
Low-Rank Plus Sparse Decompositions of
Large-Scale Matrices via Semidefinite

Optimization

by

Rui Gong

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2023

© Rui Gong 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We study the problem of decomposing a symmetric matrix into the sum of a low-rank symmet-
ric positive semidefinite matrix and a tridiagonal matrix, and a relaxation which looks for symmet-
ric positive semidefinite matrices with small nuclear norms. These problems are generalizations of
the problem of decomposing a symmetric matrix into a low-rank symmetric positive semidefinite
matrix plus a diagonal matrix and one of its relaxations, the minimum trace factor analysis prob-
lem. We also show that for the relaxation of the low-rank plus tridiagonal decomposition problem
with regularizations on the tridiagonal matrix, the optimal solution is unique when the nonnegative
regularizing coefficient is not 2. Then, given such a coefficient λ ∈ R+ \ {2}, we consider three
problems. The first problem is decomposing a matrix into a low-rank symmetric positive semidefi-
nite matrix and a tridiagonal matrix. The second is to determine the facial structure of E ′

n, which is
the set of correlation matrices whose absolute values of entries right below and above the diagonal
entries are upper bounded by λ/2. And the third problem is that given strictly positive integers k, n
with n > k, and points v1, . . . , vn ∈ Rk, determine if there exists a centered (degenerate) ellipsoid
passing through all these points exactly such that when the points are projected onto the unit ball
corresponding to the ellipsoid, for every i, the cosine value of the angle between the projected ith
and (i+ 1)th points is upper bounded by λ/2 and lower bounded by −λ/2. We then prove that all
these three problems are equivalent and when the regularization coefficient λ goes to infinity, we
show the equivalence between them and the corresponding properties of the low-rank plus diagonal
decomposition problem.

We also provide a sufficient condition on a subspace U for us to find a nonempty face of
E ′
n defined by U . By the equivalence above, this is also a sufficient condition for the other two

problems.

After that, we prove that the low-rank plus tridiagonal problem can be solved in polynomial
time when the rank of the positive semidefinite matrix in the decomposition is bounded above by
an absolute constant.

In the end, we consider representing our problem as a conic programming problem and gener-
alizing it to general sparsity patterns.

iii

Acknowledgements

I would like to thank my supervisor, Levent Tunçel, for his continuous guidance, support and
patience. He taught me how to be a better, more professional researcher and co-worker. I am
grateful for his invaluable comments and advice which inspired and motivated me academically
and spiritually.

I thank Walaa Moursi and Stephen Vavasis for taking the time to read the thesis and for their
thoughtful comments.

The material in this thesis is based upon research supported in part by Mathematics Faculty
Research Chair funds, NSERC Discovery Grants, Sinclair Graduate Scholarship, Math Domestic
Graduate Student Award and C&O Graduate Award. The financial support is gratefully acknowl-
edged.

iv

Dedication

This thesis is dedicated to my father Jiandong Gong and my mother Yan Zou for their love and
support. I hope you are proud of me.

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Figures viii

1 Introduction 1

1.1 Semidefinite Programming . 3

1.2 Convex Programming in Conic Form . 5

1.3 Affine Rank Minimization and Computational Complexity 6

1.3.1 Computational Complexity . 6

1.3.2 Matrix Completion Problem . 8

1.4 Minimum Trace Factor Analysis (MTFA) problem 9

2 Subspace Realizability, Recoverability and Ellipsoid Fitting 14

2.1 Diagonal Perturbation . 14

2.2 Tridiagonal Symmetric Positive Semidefinite Matrices 17

2.3 Tridiagonal Perturbation Problem without Regularizations 21

2.4 Tridiagonal Perturbation with Regularization . 27

3 Coherence of a Subspace and Computational Examples 38

3.1 Coherence of a Subspace . 38

3.2 Sufficient Conditions for λ-tridiagonal Realizability 40

3.3 Computational Examples . 45

vi

4 Algorithms for Low-Rank Plus Sparse Matrices Decomposition of Symmetric Matri-
ces 53

4.1 Low-Rank Plus Diagonal Decomposition . 53

4.2 Low-Rank Plus Tridiagonal Decomposition . 57

5 Generalization, Conclusion and Future Research 64

5.1 Convex Programming in Conic Form and General Low-Rank plus Sparsity Pattern
Decomposition . 64

5.2 Conclusion and Future Research . 67

References 68

vii

List of Figures

2.1 ellipsoid fitting . 37

2.2 1-tridiagonal ellipsoid fitting . 37

3.1 Coherence w.r.t. angles . 39

3.2 Sufficient Conditions of 1.5-tridiagonally realizable subspaces of R15 48

3.3 Sufficient Conditions of 1.8-tridiagonally realizable and nonrealizable subspaces
of R5 . 48

3.4 balU VS µ for different λ . 51

3.5 κ(p, r, µ) of λ-tri. real. VS minκ(p, r, µ) of λ-tri. unreal. for different λ 52

viii

Chapter 1

Introduction

We begin with some notations, basic concepts and definitions. We also describe the problems
we study with some known results and their applications and motivations. After that, we give an
overall map of the rest of the thesis.

For a positive integer n, we denote the set {1, . . . , n} as [n]. We refer Rn as n-dimensional
Euclidean space, Rn

+ as the nonnegative orthant of Rn. For x ∈ Rn, i ∈ [n], we let xi denote the
ith entry of x. For X ∈ Rn1×n2 , we let Xij denote the ith row, jth column entry of X . When
we have X ∈ Rn1×n2 , v ∈ Rn2 , we use [Xv]i to denote the ith entry of Xv ∈ Rn1 . We let
Null(X), row(X) ⊆ Rn2 , col(X) ⊆ Rn1 to denote the nullspace, the row space and the column
space of a matrix X ∈ Rn1×n2 respectively.

A subset C of a vector space is called convex if for any x, y ∈ C, the line segment between x, y
entirely lies in C. Given a convex set C, an extreme point x̂ of C is a point in C such that there
does not exists u, v ∈ C \ {x̂} with 1

2
u+ 1

2
v = x̂. Given a closed convex set C, a face F of C is a

closed convex subset of C such that if u, v ∈ C, α ∈ (0, 1) and αu+(1−α)v ∈ F , then u, v ∈ F .
A nonempty face F that is strictly contained in C is called a proper face.

A square matrix is called symmetric if it is equal to its transpose. A symmetric matrix is positive
semidefinite if all its eigenvalues are nonnegative. A symmetric matrix is positive definite is all its
eigenvalues are strictly positive. By Sn,Sn

+, and Sn
++, we denote the sets of symmetric, symmetric

positive semidefinite and symmetric positive definite n × n matrices, respectively. In this thesis,
we also use X ⪰ 0, X ≻ 0 to denote X ∈ Sn

+, X ∈ Sn
++ respectively.

For X, Y ∈ Rn1×n2 , let tr(X) denote the trace of X , the inner product ⟨X, Y ⟩ is defined as
tr(X⊤Y). For x, y ∈ Rn, define the inner product ⟨x, y⟩ as x⊤y. The default norm we use for
Rn1×n2 is the Frobenius norm, which is defined as ∥X∥F :=

√
⟨X,X⟩, and the default norm we

use for Rn is the Euclidean norm, ∥x∥:=
√

⟨x, x⟩. For x ∈ Rn, ∥x∥1=
∑n

i=1|xi| and |x|∈ Rn is
in the form |x|i= |xi|. We use λ(X) to represent the vector of eigenvalues of X , where λi(X) is
the ith largest eigenvalue of X . We also use σi(X) to present the ith largest singular value of X .
Then the nuclear norm on Rn1×n2 is defined as

∥X∥∗:= tr(
√
X⊤X) =

min{n1,n2}∑
i=1

σi(X).

1

We let ∥X∥:= σ1(X) denote the spectral norm of X , which is the dual norm of the nuclear norm.

A subset C of a vector space V is called a cone if it is closed under nonnegative scalar mul-
tiplication, that is, for every x ∈ C, and α ≥ 0, αx ∈ C. The dual cone of a cone C ⊆ V
defined over a space V with respect to an inner product ⟨·, ·⟩V : V ⊕ V → R, is denoted as
C∗ := {y ∈ V : ⟨x, y⟩V ≥ 0, ∀x ∈ C}, which is the set of elements in V whose inner product with
every element in C is positive. If not specifically mentioned, the space and inner product defining
the dual cone will be clear from the context. For example, when we are considering a cone in
Rn, its dual cone is defined over Rn with ⟨x, y⟩ := x⊤y by default. Similarly, for a cone in Sn,
its dual cone is defined over Sn with ⟨X, Y ⟩ := tr(XY) by default. Notice the dual cones of a
cone defined over different spaces with different inner products might be different. Consider the
nonnegative ray C := {x ∈ R : x ≥ 0} ⊆ R. Its dual cone C∗ defined over R with ⟨x, y⟩ = xy is
itself. However, if we embed C in R2, get C ′ := {x ∈ R2 : x1 ≥ 0, x2 = 0} ⊆ R2 and consider its
dual cone defined over R2 with ⟨x, y⟩ := x⊤y. Then C ′∗ = {y ∈ R2 : y1 ≥ 0}, which is different
from the embedding of C∗ in R2. Also, for C ′, its dual cone defined over R2 with inner product
⟨x, y⟩ := 2x1y1 + 5x2y2 − x1y2 − x2y1 is {y ∈ R2 : 2y1 ≥ y2}, which is different from C ′∗.
Note that Sn,Sn

+,Sn
++ are all cones, and the dual cone of Sn

+ defined over Sn with respect to tr(·)
is itself.

Let K ⊆ Rn be a closed convex cone. A convex cone G ⊆ K is a face of K if for every
u, v ∈ K such that (u+ v) ∈ G, we have u, v ∈ G.

Every nonempty face of Sn
+ is characterized by a unique subspace U of Rn such that the face

FU is written as [29]:
FU = {X ∈ Sn

+ : Null(X) ⊇ U}. (1.0.1)

Let 1 represent the vector of all ones, and let {e1, . . . , en} be the standard basis of Rn where
e1 =

[
1 0 . . . 0

]⊤
, . . . , en =

[
0 0 . . . 1

]⊤.

We call a matrix X ∈ Rn1×n2 diagonal if Xij = 0 for every i ̸= j. We let Diag(x) denote
a matrix in Sn such that Diag(x)ij = xi if i = j, and Diag(x)ij = 0 otherwise. By diag(X) ∈
Rmin{n1,n2}, we denote a vector with diag(X)i = Xii. A matrix X is called tridiagonal if Xij = 0
for every |i− j|> 1. Let Tn := {X ∈ Rn×n : Xij = 0,∀|i− j|> 1} denote the cone of tridiagonal
matrices, and we call a matrix X ∈ Rn×n tridiagonal if X ∈ Tn. Let En := {X ∈ Sn

+ : diag(X) =
1} be the set of n-by-n correlation matrices, and these convex sets are also called elliptopes. A
matrix X is lower-triangular if Xij = 0 for every j > i. A matrix X is upper-triangular if Xij = 0
for every j < i.

Given a linear map A : V → W, its adjoint A∗ is defined as a linear map A∗ : W → V
satisfying

⟨A∗(Y), X⟩ = ⟨Y,A(X)⟩,∀X ∈ V, Y ∈ W.

A centered ellipsoid in Rn is a set of the form

Λ := {x ∈ Rn : x⊤Ax ≤ 1}

where A ∈ Sn
+. Note that this definition allows for ellipsoidal hypercylinders (also called degen-

erate ellipsoids), in addition to ellipsoids. That is, we only require A to be symmetric positive

2

semidefinite instead of being symmetric positive definite. We say a centered ellipsoid Λ passing
through v ∈ Rn if v⊤Av = 1.

For two matrices M,N ∈ Rn1×n2 , their Hadamard product M ◦ N ∈ Rn1×n2 is given by
(M ◦N)ij = MijNij .

For a subspace U of Rn, U⊥ represents its orthogonal complement which is the set of vectors
that are orthogonal to every vector in U . Let PU denote the projection matrix onto the subspace U .

Given a simple undirected graph G = ([n], E), |E|= p, we define a linear map

SparseMatG : Rn ⊕ Rp → Sn

by letting diagonal entries of SparseMatG(u, v) to be ui, and off-diagonal entries corresponding
to E to be vk. That is, SparseMatG(u, v)ij = 0 if i ̸= j and ij /∈ E. Hence, we require a bijection
between [p] and E. We say a matrix X ∈ Sn has a sparsity pattern G if there exists u, v such that
SparseMatG(u, v) = X .

Theorem 1.0.1 (Cholesky Decomposition Theorem [13]). Let X ∈ Sn. Then

1. X ⪰ 0 if and only if there exists lower-triangular L ∈ Rn×n such that X = LL⊤.

2. X ≻ 0 if and only if there exists lower-triangular and nonsingular L ∈ Rn×n such that
X = LL⊤.

Corollary 1.0.2 (Square-root-free Cholesky Decomposition Theorem [26]). Let X ∈ Sn. Then

1. X ⪰ 0 if and only if there exists lower-triangular L ∈ Rn×n and d ≥ 0 such that X =
LDiag(d)L⊤.

2. If X ≻ 0 if and only if there exists lower-triangular, nonsingular L ∈ Rn×n and d > 0 such
that X = LDiag(d)L⊤.

1.1 Semidefinite Programming

Given C ∈ Sn, b ∈ Rm and a linear transformation A : Sn → Rm, the semidefinite programming
(SDP) in standard equality form is defined as:

inf ⟨C,X⟩
s.t. A(X) = b

X ⪰ 0,

(SDP)

and its dual is defined as:

sup ⟨b, y⟩
s.t. A∗(y) + S = C

S ⪰ 0,

(SDD)

3

where A∗ : Rm → Sn is the adjoint of A.

For every linear map A : V → W, there exists A1, . . . , Am ∈ Sn such that

[A(X)]i = ⟨Ai, X⟩ = tr(AiX),∀i ∈ [m]

and thus A∗(y) =
∑m

i=1 yiAi. Then, we can rewrite the SDP problems as:

inf tr(C,X)

s.t. tr(AiX) = bi,∀i ∈ [m]

X ⪰ 0,

and its dual is defined as:

sup b⊤y

s.t.
m∑
i=1

yiAi + S = C

S ⪰ 0.

A trace constrained SDP is a special form of SDP with constraints on the trace of the matrix.
Define

Γn = {X ∈ Sn : tr(X) = 1 and X ⪰ 0}.

Given matrices C,A1, . . . , Ad ∈ Sn, b ∈ Rd and a constant α ∈ R+ (or Z+ sometimes), we have
the following trace-constrained SDP:

min tr(CX)

s.t. tr(AiX) = bi, for i = 1, . . . , d

X ∈ αΓn.

Given a pair of SDP in standard equality forms, we can determine when the optimal value is
attained. Before that, let us consider a useful definition.

Definition 1.1.1. We say (SDP) has a Slater point or satisfies the Slater condition, if there exists a
X ∈ Sn

++ such that A(X) = b. We say (SDD) has a Slater point or satisfies the Slater condition,
if there exists a y ∈ Rn and S ∈ Sn

++ such that A∗(y) + S = C.

Now, we provide a theorem which characterizes the optimal value of an SDP given conditions
on the optimal value and Slater point of its dual.

Theorem 1.1.2 (Strong Duality Theorem [29]). Suppose (SDD) has a Slater point and the objective
value of (SDD) is bounded from above. Then (SDP) attains its optimal value and the optimal values
of (SDP) and (SDD) are the same.

Now, we consider the case that both the primal and the dual have Slater points.

4

Theorem 1.1.3. [29] If both (SDP) and (SDD) have Slater points, then they both attain their
optimal values and their optimal values are equal. Also, X, (y, S) are optimal for (SDP) and
(SDD) respectively if and only X is feasible for (SDP), (y, S) is feasible for (SDD) and XS = 0.

1.2 Convex Programming in Conic Form

A convex programming in conic form problem is a convex optimization problem written as min-
imizing a convex function over the intersection of an affine subspace and a convex cone. In this
thesis, we only consider the convex programmings in conic form with a linear objective function
and write them as:

inf ⟨c, x⟩
s.t. A(x) ⪰G b

x ⪰K 0,

(ConicP)

where A : W1 → W2 is a given linear map from a vector space W1 to another vector space W2,
and c ∈ W1, b ∈ W2 are given. Also, G ⊆ W1, K ⊆ W2 are two closed convex cones. For any
closed convex cone G, we use a ⪰G b to denote a − b ∈ G. Then the corresponding dual of this
problem is defined as:

sup ⟨b, y⟩
s.t. A∗(y) ⪯K∗ c

y ⪰G∗ 0.

(ConicD)

For the SDP in standard equality forms, we have K = Sn
+ and G = {0} ⊆ Rm, where K∗ = Sn

+ is
defined with the inner product ⟨X, Y ⟩ := tr(X⊤Y) and G∗ = Rm is defined with the inner product
⟨x, y⟩ := x⊤y.

Now we define the relative interior points of a set and consider the Slater conditions and Strong
Duality Theorem for convex programming in conic form.

Definition 1.2.1. Given a set S, its relative interior is defined as

relint(S) := {x ∈ S : ∃ϵ > 0 such that Bϵ(x) ∩ aff(S) ⊆ S},

where aff(S) is the affine hull of S and Bϵ(x) is a ball centered at x with radius ϵ.

Definition 1.2.2. We say (ConicP) has a Slater point or satisfied the Slater condition, if there exists
a x ∈ relint(K) such that A(x) − b ∈ relint(G). We say (ConicD) has a Slater point or satisfied
the Slater condition, if there exists a y ∈ relint(G∗) such that c−A∗(y) ∈ relint(K∗).

Now, we provide a theorem which characterizes the optimal value of a convex programming in
conic form given conditions on the optimal value and Slater point of its dual.

Theorem 1.2.3 (Strong Duality Theorem [16]). Suppose (ConicD) has a Slater point and the ob-
jective value of (ConicD) is bounded from above. Then (ConicP) attains its optimal value and the
optimal values of (ConicP) and (ConicD) are the same.

5

Now, we consider the case that both the primal and the dual have Slater points.

Theorem 1.2.4. [16] Assume that both (ConicP) and (ConicD) have Slater points. Then they both
attain their optimal values and their optimal values are equal. Also, x, y are optimal for (ConicP)
and (ConicD) respectively if and only x is feasible for (ConicP), y is feasible for (ConicD) and
⟨A(x)− b, y⟩ = 0 and ⟨x, c−A∗(y)⟩ = 0.

Notice that, we have the Strong Duality Theorem holds when the Slater conditions for the pri-
mal and the dual are satisfied, then both the primal and dual problems attain their optimal solutions
and they are equal. Hence, if we consider the complementary slackness conditions, we have

⟨A(x)− b, y⟩+ ⟨x, c−A∗(y) = ⟨c, x⟩ − ⟨b, y⟩ = 0

which is equivalent to
⟨A(x)− b, y⟩ = 0 and ⟨x, c−A∗(y)⟩ = 0

under cone constraints.

1.3 Affine Rank Minimization and Computational Complexity

In this section, we introduce some problems related to and motivating the thesis. We first introduce
the affine rank minimization problem which aims to minimize the rank of a matrix over an affine
space, and then we show that this problem is NP-hard. After that, we introduce some relaxations
of it and their applications.

1.3.1 Computational Complexity

We begin with a special case of affine rank minimization problem, then we provide the general
problem. We also prove the NP-hardness of the special case which automatically proves the NP-
hardness for the general problem.

Let ρ(x) be the number of nonzeros in the vector x ∈ Rn. Consider the problem: given
A ∈ Rn1×n2 , b ∈ Rn1 ,

min ρ(x)

s.t. Ax = b.

This is called the vector cardinality minimization problem (VCM), which aims to find the sparsest
vector in an affine space and it is known to be an NP-hard problem [20]. This result is proven
by a reduction from exact cover by 3 sets problem (X3C). Given a set S, and a collection C of
3-subsets (subsets with cardinality 3) of S, X3C determines if there is a subset Ĉ of C such that
every element of S appears exactly once in Ĉ. X3C is shown to be equivalent to a special case of
the 3 dimensional matching problem (3DM), and that case of 3DM is proven to be NP-complete
by reduction from the famous 3-satisfiability problem (3SAT) [11].

6

Proposition 1.3.1. The VCM is NP-hard.

Proof. We show that X3C is reducible to VCM [20], which shows that VCM is NP-hard. Given
an instance of X3C with S := {s1, . . . , sn1}, C := {c1, . . . , cn2} and |ci|= 3,∀i ∈ [n2], without
loss of generality, assume n1 is a multiple of 3. Define A ∈ Rn1×n2 where Aij = 1 if sj ∈ Ci and
Aij = 0 otherwise. Let b be 1 ∈ Rn1 .

We show that the VCM with given A, b has a solution with at most n1/3 nonzero entries if and
only if the given X3C has a solution. If the VCM has a solution x with n1/3 or fewer nonzero
entries, then Ax = b = 1. By definition, each column of A has three nonzero entries, so x has
at least n1/3 nonzero entries. That is, x has exact n1/3 nonzero entries. Let Ĉ := {ci : xi ̸= 0}.
Since Ĉ covers S and its size is n1/3, so it is an exact cover of S. If the given X3C has a solution Ĉ,
then let x ∈ Rn2 be the indicator vector of the solution, that is, if ci ∈ Ĉ, xi = 1, otherwise xi = 0.
Then Ax = 1 = b by the definition of X3C, so VCM has a solution x with ρ(x) = n1/3.

When we generalize the vector variable in the problem to a matrix variable, we get the gen-
eral rank minimization problem over an affine space, which is called the affine rank minimization
problem [21]:

min rank(X)

s.t. A(X) = b,

X ∈ Rn1×n2 ,

where the vector b ∈ Rp and the linear map A : Rn1×n2 → Rp are given . This problem is also
NP-hard because the VCM problem is reducible to it. We can see this by restricting X to be a
diagonal matrix represented by Diag(x), so the rank of Diag(x) is the number of nonzero diagonal
entries, ρ(x). Then consider the linear map A such that [A(Diag(x))]i = tr(Diag(di)Diag(x)) for
some given di ∈ Rn, where tr(X) is the trace of a matrix X . Then A(Diag(x)) = b is equivalent
to Ax = b, where A =

[
d1 . . . dp

]⊤. Then, the problem

min ρ(x)

s.t. Ax = b, x ∈ Rn

is equivalent to

min rank(X)

s.t. A(X) = b,

X −Diag(diag(X)) = 0,

X ∈ Rn×n,

where the map

A′ : Rn×n → Rp ⊕ Rn×n,

A′(X) =

[
A(X)

X −Diag(diag(X))

]

7

is a linear map. Hence, every VCM can be written in the form of an affine rank minimization
problem, which implies that the general affine rank minimization problem is NP-hard.

1.3.2 Matrix Completion Problem

A special case of affine rank minimization problem is Matrix Completion Problem. It aims to
recover an n1 × n2 matrix M when only some (say m) of its entries are observed. We assume M
to be a low-rank matrix, otherwise, say M is an n × n matrix with linearly independent columns,
then it is impossible to recover it without receiving more information. For example, consider

recovering a rank 2 matrix
[
1 a
b 1

]
, there are infinitely many choices for a, b. Also, if the observed

entries are not uniformly distributed, we are not able to recover the matrix. For example, consider
1 0 0 ∗
0 1 0 ∗
0 0 1 ∗
∗ ∗ ∗ ∗

, there are infinitely many choices for the last column and row. When enough entries

are observed and sufficiently uniformly distributed, we consider the main problem

min rank(X)

s.t. Xij = Mij, (i, j) ∈ Ω,
(1.3.1)

where Ω is the set of indices of the observed entries.

This problem is a special case of the affine rank minimization problem and it is also NP-hard
in general, see Theorem 7 in [25]. We give some known related problems, which might be solved
efficiently.

1. First, in many papers (for example, [3]), the following relaxation was introduced:

min ∥X∥∗
s.t. Xij = Mij, (i, j) ∈ Ω,

(1.3.2)

where X ∈ Rn1×n2 . Notice that the singular values are all nonnegative and a matrix with
rank r has r non-zero singular values. In this way, the objective function can be viewed
as a convexification because the nuclear norm is the convex envelope of the rank function
within the unit ball of matrices with respect to spectral norm [9]. Note if we restrict X to be
symmetric, then the nuclear norm can be written as ∥X∥∗=

∑n
i=1|λi(X)|= ∥λ(X)∥1. When

X is required to be symmetric and positive semidefinite, ∥X∥∗= tr(X), then (1.3.2) is in
the standard form of SDP.

2. The rank(·) function can also be put in the constraints. That is,

min α

s.t. Xij = Mij, (i, j) ∈ Ω

rank(X) ≤ α,

(1.3.3)

8

or we can let the objective function be a constant and find feasible solutions for fixed small α.
For this problem, the key is whether it is possible to do relaxations for rank(X), especially
when the underlying matrix M is a positive semidefinite matrix (or we define X over the
positive semidefinite cone). A possible relaxation is changing rank(X) to ∥X∥∗, then this
problem becomes a trace-constrained SDP problem when X is required to be symmetric
positive semidefinite. Further note that such an SDP is a convex relaxation of (1.3.3) where
the objective function is kept the same and nonconvex feasible region is replaced by a convex
set containing it.

There are many possible applications of the matrix completion problem. Here, we mention just
two:

1. The Netflix problem [33]: Netflix provided a data set of ratings of 17779 movies given by
48189 users. Each rating was an integer from 1 to 5. People were given parts of the data
and asked to predict the missing entries. This data set could be put into a matrix where users
are treated as rows of the data matrix and movies as the columns of the matrix. In this way,
this problem becomes a matrix completion problem where the given ratings are the given
entries, and the rest are the missing ones. It looks for a low-rank matrix because a low-rank
matrix can be stored more efficiently and it is believed that only a few factors contribute to a
person’s movie preferences.

2. Triangulation from incomplete data [3]: Suppose we have some sensors randomly distributed
in a region. Each sensor can only estimate the distance from its nearest fellow sensors by
signal strength. Then a partially observed distance matrix can be formed. We can estimate
the complete distance matrix whose rank will be two if the sensors are in a plane or three if in
a 3-dimensional space [27, 19]. For example, we can let V be the set of sensors and consider
Xi ∈ R|V |×2 for every i ∈ {1, . . . , |V |}, and [Xi]j1 = (vi1 − vj1), [Xi]j2 = (vi2 − vj2) for
every j ∈ {1, . . . , |V |} and then U = [X⊤

1 . . . X⊤
|V |]

⊤ ∈ R|V |2×2 has rank at most 2 and the
diagonal entries of UU⊤ describe the squares of distances of each pair of sensors. In this
case, we only need to a few entries to reconstruct the original distances matrix. When we are
reconstructing the original distances matrix UU⊤, we aim to find a matrix with rank as small
as possible. If we find a matrix with rank 2, then it is very likely we recover the original
matrix.

1.4 Minimum Trace Factor Analysis (MTFA) problem

We consider minimum trace factor analysis (MTFA) problem in this section. It aims to minimize
the trace when we modify the diagonal entries of a given matrix and keep the resulting matrix
positive semidefinite. MTFA is a famous and tractable problem which has been studied for almost
a century [18]. We show how it is related to low-rank plus sparse decomposition problem and how
it motivates other problems we consider in this thesis. Consider an MTFA:

min
x∈Rn

1
⊤x

s.t. Σ0 +Diag(x) ⪰ 0,

9

where Σ0 is a given matrix in Sn. Note MTFA is an SDP. Della Riccia and Shapiro [7, Theorem
4] showed that when MTFA has a solution, it has a unique optimal solution. Some interpretations
of this problem are from the Factor Analysis Model in Statistics [1], which was studied since
1904 [28]. Factor Analysis Model considers K,M ∈ Rn×m such that Kij is the ith observation
of the jth individual and Mij = µi is the observation mean of the ith observation, then write
K −M = LF + ε where L ∈ Rn×k, F ∈ Rk×m, ε ∈ Rn×m, F is an unknown factor matrix, ε is
an error term and then look for the underlying L. By assuming F, ε are independent, E(F) = 0,
and Cov(F) = I , we have Cov(K − M) = LL⊤ + Cov(ε) where Cov(ε) is a diagonal matrix
because columns of ε are assumed to be independent error terms. The dual problem of MTFA is

max ⟨−Σ0, X⟩
s.t. diag(X) = 1,

X ⪰ 0.

Note this primal-dual pair of SDP commonly arises in other contexts as well. For example, we
consider the MaxCut problem in SDP form [12]. Given a simple graph G := (V,E), and a weight
vector w ∈ RE

+, find a set U ⊆ V such that∑
{i,j}∈δ(U)

wij is maximized,

where δ(U) := {{i, j} ∈ E : i ∈ U, j ∈ V \ U}. Then with n := |V |, let us represent each cut
(U, V \ U) by a vector u ∈ {1,−1}n, where

ui =

{
1, if i ∈ U,

−1, if i /∈ U.

And set wij = 0 for every {i, j} /∈ E, then the MaxCut problem can be represented as:

max
1

4

∑
i∈V

∑
j∈V

wij(1− uiuj)

s.t. u ∈ {1,−1}n.

If we define W ∈ Sn with Wij := wij , then MaxCut problem can be written as

max
1

4
⟨W,11⊤⟩ − 1

4
⟨W,X⟩

s.t. diag(X) = 1

X ⪰ 0

rank(X) = 1

10

Note the only nonconvex constraint here is rank(X) = 1, which is a constraint we may relax and
we then get:

max − 1

4
tr(WX)

(
+
1

4
1
⊤W1

)
s.t. diag(X) = 1,

X ⪰ 0

which is a special case of the dual problem of MTFA, and its dual is defined as:

min 1⊤y

(
+
1

4
1
⊤W1

)
s.t. Diag(y) +

1

4
W ⪰ 0

which is a special case of MTFA.

Note MTFA is minimizing 1
⊤x, in another way, it is minimizing tr(Σ0 + Diag(x)). Since

Σ0 + Diag(x) ⪰ 0, the objective function is equivalent to ∥Σ0 + Diag(x)∥∗, which is the convex
envelope of rank(Σ0 +Diag(x)) within the unit ball of matrices with respect to spectral norm [9].
The convex envelop f̂ of f : C → R, where C is convex, is defined as

f̂ := sup{g(x) : g is convex and g(y) ≤ f(y), ∀y ∈ C}.

Now we consider an equivalent form of MTFA, which is

min
x∈Rn,L∈Sn

tr(L)

s.t. Σ0 = L+Diag(x),

L ⪰ 0.

Note that this form minimizes tr(L) = tr(Σ0)−1
⊤x which is equivalent to minimizing 1⊤x in the

original form after changing the sign of x, and the constraints are equivalent to the original MTFA.
With this form, we can see that it is a relaxation of

min
x∈Rn,L∈Sn

rank(L)

s.t. Σ0 = L+Diag(x),

L ⪰ 0.

Since a diagonal matrix is clearly sparse, this is a low-rank plus sparse decomposition problem,
which aims to write a matrix as a sum of a low-rank symmetric positive semidefinite matrix and a
sparse matrix. Results and analysis in [4] can apply to the problem above. We can also interpret
MTFA as a positive semidefinite matrix completion problem where the off-diagonal entries are
given by Σ0 and diagonal entries are to be determined.

As we will see below, many problems can be relaxed as an MTFA problem. Another equivalent
form of (1.3.1) is discussed in ”Statistical inference of semidefinite programming” by Alexander

11

Shapiro [24]:

min
X∈VΩ

rank(M+X)

s.t.M+X ⪰ 0,
(1.4.1)

where M ∈ Sp, p = n1 + n2, and it is in the form M =

[
0 M ′

M ′⊤ 0

]
, where M ′ ∈ Rn1×n2 ,

M ′
ij = Mij,∀(i, j) ∈ Ω and 0 otherwise. Here,

VΩ := {X ∈ Sp : Xij = 0, (i, j) ∈ Ω′}

where Ω′ :=
⋃

(i,j)∈Ω{(i, n1 + j), (n1 + j, i)} is the set of indices corresponding to the known
entries of M.

Proof of equivalence between (1.3.1) and (1.4.1) [24]. First, consider an arbitrary solution Y of
(1.3.1) with rank r. By singular value decomposition, it can be written as Y = VW⊤, where V,W
are matrices with orders n1 × r, n2 × r and a common rank r. Then consider

X := UU⊤ −M, where U :=

[
V
W

]
, i.e. X =

[
V V ⊤ Y −M ′

(Y −M ′)⊤ WW⊤

]
This matrix X is feasible for (1.4.1) and rank(X +M) = rank(UU⊤) = r. Hence, the optimal
value of (1.4.1) is less than or equal to the optimal value of (1.3.1).

Now let X be a feasible point of problem (1.4.1) and r = rank(X+M), then X+M = UU⊤

for some p × r matrix U of rank r. Partition U into V,W as above, then Y = VW⊤ is feasible
for (1.3.1) with rank(Y) ≤ r because V has r columns. That is, the optimal value of (1.3.1) is
less than or equal to the optimal value of (1.4.1). So the optimal values of these two problems are
equal.

Also the above transformation can be approximated by

min
X∈VΩ

tr(X)

s.t. M+X ⪰ 0
(1.4.2)

by relaxing rank(M+X) to tr(M+X) = tr(X). And when X is restricted to being a diagonal
matrix, this problem becomes an MTFA problem.

We have seen the low-rank plus sparse decomposition problem. It provides a more efficient
way to store the information and also helps us to interpret the given data matrix. In Chapter 2,
we extend the low-rank plus diagonal decomposition problem to the low-rank plus tridiagonal
decomposition problem, which allows us to control the entries right above and under the diagonal
entries. For some applications, low-rank plus diagonal decompositions use the low-rank matrix to
represent the main factors and the diagonal matrix to present some noises or variables which are
assumed to be independently and identically distributed. For this setting, tridiagonal generalization
allows the ith variable to be possibly dependent on the (i− 1)th and/or (i+1)th variables but none

12

of the others. This structure arises in applications like time-dependent models or truss design (as a
rough approximation). Also for some applications, it might be reasonable to give different weights
to the diagonal entries of the tridiagonal matrix and the other entries of it.

There are some algorithms solving some problems we mentioned above exactly. For example,
in the paper “Exact Matrix Completion via Convex Optimization” by Emmanuel J. Candès and
Benjamin Recht [3], it was proven that the Matrix Completion problem can be solved exactly un-
der some conditions with high probability. Also, for general large-scale and weakly constrained
SDPs, Yurtsever et. al provided a provably correct randomized algorithm which solves them effi-
ciently [34].

The structure of the remainder of this thesis is as follows. In Chapter 2, we introduce the low-
rank plus diagonal decomposition, one of its relaxations and the realizability, the recoverability
and the ellipsoid fitting property of a subspace. Then we study the low-rank plus tridiagonal de-
composition and provide an optimality condition for one of its relaxations. We extend the three
properties of the low-rank plus diagonal decomposition to the low-rank plus tridiagonal decompo-
sition. In Chapter 3, we study the coherence of a subspace and provide a condition on it which is
sufficient for the realizability of a subspace with respect to the low-rank plus tridiagonal decompo-
sition problem. We then provide some computational examples to verify the condition and study
the realizability of one-dimensional subspaces. In Chapter 4, we provide an algorithm to solve the
low-rank plus tridiagonal decomposition problem in polynomial time when the optimal value is
bounded by an absolute constant. Finally, in Chapter 5, we generalize a relaxation of the low-rank
plus tridiagonal decomposition problem to a convex programming in conic form and consider the
general low-rank plus sparse matrices decomposition problem. Then we summarize the thesis and
discuss some future research directions.

13

Chapter 2

Subspace Realizability, Recoverability and
Ellipsoid Fitting

In the first section of this chapter, we introduce the diagonal perturbation problem, which aims to
minimize the rank of a positive semidefinite matrix by perturbing its diagonal entries. We then in-
troduce the definitions of subspace realizability, subspace recoverability, ellipsoid fitting property,
which describe the uniqueness of an optimization problem, characterize faces of the elliptopes and
show if the columns of certain matrices can be passed through exactly by an ellipsoid respectively.
After that, we show these three definitions are equivalent. This section is an exposition of the
results in [22].

In the second section, we move to the tridiagonal perturbation problem, which allows us to
also perturb the tridiagonal entries while minimizing the rank of the resulting positive semidefinite
matrix. Then, we consider a relaxation of the problem with and without a regularization term on
the absolute values of the perturbation and develop the conditions for the uniqueness of optimal
solutions. After that, we extend the definitions of subspace realizability, subspace recoverability,
ellipsoid fitting property to the tridiagonal case and prove they are equivalent.

2.1 Diagonal Perturbation

Recall the low-rank plus sparse matrices decomposition problem and some of its applications.
For example, after the decomposition of a given matrix A as the sum of a sparse matrix S and a
low-rank matrix L, the cost to store the matrix A is reduced by storing the sparse matrix S and the
low-rank matrix L instead. Then, the solutions of associate linear systems Ax = b can be computed
efficiently by only considering the sparse matrix and a basis for the column space of the low-rank
matrix. Also, if the matrix is built from real data or measurements, such as the covariance matrix
of a sample, it might give some useful interpretations for the data, like the direction of arrival
estimation in [22]. For this section, we focus on the low-rank plus diagonal decomposition, which
is discussed when we presented MTFA. The factor analysis model studied by Spearman brings this

14

decomposition problem [28]. We can write the problem as: given A ∈ Sn,

min
x∈Rn,L∈Sn

rank(L)

s.t. A = L+Diag(x)

L ⪰ 0,

which can be written in an equivalent form, the diagonal perturbation problem,

min rank(A+Diag(y))

s.t. A+Diag(y) ⪰ 0

y ∈ Rn.

and we may and do assume diag(A) = 0 for this form. This form shows that the problem is mini-
mizing the rank of a positive semidefinite matrix when a given matrix A is fixed and a perturbation
on the diagonal entries is allowed. Like the matrix completion problem, we may relax this prob-
lem by replacing the rank function with the nuclear norm. Then for every feasible solution y, since
A + Diag(y) ⪰ 0, we have y ≥ 0 and ∥A + Diag(y)∥∗= tr(A + Diag(y)) = ⟨1, y⟩, so we can
write the relaxed problem as

min ⟨1, y⟩
s.t. A+Diag(y) ⪰ 0

y ∈ Rn.

Note we can write L = A + Diag(y) = A − Diag(−y). Then, by replacing A + Diag(y) in the
problem above by A− Diag(−y) and replacing min⟨1, y⟩ by −max⟨1,−y⟩, change y to −y and
dropping the “−” in the objective function, we obtain a problem with the negative optimal value
and the same feasible region:

max ⟨1, y⟩
s.t. L+Diag(y) = A

L ⪰ 0

y ∈ Rn

(MTFA)

whose dual is defined as

min ⟨A,X⟩
s.t. diag(X) = 1

X ⪰ 0.

(MTFAD)

Notice now, the dual problem (MTFAD) is in the standard equality form of SDP.

With (MTFA), we consider three problems [22]:

1. Suppose X∗ ∈ Sn can be written in the form of X∗ = L∗+Diag(y∗), where L∗ is symmetric
positive semidefinite. What properties or conditions of (L∗, y∗) will ensure that (L∗, y∗) is

15

the unique optimal solution of (MTFA) with the input A = X∗?

2. Recall that FU in (1.0.1) is defined as the face of Sn
+ defined by a subspace U of Rn. We

have that every face of En, the set of correlation matrices, is in the form

En ∩ FU = {X ⪰ 0 : Null(X) ⊇ U , diag(X) = 1},

where U is a subspace of Rn. However, for some subspace U of Rn, the set En ∩ FU is
empty. For example, consider U = span{e1}, there is no X ∈ En such that Null(X) ⊇ U ,
so En ∩ FU = ∅. Thus, another problem is, which subspaces define a nonempty face of En?

3. Consider the lemma:

Lemma 2.1.1. [22] Suppose V is a k×n matrix with row space V . If there exists a centered
ellipsoid in Rk passing through each column (which is a point in Rk) of V , then for every
matrix W with row space V , there exists a centered ellipsoid passing through all columns of
W .

The above lemma shows that, given v1, . . . , vn ∈ Rk, the row space of the matrix [v1, . . . , vn]
decides if it is possible to fit an ellipsoid to v1, . . . , vn. Then we consider the problem: for
which subspaces V of Rn, do there exist a positive integer k and a k × n matrix V with row
space V and a centered ellipsoid passing through all its columns?

Being motivated by the three problems above, we consider the following three definitions [22]:

Definition 2.1.2.

1. A subspace U of Rn is diagonally recoverable by MTFA if for every y∗ ∈ Rn and every
L∗ ∈ Sn with column space U , (L∗, y∗) is the unique optimal solution of (MTFA) with input
A = Diag(y∗) + L∗.

2. A subspace U of Rn is diagonally realizable if there exists a correlation matrix Q ∈ En such
that Null(Q) ⊇ U .

3. A subspace V of Rn has the ellipsoid fitting property if there exists V ∈ Rk×n with row space
V such that there is a centered ellipsoid in Rk passing through each column of V .

The following proposition shows that these three definitions are equivalent:

Proposition 2.1.3. [22] Let U be a subspace of Rn, then the following are equivalent:

1. U is diagonally recoverable.

2. U is diagonally realizable.

3. U⊥ has the ellipsoid fitting property.

16

Definition 2.1.4. Given a subspace U of Rn, we say (A1, y1, L1),(A1, y1, L1) ∈ Sn ⊕ Rn ⊕ Sn
+

are equivalent with respect to U if col(L1) = col(L2) = U and (L1, y1), (L2, y2) are the unique
optimal solutions of (MTFA) with input A1 = Diag(y1) + L1, A2 = Diag(y2) + L2 respectively.

In the definition above, each equivalence class is defined by a subspace U of Rn. Given an
instance (A∗, y∗, L∗) ∈ Sn ⊕ Rn ⊕ Sn

+ of one such equivalence class, we first obtain the corre-
sponding subspace U = col(L∗). Then for every L ∈ Sn

+ with col(L) = U and every y ∈ Rn, we
have that (Diag(y) + L, y, L) is in the equivalence class. For example, if an instance (A∗, y∗, L∗)
is given, then α(A∗, y∗, L∗) is also in the equivalence class for every α > 0.

Proposition 2.1.5. A subspace U of Rn is diagonally recoverable if and only if there exists a
nonempty equivalence class in Sn ⊕ Rn ⊕ Sn with respect to U .

Proof. Assume U is diagonally recoverable. By the definition of U being diagonally recoverable
and picking arbitrary y∗ ∈ Rn and positive semidefinite L∗ ∈ Sn with column space U , we know
(L∗, y∗) is the unique optimal solution of (MTFA) with input A = Diag(y∗) + L∗. Notice such
L∗ exists because we can consider a projection matrix onto PU . Then we know there exists an
equivalence class with respect to U containing (Diag(y∗) + L∗, y∗, L∗).

Now assume there exists a nonempty equivalence class with respect to U , then there exists y∗

and L∗ with column space U , such that (L∗, y∗) is the unique optimal solution of (MTFA) with
input A = Diag(y∗) + L∗. Since (MTFA) and (MTFAD) are strictly feasible, by Theorem 1.1.3,
we know (y∗, L∗) is an optimal solution of (MTFA) if and only if there exists a feasible solution Q
of (MTFAD) such that QL∗ = 0. Since col(L∗) = U , we know U ⊆ Null(Q), so U is diagonally
realizable by definition, hence by Prop. 2.1.3, U is diagonally recoverable.

2.2 Tridiagonal Symmetric Positive Semidefinite Matrices

Being motivated by the diagonal perturbation problem, we now consider the tridiagonal perturba-
tion problem, which allows us to perturb more entries. In this section, we introduce some properties
of positive semidefinite tridiagonal matrices. We then define tridiagonal perturbation problems
with and without a regularization term and analyze their optimality conditions. After that, we
discuss the recoverability, realizability and ellipsoid fitting property for the tridiagonal case.

Recall that Tn is the space of n-by-n tridiagonal matrices. Note that Tn is isomorphic to R3n−2

by mapping all its 3n − 2 possibly nonzero entries to R3n−2. Similarly, Tn ∩ Sn is isomorphic to
R2n−1. We also define

Kn :=

{
X ∈ Tn :

(
Xii Xi(i+1)

X(i+1)i X(i+1)(i+1)

)
⪰ 0,∀i ∈ [n− 1]

}
,

Bi := {X ∈ Sn
+ : Xjk = 0,∀(j, k) /∈ {(i, i), (i, i+ 1), (i+ 1, i), (i+ 1, i+ 1)}},∀i ∈ [n− 1].

17

Lemma 2.2.1. Let X ∈ (Tn ∩ Sn
+). Then, there exist ℓ ∈ Rn−1 and d ∈ Rn

+ such that

X =



1

ℓ1 1 0
ℓ2 1

.

0 ℓn−1 1




d1

d2 0
. . .

0 dn





1 ℓ1

1 ℓ2 0
1

. . .

. . . ℓn−1

0 1


.

Moreover, X can be expressed as
∑n−1

i=1 λiX
(i) where λ ∈ Rn−1

+ ,
∑n−1

i=1 λ = 1, X(i) ∈ Bi, i ∈
{1, . . . , n− 1}.

Proof. By the square-root-free Cholesky Decomposition and Corollary 1.0.2, we can express X as

X = LDL⊤,

where D = Diag(d) is a diagonal matrix with d ≥ 0 and L is a lower-triangular matrix with
diagonal entries all being 1. Let Li represent the ith column of L, then

X =
n∑

i=1

di(LiL
⊤
i).

Without loss of generality, we assume di ̸= 0 for every i ∈ [n]. We claim L is a tridiagonal matrix
(i.e. L ∈ Tn). We prove it by doing an induction on i, consider d1L1L

⊤
1 and without loss of

generality, assume [L1]3 ̸= 0, then X31 = d1[L1]3 ̸= 0, X /∈ Tn, then we reach a contradiction, so
L1L

⊤
1 ∈ B1. Consider L1L

⊤
1 ∈ B1 as the base case and assume that for an i ∈ [n], LjL

⊤
j ∈ Bj for

all j < i. For contradiction, suppose LiL
⊤
i /∈ Bi, without loss of generality, say [Li]i+2 ̸= 0. Then,

since LjL
⊤
j ∈ Bj for every j < i and [Lk]i = 0 for every k > i, we have X(i+2)i = di([Li]i+2)∗1 ̸=

0, which contradicts X ∈ Tn. Hence, when LjL
⊤
j ∈ Bj for every j < i, we have LiL

⊤
i ∈ Bi, so L

is a tridiagonal matrix. Hence, we can write X as

X = d1


1
ℓ1
0
...
0


[
1 ℓ1 0 · · · 0

]
+d2



0
1
ℓ2
0
...
0


[
0 1 ℓ2 0 · · · 0

]
+ · · ·+dn


0
...
0
1

 [
0 · · · 0 1

]
.

The ith term is in Bi for i < n− 1. And the sum of the last two terms is

dn−1


0
...
0
1

ℓn−1


[
0 · · · 0 1 ℓn−1

]
+ dn


0
...
0
1

 [
0 · · · 0 1

]
,

18

which is in Bn−1. Then with d̃ :=
∑n

i=1 di, we have

X =
n−2∑
i=1

di

d̃
(d̃LiL

⊤
i︸ ︷︷ ︸

∈Bi

) +
dn−1 + dn

d̃
(d̃(Ln−1L

⊤
n−1 + LnL

⊤
n)︸ ︷︷ ︸

∈Bn

).

Lemma 2.2.1 is a special case of the following more general, well-known fact: all symmetric
positive semidefinite matrices with a chordal sparsity pattern admit zero fill-in Cholesky factoriza-
tion [10] (The above proof of Lemma 2.2.1 can be adopted with simple changes to provide a proof
for the general statement).

Next, we show that the cone of symmetric positive semidefinite tridiagonal matrices can be
decomposed as a Minkowski sum of 2-by-2 symmetric positive semidefinite matrices which are
suitably paddled with zeros. This result can also be generalized to the chordal sparsity pattern.

Proposition 2.2.2.
(Tn ∩ Sn

+) = B1 + · · ·+Bn−1

where the ” + ” here represents Minkowski addition.

Proof.

• (⊆) By Lemma 2.2.1, we can write any X ∈ (Tn ∩ Sn
+) as X =

∑n−1
i=1 λiX

(i), where
X(i) ∈ Bi and

∑n−1
i=1 λi = 1, λ ≥ 0. Since Bi are cones, X ∈ B1 + · · ·+Bn−1.

• (⊇) Let X = X1 + · · · + Xn−1 where Xi ∈ Bi. By the definition of Bi, it is clear that
X ∈ Tn ∩ Sn. And for every y ∈ Rn, we have

y⊤Xy = y⊤(X1 + · · ·+Xn−1)y = y⊤X1y︸ ︷︷ ︸
≥0

+ · · ·+ y⊤Xn−1y︸ ︷︷ ︸
≥0

≥ 0,

so X ∈ Sn
+. That is, X ∈ (Tn ∩ Sn

+).

As the next proposition shows, for some choices of the inner product and underlying space, the
dual cone of Tn ∩ Sn

+ contains the primal cone itself.

Proposition 2.2.3.
Tn ∩ Sn

+ ⊆ Kn = (Tn ∩ Sn
+)

∗

where the dual cone is defined over the space Tn, and with respect to the trace inner product.

Proof. Let X ∈ Tn ∩ Sn
+. Then, for every i ∈ [n− 1], the 2-by-2 symmetric submatrix[

Xii Xi(i+1)

X(i+1)i X(i+1)(i+1)

]
19

of X is PSD. Therefore, X ∈ Kn. Hence Tn ∩ Sn
+ ⊆ Kn.

Suppose S ∈ (Tn ∩ Sn
+)

∗. Note that, B1, . . . , Bn−1 ⊆ Tn ∩ Sn
+. Since S ∈ Tn (the dual cone

is defined over the space Tn), ⟨S,X⟩ ≥ 0 for every X ∈ ∪n−1
i=1 Bi. Hence, the projection of S onto

Bi is positive semidefinite for every i ∈ [n− 1], so S ∈ Kn which implies (Tn ∩ Sn
+)

∗ ⊆ Kn.

Then, we consider S ∈ Kn. Let X ∈ Tn ∩ Sn
+. By the Lemma 2.2.1, we can write X =∑n−1

i=1 λiX
(i) where X(i) ∈ Bi, λ ∈ Rn−1

+ . Then we have

⟨S,X⟩ =
n−1∑
i=1

λi︸︷︷︸
≥0

⟨S,X(i)⟩︸ ︷︷ ︸
≥0

≥ 0

Therefore, S ∈ (Tn ∩ Sn
+)

∗ which implies Kn ⊆ (Tn ∩ Sn
+)

∗. That is, Kn = (Tn ∩ Sn
+)

∗.

The inclusion above is strict. We can see that from the following example.

Example 2.2.4. Consider a matrix

A :=

4 4 0
4 5 5
0 5 5

 ∈ Kn

but [
1 −1 1

] 4 4 0
4 5 5
0 5 5

 1
−1
1

 = −4,

which implies A /∈ Sn
+.

The dual cone also has a connection to the matrix completion problem.

Lemma 2.2.5. [14] (Tn ∩ Sn
+)

∗ is the set of all symmetric tridiagonal matrices which are positive
semidefinite completable. That is, given S ∈ Tn,

S ∈ (Tn ∩ Sn
+)

∗ if and only if ∃Ŝ ∈ Sn
+ such that S = PTn(Ŝ)

where PTn represents the projection onto Tn which only keeps the tridiagonal part of a symmetric
matrix.

Proof. Let S ∈ (Tn ∩ Sn
+)

∗ = Kn. By Theorem 7 of [14], we know S is positive semidefinite
completable.

Let S = PTn(Ŝ), Ŝ ⪰ 0, then for every X ∈ Tn ∩ Sn
+, we have ⟨S,X⟩ = ⟨Ŝ, X⟩ ≥ 0, so S is

in (Tn ∩ Sn
+)

∗.

The last two results, Proposition 2.2.3 and Lemma 2.2.5 can also be generalized to the chordal
sparsity setting. For example, given a simple undirected graph G, the cone of positive semidefinite
matrices with sparsity pattern G is the dual cone of the cone of positive semidefinite completable
matrices with sparsity pattern G. Hence, all results presented in this section are generalizable to
the chordal sparsity setting.

20

2.3 Tridiagonal Perturbation Problem without Regularizations

We first introduce the low-rank plus tridiagonal decomposition problem, then consider the tridi-
agonal perturbation problem and one of its relaxations which only considers the diagonal entries
in the objective function. Then we prove the uniqueness of optimal solutions for this semidefinite
programming relaxation.

Given A ∈ Sn, a low-rank plus tridiagonal decomposition problem is defined as:

min rank(L)

s.t. L+ Y = A

L ⪰ 0

Y ∈ Tn ∩ Sn,

where we assume the integer n ≥ 2. By changing the sign of Y , we have

min rank(A+ Y)

s.t. A+ Y ⪰ 0

Y ∈ Tn ∩ Sn.

(2.3.1)

We introduced the general diagonal perturbation problem in the previous sections, now we have
a similar problem (2.3.1) where the tridiagonal entries (the diagonal entries and the entries right
above and below them, which we call bidiagonal entries for the rest of this thesis) are allowed to
be perturbed, we call this the tridiagonal perturbation problem. In this case, we have more control
over the entries and the positive semidefinite structure of a symmetric n-by-n matrix while the cost
of storing the decomposition is increased by n− 1. Also, we can treat this problem as a low-rank,
sparse decomposition problem, because for a large or even moderate n, a tridiagonal matrix is very
sparse. Since the tridiagonal perturbation problem is a generalization to the diagonal perturbation
problem, some techniques and results can also be generalized.

Now, for problem (2.3.1), instead of using Y ∈ Tn∩Sn, we use (u, v) ∈ Rn⊕Rn−1 to represent
Y .

Definition 2.3.1. We define a linear map BiDiag : Rn−1 → Sn, where

BiDiag(v) :=


0 v1 0
v1 0 v2

v2 0 . . .

0


and its adjoint bidiag : Sn → Rn−1.

We can represent bidiag(X) in terms of bidiagonal entries of X .

21

Remark 2.3.2.

bidiag(X) := BiDiag∗(X) = 2


X12

X23
...

X(n−1)n

 .

Proof. For every v ∈ Rn−1, X ∈ Sn, we have

⟨BiDiag(v), X⟩

=
n−1∑
i=1

vi(Xi(i+1) +X(i+1)i)

=
n−1∑
i=1

2viXi(i+1)

=⟨v,
[
2X12, . . . , 2X(n−1)n

]⊤⟩,
so we have BiDiag∗(X) = 2

[
X12, . . . , X(n−1)n

]⊤.

Definition 2.3.3. Given the linear maps above, we define TriDiag : Rn ⊕ Rn−1 → Sn, where

TriDiag(u, v) := Diag(u) + BiDiag(v)

and its adjoint tridiag(X) : Sn → Rn ⊕ Rn−1.

We can represent tridiag(X) in terms of diag(X) and bidiag(X).

Remark 2.3.4.

tridiag(X) := TriDiag∗(X) =

[
diag(X)
bidiag(X)

]
.

Proof. For every u ∈ Rn, v ∈ Rn−1, X ∈ Sn, we have

⟨TriDiag(u, v), X⟩

=
n∑

i=1

uiXii +
n−1∑
i=1

vi(Xi(i+1) +X(i+1)i)

=⟨u, diag(X)⟩+
n−1∑
i=1

2viXi(i+1)

=⟨u, diag(X)⟩+ ⟨v, bidiag(X)⟩

so we have TriDiag∗(X) =

[
diag(X)
bidiag(X)

]
.

22

Then for the problem (2.3.1), we again relax it by replacing the rank function by the nuclear
norm. Since our problem is defined over positive semidefinite matrices, ∥A + Y ∥∗= tr(A + Y).
Also, since A is fixed, the problem becomes

min ⟨1, u⟩
s.t. S = TriDiag(u, v) + A

S ⪰ 0

u ∈ Rn

v ∈ Rn−1

(2.3.2)

where 1 ∈ Rn, and its dual is defined as

max ⟨−A,X⟩

s.t. tridiag(X) =

[
1

0

]
X ⪰ 0.

(2.3.3)

Remark 2.3.5. For the dual problem, the constraints are on the tridiagonal entries of the matrix
X while the objective value only depends on the off-diagonal entries. Hence this problem is
equivalent to positive semidefinitely completing the tridiagonal matrix with ones on the diagonal
and zero on the bidiagonal entries while minimizing ⟨A,X⟩.

Proposition 2.3.6. Both the primal (2.3.2) and the dual (2.3.3) attain their optimal values and their
optimal values are equal.

Proof. The primal (2.3.2) is strictly feasible with any solution u ∈ Rn, v ∈ Rn−1 that makes the
matrix A+TriDiag(u, v) strictly diagonally dominant. The dual (2.3.3) is also strictly feasible with
the identity matrix In×n. Thus, by Theorem 1.1.3, we know both problems attain the same optimal
value, and X∗, (S∗, (u, v)∗) are optimal respectively if and only if they are feasible respectively
and S∗X∗ = 0.

In many convex optimization approaches to solve hard nonconvex problems, we solve a convex
relaxation of the original nonconvex problem. In such situations, if the objective function is linear
and there is no gap between the attained optimal values of the convex relaxation and the original
nonconvex problem, uniqueness of the optimal solution to the convex relaxation implies it is also
optimal for the original nonconvex problem. Here, our objective function is not linear (we are
minimizing the rank of a matrix); however, for recovery of a feasible solution to the original
nonconvex problem, we are in a similar situation. If the solution to the SDP relaxation is not
unique, then in addition to the lowest rank optimal solutions to the SDP relaxation, we will have
infinitely many strictly higher rank optimal solutions (by taking the convex combinations of the
lowest rank optimal solutions). Then, since we hope that there exists an optimal solution of our
relaxation being optimal for the original problem, we need to find the lowest rank optimal solution
for the SDP relaxation. That is, we need to solve for the lowest rank solution over the set of
optimal solutions of the SDP relaxation, which might not be simpler than solving the original

23

problem. Thus, the uniqueness of the optimal solution of the SDP relaxation is essential for the
recovery of a solution for the original nonconvex problem.

We now prove that the primal SDP problem (2.3.2) has a unique optimal solution. Before that,
we prove a useful lemma.

Lemma 2.3.7. For every u ∈ Rn, v ∈ Rn−1, (u, v) ̸= 0, there exist u′ ∈ Rn, v′ ∈ Rn−1 with
⟨1, u′⟩ ≠ 0 such that Null(TriDiag(u, v)) ⊆ Null(TriDiag(u′, v′)).

Proof. If ⟨1, u⟩ ̸= 0, pick (u′, v′) = (u, v) and we are done, so assume ⟨1, u⟩ = 0. We prove
this by strong induction over the dimension n. Clearly, this statement holds when n = 1, 2.
Now, assume that given an integer n > 2, the statement holds for all i ∈ [n − 1]. Write u =
[u1 u2 . . . un]

⊤ and v = [v1 . . . vn−1]
⊤. If vi = 0 for some i ∈ [n− 1], we can write TriDiag(u, v)

as

TriDiag(u, v) =

[
TriDiag(u(1), v(1)) 0

0 TriDiag(u(2), v(2))

]
,

where u(1) = [u1 . . . ui]
⊤, v(1) = [v1 . . . vi−1]

⊤, u(2) = [ui+1 . . . un]
⊤, v(2) = [vi+1 . . . vn−1]

⊤. By
the induction hypothesis, there exists (u′(1), v′(1)), (u′(2), v′(2)) such that Null(TriDiag(u(1), v(1))) ⊆
Null(TriDiag(u′(1), v′(1))) and Null(TriDiag(u(2), v(2))) ⊆ Null(TriDiag(u′(2), v′(2))), ⟨1, u′(1)⟩ ≠

0 and ⟨1, u′(2)⟩ ≠ 0. Then by considering u′ =

[
u′(1)

u′(2)

]
and v′ =

v′(1)0

v′(2)

 (or −u′(2),−v′(2) if nec-

essary), we are done.

Now, we assume for all i ∈ [n− 1], vi ̸= 0. Write TriDiag(u, v) as Y and let Yi represent the
ith leading square submatrix of Y . Then consider 0 ̸= w ∈ Null(Y), and we have

u1w1 + w2v1 = 0 =⇒ w2 = −u1w1

v1
= −det(Y1)

v1
w1

v1w1 + u2w2 + v2w3 = 0 =⇒ w3 =
u1u2

v1v2
w1 −

v1
v2
w1 =

det(Y2)

v1v2
w1

The following is well known.
Claim 2.3.7.1.

wi = (−1)i+1det(Yi−1)∏i−1
j=1 vj

w1, ∀i ≥ 2

Proof. We prove it by induction. The cases for i = 2, 3 are shown above. Given i > 3, assume the

24

equation holds for all k ∈ [i], then

wi−1vi−1 + wiui + wi+1vi = 0

=⇒ wi+1 = −ui

vi
wi −

vi−1

vi
wi−1

=⇒ wi+1 = (−1)i+2ui

vi

det(Yi−1)∏i−1
j=1 vj

w1 + (−1)i+1vi−1

vi

det(Yi−2)∏i−2
j=1 vj

w1

=⇒ wi+1 = (−1)i+2ui det(Yi−1)∏i
j=1 vj

w1 + (−1)i+1v
2
i−1 det(Yi−2)∏i

j=1 vj
w1

=⇒ wi+1 =
(−1)i+2∏i

j=1 vj

(
ui det(Yi−1)− v2i−1 det(Yi−2)

)
w1

=⇒ wi+1 = (−1)i+2 det(Yi)∏i
j=1 vj

w1,

as required.

That is, w can be written in the form w1h where h1 = 1 and h only depends on Y . Since
w is arbitrary, we know Null(Y) = span{w}, so rank(Y) = n − 1. In this case, if w has a
zero entry, say wk = 0, then we consider M = Diag(ek) and let (u′, 2v′) = tridiag(Y + M),
then w ∈ Null(TriDiag(u′, v′)) which implies Null(Y) ⊆ Null(TriDiag(u′, v′)) and ⟨1, u⟩′ =
⟨1, u⟩ + 1 = 1, then we find the required (u′, v′). If w has no zero entries, then we add Y11

by β > 0, add Y12, Y21 by −w1

w2
β and add Y22 by w2

1

w2
2
β and call the new matrix Y ′. In this way,

w ∈ Null(Y ′) and let (u′, 2v′) = tridiag(Y ′), we have ⟨1, u⟩′ = ⟨1, u⟩ + β +
w2

1

w2
2
β > 0 and

Null(Y) ⊆ Null(TriDiag(u′, v′)). Hence, by induction, we finish the proof.

Proposition 2.3.8. [6, Proposition 1] Consider the primal-dual pair of SDPs in the form

max{⟨C,X⟩ : A(X) = b,X ⪰ 0} (2.3.4)
min{⟨b, y⟩ : S = A∗(y)− C, S ⪰ 0} (2.3.5)

where A : Sn → Rm is surjective. Assume there exists X̂ ≻ 0 and ŷ ∈ Rm such that A(X̂) = b
and A∗(ŷ) ≻ 0. Suppose for every 0 ̸= y ∈ Rm, there exists z ∈ Rm such that b⊤z ̸= 0 and
Null(A∗(y)) ⊆ Null(A∗(z)). Then (2.3.5) has a unique optimal solution.

Theorem 2.3.9. The problem (2.3.2) always has a unique optimal solution.

We provide two proofs for this theorem.

First Proof. By Proposition 2.3.7 and Prop. 2.3.8, the result is clear.

Second Proof. Suppose (2.3.2) has two different optimal solutions (S∗, (u∗, v∗)) and (S ′, (u′, v′)).
By Theorem 1.1.3 we can consider an optimal solution X∗ of the dual and since both S∗, S ′ are

25

optimal to (2.3.2), we have X∗S∗ = 0 = X∗S ′ which implies X∗(S∗ − S ′) = 0. That is,

X∗(S∗ − S ′) = X∗[(A+ TriDiag(u∗, v∗))− (A+ TriDiag(u′, v′))]

= X∗(TriDiag(u∗, v∗)− TriDiag(u′, v′))

= 0.

We write TriDiag(u, v) = TriDiag(u∗, v∗) − TriDiag(u′, v′). Then, let Xi denote the ith column
of X , and we have u1X1 + v1X2 = 0 which implies u1X11 + v1X12 = 0 and u1X21 + v1X22 = 0.
Since X11 = X22 = 1 and X12 = X21 = 0, we have u1 = v1 = 0. Repeating this process, we
see that (u, v) = (0, 0). That is, (u∗, v∗) = (u′, v′), which implies S∗ = S ′. Thus, we reach a
contradiction.

We now give an example showing that the relaxation problem (2.3.2) sometimes gives an opti-
mal solution to the original problem (2.3.1).

Example 2.3.10. Consider

A =


0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

 .

The optimal solution of (2.3.2) with respect to this A is

(u∗, v∗) = (
[√

8
5

√
1
10

+
√

5
8

√
5
2

√
1
10

+
√

5
8

√
8
5

]
,
[√

2
5

1
2
+
√

5
8

1
2
+
√

5
8

√
2
5

]
)⊤

where

A+ TriDiag(u∗, v∗) =



√
8
5

√
2
5

1 1 0√
2
5

√
1
10

+
√

5
8

1
2
+
√

5
8

1 1

1 1
2
+
√

5
8

√
5
2

1
2
+
√

5
8

1

1 1 1
2
+
√

5
8

√
1
10

+
√

5
8

√
2
5

0 1 1
√

2
5

√
8
5


is positive semidefinite and has rank 2, we can see that by observing a := [1/2,−1, 0, 0,

√
5/8]⊤,

b := [
√

5/8, 0, 0,−1, 1/2]⊤ and c := [0, 1,−(1 +
√

2
5
), 1, 0]⊤, in Null(A + TriDiag(u, v)). Then

26

let α := −1+
√

1/10+
√

5/8

1/2+
√

5/8
= −(1 +

√
2
5
), β = 1

2
+
√

5/8, we have

X :=
1

α2
(a+ b+ c)(a+ b+ c)⊤ +

1

2− 1/β

[
−1

β
(a+ b)(a+ b)⊤ + 2(aa⊤ + bb⊤)

]

=



1 0 −
√

5
8

−3
2

√
1
10

β2

α2 +
3
4

√
1
10

0 1 0 −
√

2
5

−3
2

√
1
10

−
√

5
8

0 1 0 −
√

5
8

−3
2

√
1
10

−
√

2
5

0 1 0

β2

α2 +
3
4

√
1
10

−3
2

√
1
10

−
√

5
8

0 1


⪰ 0

Then X is feasible for the dual problem of (2.3.2), problem (2.3.3). And by the definition of X ,

we know (A + TriDiag(u∗, v∗))X = 0 and ⟨−A,X⟩ = 4
√

5
8
+ 6

√
1
10

+ 2
√

2
5
=

√
5
2
+ 2

√
5
8
+

2
√

1
10

+ 2
√

8
5
= 1

⊤u∗. Thus, both (u∗, v∗), X are optimal for (2.3.2) and (2.3.3) respectively.

Also, for every (u, v), the matrix

A+ TriDiag(u, v) ⪰ 0

has rank at least 2 because its first and second columns are always linearly independent. Also, a
nonoptimal solution of the relaxation might be optimal for the original problem. For example, for
(2.3.1),

Y :=


2 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 2


is an optimal solution with rank 2 because

A+ Y = 11
⊤ +


1
0
0
0
−1

 [
1 0 0 0 −1

]
.

but 2 + 1 + 1 + 1 + 2 = 7 > 1
⊤u∗ ≈ 6.32.

2.4 Tridiagonal Perturbation with Regularization

One application (factor analysis) of low-rank plus diagonal decomposition is that we want to write
a given (observed or forecasted) numerical covariance matrix as a sum of a low-rank positive

27

semidefinite matrix (representing the main factors in the phenomenon at hand) and a diagonal ma-
trix (representing some noises which are assumed to be independent and identically distributed,
possibly with another set of independent random variables). In this context, our tridiagonal gener-
alization allows additional random variables where the ith variable is independent of all variables
with index 1, . . . , i − 2, i + 2, . . . , n. This structure arises in many applications including time
dependent models (when the index i represents the ith time period) or physical models like truss
design (when the closeness of indices represents physical proximity). The latter application or its
approximations may lead to banded structure in the matrix of which tridiagonal structure is the
simplest (after diagonal matrices). In these types of applications, it may be useful to apply differ-
ent weights or functions to the variables in the bidiagonal part of the matrix compared to those on
the diagonal.

Now, we consider a tridiagonal problem whose constraints are the same as the ones of the
problem in the previous section. However, we now put a regularization term on the absolute values
of bidiagonal entries, that is, we want to give them different weights.

Given a λ ≥ 0, consider the problem,

min 1⊤u+ λ∥v∥1
s.t. TriDiag(u, v) ⪰ −A

u ∈ Rn

v ∈ Rn−1,

(2.4.1)

where ∥x∥1:=
∑n

i=1|xi| represents the 1-norm.

Remark 2.4.1. Notice that, when λ = 0, this problem is the same as the problem (2.3.2). Hence,
all the results we have in this section can be applied to the problem (2.3.2).

This problem is equivalent to

min 1⊤u+ λ1⊤t

s.t. TriDiag(u, v) ⪰ −A

t− v ≥ 0

t+ v ≥ 0

u ∈ Rn

t, v ∈ Rn−1,

(TriRegP)

and we define the linear map on the left-hand side of the constraints as A∗(u, v, t) : Rn ⊕ Rn−1 ⊕
Rn−1 → Sn ⊕ Rn−1 ⊕ Rn−1.

28

Its dual is defined as

max− ⟨A,X⟩
diag(X) = 1

bidiag(X) + w − ξ = 0

w + ξ = λ1

X ⪰ 0, w ≥ 0, ξ ≥ 0,

(TriRegD)

where the linear map on the left-hand side of the constraints is A(X, ξ, ω) : Sn ⊕Rn−1 ⊕Rn−1 →
Rn ⊕ Rn−1 ⊕ Rn−1 and let b̂ = [1⊤, 0, λ1]⊤ denote the right-hand side for the rest of this section.

Corollary 2.4.2. The left-hand side linear map A∗(u, v, t) of (TriRegP) is the adjoint of the left-
hand side linear map A(X, ξ, ω) of (TriRegD).

Proof. Consider any (u, v, t) and (X,ω, ξ), we have

⟨A∗(u, v, t), (X, ξ, ω)⟩
=⟨(TriDiag(u, v), t− v, t+ v), (X, ξ, ω)⟩
=⟨TriDiag(u, v), X⟩+ ⟨t− v, ξ⟩+ ⟨t+ v, ω⟩
=⟨u, diag(X)⟩+ ⟨v, bidiag(X)⟩+ ⟨v, ω − ξ⟩+ ⟨t, ω + ξ⟩
=⟨u, diag(X)⟩+ ⟨v, bidiag(X) + ω − ξ⟩+ ⟨t, ω + ξ⟩
=⟨(u, v, t),A(X, ξ, ω)⟩

We now prove that the primal problem has a unique solution when λ < 2. We start with a
lemma.

Lemma 2.4.3. For every 0 ̸= (u, v, t) ∈ Rn⊕Rn−1⊕Rn−1, there is z = (u′, v′, t′) ∈ Rn⊕Rn−1⊕
Rn−1 such that 1⊤u′ + λ1⊤t′ ̸= 0 and Null(A∗(u, v, t)) ⊆ Null(A∗(u′, v′, t′)).

Proof. First assume that 1⊤u+ λ1⊤t = 0, otherwise let (u′, v′, t′) = (u, v, t) and we are done.

We prove the claim by doing induction on n. When n = 1, the lemma clearly holds. When
n = 2, we write

A∗(u, v, t) =


u1 v1 0 0
v1 u2 0 0
0 0 t− v1 0
0 0 0 t+ v1


and let 0 ̸= w ∈ Null(A∗(u, v, t)). If exactly one of w1, w2 is zero, without loss of generality,
say w1 = 0, w2 ̸= 0, then u2 = v1 = 0. And 1

⊤u + λt = 0 implies t = −u1/λ ̸= 0 because
(u, v, t) ̸= 0. Hence Null(A∗(u, v, t)) = span{[0 1 0 0]⊤}, we can find the required u′, v′, t′ easily.

29

We then consider the case that both w1, w2 are nonzero. We have

w1u1 + w2v1 = 0 =⇒ u1 = −w2

w1

v1

w1v1 + w2u2 = 0 =⇒ u2 = −w1

w2

v1

w3(t− v1) = 0

w4(t+ v1) = 0.

If t − v1 ̸= 0 and t + v1 ̸= 0, then consider (u, v, αt) and α → ∞, we find a required (u′, v′, t′).

Hence, assume t ∈ {v1,−v1}. Then 1⊤u+λt = u1+u2+λt = 0 =

{
−(w2

w1
+ w1

w2
− λ)v1, t = v1;

−(w2

w1
+ w1

w2
+ λ)v1, t = −v1.

If v1 = 0, then u1 = u2 = t = 0, so (u, v, t) = 0, contradiction. Hence, we assume v1 ̸= 0, and by
dividing −v1 and multiply w1w2 on both side, we have

0 =

{
(w2

w1
+ w1

w2
− λ), t = v1;

(w2

w1
+ w1

w2
+ λ), t = −v1

⇐⇒ 0 =

{
w2

1 + w2
2 − λw1w2, t = v1;

w2
1 + w2

2 + λw1w2, t = −v1,

then we have 
(w1 − w2)

2 + (−λ+ 2)w1w2 = 0
(w1 + w2)

2 + (−λ− 2)w1w2 = 0

}
, t = v1;

(w1 − w2)
2 + (λ+ 2)w1w2 = 0

(w1 + w2)
2 + (λ− 2)w1w2 = 0

}
, t = −v1

which implies w1w2 = 0 when λ < 2, contradiction. That is, both of w1, w2 are zeros. Then pick
z = [u′

1 u
′
2 v1 t] where u′

1 + u′
2 + t ̸= 0, we are done. Hence, for the n = 2 case, we can always

find a required (u′, v′, t).

Now, assume that given an n > 2, the lemma holds for all 3, . . . , n − 1 and we prove by
strong induction. If v has a zero entry, say vi = 0, then let u′ = [u1, . . . , ui], v′ = [v1, . . . , vi−1],
t′ = [t1, . . . ti−1] and let u′′ = [ui+1, . . . , un], v′′ = [vi+1, . . . , vn−1], t′′ = [ti+1, . . . tn−1]. So

A∗(u, v, t) =

TriDiag(u′,v′) 0 0 0 0 0 0 0
0 TriDiag(u′′,v′′) 0 0 0 0 0 0
0 0 Diag(t′−v′) 0 0 0 0 0
0 0 0 ti 0 0 0 0
0 0 0 0 Diag(t′′−v′′) 0 0 0
0 0 0 0 0 Diag(t′+v′) 0 0
0 0 0 0 0 0 ti 0
0 0 0 0 0 0 0 Diag(t′′+v′′)


.

Notice that for (u′, v′, t′) ∈ Ri ⊕ Ri−1 ⊕ Ri−1 and (u′′, v′′, t′′) ∈ Rn−i ⊕ Rn−i−1 ⊕ Rn−i−1, there

30

exists z′, z′′ satisfying the lemma with respect to them by the induction assumption. Hence, z =
[uz′ uz′′ vz′ 0 vz′′ tz′ ti tz′′] is a vector satisfying the lemma with respect to (u, v, t) (scale z′′ if
necessary).

Now, we can assume that v has no zero entries. In this way, by the proof of Proposition 2.3.7,
we know Null(TriDiag(u, v)) = span{w}. Then if wi = 0 for some i ∈ [n], we perturb ui by 1 to
get a required z. If wi ̸= 0 for i ∈ [n], for every β > 0, add u1 by β, v1 by −w1

w2
β and u2 by w2

1

w2
2
β and

if t1 − v1 = 0, then add −w1

w2
β to t1, else, add w1

w2
β to t1. We let the resulting vector be z. For every

w ∈ Null(A∗(u, v, t)), if t1−v1 = 0, then assume wn+1 ̸= 0, and t′1−v′1 = 0, so wn+1(t
′
1−v′1) = 0.

Then A∗(uz, vz, tz)w = A∗(u, v, t)w + [βw1 − w1

w2
βw2,−w1

w2
βw1 +

w2
1

w2
2
βw2, 0, . . . , 0, wn+1(t

′
1 −

v′1), 0, . . . , 0]
⊤ = 0+ 0 = 0. The same arguments apply if t1 + v1 = 0 or t1 − v1 ̸= 0, t1 + v1 ̸= 0.

Hence, w ∈ Null(A∗(uz, vz, tz), and Null(A∗(u, v, t)) ⊆ Null(A∗(uz, vz, tz)).

Also, 1⊤uz + λ1⊤tz = 1
⊤u + λ1⊤t + (1 +

w2
1

w2
2
± w1

w2
)β > 0 because (1 +

w2
1

w2
2
± w1

w2
) > 0 and

β > 0. We are done.

By induction, for every n, the claim holds.

Theorem 2.4.4. The tridiagonal perturbation problem (TriRegP) has a unique optimal solution
when λ < 2.

Proof. For problem (TriRegP), we can pick v = 0 and let every entry of t and u goes to ∞, then
we have a Slater point. For the dual, pick X = I with w = ξ = λ

2
1, which gives a Slater point.

Also, clearly, the linear map A(X, ξ, ω) in the dual problem is a surjective map. Then, by Prop.
2.3.8 and Lemma 2.4.3, we know the problem (TriRegP) has a unique solution.

Remark 2.4.5. Notice that when λ ≥ 2, the proof of Lemma 2.4.3 does not hold. Consider

u =

[
2

λ−
√
λ2−4

λ−
√
λ2−4
2

]
, v = 1, t = −1

such that

A∗(u, v, t) =


2

λ−
√
λ2−4

1 0 0

1 λ−
√
λ2−4
2

0 0
0 0 2 0
0 0 0 0


whose null space is defined as

span




√
λ2−4−λ

2

1
0
0

 ,


0
0
0
1


 .

31

Then for every z such that Null(A∗(u, v, t)) ⊆ Null(A∗(uz, vz, tz)), we have

A∗(z) =


2

λ−
√
λ2−4

1 0 0

1 λ−
√
λ2−4
2

0 0
0 0 2 0
0 0 0 0

 vz

where 1⊤uz + λtz = (2
λ−

√
λ2−4

+ λ−
√
λ2−4
2

− λ)vz = 0.

Now we also prove that when λ > 2, the optimal solution is still unique.

Theorem 2.4.6. The problem (TriRegP) has a unique optimal solution when λ > 2.

Proof. In the proof of Theorem 2.4.4, we show both (TriRegP) and (TriRegD) have Slater points.
Since they are both in Standard SDP form, we know both of them attain their optimal values
and their optimal values are the same. Let (X∗, ξ∗, ω∗) be an optimal solution of (TriRegD),
and (u∗, v∗) = tridiag(X ′). Now, consider any two optimal solutions (u′, v′, t′), (u′′, v′′, t′′) of

(TriRegP), and let z =

uz

vz
tz

 =

u′

v′

t′

 −

u′′

v′′

t′′

 be their difference. By the properties of optimal

solutions of the primal and dual problems, we know X∗(TriDiag(u′, v′) +A−TriDiag(u′′, v′′)−
A) = X∗TriDiag(uz, vz) = 0,Diag(ξ∗)Diag(tz − vz) = 0 = Diag(w∗)Diag(tz + vz). Let
K1 := {i|ξ∗i = 0} and K2 := {i|w∗

i = 0}.
Claim 2.4.6.1. K1 ∪K2 = ∅.

Proof. First, since X∗ is feasible for the dual, we have v∗ = 1
2
(ξ∗−w∗) and w∗+ξ∗ = λ1, w∗, ξ∗ ≥

0. Suppose K1∪K2 ̸= ∅, without loss of generality, pick i ∈ K1, then w∗
i = λ and v∗i = −λ

2
< −1.

Then, X∗
iiX

∗
(i+1)(i+1) −X∗

i(i+1)X
∗
(i+1)i = 12 − λ2

4
< 0, contradicts to the fact the X∗ ⪰ 0. Hence,

K1 = ∅, similarly, we can prove K2 = ∅, so we finish the proof of the claim.

Notice that by

Diag(ξ∗)Diag(tz − vz) = 0 = Diag(w∗)Diag(tz + vz),

and by the claim above, w∗, ξ∗ > 0, so tz − vz = 0 and tz + vz = 0, which implies that tz = 0 and
vz = 0. Then X∗TriDiag(uz, vz) = 0 is equivalent to X∗Diag(uz) = 0, but diag(X∗) = u∗ = 1,
so uz = 0. That is, z = 0. So (TriRegP) has a unique optimal solution.

However, when λ = 2, (TriRegP) might have infinitely many optimal solutions. We show this
by the following example.

Example 2.4.7. Let A =

[
0 1
1 0

]
∈ S2, λ = 2. Then for every feasible solution X of (TriRegD),

we have X ⪰ 0 and tridiag(X) = (u, 2v) = (1, 2v), ξ + w = 2, then ⟨−A,X⟩ = −2v. Since

32

X ⪰ 0, we have 1 = u1u2 ≥ v2, hence ⟨−A,X⟩ = −2v ≤ 2. Then,

X =

[
1 −1
−1 1

]
, w = 2, ξ = 0

is an optimal solution for (TriRegD). And we consider an arbitrary optimal solution (u, v, t) of
(TriRegP). By Theorem 1.1.3, we know X(TriDiag(u, v) + A) = 0,Diag(t − v)Diag(ξ) = 0 =
Diag(t + v)Diag(w) which implies t + v = 0 and u1 = u2 = 1 + v = 1 − t, so 1

⊤u + λt =
1 − t + 1 − t + 0 + 2t = 2. That is, given any 1 ≥ t ≥ 0, ((1 − t, 1 − t),−t, t) is an optimal
solution of (TriRegP).

Remark 2.4.8. When we force λ → ∞, for (TriRegP), clearly we force t and hence v to go to
zero, so the problem becomes the MTFA problem. Besides, we can see from the proof of Theorem
2.4.6 above and complementary slackness conditions that when λ > 2, we have w∗, ξ∗ > 0 for
every optimal solution of (TriRegD) which, by Theorem 1.1.3, implies that any optimal solution
of the primal satisfies t − v = 0 and t + v = 0, so t = v = 0. That is, the optimal solution
of (TriRegP) only perturbs the diagonal entries, so we are back to the MTFA problem. The same
argument causes an issue when λ = 2, because the optimal solution might not be strictly feasible
and (TriRegP) might have optimal solutions perturbing the bidiagonal entries, for example, Ex.
2.4.7. Similar results are observed when we consider the dual. Notice that when λ > 2, the dual
constraints

diag(X) = 1

bidiag(X) + w − ξ = 0

w + ξ = λ1

X ⪰ 0, w ≥ 0, ξ ≥ 0,

are equivalent to

diag(X) = 1

− λ1 ≤ bidiag(X) ≤ λ1

X ⪰ 0,

where the second constraint is always satisfied when diag(X) = 1 and X ⪰ 0, so the problem is
equivalent to the dual of MTFA.

Let us consider (MTFAD):

min ⟨A,X⟩
s.t. diag(X) = 1

X ⪰ 0.

By adding the redundant constraints, −21 ≤ bidiag(X) ≤ 21, the primal we get is (TriRegP) with
λ = 2, instead of (MTFA). However, by Theorem 1.1.3, the optimal values of (MTFA),(MTFAD)

and (TriRegP) with λ = 2 are equal. For example, for Ex. 2.4.7, if we consider A =

[
0 1
1 0

]
as an

33

input for (MTFA), then the optimal solution of it is u = [1, 1]⊤, with optimal value being 2. So we
can find the optimal value of (TriRegP) with λ = 2 by solving the corresponding (MTFA).

With the tridiagonal perturbation problem with a given λ, we consider three problems:

1. Suppose X∗ can be written in the form of X∗ = S∗ + TriDiag(u∗, v∗), where S∗ is positive
semidefinite. What properties or conditions of (S∗, u∗, v∗) will ensure that (S∗, u∗, v∗) is the
unique optimal solution of (TriRegP) with the input A = X∗?

2. We first consider a closed convex set

K := {X ∈ Sn : diag(X) = 1,−λ1 ≤ bidiag(X) ≤ λ1}.

Claim 2.4.8.1. Every face F of K can be written as:

F = K or (2.4.2)
F = {X ∈ Sn : diag(X) = 1, k ∈ [n− 1] entries of bidiag(X) is fixed as λ or − λ}.

(2.4.3)

Proof. Clearly, F = K is a face of K. So we consider the second form above.

First, we show that F in the form (2.4.3) is a face of K. Without loss of generality, say there
exists k ∈ [n− 1], such that

F = {X ∈ Sn : diag(X) = 1, bidiag(X)i = λ,∀i ∈ [k],−λ1 ≤ bidiag(X) ≤ λ1}.

Suppose X, Y ∈ K, and α ∈ (0, 1) such that αX + (1− α)Y ∈ F . Then since X, Y ∈ K,
we know diag(X) = diag(Y) = 1 and −λ1 ≤ bidiag(X) ≤ λ1, −λ1 ≤ bidiag(Y) ≤ λ1.
Since α(X)+ (1−α)Y ∈ F , we know for i ∈ [k], α bidiag(X)i +(1−α) bidiag(Y)i = λ.
Since α ∈ (0, 1) and bidiag(X)i, bidiag(Y)i ≤ λ, we have bidiag(X)i = bidiag(Y)i = λ.
Then X, Y ∈ F because i ∈ [k] is arbitrary. That is, F is a face of K.

Now, suppose there is a face F that cannot be written in the form (2.4.3). Then, there exists
X ∈ F that cannot be written in the form of elements of (2.4.3), so for every i ∈ [n − 1],
we have −λ < bidiag(X)i < λ. We see that X is a relative interior point of K, and the
only face of a convex set containing its relative interior points is the convex set itself. That
is, F = K.

Notice that there exists 1 +
∑n−1

k=1

(
n−1
k

)
2k different faces of K.

Consider a set

E ′
n := {X ∈ En : −λ1 ≤ bidiag(X) ≤ λ1} = Sn

+ ∩K.

Since every face of the intersection of two closed convex sets C1, C2 is an intersection of
a face F1 of C1 and a face F2 of C2, we know every face of E ′

n can be written as F ∩ FU ,
where F is a face of K and FU is a face of Sn

+ uniquely defined by a subspace U of Rn. For
example, given a subspace U of Rn, by Claim 2.4.8.1, the set

E ′
n ∩ FU = {X ⪰ 0 : Null(X) ⊇ U , diag(X) = 1,−λ1 ≤ bidiag(X) ≤ λ1},

34

is a face of E ′
n. However, recall that there exist some subspaces of Rn (e.g. U = span{e1})

such that there is no X ∈ K with Null(X) ⊇ U , so F ∩ FU is empty for every face F of K.
Then this brings another question, which subspaces define a nonempty face of E ′

n?

3. Then we consider the problem: for which subspaces V of Rn, do there exist a positive integer
k and a k × n matrix V with row space V and a centered ellipsoid passing through all its
columns such that when the points are projected onto the unit ball corresponding to the
ellipsoid, the absolute value of the cosine value of the angle between the projected ith and
(i+ 1)th columns is upper bounded by λ/2?

Similar to the diagonal perturbation problem, being motivated by the three problems above, we
have the following definitions:

Definition 2.4.9. Consider a subspace U of Rn and λ ∈ R+ \ {2}.

• We say U is λ-tridiagonal recoverable if there exists u ∈ Rn, v ∈ Rn−1, S ∈ Sn
+ such that

col(S) = U , (u, v, |v|) is the unique solution of (TriRegP) given A = S − TriDiag(u, v).

• We say U is λ-tridiagonal realizable if there exists (Q,ω, ξ) ∈ Sn
+ ⊕Rn−1 ⊕Rn−1 such that

U ⊆ Null(Q), A(Q,ω, ξ) = b̂, ω ∈ Rn−1
+ , ξ ∈ Rn−1

+ .

• We say U has the λ-tridiagonal ellipsoid fitting property if

1. there is a k × n matrix V with row space V and ω ∈ Rn−1
+ , ξ ∈ Rn−1

+ such that there is
a centered ellipsoid in Rk passing through each column of V .

2. Let M ∈ Sk
+ represent the ellipsoid, and write M = BB⊤, and let B := {B⊤v :

v⊤Mv = 1}, which is the projected unit ball corresponding to the ellipsoid. And the
angle θi between projections of the ith and (i+1)th column of V onto the ball satisfies
θi = cos−1(ξi−ωi

2
), while ξi + ωi = λ.

For the rest of the thesis, unless we state specifically, we assume that λ < 2 for (TriRegP).

Proposition 2.4.10. Consider subspaces U of Rn with λ ∈ R+ \ {2}, the following are equivalent:

1. U is λ-tridiagonally recoverable.

2. U is λ-tridiagonally realizable.

3. U⊥ has the λ-tridiagonal ellipsoid fitting property.

Proof. Notice that both (TriRegP) and (TriRegD) are in the standard form of SDPs, and they both
have Slater points by considering [αu, 0, t], u > 0, t > 0, α → ∞ for (TriRegP) and considering
(I, λ

2
1, λ

2
1) for (TriRegD).

Prove 1) =⇒ 2). Now, by Theorem 1.1.3, we know (u, v, |v|) and S is optimal if and
only if there exists (Q, ξ, ω) being feasible for (TriRegD) such that QS = 0, (|v|+v)⊤ω = 0,
(|v|−v)⊤ξ = 0. Hence, U = col(S) ⊆ Null(Q).

35

Conversely, if U is λ-tridiagonal realizable, then there exists (Q,ω, ξ) being feasible for (TriRegD)
such that QS = 0 for every S with column space U . Consider any S ⪰ 0 with col(S) = U , and
u = diag(S), v = 0. Then QS = 0, (v + |v|)⊤ω = 0, and (v − |v|)⊤ξ = 0. And (u, v, |v|) is
feasible for (TriRegP) with input A = S − TriDiag(u, v). By Theorem 1.1.3 and the uniqueness
of optimal solution of (TriRegP) when λ < 2, we know U is λ-tridiagonal recoverable.

Prove 2) =⇒ 3). For a given realizable U , consider V ∈ Rk×(3n−2) such that Null(V) = U ,
so row(V) = U⊥. Then by the realizability, there exists (Q,ω, ξ) ∈ Sn

+ ⊕ Rn−1Rn−1 which is
feasible for (TriRegD) and Null(Q) ⊇ U . Then, there exists M ∈ Sk

+ such that Q = V ⊤MV ⪰ 0,
and A(Q,ω, ξ) = [1, 0, λ1]⊤ is equivalent to viMvi = 1, viMvi+1 = ξi−ωi

2
and ξi + ωi = λ. The

converse holds trivially by considering (V ⊤MV,ω, ξ).

Since we know that when λ → ∞, the (TriRegP) is equivalent to (MTFA). For the definitions
of realizability, recoverability and λ-tridiagonal ellipsoid fitting property, we also expect them to
converge to the definitions of the diagonal case when λ → ∞.

Remark 2.4.11.

1. When the λ → ∞, optimal t and v are forced to be 0. In this case, we only consider
the feasible solutions in the form A∗(u, 0, 0). Then the λ-tridiagonal recoverability of U is
equivalent to that there exists u ∈ Rn, S ∈ Sn

+ such that col(S) = U , u is the unique optimal
solution of (TriRegP) given A = S − Diag(u), and by Prop. 2.1.5, we know it is equivalent
to U being diagonally recoverable.

2. Similar arguments apply to realizability. Since the constraints

bidiag(X) + ω − ξ = 0

ω + ξ = λ1

are equivalent to
−λ1 ≤ bidiag(X) ≤ λ1,

when λ → ∞, the above constraint is redundant. Hence, the λ-tridiagonal realizability
condition becomes there exists A ∈ Sn such that diag(A) = 1, A ⪰ 0 and Null(A) ⊇ U ,
which is the diagonal realizability condition by Proposition 2.1.5.

3. Consider the λ-tridiagonal ellipsoid fitting property. Notice that it requires a centred ellip-
soid passing through each column of V , which is equivalent to requiring V satisfying the
ellipsoid fitting property as defined in Definition 2.1.2. Also, since viMvi+1 = viBB⊤vi+1,
we have viMvi+1 = ∥B⊤vi∥∥B⊤vi+1∥cos θi. And by the ellipsoid fitting property, we
know ∥B⊤vi∥= 1,∀i ∈ [n]. That is, the λ-tridiagonal ellipsoid fitting property requires
viMvi+1 = cos θi = ξi−ωi

2
. Given that ξi + ωi = λ, we have |cos θi|≤ λ

2
. Hence, when

λ ≥ 2, cos θi is free.

We now give an example verifying the significance of the condition |cos θi|≤ λ/2.

Example 2.4.12. For every λ < 2, we can find a triple V not satisfying the λ-tridiagonal
ellipsoid fitting property. Consider λ < 2, V = span{

[
1 −1 0

]⊤
,
[
0 0 1

]⊤}, then for

36

every V ∈ Rk×3 with row space V , we have V1 = −V2. Hence, for every ellipsoid M
satisfying V ⊤

i MVi = 1, we have V ⊤
1 MV2 = −1 < −λ/2, so this triple does not have the

λ-tridiagonal ellipsoid fitting property.

Now we can apply similar arguments as above to the λ-tridiagonal ellipsoid fitting property.
Let θi be the angle between the ith and (i + 1)th column of V . As above, as λ → ∞,
|cos θi|≤ λ

2
becomes a redundant constraint, so we are back to the conditions for ellipsoid

fitting property in Definition 2.1.2.

The proposition above characterizes stricter properties than [22, Prop. 3.1], notice that when
U is λ-tridiagonal recoverable for λ < 2 with (S, u, v), then (S, u, 0) also verifies the prop-
erty, and we have U is diagonally recoverable, similarly, the other two λ-tridiagonal proper-
ties also imply the corresponding diagonal ones.

A clear difference between the diagonal ellipsoid fitting property and λ-tridiagonal ellipsoid
fitting property is that, for the diagonal ellipsoid fitting property, the order of columns of V
does not affect the property. Hence if V has the ellipsoid fitting property, given any permu-
tation matrix P , the matrix V P also satisfy the property with the same ellipsoid. However,
this does not apply to λ-tridiagonal ellipsoid fitting property since it specifically constrains
the angle between the ith and (i+ 1)th columns.

Figure 2.1: ellipsoid fitting

Figure 2.2: 1-tridiagonal ellipsoid fitting

Notice that from the figure (2.2) above, if we switch the column order of v2 and v3, then
|cos(θi)|≤ 1/2 is not satisfied, so the resulting matrix does not have the 1-tridiagonal ellip-
soid fitting property.

37

Chapter 3

Coherence of a Subspace and
Computational Examples

In this chapter, we discuss the coherence of a subspace. It is an indicator of how close a subspace
of Rn is to containing any ei, where ei is in the standard basis in Rn. We present some conditions
on the coherence of a subspace which ensure the subspace is diagonally realizable [22]. Then,
we provide conditions on the coherence of a subspace that are sufficient for the subspace to be
λ-tridiagonally realizable with λ ∈ [0, 2). In the end, we provide numerical examples to test the
sufficiency of our conditions and to prove those conditions are not necessary.

3.1 Coherence of a Subspace

In this section, we give the definition of the coherence of a subspace of Rn and provide different
ways of interpreting it. Then, we provide a result which characterizes the diagonal realizability of
a subspace with its coherence, which also characterizes the recoverability and the ellipsoid fitting
property by Proposition 2.1.3.

First, consider the definition:

Definition 3.1.1. [3] Let U be a subspace of Rn of dimension r and PU ∈ Sn
+ be the orthogonal

projection matrix onto U . Then the coherence of U (with respect to the standard basis ei) is defined
to be

µ(U) := max
1≤i≤n

∥PUei∥2.

Notice that ∥PUei∥2= [PU]ii. Then let A ∈ Rn×r be the matrix with rank r and columns being
an orthonormal basis of U . We have

PU = AA⊤

and tr(PU) =
∑n

i=1[PU]ii = tr(AA⊤) = tr(A⊤A) = r by the orthonormality. That is,

max
1≤i≤n

∥PUei∥2= max
1≤i≤n

[PU]ii ≥
r

n
.

38

In addition, notice that the largest eigenvalue of PU is 1 = max∥v∥=1 v
⊤PUv ≥ ∥PUei∥2. Hence,

r

n
≤ max

1≤i≤n
∥PUei∥2≤ 1.

There are some other ways of interpreting the coherence of a subspace. Since for every subspace
U of Rn, we have PU = AA⊤ as above. Then µ(U) = maxi∥A(i, :)∥2. With this expression, we
can try to find a simple orthonormal basis of U and compute the coherence easily.

We can also view the coherence of U as an indicator of how close it is to containing any
ei. If µ(U) = 1, then ∥PUei∥22= ⟨ei,PUei⟩ = 1 for some i, which implies that ei is in U and
the ith column of PU is ei. Conversely, if µ(U) ̸= 1, then none of ei is in U . In the view of
geometry, we have ∥PUei∥2= ⟨ei,PUei⟩ = cos θi∥ei∥∥PUei∥= cos θi∥PUei∥, where θi is the
angle between ei and PUei. Then we can see that, unless ∥PUei∥= 0, we have cos θi = ∥PUei∥.
Then µ(U) = maxi cos

2 θi. Notice since µ(U) is the largest cos2 θi, we are actually looking for the
θi that is the closest to 0. That is, µ(U) is actually defined by the smallest angle between the ith
column of PU and ei.

Example 3.1.2. Consider two subspaces U1 := span{[1/
√
2, 1/

√
2]⊤}, and U2 := span{[

√
3/2, 1/2]⊤}.

Then we have PU1 =

[
1/2 1/2
1/2 1/2

]
and PU1 =

[
3/4

√
3/4√

3/4 1/4

]
. Note for U1, the smallest angle of

angles between the ith column of its projection matrix and ei is 45◦, while for U2, it is 30◦. And
µ(U1) = 1/2 < µ(U2) = 3/4. We can see this from Figure 3.1.

Figure 3.1: Coherence w.r.t. angles

The following theorem gives a sufficient condition with the sharpest possible constant for the
diagonal realizability of a subspace.

Theorem 3.1.3. [22] If a subspace U of Rn has µ(U) < 1/2 then U is diagonally realizable.
On the other hand, for every α > 1/2, there exists a diagonally unrealizable subspace U with
µ(U) = α.

This condition is sufficient for a subspace U to be realizable, and then by Proposition 2.1.3, it
is also sufficient for a ”yes” answer to the other two problems motivating the Definition 2.1.2.

39

3.2 Sufficient Conditions for λ-tridiagonal Realizability

From Theorem 3.1.3, we see a condition on the coherence of subspace being sufficient to prove that
the subspace is diagonally realizable. In addition to that, there exist conditions for one-dimensional
subspaces which completely characterize the diagonal realizability. We will see such conditions
later in Theorem 3.3.2, which shows that a one-dimensional subspace is realizable if and only if
its basis vector is balanced. For 0 ≤ λ < 2, we provide a sufficient condition for the λ-tridiagonal
realizability.

Assume 0 ≤ λ < 2 for the rest of this section. We start with looking for sufficient conditions
implying that there exists

Q ∈ {PU⊥ TriDiag(u, v)PU⊥ : TriDiag(u, v) ⪰ 0}

and ω, ξ ∈ Rn−1
+ such that (Q,ω, ξ) is feasible for (TriRegD). If we find such a (Q,ω, ξ), then this

means we find a Q ∈ Sn
+, ω, ξ ∈ Rn−1

+ such that Null(Q) ⊆ U and A(Q,ω, ξ) = b̂, which shows
U is λ-tridiagonally realizable. Note

PU⊥ TriDiag(u, v)PU⊥

=PU⊥ Diag(u)PU⊥ +PU⊥ BiDiag(v)PU⊥

=PU⊥ Diag(u)PU⊥ +PU⊥(:, 1 : (n− 1))Diag(v)PU⊥(2 : n, :)

+ [PU⊥(:, 1 : (n− 1))Diag(v)PU⊥(2 : n, :)]⊤.

Now we provide a lemma which shows that Q = PU⊥ TriDiag(u, v)PU⊥ , ω, ξ verify the λ-
tridiagonal realizability of a subspace if an SDP system has a solution. Then, we provide a con-
dition on the subspace U and its projection matrix PU , which is sufficient for the SDP system to
have a solution, and thus it is a sufficient condition for U to be λ-tridiagonally realizable.

Lemma 3.2.1. Let G = (PU⊥ ◦ PU⊥) and H = PU⊥(:, 1 : (n − 1)) ◦ PU⊥(:, 2 : n), then
Q = PU⊥ TriDiag(u, v)PU⊥ , ω, ξ verify the λ-tridiagonal realizability of U if

diag(Q) = Gu+ 2Hv = 1

bidiag(Q) = 2[H⊤u+ 2PU⊥(1 : (n− 1), 1 : (n− 1)) ◦PU⊥(2 : n, 2 : n)︸ ︷︷ ︸
:=M

v]

bidiag(Q) + ω − ξ = 0

ω + ξ = λ1

TriDiag(u, v) ⪰ 0

ω ≥ 0, ξ ≥ 0

(3.2.1)

are satisfied.

Proof. Suppose there exists Q = PU⊥ TriDiag(u, v)PU⊥ , ω, ξ satisfying system (3.2.1). First,

40

since PU⊥ is symmetric, we have

diag(Q) = diag(PU⊥ Diag(u)PU⊥) + diag(2PU⊥(:, 1 : (n− 1))Diag(v)PU⊥(2 : n, :))

= (PU⊥ ◦P⊤
U⊥)u+ 2(PU⊥(:, 1 : (n− 1)) ◦PU⊥(2 : n, :)⊤)v

= Gu+ 2Hv

Also, since bidiag(Q) = 2 diag

(
[In−1 0]Q

[
0

In−1

])
, we have

bidiag(Q) =2PU⊥(1 : (n− 1), :) Diag(u)PU⊥(:, 2 : n)

+ 4PU⊥(1 : (n− 1), 1 : (n− 1))Diag(v)PU⊥(2 : n, 2 : n)

=2(PU⊥(1 : (n− 1), :) ◦PU⊥(:, 2 : n)⊤)u

+ 4(PU⊥(1 : (n− 1), 1 : (n− 1)) ◦PU⊥(2 : n, 2 : n)⊤)v

=2(PU⊥(1 : (n− 1), :) ◦PU⊥(2 : n, :))u

+ 4(PU⊥(1 : (n− 1), 1 : (n− 1)) ◦PU⊥(2 : n, 2 : n))v

=2H⊤u+ 4Mv.

Then since Q = PU⊥ TriDiag(u, v)PU⊥and TriDiag(u, v) ⪰ 0, we have U ⊆ Null(Q), A(Q,ω, ξ) =
b̂ and Q ⪰ 0. We prove what is required.

Notice that for such subspaces, we may use the equations ω + ξ = λ1, and upon defining new
variables h := 1

2
(ξ − ω), we can eliminate ω and ξ from the system. Then, the system (3.2.1) is

equivalent to

Q = PU⊥ TriDiag(u, v)PU⊥

diag(Q) = Gu+ 2Hv = 1

bidiag(Q) = 2[H⊤u+ 2Mv] = 2h

− λ

2
≤ h ≤ λ

2
TriDiag(u, v) ⪰ 0.

(3.2.2)

Now we want a condition which ensures the system (3.2.2) has a solution (u, v), then we have
U is λ-tridiagonally realizable by Lemma 3.2.1. First, we provide a theorem which shows the
positive semidefiniteness of PU⊥ ◦PU⊥ .

Theorem 3.2.2. (Schur’s Product Theorem [23]) The Hadamard product of two positive semidef-
inite matrices is positive semidefinite. The Hadamard product of two positive definite matrices is
positive definite.

We now provide a sufficient condition for (3.2.2) having a solution, which involves the largest
column norm of PU⊥(:, 1 : (n− 1)) ◦PU⊥(:, 2 : n) and the coherence of U .

Proposition 3.2.3. Consider subspace U of Rn with coherence µ(U) < 1/2 and let p > 0 be a
constant such that ∥PU⊥(:, i) ◦PU⊥(:, i+1)∥≤ p for every i ∈ [n− 1]. If p

√
n

(1−µ)2
< λ

2
, there exists

41

infinitely many Q satisfying Q ⪰ 0, U ⊆ Null(Q) and

−λ1 ≤ bidiag(Q) ≤ λ1.

Proof. Assume U is a subspace of Rn with coherence µ(U) < 1/2 and let p > 0 be a constant such
that ∥PU⊥(:, i) ◦PU⊥(:, i+ 1)∥≤ p for every i ∈ [n− 1]. Since µ < 1/2, by [22, proof of Lemma
A.1], we know G := (PU⊥ ◦ PU⊥) is invertible. Let D be a diagonal matrix with Dii = Gii. By
the definition of G and Schur’s Product Theorem, we know G is positive semidefinite, and since
G is invertible, G is positive definite, so Gii > 0 for every i ∈ [n]. That is, for every i ∈ [n],
Dii = Gii > 0, so D is positive definite and invertible. By the definition of coherence, we have
[PU]ii ≤ µ , then PU⊥ = I − PU implies that [PU⊥]ii ≥ (1 − µ), so Dii = Gii ≥ (1 − µ)2 and
D−1

ii ≤ 1/(1− µ)2. By the system (3.2.2) and G being invertible, we want to solve

u = G−1
1− 2G−1Hv

|H⊤G−1
1+ 2(M −HTG−1H)v|≤ λ1

TriDiag(u, v) ⪰ 0

for u, v.

Then, by [32], we have 0 < G−1
1 ≤ D−1

1. With the definition of H and ∥PU⊥(:, i) ◦ PU⊥(:
, i+ 1)∥≤ p, we have

[H⊤G−1
1]i ≤ ∥PU⊥(:, i) ◦PU⊥(:, i+ 1)∥∥G−1

1∥≤ p∥G−1
1∥≤ p∥D−1

1∥≤ p

√
n

(1− µ)2
.

That is, when p
√
n

(1−µ)2
< λ/2, we have

−λ

2
1 < HTG−1

1 <
λ

2
1.

By considering v close enough to 0, we have |H⊤G−1
1 + 2(M − HTG−1H)v|≤ λ1, and u =

G−1
1 − 2G−1Hv > 0 by G−1

1 > 0. Also, when v is close enough to zero, we know the matrix
TriDiag(u, v) is diagonally dominant, hence it is positive semidefinite. Then, with any v (there are
infinitely many) satisfying the conditions above,

Q := PU⊥ TriDiag(u, v)PU⊥

is a matrix we are looking for.

Example 3.2.4. The condition p
√
n

(1−µ)2
< λ

2
1 is satisfied by some subspaces. With λ = 1.5,

42

consider the subspace

U := span





0.3062
−0.1621
0.2206
−0.3856
0.1468
0.2595
0.3378
0.1198
0.0382
−0.4121
0.0286
−0.2369
0.1618
0.1586
0.4309





, µ = 0.1857, p = 0.1162, p

√
n

(1− µ)2
= 0.6787 < 0.75 = λ/2.

With

u = G−1
1 =



1.0985
1.0237
1.0460
1.1806
1.0192
1.0664
1.1262
1.0126
1.0012
1.2194
1.0007
1.0539
1.0236
1.0226
1.2521



, v = 0, Q = PU⊥ TriDiag(u, v)PU⊥ ,

one can easily verify that maxi∈[n−1]|Qi(i+1)|= 0.0918, and for every i ∈ [n], Qii = 1, and clearly,
U ⊆ Null(Q).

Now, we provide an improved condition which requires knowing the dimension of U . Before
that, we recall a theorem of convex analysis.

Theorem 3.2.5. Given a closed convex function f , when its domain contains a nonempty compact
convex set C, such a function f attains its maximum over C and there exists an extreme point of
C being a maximizer of f over C.

43

Proposition 3.2.6. Consider a subspace U with dimension r, coherence µ < 1/2 and let p > 0
be a constant such that ∥PU⊥(:, i) ◦ PU⊥(:, i + 1)∥≤ p for every i ∈ [n − 1]. If κ(p, r, µ) :=

p

√
n+

(
1

(1−µ)4
− 1

)
r
µ
< λ

2
, then there exists infinitely many Q satisfying Q ⪰ 0, U ⊆ Null(Q)

and
−λ1 ≤ bidiag(Q) ≤ λ1.

Proof. Assume U is a subspace of Rn with dimension r, coherence µ(U) < 1/2 and let p > 0 be a
constant such that ∥PU⊥(:, i) ◦PU⊥(:, i+ 1)∥≤ p for every i ∈ [n− 1]. All the other steps are the
same as the proof of Proposition 3.2.3, but the upper bound on the norm of ∥D−1

1∥ is improved.
Let g = diag(PU), then D−1

ii = 1
(1−gi)2

. Hence ∥D−1
1∥ is always bounded from above by the

optimal value of the following problem:

max

√√√√ n∑
i=1

1

(1− gi)4

s.t
n∑

i=1

gi = r

0 ≤ gi ≤ µ,∀i ∈ [n].

Since the square root function is strictly monotone on R+, g maximizes
√∑n

i=1
1

(1−gi)4
if and only

if it maximizes
∑n

i=1
1

(1−gi)4
over the same set. Hence, we consider the problem with the same

constraints but with the objective function f(g) =
∑n

i=1
1

(1−gi)4
, and the set of optimal solutions

does not change. Since the feasible set is a polytope, it is a nonempty compact convex set. Then
by Theorem 3.2.5, there exists an extreme point of the feasible set being optimal.
Claim 3.2.6.1. Any extreme point g(k) of the feasible set can be written as:

for some k ∈ [n− 1] ∪ {0}
k of gi is 0
(n− k − 1) of gi is µ
1 of gi is (r − (n− k − 1)µ).

Proof. Suppose there exists an extreme point g of the feasible set with at least two entries strictly
less than µ and strictly positive. Without loss of generality, assume 0 < g1 < µ and 0 < g2 < µ.
Consider an ϵ > 0 such that 0 + ϵ < g1 < µ− ϵ and 0 + ϵ < g2 < µ− ϵ. Then g′ = g + ϵe1 − ϵe2
and g′′ = g − ϵe1 + ϵe2 are still in the feasible set, and g′ ̸= g′′, 1

2
g′ + 1

2
g′′ = g, so g is not

an extreme point, we reach a contradiction. Then consider a feasible g with at most one entry,
say g1, strictly less than µ and strictly positive, we show it is an extreme point. Suppose not,
then there exists g′ ̸= g′′ that are both in the feasible set and 1

2
g′ + 1

2
g′′ = g, then for all i ̸= 1,

g′i = g′′i = gi ∈ {0, µ}, otherwise, we have either one of g′i, g
′′
i larger than µ or less than 0, then

g′, g′′ are not feasible. Then since g′ ̸= g′′, we know g′1 ̸= g′′1 , and 1
2
g′1 +

1
2
g′′1 = g1. Without loss of

generality, say g′1 < g1 < g′′1 , then
∑n

i=1 g
′
i <

∑n
i=1 gi = r, so g′ is not feasible, contradiction.

44

Notice the last condition above requires 0 ≤ (r− (n− k − 1)µ) ≤ µ < 1
2
, which is equivalent

to n− r
µ
≥ k ≥ n− r

µ
− 1.

Consider writing extreme points with k entries being 0 as g(k), instead of using k ∈ [n− 1] ∪
{0}, we extend it to k ∈ [0, n− 1], and consider f(g(·)) : R → Rn which is defined as

f(g(k)) :=
n− 1

(1− µ)4
+

(
1− 1

(1− µ)4

)
k +

1

(1− r + (n− 1)µ− kµ)4
.

Notice that when k is a nonnegative integer, f(g(k)) =
∑k

i=1 1+
∑n−1

k+1
1

(1−µ)4
+ 1

(1−r+(n−1)µ−kµ)4
,

and g(k) is a valid extreme point of the feasible set.

It is easy to see that ∂2f(g(k))

∂k2
= 20µ2

(1−r+(n−1)µ−kµ)6
> 0. Thus, f(g(k)) is strictly convex over

[n− r
µ
−1, n− r

µ
]. By Theorem 3.2.5, it is maximized at one of the extreme points of [n− r

µ
−1, n− r

µ
].

So there exists a maximizer k∗ of f(g(k)) where k∗ ∈ {n− r
µ
, n− r

µ
− 1}. Since f(g(n− r

µ
)) =

f(g(n − r
µ
− 1)) = n +

(
1

(1−µ)4
− 1

)
r
µ

, we have f(g) ≤ n +
(

1
(1−µ)4

− 1
)

r
µ

, which implies

∥D−1
1∥≤ maxg feasible

√
f(g) ≤

√
n+

(
1

(1−µ)4
− 1

)
r
µ
.

The bound above might not be tight, because when n− r
µ

is not an integer, then the maximum
of f(g(k)) can only be attained at ⌊n − r

µ
⌋ = ⌈n − r

µ
− 1⌉, otherwise, k is not an integer. Notice

the above constant is smaller than p
√
n

(1−µ)2
for every subspaces. By the definition of coherence, we

have µ ≥ r
n

, then

n

(
1

(1− µ)4
− 1

)
≥ r

µ

(
1

(1− µ)4
− 1

)
.

After rearranging the terms and take the square root of both sides, we have√
n

(1− µ)4
≥

√
r

µ

(
1

(1− µ)4
− 1

)
+ n.

3.3 Computational Examples

In this section, we show some computational examples of verifying the tridiagonal realizability of
subspaces. We first introduce how we can verify if a subspace is tridiagonally realizable by solving
an SDP, then we introduce the tool we use for solving it. After that, we provide some examples
verifying our theoretical results and some computational experiments about one-dimensional sub-
spaces.

The realizability of a given subspace (e.g. via a basis) can be tested by solving an SDP. Given
0 ≤ λ < 2 and a subspace U with an orthonormal basis u1, . . . , ur, consider the matrix U =

45

[u1 . . . ur] and P := UUT . Then U is λ- tridiagonally realizable if and only if the SDP:

QP = 0

diag(Q) = 1

diag(Q[2 : n, 1 : (n− 1)]) ≤ λ/2 ∗ 1n−1

diag(Q[2 : n, 1 : (n− 1)]) ≥ −λ/2 ∗ 1n−1

Q ⪰ 0

has a feasible solution, which is an SDP that can be solved quickly by regular convex solvers.
We use Domain Driven Solver (DDS) to solve the corresponding SDP for verifying tridiagonal-
realizability of a subspace [17], which gives robust and accurate results. We consider a subspace
realizable if DDS solves the SDP, and unrealizable if not.

For each U , consider β := mini∈[n][PU]ii, and p = max∥PU⊥(:, i) ◦PU⊥(:, i+ 1)∥.

Here are some examples of tridiagonally realizable and tridiagonally unrealizbale subspaces.
Consider a subspace that is not 1-tridiagonally realizable:

U1 = span




−0.1084 −0.4777
−0.1493 0.6351
−0.0409 −0.5983
−0.2702 −0.0428
−0.6878 −0.0690
−0.6467 0.0625




µ = 0.4778
β = 0.0748
p = 0.3447.

We set the solver tolerance as the default 10−8. For λ = 1 and U1, we run DDS to solve for Q,
the software outputs |A⊤y|= 3.48 ∗ 10−9,max{⟨y, Ax⟩ : x feasible } ≤ −90.7 < 0. For DDS, it
means that for the implicit dual problem it creates for the given optimization problem, there exists
a line in the feasible region, such that by following the line, the dual problem is unbounded, which
is an indicator saying the optimization problem we input is infeasible.

Here is a 1-tridiagonally realizable subspace:

U2 =




0.3881 −0.2960
−0.0091 0.6386
0.5600 0.3899
−0.3621 −0.2987
0.6357 −0.3092
−0.0224 0.4096




µ = 0.4997

β = 0.1682

p = 0.3074.

For this subspace, after solving the problem with DDS, we have primal feasibility being 5.60∗10−15

dual feasibility being 2.95 ∗ 10−16 and relative duality gap being 3.79 ∗ 10−14. That is, with the
default tolerance 10−8, we consider our input problem (the primal) to be feasible and the implicit

46

dual created by DDS is also feasible. Also, we consider the duality gap to be zero, so the input
problem has an optimal solution (with the objective value always being zero). That is, we consider
the subspace U2 to be tridiagonally realizable.

Now we consider a rational example,

U3 = span


1

6


3
4
3
1
1


 , Q =

1

50


50 −23 −27 14 9
−23 50 −23 −28 −34
−27 −23 50 5 18
14 −28 5 50 5
9 −34 18 5 50

 .

Notice diag(Q) = 1, Q ⪰ 0 and U3 ⊆ Null(Q), and µ = 4/9, β = 1/36, p =
√
174528/648 ≈

0.728. Then for this subspace, we have

p

√
n

(1− µ)2
≈ 5.274

κ(p, r, µ) = p

√
n+

(
1

(1− µ)4
− 1

)
r

µ
≈ 1.9122.

Since |Qi(i+1)|< 0.5 for every i ∈ [4], we know U3 is 1-tridiagonally realizable. However,

min

{
p

√
n

(1− µ)2
, κ(p, r, µ)

}
> 0.5,

which shows that the conditions in Proposition 3.2.3 and Proposition 3.2.6 are not necessary for a
subspace to be 1-tridiagonally realizable. Hence, in general, they are not necessary for a subspace
to be λ-tridiagonally realizable, where 0 ≤ λ < 2.

We consider 50 of 1.5-tridiagonally realizable subspaces of R15 with dimension 1, and their
corresponding p

√
n

(1−µ)2
, κ(p, r, µ):

47

Figure 3.2: Sufficient Conditions of 1.5-tridiagonally realizable subspaces of R15

We have p
√
n

(1−µ)2
≤ κ(p, r, µ) for every subspace, and the condition κ(p, r, µ) < λ/2 works

much better than p
√
n

(1−µ)2
< λ/2 in practice. The figure 3.2 shows that there are only a few

subspaces satisfying the condition p
√
n

(1−µ)2
< λ/2 but 20 of them satisfy κ(p, r, µ) < λ/2.

We also does the same test for 50 subspaces of R5. From figure 3.3, we see every 1.8-
tridiagonally unrealizable subspace fails to satisfy κ(p, r, µ) ≤ p

√
n

(1−µ)2
< λ/2. While every

1.8-tridiagonally realizable subspace fails to satisfy p
√
n

(1−µ)2
< λ/2, there are still few of them

satisfying κ(p, r, µ) < λ/2.

Figure 3.3: Sufficient Conditions of 1.8-tridiagonally realizable and nonrealizable subspaces of R5

48

Perturb One-Dimensional Subspaces

For the diagonal case, the one-dimensional subspaces are fully characterized by a property of their
basis.

Definition 3.3.1. [8] A vector u ∈ Rn is balanced if for all i ∈ [n],

|ui|≤
∑
j ̸=i

|uj|.

We call the vector is strictly balanced if the inequalities are strict for all i ∈ [n].

The following theorem characterizes the diagonal realizability of one-dimensional subspaces
by their balancedness.

Theorem 3.3.2. [8, 22, 15, 18] If a subspace U of Rn is realizable then every u ∈ U is balanced.
If U = span{u} is one-dimensional then U is realizable if and only if u is balanced.

We give a sufficient condition for the basis vector of a one-dimensional subspace to be bal-
anced.

Corollary 3.3.3. When U = span{u}, µ < 0.5, we have u being balanced.

Proof. Without loss of generality, assume ∥u∥2= 1. When µ < 0.5, for every i ∈ [n], we have

u2
i < 0.5 <

∑
j∈[n]\{i}

u2
j =⇒ |ui|<

√ ∑
j∈[n]\{i}

u2
j ≤

∑
j∈[n]\{i}

|uj|,

hence u is balanced.

Now we immediately extend the theorem above to the λ-tridiagonal realizability.

Corollary 3.3.4. If a subspace U = span{u} is not balanced, then it is not λ-tridiagonal realizable
for every λ ≥ 0.

We also give a necessary condition on µ for a one-dimensional subspace to be tridiagonally
realizable.

Corollary 3.3.5. Given 0 ≤ λ < 2, every one-dimensional λ-tridiagonally realizable subspace has
µ ≤ (n− 1)/n.

Proof. Consider a realizable subspace U = span{u}. Since it is tridiagonally-realizable, it is
diagonally-realizable and then the vector u is balanced. That is, for every i ∈ [n], we have

|ui|≤
∑

j∈[n]\{i}

|uj|,

49

then we have

|ui|2 ≤ 1− u2
i +

∑
j,k∈[n]\{i},j ̸=k

|uj||uk|

≤ 1− u2
i + 2

(
n− 1

2

)
1− u2

i

n− 1

= 1− u2
i + (n− 2)(1− u2

i)

which implies u2
i ≤ n−1

n
, that is, µ ≤ n−1

n
.

Given a one dimensional subspace U = span{u} of Rn, we use

balU := max
j∈[n]

|ui|−
∑

j∈[n],j ̸=i

|uj|

to measure how balanced U is. The smaller balU is, the more balanced U is. When balU ≤ 0, U
is balanced, and it is strictly balanced if balU < 0. Also, suppose for some i, |ui|= maxj∈[n]|uj|,
then balU = |ui|−

∑
j∈[n],j ̸=i|uj|, because

|ui|−
∑

j∈[n],j ̸=i

|uj|= |ui|−|uk|−
∑

j∈[n],j ̸=i,k

|uj|≥ |uk|−|ui|−
∑

j∈[n],j ̸=i,k

|uj|,∀k ∈ [n].

Being motivated by Theorem 3.3.2, we want to know how the λ-tridiagonal realizability of
one-dimensional subspaces is related to how balanced its basis vector is.

We consider the one-dimensional subspaces and test if they are realizable while perturbing one
entry of its basis. We tried different λ with values 0.25, 0.5, 1, 1.5, and for each λ, we compute
the measurement of being balanced and test the realizability of subspaces of R6 after adding the
first entry of the basis by 0.05 and normalizing it for 150 times, then the following plots show the
relations between the measurement of being balanced and µ for the λ-tridiagnally realizable and
unrealizable subspaces.

50

(a) λ = 0.25 (b) λ = 0.5

(c) λ = 1 (d) λ = 1.5

Figure 3.4: balU VS µ for different λ

From the plots, we observe that there are thresholds determining if a one-dimensional subspace
is λ-tridiagonally realizable or not. Also, as λ increases, the threshold increases as well. Recall
Theorem 3.3.2 shows that when λ > 2, a one-dimensional subspace is realizable if and only if
balU ≤ 0. That is, we can expect that when λ increases, the threshold converges to 0 from below.
We can see that all the subspaces with µ < 0.5 are balanced which agrees with Corollary 3.3.3.
Also, the plots show that, for 0 < λ < 2, the basis vector being balanced is not sufficient for the
one-dimensional subspace to be λ-tridiagonally realizable.

Similar results can be obtained by observing the κ(p, r, µ) of the λ-tridiagonally realizable one-
dimensional subspaces of R6 and the minimum κ(p, r, µ) of the λ-tridiagonally unrealizable ones.
We can see from the plots below that the minimum κ(p, r, µ) of the λ-tridiagonally unrealizable
subspaces is greater than all κ(p, r, µ) of the λ-tridiagonally realizable subspaces for each λ. The
minimum κ(p, r, µ) increases as λ increases. We can expect that a subspace is more likely to be
λ-tridiagonally realizable when λ is larger. Also, by κ(p, r, µ), we expect that the subspaces with
larger µ are less likely to be λ-tridiagonally realizable. That is, when λ increase, the subspaces
with large µ which were unrealizable might become λ-tridiagonally realizable for the increased

51

λ. Also we see that none of the µ of the λ-tridiagnally realizable subspaces exceed n−1
n

= 5
6

as
Corollary 3.3.5 claims.

(a) λ = 0.25 (b) λ = 0.5

(c) λ = 1 (d) λ = 1.5

Figure 3.5: κ(p, r, µ) of λ-tri. real. VS minκ(p, r, µ) of λ-tri. unreal. for different λ

52

Chapter 4

Algorithms for Low-Rank Plus Sparse
Matrices Decomposition of Symmetric
Matrices

In this chapter, we study algorithms for low-rank plus sparse matrices decomposition. In the first
section, we analyze the low-rank plus diagonal decomposition problem, and show that this problem
is NP-hard in general. However, when the optimal value of this problem is bounded above by an
absolute constant, we can develop an algorithm to solve it in polynomial time. This section is an
exposition of results in [31].

Then in the second section of this chapter, we show that when the optimal value of low-rank
plus tridiagonal matrices decomposition problem is bounded by an absolute constant, the previous
algorithm can be extended and applied to the problem and solves it in polynomial time.

4.1 Low-Rank Plus Diagonal Decomposition

Recall the low-rank plus diagonal decomposition problem, which is in the form: given A ∈ Sn,

min
x∈Rn,L∈Sn

rank(L)

s.t. A = L+Diag(x)

L ⪰ 0,

(LD1)

which can also be written as

min
x∈Rn,L∈Sn

rank(A+Diag(x))

s.t. A+Diag(x) ⪰ 0
(LD2)

and we may assume diag(A) = 0 for it.

Recall that for every simple undirected graph G = ([n], E), |E|= p, we have a sparsity pattern
and a linear map SparseMat : Rn ⊕ Rp → Sn. With that, we consider another optimization

53

problem with respect to the sparsity pattern:

min
u,v∈Rn⊕Rp

rank(A+ SparseMatG(u, v))

s.t. A+ SparseMatG(u, v) ⪰ 0
(LS)

As shown in [31, Section 3], all these three problems, (LD1), (LD2) and (LS), are NP-hard.

Now we give an algorithm provided in [31], which can be implemented in polynomial time
if the optimal value of an instance of (LD2) is r̄ = O(1). First, we have that there exists d such
that A + Diag(d) ⪰ 0 and rank(A + Diag(d)) = r if and only if there exists U ∈ Rn×r such
that rank(U) = r and A + Diag(d) = UU⊤. Notice that rank(U) = r if and only if there exists
J ⊆ [n] such that |J |= r and UJ := U(J, :) is invertible. Suppose such J exists, then we may
assume J = [r] and let J̄ := [n] \ J . Then we can have

A+Diag(d) =

[
UJU

⊤
J UJU

⊤
J̄

UJ̄U
⊤
J UJ̄U

⊤
J̄

]
.

where UJUJ is positive definite. With this structure, we can consider the following lemma.

Lemma 4.1.1. [31] Given n ≥ 2 be an integer, r ∈ [n − 1] and A ∈ Sn with diag(A) = 0. Then
d ∈ Rn is feasible for (LD2) with objective value r if and only if there exists J ⊆ [n] such that
|J |= r, and with J̄ := [n] \ J the following system has a solution (d, V) ∈ Rn × Sr:

[A(J, i)⊗ A(J, j)]⊤ vec(V) = Aij,∀i, j ∈ J̄ , i < j

[A(J, i)⊗ A(J, j)]⊤ vec(V) = di,∀i ∈ J̄

e⊤i V
−1ej = Aij,∀i, j ∈ J, i < j(V −1)ii = di, i ∈ J

V ∈ Sr
++.

(4.1.1)

Given J ⊆ [n] with |J |= r, every feasible solution (d, V) corresponding to J is completely
characterized by (4.1.1). The following algorithm takes a given J and tries to solve (4.1.1) by only
considering the constraints that are easy to handle.

54

Algorithm 1.1 [31] Linear solver with a given index set
Input: A ∈ Sn, diag(A) = 0, J ⊆ [n]
J := {1, 2, . . . , n} \ J , r := |J |, solve:

[A(J, i)⊗ A(J, j)]⊤ vec(V) = Aij,∀i < j, i, j ∈ J̄ (4.1.2)

if (4.1.2) has no solution then
return a certificate that either the original problem is infeasible or there
may be a solution to the problem but for any solution, U(J, :) is singular.

else if (4.1.2) has infinitely many solutions V and some v then
return B ∈ Rk×r(r+1)/2, b ∈ Rk such that rank(B) = k, V
solves (4.1.2) if and only if B svec(V) = b.

else if (4.1.2) has a unique solution V and some v then
if V /∈ Sr

++ or ∃i, j ∈ J, i < j, e⊤i V
−1ej ̸= Aij then

return the corresponding certificate that either the original problem is
infeasible (∃i, j ∈ J, i < j, e⊤i V

−1ej ̸= Aij) or there may be a
solution to the problem but for any solution, U(J, :) is singular (V /∈ Sr

++).
else

Compute u ∈ Rn by ui :=

{
(V −1)ii,∀i ∈ J

A(J, i)⊤V A(J, i),∀i ∈ J̄
return u

end if
end if

The B svec(V) = b in the algorithm can be written as [A(J, i)
s
⊗A(J, j)] svec(V) = Aij where

s
⊗ : Rr × Rr → Rr(r+1)/2 is symmetric Kronecker product and svec : Sr → Rr(r+1)/2 is defined as

svec(V) = (V11,
√
2V21, . . . ,

√
2Vr1, V22,

√
2V32, . . . ,

√
2Vn2, . . . , Vnn)

⊤

which returns the vectorized lower-triangular part of a symmetric matrix. When Algorithm 1.1
fails to solve (LD2) and returns a linear system B svec(V) = b, the solution set of this returned
linear system contains all solutions to (LD2) with the given J . And this guides us to the following
algorithm.

55

Algorithm 1.2 [31] Nonlinear solver with a given index set
Input: A ∈ Sn, diag(A) = 0, J := {j1, j2, . . . , jr} ⊆ [n], B ∈ Rk×r(r+1)/2, b ∈ Rk and
rank(B) = k.
solve: 

B svec(V) = b

Aij det(V)− adj(V)ij = 0,∀i < j, i, j ∈ J

det(VJk)z
2
k = 1, ∀k ∈ {1, 2, . . . , r} where Jk := {j1, j2, . . . , jk}

V ∈ Sr, z ∈ Rr

(4.1.3)

if (4.1.3) does not have a solution then
return an infeasibility certificate

else
given the solution (V, z) of (4.1.3)

compute u ∈ Rn where ui :=

{
(V −1)ii,∀i ∈ J

A(J, i)⊤V A(J, i), ∀i ∈ J̄
return u

end if

where Aij det(V)− adj(V)ij = 0 is equivalent to e⊤i V
−1ej = Aij given det(V) ̸= 0.

With both Algorithm 1.1 and Algorithm 1.2, we can test every J ⊆ [n] with |J |= r to determine
if (LD2) has a feasible solution with objective value r.

Algorithm 1.3 [31] Solver without given index sets
Input: A ∈ Sn, r ∈ [n− 1]
for every J ⊆ [n] such that |J |= r do

Run Algorithm 1.1 with A and J , r. If Algorithm 1.1 returns a feasible solution, return the
solution. Otherwise, if Algorithm 1.1 returns a linear system of equations, run Algorithm 1.2
with A, J , r and the returned linear system. If Algorithm 1.2 returns a feasible solution, return
the solution.
end for

Since Algorithm 1.3 determines if (LD2) has a feasible solution with objective value r, when
the optimal value of an instance is r̄ = O(1), we can solve (LD2) by enumerating [r̄] with Algo-
rithm 1.3.

Theorem 4.1.2. [31] If r = O(1), then Algorithm 1.3 can be implemented in polynomial time.
Hence, if an instance of (LD2) has optimal value r̄ = O(1), then it can be solved by calling
Algorithm 1.3 with each possible rank from 1 to r̄.

56

4.2 Low-Rank Plus Tridiagonal Decomposition

In this section, we provide an algorithm which solves the low-rank plus tridiagonal decomposition
problems in polynomial time when its optimal value is bounded by an absolute constant.

Consider the low-Rank and tridiagonal decomposition problem:

min rank(L)

s.t. A = L+ Y

L ⪰ 0

Y ∈ Tn ∩ Sn,

(4.2.1)

which can be rewrite as the problem (2.3.1):

min rank(A+ Y)

s.t. A+ Y ⪰ 0

Y ∈ Tn ∩ Sn,

and we may assume diag(A) = 0 for it.

We extend the algorithms in the previous section to algorithms that solve (2.3.1) in polynomial
time if the optimal value is bounded above by an absolute constant. Notice that for any A ∈ Sn with
diag(A) = 0 and A = UΣU⊤, we can set u := −λn(A)1 = diag(−λnUU⊤), v := 0 and have
rank(A+TriDiag(u, v)) ≤ n−1. Notice (2.3.1) has a solution with objective value r if and only if
there exists U ∈ Rn×r such that rank(U) = r and UU⊤ = A+TriDiag(u, v). Also, rank(U) = r
if and only if there exists J ⊆ [n] such that |J |= r and the submatrix UJ := U(J, :) ∈ Rr×r is
nonsingular. If such J exists, without loss of generality, we can assume J = [r] and J := [n] \ J .
Then we have the equation

A+ TriDiag(u, v) =

[
UJU

⊤
J UJU

⊤
J

U⊤
J
UJ UJU

⊤
J

]
.

Notice that, we have [A+TriDiag(u, v)]J,J̄ = UJU
⊤
J̄

, which shows that U⊤
J̄
= U−1

J [A+TriDiag(u, v)]J,J̄ .

Lemma 4.2.1. [31] Let n ≥ 2 be an integer, A ∈ Sn with diag(A) = 0 and r ∈ [n − 1] be
given. (u, v) ∈ Rn ⊕ Rn−1 is a feasible solution of (2.3.1) with objective value r if and only if
there exists J ⊆ [n], J := [n] \ J with |J |= r, such that the following system has a solution

57

(u, v, V) ∈ Rn ⊕ Rn−1 ⊕ Sr :

K = A+ TriDiag(0, v)

[K(J, i)⊗K(J, j)]⊤ vec(V) = Aij,∀i, j ∈ J, i < j − 1

[K(J, i)⊗K(J, i+ 1)]⊤ vec(V) = vi + Ai(i+1),∀i, i+ 1 ∈ J

[K(J, i)⊗K(J, i)]⊤ vec(V) = ui,∀i ∈ J

e⊤i V
−1ej = Aij, ∀i, j ∈ J, i < j − 1

e⊤i V
−1ei+1 = Aij + vi,∀i, i+ 1 ∈ J

(V −1)ii = ui, i ∈ J

V ∈ Sr
++.

(4.2.2)

Proof. Consider a feasible solution (u, v) ∈ Rn ⊕ Rn−1 for the problem (2.3.1) with objec-
tive value r ∈ [n − 1]. Then, there exists U ∈ Rn×r with rank(U) = r such that UU⊤ −
TriDiag(u, v) = A. Consider J ⊂ [n] such that rank(UJ) = r = |J |. Let V := (UJU

⊤
J)

−1 ∈ Sr
+.

Consider i, j ∈ J, i < j − 1, then [K(J, i) ⊗ K(J, j)]⊤ vec(V) = tr(V,K(J, j)K(J, i)⊤) =
K(J, i)⊤U−⊤

J U−1
J K(J, j) = U(i, :)U(j, :)⊤ = Aij . Other equations are satisfied similarly.

Conversely, for some given J as in the statement and (u, v, V) feasible for (4.2.2), without
loss of generality, we assume that J = [r]. Compute Û ∈ Rr×r from V −1 = Û Û⊤ ≻ 0. Let
K := A+ TriDiag(0, v) and U ∈ Rn×r defined as

U(i, :) :=

{
Û(i, :), if i ∈ J

[Û−1K(J, i)]⊤, if i ∈ J

where J := [n] \ J . For i, j ∈ J, i < j − 1, we have (UU⊤)ij = [Û−1K(J, i)]⊤[Û−1K(J, j)] =

K(J, i)⊤Û−⊤Û−1K(J, j) = K(J, i)⊤V K(J, j) = [K(J, i) ⊗ K(J, j)]⊤ vec(V) = Kij = Aij .
Apply similar arguments for other equations, we find 0 ⪯ UU⊤ = A + TriDiag(u, v). That is,
(u, v) is feasible for (2.3.1) with objective value r.

Similar to the diagonal case, now we give an algorithm which solves (4.2.2) by only considering
the constraints that are easy to handle.

58

Algorithm 2.1 quadratic solver with a given index set
Input: A ∈ Sn, diag(A) = 0, J ⊆ [n], r := |J |
J := [n] \ J , J∗ := {i ∈ [n] : i+ 1 /∈ J and i− 1 /∈ J}, J̄∗ := [n] \ J∗, solve:

K = A+ TriDiag(0, v)

[K(J, i)⊗K(J, j)]⊤ vec(V) = Kij = Aij,∀i, j ∈ J ∩ J∗, i < j − 1
(4.2.3)

if (4.2.3) has no solution then
return a certificate that either the original problem is infeasible or there
may be a solution to the problem but for any solution, U(J, :) is singular.

else if (4.2.3) has infinitely many solutions V and some v then
return B ∈ Rk×r(r+1)/2, b ∈ Rk such that rank(B) = k, V
solves (4.2.3) if and only if B svec(V) = b.

else if (4.2.3) has a unique solution V and some v then
if V /∈ Sr

++ or ∃i, j ∈ J, i < j − 1, e⊤i V
−1ej ̸= Kij = Aij then

return the corresponding certificate that either the original problem is
infeasible (∃i, j ∈ J, i < j − 1, e⊤i V

−1ej ̸= Aij) or there may be a
solution to the problem but for any solution, U(J, :) is singular (V /∈ Sr

++).
else

Solve:

[K(J, i)⊗K(J, j)]⊤ vec(V) = Aij,∀i, j ∈ J̄ , i < j − 1 and at least one of i, j is in J̄∗

[K(J, i)⊗K(J, i+ 1)]⊤ vec(V) = vi + Ai(i+1),∀i ∈ J, i+ 1 ∈ J

[K(J, i)⊗K(J, i− 1)]⊤ vec(V) = vi + Ai(i+1),∀i ∈ J, i− 1 ∈ J.

(4.2.4)

if the quadratic system above has no solution v then
return Infeasibility Certificate

else

Compute u ∈ Rn by ui :=

{
(V −1)ii,∀i ∈ J

K(J, i)⊤V K(J, i),∀i ∈ J̄

and compute the other entries of v ∈ Rn−1 by

vi :=

{
(V −1)i(i+1) − Ai(i+1),∀i, i+ 1 ∈ J

K(J, i)⊤V K(J, i+ 1)− Ai(i+1),∀i, i+ 1 ∈ J̄

end if
end if
return (u, v)

end if

The algorithm first solves a linear system of V . By considering i, j ∈ J̄ ∩ J∗, none of
K(J, i), K(J, j) contains vi, hence given i, j ∈ J ∩ J∗, i < j − 1, the equation [K(J, i) ⊗
K(J, j)]⊤ vec(V) = Kij = Aij is a linear system.

59

Depending on the uniqueness of V , the solution to the original problem is computed. For the
case where infinitely many V exist, the algorithm returns a quadratic system whose solution set
contains all solutions of (2.3.1), (4.2.3) with respect to the given index set J , so we proceed to
another phase to solve a system of polynomial equations. When the V is unique, the algorithm
tests if the V is feasible for the other linear conditions and finds a feasible v by first determining
vi, vj where i ∈ J, i + 1 ∈ J̄ , i ∈ J, i − 1 ∈ J̄ and i, j ∈ J̄ , i < j − 1 with at least one of i, j
being in J̄∗. Since there are at most 2r of i such that i ∈ J and i± 1 ∈ J̄ and |J̄∗|≤ 2r, the cubic
system (4.2.4) has at most 2r + (2r)2 ∈ O(r2) equations. Notice that there are at most 2r of (i, j)
such that i ∈ J, j ∈ J̄ , and vec(V) has r2 entries, so (4.2.4) has at most 2r+ r2 ∈ O(r2) variables.
The motivation is that if we write a feasible solution as

A+ TriDiag(u, v) = UU⊤,

then V determines UJ and those entries of v determines UJ̄ . Thus, UU⊤ is determined and so are
u and the rest entries of v.

If there are infinitely many V , then we apply similar steps as the diagonal cases. [K(J, i) ⊗
K(J, j)]⊤ vec(V) = Kij is equivalent to [K(J, i)

s
⊗K(J, j)] svec(V) = Kij . Then B svec(V) =

b may be written as a quadratic system of symmetric Kronecker products and svec(V). Given
det(V) ̸= 0, Kij det(V) − adj(V (i, j)) = 0 can be written as V −1

ij = Kij . Also det(VJk)z
2
k = 1

and V ∈ Sr, z ∈ Rr is equivalent to V ∈ Sr
++.

60

Algorithm 2.2 Nonlinear solver with a given index set
Input: K ∈ Sn, diag(K) = 0, J := {j1, j2, . . . , jr} ⊆ [n], B ∈ Rk×r(r+1)/2, b ∈ Rk and
rank(B) = k.
solve:

B svec(V) = b

Kij det(V)− adj(V)ij = 0,∀i < j, i, j ∈ J

det(VJk)z
2
k = 1,∀k ∈ [r] where Jk := {j1, j2, . . . , jk}

[K(J, i)⊗K(J, j)]⊤ vec(V) = Aij,∀i, j ∈ J̄ , i < j − 1 and at least one of i, j is in J̄∗

[K(J, i)⊗K(J, i+ 1)]⊤ vec(V) = vi + Ai(i+1),∀i ∈ J, i+ 1 ∈ J

[K(J, i)⊗K(J, i− 1)]⊤ vec(V) = vi + Ai(i+1), ∀i ∈ J, i− 1 ∈ J

V ∈ Sr, z ∈ Rr

(4.2.5)

if (4.2.5) does not have a solution then
return an infeasibility certificate

else
given the solution (V, z) of (4.2.5)

compute u ∈ Rn where ui :=

{
(V −1)ii, ∀i ∈ J

K(J, i)⊤V K(J, i),∀i ∈ J̄

compute the other entries of v ∈ Rn−1 where v ∈ Rn−1 by

vi :=

{
(V −1)i(i+1) − Ai(i+1),∀i, i+ 1 ∈ J

K(J, i)⊤V K(J, i+ 1)− Ai(i+1), ∀i, i+ 1 ∈ J̄
return u

end if

Similar to Algorithm 2.1, we first determine UJ , then UJ̄ , then we know u and some entries
of v. For the rest of v, we determine them by considering UJ̄U

⊤
J̄

. Also, since the system (4.2.4)
contains O(r2) cubic equations with O(r2) variables, we know (4.2.5) also contains O(r2) cubic
equations with O(r2) variables.

If we assume r ∈ O(1), then for both Algorithm 2.1 and Algorithm 2.2, we are solving sys-
tems of equations with a degree at most 3 while the number of non-linear equations and the number
of variables are O(1). For most applications, Algorithm 2.1 can be implemented efficiently, be-
cause except for O(1) cubic equations, it only solves linear systems. Thus, in some applications,
running Algorithm 2.1 for different J might be worthwhile before moving to Algorithm 2.2 as if
Algorithm 2.1 returns a solution with |J |= r, then there is no need to run Algorithm 2.2 for this r.

Since when r = O(1), Algorithm 2.2 involves at most O(1) number of polynomial equa-
tions, Algorithm 2.3 below can determine whether (2.3.1) has a solution with objective value r in
polynomial time. And if the optimal objective value is r̄ = O(1), we can solve the problem by
enumerating all possible values for r ∈ [r̄].

61

Algorithm 2.3 Solver without given index sets
Input: A ∈ Sn, r ∈ [n− 1]
for every J ⊆ [n] such that |J |= r do

Run Algorithm 2.1 with A and J , r. If Algorithm 2.1 returns a feasible solution, return the
solution. Otherwise, if Algorithm 2.1 returns a linear system of equations, run Algorithm 2.2
with A, J , r and the returned linear system. If Algorithm 2.2 returns a feasible solution, return
the solution.
end for

Now we prove that we can solve a low-rank plus tridiagonal decomposition instance when it
has an optimal value r̄ = O(1).

Theorem 4.2.2. If r = O(1), then Algorithm 2.3 can be implemented to run in polynomial time.
Thus, if the optimal objective value of (2.3.1) is r̄ = O(1), then such instances can be solved in
polynomial time by trying all possible ranks from 1 to r̄ with Algorithm 2.3.

Proof. Algorithm 2.1 can be run in polynomial time, because it only involves solving a quadratic
system of equations whose number of equations is bounded by a poly(n) number and performing a
Cholesky decomposition on a matrix V ∈ Sr

++. If r = O(1), then the system (4.2.5) is a system of
polynomial equations with O(r2) = O(1) variables and O(r2) +O(r) +O(2r) = O(1) equations,
so Algorithm 2.2 can be run in O(1) time (e.g. by cylindrical algebraic decomposition, for instance,
see [2] and [5]). By running with all possible ranks [r̄], Algorithm 2.3 calls Algorithm 2.1 and
Algorithm 2.2 at most

r̄∑
r=1

(
n

r

)
= O(nr̄) = O(nO(1))

times. Hence, if r̄ = O(1), we can solve (2.3.1) in polynomial time.

Example 4.2.3. Consider the matrix

A :=


0 0 1 2 1
0 0 0 1 1
1 0 0 2 1
2 1 2 0 2
1 1 1 2 0

 ,

and consider the corresponding instance of (TriRegP). Notice that, we consider the submatrix
A(1 : 2, 4 : 5) of A, whose entries are not affected by the tridiagonal perturbation. This submatrix
has rank 2, so rank(A + TriDiag(u, v)) ≥ 2 for every (u, v) ∈ Rn ⊕ Rn−1. Consider u =
[1, 1, 1, 5, 2]⊤, v = [0, 0, 0, 1]⊤, then rank(A+ TriDiag(u, v)) = 2, because

A+ TriDiag(u, v) =


1 0 1 2 1
0 1 0 1 1
1 0 1 2 1
2 1 2 5 3
1 1 1 3 2

 =


1
0
1
2
1

 [
1 0 1 2 1

]
+


0
1
0
1
1

 [
0 1 0 1 1

]
,

62

so (u, v) is an optimal solution.

Consider J = {1, 2}, J̄ = {3, 4, 5} and run Algorithm 2.1. The linear system (4.2.3) considers
K = A + TriDiag(0, v). Thus there are infinitely many feasible V because the system does not
have a full column rank. The system (4.2.5) considers [K(J, 3) ⊗ K(J, 5)]⊤ vec(V) = A35 and
[K(J, 2) ⊗K(J, 3)]⊤ vec(V) = v2 + A23, and the system can be written as: replacing K12 by v1
since A12 = 0, we have

v1 det(V)− adj(V)12 = 0

V11z
2
1 = 1

(V11V22 − V 2
12)z

2
2 = 1

[1 v1 1 v1] vec(V) = 1

[v1 v1v2 0 0] vec(V) = v2 + A23 = v2

V ∈ Sr, z ∈ Rr.

One solution to (4.2.3) is

V =

[
1 0
0 1

]
, z =

[
1
1

]
, v1 = v2 = v3 = 0, v4 = 1.

In this way, the u and v we compute is

u =


1
1
1
5
2

 , v =


0
0
0
1

 ,

which is exactly the optimal solution we had before.

Beyond such special cases above, in general, we do not know how to construct a polynomial
time algorithm because we have seen that such problems are NP-hard.

63

Chapter 5

Generalization, Conclusion and Future
Research

In this chapter, we first write our relaxation of the low-rank plus tridiagonal problem, (TriRegP), in
conic form and discuss how the optimal conditions we developed in the previous chapters can be
related to the conic form. Then, we discuss the general low-rank plus sparsity pattern decomposi-
tion problem. Finally, we give a conclusion for the thesis and give some future research directions.

5.1 Convex Programming in Conic Form and General Low-
Rank plus Sparsity Pattern Decomposition

In previous chapters, we present the low-rank plus tridiagonal problems defined over positive
semidefinite cone. In this section, we write low-rank plus tridiagonal problems as general con-
vex programming in conic form. Then, we show the optimality conditions of the low-rank plus
tridiagonal problem are equivalent to the optimality conditions of the ones in conic form.

Consider ℓ(t̂, v) = b⊤v + ct̂: given b ∈ Rn, A ∈ Sn,

min a⊤u+ λ(b⊤v + ct̂)

TriDiag(u, v) + A ⪰ 0

(u, (v, t̂)) ∈ K
(ConePrimal)

where K := Rn ⊕ K̃ and K̃ :=

{(
v
t

)
: ∥v∥p≤ t̂

}
, p ∈ [1,∞]. And its dual problem is defined as

max⟨−A,X⟩
s.t. diag(X) = a

(λb− bidiag(X), λc) ∈ K̃∗

X ⪰ 0.

(ConeDual)

64

Notice in the primal problem, the linear map we consider is A(u, (v, t̂)) := TriDiag(u, v). So we
have ⟨A∗(X), (u, (v, t̂))⟩ = ⟨X,A(u, (v, t̂)) = ⟨tridiag(X), (u, v)⟩. Thus, A∗(X) = (tridiag(X), 0) =
(diag(X), (bidiag(X), 0)). Hence, when we consider the cone programming, (ConePrimal) can be
written as

min a⊤u+ λ(b⊤v + ct̂)

A(u, (v, t̂)) + A ⪰Sn+ 0

(u, (v, t̂)) ∈ Rn ⊕ K̃

and the dual is

max⟨−A,X⟩
s.t. A∗(X) ⪯{0}⊕K̃∗ a⊕ (λb, λc)

X ⪰Sn+ 0.

Thus, if we consider the tridiagonal perturbation problem, we have b = 0, c = 1 and K̃ ={(
v
t

)
: ∥v∥1≤ t̂

}
. Then, the dual problem can be written as

max⟨−A,X⟩
s.t. diag(X) = 1

(bidiag(X), λ) ∈ K̃∗

X ⪰ 0.

where K̃∗ =

{(
v
t

)
: ∥v∥∞≤ t̂

}
.

Notice here we require ℓ to be a linear function but it can be replaced by any function satisfying
f(βt̂, βv) ≤ βf(t̂, v) for β ≥ 0, because we can bound f(t̂, v) by a new variable α and modify the

cone K̃ as


v

t̂
α

 : ∥v∥p≤ t̂, f(t̂, v) ≤ α

.

The optimal conditions from conic programming still hold, for our tridiagonal perturbation
setting, we can write the optimality condition as (u, (v, t̂)), (X,λ) being both feasible and

⟨A+ TriDiag(u, v), X⟩+ λt+ v⊤(b− bidiag(X)) = 0

which is equivalent to the system

⟨A+ TriDiag(u, v), X⟩ = 0

λt̂+ v⊤(0− bidiag(X)) = 0.
(5.1.1)

Corollary 5.1.1. The conditions (5.1.1) are equivalent to the optimality conditions of (TriRegP)
from the Theorem 1.1.3.

65

Proof. For (u, v, t) feasible for (TriRegP) and (X, ξ, ω) feasible (TriRegD), the optimality condi-
tions from the Theorem 1.1.3 are

⟨A+ TriDiag(u, v), X⟩ = 0

(t− v)⊤ξ = 0

(t+ v)⊤ω = 0.

We can sum up the last two equations and get

t⊤(ξ + ω) + v⊤(ω − ξ) = λt⊤1− v⊤ bidiag(X) = 0

and for our settings, t̂ is equivalent to t⊤1.

In addition to generalizing the cone the problems are defined over, we can also generalize the
sparse matrix in the decomposition. We now consider the low-rank plus sparse decomposition
problem with a general sparsity pattern. Given a sparsity pattern G = ([n], E), |E|= m, we have
a general low-rank plus sparse G decomposition problem:

inf rank(L)

s.t. L+ SparseMatG(u, v) = A

L ⪰ 0.

Similar to the low-rank plus tridiagonal problem, we may relax the rank function as the nu-
clear norm, and put regularizations on the entries vi representing the edges. Instead of bounding
|vi| by ti, we consider a constraint (v, t̂) ∈ K̃, where K̃ is a general cone defined by K̃ :={(

v
t

)
: ∥v∥p≤ t̂

}
, p ∈ [1,∞]. After replacing L = A− SparseMatG(u, v) ⪰ 0 by

− SparseMatG(u, v) ⪰ −A

and replacing rank(L) = rank(A− SparseMatG(u, v)) by

∥A− SparseMatG(u, v)∥∗= tr(A− SparseMatG(u, v)) = tr(− SparseMatG(u, v)) = −1⊤u,

we replace u, v by −u,−v and add regularizations on −u,−v. Then, we have the following
relaxation: given a ∈ Rn, b ∈ Rm, λ ∈ R,

inf a⊤u+ b⊤v + λt̂

s.t. SparseMatG(u, v) ⪰ −A

(u, (v, t̂)) ∈ Rn ⊕ K̃.

(SparseMat)

If we assume diag(A) = 0, then Rn can be changed to Rn
+.

Definition 5.1.2. We say a simple graph G is chordal if every cycle of length at least four has a
chord. And we say a simple graph G is homogeneous chordal if it is chordal and it does not contain
a path of length four as an induced subgraph.

66

When we have p := n−1, and SparseMatG(·, ·) := TriDiag(·, ·), G is a chordal graph because
it is a graph which is a path. A more detailed discussion about chordal sparsity patterns and the
optimization problem related to it can be seen in [30].

5.2 Conclusion and Future Research

In this thesis, we studied the low-rank plus sparse matrices decomposition. We have seen the low-
rank plus diagonal matrices decomposition problem and how one of its semidefinite programming
relaxations describes the diagonal recoverability, realizability and ellipsoid fitting property of a
subspace of Rn [22]. We have also seen that low-rank plus diagonal matrices decomposition prob-
lem is NP-hard, but when it has an optimal objective value r = O(1), there exists an algorithm
which solves the problem in polynomial time [31].

We introduced the low-rank plus tridiagonal matrices decomposition problem and one of its
semidefinite programming relaxations. We proposed relaxations with and without a linear regular-
ization on the bidiagonal entries. We showed that when there is no regularizations or the penalty
parameter λ ̸= 2, the relaxed problems have unique optimal solutions. In particular, when λ > 2,
we showed that the optimal solution is equivalent to the optimal solution of a low-rank plus di-
agonal decomposition with the same input matrix. We also proposed λ-tridiagonal recoverability,
realizability and ellipsoid fitting property and showed that they are equivalent to diagonal recov-
erability, realizability, and ellipsoid fitting property respectively when λ > 2. By considering the
coherence of a subspace, we gave a sufficient condition for λ-tridiagonal realizability. Although
we did not prove the NP-hardness of the general low-rank plus tridiagonal matrices decomposition
problem, we developed an algorithm which solved the problem in polynomial time when it has an
optimal value r = O(1).

There are some open questions relating to our results and would be of interest for future re-
search:

1. For problem (TriRegP), we used a linear objective function with a penalty parameter on
the absolute values of bidiagonal entries. Can we replace this objective function with more
general functions? In particular, can we replace it with other norms (like in (SparseMat)) or
other general convex functions and extend the properties like realizability, and uniqueness
of optimal solutions to those cases?

2. In this thesis, we introduced the low-rank plus tridiagonal decomposition problem, and an-
alyzed its optimality conditions and different properties. Can we apply similar analyses and
expect results from more general sparsity patterns? For example, if we change tridiagonal
matrices to matrices with a chordal sparsity pattern, we would expect more general results
because tridiagonal matrices represent a chordal sparsity pattern, but what are we gaining by
having more freedom on the sparsity pattern?

67

References

[1] P.M Bentler. A lower-bound method for the dimension-free measurement of internal consis-
tency. Social Science Research, 1(4):343–357, 1972.

[2] Christopher W. Brown and James H. Davenport. The complexity of quantifier elimination and
cylindrical algebraic decomposition. In Proceedings of the 2007 International Symposium on
Symbolic and Algebraic Computation, ISSAC ’07, page 54–60, New York, NY, USA, 2007.
Association for Computing Machinery.

[3] Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex optimization.
CoRR, abs/0805.4471, 2008.

[4] Venkat Chandrasekaran, Sujay Sanghavi, Pablo A. Parrilo, and Alan S. Willsky. Rank-
sparsity incoherence for matrix decomposition. SIAM Journal on Optimization, 21(2):572–
596, 2011.

[5] George E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic de-
compostion. In H. Brakhage, editor, Automata Theory and Formal Languages, pages 134–
183, Berlin, Heidelberg, 1975. Springer Berlin Heidelberg.

[6] Marcel K. de Carli Silva and Levent Tunçel. Strict complementarity in semidefinite optimiza-
tion with elliptopes including the MaxCut SDP. SIAM Journal on Optimization, 29(4):2650–
2676, 2019.

[7] Giacomo Della Riccia and Alexander Shapiro. Minimum rank and minimum trace of covari-
ance matrices. Psychometrika, 47(4):443–448, December 1982.

[8] Charles Delorme and Svatopluk Poljak. Combinatorial properties and the complexity of a
max-cut approximation. European Journal of Combinatorics, 14(4):313–333, 1993.

[9] Maryam Fazel. Matrix Rank Minimization with Applications. PhD thesis, Stanford Univer-
sity, 2002.

[10] Delbert Ray Fulkerson and Oliver Alfred Gross. Incidence matrices and interval graphs.
Pacific Journal of Mathematics, 15:835–855, 1965.

[11] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. Series of books in the mathematical science. W. H. Freeman &
Co., USA, 1990.

68

[12] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. Journal of the ACM,
42(6):1115–1145, November 1995.

[13] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd Ed.). Johns Hopkins
University Press, USA, 1996.

[14] Robert Grone, Charles R. Johnson, Eduardo M. Sá, and Henry Wolkowicz. Positive definite
completions of partial Hermitian matrices. Linear Algebra and its Applications, 58:109–124,
1984.

[15] Robert Grone, Stephen Pierce, and William Watkins. Extremal correlation matrices. Linear
Algebra and its Applications, 134:63–70, 1990.

[16] Bernd Gärtner and Jiřı́ Matoušek. Approximation algorithms and semidefinite programming.
Springer, Heidelberg, 2012.

[17] Mehdi Karimi and Levent Tunçel. Domain-driven solver (DDS) version 2.0: a matlab-
based software package for convex optimization problems in domain-driven form, 2019.
arxiv:1908.03075.

[18] Walter Ledermann. I.—On a problem concerning matrices with variable diagonal elements.
Proceedings of the Royal Society of Edinburgh, 60(1):1–17, 1940.

[19] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its
algorithmic applications. Combinatorica, 15(2):215–245, June 1995.

[20] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Comput-
ing, 24(2):227–234, April 1995.

[21] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed minimum-rank solutions
of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471–501, Jan
2010.

[22] J. Saunderson, V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky. Diagonal and low-rank
matrix decompositions, correlation matrices, and ellipsoid fitting. SIAM Journal on Matrix
Analysis and Applications, 33(4):1395–1416, 2012.

[23] J. Schur. Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielen
veränderlichen. Journal für die reine und angewandte Mathematik, 140:1–28, 1911.

[24] Alexander Shapiro. Statistical inference of semidefinite programming. Mathematical Pro-
gramming, 174(1):77–97, March 2019.

[25] Yaroslav Shitov. How hard is the tensor rank?, 2021. viXra:2107.0049.

[26] Anthony Man-Cho So. A Semidefinite Programming Approach to the Graph Realization
Problem: Theory, Applications and Extensions. PhD thesis, Stanford University, 2007.

69

[27] Anthony Man-Cho So and Yinyu Ye. Theory of semidefinite programming for Sensor Net-
work Localization. Mathematical Programming, 109(2):367–384, March 2007.

[28] C. Spearman. “General intelligence,” objectively determined and measured. The American
Journal of Psychology, 15(2):201–292, 1904.

[29] Levent Tunçel. Polyhedral and semidefinite programming methods in combinatorial opti-
mization, volume 27 of Fields Institute monographs. American Mathematical Society, Prov-
idence, Rhode Island, 2010.

[30] Levent Tunçel and Lieven Vandenberghe. Linear optimization over homogeneous matrix
cones. Acta Numerica, 32:675–747, 2023.

[31] Levent Tunçel, Stephen A. Vavasis, and Jingye Xu. Computational complexity of decom-
posing a symmetric matrix as a sum of positive semidefinite and diagonal matrices, 2022.
arXiv:2209.05678.

[32] Jerry A. Walters. Nonnegative matrix equations having positive solutions. Mathematics of
Computation, 23(108):827–827, 1969.

[33] Wikipedia contributors. Netflix prize — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.phptitle=Netflix_Prize&oldid=1140748928,
2023. [Online; accessed 20-April-2023].

[34] Alp Yurtsever, Joel A. Tropp, Olivier Fercoq, Madeleine Udell, and Volkan Cevher. Scalable
semidefinite programming. SIAM Journal on Mathematics of Data Science, 3(1):171–200,
2021.

70

https://en.wikipedia.org/w/index.php title=Netflix_Prize&oldid=1140748928
https://en.wikipedia.org/w/index.php title=Netflix_Prize&oldid=1140748928

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	Introduction
	Semidefinite Programming
	Convex Programming in Conic Form
	Affine Rank Minimization and Computational Complexity
	Computational Complexity
	Matrix Completion Problem

	Minimum Trace Factor Analysis (MTFA) problem

	Subspace Realizability, Recoverability and Ellipsoid Fitting
	Diagonal Perturbation
	Tridiagonal Symmetric Positive Semidefinite Matrices
	Tridiagonal Perturbation Problem without Regularizations
	Tridiagonal Perturbation with Regularization

	Coherence of a Subspace and Computational Examples
	Coherence of a Subspace
	Sufficient Conditions for -tridiagonal Realizability
	Computational Examples

	Algorithms for Low-Rank Plus Sparse Matrices Decomposition of Symmetric Matrices
	Low-Rank Plus Diagonal Decomposition
	Low-Rank Plus Tridiagonal Decomposition

	Generalization, Conclusion and Future Research
	Convex Programming in Conic Form and General Low-Rank plus Sparsity Pattern Decomposition
	Conclusion and Future Research

	References

