency is affected by
waiting for execution by the deterministic scheduler. The effect of this waiting can be seen in
Figure 5.5a.

Figure 5.2a and Figure 5.2b, look at the latency and throughput of Calvin, SLOG, and Sloth
with the MovR benchmark as the client load on the systems increases. 10000 vehicles per region
is used for the MovR experiments. Furthermore, MovR is run twice: with Pf = .05 and Pc = .10
(Figure 5.2a), and also with Pf = .10 and Pc = .20 (Figure 5.2b) for 15 and 30 percent of MR
transactions, respectively. While Calvin and Sloth have comparable throughput, SLOG’s peak
throughput is lower, and plateaus earlier, due to the increased load on the schedulers that a higher
percentage of MR transactions incur in SLOG. After SLOG’s throughput plateaus, its latency
increases above the other systems. Calvin and Sloth become saturated at similar points, thereby
showing similar latency and throughput behaviour.

With 15%MR transactions, Sloth has 3.1× lower latency than SLOG and almost 18× lower
latency than Calvin (Figure 5.2a). The latency advantages by Sloth over SLOG increase to 4.7×
when 30% of transactions are MR with an almost 11× improvement over Calvin (Figure 5.2b).

SLOG has two drawbacks that limit its performance compared to Sloth: First, SLOG totally
orders all multi-region (MR) transactions. The total ordering requirement means SLOG cannot
exploit data locality when a transaction is MR, resulting in higher latency. Second, as SLOG

34

300 400 500 600
101

102

103

104

Number of clients

la
te

nc
y

(l
og

sc
al

e)
(m

s)

Latency vs Load

300 400 500 600

0.5

0.6

0.7

0.8

0.9

1
·105

Number of clients

T
hr

ou
gh

pu
t(

tx
n/

s)

Throughput vs Load

Calvin
SLOG
Sloth

(a) 15%MR Transactions (Pf = .5, Pc = .10)

300 400 500 600
101

102

103

104

105

Number of clients

L
at

en
cy

(l
og

sc
al

e)
(m

s)

Latency vs Load

300 400 500 600

0.5

0.6

0.7

0.8

0.9

1
·105

Number of clients

T
hr

ou
gh

pu
t(

tx
n/

s)

Throughput vs Load

(b) 30%MR transactions (Pf = .10, Pc = .20)

Figure 5.2: Azure MovR Latency and Throughout

35

breaks MR transactions into transaction pieces, these pieces add additional load on the determin-
istic scheduler, increasing latency and lowering throughput. That is, when an MR transaction
accesses k regions, k transaction pieces are sent to the scheduler (MR transactions place k times
more load on the scheduler in SLOG than in Calvin or Sloth).

Sloth’s across-the-board latency gains allow it to generally outperform SLOG and Calvin.
Sloth’s performance advantage is from not needing to totally order any transactions globally.
Calvin’s high latency comes from the need to totally order all transactions globally . SLOG
needs to enforce a total order on MR transactions globally, which results in lower latency when
compared to Calvin but much higher latency than Sloth (Chapter 5.3.1, Figure 5.4).

5.3.1 Latency

The rest of this chapter looks more closely at the latency of Sloth, SLOG, and Calvin on both the
MovR and TPC-C benchmarks using varying percentages of MR transactions.

Sloth, Calvin and SLOG’s latency performance is compared when the percentage of MR
transactions is varied. For both benchmarks the number of clients is set to 320, which is a high
enough value to place significant load on the systems but without putting them into overload.
Sloth outperforms SLOG by 4.7× on MoVR (Figure 5.3b) and 3.5× on TPC-C (Figure 5.3a)
with 10% and 30% total MR transactions, respectively. Figure 5.3a and Figure 5.3b show that
as the percent of MR transactions increases, the average transaction latency of SLOG increases
faster than that of Sloth due to SLOG’s need to totally order all multi-region transactions globally
that is not done by Sloth.

A comparison between the latency of local transactions, MR transactions between close re-
gions, and MR transactions between far regions is given in Figure 5.4a and Figure 5.4b. 10% total
MR transactions is used for TPC-C (Figure 5.4a) and 30% MR transactions is used for MovR
(Figure 5.4b). As each transaction is globally ordered through Paxos, Calvin’s average trans-
action latency is the same for local, close, and far transactions. Sloth outperforms both Calvin
and SLOG for every type of transaction. SLOG performs worse than Calvin for MR transactions
between far regions due to the propagation of the positions of transaction pieces in local logs
after the global total ordering is done. The largest latency disparity between Sloth and SLOG
is for multi-region transactions between close regions where Sloth outperforms SLOG by about
6× on TPC-C and 6.3× on MovR. These results demonstrate Sloth’s ability to take advantage
of the locality of data placement. Furthermore, per Calvin’s performance in Figure 5.4b, totally
ordering transactions in geo-replicated systems can add a very large latency overhead.

To provide a more complete picture of latency performance, this thesis provides the empirical
cumulative distribution functions (CDFs) of transaction latency for Sloth, SLOG, and Calvin for

36

1051
0

50

100

150

Total % of transactions that are MR

L
at

en
cy

(m
s)

Latency vs %MR

Sloth
SLOG
Calvin

(a) TPC-C

3015
0

50

100

150

Total % of transactions that are MR
L

at
en

cy
(m

s)

Latency vs %MR

(b) MovR

Figure 5.3: Calvin, SLOG & Sloth Latency

Local Close Far
0

100

200

300

400

L
at

en
cy

(m
s)

TPC-C Latency Breakdown

Sloth
SLOG
Calvin

(a) TPC-C

Local Close Far
0

100

200

300

400

L
at

en
cy

(m
s)

MovR Latency Breakdown

(b) MovR

Figure 5.4: Latency breakdown by transaction type

37

TPC-C (Figure 5.5a) and MovR (Figure 5.5b) using the same setup as for the experimental
results in Figure 5.3. It is seen that the CDFs of Sloth, for both TPC-C (Figure 5.5a) and MovR
(Figure 5.5b), are steeper than the CDF of SLOG. The divergence of the CDFs when the fraction
of the data is above 0.9 for TPC-C and 0.7 for MovR is expected due to the percentage of MR
transactions. However, the divergence of the curves below these points show the increased load
SLOG places on its deterministic scheduler due to the MR transaction pieces it generates. SLOG
beats Calvin on average latency. However, SLOG has larger latency at the tail. Sloth provides
the best of both worlds with lower average latency and lower latency at the tail.

The SLOG CDF shows the effect of waiting transactions. For TPC-C, 90% of transactions
are single-region, meaning that in SLOG and Sloth these single-region transactions can execute
without waiting on WAN communication, which would result in low latency for these trans-
actions. However, for SLOG, the curve starts to plateau much earlier than 90%, meaning that
the single region transactions are experiencing higher latency. The increased latency for single-
region transactions shows the effect of the load on the scheduler delaying transaction execution
(transaction latency increases as transactions must wait to execute).

38

(a) TPC-C CDF

(b) MovR CDF

Figure 5.5: CDF of transaction latency

39

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis presented Sloth, a geo-replicated deterministic database system that commits trans-
actions serializably after a single WAN round trip of messaging delay. Sloth performs determin-
istic merging of partial sequences of transactions per region to totally order transactions globally
rather than relying on a cross-region total ordering of transactions. Moreover, Sloth exploits
locality in workloads allowing transactions to execute without waiting on WAN messaging for
non-conflicting transactions. The evaluation shows that Sloth outperforms state-of-the-art deter-
ministic database systems Calvin and SLOG by up to 38× and 6×, respectively, for transaction
latency.

6.2 Future Work

I now discuss two ways that Sloth can be extended for future research.

6.2.1 Snapshot Isolation

An interesting avenue to explore is reducing the isolation level of transactions in Sloth from
serializability to snapshot isolation. This change would lower latency for transactions that do
not perform writes, but do perform reads, on data with the primary copy at other regions. In
particular, with the proper timestamp management, only a transaction’s write set (and not read

40

set) would need to be sequenced in partial sequences. For a transaction’s reads, a begin timestamp
would need to be deterministically chosen by all replicas. A simple scheme is to have each
primary for the transaction propose a timestamp and choose the largest. This change should
further reduce transaction latency while also reducing the sequencer load as less conflicts would
need to be tracked (reads would no longer be sequenced).

6.2.2 Migrating the Primary

SLOG [37] can use a heuristic scheme to move the primary location to increase locality. Ex-
ploring machine learning-based techniques to increase locality in Sloth would be interesting.
Furthermore, it would be interesting to see the effect of machine learning-based primary move-
ment on transaction latency in Sloth.

41

References

[1] American Airlines and Microsoft Partnership Takes Flight to Create a Smoother
Travel Experience for Customers and Better Technology Tools for Team Mem-
bers. https://news.aa.com/news/news-details/2022/American-Airlines-and-Microsoft-
Partnership-Takes-Flight-to-Create-a-Smoother-Travel-Experience-for-Customers-and-
Better-Technology-Tools-for-Team-Members-MKG-OTH-05/default.aspx. Accessed:
2023-05-09.

[2] Azure network round-trip latency statistics. https://learn.microsoft.com/en-
us/azure/networking/azure-network-latency. Accessed: 2023-05-09.

[3] CalvinDB. https://github.com/kunrenyale/calvindb. Accessed: 2023-05-09.

[4] MovR. https://www.cockroachlabs.com/docs/stable/movr.html. Accessed: 2023-05-09.

[5] Pismo. https://www.cockroachlabs.com/customers/pismo/. Accessed: 2023-05-09.

[6] Summary of the AWS Service Event in the Northern Virginia (US-EAST-1) Region.
https://aws.amazon.com/message/12721/. Accessed: 2023-05-09.

[7] TPC-C. https://www.tpc.org/tpcc/. Accessed: 2023-05-09.

[8] Daniel J. Abadi and Jose M. Faleiro. An overview of deterministic database systems. Com-
mun. ACM, 61(9):78–88, aug 2018.

[9] Michael Abebe, Brad Glasbergen, and Khuzaima Daudjee. Dynamast: Adaptive dynamic
mastering for replicated systems. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE), pages 1381–1392, 2020.

[10] Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, and Tevfik Kosar. Wpaxos: Wide
area network flexible consensus. IEEE Trans. Parallel Distrib. Syst., 31(1):211–223, jan
2020.

42

https://news.aa.com/news/news-details/2022/American-Airlines-and-Microsoft-Partnership-Takes-Flight-to-Create-a-Smoother-Travel-Experience-for-Customers-and-Better-Technology-Tools-for-Team-Members-MKG-OTH-05/default.aspx
https://news.aa.com/news/news-details/2022/American-Airlines-and-Microsoft-Partnership-Takes-Flight-to-Create-a-Smoother-Travel-Experience-for-Customers-and-Better-Technology-Tools-for-Team-Members-MKG-OTH-05/default.aspx
https://news.aa.com/news/news-details/2022/American-Airlines-and-Microsoft-Partnership-Takes-Flight-to-Create-a-Smoother-Travel-Experience-for-Customers-and-Better-Technology-Tools-for-Team-Members-MKG-OTH-05/default.aspx
https://learn.microsoft.com/en-us/azure/networking/azure-network-latency
https://learn.microsoft.com/en-us/azure/networking/azure-network-latency
https://github.com/kunrenyale/calvindb
https://www.cockroachlabs.com/docs/stable/movr.html
https://www.cockroachlabs.com/customers/pismo/
https://aws.amazon.com/message/12721/
https://www.tpc.org/tpcc/

[11] Mohammad Alomari, Michael Cahill, Alan Fekete, and Uwe Rohm. The cost of serializ-
ability on platforms that use snapshot isolation. In 2008 IEEE 24th International Confer-
ence on Data Engineering, pages 576–585, 2008.

[12] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabhakaran,
Michael Wei, John D. Davis, Sriram Rao, Tao Zou, and Aviad Zuck. Tango: Distributed
data structures over a shared log. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, SOSP ’13, page 325–340, New York, NY, USA, 2013.
Association for Computing Machinery.

[13] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

[14] Philip A. Bernstein, Colin W. Reid, and Sudipto Das. Hyder - a transactional record man-
ager for shared flash. In Conference on Innovative Data Systems Research, 2011.

[15] Philip A. Bernstein, Colin W. Reid, Ming Wu, and Xinhao Yuan. Optimistic concurrency
control by melding trees. Proc. VLDB Endow., 4(11):944–955, aug 2011.

[16] Prima Chairunnanda, Khuzaima Daudjee, and M. Tamer Özsu. Confluxdb. Proceedings of
the VLDB Endowment, 7:947–958, 07 2014.

[17] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Fur-
man, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson
Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,
David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Dale Woodford,
Yasushi Saito, Christopher Taylor, Michal Szymaniak, and Ruth Wang. Spanner: Google’s
globally-distributed database. In OSDI, 2012.

[18] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-
tion to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[19] Brad Glasbergen, Kyle Langendoen, Michael Abebe, and Khuzaima Daudjee. Chrono-
cache: Predictive and adaptive mid-tier query result caching. In David Maier, Rachel
Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo, edi-
tors, Proceedings of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, pages 2391–
2406. ACM, 2020.

[20] F. Harary, R.Z. Norman, and D. Cartwright. Structural Models: An Introduction to the
Theory of Directed Graphs. Wiley, 1965.

43

[21] Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. Flexible paxos: Quorum inter-
section revisited, 2016.

[22] A. B. Kahn. Topological sorting of large networks. Commun. ACM, 5(11):558–562, nov
1962.

[23] A. B. Kahn. Topological sorting of large networks. Commun. ACM, 5(11):558–562, nov
1962.

[24] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan Fekete. Mdcc:
Multi-data center consistency. In Proceedings of the 8th ACM European Conference on
Computer Systems, EuroSys ’13, page 113–126, New York, NY, USA, 2013. Association
for Computing Machinery.

[25] Leslie Lamport. Paxos made simple. 2001.

[26] Leslie Lamport. Fast paxos. Distributed Computing, 19:79–103, 2006.

[27] Joshua Lockerman, Jose M. Faleiro, Juno Kim, Soham Sankaran, Daniel J. Abadi, James
Aspnes, Siddhartha Sen, and Mahesh Balakrishnan. The FuzzyLog: A partially ordered
shared log. In 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), pages 357–372, Carlsbad, CA, October 2018. USENIX Association.

[28] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. Aria: A fast and practical deterministic
oltp database. Proc. VLDB Endow., 13(12):2047–2060, jul 2020.

[29] Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and Amr El Ab-
badi. Low-latency multi-datacenter databases using replicated commit. Proc. VLDB En-
dow., 6(9):661–672, jul 2013.

[30] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: Building efficient repli-
cated state machines for wans. In Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation, OSDI’08, page 369–384, USA, 2008. USENIX As-
sociation.

[31] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is more consensus in
egalitarian parliaments. In Proceedings of the Twenty-Fourth ACM Symposium on Operat-
ing Systems Principles, SOSP ’13, page 358–372, New York, NY, USA, 2013. Association
for Computing Machinery.

44

[32] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. Extracting more con-
currency from distributed transactions. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 479–494, Broomfield, CO, October 2014.
USENIX Association.

[33] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. Consolidating concurrency con-
trol and consensus for commits under conflicts. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 517–532, Savannah, GA, November
2016. USENIX Association.

[34] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. Dpaxos: Managing data closer
to users for low-latency and mobile applications. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD ’18, page 1221–1236, New York, NY, USA,
2018. Association for Computing Machinery.

[35] Seo Jin Park and John Ousterhout. Exploiting commutativity for practical fast replication.
In 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19),
pages 47–64, Boston, MA, February 2019. USENIX Association.

[36] Thamir M. Qadah, Suyash Gupta, and Mohammad Sadoghi. Q-store: Distributed, multi-
partition transactions via queue-oriented execution and communication. In International
Conference on Extending Database Technology, 2020.

[37] Kun Ren, Dennis Li, and Daniel J. Abadi. Slog: Serializable, low-latency, geo-replicated
transactions. Proc. VLDB Endow., 12(11):1747–1761, jul 2019.

[38] Dennis Shasha, Eric Simon, and Patrick Valduriez. Simple rational guidance for chopping
up transactions. In Proceedings of the 1992 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’92, page 298–307, New York, NY, USA, 1992. Associa-
tion for Computing Machinery.

[39] Dennis Shasha, Eric Simon, and Patrick Valduriez. Simple rational guidance for chopping
up transactions. SIGMOD Rec., 21(2):298–307, jun 1992.

[40] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

[41] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, and
Daniel J. Abadi. Calvin: Fast distributed transactions for partitioned database systems.
In Proceedings of the 2012 ACM SIGMOD International Conference on Management of

45

Data, SIGMOD ’12, page 1–12, New York, NY, USA, 2012. Association for Computing
Machinery.

[42] Nathan VanBenschoten, Arul Ajmani, Marcus Gartner, Andrei Matei, Aayush Shah, Irfan
Sharif, Alexander Shraer, Adam Storm, Rebecca Taft, Oliver Tan, Andy Woods, and Peyton
Walters. Enabling the next generation of multi-region applications with cockroachdb. In
Proceedings of the 2022 International Conference on Management of Data, SIGMOD ’22,
page 2312–2325, New York, NY, USA, 2022. Association for Computing Machinery.

[43] Xinan Yan, Linguan Yang, Hongbo Zhang, Xiayue Charles Lin, Bernard Wong, Ken-
neth Salem, and Tim Brecht. Carousel: Low-latency transaction processing for globally-
distributed data. In Proceedings of the 2018 International Conference on Management of
Data, SIGMOD ’18, page 231–243, New York, NY, USA, 2018. Association for Comput-
ing Machinery.

[44] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan R. K.
Ports. Building consistent transactions with inconsistent replication. In Proceedings of the
25th Symposium on Operating Systems Principles, SOSP ’15, page 263–278, New York,
NY, USA, 2015. Association for Computing Machinery.

[45] Zihao Zhang, Huiqi Hu, Xuan Zhou, and Jiang Wang. Starry: Multi-master transaction
processing on semi-leader architecture. Proc. VLDB Endow., 16(1):77–89, sep 2022.

46

	Author's Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Geo-Replicated Data
	Deterministic Transaction Processing
	Contributions

	Related work
	Totally or Partially Ordered Sequence of Transactions
	WAN Round Trips
	Strongly Connected Components
	Reduced Replication Quorum Size

	Background
	System Design and Architecture
	Sloth Overview
	System Model
	Transaction Ordering
	Example

	The Sloth System
	Sequencer Architecture
	Sequence Merging
	Conflict Graph
	Resolving Cyclic Conflicts
	Generating the Complete Order
	Correctness
	Fault Tolerance

	Performance Evaluation
	Methodology
	Benchmarks
	Results
	Latency

	Conclusion and Future Work
	Conclusion
	Future Work
	Snapshot Isolation
	Migrating the Primary

	References

