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Abstract 

 In recent years, increasingly stringent crashworthiness and emissions regulations have driven 

automakers to consider novel materials for automotive lightweighting. Advanced high-strength 

steels (AHSS) used in automotive chassis construction has increased considerably. The most 

widely used grades of AHSS are dual-phase (DP) ferrite-martensite (α + α') grades.  

 Advanced high strength steel coils must be annealed with a precise heating schedule to achieve 

the required mechanical properties. However, temperature excursions during intercritical 

annealing cause erratic changes in the steel's microstructure, resulting in variations in post-

annealed mechanical properties across coils. These variations lead to high scrap rates and cost 

manufacturers millions of dollars annually. Past research has attributed these temperature 

excursions to non-uniform thermal irradiation. The present work shows variations in radiative 

properties across a single AHSS coil may cause temperature excursions through pyrometer errors 

and nonuniform heating. Radiative property variations across a coil may also arise before 

annealing due to non-homogeneities in surface topography, influencing how the radiative 

properties subsequently evolve during annealing. 

 This thesis documents experimental and theoretical work characterising radiative property 

variations across a single AHSS coil processed on an industrial cold-rolling line. The ex-situ 

radiative properties of samples extracted from various coil locations are analysed using a Fourier 

Transform Infra-Red (FTIR) spectrometer equipped with an integrating sphere, revealing large 

swings in radiative properties along its length and width. The effect of these variations on 

pyrometric temperature measurements, strip temperature evolution, and in turn, the as-formed 

mechanical properties are discussed.  

 Radiative property variations are strongly correlated to differences in surface topography 

(particularly surface cavities) through optical profilometry, optical microscopy, and scanning 

electron microscopy (SEM). The work uses 3D depth mapping of optical imagery to generate 

surface height maps and theoretically models the radiative properties using a geometric optics 

approximation (GOA) ray-tracing algorithm. The GOA approach provides accurate spectral 

emissivity predictions within its validity regime.  
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 The study then explores reasons for surface cavity formation, hypothesising that cavities form 

due to the dissolution of selective grain boundary oxides (formed during hot rolling) during acid 

pickling, which leads to micro-topographical changes to the strip surface. Furthermore, non-

homogeneous cold-rolling parameters subsequently lead to non-uniform cavity flattening. The 

thesis then explores the combined effect of acid pickling time and cold-rolling reduction 

percentage by studying different AHSS alloys, cold-rolled and acid-pickled to different extents, 

through a factorial design-of-experiments procedure.   

 An artificial neural network (ANN) regression model for near-instantaneous spectral emissivity 

predictions of AHSS was developed using surface roughness parameters and optical imagery as 

inputs. Manufacturers can implement this model with emerging in-situ strip imaging technologies 

to provide real-time spectral emissivity predictions before a coil section enters an annealing 

furnace. Galvanisers can also use these on-line spectral emissivity predictions to update pyrometry 

and furnace temperature control algorithms in real time. 

This thesis expands our knowledge base on the possible causes for temperature excursions 

across an AHSS coil during annealing.  Findings of this research will benefit steel manufacturers 

in identifying and reducing non-homogeneities in mechanical properties across AHSS coils, 

reducing high scrap rates in the industry.   
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MSE Mean-Squared Error 

PDF Probability Distribution Function 
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Nomenclature 

This section summarises the symbols used in this thesis, classified according to the context in 

which they appear.  

Metallurgy 

α Ferrite 

α' Martensite 

P Pearlite 

γ Austenite 

TAc1 Eutectoid Temperature (Beginning of austentisation) 

TAc3 Austentisation Completion Temperature 

Radiative Properties & Pyrometry 

Sλ The signal generated by the pyrometer due to radiant flux from a target 

surface 

κλ Quantum efficiency of a photonic sensor 

Qe Surface radiant flux 

λd Pyrometric detection wavelength 

T Target surface temperature 

Tsw Single-wavelength pyrometric temperature 

Tdw Dual-wavelength pyrometric temperature 

L'λ, b The spectral intensity of a blackbody at a given wavelength 

L'λ The spectral intensity of the target surface at a given wavelength 

L'λ, meas. Measured spectral intensity 

L'λ, gen Generated spectral intensity using an emissivity parameter set and surface 

temperature 

ε'λ Spectral directional emissivity 

α'λ Spectral directional absorptivity 

ε Total hemispherical emissivity 

α Total hemispherical absorptivity 

εr,P Expected emissivity ratio (dual wavelength pyrometry) 

εr,T True emissivity ratio (dual wavelength pyrometry) 

θp The angle at which the pyrometer views the steel surface 

φ The azimuthal angle of incidence or emission 

Ω Solid angle viewed the pyrometer 

Ad Area of the photonic sensor 

C1 2∙h∙c2 = 3.7481 × 10-16 Wm2 

C2 h∙c/kB = 1.439 × 104 

h Planck's constant 

c The speed of light in a vacuum 
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Cλ The calibration constant of a pyrometric sensor 

a0, a1 ,.., am Polynomial coefficients of emissivity function in multi-wavelength pyrometry 

Furnace Heat Transfer Model 

ρs Steel sheet density 

Cp,s Steel sheet specific heat capacity 

ts Steel Sheet thickness 

ks Steel sheet thermal conductivity 

ls Steel Sheet length 

ws Steel Sheet width 

Ts, loc. Local steel sheet temperature 

x, (x̃) The distance along sheet length (non-dimensional length) 

y, (ỹ) The distance along sheet width (non-dimensional width) 

z, (z̃) The distance along sheet thickness (non-dimensional thickness) 

v The velocity of the steel sheet through the furnace 

t, ( )t  Time (non-dimensional time) 

xf Distance into furnace 

rad,in
q  Incoming radiative heat-flux 

rad,out
q  Outgoing radiative heat-flux 

Tf, loc. Local furnace temperature 

σ Stefan-Boltzmann Constant 

θe Polar angle of emission from the steel surface 

θi Polar angle of incidence onto the steel surface 

Integrating Sphere and Reflectance Measurements 

Vstd, s The spectrum obtained with the standard in port and beam shone onto the port 

Vsample, s The spectrum obtained with the sample in port and the beam shone onto the 

port 

Vstd, ref The spectrum obtained with the standard in port and beam shone onto the 

reference spot 

Vsample, ref The spectrum obtained with the sample in port and beam shone onto the 

reference spot 

ρλ, d-h Spectral directional-hemispherical reflectivity 

ρstd Reflectance spectra of the standard 

ρλ, n Normal spectral reflectance 

n The refractive index of the substrate 

k The extinction coefficient of the substrate 

ϵim The imaginary permittivity of the substrate = 2nk 

Surface Topography Characterisation 

Rq Root-mean-squared roughness 
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τ Correlation length 

sr Surface slope 

p(h) Probability distribution of surface heights 

C(x, y) Auto-covariance function  

Cr, Cp Cavity ratio, cavity percentage 

Lx Length of the surface along the x direction 

Ly Length of the surface along the y direction 

GOA Ray-Tracing Model 

ρλ(Ωi, Ωr) Bi-directional reflectance distribution function (BRDF) 

Ωi The direction of incidence (Solid Angle) 

Ωr The direction of reflection (Solid Angle) 

ρλ,d-h (Ωi) Spectral-directional hemispherical reflectance for a given incidence direction  

er, s The energy of the s-polarised reflected ray 

er, p The energy of the p-polarised reflected ray 

ei, s The energy of the s-polarised incident ray 

ei, p The energy of the p-polarised incident ray 

ρss SS co-polarised reflectivity 

ρsp SP cross-polarised reflectivity 

ρpp PP co-polarised reflectivity 

ρps PS cross-polarised reflectivity 

Rs Fresnel amplitude reflectivity (s-polarised) 

Rp Fresnel amplitude reflectivity (p-polarised) 

vi Vector of the incident beam 

vr Vector of the reflected beam 

n The local normal of the surface at the reflection point 

Factorial Design for Cavity Formation 

Ci The contrast of the ith independent variable  

Ei The effect of the ith independent variable 

SSi The sum of squares of the ith independent variable 

n Number of replicates 

Neural Networks 

X A matrix of input values 

Y A matrix of output values  

w(n)
i,j The weight of the ith connection to the jth neuron in the nth layer 

x(n)
i,j The ith input to the jth neuron in the nth layer  

b(n)
j The bias of the jth neuron in the nth layer 

z(n)
j The output of the jth neuron in the nth layer 

ψ The tan-sigmoid activation function 
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N Number of training samples 

e The residual vector between ground-truth and predicted outputs 

FAST-C Sensitivity Analysis 

f The analysed model 

y The output parameters of the model 

x The input parameters to the model 

r Number of input parameters to the model 

s The common parameter ranging between -π and π 

ωi Integer frequency of the ith input parameter 

ω A vector of all integer frequencies  

F The marginal cumulative distribution function (CDF) of the ith input 

A0 0th Fourier Coefficient 

Ap First Fourier Coefficient 

Bp Second Fourier Coefficient 

V The overall variance of the output across all input-output pairs 

Vi Variance contribution of the ith input parameter to the output 

p The Fourier term  

σi Sensitivity index of the ith input parameter 

s A vector containing the common parameters for numerical implementation 

X The matrix of inputs for numerical implementation 

M The order of interference or harmonic of the integer frequencies 

N Number of required samples 

Iman and Conover Procedure 

X The matrix of inputs to be reordered 

C The required Pearson rank-correlation structure among the inputs 

RANKS The matrix containing the ranks of values in each column of X 

B The matrix containing the Van der Waerden scores of ranks in RANKS 

Ф The cumulative distribution function of a standard normal distribution 

CS The Pearson rank-correlation structure of B 

Q The lower triangular Cholesky decomposition of CS 

P The lower triangular Cholesky decomposition of C 

T A transformation matrix to introduce the required correlation structure to B 

Y A matrix containing the transformed Van der Waerden scores in B with 

correlation structure C 

R A matrix with ranks of values in each column of Y 

W A matrix with permuted values of X with rank-correlation structure C, and the 

original marginal cumulative distributions of inputs in X 
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If I have seen further, it is by standing upon the shoulders of giants. 

- Sir Isaac Newton 
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Chapter 1 : Overview and Industrial Motivation 

This chapter introduces advanced high-strength steels (AHSS) and continuous annealing. It 

discusses the advantages of AHSS over conventional high-strength low alloy (HSLA) steels and 

their use in the automotive industry. A brief overview of other processes in its manufacturing 

chain, such as hot-rolling, acid pickling and cold-rolling is also provided. The chapter concludes 

with an outline of the thesis. 

1.1: Introduction to Advanced High-Strength Steels 

With increasing crashworthiness and emissions regulations, automakers rely on high-strength 

materials to reduce vehicle weight through downgauging (i.e., using thinner components to reduce 

overall vehicle weight) [1]. Automotive lightweighting can profoundly reduce fuel consumption 

and greenhouse gas emissions, as shown in Figure 1-1 [2].  

 

Figure 1-1 Comparison of fuel efficiency and vehicle weight; reducing vehicle weight can have a positive impact 

on fuel consumption and hence greenhouse gas emissions [2]. 
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Consequently, the use of AHSS in automobiles has increased considerably, as they provide 

improved tensile strengths (allowing for downgauging) compared to HSLA steels while 

maintaining ductility. Figure 1-2 compares the tensile strengths and ductility of various steel 

grades. This work focuses on first-generation advanced high-strength steels, particularly the more 

widely used dual-phase (DP) ferrite-martensite (α + α) grades. 

 

Figure 1-2: Comparison of tensile strengths and ductility of different steel grades (conventional HSS, 1st and 

2nd generation AHSS, etc.) [3]. The mechanical properties of 3rd generation AHSS are even more sensitive to 

temperature excursions due to their complex micro-structures. Therefore, characterising the impact of 

radiative properties of AHSS on temperature excursions is very important with the rise of 3rd generation 

grades.  

Automakers have also experimented with other low-density non-ferrous metals such as 

Aluminium and Magnesium and other materials like Carbon-fibre Reinforced Polymers; however, 

producing these materials results in 7-20 times [4] more GHG emissions than steel. Furthermore, 

since 30-35% of an automobile's life cycle GHG emissions originate from its production [4], 

increased GHG emissions from these low-density materials outweigh the reduction in tailpipe 

emissions. Therefore, AHSS are expected to remain a primary material in the automotive industry 

and are the focus of the thesis [4].  
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1.2: AHSS Manufacturing Process 

This section introduces the AHSS manufacturing process from casting to galvanising on a 

continuous galvanising line (CGL). This thesis analyses AHSS samples processed on an industrial 

line before annealing, as shown in Figure 1-3. The chapter also discusses the microstructure 

formation of dual-phase steels and the annealing process. 

1.2.1 Manufacturing Chain 

Manufacturing of AHSS begins with casting, as shown in Figure 1-3, where molten steel is 

cooled using water jets while being poured into a continuous mould, allowing it to harden into 

slabs [5]. The slabs are subsequently hot-rolled above their recrystallisation temperature. Hot-

rolling allows for reorienting the crystal lattice structure of the steel creating thinner sheets with 

minimal strain-hardening [6].  

 

Figure 1-3: AHSS manufacturing chain schematic adapted from Ref. [7]. This thesis analyses the effects of hot-

rolling, acid-pickling and cold-rolling on the surface topography and the radiative properties of an AHSS coil 

before it enters an annealing furnace.  

The high temperatures in the hot-rolling process produce iron-oxide scale formation on the steel 

substrate [8] that must be removed using descaling acid-pickling process, usually performed using 

Hydrochloric (HCl) or Sulphuric (H2SO4) acid [9]. Next, the steel coil is cold-rolled (below 

recrystallization temperature) to reduce its thickness further and alter its surface state, improving 

the adhesion of surface coatings such as molten zinc during hot-dip galvanising. Cold-rolling leads 

to the strengthening of the material; and a reduction in ductility due to strain-hardening [6]. The 

steel is then heat-treated above its austentisation temperature during annealing [1, 10] to achieve 

the required mechanical properties on CGLs, followed by hot-dip galvanising. 
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1.2.2 Annealing Process and Microstructure 

Annealing is an essential heat-treatment process to achieve the desired AHSS microstructure 

[1, 10]. In its final form, the martensitic volume fraction (Vα′) strongly influences the strength of 

DP steels; and its formation depends on the applied heating schedule and carbon content [1, 11, 

12]. Cold-rolled steel has a ferrite-pearlite (α + P) microstructure, which is transformed into a 

ferrite-martensite (α + α′) microstructure through annealing [1, 10].  

Intercritical annealing heats the steel to a temperature between the austentisation onset (TAc1, 

also known as the eutectoid temperature) and completion (TAc3) temperatures. These temperatures 

define the intercritical range [1, 10] where ferrite and austenite are present, as shown in the Iron-

Carbon phase diagram in Figure 1-4. The steel soaks at the intercritical annealing temperature for 

a set time and is then quenched to room temperature to attain the required microstructure, as shown 

in Figure 1-5.  

 

Figure 1-4: Iron-Carbon phase diagram showing the intercritical range (α – Ferrite, γ - Austenite). Figure 

adapted from Ref. [10]. 

During the intercritical soak, a proportion of ferrite (α) and all pearlite (P) is transformed to 

austenite (γ), creating a ferrite-austenite (α + γ) microstructure. Lastly, upon quenching to room 

temperature, the remaining austenite transforms to martensite (α′), finally creating the ferrite-

martensite (α + α′) microstructure in the case of DP steels. The intercritical annealing temperature 
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influences the amount of austenite (γ) formed and, in turn, the amount of martensite (α′) after 

quenching. Therefore, the quenching rate affects the microstructure and the steel grade created 

[10], as shown in Figure 1-5.  

 

Figure 1-5: Effect of quenching rate on microstructure formation during annealing. Figure adapted from Ref. 

[10]. 
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1.2.3 Continuous Galvanising Lines 

Intercritical annealing is performed before hot-dip galvanising on a CGL, illustrated 

schematically in Figure 1-6.  

 

Figure 1-6: Schematic of a typical continuous galvanising line. 

Steel coils are unwound and initially welded to the end of the existing coil on the line. The entry 

accumulator is necessary to keep the continuous annealing furnace operational when welding the 

new and old coils. The coil subsequently passes through the annealing furnace and then through 

the molten zinc bath, where it becomes coated with zinc. Annealing is usually performed in a 

reducing atmosphere comprised of 95% N2 and 5% H2 (by vol.) to minimise oxidation of the steel 

strip [13]. 

 During annealing, the steel strip may experience temperature excursions leading to erratic 

microstructure changes, causing non-uniform mechanical properties post-annealing. The industry 

has often attributed these temperature excursions to non-uniform irradiation of the steel strip 

caused by improper furnace design [14, 15]. However, variations in radiative properties across 

steel coils may also cause temperature excursions.  

Temperature evolution of the steel coil through the annealing furnace is influenced strongly by 

its radiative properties by altering the strip thermal absorption rate, as radiation is the dominant 

form of heat transfer due to high temperatures in the furnace [15, 16]. Additionally, furnace 
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temperature control algorithms use pyrometrically inferred strip temperatures as feedback. 

Pyrometry relies on the spectral irradiance from the steel strip, which is influenced strongly by its 

radiative properties. Therefore, radiative property variations can also cause furnace temperature 

control errors through incorrectly inferred pyrometric temperature measurements.  

1.3 Research Motivation & Objectives 

Given the sensitivity of microstructure evolution to the intercritical annealing temperature, it 

becomes paramount for steel manufacturers and operators to understand the impact of radiative 

property variations on strip temperature excursions. Various studies have analysed the evolving 

AHSS radiative properties during annealing through physics-based and data-driven models. 

However, the literature has overlooked characterising radiative property variations across a single 

AHSS coil in its cold-rolled and pre-annealed condition. This thesis fills this knowledge gap and 

helps explain that upstream processes (of annealing) can also influence the radiative properties of 

AHSS to an extent, affecting the post-annealed mechanical properties.  

As such, the primary objectives of this thesis are to: 

I. Characterise radiative property variations across a single AHSS coil in its pre-annealed 

condition before it enters the annealing line through ex-situ reflectivity measurements of 

samples extracted from various locations on an AHSS coil fully processed on the industrial 

line (hot-rolled, acid-pickled, and cold-rolled). 

II. Explore the likely impact of these radiative property variations on pyrometrically inferred 

strip temperatures, strip temperature evolution, and, in turn, strip mechanical properties.  

III. Correlate radiative property variations with differences in the surface state through a 

geometric-optics-approximation (GOA) ray-tracing algorithm and an artificial neural 

network model. The ANN may be useful for inferring radiative property variations across 

a single coil before it enters the annealing line in conjunction with on-line strip imaging 

microscopes. 

IV. Use a global sensitivity analysis (GSA) to establish functional dependencies between the 

various surface topography parameters and the spectral emissivity of strip surfaces, 

addressing the black-box nature of ANNs. 
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V. Explore possible reasons for the variations in surface topography across the coil, which 

lead to the differences in radiative properties. A factorial design analysis addresses the 

impact of the upstream processes such as acid-pickling and cold-rolling.    
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1.4 Overview of Thesis 

The following provides a summary of each chapter in the thesis: 

Chapter 2 includes a literature review; it introduces the three common types of pyrometry 

(single-, dual- and multi-wavelength) used in industry and discusses annealing furnace design in 

greater detail. The chapter introduces a preliminary heat transfer model for predicting steel strip 

temperature evolution, elucidating the importance of understanding steel strip radiative property 

variations for accurate strip temperature control.  

Chapter 3 introduces the experimental work to analyse the ex-situ radiative properties of 

samples extracted from various coil locations on a hot-rolled, acid-pickled, and cold-rolled DP-

780 coil processed on an industrial line. The chapter reviews the workings of an integrating sphere 

and procedures followed to infer the spectral reflectivities, emissivities and total absorptivities of 

the AHSS samples.  

Chapter 4 outlines the work performed in characterising the surface topographies of the samples 

through optical profilometry, optical microscopy, and scanning electron microscopy (SEM). This 

chapter establishes a strong correlation between strip radiative properties and cavities on the strip 

surface through image thresholding of strip optical imagery. The chapter then uses a GOA ray-

tracing approach to correlate the surface topography with radiative properties. Lastly, the chapter 

discusses the replicate technique used to improve surface height map acquisition inside the cavities 

and hence the GOA predictions. The findings from Chapters 3 and 4 are disseminated as a journal 

paper in Steel Research International [17].   

Chapter 5 discusses possible causes for surface cavity formation. Previous studies attribute 

cavity formation to the dissolution of selective grain boundary oxides (formed during hot rolling) 

during acid-pickling, which leads to micro-topographical changes to the strip surface. This study 

shows that the area occupied by the cavities after cold-rolling is linearly proportional to the cold-

rolling reduction percentage. However, they are non-uniformly flattened due to non-homogeneous 

cold-rolling characteristics across single AHSS coils. The chapter finally explores the combined 

effect of acid pickling time and cold rolling thickness reduction percentage on the surface cavity 

coverage through a factorial design-of-experiments procedure.  
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Chapter 6 discusses using a data-driven machine learning model to correlate strip spectral 

emissivities with surface topography parameters using an ANN; it then evaluates the functional 

dependencies of spectral emissivity on the topographical parameters through a Fourier amplitude 

sensitivity test (FAST). Upcoming, in-situ strip imaging technologies allow operators to obtain 

surface roughness measurements and microscope imagery of the strip surface in real time. The 

ANN may prove helpful in conjunction with these imaging techniques for on-line spectral 

emissivity predictions before a coil section enters an annealing furnace. In addition, manufacturers 

may use these in-situ measurements to update furnace temperature control and pyrometry 

algorithms. 

Some of the findings from Chapter 6 were presented as conference proceedings at Materials 

Science & Technology 2022 in Pittsburgh, PA, and are included in a conference paper for the 10th 

International Symposium on Radiative Transfer 2023 (ISRT) in Thessaloniki, Greece. In addition, 

an extended version of the ISRT paper, including the FAST analysis, will be submitted to the 

Journal of Quantitative Spectroscopy and Radiative Transfer (JQSRT).  

Lastly, Chapter 7 summarises the research and provides recommendations for future work. 

1.5 Research Contributors  

Below are researchers who contributed to some of the results, listed according to the order in 

which they appear. 

1. Mr. Devon Hartlen performed optical imagery of the initial set of DP780 samples shown 

in Figure 4-2 using the Keyence optical microscope.  

2. Dr. Nina Heinig and Dr. Lei Zhang are responsible for the SEM images seen in Section 

4.1.3 and Section 4.3.1, respectively.  

3. The GOA ray-tracing code used in this work was published by Bergstrom et al. [18] 

(available online at: http://www.mysimlabs.com/). Certain modifications to the code were 

made, such as adding a loop to analyse incident light of different wavelengths and 

specific conditions to model the surface cavities as blackbodies. 

4. Dr. Kaihsiang Lin is responsible for some of the initial spectral reflectivity measurements 

on the FTIR and for reviewing the results in Chapters 3 and 4. 

http://www.mysimlabs.com/
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5. Ms. Fatima Sulieman is responsible for reviewing some of the results in Chapters 3, 4, 

and 6. 

6. An industrial partner is responsible for the SEM cross-section images of the sample 

shown in Figure 5-2. 
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Chapter 2 : Theoretical Background 

Chapter 2 provides a theoretical background for mechanisms by which AHSS radiative 

properties may cause temperature excursions during intercritical annealing. This section introduces 

pyrometry, a non-contact temperature measurement procedure used to infer steel strip 

temperatures at various locations within the furnace. Different types of pyrometry commonly used 

in industry (single-, dual- and multi-wavelength) are outlined.  

Second, the chapter outlines the design of a typical continuous annealing furnace and develops 

a heat transfer model to compute strip temperature evolution. The heat transfer model describes 

how radiative property variations can directly cause temperature excursions by influencing the rate 

of thermal absorption by the steel strip.  

2.1 Introduction to Pyrometry 

Pyrometry, also known as radiation thermometry, is a non-contact temperature measurement 

procedure used for various applications. The steel industry has adapted it for CGLs to measure 

steel strip temperatures. Non-contact methods are preferred to prevent damage to the steel strip 

due to the CGL's continuous nature. Pyrometers infer the temperature of a target surface by 

measuring radiant surface flux, which is converted into an electrical output signal and then used 

to infer surface temperature through an algorithm [19].  

A pyrometer consists of photonic sensors, various filters, and associated electronics that 

measure radiant flux from a target surface and generate an output signal, 

 ( )λ λ d e
= κ λS Q  (2.1) 

where Qe is the radiant flux, κλ is the quantum efficiency of the photonic sensor, and λd is the 

detection wavelength. The radiant flux is [13], 
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 (2.2)

where L'λ,b(T, λd, θp) and ε'λ(T, λd, θp) are the spectral intensity of a blackbody, and spectral 

directional emissivity of the target surface at target surface temperature, the detection wavelength 

λd, and viewing angle, respectively (the prime notation represents a directionally dependant 
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property). The area of the photonic sensor is given by Ad, ΔΩd is the infinitesimal solid angle 

viewed by the photonic detector, Δλd is the infinitesimal spectral band of the pyrometer, and θp is 

the angle between the viewing axis of the pyrometer and the surface normal of the target. 

Equations (2.1) and (2.2) can be combined for adequately small spectral bands, and if the 

viewing axis of the pyrometer is positioned normally to the steel surface (θp = 0°), the signal is 

[13] expressed as, 

 ( ) ( ) ( )λ d d λ d λ d λ,b d d
ΔΩ κ λ ,λ ,λ ΔλS A ε T L T =       (2.3) 

where Planck's distribution [13, 16] gives the blackbody intensity, 

 ( ) -2 -1 -11
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 (2.4) 

In Equation (2.4), C1 = 2∙h∙c2 = 1.191  108 W∙μm4∙m-2∙sr-1, and C2 = h∙c/kB = 1.439104 μm∙K 

where h is Planck's constant (6.626×10-34 J·s), c is the speed of light in a vacuum (2.998×108 m/s), 

and kB is the Boltzmann constant (1.381×10-23 J/K). The terms ΔΩd, Ad, κλ and Δλd are grouped to 

form a calibration constant, Cλ; therefore, 
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C
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=  
  

   
  

 (2.5) 

is the signal produced by the photonic sensor. Figure 2-1 illustrates a pyrometer performing surface 

temperature measurements of a steel strip.  
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Figure 2-1: Schematic of a pyrometer measuring the surface temperature of a steel strip, showing the 

infinitesimal area, dA, the spectral intensity from the steel strip at the detection wavelength, L'λ(T, λd), the solid 

angle of measurement, ΔΩd, the detector area, Ad, and the signal generated by the pyrometer, Sλ. 

2.1.1 Single-Wavelength Pyrometry 

Single-wavelength pyrometry relies on spectral irradiance measurements at a single detection 

wavelength, λd. The temperature inference,  
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 (2.6) 

is performed by rearranging Eq. (2.5). This method requires accurate knowledge of the spectral 

emissivity of the target surface at the detection wavelength, ε'λ, d(T, λd). Tanaka and DeWitt [20] 

suggest that this method is only suitable for stable materials with known spectral emissivities that 

do not significantly vary during measurement. This assumption is usually untrue during annealing 

as the surface state and temperature of the steel strip evolve continuously. The user provides the 

pyrometer with an expected emissivity value and deviations of the actual strip emissivity can lead 

to temperature errors.  

The emissivity of steel is highly sensitive to its temperature and surface state. Steel 

manufacturers often use single wavelength pyrometry in a wedge-shaped configuration [21, 22, 

23] as shown in Figure 2-2. This configuration allows for exploiting a virtual blackbody created 

within the wedge with an emissivity of approximately unity. However, a significant drawback of 

the wedge-shaped design is its sensitivity to misalignment, which can lead to erroneous 

temperature measurements due to a reduction in the target's emissivity if the pyrometer is aimed 

imprecisely. Additionally, it may not be feasible to install pyrometers in a wedge configuration at 

all locations along a CGL. 



15 

 

 

Figure 2-2: Two configurations for a wedge-type pyrometer arrangement. (a) Here the wedge is created 

between the steel strip and the coil as the coil is unwound (image adapted from Ref. [21]). (b) Here, the wedge 

is created between the roller and the steel strip. The wedges, in both cases, make a virtual blackbody where the 

emissivity is approximately unity.  

2.1.2 Dual–Wavelength Pyrometry 

 Dual-wavelength pyrometry can ameliorate some of the issues associated with single-

wavelength pyrometry by using spectral irradiance measurements at two detection wavelengths, 

λd1 and λd2. The dual-wavelength temperature inference, 
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is again derived using Eq. (2.5). Dual-wavelength pyrometry does not require prior knowledge of 

spectral directional emissivity at each detection wavelength but the relationship between the 

spectral directional emissivities at the two detection wavelengths must be known [20, 24]. The 

emissivity ratio is often interpolated from a dataset as a function of the “brightness emissivity.” 

The brightness emissivity is obtained by comparing the irradiance at one channel with a blackbody 

intensity computed at a brightness temperature through a grey-body assumption. Therefore, 

variations in the actual emissivity ratios can produce pyrometric temperature errors.  
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One may express the error in the pyrometric temperature measurement as, 
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 (2.8) 

where TM is the measured temperature, TT is the true temperature, εr,P, is the steel strip's expected 

emissivity ratio, provided to the pyrometer, and εr,T is the true emissivity ratio. According to Eq. 

(2.8), selecting wavelengths further apart minimises the temperature error [25].  

Dual-wavelength pyrometry is common in the industry, and Thiessen et al. [26] observed 

variations between dual-wavelength pyrometric and thermocouple temperature measurements 

while annealing various transformation-induced plasticity (TRIP) steel samples in a reducing 

atmosphere (90%Ar and 5% H2). They attributed these differences to emissivity ratio changes 

caused by the formation of surface oxides during annealing. Additionally, Somveille et al. [27] 

also discussed how the oxidation of DP-780 and DP-980 alloys during annealing might influence 

their emissivity and hence pyrometric temperature measurements.   

2.1.3 Multi-Wavelength Pyrometry 

 Multi-wavelength pyrometry utilises spectral irradiance measurements at three or more 

detection wavelengths with an emissivity compensation algorithm to infer the temperature of the 

target surface. This method models the emissivity of the surface as a polynomial function with 

respect to wavelength [28],  

 ( )
d

m-1

λ d 1 1 m-1 i
λ λ +.....+ λ

0
= +ε a a a  (2.9) 

and infers the polynomial coefficients and the surface temperature together. Multi–wavelength 

pyrometry results in n equations (one for each wavelength) and m + 1 unknowns (coefficients of 

the polynomial and the surface temperature). The algorithm explicitly solves for the polynomial 

coefficients and the surface temperature or infers them using a least-squares minimisation 

technique [29]. For the exact method, the number of detection wavelengths n must be one more 

than the number of polynomial coefficients m.  
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 The exact method, however, is more susceptible to errors caused by over-fitting when using 

more than three detection wavelengths due to noise in the data [30]. To overcome this issue, Wen 

[29] suggests using the least-squares minimisation approach, where the number of detection 

wavelengths, n, must be at least two greater than the number of emissivity coefficients m. The 

least-squares process attempts to find the set of emissivity coefficients and surface temperature 

such that the sum of squares error, 

 ( )
n

λ meas λ gen

i=0

, , , ,
R L L= −

2
2

i i
 (2.10) 

is minimised. In Eq. (2.10), Lλ, meas,i is the measured spectral intensity and Lλ, gen,i is the generated 

spectral intensity at a given set of emissivity parameters and surface temperature.  

 Given the reliance of all three pyrometric techniques on accurate spectral emissivity models, it 

becomes necessary to understand how spectral emissivity may vary with the surface state, the 

temperature of the steel, and across a single AHSS coil. Variations in spectral emissivities across 

a single AHSS coil may lead to different pyrometric temperature errors at different coil locations 

as it passes through the annealing furnace.  

2.1.4 Pyrometric Wavelength Selection 

Various considerations go into selecting appropriate wavelengths for pyrometry, such as how 

the atmosphere interacts with the radiation, the stability of the target surface emissivity at a 

particular wavelength, and nearby radiation sources [31]. For dual-wavelength pyrometry, the 

separation between the two wavelengths is also crucial as it influences the stability of the inferred 

temperature [25]. The temperature errors are the greatest when the wavelengths used are closer 

together, as predicted by Eq. (2.8), and as shown in the experimental results in Figure 3-7. 

For annealing steels on CGLs, the reducing atmosphere of 95% N2 and 5% H2 is transparent 

and does not play a significant role in wavelength selection. Shorter wavelengths in the NIR region 

(0.8 – 2.5 μm) of the EM spectrum are usually selected for steels, as they have larger spectral 

emissivity values in this region [31]. As such, Williamson® (a key provider of pyrometers to North 

American galvanisers) commonly uses wavelengths of 1.6, 2.1 and 2.4 μm [32]. Therefore, all 

pyrometric analyses in this thesis will focus on these three wavelengths. 
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2.2 Annealing Furnace Basics 

2.2.1 Annealing Furnace Design 

The design of annealing furnaces is proprietary to the steel manufacturer but generally consist 

of direct and indirect fired heating zones [33]. First, the steel strip enters a pre-heater, where 

exhausted flue gasses provide initial heating; the strip then passes through a direct-fired heating 

zone, where open-flame natural gas burners further heat the strip. The furnace also consists of an 

airlock which allows producers to maintain an internal reducing atmosphere (95%N2 and 5%H2 

by vol.) to minimise oxidation. Lastly, the strip passes through an indirectly fired heating zone, 

where radiant tubes supply heat, within lean combustion of natural gas occurs, as shown in Figure 

2-3.    

 

Figure 2-3: A schematic of the annealing furnace installed at Voestalpine Stahl GmbH in Linz, Austria. Image 

adapted from Ref. [33] 
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2.2.2 Furnace Heat Transfer Model 

One can make several assumptions to model strip temperature evolution: (1) radiation is the 

dominant form of heat transfer due to the high temperatures involved [15, 16]; (2) the furnace 

surroundings are large and isothermal; and (3) heat conduction within the steel coil is negligible.  

Conduction within the coil can be considered negligible due to its thinness (~1.5mm) in contrast 

to its large lateral dimensions (~1739m × 2.5m). The heat diffusion equation, 

 
2 2 2

s p s s 2 2 2t
,

T T T T T
ρ c v k

x x y z

      
 +  =  + +  

       
 (2.11) 

governs the temperature distribution within the steel coil, which in its non-dimensional form can 

be written as 
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where ρs is the density of the steel, ts is the sheet thickness, cp,s is the specific heat capacity, ks is 

the thermal conductivity of steel, ls is the length of the sheet, and ws is the width of the sheet. 

Assuming characteristic steel properties such as the thermal conductivity (50 Wm-1K-1), density 

(7000 kgm-3), and average specific heat capacity (600 Jkg-1K-1), one may write, 
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where the coefficients of the temperature gradients in the x and y directions are very small. As 

such, the conduction along the length and width of the coil is negligible. Therefore, variations in 

the local strip radiative properties dominate the local temperature evolution of a coil section.   
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Under these assumptions, an ordinary differential equation 

 

( ) ( )

steel,loc.

rad,in rad,out s s p,s

steel,loc.4
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d

dt

d

dt
, .

T
q q ρ t c
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ασT x εσT x ρ t c

− =  

= − =   4

furnace loc

 (2.15) 

accurately captures local strip temperature evolution. Here, qrad,in and qrad,out are the heat absorbed 

and emitted by the local area on the steel strip due to thermal radiation, Tfurnace, loc. and Tsteel, loc. are 

the local furnace surroundings and steel strip temperatures, σ is the Stefan-Boltzmann constant 

(5.67 × 10-8 Wm-2μm-4), α and ε are the local total hemispherical absorptivity and emissivity of the 

steel strip, xf is the distance into the furnace, and dTsteel, loc./dt is the first derivative of the local steel 

temperature with respect to time. This work uses the explicit Euler scheme to solve Eq. (2.15). 

Figure 2-4 schematically represents the heat transfer model. 

 

Figure 2-4: Heat-transfer model for predicting local strip temperature evolution through the furnace, where 

furnace surroundings are assumed to be large and isothermal. 
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Marginalising the spectral directional radiative properties over all wavelengths of interest and 

directions: 

 ( )
( ) ( ) ( )λ e λb steel e e

λ 0

steel 4

steel

λ cos dΩε θ L T d θ

ε T
σT



 =

    
=

 
 (2.16) 

and 
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λ 0
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=

 
 (2.17) 

yields the total hemispherical radiative properties, where L'λ, b is the blackbody spectral intensity. 

Note here that, through Kirchhoff's law [16] 

 ( ) ( ) ( )λ e λ i λ,d h i
1 .ε θ α θ ρ θ

−
  = = −  (2.18) 

The radiative properties do not vary with the azimuthal angle, φ, which is usually valid for isotropic 

random Gaussian surfaces (see Chapter 4). 

 This model shows that the radiative properties of the steel strip strongly influence the local strip 

temperature evolution through the annealing furnace; therefore, variations in radiative properties 

across a single AHSS coil can lead to different parts of the coil evolving in temperature differently, 

in turn producing different post-annealed mechanical properties. The thesis investigates later the 

effect of these radiative property variations on temperature excursions.  
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Chapter 3 : Radiative Property Characterisation  

As discussed, no study has analysed radiative property variations across single AHSS coils in 

their pre-annealed condition before they enter the annealing furnace. This chapter highlights the 

significant variations in radiative properties across a single AHSS (DP780) coil that is hot-rolled, 

acid-pickled and cold-rolled on an industrial line, showing that upstream processes (of annealing) 

can also have a significant effect on strip radiative properties. Furthermore, as discussed in the 

previous chapter, these varying radiative properties can subsequently induce temperature 

excursions during the annealing process.   

3.1: Sample Extraction and Analysis Performed  

This research extracts square samples (35mm  35mm) from a DP780 coil processed on an 

industrial continuous galvanising line. These samples are from 18 different coil locations at nine 

different axial lengths along the coil, from the edge (“Edge samples” or “E”) and the middle (“Mid 

samples” or “M”), as shown in Figure 3-1. This work analyses five samples from each location (a 

total of 90 samples), and the results presented in this thesis are the averaged values. Additionally, 

at specific locations (450m Edge, 1684m Mid and 880m Mid), eight more samples are analysed 

(13 total); the standard error in emissivity values across these samples is computed. The similarity 

of the spectral emissivity spectra (see Appendix A) across these 13 replicates shows that the results 

from one sample are representative of the population of samples from one coil location.   

 

Figure 3-1: Locations of extracted samples on the DP-780 coil, samples from the edge (E) and middle (M) of 

the coil are labelled with blue and red dots, respectively. The head, centre, and tail sections are marked as H, 

C, and T. [not to scale] 
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 The radiative properties of the extracted samples are analysed using a Fourier Transform Infra-

Red (FTIR) spectrometer between wavelengths of 0.5 and 20 μm. Section 3.2 provides a detailed 

explanation of the procedure followed and the workings of an integrating sphere. Section 3.3 then 

discusses the results.  

3.2 Ex-Situ Spectral Reflectivity Analysis 

This study uses a Bruker® Invenio – X FTIR spectrometer with an integrating sphere to perform 

ex-situ spectral reflectivity measurements. An integrating sphere is a device used to collect light 

reflected by the sample into all directions of the hemisphere, which is necessary to evaluate the 

sample's spectral, directional-hemispherical reflectivity. The intensity of the collected light is then 

measured, allowing the FTIR to infer the spectral, directional-hemispherical reflectivity. The 

inside of the sphere is coated with a highly reflective, Lambertian material (i.e., the intensity of 

reflected light is equal in all directions) [34]. This procedure uses integrating spheres coated with 

Spectralon® (0.5 – 1.1 μm) and Infragold® materials (1.1 – 20 μm) for the two wavelength ranges. 

Figure 3-2 shows the spectral reflectivity of Spectralon® and Infragold®; the spectral reflectances 

of both materials are ≥ 90% in their respective operating domains [35].  

 

Figure 3-2: Spectral reflectivity of Infragold® and Spectralon® (coatings used in the two integrating spheres). 

In their respective operating ranges, the spectral reflectivities of both materials are larger than 0.9. The shaded 

areas show the operating ranges of the integrating spheres [36].  
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Figure 3-3 shows the schematic of an integrating sphere. The light from the FTIR enters the 

sphere through the entrance port, and the flip mirror focuses the light onto the sample port, the 

reference spot or the specular exclusion port. The user may place the sample in the sample port or 

the specular exclusion port and use the mirror to shine the incident light onto the sample. This 

study uses the specular exclusion port to hold the sample. 

The sphere collects the reflected light, which represents the fraction of incident radiation 

reflected by the sample into all directions of a hemisphere; the detector then measures the intensity 

of the collected light. Baffles inside the sphere (not shown in the diagram) prevent specularly-

reflected light from entering the detector port directly. By measuring the intensity of collected 

light, this integrating sphere provides near-normal spectral, directional-hemispherical reflectivity 

spectra of the sample at an incident angle of 14.8°. 

 

Figure 3-3: Schematic of a Bruker A-562 Integrating Sphere [35] 
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However, the integrating sphere is not a perfect reflector, which may lead to errors in the 

spectral reflectivity measurements [35]. Therefore, a user must make a reference measurement at 

the reference spot shown in Figure 3-3 to account for the imperfect nature of the integrating sphere. 

This work follows the procedure discussed by Blake et al. [35] to infer the reflectivities of the steel 

samples through the following steps: 

1. A Spectralon® or an Infragold® standard (depending on the wavelength range and the 

integrating sphere) is placed in the specular exclusion port – a measurement is performed 

with the beam focused onto the specular exclusion port generating the spectrum, Vstd, s. 

2. Next, the standard is replaced with the sample in question, and a measurement is 

performed, yielding the spectrum, Vsample, s. 

3. Thirdly, the beam is switched to the reference spot, and the Spectralon® or the Infragold® 

standard is placed in the specular exclusion port and a measurement is made, Vstd, ref. 

4. Lastly, while maintaining the beam at the reference spot, the standard is switched with the 

sample and a final measurement is made, Vsample, ref. 

The spectral, directional-hemispherical reflectance of the sample is then computed through, 

 
sample,s standard,s

λ,d-h std

sample,ref standard,ref

V V
ρ ρ

V V
=   (3.1) 

where ρstd is the reflectance spectra of the standard (Infragold® or Spectralon®) [36]. Kirchoff's law 

then converts (Eq. (2.18)) the spectral, directional-hemispherical reflectivities to spectral 

directional emissivities.  
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3.3 Radiative Property Results for Samples from Different Coil Locations 

3.3.1 Spectral Emissivity Variations 

Figure 3-4 shows spectral directional emissivity spectra for select samples generated using the 

procedure described in Sec. 3.2. Pyrometers operate in the NIR region (orange shaded area) of the 

EM spectrum, as discussed earlier in Section 2.1.4. The Williamson PRO MWX-ST-17 industrial 

pyrometer, commonly used by North American galvanisers, uses 1.6, 2.1 and 2.4 μm [32]. 

Therefore, these wavelengths are of particular concern for the continuous galvanising of AHSS.  

 

Figure 3-4: Difference in spectral emissivity values between the Edge and Middle of the coil; the Edge samples 

show lower spectral emissivity values than the Mid samples. The amber-shaded area represents the NIR region 

important for pyrometry. Samples are from the (a) 20m Edge, (b) 75m Edge, (c) 1509m Mid, and (d) 450m Mid 

coil locations. 
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The refractive index n and extinction coefficient k, dependent on the material and the 

wavelength of the incident light, fully define the radiative properties of a perfectly smooth 

conducting material [16]. The Fresnel equation, 

 
( ) ( )

( ) ( )

2 2

λ,n 2 2

λ 1 + λ
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λ +1 + λ

n k

n k

−      

      

  (3.2) 

defines the spectral, normal reflectivity of a smooth surface. 

The optical constants for specific AHSS alloys are not readily available; however, Lin et al. 

[37] measured the spectral reflectivity of several mirror-polished DP980 AHSS alloys and found 

that they have optical properties corresponding to that of highly polished pure iron. Figure 3-5 

shows the optical properties of pure iron and the corresponding normal spectral emissivity 

computed using Eq. (3.2) and Eq. (2.18). This thesis uses optical constants for iron from Ordal et 

al. [38] and Johnson et al. [39]. Variations between the theoretical spectral emissivity shown in 

Figure 3-5 and the measured spectral emissivities of the samples in Figure 3-4 can be attributed to 

surface roughness differences and surface cavities on the steel substrate, as will be discussed 

further in Chapter 4.  

 

Figure 3-5: (a) Refractive index, n and extinction coefficient, k of pure Iron, and (b) the corresponding 

theoretical normal spectral emissivity. The optical properties are from Ordal et al. [38] and Johnson et al. [39]
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The surface's reflectivity may also vary depending on the polar angle of incidence or 

reflectance; the roughness of the surface primarily drives this directional dependence. A rougher 

surface will reflect light more diffusively (i.e., equally in all directions of a hemisphere) for a given 

angle of incidence. On the other hand, the reflectance from a smoother surface would be more 

specular [16]. Usually, for surfaces with random Gaussian height profiles (usually the case with 

cold rolling), the azimuthal angle, φ, will have a negligible effect on the radiative properties. This 

assumption was validated by Lin et al. [37] through the GOA ray-tracing approach. The FTIR 

measurements are performed at a polar incidence of 14.8°, yielding a near-normal spectral 

reflectance measurement.  

Figure 3-6 shows spectral directional emissivities at the three common pyrometric wavelengths 

of 1.6, 2.1 and 2.4 μm from all 18 coil locations (averaged across the five replicates). There are 

significant variations in spectral directional emissivities across the coil. Variations along the length 

of the coil are more pronounced at the head and tail sections, and the spectral directional 

emissivities of the Mid samples are systematically higher at all coil lengths compared to the edge 

samples. Such variations in spectral directional emissivities can lead to pyrometric temperature 

errors when using single-wavelength pyrometry. At select coil locations, 13 (see Appendix A) 

samples are analysed to compute a standard error. The error bars at these data points, shown in 

Figure 3-6, reflect this standard error together with the 3% random error of the FTIR apparatus.  

 

Figure 3-6: Spectral directional emissivities at all 18 coil locations at the three common pyrometric wavelengths 

of (a) 1.6 μm, (b) 2.1 μm and (c) 2.4 μm. The coil's head, centre and tail sections have been shaded in green, 

yellow, and orange, respectively.  
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3.3.2 Emissivity Ratio Variations and Pyrometric Temperature Errors 

Figure 3-7 shows significant variations in emissivity ratios at: 1.6 μm/2.1 μm, 1.6 μm/2.4 μm, 

and 2.1 μm/2.4 μm. As discussed in Sec. 2.1.2, variations in emissivity ratios can lead to dual-

wavelength pyrometric temperature errors. The emissivity ratios of the Edge samples are higher 

than that of the Mid samples, and the emissivity ratios for the 2.1 μm/2.4 μm case are smaller as 

those wavelengths are closer together. Figure 3-7 also shows the associated expected dual-

wavelength pyrometric temperature errors, which are inferred through Eq. (2.8) and by assuming 

the average emissivity ratio across all samples to be the expected emissivity ratio, εr,P. 

 

Figure 3-7: Variations in emissivity ratios and the associated temperature errors at common pyrometry 

wavelengths. Samples extracted from the edge (E) of the coil show larger emissivity ratio values than samples 

from the middle (M). The head, centre and tail sections are marked with H, C and T, respectively. (a) 1.6/2.1 

μm, (b) 1.6/2.4 μm, (c) 2.1/2.4 μm 

These emissivity ratio variations cause temperature errors ranging between 0 K and 35 K along 

the coil's length and width, as predicted by Eq. (2.8). The temperature errors are the greatest when 

the detection wavelengths are closer together. Temperature swings of this magnitude during the 

annealing process can lead to erratic changes in the steel microstructure and hence its mechanical 

properties post-annealing. For instance, Mosser et al. [40] found significant variations in the stress-

strain (UTS variations of ~200MPa) behaviours of DP980 samples with intercritical annealing 
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temperature variations of approximately ±25K, as shown in Figure 3-8. Ma et al. [41] also found 

variations in the stress-strain behaviours of medium-Mn steels for intercritical annealing 

temperature variations as low as ±5K.  

 

Figure 3-8: (a) Effect of intercritical annealing temperature on the stress-strain behaviour and microstructure 

of DP980 steels [40]. Different intercritical annealing temperatures cause significant variations in the steels' 

ultimate tensile strengths (UTS) and yield strengths (YS) due to a difference in the volume fraction of 

Martensite (α') and Ferrite (α) as shown in the micro-structures ((b) and (c)).  

 It is important to note that the radiative properties of the steel strip will also vary during the 

annealing process due to temperature changes (which may influence the optical constants n and k 

of the steel [16]) and surface states of the steel, such as roughness and oxidation effects [32, 42, 

43].  
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Smooth and rough AHSS surfaces show the formation of oxide layers and nodules, which 

influence spectral emissivity through interference and roughness effects, respectively [42]. These 

further variations may lead to more significant differences in emissivity ratios and temperature 

errors across the coil. However, emissivity variations during the annealing process are highly 

unpredictable; therefore, analytically characterising them is a significant challenge and has not 

been performed in this thesis.  

Instead, future work should focus on implementing an empirical approach by processing 

samples from the different coil locations in an annealing simulator to study how radiative 

properties and surface states evolve during annealing at different heating rates and atmospheric 

dew points [32, 42]. 

3.3.3 Total Hemispherical Absorptivity Variations & Strip Temperature Evolution 

This section uses Eq. (2.16) and Eq. (2.17) to compute the total hemispherical emissivities and 

absorptivities, respectively. The spectral directional emissivities obtained through the 

experimental analysis are near-normal values and do not contain information regarding their 

directional dependence, making it challenging to marginalise over all directions of interest. 

Therefore, the spectral directional emissivities are multiplied by a conversion factor for metallic 

surfaces, accounting for the typical angular distribution of the spectral directional emissivity [44], 

to obtain spectral hemispherical emissivities.  

Typically, metals have larger spectral directional emissivities at higher incident angles; these 

correction factors account for this directional dependence. Deviations from this typical behaviour 

due to surface roughness are possible; however, it is challenging to quantify experimentally with 

the available apparatus. Samples with high surface roughnesses will reflect light more diffusively. 

As such, this is an analogue method of making this correction. Figure 3-9 shows these conversion 

factors.  
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Figure 3-9: Conversion factors for converting normal emissivities to hemispherical emissivities. Adapted from 

Ref. [44]. 

This work mathematically models the spectral hemispherical emissivities using a power-law 

function to compute approximate total hemispherical emissivities and absorptivities by integrating 

over all wavelengths of interest (0.5 - 20 μm). Figure 3-10 shows the spectral hemispherical 

emissivities for one of the samples overlayed with the blackbody spectral intensity distribution, 

assuming a characteristic furnace temperature of 850°C. 

 

Figure 3-10: Spectral hemispherical emissivity curve for one of the samples, which have been curve-fit using a 

power law function, overlaid with the blackbody spectral intensity (given by Planck's distribution). 
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Figure 3-11 shows the variations in total hemispherical absorptivities across the coil through this 

analysis. Chapter 4 then analyses the surface topographies of the samples highlighted by the black 

circles through optical profilometry, microscopy and scanning electron microscopy (SEM).  

 

Figure 3-11: Total hemispherical absorptivity variations (at Tfurnace = 850°C) along the length and width of the 

coil. Samples from the head, centre and tail sections are shaded in green, yellow, and orange, respectively. 

As expected, the total hemispherical absorptivities of the Mid samples are systematically larger 

than those of the Edge samples with variations along the length of the coil  more pronounced at 

the head and tail sections. The total hemispherical absorptivity results presented in Figure 3-11 are 

at a representative furnace temperature of Tfurnace = 850°C; however, while solving Eq. (2.15) using 

the explicit Euler scheme, the total hemispherical absorptivities and emissivities are computed at 

each time step as the local temperature of the steel strip and the furnace section change, using Eq. 

(2.16) and Eq. (2.17). 

 This section explores two different furnace temperature profiles from Somveille et al. [27], 

representing the temperature profiles used for annealing the respective DP grades (see Figure 

3-12). This analysis assumes a characteristic coil speed of approximately 2 m/s (through 

discussions with industrial partners). It models the temperature evolutions of two samples showing 

the largest difference in total hemispherical absorptivity (450m Edge & 450m Mid) according to 

the heat transfer model in Sec. 2.2.2. Figure 3-14 shows the computed temperature evolutions. 

Specific heat capacity values for the steel are from Ref. [45], and the heat transfer model uses a 
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characteristic steel density of ~7000 kgm-3 (variations in density w.r.t. temperature is smaller than 

specific heat). Figure 3-13 shows these specific heat values. 

 

Figure 3-12: Representative furnace temperature profiles for DP780 (blue) and DP980 (red) alloys, taken from 

Somveille et al. [27]. These furnace temperature profiles have been used to model strip temperature evolutions 

in this study. 

 

Figure 3-13: Specific heat for DP-980 as a function of temperature, where the relationship follows a quadratic 

behaviour [45]. These values have been applied for both the DP780 and DP980 heating schedules, as it is 

challenging to obtain these relationships for all DP grades.  
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Figure 3-14: Expected temperature evolutions of two samples showing large differences in total hemispherical 

absorptivities. Furnace temperature profiles for typical (a) DP780 and (b) DP980 alloys. 

In practice, these heating profiles are designed based on the AHSS grade (e.g., DP780, DP980, 

etc.) and the specific alloy composition of the steel, which may vary considerably among 

producers. Therefore, these curves are representative and cannot be applied globally. Nevertheless, 

according to the strip temperature evolutions computed in Figure 3-14, the heating schedule 

strongly influences the effect of total hemispherical absorptivity on strip temperature evolution.  

In the case of Profile (b), two locations on the same coil having different total hemispherical 

absorptivities (Figure 3-14)) exhibit a temperature difference of approximately 150K after heating; 

such temperature variations can lead to drastic changes in the mechanical properties of the steel as 

shown by the stress-strain curves in Figure 3-8. Conversely, for a coil heated according to Profile 

(a), the two locations have enough time to almost reach the same soak temperature: exhibiting a 

smaller temperature difference of approximately 50K. As such, both cycles show variations in 

temperature between the two samples which may cause differences in the microstructure that is 

formed across the coil, as shown in Figure 1-5. 

Therefore, depending on the annealing cycle, radiative property variations across the coil may 

produce non-uniform mechanical properties post-annealing. Figure 3-15 illustrates the effect of 

total hemispherical absorptivity variations at different coil locations on strip temperature as the 

coil travels through the furnace. 
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Figure 3-15: The temperatures of different coil locations at various distances into the furnace. The middle of 

the coil changes in temperature faster than the edge. This diagram follows the DP-980 heating schedule. 

This work assumes that irradiation at any position x is uniform across the coil width, which may 

not be the case [15, 16]. Additionally, as the coil travels through the furnace, further variations 

may also arise in strip radiative properties due to changes in its surface state [32, 43, 42]. As 

discussed, the evolution of the strip surface state is often unpredictable and challenging to model 

analytically. As such, these changes may lead to more significant variations in strip temperature 

evolutions across the coil. However, as discussed earlier, future work should focus on empirically 

modelling these radiative property evolutions. In addition, variations in the pre-annealed surface 

state across the coil will impact how the radiative properties evolve at these different coil locations 

[32, 42].  
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Chapter 4 : Surface State Characterisation 

This chapter discusses the experimental and theoretical work performed to elucidate the origins 

of the radiative property variations described in Chapter 3. First, methods used to characterise the 

surfaces, including optical profilometry, optical microscopy and scanning electron microscopy, 

are introduced. The initial analysis shows the existence of corrugated surface cavities on samples 

with larger spectral directional emissivities and total hemispherical absorptivities. Subsequently, 

this section explores the methodology adopted to quantify the number of cavities and highlights 

the use of the GOA ray-tracing algorithm to correlate the radiative properties of the samples to 

variations in surface topography. A replicant technique is then employed to improve surface 

topography acquisition inside the surface cavities, hence the GOA spectral emissivity predictions. 

4.1: Mathematical Modelling of Surface Topography 

In its cold-rolled and pre-annealed state, surface roughness effects dominate the radiative 

properties of AHSS; processes upstream of annealing, such as hot-rolling, acid-pickling, and cold-

rolling, usually impart these topographical artefacts to the coil, as shown in Figure 1-3. Various 

studies have elucidated the effect of surface topography on the radiative properties of AHSS and 

other metals [37, 43, 46, 47].  For instance, Ham et al. [43] found a strong correlation between the 

average roughness, Ra of cold-rolled TRIP steel samples and their total normal emissivities. Lin et 

al. [37] correlated the spectral directional emissivities of AHSS to their surface slopes, Rq/τ; where 

Rq is the root-mean-squared (RMS) roughness, 
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Lx and Ly are the surface lengths in the x and y directions, respectively, and Z represents the surface 

height at a given x and y coordinate.  

A 2D surface Z = h(x, y) can be modelled using a height distribution function (HDF) and an 

auto-covariance function (ACF) [18, 37]. The HDF describes the distribution of heights above and 

below a mean plane. The ACF describes the distribution of the peaks and troughs in the x and y 

directions. In the case of a Gaussian surface, the distribution of heights is normal, 
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τx and τy are the correlation lengths in the x and y directions, respectively. The Gaussian assumption 

is valid for most surfaces generated randomly [18, 37, 48], such as during cold rolling (see 

Appendix B). For an isotropic surface, which has identical distributions of peaks and troughs in 

both x and y directions, Eq. (4.5) simplifies to 
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4.1 Surface Imaging Techniques 

4.1.1. Optical Profilometry 

Figure 4-1 shows the optical profilograms obtained from a subset of samples using a WYKO 

NT1100 optical profilometer with a lateral scanning resolution of approximately 1.927 μm. 

 

Figure 4-1: Optical profilograms of a subset of samples. The total hemispherical absorptivity (α) values 

presented are computed at Tfurnace = 850 °C. 

The optical profilograms do not reveal variations in surface topography between the Edge and the 

Middle of the coil. All profilograms show similar surface slopes, Rq/τ and RMS roughnesses, Rq, 

despite exhibiting different total hemispherical absorptivities. The insufficient lateral resolution of 

the optical profilometer is responsible for this lack of correlation.  

 



40 

 

Ham et al. [43] suggested that microscale topographical features, ~O(0.1 μm), strongly 

influence strip radiative properties, which they inferred from profilograms like the ones shown in 

Figure 4-1 using a wavelet filtering algorithm. Lin et al. [37, 46] then adopted this algorithm to 

correlate the radiative properties of AHSS with their surface topographies using the GOA ray-

tracing model and the EM Davies' theory.  

Lin et al. [37, 46] analysed this approach's veracity by comparing the surface roughness 

parameters inferred using the optical profilometer and the filtering algorithm with those obtained 

from atomic force microscopy measurements with a lateral resolution of ~0.02 μm. This work 

shows that surface height maps generated using depth mapping on an optical microscope with a 

lateral resolution of ~0.1μm are sufficient to model the radiative properties of the AHSS samples 

using a GOA ray-tracing model and an ANN, as shown in Sec. 4.3.1 and Chapter 6. However, 

some samples have surface cavities that must be treated as blackbodies, as shown in Chapter 6. 

4.1.2. Optical Microscopy 

The samples highlighted by the black circles in Figure 3-11 are analysed using a Keyence VHX-

5000 optical microscope (with a lateral resolution of ~0.104 μm) to account for the limitation of 

the optical profilometer. Figure 4-2 shows optical micrographs of the ten samples. At the finer 

lateral resolution of 0.104 μm, the samples extracted from the middle of the coil show a larger 

number of dark patches compared to samples extracted from the edge; correspondingly, the mid 

samples also show larger total hemispherical absorptivity values.  

The dark patches represent surface cavities that trap visible light, preventing the Keyence 

microscope (and other optical-based imaging techniques) from capturing the cavity's surface 

topography. This trapped light contributes to the higher spectral emissivities and total 

absorptivities of the Mid samples through higher-order scattering events, as will be discussed 

further in Sec. 4.3.1. 
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Figure 4-2: Optical micrographs of the ten selected samples taken with a lateral resolution of 0.104 μm. At this 

magnification, a larger number of dark patches are visible on the surfaces of the Mid samples compared to the 

Edge samples.  

The Keyence optical microscope generates digitised surface height maps through 3D depth 

mapping. During this process, the digital microscope estimates a height profile by analysing the 

movement of the lens along the z-axis by moving through different focus planes on the image as 

regions with different heights come into focus at different focusing lengths. Figure 4-3 shows the 

digitised 3D surfaces obtained using the Keyence microscope for two select samples (20m Edge 

& 1509m Mid). Scanning areas of approximately 500 μm  500 μm are chosen by referring to 

previous studies that have analysed the surface topography of AHSS [37, 43]. These studies 

deemed that such a scanning size is representative of the sample whilst minimising undue analysis 

time associated with larger scanning areas. Appendix C shows the testing of larger scan areas on 

select samples to validate this assumption.  
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Figure 4-3: 3D digitised surface height maps obtained using the Keyence optical microscope for two select 

samples (20m Edge and 1509m Mid samples). 

The dark patches appear as low-lying areas in contrast to the surrounding region; however, as 

the microscope cannot focus on the features inside the cavities, it cannot capture the finer surface 

topography within, which are revealed by the SEM images in Figure 4-5. As such, the surface 

roughness parameters computed using depth mapping are representative of the surface topography 

outside the cavities. Table 4-1 summarises the roughness statistics of all ten samples in Figure 4-2 

inferred through depth mapping. This finer lateral resolution of ~0.104 μm allows for capturing 

the high-frequency topography artefacts that affect the radiative properties, as suggested by Ham 

et al. [43] in areas outside the cavities.  
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Sample Rq (μm) τ (μm) Rq/τ α 
1 1.361 5.477 0.248 0.169 
2 1.235 5.888 0.210 0.171 
3 1.678 7.318 0.229 0.178 
4 1.481 5.682 0.261 0.182 
5 1.519 6.034 0.252 0.187 
6 0.930 4.013 0.232 0.279 
7 1.441 5.080 0.284 0.292 
8 1.423 5.224 0.272 0.296 
9 1.469 5.431 0.270 0.272 

10 1.329 5.594 0.238 0.223 
Table 4-1: Summary of roughness statistics and total hemispherical absorptivities for samples analysed using 

the digital microscope shown in Figure 4-2. 

 Figure 4-4 shows the relationship between the inferred surface slopes, Rq/τ and the total 

hemispherical absorptivities of the samples. A larger number of scattering events for surfaces with 

higher slopes produces an upward trend [37]. However, the correlation is not very strong, as 

evidenced by the low R2 value. The radiative properties for the samples analysed here cannot be 

fully defined using the inferred surface slope alone as it does not account for the surface cavities 

that act as perfect emitters (blackbodies) of EM radiation. Chapter 6 discusses the influence of 

these cavities. 

 

Figure 4-4: Relationship between surface slope and total hemispherical absorptivity for the ten analysed 

samples in Figure 4-2.  
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4.1.3 Scanning Electron Microscopy 

This section explores the surface topography inside the dark patches/cavities using a Zeiss 

Merlin scanning electron microscope (SEM) with an acceleration voltage of 20kV. The same 

location on the 1509m Mid sample is analysed using the optical microscope and the SEM. The 

SEM imagery reveals a highly corrugated surface inside the cavity, as shown in Figure 4-5. 

 

Figure 4-5: Comparison of an optical image and an SEM image (20kV) taken at the same location on the 1509m 

Mid sample. The SEM image reveals a highly corrugated surface inside the dark patches. 
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4.2 Cavity Quantification 

 The optical images from the Keyence microscope are then analysed further to quantify the 

number of surface cavities and to test whether a correlation exists between surface cavity coverage 

and the radiative properties of the surfaces. An image thresholding approach shows that the surface 

cavities strongly drive the total hemispherical absorptivities.  

4.2.1 Image Thresholding Approach 

Image thresholding exploits the dark colour of the cavities in the optical micrographs to infer 

the total surface area occupied by the cavities. Surface images are imported to MATLAB® as RGB 

matrices, where an RGB array represents each pixel of the image. The images are then converted 

to greyscale with pixel intensities ranging between 0-255, producing an 8-bit image. The contrast 

of the greyscale images is normalised through gamma correction using MATLAB®'s imadjust 

function for accounting for the microscope's varying exposure and lighting parameters.  

 

Figure 4-6: Effect of gamma correction on the contrast of a subset of samples. This procedure allows for 

normalising images in the case of varying microscope imaging characteristics like exposure and lighting 

settings.  
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Pixels with values less than 95 are considered dark, where 95 is chosen heuristically by visually 

inspecting the cavities in the optical micrographs for a subset of samples. Finally, the number of 

bright pixels in the binary image is divided by the number of total pixels to obtain a cavity 

percentage for each sample. Figure 4-7 shows an example binary image for the cavity in Figure 

4-5.  

 

Figure 4-7: Binary image of the cavity shown in Figure 4-5. The correct regions have been identified using the 

image thresholding approach.  

The strength of the correlation between cavity percentage and total hemispherical absorptivity 

highlights these cavities' strong impact on the samples' overall radiative properties, as shown in 

Figure 4-8 (c) and (d). Additionally, the poor correlation between surface slope and cavity 

percentage further bolsters the idea that the Keyence microscope cannot capture the surface 

topography inside the cavities, which causes them to behave as blackbodies. 
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Figure 4-8: Relationship between cavity percentage and total hemispherical absorptivity over the ten analysed 

samples in Figure 4-2 and Table 4-1.  

 

 

  



48 

 

4.3 GOA Ray-Tracing Model 

This section uses the GOA ray-tracing algorithm to theoretically model the steel radiative 

properties using the depth-mapped surface height data as a boundary condition. The GOA 

algorithm is a Monte Carlo ray-tracing procedure wherein many ray bundles are traced through 

their interactions with surface boundaries until they have scattered away from the surface [18, 37, 

49]. When an electromagnetic wave impinges on an opaque conducting surface, its energy is 

absorbed or reflected. The bi-directional reflectance distribution function (BRDF) [16, 18, 37, 48, 

50, 49],  
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expresses the angular distribution of this reflected energy, where L'λ, i(Ωi) and L'λ,r(Ωr) represent 

the incident and the reflected spectral intensities, respectively. Here, θr is the polar angle of 

reflection, Ωi is the direction of incidence, and Ωr is the direction of reflection; Figure 4-9 (a) 

illustrates these quantities. Marginalising the BRDF over a hemisphere yields the spectral 

directional-hemispherical reflectivity, 

 ( ) ( ) ( )λ,d h i i r r r

2π

1
Ω Ω ,Ω cos dΩ

π
ρ ρ θ

−
=    (4.8) 

The GOA algorithm computes the BRDF by modelling the energies of the incident and reflected 

ray bundles and provides an approximate spectral reflectivity prediction through a Monte Carlo 

integration. The procedure is less computationally expensive than the more rigorous approach of 

directly solving Maxwell's equations [18, 37]. The GOA approach models each reflection as 

specular, and the surface is assumed to be locally optically smooth at each reflection point, as 

illustrated in Figure 4-9 (b).  
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Figure 4-9: (a) Parameters used to define the BRDF. (b) The path of an incident ray as it interacts with a 

random Gaussian surface. 

The energy of an incident ray, ei, is proportional to the projected incidence area according to 

Lambert's cosine law with respect to the local normal at the reflection point. Bergström et al. [18] 

decomposed the incident energy into s- and p-polarized components, eis, and eip, according to the 

global reference frame (w.r.t. to the normal of the mean plane of the surface) to account for the 

change in the polarization of the incident ray upon reflection. The reflected energies ers, and erp are 

then given by 
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where ρss and ρpp, and ρsp and ρps are the co- and cross-polarised reflectivities, which are computed 

using the incident and reflected ray vectors, the s- and p-polarised components of the rays, and the 

Fresnel amplitude reflectivities, Rs and Rp, 
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As discussed, the optical constants for specific AHSS alloys are not readily available; therefore, 

this work uses the values for pure iron instead [37, 38, 39], as discussed in Sec. 3.3.1.   

 Assuming a specular reflection, the reflected ray is, 

 ( )2= −   
r i i

v v n v n  (4.14) 

where n is the local surface normal vector at the reflection point, the algorithm also accounts for 

shadowing effects and multiple scattering events through simple geometric arguments [35,46]. 

Shadowing occurs when the geometry of the surface shields certain areas from the incident light, 

and multiple scattering events usually occur within surface cavities. 

 Tang et al. [49] delineated the validity regime of the 1D GOA model by comparing its 

predictions to solutions obtained through electromagnetic (EM) wave theory models. They showed 

that 1D GOA predictions are accurate when Rqcos(θi) / λ > 0.2 and Rq  / τ < 1. Tang and Buckius 

[50] then hypothesized that the validity regions for 1D and 2D GOA models are the same. This 

work uses the MATLAB® GOA code published by Bergström et al. [18] with modifications to 

analyse different incident wavelengths of light between 0.5 – 20 μm and specific conditions to 

model the cavities as blackbodies, as discussed in Chapter 6. 
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Figure 4-10 shows the predictions made by the GOA model. The GOA model provides accurate 

spectral emissivity predictions for the Edge samples but underpredicts those of the Mid samples. 

This underprediction is due to the Keyence microscope's inability to capture accurate surface 

height maps inside the cavities (which makes them act as blackbodies) due to the trapping of visible 

light within them. Therefore, the GOA model does not capture this blackbody effect when using 

the Keyence height data as a boundary condition for cavity-rich samples. 

 

Figure 4-10: GOA spectral emissivity predictions for a subset of samples, comparing GOA results between the 

(a) and (c) Edge and the (b) and (d) Middle of coil.  
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4.3.1 Surface Replication Technique 

This section further explores the cavity's surface topography using a surface replication 

technique. The replication technique creates a negative cast of the surface using a hardening 

silicone paste (Provil® Novo), which converts the surface cavities into peaks. The surface 

replicates are then imaged using the Keyence optical microscope and inverted numerically to 

obtain the true surface height profiles of the samples. Figure 4-11 shows the application gun, the 

silicone paste, the sample, and the replicate.  

 

Figure 4-11: Surface replication apparatus, Top: Application gun, Bottom: 1509m Mid sample and its replicate. 

 The replicate technique is performed on the sample shown in Figure 4-2 (1509m Mid), after 

which the same cavity shown in Figure 4-5 is imaged on the replicate surface. The replicate 

technique captures the topography within the cavity shown by the red boxes (Figure 4-11) since it 

has a significant difference in height in contrast to its surroundings (Figure 4-11 (b)).  
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Figure 4-12: Surface height profile of the cavity shown in Figure 4-5 obtained by imaging the (a) original steel 

surface and (b) the replicate surface. 

 

Figure 4-13: Linear height profiles along the red dotted lines. The replicate profile reveals a much rougher 

surface inside the cavity. A larger number of higher order scattering events are also visible which contribute 

to the higher spectral emissivities and total hemispherical absorptivities. 
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Figure 4-13 shows the 1D surface height profile obtained along the red dotted lines in Figure 

4-12. The high spectral directional and total hemispherical emissivities of cavity-rich samples may 

be intuited by examining the path of an incident beam as it interacts with the surface. The rougher 

surface inferred using the replicate leads to more higher-order scattering events. The cavity is 

imaged again using the SEM at 54° to validate the spikes in the replicant profile and ensure they 

are not measurement noise. Figure 4-14 compares the replicant surface height profile, and the SEM 

image; the spikes seen in the replicate profile are also present in the SEM image, as shown by the 

red circles.  

 

Figure 4-14: Comparison of cavity surface taken using an SEM at 54°, and the replicant surface height profile 

at 54°. The red circles represent the surface peaks visible in both the SEM image and the replicant surface 

height profile.  
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Subsequently, the replicate surface height profile serves as a boundary condition for the GOA 

ray-tracing model, revealing a more accurate GOA spectral emissivity prediction within its validity 

regime, as shown in Figure 4-15.  

 

Figure 4-15: GOA spectral emissivity predictions using the surface height profile from the replicant technique. 

An improved GOA prediction is obtained within its validity domain. 

Notably, the GOA predictions for the edge samples are accurate even outside the GOA validity 

regime (Figure 4-10); however, the algorithm is only accurate inside the validity regime for the 

1509m mid-sample. This discrepancy can be attributed to the lower number of higher-order 

scattering events and EM diffraction effects occurring on the surface of the edge samples at longer 

wavelengths due to fewer cavities and lower surface roughness [37]. For longer wavelengths, such 

as those critical for calculating infrared heat absorption within the furnace, a rigorous EM solution 

may be required for the mid-samples, as shown in the GOA validity regime map created by Tang 

et al. [49]. Chapter 6 proposes a machine learning data-driven model trained on empirical data to 

address this issue, requiring less computational effort than a rigorous EM approach.  
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Chapter 5 : Cavity Formation 

The previous chapter describes how surface cavities influence the radiative properties of the 

steel. This chapter explores the possible reasons for surface cavity formation during processes 

upstream of annealing. A deeper understanding of the origins of these cavities will allow steel 

manufacturers to improve their industrial processes to minimise radiative property variations 

across AHSS coils in their cold rolled and pre-annealed condition before they enter an annealing 

furnace.   

5.1 Literature on Surface Cavity Formation 

Few studies have explored the reasons for cavity formation during processes upstream of 

annealing. However, a recent study by Köpper et al. [51] showed that cavity formation occurs due 

to the dissolution of selective grain boundary oxides during acid-pickling that initially form during 

the hot-rolling process in low-oxygen conditions.  

They suggest that an oxygen depletion zone may be created between external oxide scales and 

the steel substrate when a hot-rolled coil is a wound; within this depletion zone, selective Mn, Cr 

and Si oxide nodules may form due to the low oxygen content like the ones formed in a reducing 

atmosphere during intercritical annealing [32, 42]. Acid-pickling then dissolves the external oxide 

scale and some selective oxide nodules in the depletion layer, as shown in Figure 5-1. Finally, cold 

rolling flattens the remaining oxide nodules and some cavities.  

 

Figure 5-1: Selective oxidation in the oxygen depletion zone created between external oxide scale and the steel 

substrate after the (a) hot-rolling process. Some of these oxide nodules are dissolved during (b) pickling and 

subsequently get flattened during (c) cold-rolling. Image adapted from Ref. [51]. Dashed lines represent grain 

boundaries. 
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Figure 5-1 shows surface cavities on samples analysed in Ref. [51]; the sample with more cavities 

shows deformed grain boundary oxides in the cross-section image. 

 

Figure 5-2: Surface cavities seen in samples analysed by Köpper et al [51], the cross-section SEM image of the 

surface with cavities shows cracks along the grain boundaries due to oxide dissolution during pickling. 

Additionally, the sample with fewer cavities shows deeper rolling grooves; this suggests that 

they are flattened during the cold-rolling process, producing micro flaps as hypothesised by Etzold 

et al. [52] and Ham et al. [43]. Figure 4-2 shows that samples from the Edge of the coil show 

deeper rolling grooves than the Mid samples, suggesting non-uniform cold-rolling characteristics 

across the coil width.  

As grain-boundary oxidation, acid-pickling, and cold-rolling may be responsible for surface 

cavity formation, this chapter analyses DP800 and DP980 samples showing grain boundary 

oxidation from a hot-rolled coil (processed on an industrial line), which are acid-pickled (45s-

180s) and cold-rolled (1% - 53% thickness red.) to different extents in a lab environment (see 

Figure 5-3). Through discussions with industry, it is hypothesised that external oxide scales are 

entirely removed after ~50-60 s, and the pickling acid completely dissolves the oxide nodules 

formed in the depletion zone at approximately 120 s for samples with heavy internal oxidation.  
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Figure 5-3: SEM cross-section images of one of the analysed samples (pickled to ~50s) provided by our 

industrial partner. External and grain boundary oxides are removed by pickling leading to a roughened 

substrate surface and surface cavities, post-pickling. (SEM Images from partner). Higher magnification SEM 

images are required to ascertain if oxide nodules are present on the surface, as performed in Ref. [46] 

The reflectance spectra of certain under-pickled samples (for pickling times less than ~50s) that 

are cold-rolled to lesser thickness reductions (1-5% thickness red.) show a similar trend to annealed 

samples (in a reduction atmosphere) with selective oxide nodules analysed by Lin et al. [46] 

(Figure 5-4). These samples show low spectral reflectivities at shorter wavelengths [46, 51], which 

may be attributed to the existence of surface oxide nodules. SEM and X-ray diffraction (XRD) 

spectroscopy may further validate this finding. Remnant external oxide scales (the amber region 

in Figure 5-1) are also visible to the naked eye on specific samples (see Figure 5-5).  

For increased pickling times and the cold-rolling reductions of 180s and 53%, respectively, the 

reflectance spectra trends approach those of as-received roughened samples analysed by Lin et al. 

[46], as the oxide nodules are either dissolved or flattened. On an industrial line, the coils are 

usually cold-rolled to a reduction of ~53% (typical of the industrial process) and either adequately 

or over-pickled to remove all oxides (120 s – 180 s) thoroughly; therefore, surface cavities and 
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roughness effects should primarily influence the radiative properties of a cold-rolled coil on an 

industrial line as observed in Chapters 3 and 4. 

 

Figure 5-4: Similarity of the reflectivities of under-pickled samples and those of certain annealed samples 

showing oxide nodules, analysed by Lin et al. [46]. 

 

Figure 5-5: External oxide scale remnant visible on certain under-pickled samples represented by amber region 

in Figure 5-1.  

 The following section uses a full-factorial analysis to study the impact of acid-pickling time, 

cold-rolling thickness reduction and steel type on cavity formation and strip radiative properties.  
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5.2 Factorial Design-of-Experiments Approach 

 The factorial design-of-experiments approach helps elucidate the combined effect of various 

process parameters on a response variable of interest. A commonly used factorial model is the 2k 

design, which analyses a k number of factors at two levels [53] (high and low levels). This model 

type is helpful in the early stages of an analysis, where the effect of various factors on the response 

variable is unknown; hence they are known as "factor screening” experiments. The method 

assumes a linear relationship between the response variable and each factor, as there are two levels 

for each factor, and that assumption is subsequently validated using residual analysis.  

 Various industries have implemented this technique. For example, in the context of AHSS 

pyrometry, Suleiman et al. [32] applied a 2  2  2  3 model to study the effect of the annealing 

dew point temperature, the Si/Mn ratio of the steel, the RMS surface roughness, and wavelengths 

on how the spectral directional emissivity of AHSS may vary during annealing.  

5.2.1 2k - Factorial Design for Cavity Formation/Flattening  

Here, a 23 - factorial design model is implemented to elucidate the combined effect of acid-

pickling time, cold-rolling reduction, and the alloy composition of the steel (DP800 or DP980) on 

the formation/flattening of cavities and the radiative properties of AHSS samples. In addition, the 

Si/Mn ratio of the steel is used as a factor to study the impact of alloy composition on the formation 

of Mn and Si grain boundary oxides during hot rolling, as Köpper et al. [51] hypothesised that the 

dissolution of these oxides leads to surface cavities during acid-pickling. This analysis extracts all 

samples from a hot-rolled coil from the mid-width and tail sections. 

Due to physical limitations and cost, only a single replicate is available at each factor 

combination; therefore, widening the difference between the high and low levels of the factors as 

much as possible ensures that the model is not overturned [53]. Therefore, 120 s and 180 s and 1% 

and 53% are used for pickling times and cold rolling reduction percentages, respectively. These 

pickling times entirely dissolve all internal and external oxides; therefore, roughness effects 

dominate the radiative properties, which is more representative of the industrial process. Industry 

partners suggested these pickling times, as discussed previously.  

The factors shown in Table 5-1 are applied in different combinations (Table 5-2) to study their 

individual and interaction effects on the response variables of cavity percentage, spectral 
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emissivities at select wavelengths between 0.5 and 20 μm, and the average spectral emissivity (for 

wavelengths between 0.5 and 20 μm), 
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where Nε represents the number of spectral emissivity measurements between λ = 0.5 and 20 μm. 

Table 5-2 shows the response variables for the samples with different factor level combinations.  

Factor Si/Mn Ratio  

(A) 

Cold-Rolling 

Reduction (B) 

Pickling Time (s) 

(C) 

Higher Level (DP980) 0.45 (+) 53% (+) 180 (+) 

Lower Level (DP800) 0.05 (-) 1% (-) 120 (-) 

Table 5-1: Factors and their respective levels used in the 23 model. 

Sample 
Factor Levels Response Variables  

A B C Cav. % ε  ελ=1.6 ελ=2.1 ελ=2.4 ελ=5 ελ=10 ελ=20 

(1) - - - 38.186 0.684 0.655 0.595 0.566 0.417 0.364 0.279 

a + - - 51.829 0.700 0.628 0.580 0.559 0.460 0.433 0.375 

b - + - 19.266 0.513 0.437 0.380 0.350 0.238 0.159 0.104 

ab + + - 25.497 0.604 0.447 0.406 0.372 0.268 0.187 0.090 

c - - + 41.502 0.668 0.642 0.586 0.550 0.410 0.331 0.206 

ac + - + 50.640 0.652 0.557 0.504 0.474 0.325 0.244 0.148 

bc - + + 23.364 0.506 0.429 0.369 0.345 0.221 0.135 0.070 

abc + + + 12.761 0.427 0.355 0.289 0.265 0.158 0.097 0.052 
Table 5-2: Eight samples with the three factors applied in different combinations, their respective cavity 

percentages, average emissivities (computed between λ = 0.5 - 20μm), and spectral emissivities at the select 

wavelengths are shown. All reported wavelengths are in μm.  

Figure 5-6 shows optical micrographs of the eight samples in Table 5-2. Increasing the cold-

rolling reduction percentage reduces the number of dark patches, which is consistent with the 

findings from Köpper et al. [51] and the hypothesis by Etzold et al. [52] and Ham et al. [43]. They 

suggest that the surface cavities formed during acid-pickling are flattened with cold-rolling, as 

discussed in Sec. 5.1 and Figure 5-1.  
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Figure 5-6: Optical micrographs of samples representing the 8 treatment combinations analysed through the 

23 - factorial design. Fewer dark patches are observed as the cold-rolling reduction is increased from 1% to 

53%.  

The factor effects, their sum of squares and percentage contributions are computed for the response 

variables shown in Table 5-2. The full-factorial analysis computes a contrast for each factor by 

combining the response variable from the eight samples in Table 5-2 according to the algebraic 

signs shown in Table 5-3. For example, the contrast for factor A is, 

 ( )A
abc ac ab a 1 b c bcC = + + + − − − − . (5.2) 

where the letters (a, b, c, abc, ac, ab, and bc) represent the response variables of interest for the 

eight samples with the different treatment combinations in Table 5-2 and Figure 5-6. 

The contrast captures the response's change due to a change in the factor level. For a 23 - 

factorial design, the effect estimate is, 
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where n is the number of replicates at each treatment combination. The factor effects represent the 

change in the response variable for a change in the level of the factor averaged over the levels of 
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the other factors. As discussed, due to physical and cost constraints, only a single replicate is 

available; therefore, n = 1.  

Runs Factorial Effect  

I A B AB C AC BC ABC 

(1) + - - + - + + - 

a + + - - - - + + 

b + - + - - + - + 

ab + + + + - - - - 

c + - - + + - - + 

ac + + - - + + - - 

bc + - + - + - + - 

abc + + + + + + + + 
Table 5-3: Algebraic signs for combining the values of the response variables at the different treatment 

combinations (samples in Table 5-2) to compute the individual and combined factor effects. 

The contrasts are then used to compute the sum of squares (SS) for each factor,  
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Table 5-4 presents the results for the response variables of cavity percentage, average spectral 

emissivity and spectral emissivities at select wavelengths between 0.5 and 20 μm. Figure 5-7 then 

shows the percentage contribution by each factor to the response variable, computed by dividing 

the sum of squares for each effect by the total sum of squares. The book by Montgomery [53] 

provides more information about the technique. 
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Cavity Percentage 

Factor Effect Contrast SS % Contr. 

A 4.602 18.409 42.363 2.802 

B -25.317 -101.268 1281.893 84.775 

AB -6.788 -27.152 92.154 6.094 

C -1.628 -6.511 5.299 0.350 

AC -5.335 -21.339 56.921 3.764 

BC -2.691 -10.766 14.488 0.958 

ABC -3.082 -12.327 18.994 1.256 

Total   1512.112  

ε   

Factor Effect Contrast SS % Contr. 

A 0.003 0.011 0.000 0.023 

B -0.163 -0.653 0.053 75.754 

AB 0.003 0.011 0.000 0.023 

C -0.062 -0.248 0.008 10.950 

AC -0.051 -0.203 0.005 7.312 

BC -0.030 -0.120 0.002 2.562 

ABC -0.034 -0.138 0.002 3.377 

Total 
  

0.070 
 

ελ (1.6μm) 

Factor Effect Contrast SS % Contr. 

A -0.044 -0.176 0.004 4.117 

B -0.203 -0.814 0.083 88.240 

AB 0.012 0.050 0.000 0.330 

C -0.046 -0.184 0.004 4.511 

AC -0.035 -0.142 0.003 2.678 

BC -0.004 -0.016 0.000 0.035 

ABC -0.006 -0.026 0.000 0.089 

Total    0.094   

ελ (2.1μm) 

Factor Effect Contrast SS % Contr. 

A -0.038 -0.152 0.003 2.953 

B -0.205 -0.822 0.084 86.756 

AB 0.011 0.042 0.000 0.230 

C -0.053 -0.211 0.006 5.725 

AC -0.044 -0.174 0.004 3.905 

BC -0.011 -0.043 0.000 0.235 

ABC -0.010 -0.039 0.000 0.196 

Total    0.097   
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ελ (2.4μm) 

Factor Effect Contrast SS % Contr. 

A -0.035 -0.140 0.002 2.564 

B -0.204 -0.817 0.083 87.526 

AB 0.006 0.025 0.000 0.083 

C -0.053 -0.212 0.006 5.906 

AC -0.042 -0.169 0.004 3.761 

BC -0.003 -0.011 0.000 0.017 

ABC -0.008 -0.033 0.000 0.142 

Total    0.095   

ελ (5μm) 

Factor Effect Contrast SS % Contr. 

A -0.019 -0.074 0.001 0.842 

B -0.182 -0.727 0.066 80.432 

AB 0.002 0.009 0.000 0.012 

C -0.067 -0.270 0.009 11.081 

AC -0.055 -0.221 0.006 7.395 

BC 0.004 0.016 0.000 0.037 

ABC 0.009 0.036 0.000 0.200 

Total    0.082   

ελ (10μm) 

Factor Effect Contrast SS % Contr. 

A -0.007 -0.029 0.000 0.102 

B -0.198 -0.793 0.079 77.311 

AB 0.002 0.007 0.000 0.006 

C -0.084 -0.337 0.014 13.971 

AC -0.056 -0.224 0.006 6.186 

BC 0.027 0.107 0.001 1.418 

ABC 0.023 0.090 0.001 1.006 

Total    0.102   

ελ (20μm) 

Factor Effect Contrast SS % Contr. 

A 0.001 0.006 0.000 0.005 

B -0.173 -0.693 0.060 66.345 

AB -0.018 -0.071 0.001 0.689 

C -0.093 -0.373 0.017 19.199 

AC -0.040 -0.158 0.003 3.457 

BC 0.057 0.228 0.006 7.184 

ABC 0.038 0.150 0.003 3.121 

Total    0.090   
Table 5-4: Factor effects, their contrasts, and their sum of squares for each response variable. The percentage 

contributions of each factor have also been shown. 
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Figure 5-7 shows the percentage contribution of each factor to the response variables. The cold-

rolling reduction percentage (factor B) has the most substantial effect on cavity percentage, the 

average spectral emissivity, and the spectral emissivities at all analysed wavelengths of interest. 

The similarities of the factor contributions for cavity percentage and the emissivities show that the 

surface cavities strongly dominate the radiative properties after removing the hot-rolling oxides.  

 

Figure 5-7: Percentage contributions of the processing parameters on the response variables. At all 

wavelengths, the cold-rolling reduction percentage strongly dominates the radiative properties. 

 In dual- or multi-replicate factorial designs, the statistical significance of each factor can be 

identified within a confidence interval through an analysis of variance (ANOVA). However, in a 

single replicate design as performed here, no intra-treatment error estimate exists. As such, Daniel 

[54] suggests a heuristic alternative of examining the factor effects shown in Table 5-4 for each 

response variable using normal probability plots, as shown in Figure 5-8. 

The effects of the insignificant factors should behave like samples from a normal population 

with a mean of 0; as such, those effects will lie very close to the normal line. In contrast, 

statistically significant effects will behave as samples from a normal distribution with a non-zero 

mean; as such, they will be far from the normal line. The plots in Figure 5-8 show that the data 

point for cold-rolling reduction percentage lies far from the normal line for all response variables, 
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suggesting that it strongly influences cavity percentage and strip spectral emissivity at all 

wavelengths of interest. As discussed earlier, the similarity between the effect of each factor on 

cavity percentage and emissivity highlights the impact of surface cavities on the overall radiative 

properties of the steel strip. On the other hand, the effect of acid pickling time, steel type, and all 

interaction effects have a negligible influence on the response variables.  
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Figure 5-8: Normal probability plots of the effects of each factor on each response variable. All effects lie close 

to the normal line except for the cold-rolling reduction percentage. (a) Cavity Percentage, (b) average 

emissivity, spectral emissivities at (c) 1.6, (d) 2.1, (e) 2.4, (f) 5, (g) 10, and (h) 20 μm. The red arrow identifies 

the effect of the cold-rolling reduction percentage. 
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5.2.2. Effect of Cold-Rolling on Cavity Flattening 

 As such, this section proposes a simple single-factor regression model for surface cavity 

flattening as a function of the cold-rolling reduction percentage. Samples cold rolled to various 

extents (1%, 5%, 10%, 20% and 53%) are analysed, and samples of the two alloys (DP980 and 

DP800) pickled to various extents (120s, 150s, and 180s) are combined to yield six replicates at 

each cold-rolling reduction percentage. Figure 5-9 shows scatter plots of the response variables 

against cold-rolling reduction percentage for the six replicates overlayed with linear curve fits.  

 

Figure 5-9: Scatter plots of cold-rolling reduction percentage against (a) cavity %, (b) average spectral 

emissivity, (c) spectral emissivity at λ = 2.4 μm and (d) spectral emissivity at λ = 20 μm. There are six replicates 

at each cold-rolling reduction value. Similar variations are observed in the number of surface cavities and 

radiative properties across the DP780 coil in Chapters 3 and 4, as shown by the red ovals. 
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The validity of the linear curve fits is then evaluated using residual analysis. Normal probability 

plots of the residuals of cavity percentage, average emissivity, and two select spectral emissivities 

at λ = 2.4 and λ = 20 μm are shown in Figure 5-6 (a), (b), (c) and (d), respectively. The residuals 

follow a Gaussian distribution identified by the normal probability plots and the various normality 

tests, as shown in Table 5-5. MATLAB® scripts developed in Ref. [55] are used for these tests.  

Cavity Percentage 

Test Test Statistic P-Value Normal 

KS Limiting Form 0.8759 0.4268 ✔ 
KS Stephens Modification 0.8991 0.0490 ✘ 
KS Marsaglia Method 0.8759 0.3858 ✔ 
KS Lilliefors Modification 0.1599 0.0486 ✘ 
Anderson-Darling Test 0.6822 0.0496 ✘ 
Cramer-Von Mises Test 0.1209 0.0584 ✔ 

Shapiro-Wilk Test 0.9497 0.1663 ✔ 

Shapiro-Francia Test 0.9576 0.2306 ✔ 

Jarque-Bera Test 1.2079 0.5466 ✔ 

D'Agostino & Pearson Test 2.0060 0.3668 ✔ 

ε  

Test Test Statistic P-Value Normal 

KS Limiting Form 1.1385 0.1496 ✔ 
KS Stephens Modification 1.1687 0.0100 ✘ 
KS Marsaglia Method 1.1385 0.1294 ✔ 
KS Lilliefors Modification 0.2079 0.0019 ✘ 
Anderson-Darling Test 0.7837 0.0318 ✘ 
Cramer-Von Mises Test 0.1487 0.0248 ✘ 

Shapiro-Wilk Test 0.9466 0.1372 ✔ 

Shapiro-Francia Test 0.9321 0.0549 ✔ 

Jarque-Bera Test 1.4357 0.4878 ✔ 

D'Agostino & Pearson Test 2.655 0.2651 ✔ 
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ελ (λ = 2.4μm) 

Test Test Statistic P-Value Normal 

KS Limiting Form 0.7443 0.6367 ✔ 

KS Stephens Modification 0.7641 0.1500 ✔ 

KS Marsaglia Method 0.7443 0.5895 ✔ 

KS Lilliefors Modification 0.1359 0.1650 ✔ 

Anderson-Darling Test 0.4872 0.2243 ✔ 

Cramer-Von Mises Test 0.0737 0.2504 ✔ 

Shapiro-Wilk Test 0.9511 0.1814 ✔ 

Shapiro-Francia Test 0.9610 0.2802 ✔ 

Jarque-Bera Test 1.6292 0.4428 ✔ 

D'Agostino & Pearson Test 2.7099 0.2580 ✔ 

ελ (λ = 20μm) 

Test Test Statistic P-Value Normal 

KS Limiting Form 0.6172 0.8407 ✔ 

KS Stephens Modification 0.6336 0.1500 ✔ 

KS Marsaglia Method 0.6172 0.8004 ✔ 

KS Lilliefors Modification 0.1127 0.2000 ✔ 

Anderson-Darling Test 0.3802 0.4030 ✔ 

Cramer-Von Mises Test 0.0597 0.3814 ✔ 

Shapiro-Wilk Test 0.9643 0.3973 ✔ 

Shapiro-Francia Test 0.9570 0.2232 ✔ 

Jarque-Bera Test 2.9143 0.2329 ✔ 

D'Agostino & Pearson Test 4.5539 0.1026 ✔ 
Table 5-5: Testing of cavity percentage, average spectral emissivity and select (2.4μm and 20μm) spectral 

emissivity residuals for normality using various normality tests. Most tests identify the residuals for all response 

variables to be normal. 
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Figure 5-10: Normal probability and histograms for the residuals of (a) cavity percentage, (b) average spectral 

emissivity between 0.5 and 20μm, and spectral emissivities at (c) 2.4 and (d) 20μm. 
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The mostly normal residuals validate the linear regression models. This finding shows that the 

number of cavities on the strip surface and radiative properties are linearly proportional to the cold-

rolling reduction percentage at all wavelengths across the spectrum. The minor heteroscedasticities 

in the plots may be attributed to small contributions by acid-pickling to the roughness of the 

surfaces after the oxides are entirely removed, slightly influencing the radiative properties. The 

impact of surface roughness outside the cavities is explored further in Chapter 6 using the neural 

network model. 

Notably, even after cold-rolling to a reduction of ~53% (typical of industrial CGLs), an inherent 

random variability exists in cavity percentage (~10 – 30%). This variation causes the radiative 

properties of the steel strip to vary as much as 20%. Furthermore, the emissivities and the number 

of surface cavities between the edge and the middle of the coil show a similar difference (compare 

Figure 4-8 and Figure 5-9 – red ovals).  

This finding suggests that other cold-rolling parameters (apart from thickness reduction %) may 

influence cavity flattening and vary across a single AHSS coil. Wiklund and Sandberg [56] suggest 

variations in cold-rolling pressure across the width of a single steel coil during cold-and temper-

rolling processes due to the bending of the rollers. These variations may be responsible for the 

non-uniform flattening of cavities across a single coil. As such, a more detailed analysis of the 

cold-rolling process is necessary.  

Köpper et al. [51] also hypothesised that the amount of grain-boundary oxidation might vary at 

different coil locations due to differences in the amount of oxygen infiltration when manufacturers 

wind the coil after hot-rolling. This analysis has studied samples from the mid-width and the tail 

of a hot-rolled coil; further work should also analyse samples from the edge-width and different 

locations along its axial length.  

Due to these random variations, it is challenging to robustly model cavity formation and strip 

radiative properties based on the cold-rolling reduction alone. This issue is addressed in the 

following section through a data-driven machine learning model using an artificial neural network 

(ANN).  
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Chapter 6 : ANN Spectral Emissivity Model 

Steelmakers continue to strive for finer strip temperature control during intercritial annealing; 

as such, reliable methods are required to predict strip radiative properties on CGLs. Given the 

random variability in surface topography, even after cold-rolling and acid-pickling to a specific 

extent, it becomes challenging to predict strip radiative properties using process parameters such 

as acid-pickling time and cold-rolling thickness reduction percentage alone.  

Recently, there have been advances in on-line strip imaging technologies which can produce 

optical imagery and evaluate the surface topography parameters of a steel strip in real-time before 

it enters an annealing furnace. As such, physics-based or data-driven models correlating strip 

spectral emissivities with surface topography may allow steel manufacturers to generate in-situ 

spectral emissivity predictions for coil sections before they enter the annealing furnace. 

Traditional methods for inferring strip radiative properties, such as the GOA ray-tracing 

algorithm and electromagnetic (EM), finite difference time domain (FDTD) models, are often 

computationally expensive and infeasible to implement on-line. Therefore, neural networks may 

serve as an excellent alternative for generating near-instantaneous spectral emissivity predictions 

on CGLs, by “front-loading” the computational burden to a one-time training phase. As such, this 

section explores using an artificial neural network (ANN) model to infer the radiative properties 

of AHSS using their surface topography parameters and optical microscope imagery. 

However, a challenge with neural networks is their “black-box” nature which prevents the user 

from developing any physical insights into the problem. Therefore, this thesis performs a global 

sensitivity analysis (GSA) to model the functional dependencies of strip spectral emissivity on the 

sample's RMS roughness, Rq, surface slope, Rq/τ, and surface cavities. The ANN model developed 

in this chapter may be helpful with upcoming in-situ strip imaging technologies.  

The following sections discuss the fundamentals of neural networks, their implementation for 

inferring the radiative properties of AHSS, and the use of GSA to infer the underlying physics of 

the problem. 
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6.1 Introduction to Neural Networks 

Artificial neural networks (ANNs) have gained popularity in recent years in various disciplines 

such as engineering, the natural sciences, medicine, and commerce due to their ability to model 

the behaviour of complex physical systems and provide near-instantaneous predictions [57, 58, 

59] after a one-time training on a dataset. These predictions are usually much faster and require 

less computation than physics-based simulations, such as finite difference time domain (FDTD) 

solutions for inferring surface reflectivity. Artificial neural networks are parallel computing 

devices loosely inspired by the highly interconnected nature of neurons in the human brain [57, 

58, 59].  

In regression applications, ANNs can map a set of input parameters X = [x1, x2, x3, …. xn], to a 

set of outputs Y = [y1, y2, y3, …., ym], by developing an approximate function to model the 

underlying relationship between them. A common type of ANNs is multi-layer perceptrons 

(MLPs), consisting of an input layer, a set of hidden layers, and an output layer. The network layer 

outputs serve as the next layer's inputs. Information passes layer-to-layer until it reaches the output 

layer, producing the final prediction, Y as shown in Figure 6-1.  

 

Figure 6-1: A multi-layer perceptron network (MLP) schematic with an input layer, a set of hidden layers, and 

an output layer. x, y and y represent the inputs, outputs, and predicted values. e is the residual between y and 

y The neuron marked by the red-dashed box represents a hypothetical jth neuron in the nth layer. 
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Figure 6-2: Computing the output of the jth neuron in the nth layer. This neuron is highlighted by the dotted red 

box in Figure 6-1. 

The ith input to the jth neuron in layer n, xi,j
(n)

 is multiplied by a weight, wi,j
(n), which is unique 

to each input from the previous layer, and all wi,j
(n)∙xi,j

(n) products are summed, to which is added a 

bias, bj
(n) (unique to the neuron in question), to compute the neuron's output. This relationship 

maps the output of a neuron to its inputs in a linear fashion. However, many physical systems are 

non-linear, and this method cannot model these non-linear relationships. Therefore, the linearly 

mapped output then goes through an activation function, ψ, to introduce non-linearity to the model, 
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X
n n n n

j i,j i,j j

i=1

ψz w x b
 

=  + 
 
  (6.1) 

where zj
(n) is the output to the neuron, this work uses a tan-sigmoid activation function for all 

hidden neurons [60] and a linear activation function for the output neuron.  

Countless studies have used ANNs to model the radiative properties of various systems and 

surfaces. For instance, Kang et al. [61] developed an ANN model to predict the radiative properties 

of mono-dispersed, spherical, packed beads of varying materials and geometries; they trained the 

network on results from Monte-Carlo simulations. Additionally, Sullivan et al. [62] designed a 

surrogate ANN model for predicting the radiative properties of patterned surfaces of varying 

materials and geometries. The authors trained the model on data from solutions to Maxwell's 

equations using finite-difference-time-domain (FDTD) simulations. Furthermore, Acosta et al. 

[63] recently proposed a neural network model for inferring the radiative properties of aluminium 

surfaces manufactured through Femtosecond Laser Surface Processing (FLSP) using 
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manufacturing parameters and surface SEM imagery. As such, this section explores using ANNs 

to improve spectral directional emissivity predictions of AHSS by training on empirical data.  

This chapter implements a regression ANN model to correlate the surface topography 

parameters of AHSS samples with their radiative properties to enable rapid spectral directional 

emissivity predictions. Such a model may also serve as an improvement to the linear regression 

model proposed by Lee [64] (at least for AHSS steels), which was found by Lin et al. [37] to 

perform poorly on highly rough AHSS surfaces. In addition, galvanisers may implement the 

proposed ANN with emerging online steel strip imaging technologies [65] for the in-situ 

characterisation of strip radiative properties after hot-rolling, acid-pickling and cold-rolling before 

the coil enters the annealing furnace.  

6.1.1. ANN Training Procedure 

One may choose optimum weights and biases through a supervised training procedure. During 

training, the algorithm initialises the weights to small random numbers, usually between 0 and 0.5, 

and sets the biases to zero. Their values are optimised iteratively through an optimisation procedure 

using training and validation datasets. The validation dataset is merely used to test the network's 

performance and not to update the network parameters, where the training and validation datasets 

consist of known input and output pairs. The neural network uses the inputs from the training set 

to generate predictions, and the training procedure tests the network's performance using those 

predictions through a cost function. Here, the mean-squared-error (MSE), 

 ( )
2

p,M p,M

p 1 M 1

1 N Y

ˆMSE y y
N Y = =

= −


  (6.2) 

where N is the number of samples, Y is the number of outputs, ŷp,M is the predicted value, and yp,M 

is the ground-truth output. This procedure is known as forward propagation. Subsequently, the 

effect of a marginal change in each weight and bias on the overall cost function is computed 

through a chain rule of partial derivatives, known as backpropagation. A minimisation algorithm 

then iterates the weights and biases; this work uses the Levenberg-Marquardt (LMA) algorithm 

(see Appendix D) [66]. Additionally, MATLAB® also has an in-built function for the 

straightforward and seamless implementation of LMA for neural networks.  
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For training, all inputs are rescaled between zero and one to improve convergence, while the 

outputs are naturally between zero and one as they are spectral emissivities. In this study, the ANN 

model applies at a specific wavelength, and it generates a single output which is the spectral 

emissivity of the strip surface at that wavelength (see Sec. 6.2). An entire training cycle through 

all data points in the training set is known as an epoch of training. Supervised training algorithms 

use the MSEs on the training and validation datasets to evaluate the model's performance after 

each epoch.  

If the MSE on the validation dataset is higher at the kth epoch compared to the (k – 1)th epoch, 

and if this has been true for the last n number of epochs (this work uses MATLAB®'s default values 

of n = 6), the algorithm terminates training and saves the optimum weights and biases. This check 

prevents convergence to a local minimum. Figure 6-3 shows an example training run where at 

epochs greater than seven, the neural network is being over-fitted to the data, while at epochs less 

than seven, the network is being under-fitted. The optimum weights and biases yield the lowest 

error on the validation dataset.  

 

Figure 6-3: ANN training flow to optimise the weights and biases. The value for n is set to MATLAB®'s default 

value of 6. An example training process is also shown where the lowest error on the validation dataset is 

achieved at the seventh epoch.  
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6.2 ANN Regression Model for Spectral Emissivity Predictions 

This work proposes the following ANN model to infer the radiative properties of AHSS coils 

in their cold-rolled condition, which applies at a specific wavelength. The inputs to ANN are 

chosen as dimensionless groups to capture the pertinent physical phenomena that may influence 

the spectral emissivity of the steel, as shown in Figure 6-4.  

 

Figure 6-4: Proposed ANN model for inferring the spectral emissivities of AHSS in their cold-rolled condition 

before entering the annealing furnace. 

The points below discuss the physical phenomena captured by each input: 

1) The surface slope, Rq/τ and the wavelength-normalised RMS roughness, Rq/λ (inferred 

using depth mapping on the Keyence optical microscope), capture how the surface 

topography of the exposed area (outside the cavities) influences the spectral emissivity 

through scattering and wave diffraction effects, respectively [18, 37, 48, 49, 50, 67]. 

Roughness artefacts outside the cavities should primarily influence the spectral emissivity 

at the shorter wavelengths through scattering and at the longer wavelengths through EM 

diffraction effects.  

2) The cavity ratio, Cr found through image thresholding, captures the percentage of the 

surface assumed to be a perfect emitter of EM radiation. These cavities should influence 

the spectral emissivity at most wavelengths of interest. This assumption is validated later 

through a sensitivity analysis. 
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3) The optical constants of the substrate metal, ‘n’ and ‘k’, define how the wave interacts with 

the charge carriers within the surface. The imaginary permittivity ϵim = 2∙n∙k (i.e., the 

interaction effect between n and k) significantly affects the energy absorbed by the surface 

due to ray attenuation [68]. When an electromagnetic ray impinges on an opaque 

conducting material like metal, the beam penetrates the substrate or is reflected. The 

imaginary permittivity influences the energy attenuation of the penetrated ray as it travels 

through the material interacting with the charge carriers within the substrate. These charge 

carriers are free electrons of the substrate material, which oscillate due to the absorbed 

energy. Therefore, the attenuation of the penetrated ray and, in turn, the imaginary 

permittivity strongly dictates the metal’s emissivity. As discussed, the optical constants for 

specific AHSS alloys are challenging to obtain. Therefore, the optical properties of pure 

iron are used in this study [38, 39], as discussed in Sec. 4.3.  

 

Consider two simple, feedforward ANN models with one layer and one neuron (see Figure 4). 

In computing the output, zi, the model may struggle to capture the interaction between n and k if 

the ANN does not receive their product as an input, where the weight, w3, can be adjusted during 

training to model the impact of the imaginary permittivity, 2nk. Here, ψ is the activation function 

(this study uses the tan-sigmoid function), and b represents the bias unique to the neuron. Even 

more extensive networks with more layers and neurons follow a similar process to compute the 

output, which may lead to the omission of specific interaction effects without carefully selected 

inputs. 

 

Figure 6-5: Limitation of a neural network in modelling the interaction effect between two variables. 
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6.2.1 ANN Training Data 

This work uses three sets of AHSS samples for training and testing the neural network: (1) 90 

DP780 samples extracted from different locations on an industrially processed cold-rolled coil; (2) 

44 DP980 samples extracted from a hot-rolled coil, then acid-pickled (for 45-180s) to various 

extents, and subsequently cold-rolled to a reduction of 53%; and (3) 15 DP800 and 15 DP980 

samples extracted from a hot-rolled coil, and subsequently acid-pickled (for 120-180s) and cold-

rolled (red. 1% to 53%) to various extents, yielding 164 samples in total. The under-pickled (45s) 

samples in dataset 2 do not show reflectivity behaviour like the oxidised samples in Figure 5-4, 

possibly due to extensive cold-rolling (~53% red.) leading to the flattening of oxide nodules as 

discussed in Sec. 5.1. 

The training procedure uses samples in datasets 2 and 3 for training and samples in dataset 1 to 

test the trained network's performance. First, their spectral-directional emissivities and surface 

slopes are evaluated using the procedure discussed in Sec. 2.1 and Sec. 2.2. The ex-situ spectral 

directional emissivities of the samples are initially analysed using the procedure described in Sec. 

3.2, between 0.5-20 μm. Figure 6-6 shows the obtained emissivity spectra for the three datasets. 

Next, the training procedure uses the samples which are acid-pickled and cold-rolled to various 

extents (datasets 2 and 3), to train the neural network; doing so captures the effect of the upstream 

processes (acid-pickling and cold-rolling) on the surface state and radiative properties of the steel. 

Lastly, the algorithm tests the trained model on the DP780 samples from dataset 1. 

 

Figure 6-6: Spectral directional emissivities of all 164 samples. (a) Dataset 1, (b) dataset 2, (c) dataset 3. Samples 

from dataset 3 show the greatest variance in spectral emissivities, as those samples are acid-pickled and cold-

rolled to various extents. 
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According to the procedure described in Sec. 4.2.1, the Keyence VHX-5000 optical microscope 

generates digitised surface height maps through depth mapping. The height maps can then be used 

to compute the RMS surface roughness, Rq and the surface slope, Rq/τ. However, the optical 

microscope cannot image the cavity interior due to trapped visible light, causing the cavities to 

appear as dark patches. The surface replication technique proposed in Sec. 4.3.1 may be used; 

however, it would be highly time-consuming to apply to all 164 samples, nor is it suitable for an 

on-line application, which is one of the goals of this research.  

 As such, this work assumes that the surface cavities act as perfect emitters at most wavelengths 

of interest between 0.5 and 20 μm. Therefore, the neural network uses the percentage cavity 

coverage of the surface as one of the inputs. A global sensitivity analysis then shows the validity 

of this assumption. The thresholding procedure described in Sec. 4.2.1. is used for cavity 

quantification. Figure 6-7 shows surface optical imagery from datasets 1, 2, and 3, where the 

surface cavities appear as dark patches.  

 

Figure 6-7: Optical micrographs showing varying amounts of surface cavitation amongst the samples analysed 

from datasets 1, 2 and 3. The reported lengths (75m, 450m and 880m) for samples from dataset 1 represent the 

axial location along the length of the DP780 coil. 
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The large variability in surface topography and radiative property parameters amongst the 

training samples (datasets 2 and 3) allows for the proper training of the regression ANN. Testing 

of the network on samples from different locations on an industrially processed coil (dataset 1) 

then mimics how galvanisers may use this model in the industry.  

6.2.2 Optimising the Network Topology 

This work implements a grid search approach to find the optimum number of hidden neurons 

and layers. This procedure trains the ANN 100 times for each neuron and layer combination to 

account for the variance in network performance. Figure 6-8 shows how the MSE on the testing 

dataset changes as the number of hidden layers and neurons are varied. A single hidden layer can 

approximate most physical systems [69]; however, adding a second layer has been shown to 

improve network performance for certain datasets [70]. For this dataset, however, the addition of 

a second layer shows a deterioration in performance, which can be attributed to overfitting; as 

such, a single layer with five hidden neurons is chosen. 

 

Figure 6-8: Choosing optimum number of hidden neurons and layers through a grid-search approach. A single 

hidden layer with five neurons yields the lowest error on the testing dataset. As such, a single hidden layer with 

five neurons is chosen. 
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6.2.3 ANN Model Results 

Figure 6-9 compares the ANN spectral emissivity predictions for samples extracted from 

various locations on the DP780 coil in dataset 1 with their respective measured values. The selected 

network topology in Figure 6-10 generates accurate predictions, demonstrating the feasibility of 

using ANNs for near-instantaneous pre-annealed AHSS spectral emissivity predictions. The neural 

network predictions are also compared with emissivities obtained by running a geometric optics 

approximation (GOA) [18, 37] ray-tracing simulation with the digitised surface height maps as 

boundary conditions. However, the digitised height maps do not contain information regarding the 

topography inside the cavities; hence the GOA model generates inaccurate predictions for surfaces 

with many cavities. As such, the neural network model proposed here can be an excellent 

alternative for near-instantaneous spectral emissivity predictions when implemented with on-line 

strip imaging tools [65]. 

 

Figure 6-9: Comparison of neural network predictions and the measured spectral emissivities. Predictions from 

GOA simulations are also presented. Unfortunately, the GOA predictions for surfaces with many cavities are 

poor as the topography inside the cavities is not captured by optical microscope. 
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Furthermore, Figure 6-10 shows a residual analysis comparing the ANN predictions with the 

measured emissivity values for samples in the testing dataset (dataset 1). The residuals are mostly 

normal, with a skewness at the tail. This result demonstrates the validity of the ANN model and 

confirms that the input parameters and the ANN model capture the physics of the problem 

accurately. 

 

Figure 6-10: Residual analysis of all samples in the testing dataset (dataset 1), the mostly normal residuals 

signify the validity of the ANN model. 

 This section shows that the ANN model generates accurate spectral emissivity predictions for 

the samples analysed in this thesis with an accuracy of approximately ±5%. However, a challenge 

with neural networks is their inability to provide insight into the physics of the problem; therefore, 

they are known as “black-box” models. The following section addresses this issue through a global 

sensitivity (GSA) analysis.   
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6.3 Global Sensitivity Analysis for ANN Inputs  

The "black box” nature of ANNs is a significant drawback, which prevents the user from 

developing any physical insights into the underlying problem. As such, this work implements a 

global sensitivity analysis (GSA) to model the functional dependencies of the output spectral 

emissivity on the inputs of the neural network. For example, Eghtesad et al. [71] recently 

implemented an ANN model to infer the radiative properties of porous media using the material's 

geometric and optical features.  

They then implemented a sensitivity analysis to quantify the influence of a factor on the output 

by removing it as an input and evaluating the change in model performance. This work uses the 

Fourier amplitude sensitivity test (FAST) instead to compute sensitivity indices for each input 

parameter, allowing the user to infer the impact of each input simultaneously. These indices range 

between zero and one and quantify each input's variance contribution to the output’s total variance.  

Practitioners commonly use FAST due to its ease of implementation in contrast to more 

rigorous Monte-Carlo approaches like the SOBOL technique [72, 73] and its compatibility with 

non-linear and non-monotonic models [74, 75]. Various studies have employed the FAST 

technique, including studying the importance of process parameters in the catalytic conversion of 

chlorofluorocarbons (CFCs) [76] and evaluating factors affecting greenhouse gas emissions in the 

transportation sector [77]. This thesis implements the method to determine the effect of each 

surface topography parameter on strip radiative properties. 

6.3.1 Fourier Amplitude Sensitivity Testing 

The traditional FAST method explores the influence of each parameter on the output of a 

computational model (in this case, the ANN), 

 ( )1 2
, ,...,

r
Y f x x x=  (6.3) 

by exploring the parameter space of all inputs Ωn = (X ∈ xi, min < xi < xi, max; i = 1, 2, 3,…r). The 

parameter space, Ωn, is explored by simultaneously oscillating each parameter between xi, min and 

xi, max at distinct integer frequencies ωi, [72,73]. The procedure samples each input parameter 

according to its marginal cumulative distribution function. Xu and Gertner [74] and Saltelli et al. 

[78] suggest the following sampling function: 
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where s is known as the common parameter and is varied between -π and π, and Fi is the marginal 

cumulative distribution function of the variable xi. This sampling function explores all regions of 

the parameter space, Ωn, equally and acts as a transformation between the s and x domains (Ref. 

[78] provides further details on this technique).  

The computational model, f(s), is then expanded as a Fourier series, 
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and 
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are the analytical Fourier coefficients. The variance, V, of function, f(s), is expressed as,  

 ( ) ( ) 
22

E s E sV f f   = −   
 (6.9) 

where E represents the expected value. Substituting Eq. (6.5) into Eq. (6.9) gives the total variance  

(see Appendix E for complete derivation),  
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=
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where Λp = ½ (Ap
2 + Bp

2) is known as the spectrum. The variance contribution, Vi, of the distinct 

ith integer frequency, ωi, to the output is equivalent to the variance contribution to the output by 

the ith input parameter, xi. Therefore, the sensitivity index for the ith input is given by, 
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where p represents the analytical Fourier term [74, 75]. The Fourier sensitivity index is analogous 

to a first-order SOBOL sensitivity index and a main effect in a full-factorial design [74]. As such, 

the sensitivity index of the product of two inputs represents their first-order interaction. This 

method quantifies the interaction effect of n and k (i.e., the influence of the imaginary permittivity 

ϵim).  

6.3.2 Numerical Implementation 

For a real-world numerical solution, Xu and Gertner [74] generate a total of N common 

parameters, 

  1 2 3 j N
= s ,s ,s ,...s ,...,ss  (6.12) 
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 (6.13) 

where s is varied between -π and π. Using the assigned integer frequencies, ωi and Eq. (6.4), they 

generate a set of xi,j's to form a matrix, 
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whose jth row serves as an input to function f(sj), where N represents the number of samples and r 

represents the number of input parameters to model f, which is evaluated as,  
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The discrete method expresses the Fourier coefficients as,  
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where p is the numerical Fourier term and the sensitivity indices for all inputs xi is computed as 

follows, 
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Xu and Gertner [74] and Saltelli et al. [78] state that the minimum number of numerical Fourier 

terms should be (N-1)/2, and (N-1)/(2ωmax) for computing V and Vi respectively, according to the 

Nyquist critical frequency, to capture the influence of all the integer frequencies in set ω and their 

higher harmonics. 

Various studies choose the set of integer frequencies, ω = {ω1, ω2, ω3, …., ωr} to be linearly 

independent to ensure that interference effects are minimised [74, 78, 79]. For instance, if ω1 =  

aω2, where a is an integer, interference may arise when computing V1 and V2 through Eq. (6.17). 

Furthermore, when sampling input values from their respective marginal inverse CDFs through 

Equation (6.4), using a linearly independent frequency set allows for an even exploration of each 

input's probability space, as shown in Figure 6-11. 

 

Figure 6-11: Exploration of the probability space of each input for a hypothetical model with three input 

parameters when sampling through Eq. (41), using (a) linearly dependent and (b) independent frequency sets. 
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Cukier et al. [79] suggest that a set of frequencies are linearly independent if 

 
r r

i i i

i 1 i 1

0 1a ω a M
= =

   + ,  (6.18) 

where ai can take any integer, and M represents the number of harmonics of the fundamental 

frequency, ωi. Usually, in the FAST algorithm, frequencies are set to be free of interference up to 

the fourth or sixth order (i.e., M = 4 or M = 6) [74]. As such, Cukier et al. [79] used a trial-and-

error procedure to compute interference-free frequency sets that satisfy Eq. (6.18) for several 

inputs ranging from two to ten for M = 4. This thesis uses a frequency set developed by Cukier et 

al. [79] for six inputs: ω = {25,63,103,135,157,177}, with an order of M = 4. Saltelli et al. [78] 

generated at least  

 2 1N Mω= +
max

 (6.19) 

samples using Eq. (6.4) and (6.13), to avoid aliasing effects. Through Eq. (6.19), with ωmax = 177 

in the set, ω, 1417 samples are used. 

6.3.3. Accounting for Correlated Inputs 

The non-dimensional input groups to the ANN are combinations of the RMS roughness, 

wavelength, correlation length, cavity ratio, and the optical constants of the substrate material. 

Therefore, correlations may exist amongst these non-dimensional groups; however, the traditional 

FAST technique is limited to independent inputs [74, 75]. As such, this work implements the 

FAST-C technique proposed by Xu and Gertner [74], an extension of the traditional FAST 

approach for correlated inputs.  

In the FAST-C approach, the inputs, X, are found using Eq. (6.4), similarly to the traditional 

FAST technique, but are subsequently reordered to introduce the correlation structure amongst 

them using the Iman and Conover [80] procedure (see Appendix G). Here, the input parameters 

are sampled from their marginal distributions (Fi) estimated by fitting non-parametric kernel 

distributions using MATLAB®'s fitdist and ksdensity functions (see Appendix F) to data in datasets 

1, 2 and 3. Non-parametric distributions are chosen to avoid making assumptions regarding the 

data distribution. 
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The Iman and Conover procedure takes the input matrix X, together with a required Pearson 

rank correlation matrix C, and returns a matrix W (a permuted version of X), which has the same 

rank correlation structure as C. Figure 7 shows the true correlation structure C amongst the non-

dimensional inputs inferred from datasets, 1, 2,  and 3 (see Figure 6-12 (a)), the correlation 

structure amongst the input parameters X, independently generated through Eq. (6.4) (Figure 6-12 

(b)), and lastly, the correlation structure of the values in W, after reordering X with the Iman and 

Conover [80] procedure, which is close to C (Figure 6-12 (c))). 

 

Figure 6-12: Pearson rank correlation structures of (a) experimental data from datasets 1, 2, and 3, (b) samples 

generated using Eq. (6.4) (x10-5), and (c) FAST-C samples after Iman and Conover restructuring. 
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A correlation exists amongst the wavelength-normalised RMS roughness, the optical properties 

n and k of the substrate and nk as they are functions of wavelength. However, the correlation 

between the surface slope, Rq/τ and the wavelength-normalised roughness, Rq/λ is not very strong; 

this indicates that the surface slopes are driven more strongly by the correlation lengths, τ, and to 

a lesser extent by RMS roughness. Two surfaces with the same RMS roughness can have 

drastically different surface slopes due to differences in their correlation lengths, as shown in 

Figure 6-13. The poor correlation among the cavity ratio, the surface slope, and wavelength-

normalised RMS roughness highlights that the microscope cannot infer the topography within the 

cavities. The roughness parameters, therefore, represent the exposed area topography outside the 

cavities. 

 

Figure 6-13: Two hypothetical surfaces with the same RMS roughness but with drastically different surface 

slopes due to differences in their correlation lengths. 

This method then uses the restructured samples in W to compute the overall variance, V, across 

all samples using the denominator in Eq. (6.17) by evaluating f(s) (the ANN) on data in W. The 

values in W are scaled between zero and one as required for the ANN using minimum and 

maximum values for the parameters from datasets 1, 2, and 3. However, introducing the correlation 

structure after the reordering process alters the original sampling order and hence the characteristic 

oscillation frequency of each input, as shown in Figure 6-14 [74] for the refractive index, n. 
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Figure 6-14: (a) Original and (b) altered oscillation frequencies for the refractive index (n) after restructuring 

using the Iman and Conover [80] procedure.  

The samples in the input xi's respective column are returned to the original order (i.e., the order 

before restructuring) to compute the variance contribution of a given input. Simultaneously, the 

entries in the other columns are set to the corresponding values from matrix W. Doing so ensures 

that the original oscillation frequency is restored for each input while maintaining the correlation 

structure. As such, each characteristic frequency also contains information regarding the 

correlation among the input parameters. The results are saved as a matrix, XWi, yielding r XWi 

matrices, as illustrated in Figure 6-15. The sensitivity indices, σi, for each input, xi, are then 

computed, where the neural network is evaluated on the entries in the jth row in the corresponding 

XWi matrix to compute f(sj).  
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Figure 6-15: Example showing the restoration of the characteristic oscillation behaviour for a given input i. 

Here, XWi examples are given for the hypothetical inputs 2 and 4. 
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6.3.4. Overall Sensitivity Indices 

 In this study, the FAST-C algorithm is written in MATLAB® and subsequently validated on an 

analytical problem from Xu and Gertner [74], after which it is used to compute the sensitivity 

indices for the ANN model. Figure 6-16 (a) and (b) show sensitivity indices for the six non-

dimensional input groups using the FAST and FAST-C techniques. 

 

Figure 6-16: Overall sensitivity indices for non-dimensional input parameter groups; (a) assumes that that the 

non-dimensional groups are independent, while (b) accounts for the correlation structure amongst the inputs 

shown in Figure 6-12 (c). 

 The plots in Figure 6-16 highlight the importance of accounting for the correlation structure 

amongst the non-dimensional input groups, which leads to a change in their sensitivity indices. 

The strong correlation among the optical constants n and k, the wavelength-normalised RMS 

roughness, and the product nk increase their impact on spectral emissivity. Furthermore, the high 

sensitivity index of input nk highlights the interaction effect between n and k on spectral emissivity, 

which is representative of the imaginary permittivity, ϵim as discussed in Sec. 6.2 and Figure 6-4.   

The optical constants n and k, their product nk, and the number of surface cavities show the 

most substantial effect on strip spectral emissivity. The surface slope of the exposed area shows a 

negligible sensitivity index. This finding suggests that the primarily smooth topography of the 

exposed surface area outside the cavities has a smaller overall influence on strip emissivity than 

the surface cavities. 
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The impact of the wavelength-normalised RMS roughness and surface slope outside the cavities 

can be visualised further by the overlaying their distributions (from samples in datasets 1,2 and 3) 

on the reflectivity regime map created by Tang et al. [49]. The wavelength-normalised RMS 

roughness differentiates between the EM, specular and GOA domains, while the mostly uniform 

low surface slopes do not influence the radiative properties, their sensitivity indices agree with this 

finding.   

 

Figure 6-17: Sensitivity indices and distributions of the wavelength-normalised RMS roughness and surface 

slopes of the exposed area of samples analysed in datasets 1, 2, and 3, overlayed on the regime map by Tang et 

al. [49]. The wavelength-normalised RMS roughness differentiates between the EM, specular and GOA 

domains, as such has a higher sensitivity index compared to surface slope.  
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6.3.5. Wavelength Dependent Sensitivity Indices 

This section evaluates the sensitivity indices for RMS roughness, surface slope and cavity 

percentage as functions of wavelength between 0.5 and 20 μm. For a given wavelength, the optical 

properties of the substrate are interpolated from a data table [38, 39]. The Iman and Conover 

technique [80] accounts for the correlation structure amongst the three variables as they are 

sampled in the FAST-C algorithm using distributions in Appendix F and Eq. (6.4). According to 

Cukier et al. [79], the integer frequency set, ω = {25,63,103}, is used. With ωmax = 103 and M = 

4, 825 samples are generated according to Equation (6.19). 

As shown in Figure 6-18 (a), the RMS roughness has the most potent effect at the shorter 

wavelengths where the surface is optically rough. The surface cavities influence the radiative 

properties equally at all wavelengths of interest, as they act as perfect emitters of EM radiation, 

and the surface slope has a negligible effect.  

Tang et al. [49] and Fu and Hsu [81] pointed out that the surface slope strongly influences the 

number of scattering events and the amount of EM diffraction effects when the surface is optically 

rough and smooth (i.e., at shorter and longer wavelengths), respectively. Most samples in datasets 

1, 2 and 3 have an exposed area surface slope of approximately 0.2 (see Appendix F and Figure 

6-18 (a)), and Lin et al. [37] showed that the spectral reflectivities of smooth DP980 samples (Rq/τ 

< 0.3) were very close to that of pure iron at all wavelengths between 0.5 and 20 μm. This finding 

suggests that the area outside the cavities shows few higher order scattering events and EM 

diffraction effects.  

The surface slopes are then sampled from two hypothetical uniform distributions as shown in 

Figure 6-18 (b) and (c) (Case A: Min: 0.2, Max: 0.55, Case B: Min: 0.2, Max: 0.75) to explore the 

impact of larger surface slopes. Doing so increases the surface slope's sensitivity index, as shown 

in Figure 6-18 (b) and (c). For DP980 samples with slopes greater than ~0.4, Lin et al. [37] found 

that GOA predictions become inaccurate at longer wavelengths, suggesting the onset of EM 

diffraction phenomena. Furthermore, the GOA model accurately captures the radiative properties 

at shorter wavelengths for surfaces with slopes greater than ~0.4 μm; because, at the shorter 

wavelengths, higher-order scattering dominates the radiative properties. The results from case (c) 

should be treated with caution, however, as some of these slope values lie outside the training 
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domain of the ANN model (> 0.50). Additional training using samples with larger surface slopes 

would be beneficial.  

 

Figure 6-18: Impact of surface topography parameters on spectral emissivity at different wavelengths of 

incident light between 0.5 and 20 μm. The surface slope values are (a) sampled from the kernel distribution fit 

to data in datasets 1,2 and 3 (see Appendix C), (b) sampled from a uniform distribution with Min and Max 

values of 0.2 and 0.55, (c) sampled from a uniform distribution with Min and Max values of 0.2 and 0.75. 

 For the samples analysed in this work, the surface topography outside the cavities has a minor 

influence on spectral emissivity (Figure 6-18 (a)). However, when sampling the surface slope 

outside the cavities from broader distributions, the exposed area shows a more significant influence 

on spectral emissivity through higher-order scattering and EM diffraction, as evidenced by the 

increase in the sensitivity index of the surface slope. Furthermore, as the surface slope of the 

exposed area approaches the surface slope inside the cavities, as shown in Figure 4-12, the 

sensitivity indices of the surface slope and cavity ratio tend to converge (Figure 6-18 (c)). This 

increase in the surface slope sensitivity index suggests that the ANN starts to capture higher-order 

scattering and EM diffraction phenomena.    
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6.3.6 Validation of Cavity Blackbody Assumption with GOA 

 The GOA model is then used to validate the blackbody assumption for the cavities further. In 

these GOA runs, the model assumes the surface cavities to be blackbodies; therefore, any ray that 

intercepts them is fully absorbed. As in the earlier sections, the surface topography outside the 

cavities is inferred using depth mapping on the Keyence microscope. This approach improves the 

spectral emissivity predictions for cavity-rich samples, as shown for two select samples in Figure 

6-19. This finding further validates the cavity ratio sensitivity indices shown in Figure 6-18 and 

conclusively proves that the surface cavities behave as perfect emitters at all wavelengths of 

interest. Furthermore, the ANN and the GOA models now generate similar spectral emissivity 

predictions.

 

Figure 6-19: GOA spectral emissivity predictions by setting the areas covered by the cavities as blackbodies for 

two select samples with many cavities, (a) 450m Mid and (b) 880m Mid. 
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6.4 Prospective Application and Future Improvements 

 The previous section showed that an ANN model could be used effectively in a lab environment 

where the strip surface topography parameters and optical imagery are easily inferable. This 

section explores whether the ANN model can be implemented on an industrial line to infer the 

radiative properties of the steel before it enters the annealing furnace. This section also discusses 

prospective future improvements to the ANN model.  

6.4.1 On-Line Implementation for In-Situ Spectral Emissivity Prediction 

Recently, there have been advances in in-situ strip imaging technologies. Amepa Process 

Measurement Systems, for example, has developed a microscope capable of inferring the 3D 

topography and generating optical imagery of the steel strip surface at different coil locations [65]. 

The microscope can image different coil parts by moving along rails, as shown in Figure 6-20.  

 

Figure 6-20: On-line microscope for imaging the strip surface at different coil locations along its width, where 

the microscope can move along rails [65].  

 A charge-coupled device (CCD) camera captures the image of the strip surface, and a laser light 

source illuminates the surface. The deformation of a thin laser sheet in the lateral directions is 

observed and converted into a height map, as shown in Figure 6-21 (a). The device can generate a 

3D surface height map with a lateral resolution of ~0.1μm (with FOVs ranging from 25 – 2500 

μm) [65]; the Keyence microscope uses a similar resolution for the optical micrographs in Figure 

4-2 and Figure 6-7.  

Figure 6-21 (b) shows an example surface height profile obtained using the Amepa on-line 

microscope. The obtained surface height map should be representative of surface topography 
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outside the cavities as the cavities behave as perfect absorbers and emitters of EM radiation at 

most wavelengths of interest.  

 

Figure 6-21: (a) Surface height-map acquisition by Amepa microscope, through the line projection method. (b) 

Generated 3D height map for an examples surface [65] 

The surface height,  

 ( )Z X cot  =    (6.20) 

is computed by imaging the movement of the line in the lateral direction, ΔX, and the beam's 

incident angle, α, is known. Manufacturers may use the surface heights to compute the surface 

slope and the RMS roughness of the exposed area through Eqs. (4.1), (4.2) and (4.3); to be used 

as inputs for the neural network model proposed in this thesis. Additional network training and 

testing must be performed using the surface topography and optical imagery from the Amepa 

microscope. If image thresholding cannot be applied easily for images captured using the Amepa 

online microscope, a convolutional neural network (CNN) may be developed to infer the cavity 

ratio.  
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6.4.2. Improving Accuracy and Uncertainty Quantification for ANN Model 

 Uncertainty quantification in neural networks is also a significant challenge. Neural networks 

have epistemic and aleatoric uncertainties [82, 83]. Epistemic uncertainty is the error associated 

with the model used to explain a physical process; for instance, if a model does not account for an 

essential factor, errors may arise in the final prediction. As such, epistemic uncertainties are also 

known as “knowledge uncertainties.” [82] One may reduce these errors by ensuring the model 

considers all pertinent phenomena and physical features. Epistemic uncertainties may be 

quantified through Bayesian neural networks (BNN). 

On the contrary, aleatoric uncertainties arise due to inherent errors in the training data and are 

independent of the model. For example, the errors associated with the spectral emissivity 

measurements and surface roughness parameters used to train the ANN model in this study will 

contribute to aleatoric uncertainties. As such, more accurate training data may minimise these 

errors.  

To model epistemic uncertainties through BNNs, which are also known as “uncertainty-aware 

neural networks,” [82, 83] the model parameters (weights, activation functions and biases) are set 

to be stochastic. Therefore, the epistemic uncertainty for a network with a model parameter set, θ, 

given a set of inputs, x, and outputs, y, is a probability distribution and can be expressed through 

Bayes' theorem, 

 ( )
( )

( ) ( )

| , ( )
| ,
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p y x θ p θ
p θ x y

p y x θ p θ θ
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 (6.21) 

where p(θ | x,y) is the epistemic error (the inherent uncertainty which arises even without error in 

the training data) or the posterior, p(y | x,θ) is the aleatoric uncertainty or the likelihood and p(θ) 

is the prior distribution over the possible model parameters. The denominator represents the 

evidence: the aleatoric uncertainty marginalised over all possible model parameter combinations.  

 Statistically speaking, optimising BNNs lead to maximum a posteriori (MAP) estimates of the 

model parameters. Bayesian neural networks are usually trained through probabilistic tools such 

as Monte-Carlo Markov's Chain (MCMC) runs [83]. This framework shall allow for capturing 

neural network model uncertainties and generating uncertainty bounds for the spectral emissivity 

predictions made using the neural-network model.  
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Chapter 7 : Conclusions and Future Work 

7.1: Key Findings 

Steelmakers continue to grapple with the issue of non-uniform mechanical properties across 

single AHSS coils processed on CGLs, which lead to scrap rates in the industry as high as 30% 

[22]. Studies have traced these non-uniformities back to temperature excursions across single 

AHSS coils during the annealing process, leading to erratic changes in the steel's microstructure, 

as discussed in Sec. 1.2.2 affecting its mechanical properties.  

Temperature excursions have often been attributed to non-uniform irradiation of the steel strip 

(especially across the width of the coil) as the coil passes through the continuous annealing furnace. 

However, further studies have shown that the radiative properties of the steel strip can also induce 

temperature excursions by affecting its pyrometrically-inferred temperature and altering its 

thermal absorption rate. 

Various studies have elucidated how the radiative properties of AHSS vary during the annealing 

process due to changes in its temperature and surface state (primarily oxidation) through physics-

based and data-driven models. However, this is the first study to analyse how the radiative 

properties may vary across a single AHSS coil even before it enters the annealing furnace. In 

addition, the pre-annealed surface state may also influence how the radiative properties 

subsequently evolve during annealing.  

This thesis expands our understanding of these radiative property variations across a single coil 

and links them to differences in the surface state through a GOA ray-tracing algorithm and a data-

driven artificial neural network model. Surface cavities strongly influence the pre-annealed 

radiative properties produced through processes upstream of annealing, such as hot-rolling, acid-

pickling and cold-rolling. However, the topography outside the cavities has a minor influence on 

the radiative properties, at least for the samples analysed in this thesis. 

 Surface cavity formation occurs due to the dissolution of selective grain boundary oxides 

(formed during hot-rolling) during acid-pickling. Cold-rolling then flattens the cavities, where the 

flattening is linearly proportional to the cold-rolling reduction percentage. However, random 

variations in cold-rolling parameters (such as pressure) across a single coil may lead to the non-

uniform flattening of cavities, leading to non-uniformities in the radiative properties across a single 
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AHSS coil. Therefore, future work will focus on performing a more robust analysis to fully 

understand the subtle effects of cold rolling on cavity flattening.  

 Furthermore, studies have shown that grain boundary oxidation can vary considerably across a 

single coil, affecting the surface cavity coverage after the hot-rolling and acid-pickling processes. 

These effects make it challenging to predict the radiative properties of the strip surface based on 

the process parameters alone. As such, the proposed data-driven machine learning model is a 

feasible tool to predict strip radiative properties using surface optical imagery and topographical 

parameters obtained using emerging on-line strip imaging technologies.  

 Overall, this thesis expands our knowledge base on the possible causes for non-uniformities in 

mechanical properties across single AHSS coils. These findings will serve as a valuable reference 

for steel producers and operators alike in efforts to minimise these variations and reduce the 

industry's high scrap rates.  

7.2: Future Work 

The findings of this research open many avenues for future work, some of which are discussed 

below: 

7.2.1 Predicting Radiative Property Evolution  

This work uses an FTIR and two integrating spheres, as discussed in Sec. 3.2 to analyse the 

radiative properties through an ex-situ procedure. However, on an annealing line, the radiative 

properties will vary with both steel strip temperature and changes in its surface state (primarily 

oxidation).  

The changing temperature of the steel strip will influence the substrate material's refractive 

index, n, and extinction coefficient, k, in turn influencing the inherent radiative properties of the 

steel. Analytically modelling these variations is a significant challenge; for longer wavelengths (> 

5 μm), the Hagen-Rubens relationship applies, where the spectral emissivity is directly 

proportional to the square root of surface temperature (ελ ∝ T 1/2), caused by a change in the 

resistivity of the metal [16]. However, the relationship is reversed at the shorter wavelengths below 

a crossover point (~1.0 μm for Iron) [84], where spectral emissivity decreases with increasing 

temperature. As such, implementing a data-driven machine-learning approach may be more 

feasible to correlate spectral emissivity and surface temperature and requires further research. 
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The evolving surface states during annealing may also significantly impact strip radiative 

properties; for instance, the reducing atmosphere commonly used for intercritical annealing leads 

to forming of external and internal selective oxides, significantly affecting strip radiative 

properties. Oxide formation strongly depends on the steel's alloy composition (Si/Mn ratio), the 

annealing atmosphere's dew point temperature, and the pre-annealed surface state.  

As discussed, various studies have attempted to model the impact of these parameters through 

physics-based and data-driven models by performing ex-situ characterisation of rapidly quenched 

AHSS alloys with varying surface states annealed at different atmospheric dew points [32, 42]. 

For example, Suleiman et al. [32] modelled pyrometric emissivity variations during annealing 

through a factorial design-of-experiments procedure. Lin et al. [85] then implemented a hybrid 

thin-film/GOA model to infer the radiative properties of oxidised AHSS samples; the model 

performed poorly on samples with as-received initial surface states due to the formation of 

discontinuous oxides while the model assumes a uniform oxide layer. 

As such, the as-received variations in surface topography across the coil in its pre-annealed 

state will significantly affect how the surface state and radiative properties evolve during 

annealing. In addition, the influence of surface cavities on oxide formation must be explored. The 

highly rough surface inside the cavities should lead to the formation of oxide nodules; however, 

the blackbody nature of these cavities may obscure the oxides' effect. In contrast, the smooth region 

outside the cavities should see more continuous oxide layers forming. The layers will affect the 

radiative properties through thin-film interference effects. 

Future work may employ an experimental approach by analysing samples from different coil 

locations quenched at different cycle stages in an annealing simulator to capture surface 

topography evolution. In addition to the ex-situ characterisation of the surfaces, performing in-situ 

radiative property measurements to capture the influence of varying temperatures on strip radiative 

properties will also benefit galvanisers.  

A data-driven model may be explored for predicting radiative property evolution given the alloy 

composition of the steel, the applied annealing schedule, the dew point temperature of the 

annealing atmosphere and the pre-annealed surface state for samples from different coil locations. 

Galvanisers may infer the pre-annealed surface state of the steel and the initial radiative properties 

using the on-line microscope and the ANN model proposed in this thesis, respectively. 
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7.2.2 Updated Heat Transfer Model 

The heat transfer model developed in Chapter 2 does not account for the metallurgical phase 

change of the steel, particularly the latent heat due to austenite formation during heating. The 

addition of this phenomenon to the model will allow galvanisers to understand better the impact 

of the non-uniform radiative properties across the coil (shown in Chapter 3) on the formation of 

austenite and martensite (during heating and subsequent quenching as discussed in Sec. 1.2.2). 

Which will, in turn, influence the strip mechanical properties as shown by the stress-strain curves 

in Sec. 3.2.2.  

One feasible approach to model the phase change and formation of austenite during heating is 

the cellular automata (CA) technique [86], which represents the microstructure as a grid of 2D 

cells which are assigned different phases (Ferrite, Pearlite, or Austenite). Then, through a specific 

temperature evolution, the phase of each cell changes according to the states of neighbouring cells 

and other pre-defined phenomenological rules.  

Future work may couple the heat-transfer and CA models through a finite difference approach 

stepping through time, where the two models are solved alternatively. Furthermore, as shown with 

the heat transfer model in Chapter 2, radiative properties strongly impact strip temperature 

evolution. As such, additional research should also incorporate the empirical radiative property 

evolution model from the previous section into the improved heat transfer/CA model for a robust 

method of predicting austenite and martensite formation. In turn, non-uniformities in mechanical 

properties across the coil. 

7.2.3 Improving ANN Spectral Emissivity Model 

Future work should also improve the neural network model for more accurate spectral 

emissivity predictions. This study has trained the ANN on data from the Keyence microscope; the 

model must be trained on data from the online microscope so galvanisers may use it in an industrial 

setting. Additional work should also focus on uncertainty quantification, a significant challenge in 

machine learning models. Using Bayesian neural networks is a possible solution for model 

uncertainty quantification and generating uncertainty bounds for the ANN spectral emissivity 

predictions.  
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7.2.4 Combining All Improvements 

 This thesis is the first to identify and characterise radiative property variations across a cold-

rolled AHSS coil. It attributes these variations to differences in surface topography imparted to the 

coil before annealing through hot-rolling, acid-pickling and cold-rolling. These radiative property 

variations strongly influence pyrometric temperature measurements and strip thermal absorption, 

affecting the post-annealed mechanical properties through temperature excursions. The findings 

of this research serve as a foundation for the proposed future work described in the previous 

sections. 

 The pre-annealed surface state of the steel will significantly impact how the radiative properties 

may evolve during annealing. Therefore, the data-driven radiative property evolution model in 

Sec. 7.2.1, the improved heat transfer model in Sec. 7.2.2 and the improved ANN spectral 

emissivity model in Sec. 7.2.3 may be combined with the on-line strip imaging technologies to 

develop a robust method to predict expected mechanical property variations across a single coil 

caused by non-uniform austenite and martensite formation.   

 This predictive capability will allow manufacturers to improve real-time furnace temperature 

control and pyrometry algorithms. Furthermore, the findings of this research concerning the 

connection between the upstream processes such as hot-rolling, acid-pickling and cold-rolling, and 

the strip radiative properties may also allow steelmakers to reduce non-homogeneities in surface 

topography and radiative properties across the coil even before it enters the annealing furnace. 

Overall, this work provides critical insights into the AHSS manufacturing chain and identifies 

areas of future improvements to reduce the high-scrap rates in the industry.  
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Appendix A: Replicate Measurements  

From a select number of coil locations (450m Mid, 880m Mid & 1684m Edge), eight samples, 

in addition to the five samples, are extracted and analysed to yield results from 13 samples. The 

standard errors across these 13 samples are analysed, and the error bars in Figure 2 at these coil 

locations reflect this standard error. Figure C.1 shows the spectral direction emissivities of the 13 

samples at these coil locations. The low variance in emissivities amongst these samples shows that 

the result from one sample is representative of others from the same coil location.  

 

Figure A.1.: Spectral emissivities of 13 replicate samples at three select locations across the 

coil. The low variance in these curves shows that one sample's results are representative 

and broadly applicable. (a) 450m Edge, (b) 1684m Mid, (c) 880m Mid. 

Additionally, Table C.1 shows the summary statistics for all 13 samples; the similarities of the 

surface slopes amongst the 13 samples further show that one sample represents all samples from 

the same location.  

 
Replicates 

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 

450m 

Edge 

0.231 0.243 0.231 0.242 0.231 0.193 0.221 0.211 0.212 0.214 0.222 0.220 0.210 

1684m 

Mid 

0.220 0.217 0.217 0.226 0.227 0.223 0.221 0.215 0.216 0.220 0.213 0.211 0.216 

880m 

Mid 

0.226 0.224 0.240 0.225 0.239 0.227 0.219 0.218 0.222 0.240 0.238 0.216 0.223 

Table A.1.: Surface slope values of the 13 replicates from the three select locations. The 

similarities of the values across these 13 samples show that one sample is representative 

and broadly applicable.  
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Appendix B: Normality of Surface Heights 

Surfaces produced through cold rolling usually have a Gaussian surface height distribution. 

Figure B.1 shows the normal probability plots of the surface heights for select samples. Again, the 

surface heights appear mostly normal, with a skewness at the tails for most samples. 

 

Figure B.1.: Normal probability plots of surface heights for a subset of samples. The 

distributions are mostly normal except for skewness at the tails. (a) 20m Edge, (b) 75m 

Edge, (c) 75 Mid, (d) 1509m Mid 
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Appendix C: Scanning Area Selection & Summary Statistics 

The scanning area for the summary statistics presented in Table 4-1 was selected according to 

previous studies that have analysed the surface parameters of AHSS, such as Ham et al. [40] and 

Lin et al. [35,44]. These studies used regions of approximately (500μm × 500μm) sufficient to 

ensure they represented the sample while minimising undue analysis time associated with a larger 

sample area.  

 This study analyses five locations (500μm × 500μm) on a single sample for a few samples; 

additionally, larger scan areas are also tested at their centres for specific samples. Figure C1 shows 

these scanning locations. 

 

Figure C.1.: Locations of (500μm x 500μm) areas analysed from five different locations on 

a single sample (not to scale) 

The similarity of the roughness statistics at the five locations shows that a single scanning area 

(500μm x 500μm) anywhere on a sample is representative of the whole sample (Table C.1). 

Additionally, the similarities between the surface slopes among the different scanning area sizes 

also shows that an area of (500μm x 500μm) is representative (Table C.2).   

 

  



119 

 

 
(Rq/τ)g 

 Locations 

Sample Centre Bottom Left Top Left Top Right Bottom Right 

450m Edge 0.232 0.252 0.227 0.219 0.218 

880m Mid 0.227 0.231 0.231 0.229 0.229 

Table C.1.: Summary statistics for the five locations imaged on two select samples. The 

similarity of the summary statistics shows that the scanning area is representative of the 

whole sample. 
 

Scan Area (μm x μm) 
 

500 x 500 1000x1000 2000 x 2000 

880m Mid 0.223 0.221 0.229 

1684m Mid 0.217 0.221 0.222 

Table C.2.: Summary statistics for different scan areas performed on several samples. The 

similarities in the surface slopes amongst the different scan areas show that the (500 x 500) 

sample size is large enough to correct for local effects. 
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Appendix D: Levenberg-Marquardt Algorithm 

 The Levenberg-Marquardt algorithm combines gradient descent and the Gauss-Newtown 

minimisation methods. At the early stages of training, gradient descent is preferred when the 

weights and biases are furthest from their optimum values and the cost function's gradient is high. 

Closer to the optimum values, however, as the cost function gradient reduces, the Gauss-Newton 

method performs better as it utilises the second derivative of the cost function for finer adjustments.  

 The algorithm updates the weights and biases through, 

 ( )
1

T

k 1 k k w k w k w k
μ

, , ,
w w J J I J e

−

+
= −  +    (D-1) 

 ( )
1

T

k 1 k k b k b k b k
μ
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b b J J I J e

−

+
= −  +    (D-2) 

where k represents the epoch of training, w is a matrix containing the weights of all connections in 

the network, B is a matrix containing the biases of all neurons in the network, Jk,w and Jk,b are the 

Jacobian matrices containing the gradients of the residuals (the residuals between the actual values 

and the predictions) with respect to each of the weights and biases in the network, and ek is the 

residual vector across the samples in the training dataset. Matrix I is the identity matrix, which has 

a size equivalent to the number of rows in the Jacobian. The Jacobian is, 
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where p is the number of training samples, M is the number of outputs, and N is the number of 

weights in the network. The method uses a similar Jacobian for the biases. The algorithm then 

computes the gradients in the Jacobian matrices through a chain rule of partial derivates through 

backpropagation. The parameter μ is an adaptation parameter set to a very large value at the 

beginning of training. It is progressively reduced as the model's performance improves on the 

validation dataset (i.e., as the parameters approach their optimum values). 

 For large μ values, the update equation approaches the gradient descent method and simplifies 

to 
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where a represents the step size in gradient descent and gk,w is the cost function gradient. A similar 

process can then be followed for the biases. If the value of μ is small, the algorithm approaches the 

Gauss-Newton method, and the weights are updated as, 
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k w k w, ,
H J J=   (D-7) 

H is the Hessian matrix approximated using the Jacobian and its transpose. The Hessian contains 

the second derivates of the cost function with respect to each weight in the network; again, a similar 

process can then be followed for the biases.  
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Appendix E: Variance Computation 

The following shows the derivation of the variance equation for function f(s) from its Fourier 

expansion: 
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For a single Fourier term, p, let, 
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For any positive integer, p, the values of the integrals of the sines and cosines from -π to π are the 

same, as their arguments will always be an integer multiple of π. As such, 
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In turn, the variance,  
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can subsequently be expressed as the super-position of the Fourier terms.  
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Appendix F: Probability Distributions of ANN Input Data 

 This work uses surface topography data from samples in datasets 1, 2, and 3 to approximate 

PDFs to sample values for the FAST-C algorithm. It is challenging to estimate standard parametric 

distributions to model the inputs. As such, and to avoid making assumptions about the data 

distribution, non-parametric kernel distributions are implemented using MATLAB®'s distfit and 

ksdensity functions. The PDF of the kernel distribution is, 

 ( ) i

i 1

1 n x x
pdf x K

nh h=
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=   

 
  (F-1) 

where K is a Gaussian kernel, n is the number of samples, and h is the bandwidth. Figure F.1 and 

Figure F.2 show the normalised histograms of the inputs and their respective overlayed PDFs for 

the surface topography parameters and the optical constants of the substrate. 

 

Figure F.1: Normalised histograms and the Kernal PDFs generated for surface topography 

parameters (a) Slope, (b) Wavelength-Normalised RMS Roughness, (c) The Cavity Ratio, 

and (d) RMS roughness. 
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Figure F.2: Normalised histograms and the generated kernel PDFs for the optical 

properties of the substrate (a) optical constant n, (b) extinction coefficient k, (c) the product 

nk. 
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Appendix G: Iman and Conover Procedure 

The Iman and Conover [36] procedure introduces correlations among the input parameters. A 

rank correlation structure C is introduced to matrix X, where each column represents an input, xi, 

to the neural network, and the rows represent the number of samples, N. Given matrix X and a 

required (r x r) rank correlation structure C, the following procedure can be adopted: 

Step 1: 

The values are ranked for each column in matrix X using MATLAB®'s tiedrank function. These 

ranks are saved in an (N x r) matrix called RANKS. 

Step 2:  

For each column in the RANKS matrix, Van der Waerden scores are computed and saved in a (N 

x r) matrix, B. 
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where j is the row of the matrix, i is the column, and Ф-1 is the inverse CDF of the standard normal 

distribution.  

Step 3: 

B's Pearson rank correlation matrix is then computed and saved as an (N x r) matrix, CS. 

Step 4: 

A matrix Q and a matrix P are then computed such that, 

 
T

CS QQ=  (G-2) 

 
T

C PP=  (G-3) 

Q and P can be found through a lower triangular, Cholesky decomposition of CS and C. 
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Step 5: 

Matrices T (a transformation matrix) and Y are found such that, 

 ( )invT Q P=   (G-4) 

 
T

Y BT=  (G-5) 

Y contains Van der Warden scores with the required correlation structure, C. The ranks of entries 

in each column of Y are computed using MATALB®'s tiedrank function and saved in a matrix R. 

Step 6: 

Lastly, the entries in each column of X are permuted according to the ranks in R to yield a matrix 

W. Now, the entries in W follow the required rank correlation structure C while maintaining the 

original marginal distributions of each input parameter xi. 

 

 

 

 

 

 

 

 

 


