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Abstract

Quantum annealing is a method with the potential to solve hard optimization problems
faster than any classical method. In the near term, quantum annealing is particularly
appealing due to its low control requirement, relative to gate-based quantum computation.
However, despite the fact that large-scale quantum annealers containing more than 5000
qubits have been made commercially available, identifying a quantum advantage for prac-
tical problems has remained an elusive target. Amongst other issues, poor coherence is
considered the main prohibitive factor for these annealers to take on the quest for quantum
advantage.

In this thesis, we make progress in realizing a highly coherent quantum annealer, based
on superconducting capacitively-shunted flux qubits (CSFQ). First, we are met with the
challenge of crosstalk calibration when implementing individual control of the qubits and
couplers in the annealer, which is important for exploring novel annealing protocols. Two
different methods, relying on the symmetries of the superconducting circuits, are proposed
and successfully implemented to tackle this challenge. Second, we experimentally demon-
strate long-range correlation in a chain of couplers, which enables effective coupling of
qubits over large distances. The coupler chain could be expanded to a coupler network to
support high qubit connectivity, a highly desirable feature when embedding practical-scale
optimization problems into the annealer hardware. Finally, we evaluate the noise prop-
erties of the CSFQ. Coherence time measurements reveal that the dominant noise in the
system is intrinsic flux noise in the two control loops of the qubit. Landau-Zener transition,
a toy model for quantum annealing, is investigated in a CSFQ, revealing a crossover from
the weak to strong coupling to the environment. This crossover regime was not studied
before in either theory or experiment, and we present a phenomenological spin bath model
to elucidate this regime.
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Chapter 1

Introduction

Quantum mechanics is one of the two paradigm shifts in physics that occurred in the last
century, next to relativity. It began as a very much theoretical study to explain black-body
radiation, and later helped us to understand a wide range of phenomena in the microscopic
world. In the hundred years after its inception, quantum mechanics not only contributed
to a large range of advancements in modern physics, but also served as the foundation for
the development of semiconductor technologies, paving the way for the information age.

The 21st century holds promise for the second quantum revolution [1]. In the first quan-
tum revolution, novel technologies are developed by understanding and exploiting states of
matter existing in nature. In the second quantum revolution, we are growing our capability
in manipulating and engineering more and more novel and complex quantum states. The
landmark of such developments is celebrated in the 2012 Nobel Prize when Serge Haroche
and David J. Wineland were recognized for developing experimental methods to manipulate
and measure individual quantum systems [2]. Such capabilities promise to revolutionize
several technological frontiers, in cryptography and secure communication [3], sensing and
metrology [4], as well as computation [5], which is what this thesis focuses on.

It is widely believed that quantum computers will be able to solve certain problems
more efficiently than classical computers. To a large extent, this is motivated by the insight,
first due to Feynman, that classical simulation of quantum systems requires exponential
run time and memory [6]. Later on, the power of quantum computers becomes widely
appreciated when a few quantum algorithms were discovered that outperform the best
classical algorithms [7, 8, 9, 10, 11](see Ref. [12] for a review), the most famous one being
Shor’s factoring algorithm [13, 9].

There are two main approaches to quantum computation: the gate-model quantum
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computation and adiabatic quantum computation1. In gate-model quantum computation
(GMQC), first formalized by Deutsch in 1989 [15], computation is carried out by a se-
quence of discrete quantum gates, much like classical digital computation. In adiabatic
quantum computation (AQC) [16], computation is performed by slowly varying the system
Hamiltonian from an initial Hamiltonian, with an easily prepared ground state, to a final
Hamiltonian, the ground state of which corresponds to the solution of a computational
problem. In general, it has been shown that AQC and GMQC can efficiently simulate each
other with polynomial resource and time, although a huge overhead is required to simulate
GMQC circuits using AQC [17].

The idea of mapping the ground state of a target Hamiltonian to a particular com-
putational problem first arises around the 1990s in the context of solving optimization
problems [18, 19, 20]. In analogy to simulated annealing [21], such optimization method
that employs a quantum system is what is now known as quantum annealing (QA). In
this sense, QA is closely related to AQC, with the distinction being that AQC is usually
referring to the more general approach to quantum computation, and QA is more closely
related to optimization.

There is a growing effort in the past twenty years to build a quantum computer. Among
the various hardware platforms [22, 23, 24, 25, 26], superconducting circuits stand out due
to its relative ease of control with commercial microwave electronics, and its fabrication
technique built upon conventional nano- and micro-technologies [27, 22]. In the case of
GMQC, since the first demonstration of coherent control of a superconducting qubit to
more twenty years ago [28], tremendous progress has been made to engineer superconduct-
ing circuits that can be controlled and read out with high fidelity. A notable achievement
in this field is the demonstration of a quantum speedup in sampling random quantum gate
sequences [29].

Superconducting circuits, in particular superconducting flux circuits, are also one of the
leading platforms for implementing QA [30]. The flux circuits are essentially superconduct-
ing metal loops, with the two relevant states being persistent currents flowing in clockwise
and anti-clockwise directions. The persistent current is effectively a large magnetic dipole
moment, making flux circuits behave much like spins in an external magnetic field. Thus,
superconducting flux circuits are a natural realization of QA, with the target Hamiltonian
encoded in the longitudinal fields of each flux circuit and coupling strengths among them.
Such circuits have been built by the company DWave, which has commercialized quan-
tum annealers containing as many as 5000 qubits [31]. These large-scale annealers also
attracted a growing community of researchers, from both academia and industry, that try

1There are others such as measurement-based quantum computation [14]
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to understand the power of these engineered quantum machines [30, 32, 33]. However, to
this date, it is still an open question regarding whether the DWave quantum annealer can
realize quantum advantage in solving commercially relevant problems.

One of the fundamental challenges in building a quantum computer is the balance
between decoherence and control. Decoherence is a phenomenon through which a quantum
system loses its quantumness as it interacts with the environment around it, which has
degrees of freedom we cannot control and keep track of. The time scale over which this
happens, the (de)coherence time, is set by how strongly the quantum system interacts with
the environment. On the other hand, controlling and reading out the state of the quantum
system necessarily requires it to have strong enough interactions among itself and with
the control signals. This general tradeoff is relevant in both GMQC and QA. In GMQC,
stronger interaction allows faster gates, and hence more gates can be performed within the
coherence time of the device. For QA, stronger interaction increases the overall energy
scale, reducing the relative control error when solving a particular target Hamiltonian.

This thesis explores superconducting flux circuits for coherent quantum annealing. The
large persistent current of the flux circuits enables large tunable coupling which is desirable
for QA. However, this large magnetic dipole moment and strong interaction pose challenges
in precise control of the circuits and make them couple to noise strongly. Indeed, addressing
the challenges in controlling strongly interacting flux circuits and understanding the effects
of strong noise are the two main themes of this thesis.

1.1 Thesis outline

This thesis is organized as follows. In Chapter 2, we review the necessary background
for this thesis. We begin with an introduction to superconducting circuits in Section 2.1,
followed by an introduction to open quantum systems, focusing on different master equa-
tions used in the thesis. The last section of this chapter introduces quantum annealing and
presents a review of the challenges and possible directions in this field.

Chapter 3 presents two systematic methods we developed to calibrate crosstalk in the
flux biasing of superconducting circuits. Their general principles are first introduced,
followed by a discussion of the experimental results. The first of the calibration methods
are used to enable the demonstration of long-range coupling between two qubits, mediated
by a chain of seven couplers, which is the subject of Chapter 4.

Chapters 5 and 6 study decoherence in a single flux qubit. In Chapter 5 we characterize
the coherence times of the qubit at various operating points, and the dominant noise

3



channel. In Chapter 6 we looked at specifically the effect of noise on quantum tunneling, by
studying the Landau-Zener transition measurements. The experimental result is compared
with numerical open system simulations. Although the master equations failed to capture
the full range of data, we present a phenomenological open system model based on a spin
bath that captures the underlying physics.

We conclude this thesis in Chapter 7, where we highlight the significance of our work
and discuss future directions.
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Chapter 2

Background

2.1 Superconducting circuits

Superconductors, despite being macroscopic in nature, feature quantum mechanical prop-
erties just like atoms. This is because charge carriers in superconductors are Cooper pairs
of electrons, condensed into a single macroscopic state described by a wavefunction [34, 35]..
This condensate supports current flow without dissipation, hence electrical circuits made of
superconductors in principle do not suffer from decoherence. The physics of superconduct-
ing circuits is enriched by the Josephson effect, which describes charge tunneling between
two superconductors interrupted by a thin barrier. By combining linear circuit elements
such as capacitors and inductors with the non-linear Josephson tunnel junction, complex
superconducting circuits can be designed and fabricated, which allows the storage, manip-
ulation, and readout of quantum states, forming the basis of quantum computing [27, 22].

In this section, we review the principles of general superconducting circuits, and then
discuss the specific components that make up the annealing processor. We begin this
section by introducing in Sec. 2.1.1 the basic building blocks of superconducting circuits,
the harmonic oscillator, and the Josephson junction. In Sec. 2.1.2 we discuss the method
to derive the Hamiltonian of a general complex superconducting circuit. Section 2.1.3 and
2.1.4 introduce the main type of superconducting qubit used in this thesis, the flux qubit,
as well as the method to realize tunable coupling between flux qubits. This is followed by
Sec. 2.1.5 which discusses the method used to read out the flux qubit.
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1

Figure 2.1: A harmonic oscillator circuit made of capacitance C and inductance L. The
flux and charge at node 1 are denoted as Φ, Q respectively (see text for explanation).

2.1.1 Elements of superconducting circuits

The harmonic oscillator circuit. Physicists sometimes say that almost anything can
be modeled as a harmonic oscillator. Indeed the simplest superconducting quantum circuit
is a harmonic oscillator circuit, consisting of an inductance L and a capacitance C, as shown
in Fig. 2.1. Its dynamics can be described in terms of the flux at node 1

Φ(t) =

∫ t

−∞
V (t′)dt′, (2.1)

where V (t) is the node voltage. Applying Kirchhoff’s law to the circuit then gives the
equation of motion (EOM) for Φ,

Φ̈C +
Φ

L
= 0, (2.2)

where the dot indicates the time derivative. This resembles the EOM of a mass attached
to the end of a spring, where Φ is the displacement, and C and L play the role of mass and
inverse spring constant. The above equation of motion corresponds to the Euler-Lagrange
equations of motion for the Lagrangian

LLC =
Φ̇2C

2
− Φ2

2L
. (2.3)

Performing the Legendre transformation leads to the Hamiltonian

HLC =
Q2

2C
+

Φ2

2L
, (2.4)
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a) b)

Figure 2.2: (a) The circuit symbol corresponding to an ideal Josephson junction is a cross.
(b) The Josephson junction is usually made up of two pieces of superconductors, linked
by a thin insulating barrier. Its properties are described in terms of the phase difference
between the superconducting wavefunctions on either side of the barrier, denoted as γ.

where Q is the conjugate momentum Q = ∂LLC/∂Φ̇, which for the harmonic oscillator
circuit is the charge stored in node 1.

To quantize the above Hamiltonian, one raises the variables Q,Φ to operators Q̂, Φ̂ and
identifies the canonical commutation relation

[Φ̂, Q̂] = iℏ, (2.5)

where ℏ is the reduced Planck’s constant.

The Josephson Junction. The harmonic oscillator itself cannot be used as a qubit
because it is made of linear circuit elements and has degenerate level spacing. To obtain
non-degeneracy (or anharmonicity), a non-linear circuit element is required. The Josephson
junction is such a non-dissipative, non-linear circuit element, first predicted by B. D.
Josephson [36]. It is usually made up of two pieces of superconducting material, interrupted
by a thin layer of insulator, as shown in Fig. 2.2. The current through and voltage across
an ideal Josephson junction are given by the Josephson relations

Ij = Ic sin γ and (2.6)

Vj = ϕ0γ̇, (2.7)

where Ic is the critical current of the junction, γ is the phase difference between the
wavefunctions of the two superconductors, and ϕ0 = ℏ/(2e) is the reduced flux quantum.
The Josephson junction is often seen as a non-linear inductance, with Josephson inductance
Lj(γ) given by

1

Lj

=
1

ϕ0

dI

dγ
=
Ic cos γ

ϕ0

. (2.8)
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It is also useful to introduce the Josephson energy∫
IjVjdt =

∫
Ic sin γϕ0dγ = −Ej cos γ, (2.9)

where Ej = Icϕ0 is the characteristic Josephson energy.

Before proceeding, it needs to be pointed out that there is a close relationship between
the magnetic flux and the superconducting phase. Comparing Eq. 2.7 to Faraday’s law
across a linear inductor shows that the junction phase difference γ acts analogously a flux
across the junction, with a proportionality constant ϕ0. This can be more rigorously proven
by introducing the gauge-invariant superconducting phase1. Therefore, we introduce the
dimensionless flux variable, φ̂ = Φ̂/ϕ0, which can be seen as a generalized flux across either
a linear or non-linear inductor. Combined with the fact that the superconducting currents
are carried by Cooper pairs, the commutation relation in Eq. 2.5 is reintroduced using
dimensionless quantities

[φ̂, n̂] = i, (2.10)

where n̂ = Q̂/(2e) is the Cooper pair number, with e being the electron charge.

2.1.2 Circuit quantization

One of the first steps in modeling a superconducting circuit for quantum computation is
to find the system Hamiltonian. The procedure to derive the Hamiltonian of a circuit is
commonly known as circuit quantization. Various methods exist to achieve this, such as
the method of nodes [38, 39, 40], the black-box quantization method[41] and the energy
participation ratio method [42]. In this section, we review the method of nodes to quantize
a generic circuit, consisting of inductors, capacitors, and junctions. This is the primary
method used in this thesis, and it is valid given that the circuit elements are much smaller
than the relevant wavelength, so they can be treated as lumped elements.

The starting point of circuit quantization through the method of nodes is to recognize
that a circuit can be described by a graph G(N , E), where the edges are the circuit el-
ements such as capacitors, inductors, and Josephson junctions. Each node is associated
with a generalized flux coordinate, defined similarly to Eq. 2.1, by the time integral of the
node voltage relative to the ground node. The coordinates can be collected as a vector
φ⃗N with dimension NN , where NN is the number of active nodes in the circuit (nodes

1See for example chpt.3.5 of Ref. [37]
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except ground). Naively the potential or kinetic energy can be found by writing the en-
ergies stored in the inductors(junctions) or capacitors in terms of the difference of the
superconducting phases of the two nodes connected by the element, or its time deriva-
tive. However superconducting circuits obey the fundamental relation that the total flux
threading an enclosed loop, including external flux bias has to be quantized [43, 44]. To
account for this condition algorithmically, we use the concept of spanning trees and closure
branches. The spanning tree S for a graph is made of a set of edges such that there is a
unique path joining every node to every other node through edges in S. The remaining
edges make the closure branches C = E − S. The choice of spanning tree is not unique,
as this choice corresponds to gauge choice in electromagnetism, and does not affect the
underlying physics. Following [40], the convention we adopt here is that an inductive-like
element (inductors or Josephson junctions) is always preferred to capacitors when choosing
the spanning tree element between any two nodes, and a capacitor is chosen only when
there is no inductive-like element between two nodes. This way, for each of the remaining
inductive-like elements, which is not in the tree, there is an associated fundamental loop
in the circuit. We collect these inductive-like elements not in the tree into a set L ∈ C.
The external flux can then be conveniently assigned to each inductive-like element in L.
This allows us to write the phase difference across an edge ek,l,m, connecting node k, l as

φk,l,m =

{
φk − φl − 2πfk,l,m, if ek,l,m ∈ L
φk − φl, otherwise

, (2.11)

where m denotes for the m’th edge between nodes k, l. The external flux bias for a loop,
normalized by the flux quantum Φ0 = 2πϕ0, is assigned to the corresponding edge as fk,l,m.
The next step is to write down the kinetic and potential energy in the Lagrangian. The
kinetic energy TL is given by the sum of capacitive energies in the circuit, which can be
succinctly given by

TL =
ϕ2
0

2
˙⃗φT
NC

˙⃗φN , (2.12)

where C is the so-called Maxwell node capacitance matrix, with dimension NN ×NN . Its
off-diagonal elements are given by the negative of the capacitance connecting two nodes,
and each diagonal element is given by the sum of capacitances connecting to a node,
including capacitances to ground.

The potential energy is a sum of the inductive energy and Josephson energy in the

9



circuit. They are respectively

Uind =
∑
ek,l,m

ϕ2
0

φ2
k,l,m

2Lk,l,m

(2.13)

Ujos = −
∑
ek,l,m

Ej,k,l,m cosφk,l,m, (2.14)

where Ej,k,l,m, Lk,l,m are the Josephson energy and inductance of the edge k, l,m. The
sums are understood to run over all the inductances and Josephson junctions in the circuit,
respectively.

Having found the Lagrangian, we next perform the Legendre transform and define the
conjugate momentum of the i’th node coordinate as

pN,i =
∂L
∂φ̇i

. (2.15)

The kinetic energy in the Hamiltonian is given by

TH = p⃗N ˙⃗φN − TL (2.16)

=
1

2ϕ2
0

p⃗TNC
−1
N p⃗N . (2.17)

Combining the kinetic and potential energy together, we have the circuit Hamiltonian

H = TH + Uind + Ujos, (2.18)

from which the properties of the circuit, such as transition frequencies and operator matrix
elements can be extracted. In practice, choosing the appropriate basis to numerically
represent the above Hamiltonian is challenging. Since this is fairly technical, we defer this
discussion to Appendix. A, which also includes an example superconducting circuit to be
quantized.

2.1.3 The flux qubit

Qubits are the fundamental building block for quantum computing. Various types of qubits
can be realized with superconducting circuits [27, 22]. The flux qubit in particular is a
class of superconducting circuits with states characterized by persistent current flowing in
a superconducting loop, interrupted by Josephson junctions. As we will see in this and
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a) b)

Figure 2.3: Circuit schematic of the (a) fixed-gap (three-junction) and (b) tunable-gap
(four-junction) persistent current qubits.

the next subsection, coupled flux qubits emulate coupled spins under external magnetic
fields, which makes it a natural platform to build a programmable quantum annealer. Our
qubit design derives from the persistent current qubit [45, 46]. As shown in Fig. 2.3(a),
it consists of a superconducting loop interrupted by three Josephson junctions, with two
of them being identical in principle and the third one is smaller and often called the α
junction. The flux quantization condition in the qubit loop leads to

γ1 + γ2 + γ3 = −2πfz, (2.19)

where fz = Φz/Φ0 is the reduced flux bias in the qubit loop, γ1,2 are the phase difference
across the two larger junctions and γ3 is the phase difference across the smaller α junction.
Using the flux quantization condition to eliminate γ3, the potential energy of the circuit is
given as

Ufq = −
∑
i=1,2

EJi cos γ1,2 − EJα cos (γ1 + γ2 + 2πfz) (2.20)

= −2EJ cosφm cosφp − αEJ cos (2πfz + 2φp) (2.21)

where in the second line we have introduced EJ = EJ1 = EJ2 assuming symmetry and
EJα = αEJ and φp(m) = (φ1 ± φ2)/2. The potential landscape for different values of the
flux bias near fz = 0.5 is shown in Fig. 2.4. The new coordinates φp(m) are analogous
to in(out of) phase oscillation normal modes of two coupled harmonic oscillators. Near
the flux bias symmetry point and assuming low enough energy, the φm coordinate can be
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Figure 2.4: Contour plots of the potential energy Ufq of the three junction flux qubit with
α = 0.8, at different flux bias points, as a function of the phase difference across the two
larger junctions, γ1 and γ2. From left to right they correspond to fz = 0.5, 0.49, 0.51.

seen as almost fixed at φm = 0. The potential energy along φp is effectively a double-well
potential, as illustrated in Fig. 2.5(a), with each well corresponding to persistent current
flowing clock-wise and counter-clockwise in the qubit loops.

The capacitances in the circuit lead to the kinetic energy. It can be written in terms of
conjugate variables to the φ± coordinates, following the method presented in Appendix A.
This kinetic energy induces tunneling between the two wells. Assuming low enough energy
so that only the lowest state of each well can be occupied, the flux qubit Hamiltonian can
be well-approximated using the two-level system Hamiltonian

HTLS
fq =

−ϵ
2
σz −

∆

2
σx, (2.22)

ϵ = 2IpΦ0(fz − 0.5) (2.23)

where σα is the Pauli matrix in the persistent current basis, Ip is the persistent current.
The tunneling amplitude is given by ∆, which is also known as the qubit gap, as it is the
minimum qubit frequency obtained when the flux bias is at the symmetry point, fz = 0.5
(see Fig. 2.5(b)). The tunneling amplitude ∆ can be estimated analytically using the WKB
(Wentzel-Kramers-Brillouin) approximation [47, 45]. More generally, the parameters Ip
and ∆ can be obtained by numerically. A simple method is to diagonalize the circuit
Hamiltonian while sweeping fz. The resultant transition frequency between the two lowest
states can be fitted to the analytical two-level transition frequency expression,

ωTLS
01 =

√
∆2 + 2IpΦ0(f − 0.5). (2.24)
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Figure 2.5: (a) Potential energy of the three junction flux qubit versus φp, assuming
φm = 0 for different flux bias conditions. (b) Schematic of the energies of the ground and
first excited state of the flux qubit as a function of flux bias fz. The yellow dashed lines
and blue dot-dashed lines indicate energies of the persistent current states |L⟩ and |R⟩
respectively.

The fitting results give the persistent current Ip and the minimum qubit gap ∆.

The qubit gap can be made tunable by replacing the α junction with a DC-SQUID, as
illustrated in Fig. 2.3(b). For a symmetric DC-SQUID, each with Josephson energy βEJ ,
the potential energy of the tunable flux qubit is

Utfq = −
∑
i=1,2

EJ cos γi − βEJ cos (γ1 + γ2 + 2πfz′)− βEJ cos (γ1 + γ2 + 2π(fz′ + fx))

(2.25)

= −2EJ cosφp cosφm − 2βEJ cos(πfx) cos(2πfz + 2φm), (2.26)

In the second line, we introduced fz = fz′+fx/2. Comparing with Eq. 2.21, we see fz = 0.5
is the symmetry point for the four-junction flux qubit, and 2β cos(πfx) plays the role of
α. With fx closer to zero, or equivalently with increasing α, the tunneling barrier of the
double-well potential increases, which suppresses the tunneling amplitude ∆. The flux
tunability of both ϵ and ∆ in the two-level system Hamiltonian resembles that of an ideal
spin under externally applied transverse and longitudinal fields.

Since the first introduction of the persistent current qubit, different variants of it have
been attempted to improve it. Recently, Fei Yan et al [48] demonstrated significantly

13



improved qubit coherence times and reproducibility, achieved by shunting large capacitors
across the α junction. This type of flux qubit is named the capacitively-shunted flux qubit
(CSFQ), and our qubit design similarly adopts the capacitive shunt.

Another type of flux qubit that is often considered in the context of quantum annealing
is the rf-SQUID qubit [49, 50], which is essentially a superconducting loop interrupted by
a Josephson junction. The quadratic potential of the geometric inductance of the loop,
added to the cosine potential of the junction leads to a double-well potential analogous to
the persistent current qubit. The double-well potential only occurs when β = IcL/ϕ0 > 1.
Therefore, one disadvantage of the rf-SQUID qubit as compared to the persistent current
qubit, is that a significant critical current Ic and/or inductance is required for the two-
state approximation to be valid, whereas in the persistent current qubit, this large effective
inductance is achieved through the Josephson inductances of the two large junctions. This
means that the rf-SQUID qubit will likely be more sensitive to noise, due to larger Ip, or
experiences more noise due to the larger size of the superconducting loop. A more recent
variant of the rf-SQUID qubit is the fluxonium, where the large inductance is replaced
by a super-inductance, typically realized by a long chain of Josephson junctions [51]. The
fluxonium has one of the highest coherence times reported for a superconducting qubit [52].
Exploring the possibility of a fluxonium-based quantum annealer would be an interesting
future work.

The flux basis definition. As discussed above, the two-level Hamiltonian parameters
can be obtained by fitting the transition frequency between the lowest two levels in the flux
qubit circuit model. However, this procedure does not provide any information about the
basis in which the two-level system is defined. This basis definition becomes particularly
important when considering interacting flux qubits. This section outlines an unambiguous
method to reduce the flux circuit to its two-state description.

We first note that for any two-level system, its Hamiltonian can always be written as

H =
∑

α={x,y,z,I}

hασα. (2.27)

Then the computational basis is chosen such that the persistent current operator is diagonal
in this basis. Formally we first look for a 2× 2 unitary transformation V1 such that,

V1

(
⟨g|∂fzHcirc|g⟩ ⟨g|∂fzHcirc|e⟩
⟨e|∂fzHcirc|g⟩ ⟨e|∂fzHcirc|e⟩

)
V †
1 =

(
⟨L′|∂fzHcirc|L′⟩ 0

0 ⟨R′|∂fzHcirc|R′⟩

)
, (2.28)
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where |g⟩, |e⟩ are the ground and first excited state vectors found by diagonalizing the
circuit Hamiltonian Hcirc. The two states |L′⟩, |R′⟩ are distinguished by imposing the
condition ⟨L′|∂fzHcirc|L′⟩ < 0 and ⟨R′|∂fzHcirc|R′⟩ ≥ 0. Then we introduce two additional
constraints following conventions for flux qubits:

• αy is always zero;

• αx is always positive.

They are realized by defining a unitary

V2 =

(
1 0
0 exp (iϕ)

)
, (2.29)

where ϕ = arg [⟨R′|Hcirc|L′⟩]. Combining things, the computational (persistent current)
basis states |L⟩ and |R⟩ are given by(

|L⟩
|R⟩

)
= V2V1

(
|g⟩
|e⟩

)
. (2.30)

We note that |L⟩, |R⟩, |g⟩, |e⟩ are state vectors in the Hilbert space of the flux qubit circuit.

2.1.4 The rf-SQUID coupler

Realizing tunable coupling between qubits is necessary for both gate-based quantum com-
puting and programmable quantum annealing. For superconducting flux qubits, coupling
is usually achieved by forming mutual inductances between the qubits’ z-loops, due to
the flux generated by each qubit’s persistent current. Tunable mutual inductance can be
effectively realized by inserting an intermediate coupler between the qubits, which has
flux-tunable susceptibility [53, 54]. A schematic of two three-junction flux qubits coupled
by an rf-SQUID coupler is depicted in Fig. 2.6. In this subsection, we review the working
principle of the rf-SQUID coupler, which is used in this thesis.

The susceptibility picture. The rf-SQUID coupler has potential energy

Uco(φJ) = −Icoc ϕ0 cos(φJ) +
ϕ2
0

2Lco
(φJ − 2πfcz)

2 , (2.31)
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Figure 2.6: Two flux qubits coupled by an rf-SQUID coupler.

where Icoc and Lco are the junction critical current and geometric inductance of the SQUID,
and fcz is the reduced flux bias applied to the SQUID. When the rf-SQUID has non-linearity
parameter β = Icoc L

co/ϕ0 < 1, its potential energy is monostable, with the position of the
potential minimum dependent on the external flux bias. As the external bias deviates from
the symmetry point, a finite circulating current arises in the coupler loop. Therefore, by
inductively coupling the rf-SQUID to two qubits, the rf-SQUID mediates the flux signal of
one qubit to another.

Given that the coupler is designed to have a large excitation frequency, it can be
assumed, in the spirit of Born-Oppenheimer approximation, that the coupler remains in the
ground state throughout any qubit operation. This allows writing the effective interaction
between qubits mediated by the coupler as

Hint = χMq1cMq2cIp1Ip2σz1σz2, (2.32)

where χ is the susceptibility of the rf-SQUID coupler. Further assuming that the qubit flux
signal is small and the coupler responds linearly to the qubit flux signal, the susceptibility
is given by

χ =
1

Φ0

∂Ig
∂fcz

, (2.33)

with Ig being the ground state current flowing through the coupler loop. In Fig. 2.7, we
show the ground state current, as well as the susceptibility for typical parameters of the
rf-SQUID coupler.

The susceptibility of the rf-SQUID coupler, and hence the qubit coupling strength can
be tuned by adjusting the external flux bias fcz in the coupler. Away from the coupler
symmetry point, fcz = 0.5, it has a non-zero ground state current and thus induces a finite
flux bias to the adjacent qubit. This interdependence of the coupling strength and the qubit
flux bias is undesirable as it makes calibrating the system more difficult. To overcome this
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Figure 2.7: The ground state current Ig (a) and the susceptibility of the rf-SQUID coupler
as a function of the external flux bias fcz. The parameters used for this coupler is Lco =
750 pH, , Cco = 8.4 fF

problem, the single-junction can be replaced by a DC-SQUID [55]. The DC-SQUID allows
the coupler to be always operated at the symmetry point and achieves tunable susceptibility
by tuning the effective critical current of the SQUID. This design minimizes the effective
crosstalk from the coupler to the qubit and simplifies calibration [55].

Schrieffer-Wolff transformation for effective interaction. When designing couplers
that mediate strong coupling between flux qubits, it is often the case that the suscepti-
bility description, relying on the linear response of the coupler breaks down. In Ref. [56],
the authors developed analytical corrections accounting for the non-linearity of the cou-
pler susceptibility when the mediated coupling becomes strong. In our work, to compute
the coupling strength, we follow a numerical approach based on the Shrieffer-Wolff trans-
formation (SWT), developed in Refs [57, 58]. As compared to the analytical corrections
developed in Ref. [56], although computationally more expensive, the SWT-based approach
is a more general method for finding low-energy effective Hamiltonian of the subsystem of
interest, and hence more easily accounts for effects such as the renormalization of qubit
energy due to coupling and non-ZZ type interactions. Here we outline the procedure to
find the low-energy effective Hamiltonian of two qubits coupled by a coupler, using the
SWT.

First, we consider the total system Hamiltonian without and with the interaction terms,
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in the basis of the circuits. They are given by

H0 =
∑
α

Hα, (2.34)

Hfull = H0 +Hint. (2.35)

In the expressions above α is an index denoting the subcircuit (either qubit circuit or
coupler circuit), and the overline indicates we consider the loading effect in H0

2. Then we
define the qubit space projection operators, for the non-interacting and interacting circuits
respectively,

P0 =
2N−1∑
i=0

|E0
i ⟩⟨E0

i | (2.36)

P =
2N−1∑
i=0

|Ei⟩⟨Ei|, (2.37)

where the eigenstates |E0
i ⟩ and |Ei⟩ are found by diagonalizing H0 and Hfull respectively.

These are the lowest 2N states, which are the qubit-like excitations in a circuit containing
N qubit circuit. Then the SWT matrix is defined as

USW =
√
(2P0 − I)(2P − I), (2.38)

and the effective Hamiltonian is

Heff = P0USWHfullU
†
SWP0. (2.39)

Finally, the effective Hamiltonian can be decomposed into multi-qubit Pauli operators,
with coefficients,

hα⃗ =
1

2N
Tr(Heff · Sα⃗), (2.40)

where Sα⃗ = σ1
α1
⊗σ2

α2
⊗· · ·⊗Pc. The operator σ

i
αi
is a Pauli operator of the i’th qubit circuit,

expressed in the circuit Hamiltonian basis, and Pc is a projection operator which projects
all coupler circuits into the ground state of the non-interacting, but loaded couplers.

2Loading refers to the change of the effective inductance(capacitance) of a subcircuit when it is induc-
tively(capacitively) coupled to another subcircuit. See also Appendix A for details of the loading effect
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Figure 2.8: Schematic of the readout circuit. The flux-sensitive resonator (grey) is coupled
to a flux qubit (purple) on the one end and an open transmission line (black) on the other

2.1.5 Readout of the flux qubit

Reading out the qubit state is a necessary process for any form of quantum computation
and various ways exist to read out the flux qubit. Early methods rely on measuring the
magnetic signal generated by the two distinct persistent current states by detecting the
switching current of a DC-SQUID [59]. However, such a readout scheme leads to a large
number of quasi-particles as the DC-SQUID switches to the voltage state and thus becomes
unfavorable as the need for qubit coherence increases. Later schemes usually embed the
DC-(or rf-)SQUID as part of a resonant circuit, and rely on the magnetic-field-dependent
non-linear SQUID inductance [60, 61, 62]. The resonant circuit can be formed by either
shunting the SQUID with a large capacitance or terminating a waveguide resonator with
the SQUID. As realizing large on-chip capacitance can be challenging, we adopt the latter
method of combining SQUID and waveguide resonator as the readout method used in
this thesis. We note that the energy eigenstate of the flux qubit can also be read out by
coupling to linear resonators in a standard circuit-QED architecture [63, 64]. However,
such a method usually becomes ineffective near ∆ = 0, due to the vanishingly small
state overlap between two computational states, making them unsuitable for annealing
applications. Though it needs to be pointed out that readout with linear resonators is still
viable by using a more complex readout protocol, involving higher energy states of the
qubit circuit [65].

Next, we present the basic principles of the flux-sensitive resonator readout. This is
followed by a method to quantize a waveguide resonator terminated by a SQUID (see
Fig. 2.8). As we will see, this quantization procedure facilitates a quantum mechanical
treatment of the interaction between the qubit and the tunable resonator.
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Qubit state dependent resonance. The SQUID can be first approximated as an ideal
linear inductance Lsq. For a classical rf-SQUID [66] with bias current Ib, its effective
inductance is given by

Lsq = ϕ0
∂φJ

∂Ib
, (2.41)

The phase across the junction φJ can be found by minimizing the classical SQUID potential

Usq(φJ) = −Isqc ϕ0 cos(φJ) +
ϕ2
0

2Lg

(φJ − 2πfr)
2 − Ibφ, (2.42)

where Isqc and Lg are the junction critical current and geometric inductance of the SQUID,
and fr is the reduced flux bias applied to the SQUID.

The next step is to find the resonance frequency for the resonator, which is set by the
boundary condition

I(z = −l) = 0, V (z = 0) = iωLsqI(z = 0). (2.43)

Combined with the telegrapher’s equations for the waveguide [67], the λ/4 resonance can
be found by solving the equation

exp

(
2iωrl

c

)
=
iωrLsq − Z0

iωrLsq + Z0

, (2.44)

where l, c, Z0 are the waveguide length, phase velocity, and characteristic impedance re-
spectively. By inductively coupling the SQUID to the qubit, the SQUID has a different
effective flux bias depending on the qubit’s persistent current state and has different effec-
tive inductance. Hence the resonator has different resonance frequencies for different qubit
states. They can be distinguished by measuring the transmission of a probe tone through
the open transmission line coupled to the resonator.

Tunable resonator quantization. A Hamiltonian description of the waveguide and
SQUID inductor system can be obtained by first writing the energies stored in the resonator
system in terms of forward and backward propagating voltages, and then identifying a
transformation that turns the voltages into conjugate variables. First, at the SQUID
(inductor) end, the ratio between backward and forward propagating voltage is given by

V −

V +
= Γ =

iωrLsq − Z0

iωrLsq + Z0

. (2.45)
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Then the time-dependent voltages and currents on the transmission line at point z is

V (z, t) = V + {exp [iωr(t− z/v)]

+Γ exp [iωr(t+ z/c)]}+ c.c., (2.46)

I(z, t) = i
V +

Z0

{exp [iωr(t− z/c)]

−Γ exp [iωr(t+ z/v)]}+ c.c., (2.47)

where c.c. stands for complex conjugate, added to ensure the voltage and current on the
line is real. The total energy stored in the transmission and the inductor is

Hr =

∫ 0

−d

[
c0
2
V (z, t)2 +

1

2l0
I(z, t)2

]
dz +

LsqI(0, t)
2

2
, , (2.48)

where c0 = 1/(cZ0), l0 = Z0/c are the characteristic capacitance and inductance of the line.
For the λ/4 resonator, The total energy can be succinctly written in quadratic form

Hr =
(
Ṽ + Ṽ +

∗
) 0 1

2

(
l

cZ0
+ Lsq

Z2
0+L2

sqω
2
r

)
1
2

(
l

cZ0
+ Lsq

Z2
0+L2

sqω
2
r

)
0

( Ṽ +

Ṽ +
∗

)
, (2.49)

where we have introduced the dynamical variable Ṽ + = V + exp(iωrt). We then aim to

find the variable transformation q = κṼ ++κ∗Ṽ +
∗
and p = iωrκṼ +− iωrκ

∗Ṽ +
∗
, such that

Hr =
(
q p

)(1
2
ω2
r 0

0 1
2

)(
q
p

)
. (2.50)

Applying the transformation to Eq. 2.49 we have

Hr =
(
q p

) 1
4κκ∗

(
l

cZ0
+ Lsq

Z2
0+L2

sqω
2
r

)
0

0 1
4κκ∗ω2

r

(
l

cZ0
+ Lsq

Z2
0+L2

sqω
2
r

) (q
p

)
. (2.51)

Comparing Eqn.2.50 and Eqn.2.51 allows us to obtain the magnitude of κ. The phase of
κ will be determined later.

Next, to establish that p and q are indeed conjugate variables, it needs to be checked
that they obey Hamilton’s equations of motion,

dp

dt
= −ω2

rκṼ
+ − ω2

rκ
∗Ṽ +

∗
= −ω2

rq = −∂Hr

∂q
; (2.52)

dq

dt
= iωrκṼ + − iωrκ

∗Ṽ +
∗
= p =

∂Hr

∂p
. (2.53)
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Thus p, q can be promoted to operators. By introducing the harmonic ladder operators,

p = i

√
ℏωr

2

(
a† − a

)
; (2.54)

q =

√
ℏ
2ωr

(
a† + a

)
, (2.55)

the harmonic oscillator Hamiltonian is recovered Hr = ℏωr(a
†a+ 1/2). Hereafter we omit

the hat on operators, assuming it is clear from the context.

This quantization procedure gives an expression for the bias current flowing through the
SQUID inductance in terms of the creation and annihilation operators, through Eq. 2.47
and the variable transformation. We also use our freedom in choosing the phase of κ to
ensure that κ∗ = κ/Γ. This gives

Ib = Ib0i(a
† + a), (2.56)

with Ib0 =

√
cℏωrZ0√

cLsqZ0 + l
(
L2
sqω

2
r + Z2

0

) . (2.57)

Since in our design, the qubit is coupled inductively to the geometric inductance of the
rf-SQUID, we need to further relate the SQUID bias current to the current flowing through
the SQUID geometric inductance. Assuming small Ib, which is justified when the energy
in the resonator is low, we have

Ig(fr, Ib) = [φJ(Ib, fr)− 2πfr]
ϕ0

Lg

(2.58)

= Ig0(fr) + r1(fr)Ib + r2(fr)I
2
b +O(I3b ), (2.59)

where in the second line we performed a Taylor expansion of Ig around Ib = 0. The
coefficients of the Taylor expansion can be found numerically by minimizing the SQUID
potential Eq. 2.42 at a range of Ib. The term Ig0 corresponds to screening current in the
SQUID and effectively shifts the qubit bias. The coefficients r1, and r2 are SQUID bias
dependent and give rise to linear and non-linear interactions between the resonator and
the qubit. Finally, the interaction Hamiltonian between the resonator and the qubit is

Hqr =Mqr
∂Hq

∂fz

[
ir1Ib0(a

† − a)− r2I
2
b0(a

† − a)2
]
, (2.60)

where Mqr is the mutual inductance between the qubit and the SQUID geometric induc-
tance, and ∂Hq/∂fz is the qubit operator participating in the interaction.
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2.2 Open quantum systems

One of the fundamental challenges of building a quantum computer is that the external
environment that the system is coupled to can destroy the quantum state of the latter.
The field of open quantum systems is concerned with studying such systems that couple
to an environment, but still preserves some quantum mechanical properties [68, 69]. Due
to the requirement of large coupling strength between qubits to encode problem Hamil-
tonians, annealing-compatible flux qubits couple more strongly to the environment than
state-of-the-art superconducting qubits used in GMQC. Thus, flux qubits provide unique
opportunities to develop our understanding of noise in superconducting devices and test
open quantum system theories, and in return, these improved understandings could be
used to mitigate the adverse effect of noise on the computational power of annealers.

In this section, we review the theories used in this thesis to study the open system
behaviors observed in annealing-compatible qubits. In particular, we focus on the master
equation approach, which gives a time-local equation for the reduced density operator
of the system. In the first subsection, we review the derivation of the Lindblad-form
master equation for a time-independent system Hamiltonian, assuming weak system-bath
coupling. This allows us to relate the qubit coherence times to the coupling and noise
properties of the bath. In the second subsection, we look at how to obtain a similar master
equation for a time-dependent Hamiltonian, which is particularly useful when considering
annealing. In the third subsection, we look at a different master equation that is applicable
in the strong coupling limit. This equation is particularly useful for describing quantum
tunneling subjected to strong noise, a situation that is closely related to annealing. We
note that there are other approaches for modeling open quantum systems, such as the
Nakajima-Zwanzig equations [70, 71], influence functionals [72], hierarchical equations of
motion [73]. These methods are more general, but usually not as numerically efficient as
master equations. For a more complete review of theories on open systems, the readers are
referred to Ref. [74, 68, 69].

2.2.1 Redfield and Lindblad master equations

We start by considering a general system-bath Hamiltonian

H = HS +HB +HI , (2.61)
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where HS and HB are the system and bath Hamiltonian respectively. The interaction
Hamiltonian can be given in the form

HI = g
∑
α

Aα ⊗Bα, (2.62)

where Aα and Bα are system and bath operators respectively, with unit norm, and g is
some constant characterizing the coupling strength. The evolution of the total density
operator (system + bath) follows the Von Neumann equation

ρ̇(t) = − i

ℏ
[H(t), ρ(t)]. (2.63)

In the interaction picture, we have

˙̃ρ(t) = − i

ℏ
[H̃I(t), ρ̃(t)], (2.64)

where the tilde denotes operators in the interaction picture. The solution to Eq. 2.64 is

ρ̃(t) =
−i
ℏ

∫ t

0

ds[H̃I(s), ρ̃(s)] + ρ̃(0). (2.65)

Substituting the solution back into Eq. 2.64 and tracing out the bath, we obtain an integral-
differential equation for the reduced density operator of the system,

˙̃ρS(t) = − 1

ℏ2

∫ t

0

dsTrB

{[
H̃I(t), [H̃I(s), ρ̃(s)]

]}
− i

ℏ

∫ t

0

dsTrB

{
[H̃I(s), ρ̃(0)]

}
. (2.66)

Assuming factorizable initial condition, ρ(0) = ρS(0)⊗ ρB(0), the integrand in the second
term in Eq. 2.66 becomes

g
∑
α

[Aα(s), ρ̃S(0)]TrB {Bα(s), ρB(0)} , (2.67)

noting the interaction picture and Schrodinger picture operator coincide at t = 0. The
trace in the above expression can always be brought to zero since any non-zero component
can be absorbed into HS. Therefore, the second term in Eq. 2.66 is ignored hereafter.

We next make the Born-Markov approximations. The Born approximation assumes
that the bath state is negligibly affected by the system and the system-bath state remains
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factorizable. This is reasonable if for example the bath has a large number of degrees of
freedom and remains in thermal equilibrium. Using this approximation, we can write

ρ̃(s) = ρ̃S(s)⊗ ρB. (2.68)

The time dependence on the bath state is dropped hereafter. The Markov approximation
is to assume that the evolution at time t does not depend on the system state at any s < t,
in other words, information about the system’s past is lost in the bath and never comes
back to the system. This amounts to replacing ρ̃S(s) with ρ̃S(t), allowing us to obtain

˙̃ρS(t) = − 1

ℏ2

∫ t

0

dsTrB

{[
H̃I(t), [H̃I(s), ρ̃S(t)⊗ ρB]

]}
. (2.69)

Next, we substitute in the form of interaction Hamiltonian, as given in Eq. 2.62, which
allows us to obtain

˙̃ρS(t) = −g
2

ℏ2
∑
α

[Aα(t),Λα(t)ρ̃S(t)] + h.c., (2.70)

where h.c. stands for Hermitian conjugate. The operator Λα(t) is given by

Λα(t) =
∑
β

∫ t

0

dsCαβ(t, s)Aβ(s)ds, (2.71)

with the bath correlation function defined as

Cαβ(t, s) = ⟨Bα(t)Bβ(s)⟩ = Tr [Bα(t)Bβ(s)ρB] . (2.72)

In deriving Eq. 2.70 we used the property of the correlation time

Cαβ(t, t− s) = Cαβ(s, 0) = C∗
βα(0, s), (2.73)

arising from the assumption that the bath is stationary [75].

Equation 2.70 is known as the Redfield equation [76]. It is still not fully Markovian
because the evolution at time t has implicit initial condition dependence. To remove this
dependence, the lower limit of the integral in Λα(t) can be extended to minus infinity,
justified if the bath correlation function decays fast enough. Replacing s with t − s, we
have

Λα(t) =
∑
β

∫ ∞

0

dsCαβ(s, 0)Aβ(t− s)ds. (2.74)
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Evaluating Eq. 2.74 requires knowledge of the bath correlation function, which is usually
not directly accessible by experiments. This inconvenience can be avoided by going into
the frequency domain. First, the interaction picture system operator, assuming a time-
independent system Hamiltonian HS(t) = HS, can be decomposed with matrix elements,

Aα,ij(t) = ⟨i|Aα(t)|j⟩
= exp (iωijt)⟨i|Aα|j⟩
= exp (iωijt)Aα,ij, (2.75)

where |i⟩ is the i’th system eigenstates, ωij = ωi − ωj is the angular transition frequency
between states i and j. Second, the noise correlation can be given by its one-sided Fourier
transform, the spectral density matrix

Γαβ(ω) =

∫ ∞

0

ds exp (iωs)Cαβ(s), (2.76)

which can always be decomposed with

Γαβ(ω) =
1

2
γαβ(ω) + iSαβ(ω), (2.77)

γαβ(ω) =

∫ ∞

−∞
dseiωsCαβ(s), (2.78)

Sαβ(ω) =

∫ ∞

−∞

dω′

2π
γαβ(ω

′)P
(

1

ω − ω′

)
, (2.79)

where P denotes principal value. Furthermore, for a bath in thermal equilibrium at tem-
perature TB, γαβ(ω) satisfies

γαβ(−ω) = exp

(
−ℏω
kBTB

)
γαβ(ω), (2.80)

where kB is the Boltzmann constant. As we will see later, γαβ is directly related to the
decoherence rate in the system, which can be directly measured experimentally, and Sαβ

gives rise to Lamb shift to the system Hamiltonian3.

Now collecting the result of Λα(t) in Eq. 2.74, Aα(t) in Eq. 2.75, and using the definition
of the spectral density matrix in Eq. 2.76, we can expand Eq. 2.70 and get a Markovian

3The notations here follows the textbook [68]. Note that often one uses S(ω) as the noise spectral
density, which is denoted by γ(ω) here.
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equation for the evolution of the interaction picture system density operator

˙̃ρS(t) = −g
2

ℏ2
∑

α,β,i,j,k,l

Γαβ(ωji)Aα,klAβ,ije
i(ωkl+ωij)t [(|k⟩⟨j|)δilρ̃S(t)− |i⟩⟨j|ρ̃S(t)|k⟩⟨l|] + h.c..

(2.81)

Furthermore, if the system Hamiltonian is non-degenerate, we can apply the secular ap-
proximation, which discards terms with ωkl + ωij ̸= 0, because they are fast rotating and
average to zero. This is equivalent to inserting (δklδij + δkjδil(1− δik)) to Eq. 2.81. We get

˙̃ρS(t) = −g
2

ℏ2
{
∑
α,β,i,k

Γαβ(0) [LαiiLβkkρ̃S(t) + Lβiiρ̃S(t)Lαkk]∑
α,β,i ̸=k

Γαβ(ωki) [LαkiLβikρ̃S(t) + Lβikρ̃S(t)Lαik] }+ h.c., (2.82)

where we introduced

Lα,ij = Aα,ij|i⟩⟨j|. (2.83)

Using the decomposition of Γαβ introduced in Eq. 2.77, we can rewrite Eq. 2.82 into the
more familiar form

˙̃ρS(t) = − i

ℏ
[HLS, ρ̃S(t)]

+
g2

ℏ2
∑
αβ

∑
i ̸=k

γαβ (ωki)

[
Lβ,ikρ̃SL

†
α,ik −

1

2

{
L†
α,ikLβ,ik, ρ̃S

}]
+
g2

ℏ2
∑
αβ

∑
ik

γαβ(0)

[
Lβ,iiρ̃SL

†
α,kk −

1

2

{
L†
α,iiLβ,kk, ρ̃S

}] , (2.84)

where {·} denotes the anti-commutator and the Lamb shift is given by

HLS =
g2

ℏ
∑
αβ

∑
ik

L†
α,ikLβ,ikSαβ (ωik) , (2.85)

which is diagonal in the system eigenbasis. Rotating back into the Schrodinger picture, we
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have

ρ̇S(t) = − i

ℏ
[HS +HLS, ρS(t)]

+
g2

ℏ2
∑
αβ

∑
i ̸=k

γαβ (ωki)

[
Lβ,ikρS(t)L

†
α,ik −

1

2

{
L†
α,ikLβ,ik, ρS(t)

}]
+
g2

ℏ2
∑
αβ

∑
ik

γαβ(0)

[
Lβ,iiρS(t)L

†
α,kk −

1

2

{
L†
α,iiLβ,kk, ρS(t)

}] (2.86)

Here the first term describes the unitary evolution of the system density operator under
the system Hamiltonian and the Lamb shift HLS. The second term describes transitions
between populations in different energy eigenstates, and the third term describes the loss
of phase coherence between eigenstates. The Equation 2.86 is in the Lindblad form. A
particular property of the Lindblad master equation is that it is completely positive and
trace preserving [5]. This ensures that ρS(t) is a valid density operator at all times.

Lindblad equation for the qubit. Next, to make connections to the qubit experiments,
we apply Eq. 2.86 to a qubit. The qubit Hamiltonian under consideration is

Hq = − ϵ

2
σz −

∆

2
σx, (2.87)

with ϵ and ∆ being the longitudinal and transverse fields respectively. we consider lon-
gitudinal qubit-bath interaction, that is the interaction operator is proportional to qubit
σz. This is because the Z basis usually corresponds to a macroscopic degree of freedom,
for example, the persistent current basis in flux qubit, and is hence more easily affected by
noise. Therefore we write

Hint = gσz ⊗Bz. (2.88)

Introducing the angle between persistent current basis and energy basis

θ = arctan
∆

ϵ
, (2.89)
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The Lindblad master equation becomes

ρ̇q(t) = − i

ℏ
[Hq +HqLS, ρq(t)]

+
g2 sin2 θ

ℏ2
∑

k=+,−

γzz (±ωq)

[
σkρq(t)σ

†
k −

1

2

{
σ†
kσk, ρq(t)

}]
+
g2 cos2 θ

2ℏ2
γzz(0)

[
σzρS(t)σ

†
z −

1

2

{
σ†
zσz, ρS(t)

}]
,

(2.90)

where σ+(−) = |e(g)⟩⟨g(e)| is the qubit raising (lowering) operator in the energy basis and
ωq is the qubit angular transition frequency. The noise at the qubit frequency causes qubit
energy relaxation, with an exponential time scale denoted as T1, where

1

T1
=
g2 sin2 θ

ℏ2
[γzz(ωq) + γzz(−ωq)] . (2.91)

The zero frequency component causes pure dephasing, with an exponential time scale
denoted as Tϕ, given by

1

Tϕ
=
g2 cos2 θ

ℏ2
γzz(0). (2.92)

It can be seen that as a function of the longitudinal field ϵ, relaxation is suppressed by a
Lorentzian factor as ϵ increases. The opposite is true for dephasing, which is first-order
protected from dephasing at ϵ = 0 and approaches the maximum value of g2/ℏ2γzz(0) as
ϵ≫ ∆.

2.2.2 The adiabatic master equation

Next, we discuss an extension of the derivation of the master equation to the case of a
time-dependent system Hamiltonian, closely following [77]. For this, we need to revisit
the definition for Λα(t) given in Eq. 2.74. For the time-dependent system Hamiltonian,
evaluating Eq. 2.74 becomes computationally inefficient. This can be seen by considering
the definition of the interaction picture system coupling operator

Aα(t) = U †
S(t, 0)AαUS(t, 0), (2.93)

where

US(t, 0) = T exp

[∫ t

0

−iHS(τ)

ℏ
dτ

]
(2.94)
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is the system propagator, with T denoting time ordering. Therefore, evaluating the Eq. 2.74
requires evaluating the time-ordered system unitary. To avoid this, we need to work in the
adiabatic limit. The adiabatic approximation is to make the following replacement

US(t− s, 0) = U †
S(t, t− s)US(t, 0)

−→ exp

(
i
HS(t)s

ℏ

)
Uad
S (t, 0). (2.95)

In the above, US(t, t − s) is replaced by the propagator generated by the Hamiltonian at
time t, which is valid if the correlation time of the bath is shorter than the time taken for
the system Hamiltonian to change significantly. The propagator US(t, 0) is replaced by the
corresponding propagator in the adiabatic limit, which can be written as

Uad
S (0, t) =

∑
i

eiϕ(t)|i⟩⟨i| (2.96)

ϕi(t) =

∫ t

0

dτωi(τ)dτ. (2.97)

Here |i⟩, ωi are the i’th instantaneous eigenstate and eigenvalue of the system Hamiltonian
HS(t). We next substitute the approximated propagator Eq. 2.95 into Eq. 2.74, which
gives

Λα(t) =
∑
β

∫ ∞

0

dsCαβ(s)
∑
ij

e−iωi(t)seiϕi |i⟩⟨i|Aβ|j⟩⟨j|e−iϕjeiωj(t)s (2.98)

=
∑
β,i,j

e−iϕjiΓαβ(ωji)Aβ,ij|i⟩⟨j|. (2.99)

Putting this back into Eq. 2.70 and transforming back into the Schrodinger picture, we
have

ρ̇S(t) = − i

ℏ
[Hs(t), ρS(t)]−

g2

ℏ2
∑
α,β,ij

Γβ,ij(ωji(t))[Aα, L
′
β,ij(t)ρS(t)] + h.c., (2.100)

where

L′
α,ij = e−iϕjiAα,ijUS(t, 0)|i⟩⟨j|U †

S(t, 0). (2.101)

Eq. 2.100 is referred to as the one-sided adiabatic master equation (AME), which has been
implemented numerically in an open source package [78]. This is the main equation that
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will be used later in the thesis. Its main drawback is that it is not in Lindblad form and
does not preserve the trace of the system density matrix. This could lead to negative
probabilities when the evolution time is long.

To obtain a Lindblad form master equation for time-dependent Hamiltonian, we further
apply the adiabatic approximation on Aα(t) and employ the secular approximation. The
final form is exactly the same as Eq. 2.86, with the understanding that the relevant fre-
quencies and states at each time step are the instantaneous system transition frequencies
and eigenstates.

The adiabatic frame. The AME is most conveniently solved in the adiabatic frame,
which diagonalizes the instantaneous system Hamiltonian since this is the basis in which
decoherence occurs. Therefore, we also write the system Hamiltonian in this frame.

Had
S (t) = U †(t)HS(t)U(t) + iℏU̇ †(t)U(t) (2.102)

=
∑
i

ℏωi(t)|i⟩⟨i|+
∑
ij

Wij(t)|i⟩⟨j|, (2.103)

where U(t) is the unitary which diagonalizes the instantaneous Hamiltonian, W is often
known as the non-adiabatic transition operator, arising from the time-dependence of the
system Hamiltonian and hence the unitary U(t). The states |i⟩, |j⟩ are the instantaneous
energy eigenstates of the system.

2.2.3 The polaron transformed master equation

Polaron is a concept used in condensed matter that describes quasi-particles formed due
to interaction between electrons and phonons. The polaron transformed master equation
(PTRE) exploits this concept to study the dynamics of spins coupled to baths of harmonic
oscillators, i.e. the spin-boson problem [79]. In this section, the PTRE is introduced. To
simplify the presentation, the discussion is restricted to the single qubit case, which is
most relevant to the thesis. We note that in the single qubit case, the PTRE gives results
similar to that of taking the non-interacting blip approximation [80, 81]. For a more general
treatment applied to a multi-qubit annealer, the readers are referred to Ref. [82, 83, 78].
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We start by considering the total Hamiltonian of a qubit coupled to a harmonic bath,

H = Hq +HB +HqB (2.104)

Hq = −∆

2
σx −

ϵ

2
σz, (2.105)

HB =
∑
k

ℏωkb
†
kbk, (2.106)

HqB =
σz
2

∑
k

gk(b
†
k + bk). (2.107)

The bath of harmonic oscillators is in addition characterized by the bath spectral density

J(ω) =
1

ℏ2
∑
k

πg2kδ(ω − ωk), (2.108)

usually taken in the continuous limit. The polaron transform displaces each oscillator
conditioned on the qubit state and diagonalizes the total Hamiltonian except the qubit σx
term. The unitary is

UPF = exp (− i

2
σzΩ), (2.109)

Ω = −i
∑
k

gk
ωk

(b†k − bk). (2.110)

The transformed Hamiltonian is

HPF = UPF†
HUPF = − ϵ

2
σPF
z − ∆

2
(σPF

+ ξ+ + σPF
− ξ−) +HB, (2.111)

ξ± = exp (±iΩ). (2.112)

After this transformation, the system-bath coupling is of the order ∆. When ∆ is small
enough, we can again apply the Born-Markov and secular approximations. This results in
a master equation that is similar to Eq. 2.86, with a few differences which we discuss here.
First, besides the Lamb shift term, the unitary part of the evolution gets an additional term
due to the finite expectation value of the bath coupling operator ξ±. This is commonly
known as the renormalized tunneling amplitude

Hrenorm = −κ∆
2
σPF
x , (2.113)

where κ = ⟨ξ±⟩. The factor κ is always smaller than 1 so that the polaron-dressing always
reduces the tunneling rate. Second, the interaction operator in the polaron frame does not
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cause pure dephasing as it is completely off-diagonal. The resultant master equation is
therefore

ρ̇S(t) = − i

ℏ
[− ϵ

2
σz −

κ∆

2
σx +HLS, ρS(t)] (2.114)

+
∆2

4ℏ2
γ+−(ω10)

[
σ−ρS(t)σ+ − 1

2
{σ+σ−, ρS(t)}

]
(2.115)

+
∆2

4ℏ2
γ−+(ω01)

[
σ+ρS(t)σ− − 1

2
{σ−σ+, ρS(t)}

]
(2.116)

where we have dropped the superscript PF on the qubit operators for simplicity. Next,
we need to find the noise spectrum γ±(∓)(ω) in the polaron frame, which will be used to
calculate the transition rate and the Lamb shift term using Eq. 2.79, 2.85. Using standard
results for harmonic oscillator bath4, the following expressions can be found for the operator
expectation values in the polaron frame,

⟨ξ±⟩ = exp

{
−
∫ ∞

0

J(ω)

2πℏ2ω2
coth(βℏω/2)dω

}
, (2.117)

⟨ξ±(t)ξ∓(0)⟩ = e−Q(t), (2.118)

Q(t) =

∫ ∞

0

dω
J((ω)

πℏ2ω2
{i sin(ωt) + coth(βℏω/2) [(1− cos(ωt))]} , (2.119)

where ξ±(t) is the interaction picture polaron frame bath operator, β = 1/(kBTB) is the
inverse bath temperature. The last expression can be compared with the correlation func-
tion in the lab frame, given by the Fourier transform of the noise power spectral density
γ(ω),

C(t2, t1) =
1

2π

∫ ∞

−∞
γ(ω)e−iω(t2−t1)dω (2.120)

=
∑
k,l

gkgl

〈[
b†k(t2) + bk(t2)

] [
b†l (t1) + bl(t1)

]〉
(2.121)

=

∫ ∞

0

J(ω)

π
dω

[
cos(ω(t2 − t1)) coth(

βℏω
2

)− i sin(ω(t2 − t1))

]
(2.122)

where in the second line we use the definition of the lab frame bath correlation function,
with b(†)(t) being the interaction picture harmonic oscillator operators, and in the third
line we use the definition of J(ω), together with the expectation values evaluated assuming

4See for example Eq. 4.3.11 of Ref. [84].
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the bosons are in thermal equilibrium. Comparing Eq. 2.119 and Eq. 2.122, we can find
that

Q(t) = − 1

ℏ2

∫ t

0

dt2

∫ 0

−∞
dt1C(t2, t1) (2.123)

= − 1

2πℏ2

∫ t

0

dt2

∫ 0

−∞
dt1

∫ ∞

−∞
γ(ω)e−iω(t2−t1)dω (2.124)

= − 1

2π

∫ ∞

−∞

e−iωt − 1

ℏ2ω2
γ(ω)dω. (2.125)

Therefore, the correlation function, and hence the noise spectrum in the polaron frame is
indeed related to the lab frame noise spectrum γ(ω).

The master equation can be further simplified if the noise is strong. First, strong noise
leads to a small κ so that the renormalized tunneling can be ignored. Second, coherence
between the two-qubit computational states is expected to decay fast so that the qubit
density operator commutes with its Hamiltonian. As a result, we only need to consider the
dynamics between the populations in the two-qubit computational states. This is described
by

PL = −ΓLRPL + ΓRLPR, (2.126)

PL + PR = 1. (2.127)

Here the left and right states are states in the polaron frame, but from the qubit observable
point of view, they are essentially the same as the bare qubit’s left and right state, as the
polaron transformation commutes with the qubit computational basis. The left to right
(right to left) transition rate ΓLR(RL) is given by

ΓLR(ϵ) =
∆2

4ℏ2

∫ ∞

−∞
dteiϵt⟨ξ−(t)ξ+(0)⟩ (2.128)

=
∆2

4ℏ2

∫ ∞

−∞
dteiϵt exp

{∫
dω
γ(ω)

2π

e−iωt − 1

ℏ2ω2

}
, (2.129)

ΓRL(ϵ) = ΓLR(−ϵ). (2.130)

We note that this transition rate can also be obtained by directly applying Fermi’s Golden
rule to the coupled qubit and bath, assuming strong noise [85].

The noise environment of flux qubits generally consists of a strong low-frequency 1/f
noise and a weaker high-frequency noise, typically with an ohmic spectrum. Following
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Ref. [83], we decompose the noise power spectrum into low and high-frequency components

γ(ω) = γLF(ω) + γHF(ω). (2.131)

For the low-frequency components, a second-order Taylor expansion in Eq. 2.129 is justified,
which leads to transition rates with a Gaussian lineshape,

ΓLR,LF(ϵ) =

√
π

8

∆2

ℏW
exp

{
− (ϵ− ϵp)

2

2W 2

}
. (2.132)

The width and peak position are given by integrals of γLF,

W 2 =

∫ ∞

−∞

dω

2π
γLF(ω) (2.133)

ϵp = P
∫ ∞

−∞

dω

2π

γLF(ω)

ℏω
. (2.134)

These two quantities, in the context of flux qubits, are commonly known as the macro-
scopic resonant tunneling (MRT) width and the reorganization energy [85]. The MRT
width (reorganization energy) is dependent on the (anti-)symmetric component of the noise
spectrum γ± = [γ(ω)± γ(−ω)]/2. If the low-frequency noise is in thermal equilibrium, the
fluctuation-dissipation theorem relates the symmetric and anti-symmetric component via
γ−(ω) = γ+(ω) tanh(βℏω/2). Given the relevant frequencies satisfy ℏω < kBT , this relates
the MRT width and reorganization energy via ϵp = W 2/(2kBTB).

The high-frequency component of the noise modifies the transition rate to

ΓLR(ϵ) =
∆2

4ℏ2

∫
dτei(ϵ−ϵp)τ/ℏ−W 2τ2/2ℏ2 exp

[∫
dω

2π

γHF(ω)

ℏ2ω2

(
e−iωτ − 1

)]
, (2.135)

which is just the low-frequency contribution multiplied by an exponential factor determined
by the high-frequency component. Using the convolution theorem, Eq. 2.135 can be written
as

ΓLR(ϵ) =
∆2

4ℏ2

∫
dω

2π
GL(

ϵ

ℏ
− ω)GH(ω), (2.136)

GL(ω) =

√
2πℏ2
W 2

exp

[
−(ω − ϵp/ℏ)2

2W 2/ℏ2

]
, (2.137)

GH(ω) =

∫ ∞

−∞
dτeiωτ exp

[∫
dΩ

2π

γHF(Ω)

ℏ2Ω2

(
e−iΩτ − 1

)]
. (2.138)
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In particular the high frequency part GH(ω), under the assumption γHF(ω)/(ℏ2ω) ≪ 1,
can be approximated by [83]

GH(ω) =
γHF(ω)/ℏ2

ω2 + [γHF(0)/ℏ2]2
. (2.139)
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2.3 Quantum annealing

Quantum annealing was first envisioned as a heuristic optimization tool, as the quantum
analog to simulated thermal annealing [19, 20, 86]. In thermal annealing, one starts a
system in a high-temperature state, and by gradually reducing the temperature, hopes
to find the energy minimum of a complex cost landscape. In quantum annealing, ther-
mal fluctuation is replaced by quantum fluctuations. As shown in Fig. 2.9(a), quantum
annealing is often expected to outperform thermal annealing, due to the ability to quan-
tum mechanically tunnel out of local minima. A few years after the theory proposal,
experimental implementation of quantum annealing on magnetic materials revealed that
quantum annealing leads to faster convergence towards low energy states than thermal
annealing [87].

The development of quantum annealing is also closely related to the development of
adiabatic quantum computation (AQC) [16]. In contrast to standard gate-based quantum
computation, where evolution is decomposed into a set of unitaries acting on qubits, AQC
encodes the computational process in a continuously changing system Hamiltonian. Such
forms of computation were first developed in the context of solving optimization prob-
lems [88]. Later on, it has been shown that AQC has the same quadratic speed up on the
oracular Grover search [10], just as gate-based quantum computing, and that in general,
AQC is polynomially equivalent to gate-based quantum computing [17].

Prompted by both experiments in quantum annealing and algorithmic development,
we see a growing interest in developing a programmable quantum system that implements
quantum annealing. The primary objective is to find a potential quantum advantage in
solving hard, industry-relevant optimization problems, using a programmable quantum
annealer.

The general prescription for quantum annealing is to implement a time-dependent
Hamiltonian of the form

H(s) = A(s)Hd +B(s)Hp, (2.140)

where s = t/Tf is the annealing time divided by the total time Tf . The annealing schedules
A(s) and B(s) go from A(0) ≫ B(0) initially, to A(1) = 0 in the end. In figure 2.9(b), the
annealing schedule as implemented in one of the D-Wave devices is shown. The Hamil-
tonian Hp is the target Hamiltonian we are interested in, which usually encodes an op-
timization problem, with its ground state being the solution. It usually only consists of
commuting terms, so its eigenstates are classical states that can be easily read out. The
Hamiltonian Hd does not commute with Hp and implements the quantum fluctuation. In

37



E
n
e
rg
y

s

c)b)a)

c
o
s
t

Figure 2.9: (a) An illustration of cost landscape (continuous black curve) for some op-
timization problem. The grey dashed line and red solid line indicate paths for quantum
tunneling and thermal escape from a local minimum to the global minimum. (b) The
annealing schedules as in the D-Wave Advantage system 4.1 [31]. (c)An illustration of the
annealing energy spectra, with the minimum gap between the ground and the first excited
state, indicated as ∆min.

the standard setting, Hd and Hp are respectively given by

Hd = −
∑
i

hixσ
i
x and (2.141)

Hp =
∑
i

hiσi
z +

∑
j>i

J ijσi
zσ

j
z. (2.142)

Therefore, at s = 0, assuming A(s)hx ≫ kBT , the system is prepared in the ground
state of Hd, which is an equal superposition of all computational states. If the system
is annealed slowly enough, it eventually reaches the ground state of Hp, by virtue of the
adiabatic theorem. The form of the annealing Hamiltonian consisting of Eq. 2.141, 2.142
is known as the transverse field Ising model (TFIM). Although it looks restrictive, Hp

can in fact encode NP-hard optimization problems via the quadratic unconstrained binary
optimization (QUBO) formalism, and no efficient classical algorithms are known for this
class of problems.

To give an example of how to map an optimization problem, we can consider the
number partitioning problem. The optimization problem is that given a set of N real
numbers {n1, n2, . . . , nN} ∈ S, to partition it into two sets S1,S2, such that the difference
between the sums of the individual sets is minimized. To solve this problem on a quantum
annealer, each number is associated with a binary variable si, taking the value of either 0
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or 1, indicating whether ni it belongs to S1 or S2. Then the optimization problem amounts
to minimizing the function

f({si}) =

[∑
i

2(si − 0.5)ni

]2
. (2.143)

Minimization of f({si}) is an example of a QUBO problem, meaning the target expres-
sion to be minimized contains at most quadratic terms of the binary variables and the
minimization task has no additional constraint. The QUBO problem can be mapped to
the Ising Hamiltonian by identifying 2(si − 0.5) with the qubit Pauli operator σi

z. For the
number partitioning problem, the corresponding Ising coefficients are

hi = 0, J ij = ninj. (2.144)

The adiabatic theorem gives a lower bound on how fast quantum annealing could solve
a problem. For the evolution to remain adiabatic, the adiabatic theorem requires that the
total evolution time to satisfy

1

Tf
max
s∈[0,1]

|⟨ε0(s) |∂sH(s)| εi(s)⟩|
|ε0(s)− εi(s)|2

≪ 1 ∀i ̸= 0, (2.145)

where |εi⟩, εi are the i’th eigenstate and energy. The adiabatic criterion is sometimes
loosely referred to as the inverse gap squared criterion for the evolution time. As shown in
Fig 2.9(c), the gap refers to the minimum energy difference between the ground and the
first excited states ∆min = mins [ε1(s)− ε0(s)]. This criterion is useful when analyzing the
complexity of problems, but has little practical value since in general it is hard in itself to
know where ∆min occurs and how large it is.

One of the main advantages of quantum annealing is its low requirement for con-
trol. Compared to gate model devices which require highly tuned pulses per qubit to
carry out the desired unitaries, standard quantum annealing only requires global control
of the transverse field. This prompts the rapid development in hardware implementation
of quantum annealing, using superconducting qubits [89], Rydberg atoms [90] and trapped
ions [91]. Superconducting flux qubit is a natural platform for quantum annealing, as
the large persistent current allows strong programmable Ising interaction, and annealing
can be performed by a single time-dependent signal that controls the X-flux of all qubits
together. Relying on the rf-SQUID flux qubit, the D-Wave company has commercialized
a few generations of quantum annealers, with the most recent generation containing more
than 5000 qubits [92]. These D-Wave devices have been extensively studied, both in terms
of their fundamental capabilities [30, 32], and also potential applications in a wide range
of real-world problems [93].
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2.3.1 Challenges in quantum annealing

To put the research of this thesis into context, we review in this section the challenges and
possible research directions in the field of quantum annealing. They are categorized into
five different topics: maintaining adiabaticity, classical simulability, decoherence, analog
error, and connectivity. The first two points concern more the algorithmic side and the last
three points are concerned primarily with the hardware implementation, though it needs to
be noted that different points are interrelated. These are synthesized based on the author’s
research exposure, as well as a few recent reviews on quantum annealing [16, 30, 32, 33].

Maintaining adiabaticity and avoiding small gaps. The minimum gap during an-
nealing, and hence the run time required for quantum annealing, is closely related to phase
transitions [94]. It is generally believed that first-order phase transitions lead to exponen-
tially small minimum gap with system size [95], while second-order phase transitions lead
to polynomially small gap [96], although counterexamples exist [97, 98, 99]. One of the
main research directions in quantum annealing is to find annealing protocols alternative
to the conventional TFIM forward annealing paradigm, that can circumvent first order
phase transitions. One strategy that is often explored is inhomogeneous driving, where
the annealing schedule is made different for different qubits [100, 101, 102, 103]. Another
strategy is the addition of catalyst Hamiltonian, which is a time-dependent term that is
zero at the beginning and end of a Hamiltonian, but finite in between [104, 105, 106].
These methods have been found to be effective at avoiding first order phase transitions
in specific instances where symmetries of the problem can be exploited. In general, their
usefulness in improving the solution quality of QA remains elusive.

A more recent development around novel annealing protocols is reverse annealing, which
comes in different variants [107, 108]. In adiabatic reverse annealing, the time-dependent
Hamiltonian becomes,

H(s) = (1− s) [1− λ(s)]Hinit + (1− s)λ(s)H0 + sHp, (2.146)

where λ(s = 0) = 0 and λ(s = 1) = 1. The initial Hamiltonian Hinit is usually a simple
diagonal Hamiltonian that sets the desired initial state of the qubits. The idea is that by
exploiting knowledge of the structure of the solution, we can initialize the annealer into
a state close to the final solution, and the reverse annealing procedure allows an efficient
local search around the initial solution [107]. Another variant of reverse annealing is called
iterative reverse anneal, where the initial and final diagonal Hamiltonian are the same, and
the initial state is the final state of the previous round of reverse anneal. Such protocols
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have been implemented in D-Wave devices and enabled efficient simulation of topological
phases of matter [109, 110].

A related approach to avoid the slow evolution time due to small gaps is called counter-
diabatic drives [111]. Consider the Schrodinger equation in the adiabatic frame

iℏ∂t|ψad⟩ =
[
U(t)H(t)U †(t)− iℏU(t)

∂U †(t)

∂t

]
|ψad⟩, (2.147)

where U is the unitary that diagonalizes the instantaneous HamiltonianH(s). In Eq. 2.147,
the first term on the right-hand side is diagonal and the second term is off-diagonal and
causes non-adiabatic transitions. The idea of counter diabatic driving is then to modify
the original Hamiltonian to HCD = H(s) + A(t), with

A(t) = iℏ
∂U †(t)

∂t
U(t). (2.148)

Then the dynamics generated by HCD becomes equivalent to the dynamics generated by
the adiabatic evolution of H(t), no matter how fast H(t) changes. The problem with this
method is that A(t) is in general a highly non-local operator and it is not experimen-
tally feasible beyond a small number of qubits. Therefore, recent literature focuses on
approximate implementations of counter diabatic drives with variational parameters [112].
Although it is shown to be effective in improving ground state fidelity for small-scale prob-
lems, the effectiveness of such approximate counter-diabatic driving in large-scale problems
remains to be tested.

Classical simulability. A common challenge that standard quantum annealing faces is
that very often equilibrium properties of the TFIM can be efficiently simulated using path
integral Quantum Monte Carlo (PI-QMC)technique [113, 114]. This is due to the TFIM
being in a class of Hamiltonian called stoquastic Hamiltonian. A Hamiltonian is stoquastic
in a particular basis if there is no positive off-diagonal terms [115]. Although specific
instances of stoquastic Hamiltonians can be constructed where PI-QMC fails to equilibrate
efficiently [116], it is often believed that computation involving only the ground state of
stoquastic Hamiltonian has limited power [32]. This belief to some extent is evidenced by
the fact all known construction of equivalence between adiabatic quantum computing and
gate-model quantum computing requires non-stoquastic interactions [17, 117].

One way to enhance quantum annealing is thus to introduce non-stoquastic interac-
tions. Experimentally, non-stoquastic interaction, of the form σyσy, has been demonstrated
by coupling flux qubits together both capacitively and inductively [118] (see Fig. 2.10(a,
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a)

Figure 2.10: Two ways to realize non-stoquastic interaction between flux qubits. (a) Two rf-
SQUID flux qubits coupled by a coupler and a capacitor simultaneously. (b) The measured
coupling strength between the two qubits is shown in panel (a), as a function of the
tunable mutual inductanceM12 mediated by the coupler. Panels (a) and (b) are reproduced
from [118]. (c) The Josephson phase slip qubit circuit, reproduced from Ref. [119].
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b)). However, such implementations are limited in that the non-stoquastic interaction
is only strong when the qubit transverse field is large. To obtain arbitrary tunability of
the non-stoquastic interaction, a new qubit, named the Josephson-phase-slip qubit was
proposed [119] (see Fig. 2.10(c)). However experimental realization of this qubit has been
challenging, as it requires charge bias tunability, which opens the qubit to large charge fluc-
tuations. On the theory side, further understanding of how non-stoquasticity can improve
annealing is also needed. Although it has been shown that adding non-stoquastic catalyst
avoids first-order phase transition in some cases [120, 106], recent results show that generi-
cally having the same interactions, but with the opposite sign and hence being stoquastic,
tend to have larger minimum gap compared to their non-stoquastic counterpart [121].

The other approach to enhance the computational power of current annealers is to go
beyond adiabatic evolution [32]. This is motivated by the fact that Monte Carlo techniques
are restricted to equilibrium properties, and allowing excited state evolution leads to sto-
quastic Hamiltonians becoming universal [122]. Moreover, studies of QAOA, a quantum-
annealing-inspired optimization algorithm that runs on gate-based machines, show that by
combining two diabatic transitions, the ground state can be reached faster than a pure
ground state evolution [123]. This has yet to be realized on a quantum annealer, likely due
to the limited bandwidth and poor coherence of the annealers available.

Decoherence. Any physical realization of quantum annealing suffers from noise and de-
coherence. Early studies of the open system effect of quantum annealers mainly rely on
the Redfield equation, which is applicable in the weak coupling limit [124, 125, 126, 127].
In this limit, quantum annealing is protected from dephasing if the system remains close
to the ground state, because decoherence only occurs in the instantaneous energy eigen-
basis in the weak-coupling limit. On the other hand, in the long time limit, the system
tends towards the Gibbs state at some temperature TB due to coupling to the environ-
ment, which in some cases leads to an improvement to the ground state probabilities [126].
This so-called thermally-assisted quantum annealing regime was also tested by inserting
intentional pauses during the anneal, which again could lead to increased ground state
probabilities [128, 129]. These examples show how differently QA and GMQC are affected
by decoherence. While in GMQC decoherence almost always causes errors in the compu-
tation, QA could sometimes benefit from decoherence. However, so far none of the studies
indicate that thermal relaxation could lead to any scaling advantage.

Later on, it becomes recognized that in the later stage of the anneal, especially around
the minimum gap, the weak-coupling approximation breaks down [130, 82, 83, 131]. In
this limit, the energy eigenstate of the system is no longer meaningful, due to polaronic
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dressing by the environment. However, despite the expectation that polaronic dressing
suppresses tunneling, it has been experimentally demonstrated that multi-qubit tunneling
is possible, and leads to an advantage over either simulated thermal annealing or classical
simulation that involves only product states [82, 130].

Recently, it has been demonstrated in D-Wave devices that coherent annealing is pos-
sible, if the annealing time is brought down to about ∼ 10 ns [132, 133], comparable to
the decoherence times of the constituent qubits. This allows the demonstration of a scal-
ing advantage of QA in solving 3D spin glass problems over simulated quantum annealing
and thermal annealing. Further reducing noise and extending the coherent regime of an-
nealing to longer times are necessary for quantum annealers to be competitive in solving
industry-relevant optimization problems.

Beyond improving qubit coherence, large-scale annealing applications will likely require
some error correction schemes to mitigate noise. Unlike gate-model devices, which could
rely on intermediate measurement and classical processing to correct errors during arbitrar-
ily long computation, quantum annealing typically relies on Hamiltonian error suppression
schemes [134], which use energy penalty to suppress thermal transitions out of the ground
state. Such error schemes usually require novel interactions beyond the TFIM, such as two
body XX interactions or four body interactions [134, 135].

Analog error. Quantum annealing is a type of analog computation, as it encodes the
problem to be solved into a set of controls that can be continuously varied. This means that
quantum annealing inevitably suffers from analog errors, such that the problem represented
by the hardware is different from the problem that one wants to solve. It has been shown
that for a constant error magnitude, the annealing success probability decreases as fast as
exponentially with system size, for hard optimization problems [136]. The typical solution
to this problem is to use classical repetition code, which essentially increases the energy
scale of the problem relative to the errors by ferromagnetically coupling copies of physical
qubits to a penalty qubit [137, 138]. Recently, it has also been shown that by linking anti-
ferromagnetically physical qubits that encode multiple copies of the problem Hamiltonian,
the parameter precision can be effectively improved by several orders of magnitude [139].

Besides the intrinsic resolution of the controls that limits the accuracy, one important
source of analog error is environment polarization [140]. The idea is that persistent current
in the qubit biases the environment spins, which in turn acts as an external bias to the
qubit. Due to this environment polarization, when the same anneal sequence is repeated
over a short interval, the result of the new run will be biased toward the previous result.
Further mitigating this effect requires better understanding the response of the environment
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to external biases at a wide range of timescales, and the nature of flux noise in general.

Connectivity. When mapping real-world problems to the annealing hardware, an em-
bedding procedure is usually needed to allow the physical hardware, with limited connec-
tivity to represent the real problem, which has more complicated connectivity. This is
typically done through a procedure called minor embedding [141, 142], where strong fer-
romagnetic interactions are imposed among neighboring physical qubits, so that they are
likely to stay in the same spin states and behave as a single logical spin. In general, to
represent N logical qubits with all-to-all connectivity, Ω(N2) physical qubits are required
and the physical connectivity graph has to be non-planar [142]. There are two main issues
with minor embedding. First, the chain of physical qubits that encodes the logical qubit
could break in large-scale applications, due to the finite interaction energy available [143].
Often one has to discard results with broken chains or perform a majority vote to deter-
mine the state of the logical qubit. Either of these lowers the probability of obtaining the
optimum result. The second issue is that minor embedding changes the energy landscape
of the logical problem. It has been pointed out that quantum annealing is advantageous
when compared to simulated thermal annealing if the cost landscape involves thin and
tall barriers, since in this case tunneling is more efficient than thermal escape [130]. How-
ever, in the embedded problem, the barriers widen by the number of physical qubits used
to encode the logical qubit, which makes tunneling much harder and simulated thermal
annealing more advantageous.

One way to improve qubit connectivity, while keeping the physical size of the qubits
small, proposed in Ref. [144, 146] is the paramagnetic coupler tree concepts. As shown
in Fig. 2.11(b), the qubits are coupled to a network of couplers along the circumference,
and the couplers essentially act as paramagnets that propagate qubit magnetization and
hence mediate coupling between qubits. A prototype device exploring this idea, involving
two qubits coupled by a chain of couplers is presented in Chapter. 4 of this thesis. An
alternative approach to improve connectivity is the so-called LHZ scheme [145], named
after the authors (see Fig. 2.11). The idea is to embed the N(N − 1)/2 interaction terms
into the local fields of the same number of qubits. The redundant physical states, which
do not have a corresponding logical state, can be suppressed by 4-body interaction terms.
This embedding scheme does not allow local fields on the logical qubits, but is likely to
have the same computational power, since many NP-complete problems, such as number
partitioning, can be mapped with zero local field terms. Experimentally the main challenge
is to engineer 4-body interaction, for which there have been proposals and preliminary
experiments based on Kerr non-linear oscillators [147] and flux qubits [148, 149].

Finally, I would like to conclude the above discussions with a list of directions, with
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a)

Figure 2.11: Illustrations of different schemes to improve annealer connectivity. (a) Minor
embedding. The three sub-panels show a progression of constructing Kn graph from Kn−1

graph using minor embedding, where Kn stands for all-to-all connected graph with n
vertices. This construction keeps the length of the edges bounded, hence amenable to
physical implementation. Reproduced from Ref. [142]. (b) Coupler tree. The qubits
(yellow solid circles) are coupled via a network of couplers (black dots). Reproduced from
Ref. [144] (c) The LHZ scheme. In this scheme, each physical qubit (circles) state represents
the parity of two coupled logical qubit, and the physical four-body ZZZZ interaction (dots)
constrains the physical system into the logical subspace. The readout is only needed on a
subset of physical qubits to decode the logical states. Reproduced from Ref. [145].
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a focus on experimental ones on how to improve quantum annealing as an optimization
algorithm:

1. Improving qubit coherence and understanding of noise. These are necessary in ex-
tending the coherent regime of QA to longer times and will very likely improve the
multi-qubit tunneling rate.

2. Improve control capabilities. These are relevant for implementing the various anneal-
ing protocols proposed to avoid exponentially small gaps.

3. Developing novel interactions. These are relevant both as a tool towards reaching
universality and classical intractability, as well as realizing error suppression.

4. Improving qubit connectivity. These are relevant for reducing the embedding over-
head of solving real-world problems.

Relative to this list, this thesis makes progress on points 1, 2, and 4. In particular,
Chapter 3 deals with flux crosstalk, which paves the way towards annealing with arbitrary
schedules. Chapter 4 demonstrates an architecture for long-range interaction between flux
qubits, which when extended to a network could enable high connectivity. Chapters 5
and 6 provide detailed characterization and modeling of noise on a single flux qubit and
offers insights into the effect of noise on an annealer.
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Chapter 3

Crosstalk calibration

Flux control is an important engineering resource for superconducting-qubit-based quan-
tum computers. In gate-model quantum computing implementations, flux tunability is
used to realize high-fidelity gates [150, 151, 152, 153, 154, 155, 156, 157], tunable cou-
plers [53, 54, 158, 159, 160, 161, 162], avoiding frequency crowding [29] and two-level-system
defects [163], For quantum annealers, flux-based control is essential [164] and independent
dynamic flux control has been identified as an important resource for quantum enhance-
ment [165, 166, 102, 167, 168, 108, 169].

Flux crosstalk in superconducting circuits arises due to the physical proximity between
circuit elements and control lines, as well as reasons associated with the electromagnetic
environment hosting the circuits, such as ground loops. For most large-scale supercon-
ducting circuits today, which are based on transmons, solving the calibration problem is
often helped by the fact that transmons interact via the charge degree of freedom and the
interaction strength is weak [170, 171, 172, 173]. Commercial quantum annealers rely on
local magnetic memory elements to feed static flux to qubits and couplers, with crosstalk
reduced using suitable integrated superconducting circuit design. Dynamic crosstalk is
reduced because a single, global bias control acts all qubits to execute the annealing pro-
cess. [164, 174].

The annealers developed in this thesis have individual controls for each qubit and cou-
pler loop, allowing the exploration of novel annealing protocols. In this setting, calibration
is challenging because of the strong flux interaction between circuit elements, which makes
it hard to directly measure the coupling between bias lines and flux loops. In an alternative
quantum annealer implementation using fluxmon qubits [65], the authors outlined a proce-
dure for measuring crosstalk between two coupled fluxmons, based on fitting to analytical
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circuit models. However, it is unclear whether the method could be easily extended to
other systems, where it is hard to obtain an accurate analytical model.

In this chapter, we propose and implement two different methods to address this chal-
lenge. Both methods are circuit-model-independent and rely only on the symmetries of
superconducting circuits. Hence, both of them can be readily applied to superconducting
circuits used outside the context of this thesis, such as those used for GMQC.

In the first method, we rely on an iterative process to gradually improve calibration
accuracy and minimize systematic errors due to inductive coupling between loops. This
method is automated and implemented on two quantum annealing devices, containing 9 and
27 superconducting control loops respectively. We also introduce a method to characterize
the error through a different set of measurements, which we executed on the smaller device.
The error was measured to be lower than 0.17% for all crosstalk coefficients.

In the second method, crosstalk calibration of N flux channels is treated as N inde-
pendent optimization problems, with the objective functions being the periodicity of a
measured signal depending on the compensation parameters. The periodicity analysis is
automated, allowing a closed-loop optimization to be performed. This method is imple-
mented on a small-scale quantum annealing circuit with three loops, achieving comparable
accuracy with the first method. We also show that the objective function usually has a
nearly convex landscape, allowing efficient optimization.

The rest of this chapter is organized as follows. In Sec. 3.1, we begin with a formal
description of the problem of flux crosstalk and the symmetries involved, which applies
to both methods and arbitrary superconducting circuits with individual flux control. In
Sec. 3.2 we give a brief account of the simple translation based method for crosstalk cal-
ibration, and why it is not suitable for strongly coupled circuits, such as the annealers.
In Sec. 3.3 and 3.4 we introduce the device and the general methodology for the iterative
method. The device is introduced first because the calibration method used in each itera-
tion has some particularities to the device, though the general idea of exploiting symmetry
and iteration is applicable to devices beyond those measured here. In Sec. 3.5 we discuss the
experimental results of implementing the iterative method. Next in Sec. 3.6 we introduce
the second method, later referred to as the periodicity optimization method. In Sec. 3.7 we
discuss the experimental results for the periodicity optimization method. This is followed
by conclusions for this chapter in Sec. 3.8. Additional details about circuit modeling and
further experimental results for the two methods are given in Sec. 3.9 and 3.10.

49



3.1 The crosstalk problem and the symmetries

The properties of superconducting circuits depend on the external flux biases of the su-
perconducting loops. For a superconducting circuit with N flux bias loops, the external
fluxes are usually controlled by N bias lines, which are mutually coupled to the flux loops.
We denote the external flux bias in loop i, reduced by the flux quantum Φ0, as fi, and the
corresponding bias line current as Ii. The fluxes {fi} in all loops and currents {Ii} on all
bias lines can be written as vectors f and I respectively, and they are in general related by
a linear transformation

f = MI+ f0, (3.1)

where M is the N ×N mutual matrix describing the coupling between bias lines and flux
loops, and f0 is the vector of flux offsets arising from spurious sources. Often, and in
particular in the context of our experiment, bias currents are controlled by voltage sources.
For a more direct representation of the experiment, we will refer to the relation between
fluxes and voltages, written as

f = CV + f0, (3.2)

where V is the vector of voltages with each element controlling the corresponding element
in I, and C = MR−1 with R a diagonal matrix consisting of the resistances between the
voltage sources and the bias lines. From here onward we will work with voltage controls
and the crosstalk matrix C.

Measurements on the superconducting qubits can be considered as a function mapping
the flux biases to the signal Rl, where l denotes a particular readout channel. Note that the
number of readout channels is not restricted to the number of physical signal processing
units; rather each channel corresponds to reading out the signal of an experiment, with a
particular set of experimental parameters. The experiment could consist of one quadrature
of a transmission measurement at a particular frequency or more complex experiments
involving microwave excitations of the system.

Fundamentally there are two symmetries that one could exploit for calibration. First
superconducting circuits respond periodically to external bias fluxes, with the period of
one flux quantum [175, 176]. Second, the device possesses mirror symmetry with respect
to the plane of the chip, meaning the response of the superconducting circuits should not
change upon changing the sign of all external flux biases. We denote the readout data
as R, which is a vector with the dimension of the number of readout channels. Then the
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periodicity and mirror symmetry condition can be formally stated as

R({fk}) = R({fk +mk}) = R({−fk}),∀k = 1, 2, . . . , N (3.3)

where mk is an integer.

3.2 Simple translation-based approach to flux crosstalk

calibration

Most previously developed approaches to flux crosstalk calibration assume that one can
identify a particular readout channel l that depends on the external flux in a single loop i,
Rl({fk}) ≈ Rl(fi). This allows estimating the coupling coefficient from bias line j to loop i,
Cij, by measuring the translation of Rl as a function of Vj. For this reason, we denote such
calibration methods as the translation-based approach. When a simple model for Rl(fi)
exists, the method becomes particularly effective as one only requires measurements at a
few voltage bias values to extract the coupling parameters, and the model can be fitted to
the data to obtain the coupling Cij. This is the case for many calibration methods used
in tunable transmons, with the readout channel being the frequency of the transmon or
its readout resonator [170, 172], or the Ramsey phase shift [171, 172, 173]. However, this
method would only work if the circuit elements interact weakly, and each superconducting
loop can be sufficiently decoupled from the other loops. We also note that the work
presented in Ref. [177] uses an optimization-based crosstalk calibration approach, however,
this too relies on simplifying the full superconducting circuit to an effective description in
terms of weakly coupled harmonic oscillators.

3.3 The iterative method: device

We experimentally demonstrate the iterative method on two devices consisting of tunable
flux qubits, tunable couplers, and flux detectors. These devices are designed to explore
high-coherence quantum annealing, based on coupled capacitively-shunted flux qubits (CS-
FQs) [161, 178]. A circuit schematic of the first device (device A) is shown in Fig. 3.1(a).
It contains two CSFQs and a coupler. Each qubit is formed of a main loop and a secondary
loop, named z-loop and x-loop respectively, in line with their functionality to control the
corresponding Pauli terms in the persistent current basis. The coupler has a similar con-
figuration, with a main inductive loop and a secondary split Josephson junction loop. In
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analogy to the qubit, these loops are named z-loop and x-loop respectively as well. The
z-loop of the coupler is inductively coupled to the qubits’ z-loop, thus acting as a tunable
coupler [55, 161]. A set of bias lines is used, with each line designed to couple primarily to
a corresponding loop.

Flux readout devices are coupled to each of the qubits and the coupler. Readout of the
persistent current of the qubits is required for standard annealing experiments [62, 179].
The additional flux readout of the coupler was added here to aid with the calibration
of the operation point of the coupler. Each readout device is formed of a tunable rf-
SQUID terminating a coplanar waveguide resonator (see Fig. 3.1(a)), with the rf-SQUID
loop coupled to the corresponding z-loop of each qubit or the coupler. The resonators
are coupled to a common transmission line. They can be probed by sending a microwave
signal at probe frequency ωp through the transmission line and measuring the complex
transmission coefficient S21. In the semi-classical picture, the persistent current in the
qubit or coupler z-loop generates fluxes threading the resonator rf-SQUID, which changes
its effective inductance, leading to a change in the resonator’s resonance frequency. For a
weak enough probing signal, the magnitude of the transmission |S21| has a minimum when
ωp coincides with the resonator’s resonance frequency.

Device B consists of two CSFQs coupled by a chain of seven tunable rf-SQUID couplers.
Each coupler has its z-loop coupled to its neighboring couplers or qubits. The seven cou-
plers act as a coupler chain that mediates flux signals between the end qubits. Fig. 3.1(b)
shows a cartoon representation of this device. It has the potential to realize long-range
coupling without trading it off with coherence(see Chapter 4).

The devices are fabricated at MIT Lincoln Laboratory, based on the fabrication process
outlined in Ref. [180], combining a high coherence chip hosting qubits, an interposer chip,
and a multi-layer chip for control and readout wiring. In the work presented here, the
devices were realized using only the qubit and interposer chips (see Fig. 3.1 (c,d)), as a
preliminary step towards high-density annealing circuits including the full three-tier process
described in Refs. [180, 181].

Each device is placed in a sample holder anchored to the mixing chamber plate of a dilu-
tion refrigerator. All on-chip flux bias lines are connected to arbitrary waveform generators
(AWGs) operating at room temperature through twisted-pair wiring. The connections are
appropriately attenuated at room temperature to generate a flux range of a few flux quanta
(see Appendix B for a complete wiring diagram).
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Figure 3.1: (a) Circuit schematic of device A. The qubit circuits (left and right, purple)
are tunable CSFQs. The coupler circuit (middle, orange) is a tunable rf-SQUID. Each
qubit and coupler has two control loops and is coupled to a tunable resonator (top, gray).
All resonators are coupled to a joint feedline (top, red). Fluxes in each loop are controlled
via the on-chip bias lines (triangles, blue). The design also includes microwave control by
capacitively coupling microwave lines (circle, green) to the qubit, allowing for spectroscopy
measurement of the device (not used in this work). (b) Diagram representation of devices
A and B. Device A contains two qubits (left and right units, purple), the coupler (insider
cell, orange), and a tunable resonator for each cell (top, gray). Device B contains two
qubits and seven couplers. Device B has the same qubit and coupler circuit schematic and
control capabilities as device A, shown in panel (a). (c, d) Microscope image of the qubit
and interposer chips of device B. The qubit chip (c) hosts the qubit and readout circuitry
and the interposer chip (d) hosts the flux bias lines. The square features (yellow boxes)
correspond to indium bumps used to connect the two chips.
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3.4 The iterative method: methodology

In general terms, the iterative method works as follows. In the first iteration, it is assumed
that when one bias voltage is changed, it only changes the external flux of the loop being
addressed, while changes in external fluxes in other loops do not cause any appreciable
change in the measured quantity. Using the estimates from the first iteration, subsequent
iterations can improve the accuracy of these estimates.

Devices A and B have a design commonality, in that, qubits and couplers are similar
circuits, each coupled to a flux tunable resonator. It is useful to group each qubit or coupler
with its resonator into a unit cell. This makes it so that each cell has three superconducting
loops; z, x on the qubit or coupler, and r on the resonator rf-SQUID. We use Cpα,qβ to
represent the flux to voltage ratio between the bias line β in cell q and the loop α in cell p,
where α, β ∈ {z, x, r} and p, q ∈ [1,m]. Here m is the total number of unit cells, given by
m = 3(9) for device A(B). The flux offset in loop α in cell p is denoted by f0,pα. Similarly,
fpα (Vpα) represents the flux (voltage) on loop (bias line) α in cell p. This double index
notation facilitates the analysis of this circuit, where each readout resonator is nominally
coupled to each qubit or coupler. However, the methods discussed below apply to more
general circuits. Note that we continue to sometimes use the single index notation (Vi, fi,
and Ci,j) below. The difference between the single and the double index notations should
be clear from the context.

Distinguishing between estimated values and the corresponding variables is very im-
portant in particular in the discussion of the iterative procedure below. We use a prime
to denote the estimated value for a specific quantity. For example, C ′

pα,qβ refers to the
estimated value for Cpα,qβ. With the estimated coupling matrix and the estimated flux
offsets, we can define an estimated flux vector f ′ as

f ′ = C′V + f ′0. (3.4)

In the subsections below, we first introduce the procedure for one iteration and then
discuss how further iterations are carried out.

3.4.1 CISCIQ

We devise a procedure to obtain estimates of the coupling matrix named CISCIQ (an
acronym for “crosstalk into SQUIDs, crosstalk into qubit”). In general terms, it consists of
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first measuring the coupling elements between bias lines and the SQUID detectors, which is
subsequently used to keep the resonator SQUID at nearly fixed operation points, as needed
in order to maintain a consistent level of sensitivity to changes in the states of qubits and
couplers induced by external biases. This procedure has four stages, discussed below.

Stage 1. In the first stage, the resonator direct bias element Cpr,pr is measured for each
unit p. Ignoring the resonator interaction with other quantum elements (qubits, couplers,
or other resonators), the resonator frequency is periodic with respect to its own bias line
control voltage. By measuring the resonator spectrum as a function of its own bias voltage,
we can extract its periodicity, denoted by Ppr, and the voltage coordinate corresponding to
zero flux in the resonator SQUID, denoted by V ∗

pr. Based on these quantities, we estimate

C ′
pr,pr =

1

Ppr

, and f ′
0,pr = −

V ∗
pr

Ppr

. (3.5)

Stage 2. In the second stage, the crosstalk coefficients Cpr,qα for all p, q, α are measured.
A similar measurement as in Stage 1 is carried out. All voltages except Vqα and Vpr are
set to zero. The readout response is measured as a function of Vpr for a set of different
values of Vqα. The added flux in the probed resonator due to crosstalk from Vqα shifts the
resonator frequency as a function of Vpr. For δVpr amount of shift per δVqα, the crosstalk
element is given by

C ′
pr,qα = −C ′

pr,pr

δVpr
δVqα

. (3.6)

Stage 3. After Stage 2, we have control of the fluxes in the resonator SQUIDs from all
the bias lines. In Stage 3, the 3 × 3 sub-matrix formed of the elements Cpα,pβ and the
flux offsets f0,pz, f0,px for each unit p are measured. In the remainder of this stage, Vqα for
all q ̸= p and all α are set to zero. To simplify notation, the subscript denoting the cell
index is dropped since we are only concerned with intra-unit crosstalk. With this simplified
notation we write

fzfx
fr

 =

Cz,z Cz,x Cz,r

Cx,z Cx,x Cx,r

Cr,z Cr,x Cr,r

VzVx
Vr

+

f0,zf0,x
f0,r

 . (3.7)
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This stage consists of two measurements. In measurement (a), we measure the fluxes
in the qubit or coupler, fz and fx by measuring the coupled resonator’s transmission at a
fixed frequency, while sweeping x and z bias voltages, Vx, Vz. During the measurement, the
resonator flux bias needs to be fixed, leading to a constraint on the resonator bias voltage,

f ′
r =

∑
α

C ′
r,αVα + f ′

0,r = 0, (3.8)

where f ′
r is the approximate resonator flux from external sources, given by the estimates

from Stages 1 and 2. Note that the errors in the estimates of Stages 1 and 2 lead to
uncompensated crosstalk into the resonator, which can affect the measured transmission,
in addition to the changes in transmission due to the changes in fz and fx. To avoid this
complication, we choose to fix f ′

r to zero, which makes the resonator first order insensitive to
the residual uncompensated crosstalk, allowing us to associate the change in transmission
solely with changes in fz and fx. While setting the resonator flux bias away from zero
can increase the overall interaction strength between the resonator and qubit or coupler,
potentially leading to more sensitive measurement, we empirically find the benefits of
avoiding complication due to uncompensated crosstalk outweighs the cost of slightly weaker
sensitivity.

Since Vr is constrained to satisfy the requirements on f ′
r, the 3-dimensional voltage and

flux space are reduced to an effective 2-dimensional relation, such that(
fz
fx

)
=

(
Ceff

z,z Ceff
z,x

Ceff
x,z Ceff

x,x

)(
Vz
Vx

)
+

(
f eff
0,z

f eff
0,x

)
. (3.9)

Specifically, the effective matrix and offsets are related to the actual matrix elements and
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offsets via

Ceff
z,z = Cz,z −

C ′
r,zCz,r

C ′
r,r

, (3.10)

Ceff
z,x = Cz,x −

C ′
r,xCz,r

C ′
r,r

, (3.11)

Ceff
x,z = Cx,z −

C ′
r,zCx,r

C ′
r,r

, (3.12)

Ceff
x,x = Cx,x −

C ′
r,xCx,r

C ′
r,r

, (3.13)

f eff
0,z = f0,z +

Cz,r

C ′
r,r

(f ′
r − f ′

0,r) and (3.14)

f eff
0,x = f0,x +

Cx,r

C ′
r,r

(f ′
r − f ′

0,r). (3.15)

Measurement (a) can be shown to have point reflection symmetry about every half-
integer flux point due to both symmetries about the chip plane and periodicity in external
fluxes (see Sec. 3.9.1). These points form a lattice and allow us to find the affine transfor-
mation defined by the effective matrix Ceff and the effective flux offsets f eff

0,z, f
eff
0,x. However,

as implied by Eqs. (3.10)-(3.15), knowing the effective matrix and offsets is insufficient to
determine the complete set of coupling coefficients for this unit. Hence another measure-
ment is needed.

Stage 3 measurement (b) repeats measurement (a), but setting f ′
r = ±1. Since the

resonator flux is changed by 1 Φ0, due to the flux periodicity, the resonator response
remains the same, up to some translation in the Vx, Vz coordinates. Such translations
could be understood in terms of the change in effective flux offsets of the z(x) loop, f eff

0,z(x)

due to crosstalk from the resonator bias line. From Eqs. (3.14) and (3.15), we can write
the change in effective flux offset δf eff

0,z(x) due to change in resonator flux δf ′
r as,

δf eff
0,z(x) =

Cz(x),r

C ′
r,r

δf ′
r. (3.16)

Measurement of the offset shift δf eff
0,z(x) is used to determine Cz(x),r/C

′
r,r, which in combi-

nation with Eqs. (3.10)-(3.15) enables identifying all the coupling elements and flux offsets
in a unit cell.

To extract the offset shifts δf eff
0,z and δf

eff
0,x, an effective procedure is to rely on the shifts of

the measured two-dimensional datasets quantified along the Vz and Vx coordinates. These
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shifts are denoted by δVz and δVx respectively and are related to the effective offset shifts
via

(
δf eff

0,z

δf eff
0,x

)
=

(
(Ceff

z,z)
′ (Ceff

z,x)
′

(Ceff
x,z)

′ (Ceff
x,x)

′

)(
−δVz
−δVx

)
. (3.17)

Combining Eqs. (3.16) and (3.17) gives(
C ′

z,r

C ′
x,r

)
= C ′

r,r

(
(Ceff

z,z)
′ (Ceff

z,x)
′

(Ceff
x,z)

′ (Ceff
x,x)

′

)(− δVz

δf ′
r

− δVx

δf ′
r

)
. (3.18)

Then by inverting Eqs. (3.10)-(3.15), the actual 2-dimensional qubit or coupler coupling
and offsets can be written in terms of the effective matrix elements and offsets,

(
C ′

z,z C ′
z,x

C ′
x,z C ′

x,x

)
=

(Ceff
z,z)

′ (Ceff
z,x)

′ C′
z,r

C′
r,r

(Ceff
x,z)

′ (Ceff
x,x)

′ C′
x,r

C′
r,r

 1 0
0 1
C ′

r,z C ′
r,x

 , (3.19)

f ′
0,z = (f eff

0,z)
′ +

C ′
z,r

C ′
r,r

f ′
0,r , and (3.20)

f ′
0,x = (f eff

0,x)
′ +

C ′
x,r

C ′
r,r

f ′
0,r. (3.21)

To summarize Stage 3, measurement (a) allows us to estimate the effective 2×2 matrix
Ceff and the effective flux offsets f eff

0,z, f
eff
0,x, and measurement (b) extracts the shifts of the

resonator response as a function of Vz, Vx. Together with the results from Stages 1 and 2,
they complete the flux offsets and 3× 3 block diagonal matrix in each unit cell.

Stage 4. In the last stage, all the remaining crosstalk elements are measured. This is
done by performing a measurement similar to Stage 3 measurement (b) for each cell p, but
this time stepping an out-of-cell bias voltage Vqα. To fix the resonator flux bias during the
measurement, the resonator bias voltage for cell p, Vpr is constrained so that

f ′
pr =

∑
β∈{z,x,r}

C ′
pr,pβVpβ + C ′

pr,qαVqα + f ′
0,pr = 0. (3.22)
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Changes in Vqα induce shifts of the measured response in the Vpz, Vpx plane. To find the
relation between the crosstalk elements and the shifts, we consider the change in the z and
x fluxes in cell p, δfpz and δfpx due to changes in the bias voltages δVpz, δVpx and δVqα.
They are given by

(
δfpz
δfpx

)
=

(
Ceff

pz,pz Ceff
pz,px Ceff

pz,qα

Ceff
px,pz Ceff

px,px Ceff
px,qα

)δVpzδVpx
δVqα

 , (3.23)

where we introduced Ceff
pz,qα and Ceff

px,qα, given by

Ceff
pz,qα = Cpz,qα − C ′

pz,pr

C ′
pr,qα

C ′
pr,pr

, and (3.24)

Ceff
px,qα = Cpx,qα − C ′

px,pr

C ′
pr,qα

C ′
pr,pr

. (3.25)

A change δVqα in the out-of-cell bias voltage qα induces shifts δVpz, δVpx in the resonator
response. The effective crosstalk elements can be found by setting δfpz = δfpx = 0 in
Eq. (3.23), yielding ((

Ceff
pz,qα

)′(
Ceff

px,qα

)′) =

(
(Ceff

pz,pz)
′ (Ceff

pz,px)
′

(Ceff
px,pz)

′ (Ceff
px,px)

′

)(− δVpz

δVqα

− δVpx

δVqα

)
. (3.26)

Finally, combining Eqs. (3.25) and (3.26) gives(
C ′

pz,qα

C ′
px,qα

)
=

(
(Ceff

pz,pz)
′ (Ceff

pz,px)
′

(Ceff
px,pz)

′ (Ceff
px,px)

′

)(− δVpz

δVqα

− δVpx

δVqα

)

+

C ′
pz,pr

C′
pr,qα

C′
pr,pr

C ′
px,pr

C′
pr,qα

C′
pr,pr

 . (3.27)

3.4.2 Limitations of CISCIQ

The CISCIQ procedure relies on assuming that when a circuit element (a qubit, coupler,
or SQUID) is measured, its properties as a function of an externally applied flux are
negligibly affected by the interaction with other circuit elements. For example, in Stage
1, it is assumed that the tunable resonator frequency is periodic in its own bias voltage.
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However, due to crosstalk from the resonator bias line to the coupler loop, the coupler
properties change over the range of the resonator bias swept, which in turn changes the
resonator due to their inductive interaction. In Stage 2, while the coupler z bias is swept,
its resonator SQUID flux changes not only because of the finite crosstalk from the z bias
line to the SQUID loop but also because of the state of the coupler changing.

To illustrate the expected role of circuit interactions, we use a simple model to calculate
the effect of the resonator-coupler interaction on the resonator response. The interaction
is modeled via the inductive loading of the rf-SQUID inductance by the coupler effective
quantum inductance. We consider a single coupler-resonator cell, and assume only coupling
between the r and z bias lines and the resonator and coupler loops. By numerically finding
the coupler circuit’s effective inductance and solving the classical rf-SQUID equation, the
resonator spectrum in terms of the resonator and coupler z bias can be calculated (see
Sec. 3.9.2 for additional details). Figure 3.2 shows the resonator spectrum as a function
of its bias voltage Vr, for two different values of coupler z bias voltage Vz. The dominant
feature is the resonator frequency change due to a change in its own bias. However, due
to crosstalk, the coupler flux bias also changes as a function of Vr, which changes its
inductive loading effect on the resonator and hence the resonator frequency. Therefore the
translational symmetry in Vr that is used for calibration in Stages 1 and 2 is broken. We
note here that the inductive loading model does not capture the full interaction between the
resonator and coupler, rather it serves as an example to highlight the increased complexity
of calibration due to strong interactions between circuit elements.

The above analysis can be extended to other stages of CISCIQ, where the coupler’s ef-
fective inductance loads the qubit and the coupler ground state current acts as an effective
bias seen by the qubit. Based on the single qubit and coupler persistent current and their
mutual inductances, such an effect could produce an error of tens of mΦ0 (see Sec. 3.9.3).
While it is possible to develop models to capture the interaction for small systems, develop-
ing an accurate model for a large system is a daunting task. Apart from the qubit-coupler,
qubit-resonator, or coupler-resonator interactions, since the different resonators are cou-
pled to a single transmission line for readout, resonance collisions also distort the readout
signal. Larger devices are particularly prone to this problem. Therefore, CISCIQ alone
does not provide a good enough measurement of the coupling matrix and flux offsets.

3.4.3 CISCIQi

To reduce the errors in calibration coefficients found with CISCIQ, which are due to the
systematic effects discussed in the previous subsection, we propose an iterative approach,
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Figure 3.2: The simulated readout resonator spectrum as a function of its bias volt-
age, using the inductive loading model to describe the interaction between the resonator
and the coupler (see text). The solid (blue) and orange (dashed) lines correspond to
the coupler coupled to the resonator being biased at two different Vz values, of 0 and
1 Volt respectively. The coupling coefficients and flux offsets used for this model are
Cz,z = Cr,r = 1 Φ0/V, Cr,z = Cz,r = 0.1 Φ0/V, f0,r = 0, f0,z = 0.4, which are realistic in our
devices. Translational symmetry is broken due to the coupler resonator interaction.
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abbreviated as CISCIQi. With this procedure, the measured coupling coefficients and flux
offsets from CISCIQ are taken as an initial estimate. Further iterations of CISCIQ are car-
ried out to gradually improve the initial estimates. In each iteration, one controls directly
not the voltages but a set of new coordinates - which are the fluxes applied to the loops,
calculated based on the estimated coupling coefficients and offsets. More specifically, the
first iteration can be considered as giving the estimates of C and f0 as C(1)′ and f

(1)′
0 re-

spectively. In the absence of interactions between individual qubits, coupler, and resonator
circuits, these estimates are accurate, limited only by experimental noise. However, this is
not the case for the reasons explained in the previous section. Nevertheless, the quantities

f (1) = C(1)′V + f
(1)′
0 , (3.28)

where C(1)′ and f
(1)′
0 are the estimates of the coupling matrix and flux offsets obtained from

iteration 1, are a good approximation for fluxes in the loops. Then the flux relation in
Eq. (3.2) can be recast into the form

f = C(2)f (1) + f
(2)
0 (3.29)

where we introduced

C(2) = C
(
C(1)′)−1

(3.30)

and

f
(2)
0 = −C

(
C(1)′)−1

f
(1)′
0 + f0. (3.31)

The task in iteration 2 is to estimate C(2) and f
(2)
0 by sweeping the components of

f (1) and measuring the circuit response. Because the basis vectors in the estimated flux
coordinate f (1), as compared to those in the voltage coordinates V , are closer to the corre-
sponding basis vectors in the real flux coordinates f , the assumptions made in CISCIQ on
periodicity with respect to controls are better justified. For example, when repeating Stage
1 during iteration 2, the resonator frequency as a function of f

(1)
pr has smaller departures

from periodicity than f
(1)
pr as a function of Vpr in iteration 1. In Stage 2, one measures

the crosstalk from a source bias to a target resonator by stepping the source biases with
integers of flux quanta according to the estimated coupling coefficients. By doing this the
resonator spectrum better obeys translational symmetry over different source bias settings,
because the effect of the interactions with the rest of the circuit is reduced when changes
in applied fluxes are close to the circuit periodicity. In Stage 3, the data is expected to
have better point reflection symmetry in the f

(1)
pz , f

(1)
px plane as compared to Vpz, Vpx. In
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Stage 4, similarly to Stage 2, we choose integer flux quanta steps in the crosstalk source
bias to null out modulations within a period. In all stages, resonance collisions become
less likely in the second iteration, as the resonators’ bias points are better controlled, due
to the reduced changes in flux coupled from other elements.

At the n-th iteration, this procedure yields the estimates for the coupling matrix C(n)′

and the offset vector f
(n)′
0 . Combining the coupling matrix and offsets measured at each

iteration, the estimates after n iterations for the coupling matrix and the flux offset are

C′ = C(n)′C(n−1)′ . . .C(1)′ (3.32)

and

f ′0 = C(n)′
(
C(n−1)′

(
. . .
(
C(2)′f

(1)′
0 + f

(2)′
0

)
+ . . .

)
+ f

(n−1)′
0

)
+ f

(n)′
0 . (3.33)

3.4.4 Fast offsets calibration

The coupling matrix is expected to remain constant in the course of an experiment while
the device is kept cold inside a dilution refrigerator. However, the flux offsets change over
time due to flux noise and trapped flux. Therefore a time-efficient method is desired to
recalibrate flux offsets. Here we introduce such a procedure, which relies on the knowledge
of the estimate of the coupling matrix, assumed to remain constant. The method makes
use of similar measurements as in Stages 1 and 3 of CISCIQ. To measure the offset of
the resonator, the corresponding approximate flux coordinate f ′

pr is swept around 0, and
at each flux setting the resonator transmission is measured over a frequency range around
resonance. The signal is expected to be mirror reflection symmetric about a value, denoted
by f ′∗

pr, which corresponds to the flux in the resonator being equal to zero. Based on this,
the new estimated flux offset is related to the old estimated flux offset f ′

0,pr by

f ′
0,pr −→ f ′

0,pr − f ′∗
pr. (3.34)

Similarly, to find the new offset of the qubit or coupler, the estimated flux coordinates
f ′
pz, f

′
px are swept while probing resonator transmission close to the peak frequency of the

resonator for unit p. The signal is point reflection symmetric about some point (f ′∗
pz, f

′∗
px).

The new estimated flux offset and the old ones are related analogously to the resonator
offset in Eq. (3.34). If this set of measurements reveals that the offset drifts are large, the
procedure can be iterated to eliminate the apparent offset shifts due to circuit interactions.
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3.4.5 The error of the calibration procedure

There are several sources of errors for the CISCIQi calibration procedure. Firstly, all the
data collected has noise contributions from the microwave amplifiers, and flux drifts occur
while taking the data. Secondly, the fitting algorithms applied to identify translational and
point reflection symmetries have estimate errors arising from the finite range and sampling
for the collected data. Last and most significantly, systematic errors arise from circuit inter-
actions, which are only partially mitigated even after the application of multiple iterations
in the calibration procedure. To characterize the errors in the crosstalk matrix and flux
offsets considering all the sources of errors is therefore a complex task. Conventional error
propagation analysis is not suitable for our method because the output of the analysis, i.e.
the periodicities and translations extracted, depends linearly on the coupling coefficients,
as well as nonlinearly on the interactions between circuit elements. As an example, Stage
3(b) measurement of CISCIQ relies on couplings measured in Stage 1 and 2. The errors in
the resonator bias from Stage 1 and 2 would result in resonator frequencies being different
for f ′

r = 0,±1 when doing Stage 3 measurements. This causes transmissions at different
resonator flux biases not being simply translated versions of each other. The errors in the
extracted translations and crosstalk in Stage 3 thus have a substantially nonlinear depen-
dence on the errors from Stage 1 and 2. Given the above consideration, we propose an
error characterization method that is motivated by the purpose of crosstalk calibration,
which is to gain independent control of each flux bias.

The error characterization relies on a set of measurements performed to determine to
what extent the fluxes can be controlled independently. Ideally, when a change ∆f ′

j in the
estimated flux f ′

j is applied to loop j, the flux in other loops should remain unaffected.
Any change in flux can be conveniently measured using the abbreviated offset measurement
procedure discussed in Sec. 3.4.4. For i, j ∈ [1, N ], i ̸= j, the quantity

Θi,j =
∆f ′

0,i

∆f ′
j

(3.35)

is a measure of the remaining control crosstalk. To measure this quantity in a way that
is robust against systematic errors from circuit interactions, one can set ∆f ′

j to be integer
flux quanta. This leads to a reduced effect of circuit interaction, due to their periodic
dependence on applied fluxes.
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3.5 The iterative method: experiments

3.5.1 Implementation of the CISCIQ method

In this section we discuss the experimental implementation of the first iteration in the
CISCIQi iterative procedure. We discuss this iteration in detail, given that the analysis
tools carry over to subsequent iterations. We present measurements for calibration of
device A as examples. Measurements on device B are carried out similarly.

Stage 1

In Stage 1, for each resonator, the transmission is measured versus the probe frequency
and resonator bias voltage. The voltage bias sweep is chosen to cover a few flux quanta,
in order to allow determination of the periodicity. We note that in the first iteration we
choose bias voltage ranges that are relatively large, to allow determining the period in
the presence of relatively strong, uncompensated spurious flux generated by other circuit
elements.

Figure 3.3(a) shows a color plot of the transmission magnitude versus bias voltage and
probe frequency. At resonance, the magnitude of transmission has a dip relative to the
background. To extract the periodicity and offset, one could extract the resonance frequen-
cies as a function of bias voltage and fit it to the resonator model or a simpler periodic
function. However, this method becomes difficult to automate due to the presence of other
features in the transmission arising from other readout resonators and spurious package
resonances. In addition, fitting the transmission requires small frequency steps and an an-
alytical transmission model can be hard to obtain when the tunable resonator is driven at
high power. Hence, an image-processing-based method is used instead. The transmission
data can be considered as an image with the first dimension being the bias voltage Vcr,
the second dimension being the probe frequency ωp, and the third dimension being the
magnitude of the transmission |S21|. Before extracting the period of the data, edge detec-
tion techniques are applied to enhance the resonance features (see Sec. 3.10.1). To extract
the period of the resonator bias, recurrence plot analysis is used [182]. Recurrence plots
are a method to visualize symmetries in time series data and are adapted here to identify
periodicities within an image and translations between two different images. Given two
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images A(i1, i2) and B(j1, j2), the recurrence plot is a new dataset R(i1, j1) defined as

R(i1, j1) =

1, if
√∑

i2,j2

(Ai1,i2 −Bj1,j2)
2δi2,j2 ≤ ϵ

0, otherwise

, (3.36)

where δi2,j2 is the Kronecker delta and ϵ is a threshold chosen to maximize the contrast
in the recurrence plot (see Sec. 3.10.1). The arguments in A, B, and R are integer-valued
indices. We apply the recurrence plot to the case where both the A and B images are the
acquired dataset. The y-intercept of 45-deg lines in the plot corresponds to the amount of
translation needed on one of the images to overlap with the other. We use line detection
via the Hough transform to extract the translations from the recurrence plot. An example
resonator transmission image and its corresponding recurrence plot are shown in Fig. 3.3(a)
and (b).

To extract the flux offset, the reflection symmetry of the data is analyzed. The mea-
sured transmission magnitude |S21| can be considered as an image A(i1, i2) of dimensions
(m1,m2). The correlation coefficients between image A and its reflection about all bias
indices are calculated. The reflected image B(i1, i2; j) about a particular bias index j is
given by

B(i1, i2; j) = A(2j − i1, i2). (3.37)

The correlation coefficient ρ(j) is given by

ρ(j) =

∑
i1,i2

[A(i1, i2)− Ā(j)][B(i1, i2; j)− B̄(j)]√∑
i1,i2

[A(i1, i2)− Ā(j)]2
∑
i1,i2

[B(i1, i2; j)− B̄(j)]2
, (3.38)

where the summations range over i1 ∈ [Max(1, 2j −m1),Min(m1, 2j − 1)] and i2 ∈ [1,m2],
and Ā(j), B̄(j) are the average values of A,B over the same range. The ranges serve to
pick out the overlap region between the original and reflected images. The correlation
coefficient used here is adapted from the Pearson correlation coefficient applied to samples.
It is normalized to lie between [−1, 1], so images with different overlap sizes can be fairly
compared. The peaks in ρ(j) correspond to points of reflection symmetry in the image,
identified with half and whole integer flux quanta in the resonator loop. Figure 3.3(c) shows
the result of this calculation. Finally, the integer flux quanta points can be distinguished
from the half-integer flux quanta points by checking whether there is a dip in transmission
within the frequency range swept, at that bias point.
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Figure 3.3: (a) Transmission magnitude |S21| versus bias voltage Vcr and probe frequency
ωp for the unit cell c of device A. (b) Recurrence plot of the image in (a) with detected
line (red). The horizontal and vertical axes correspond to pixel indices in the bias voltage
dimension in (a). (c) Reflection symmetry correlation coefficient ρ(j) versus bias voltages
Vcr. Each local maximum is locally fitted to a Lorentzian line shape (orange, green, red,
purple, and blue curves) to obtain sub-pixel accuracy in the offset. (d) Shifts of resonator
response δVcr versus crosstalk source bias voltages Vq2z. The dots are data points and the
line is the fit result.
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Stage 2

In Stage 2, for each resonator, the transmission is measured versus the resonator direct bias
and probe frequency, at a few voltages of each indirect bias line, with all other bias voltages
set to zero. Recurrence plots are used to extract the translations in the two-dimensional
data for each value of the applied indirect bias voltage. The translation versus indirect
voltage is fit by a line, whose slope represents the amount of crosstalk. Figure 3.3(d) shows
an example of such a fit. While the translations versus crosstalk source voltage follow a
linear dependence to a good approximation, small systematic errors are observed due to
interactions of the resonator with the rest of the circuit.

Stage 3

In Stage 3(a), for each unit cell, the resonator transmission is probed at a fixed probe
frequency, with the resonator external flux held constant while sweeping its directly coupled
qubit or coupler x and z biases. Typically, the probe frequency is below the peak frequency
by about half of its linewidth to maximize contrast. The bias ranges are typically swept
over two to four periods in both directions and the step size is of the order of 1% of
the observed periodicity. The resonator flux is kept at zero during the sweep. At this
bias point, the resonator is flux-insensitive to first order. This choice of the resonator
bias minimizes the frequency change of the resonator due to residual crosstalk when the
z and x biases are swept, thus preventing deterioration of the measurement signal. This
measurement generates an image that has point reflection symmetry about integer and
half-integer flux points (see Sec. 3.9.1). The measured transmission magnitude |S21| can
be considered as an image A(i1, i2) of dimensions (m1,m2). To extract the point reflection
symmetry centers, the correlation coefficient between the image and the image inverted
about some point (j1, j2) is calculated. The inverted image B(i1, i2; j1, j2) is given by

B(i1, i2; j1, j2) = A(2j1 − i1, 2j2 − i2). (3.39)

The correlation coefficient ρ(j1, j2) is given by

ρ(j1, j2) =

∑
i1,i2

[A(i1, i2)− Ā(j1, j2)][B(i1, i2; j1, j2)− B̄(j1, j2)]√∑
i1,i2

[A(i1, i2)− Ā(j1, j2)]2
∑
i1,i2

[B(i1, i2; j1, j2)− B̄(j1, j2)]2
, (3.40)
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a) b)

Figure 3.4: (a) Resonator transmission magnitude |S21| versus z, x bias voltages for unit cell
q1. The detected inversion symmetry centers are shown by the black dots. (b) Correlation
coefficient ρ(j1, j2) for the image in (a). Each local maximum in the image corresponds
to one KAZE feature (highlighted circles). We note that for a range up to about half
the expected periodicity from the edge of the transmission measurement, the correlation
coefficients are not calculated and plotted as white. This is because the correlation becomes
an unreliable measure of symmetry near the edge.

where the summations range over i1(2) ∈ [Max(1, 2j1(2)−m1(2)),Min(m1(2), 2j1(2)− 1)], and
Ā(j1, j2), B̄(j1, j2) are the average values of A, B over the same range. Local maxima in
the image ρ(i1, i2) correspond to points with maximum point reflection symmetry. Instead
of simple peak detection, KAZE feature recognition [183] is applied to the image ρ, which
detects blobs in the image. Then, by filtering out features that are not close to any local
maximum, the coordinates of the remaining features can then be identified with point
reflection symmetry centers. It is empirically found that the KAZE feature detection
outperforms simple local maximum detection, in cases where resonator collision causes the
measured transmission to deviate from the expected symmetry. The feature detection also
allows sub-pixel precision, which removes the need to take time-consuming, high-density
measurements. Fig. 3.4(a) shows the point reflection symmetry centers plotted on the
measured data, ordered by their distances to the origin and Fig. 3.4(b) shows the point
reflection correlation coefficients calculated, with the KAZE features overlaid.

The inversion symmetry centers are coordinates in z and x bias voltages corresponding
to half-integer flux quantum in z and x loops. The next task is to identify an affine trans-
formation that converts these inversion symmetry centers to coordinates in external fluxes.
In principle, any three inversion symmetry centers that are not co-linear are sufficient to
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Figure 3.5: (a) Coupler resonator transmission measurement versus Vcz, Vcx, at f
′
cr = −1

(top) and f ′
cr = 1 (bottom). (b) Shifts of the coupler 2d scan in z direction, δVcz versus

resonator bias f ′
cr. (c) Shifts of the coupler 2d scan in z direction versus crosstalk source

Vq1z. In both (b) and (c) the dots are data points and the line is the fit result.

define such a transformation. However, due to various noise sources, it is likely that differ-
ent choices of inversion centers will lead to slightly different transformations. To make use
of the full lattice of inversion symmetry centers, the affine transformation parameters can
be treated as fitting parameters. The optimal transformation is found by minimizing the
distance between transformed lattice coordinates and the ideal lattice coordinates [178].

In Stage 3(b), for each unit, the resonator transmission is probed at a fixed frequency,
while sweeping the unit x and z bias voltages and maintaining f ′

r = ±1. Fig. 3.5(a)
shows the measured data for the coupler unit. Translations between images in both the z
and x directions are simultaneously extracted using scikit-image image registration routine
[184, 185]. The translations versus resonator bias values are fitted to a line and the slope
can be related to the crosstalk value as discussed in Sec.3.4.1 Stage 3.

Stage 4

In Stage 4, measurements similar to those in Stage 3(b) are performed. For each unit,
the resonator transmission is probed while fixing the resonator flux bias and sweeping
the unit’s x, z biases, and stepping another crosstalk source bias voltage. The ranges
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for crosstalk source voltage are chosen to cover more than one flux quantum flux bias in
the corresponding loop, to ensure the translations measured are not biased due to the
modulation of circuit interaction within a period. An example of translations extracted
versus crosstalk source bias voltages and the corresponding fits are shown in Fig. 3.5(c).
The slope of the line fit is then related to the crosstalk coupling via Eq. (3.27).

3.5.2 Calibration results for devices A and B

CISCIQi

After the application of CISCIQ as discussed above, further iterations are performed by
sweeping the approximate flux coordinates, where fluxes are calculated according to the
estimates of the coupling matrix and flux offset obtained in the previous iteration. Three
complete iterations are completed for both devices A and B. The estimated values of
coupling coefficients at the end of each iteration are calculated using Eq. (3.32).

To illustrate how the coupling elements change with iteration, we show in Fig. 3.6 a
subset of the coupling matrix elements for iterations 1-3 for devices A and B. Note that the
coupling elements shown correspond to units at the center of devices A and B, which are
most affected by systematic crosstalk errors due to interactions with other circuit elements.
We observe that all the coupling elements change, with typically a smaller change between
iterations 2 and 3 than between iterations 1 and 2. To further illustrate the effectiveness of
the iterations, in Fig. 3.7(a) we show the statistical box plots of coupling coefficients and
flux offsets in M(n)′, f (n)′ for n = 2, 3. It is clear from the plot that the coupling matrices
in iterations 2 and 3 are approaching identity, and the flux offsets are approaching zero.

For device A, it is worth noting that the corrections in off-diagonal matrix elements
in iteration 2 are about 10mΦ0/Φ0, and the correction in flux offsets are about 10mΦ0.
Assuming 60 pH mutual inductance between circuit elements, which is the typical value, the
required persistent current to generate 10mΦ0 flux is 0.34µA. This number is comparable
to the maximum ground state current in the coupler z-loop, which is 0.45µA. As the
persistent current gets modulated by flux bias, corrections on the order of 10mΦ0/Φ0

in iteration 2 are consistent with the level of interactions between circuit elements (see
Sec. 3.9.3 for a more detailed comparison). In iteration 3, the matrix element corrections
are below 2mΦ0/Φ0 and the flux offsets corrections are below 2mΦ0. Since the flux drifts
measured (see Sec. 3.5.3) are also about 2mΦ0, this suggests that further iterations would
be limited by random flux jumps and not improve the calibration measurement much
further.
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Figure 3.7: For device A (left), and B (right) respectively, the statistical box plots of
the diagonal (top), off-diagonal (middle) coupling coefficients in C(n)′, and the flux offsets

(bottom) in f
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0 , for iteration 2 and 3. The orange bar is the median, the black box

corresponds to the lower and upper quartiles, the segments contain the 5 to 95 percentile
of the data and the dots are outliers. For device B, the coupling coefficients and offsets
corresponding to the c2 unit are excluded in the plots due to device failure (see text).
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When compared to device A, device B has three times as many control loops. In addi-
tion, device B has overall stronger circuit interactions, because the couplers are designed
to have about three times as large a persistent current and flux sensitivity compared to
the qubit (see Sec. 3.9.3). This is compounded by the fact that more resonators are on
the same feedline in device B, leading to increased errors in resonator readout. Besides,
device B also suffered from a partial device failure: the resonator SQUID in cell c2 could
not be tuned. This cell, including the resonator and the coupler, remained uncalibrated
during the CISCIQi procedure (additional techniques were used to calibrate this unit for
other experiments, which we do not discuss in this work).

Therefore, it is expected that iteration 1 of CISCIQ for device B gives less accurate
estimates of the actual coupling coefficients and flux offsets. This is made apparent by
simply examining the measured data. As shown in Fig. 3.8(a, b), the Stage 1 measurement
for the resonator in unit c5 and Stage 3(a) measurement for unit c1 are far from the
expected periodic behavior. Fig. 3.8 (c) and (d) show the same scan taken during iteration
2. The periodic behavior is restored.

3.5.3 Flux offset drift

As noted earlier, the flux offsets drift even when the device is kept cold. It is important
to understand the magnitude and timescale over which the flux drifts occur. To perform
annealing experiments on the device, the flux offsets need to be stable over a duration that
is much longer than any annealing experiment itself.

To check the flux offset stability for device B, after the initial CISCIQi calibration,
the flux offsets are recalibrated twice using the method described in Sec. 3.4.4. Figure 3.9
shows the change in flux offsets relative to the initial calibration. After two days, the root
mean square (RMS) change in flux offsets for different loops is 1.3mΦ0. After 17 days,
one of the resonator SQUID fluxes changed by 20.0mΦ0. The others have an RMS change
of 2.0mΦ0. Similar shifts were observed in device A. This suggests that the device can
remain well-calibrated for a few days. Over a longer period of time, the flux drifts can be
large. Such fluctuations could have various sources, which should be investigated in future
work.

3.5.4 Characterization of the errors of the calibration protocol

The error measurement discussed in Sec. 3.4.5 is applied to device A. The measured errors
are displayed in Fig. 3.10. The RMS of the errors is 0.5mΦ0/Φ0 and the maximum error
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Figure 3.8: (a, b) Resonator transmission measurement versus probe frequency and res-
onator bias voltage for unit c5 in iteration 1(a) and 2 (b). (c, d) Resonator transmission
measurement sweeping z, x biases for unit c1 in iterations 1(c) and 2(d). Clearly, the iter-
ation 2 measurement has much better symmetry as compared to iteration 1.
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Figure 3.9: The changes in flux offsets for the z (blue, circle), x (orange, square) and r
(green, triangle) loops for each unit. Panel (a) is the change in flux offset after 2 days
and panel (b) is after 17 days. The errors are obtained in two steps. First, the errors
of offsets extracted are computed by first resampling the transmission measurement data
with typical measurement noise. The errors in offset changes are obtained by adding
in quadrature the offset errors at different times. Only the coupler unit flux offsets are
recalibrated in experiments (except c2 which had a non-functioning resonator).
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magnitude is below 1.7mΦ0/Φ0. This means that when the estimated flux f ′
i is changed

by 1Φ0 for some loop i, while keeping others constant, the actual external flux fj differs
from the approximate coordinate f ′

j by at most 1.7mΦ0. In comparison, if no crosstalk
compensation is applied, the control error can be lower bounded by the ratio of the final
measured crosstalk coefficients C ′

i,j to the direct coupling coefficients C ′
j,j, which has an

RMS value of 75mΦ0/Φ0. If only one iteration is performed, the errors can be lower
bounded by the values of the off-diagonal elements in iteration 2 matrix C(2)′, which has
an RMS value of 2.3mΦ0/Φ0 and maximum magnitude of 11mΦ0/Φ0.

The calibration accuracy achieved here is comparable to recent work in Ref. [186],
where a systematic study of crosstalk calibration was done on a system of superconducting
transmon qubits. It is worth mentioning that similar accuracy was achieved in Ref. [186]
using more complex control, involving microwave pulses applied to the qubits. In contrast,
the method we proposed here only uses resonator transmission measurements.

It is also instructive to compare the calibration error with the quasi-static noise due to
low-frequency flux noise intrinsic to the system. Based on flux noise measured in similar
devices [161] and the qubit loop size in our device, the estimated flux noise power spectral
density on the qubit z-loop is Sfz(ω) = A2

fz
/(ω/2π)α, with Afz = 14.4µΦ0/

√
Hz and

α = 0.91. The noise magnitude is obtained by integrating the power spectral density over
a frequency range determined by the experimentally relevant time scales, which is taken
to be ω/2π ∈ [1 Hz, 1 GHz]. This gives the fluctuation due to flux noise, which is about
281µΦ0. In comparison, as the maximum variation of flux in any single loop is 1/2Φ0, the
RMS error due to calibration inaccuracy is 0.5× 1/2 = 0.25mΦ0, which is comparable to
the intrinsic flux noise.

3.5.5 Calibration time

In this subsection we discuss the time taken to complete the calibration protocol. For
device A, the first iteration takes about 22 hours while each further iteration takes about
8 hours. Offsets calibration takes about an hour. For device B, the first iteration takes
about 80 hours while further iteration takes about 50 hours each. Offsets calibration takes
about 2 hours.

We note that the data acquisition time, which takes about two orders of magnitude
more than the data analysis time, is highly specific to the current setup. Firstly, improving
the signal-to-noise ratio could reduce the signal integration time required. This could be
done by optimizing the readout frequency and power. Secondly, there is overhead in the
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Figure 3.10: The measured crosstalk error coefficients Θi,j for each pair of sources (column)
and targets (row).
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Table 3.1: Comparison of simulated and measured (in brackets) values of mutual induc-
tances between bias lines and loops.

z bias line x bias line r bias line
Qubit Loop z′ 1 −1.6(−1.9) pH −0.65(−1.3) pH −0.21(−0.2) pH
Qubit Loop x 0.0098(−0.065) pH 1.4(2.5) pH 0.0003(−0.0068) pH
Resonator Loop 0.25(0.31) pH −0.021(−0.028) pH −1.4(−1.7) pH

software controlling the AWGs. Optimizing the software stack can lead to significant mea-
surement speedup, especially when the number of AWG channels becomes large. Beyond
this, improving the measurement protocol by incorporating multiplexed readout could also
reduce the measurement time.

3.5.6 Comparison with targeted mutual inductances

The calibration measurement also provides valuable feedback to circuit design. One impor-
tant aspect of the design process is to be able to predict the mutual inductances between
bias lines and control loops. The measured coupling coefficients can be converted into
mutual inductances using the measured resistances along the bias lines in the fridge. This
is compared to the mutual inductances extracted by simulating the device with an elec-
tromagnetic solver. As the computational resources required for such a simulation scale
poorly with the size of the chip, we chose to simulate a single flux cell consisting of a single
CSFQ coupled to a resonator SQUID, and their corresponding bias lines in the full two-tier
environment (see Sec. 3.9.4).

Table 3.1 shows a comparison of the simulated mutual inductances and the measured
mutuals on qubit 1 of device A. There is reasonable agreement between the simulated
and measured values. Discrepancies could arise due to more complex return current paths
through the ground plane, which are not accounted for when simulating only a restricted
area of the chip. Given that all the bias lines are connected to the ground plane in the
interposer chip, which is facing the qubit, it is not unexpected that the return current
effect becomes important. This could be partially mitigated if the connection between bias
line and ground is made further away from the control loops. However, this is ultimately
limited by the density of control lines and loops in the circuit. In future designs using the
three-tier architecture, there will be more flexibility in designing the ground current return
path. We expect such an architecture to give better agreement between designs and actual
devices.
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3.6 Periodicity optimization: methodology

In this section, we introduce the periodicity optimization approach to crosstalk calibration.
We will first discuss the framework used to treat the calibration task as an optimization
problem. Then we will discuss the measurement and analysis required to quantify period-
icity.

3.6.1 Crosstalk calibration as an optimization problem

The task of crosstalk calibration is to obtain estimates of the coupling matrix C and
independent control of the external flux biases. This is equivalent to finding N independent
control coordinates, such that the circuit responds periodically to changes in each of them.
To do this, we break the calibration task into N independent optimization problems, as
described below.

We start by introducing initial estimates of the crosstalk and flux offsets, given by
Cinit and f init0 . Introducing them makes it convenient to discuss the optimization with or
without prior knowledge on the same footing. When no prior knowledge is available, the
initial estimates are identity and zeros for the crosstalk matrix and flux offsets respectively.
The initial estimates allow us to define the initial control coordinates f init,

f init = CinitV + f init0 . (3.41)

The initial control coordinates f init are related to the actual fluxes f via the residual
crosstalk and flux offsets,

f = Cresf init + f res0 , (3.42)

where Cres = C(Cinit)−1, f res0 = f0 −Cresf init0 .

To calibrate the ith control coordinate, we define a trial control flux variable f ′,

f ′ = (I−O′)CinitV + f init0 , (3.43)

where the compensation matrix O′ has elements O′
jk with

O′
jk =

{
0, if k ̸= i or j = k,

Ωjk, otherwise.
(3.44)

1Due to the specific convention used, z-loop does not refer to a physical loop in the device, therefore
z′-loop is used instead (see Appendix D).
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There are N − 1 non-zero elements in the matrix O′, denoted as {Ωji}. These are the
compensation parameters to be optimized when calibrating the ith control coordinate.
The objective of the optimization problem is to maximize the periodicity of the measured
signal when varying the ith coordinate of the trial flux, f ′

i . This can be done by performing
measurements varying f ′

i , and quantifying the periodicity using the metric discussed in
Sec. 3.6.2. A schematic for one iteration of the optimization step is shown in Fig. 3.11(a).

The maximum periodicity of the signal is achieved when compensation parameters
satisfy specific relations relative to the residual crosstalk Cres. To see this, consider
the relation between the trial control fluxes and the actual fluxes, which follows from
Eq. (3.41, 3.42, 3.43),

f = Cres(I+O′)f ′ + f ′0, (3.45)

where f ′0 = f0−Cres(I+O′)f init0 . It can be seen that when the following condition is satisfied

Ωji =
[(Cres)−1]ji
[(Cres)−1]ii

, ∀j ̸= i, (3.46)

one has

fi =
f ′
i

[(Cres)−1]ii
+
∑
j ̸=i

Cres
ij f

′
j + f ′

0,i (3.47)

fl ̸=i =
∑
j ̸=i

Cres
lj f

′
j + f ′

0,l, (3.48)

where fi, f
′
i , f

′
0,i and Cres

ij are elements of f , f ′, f ′0 and Cres respectively. The relations be-
tween the actual fluxes f and trial control fluxes f ′ given by Eqs. (3.47, 3.48) indicate that
when the ith control flux f ′

i is being varied, only the ith actual flux fi changes. In other
words, the residual crosstalk from the ith control coordinate to other coordinates l ̸= i is
completely canceled out by setting the compensation parameters {Ωji} satisfying Eq. 3.46.
Since the circuit response is periodic to each flux fi with period 1, the circuit also responds
periodically with respect to f ′

i , with period [(Cres)−1]ii. Hence, optimizing the periodicity
for the ith coordinate gives the optimized compensation parameters approximately satis-
fying Eq. 3.46, and they are denoted as Ω′

ji. After completing the optimization for all N
control coordinates, we obtain N(N−1) optimized compensation parameters, and another
N parameters corresponding to the periods of the N control coordinates. Using Eq. 3.46,
estimates for residual crosstalk matrix can be obtained, which we denote as Cres′.
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For each control coordinate i

Measurement

Update

and repeat

(a) (b)

Resonator

Flux Bias

Qubit

Readout

QFP

Figure 3.11: (a)Schematic representation of the optimization step. For each loop i, the
optimization parameters are elements of a trial compensation matrix O′, which defines the
trial flux coordinates f ′. Then the measurement is done by sweeping f ′

i and the periodic-
ity of the measurement signal is determined. If the periodicity is high, the compensation
parameters give good estimates of the ratio between the crosstalk matrix elements, oth-
erwise, the compensation parameters are updated and the optimization is repeated until
the periodicity is high. (b) Schematic of the subcircuit of the device measured, with the
tunable flux qubit on the left (purple), the quantum flux parametron (QFP) in the middle
(yellow), and the tunable resonator on the right (grey). In addition, the qubit and the
QFP are each coupled to a fixed-frequency resonator (grey). All resonators are coupled to
a joint feedline (red). External flux biases in the loops are controlled via the on-chip bias
lines (blue).
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3.6.2 Quantifying periodicity

The objective function for the optimization is the periodicity of the readout data with
respect to f ′

i . To measure the periodicity, the readout data is collected sweeping a large
enough range of f ′

i to cover a few periods, while keeping {f ′
j ̸=i} fixed. The readout data

is denoted as Rl(f
′
i,s), where s = 1, 2, . . . ,m goes over the values of f ′

i taken during the
sweep and m is the total number of f ′

i steps. Readout data from different channels is first
normalized, by applying the operation

Rl(f
′
i,s) −→

Rl(f
′
i,s)−Rl√∑

s

[
Rl(f ′

i,s)−Rl

]2 , (3.49)

where Rl is the average of the readout data from channel l over all values of f ′
i taken. The

periodicity can be quantified by first computing the correlation of the signal and its own
with a translation of t steps along the f ′

i coordinates. Defining the translated signal as

Rl,t(f
′
i,s) = Rl(f

′
i,s+t), (3.50)

the correlation is

ρi(tδ) =

∑
l,s∈S

[
Rl(f

′
i,s)−Rl

] [
Rl,t(f

′
i,s)−Rl,t

]√∑
l,s∈S

[
Rl(f ′

i,s)−Rl

]2∑
l,s∈S

[
Rl,t(f ′

i,s)−Rl,t

]2 and (3.51)

S = {1, 2, . . . ,m− t}, (3.52)

where δ is the step size of the f ′
i sweep and t is an integer for the translation considered.

The Rl, Rl,t refer to averages of the readout data over S for a particular readout channel
l. From the definition of correlation, we have the range of ρ ∈ [−1, 1], with 1 for perfect
correlation, −1 for perfect anti-correlation, and 0 for no correlation.

The correlation for a periodic signal is largest when the translation is an integer multiple
of the period. However, since the period of the signal is in general not commensurate with
the step size δ, we fit the following function around the maximum of ρi

ρi(τδ) = ρmax
i + b× abs(τi − τmax

i ), (3.53)

where τ can take non-integer values and τmax
i corresponds to the period of the signal.

The fit parameter ρmax
i could be identified with the periodicity of the measurement signal.

However, to be more precise, we choose to do another measurement where the sweep range
is shifted from the original measurement by τmax

i δ, giving Rl(f
′
i + τmax

i δ). The correlation
between this signal and the original one is then computed and denoted as P , which is the
objective function used in the optimization.
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Figure 3.12: Transmission versus probing frequency ωp and trial flux coordinate f ′
QFPZ,

through the fixed-frequency (a,d) and tunable (b,e) resonator, at the first (top) and last
(bottom) step in the optimization. The plots on panels (c, f) show the corresponding
correlation versus translation, with the inset showing the absolute value linear fit around
the maxima.

3.7 Periodicity optimization: experiments

We implement the optimization procedure outlined above on subcircuits of a small proto-
type coherent quantum annealer. This device is different from the first two devices used
in the demonstration of the iterative method in this chapter, and is named device C. The
device consists of two coupled tunable capacitively-shunted flux qubits [48], fabricated us-
ing a three-stack process in Lincoln Laboratory [187]. Each qubit is coupled to a quantum
flux parametron (QFP), which is in turn coupled to a flux-tunable resonator for readout.
The QFP acts as an amplifier for the flux signal of the qubit, hence ensuring high-fidelity
readout in the qubit flux basis, which is critical for quantum annealing applications [62].
In addition, each qubit and QFP is inductively coupled to a fixed-frequency resonator to
assist crosstalk calibration. A schematic of one qubit unit cell consisting of the qubit, the
QFP, and the tunable resonator is shown in Fig. 3.11(b). The full two-qubit system, includ-
ing its readout circuits, has been calibrated using the iterative translation-based method.
The result is presented in Sec. 3.10.4 and the crosstalk matrix obtained via this method is
denoted as the reference crosstalk matrix, Cref.
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3.7.1 Optimization of a subcircuit with three flux biases

For a proof-of-principle demonstration of the periodicity optimization approach, we start
with a subcircuit consisting of just the QFP and the tunable resonator. The subcircuit has
strong coupling due to the large persistent current of the QFP and the resonator, which
makes it very time-consuming to calibrate using the translation-based method. The three
flux biases in the subcircuit are denoted as QFPZ,QFPX and TR. The optimization starts
with the initial crosstalk Cinit = Cref. This allows setting the qubits and couplers outside
the subcircuit in a flux bias such that they are decoupled from the measured subcircuit.
Using the reference crosstalk also allows systematic investigation of the performance of the
optimization relative to particular initial conditions and bounds on the trial compensation
parameters. We have also demonstrated the optimization starting with Cinit given by a
single iteration of the translation-based method, which is discussed in Sec. 3.10.5.

For the readout channel, we choose to measure transmission through the resonators.
Both the fixed-frequency and tunable resonators are measured, each at six different readout
frequencies. The readout frequencies are chosen to be around the bare resonator frequencies
and the step size is around their resonance linewidth. The flux bias sweep range is chosen to
cover about two periods and the step size is about 20 mΦ0. The other flux biases not being
swept are set to values that avoid the flux-insensitive bias points of the QFP and tunable
resonator. This is needed to avoid the tunable resonator and the QFP coincidentally being
in flux-insensitive spots, which would make the measurement signal insensitive to crosstalk.
Such settings can be achieved without accurate initial estimates of the crosstalk or flux
offsets.

As examples for the measurement and analysis at a single step in the optimization, we
show the transmission measurement results at the start and the end of the optimization for
the QFPZ control periodicity in Fig. 3.12(a,b,d,e). It is clear that the measurement signal
is more periodic after the optimization. This is also reflected in the maximum correlations
with respect to translations of the signal, which are shown in Fig. 3.12(c,f).

We use primarily an optimization algorithm based on Bayesian optimization [188],
which is a global optimizer suited for black-box optimization with objective functions
which are expensive to evaluate. The algorithm uses a Gaussian process to approximate
the objective function, which is called the prior. At each step, the optimizer samples the
distribution at a new point in the parameter space, which is probabilistically chosen accord-
ing to the prior to improve upon the existing samples while minimizing the uncertainties
of the prior [189]. The Gaussian process is then updated according to the Bayesian infer-
ence rule, and is used as the prior for the next iteration. The compensation parameters
Ωji’s are bounded to within [−0.2, 0.2], and the optimization is initialized with evaluations
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at 20 random points in the parameter space. The bounds correspond to typical levels
of crosstalk in large-scale devices [190]. We defer to Sec. 3.7.2 for a discussion of how
the bounds and initial conditions could affect the optimization. In Fig. 3.13(a), the trial
compensation parameters and the periodicity is plotted versus the optimization step. It
can be seen that the optimum parameters have been found after about 40 iterations. In
Fig. 3.13(b), the landscape of the objective function, predicted by the final Gaussian pro-
cess model is shown, together with markers for the parameter values sampled during the
optimization. The minimum is at around (ΩQFPZ QFPX,ΩTR QFPX) = (0, 0), which is the
expected optimum compensation parameter given Cinit = Cref ≈ C and hence Cres ≈ I. In
Fig. 3.13(c), we show the difference between elements of Cres′ with the identity matrix. The
magnitudes of the elements are all below 3× 10−3, which is about the error of the iterative
method [190]. This shows that the crosstalk matrix obtained by the optimization method
is comparable to the crosstalk matrix obtained by the iterative calibration method. We
also note that the differences are much smaller than the flux sweep step size, which shows
that the method does not require high-resolution scans to be accurate. As a result of this,
the optimization-based measurements required less data as compared to one iteration of
the translation-based method.

Using the same optimizer setting but starting the optimization with estimated crosstalk
from one iteration of the translation-based method, the estimated crosstalk obtained con-
verged with a similar level of accuracy, as compared to starting the optimization with the
reference crosstalk matrix, obtained from multiple iterations of translation-based method.
The result is presented in Sec. 3.10.5.

3.7.2 Optimization landscape

After demonstrating that the optimizations converge with high accuracy to the expected
compensation parameters, we examine the structure of the optimization problem. First,
we looked at how periodicity changes as the compensation parameters deviate from the
optimized values. We define the distance from the optimized compensation parameters as

∥Ωi∥ =
∑
j ̸=i

(Ωji − Ω′
ji)

2 (3.54)

and plot the periodicities measured during the optimization versus ∥Ωi∥ in Fig. 3.14. It
can be seen that for all of the loops measured, when ∥Ωi∥ ≲ 0.001, the periodicity function
plateaus at about 0.99, This suggests given the current set of readout channels, the opti-
mized compensation parameters would allow us to control each bias coordinate to 1 mΦ0
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Figure 3.13: (a) Trial compensation parameters (left axis), ΩQFPZ QFPX (dashed line),
ΩQFPZ QFPX (solid line) and periodicity P (red dots, right axis) versus optimization step.
(b) A Gaussian process model of periodicity versus the compensation parameters. The
cross markers correspond to parameters sampled by the optimizer and the gray scale of
the markers indicates the sequence at which they are sampled, with darker color markers
being sampled later. (c) Difference between the estimated residual crosstalk matrix Cres′

and the identity matrix.
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Figure 3.14: 1 minus the periodicity P versus the distance from the trial compensation
parameters to the optimized compensation parameters for the three loops, QFPZ (left),
QFPX (center), TR (right)

accuracy over one flux quantum range. The sharp peak for the QFPX loop is likely due
to hysteresis of the QFP, which can be avoided by choosing a different set of independent
flux control coordinates (see Sec. 3.10.7). When ∥Ωi∥ ≳ 0.1, the periodicity P ≈ 0. This
means that the sampled trial compensation parameters are only informative when they
satisfy ∥Ωi∥ ≲ 0.1. Hence, the optimization method is likely only efficient when initial
crosstalk is known to within 10% accuracy, relative to the diagonal coupling elements.
Various sources of estimation could provide such accuracies, such as one single iteration
of the translation-based calibration method, measurement on different copies of the same
device, or potentially careful electromagnetic simulation of the device.

We further characterize the landscape of the periodicity function by directly measuring
it. This is done by first updating the initial crosstalk matrix with the optimized parameters,
according to

Cinit −→ Cres,′Cinit, (3.55)

and then doing measurement in the updated f init coordinates. For each loop, the periodicity
is measured sweeping one trial compensation parameter, while keeping the other at zero.
These measured periodicities are plotted in Fig. 3.15(a). It can be seen that the periodicity
is mostly a smooth function of the compensation parameters with a single maximum. There
are two features outstanding. First, the periodicity relative to the QFPX loop has a rugged
landscape. This is likely due to the QFP becoming hysteric and not responding to flux
bias variations fast enough compared to the experiment time. The hysteresis is caused by
the discontinuous change in the ground state wavefunction of the QFP at the flux bias
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symmetry points. This can be systematically avoided by choosing a different set of linearly
independent flux bias coordinates, along which the ground state wavefunction changes
smoothly (see Sec. 3.10.7 for more detailed discussion). Second, the periodicity maxima
for the compensations to TR loop are slightly deviated from zero. The reason for this
still requires further investigation. One possibility could be that the periodicity function,
under the measurement setting used, is sensitive to drifts in flux offsets, which could
occur between the optimization measurement and the landscape measurement. The offsets
therefore need to be kept track of in future implementations of the optimization, otherwise
the accuracy of the crosstalk calibration based on periodicity optimization could be limited.
The periodicity along the TR flux bias is also measured sweeping a two-dimensional grid of
values for the trial compensations ΩQFPZ,TR,ΩQFPX,TR, over the range of [−0.1, 0.1]. The
result is plotted in Fig. 3.15(b). It confirms that the periodicity is a smooth function over
the entire range, and has a single maximum at around (0, 0). Such characteristics of the
objective function mean the optimization problem is likely convex in general. This opens
the possibilities of using optimization algorithms that approximate and make use of the
local gradients [191, 192, 193]. We successfully implement one such optimization method,
called simultaneous perturbation stochastic approximation (SPSA) [191] and the result is
discussed in Sec. 3.10.6.

3.7.3 Optimization of a subcircuit with five flux biases

To understand the feasibility of the periodicity optimization on larger devices, we imple-
ment the procedure incorporating the qubit that is directly coupled to the QFP. The qubit
loops are denoted as QZ and QX. In Fig. 3.16(a) we show the four compensation parame-
ters and the periodicities with respect to the QFPZ loop versus the optimization steps. It
is noted that an increased number of initial evaluations, 50, is required for the optimiza-
tion algorithm to approach the reference compensation parameters. The optimizations for
other loops in the system did not approach the reference compensation parameters with
the same optimizer hyperparameters. One possible explanation for the relative success of
the QFPZ loop periodicity optimization, compared to the other loops, is that the QFPZ
loop is special, both because of its large persistent current and it being directly coupled
to most other loops in the subcircuit (except QX). The effectiveness of the optimization
in larger circuits can potentially be improved by exploring different readout channels and
optimization algorithms, which we didn’t pursue in this proof-of-principle work.
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Figure 3.15: (a) Measured (blue dots) periodicity versus deviation of the compensation
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3.8 Conclusion and discussion

In summary, we proposed and implemented two methods to calibrate flux crosstalk, which
only relies on the symmetry properties of superconducting circuits, without needing a
full model of the device. For the iterative method, the efficacy is clearly validated by
the convergence of the crosstalk and offsets measured in each iteration, as well as the
independent error measurement. The iterations address the errors due to strong inductive
coupling within the circuit. Comparing the calibration results between devices A and B, it
is clear that device B, which has more couplers, requires more iterations to achieve the same
level of convergence. Indeed, when performing the iterative procedure on device C, which
contains elements with a stronger persistent current, the QFP, 7-8 iterations are required
(see Sec. 3.4.1). This highlights the importance of iteration when calibrating devices with
strong inter-element interaction.

For the periodicity optimization method, we successfully demonstrate it on a coupled
QFP-tunable-resonator system, with an accuracy that is comparable to the iterative cal-
ibration method. Although the current implementation of the periodicity optimization is
limited when used to calibrate devices with a larger number of loops, it can already be
utilized as a subroutine for calibrating parts of a larger system. Such a hybrid calibra-
tion strategy is particularly useful for strongly interacting systems such as the quantum
annealing circuits investigated here, where the iterative method alone would require more
data to converge. The landscape measurement shows that the problem is nearly convex
within some bounds on the optimization parameters. This points to exploring other op-
timization algorithms, such as momentum-based optimizations [192, 193] to speed up the
convergence, which is crucial for extending the optimization-based calibration to larger
devices. Another attractive future direction could be adaptive measurements, where dif-
ferent experiment parameters can be used to give different optimization landscapes. For
example, an optimization landscape with a broad maximum could afford large tolerance
to the initial guess of the crosstalk matrix, while an optimization landscape with a narrow
maximum could lead to higher accuracy for the optimized results.

When considering applying the calibration methods in this chapter to future large-
scale quantum processors, there are a few things to be noted. First, from the design and
fabrication perspective, future devices are likely to incorporate multi-tier architectures such
as the ones in Ref. [181]. Such architecture allows current signals to be routed away from
the circuit loops before they are grounded. With this advance we expect the crosstalk
to be more spatially localized so that the number of crosstalk elements to be measured
should only scale as N , instead of N2. This, however, would not eliminate the need
for iteration or optimization-based calibration, which addresses the issue of strong inter-
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element interaction. Secondly, from a measurement perspective, we expect further technical
developments to speed up the data acquisition, as discussed in Sec. 3.5.5. In addition to
improving the design and measurement setup, an important future direction is to look
at the frequency dependence of the crosstalk, which could arise due to the frequency
dependence of the transmission through the signal delivery chain from room temperature
to the target loops. As a complete characterization of this frequency-dependent crosstalk
might not be feasible, an optimization-based method designed for a specific annealing
protocol might be needed.

The crosstalk calibration methods developed in this chapter were applied to devices
developed specifically for quantum annealing applications. Compared to commercial quan-
tum annealers [164, 174, 92], we explore an implementation with independent local high-
bandwidth control of qubits and couplers, enabling advanced annealing protocols, and
simplified circuits without built-in compensation for variation in fabrication parameters,
leading to increased coherence. While creating new opportunities for quantum anneal-
ing, this design approach leads to the increased complexity of flux crosstalk calibration, a
challenge that can be tackled with the methods we developed here.

3.9 Additional details on device modelling

3.9.1 Symmetries in external fluxes in CSFQs and couplers

In Stage 3(a) of CISCIQ, we use the fact that the CSFQs and the couplers exhibit point
reflection symmetries with respect to half-integer flux quanta points in both the x and z′

loops (see Appendix D for the flux bias conventions). This property is derived from two
underlying symmetries in the circuit. First, a single flux cell has mirror symmetry about the
chip plane, so that the resonator frequency should have ωr(fz′ , fx, fr) = ωr(−fz′ ,−fx,−fr).
Second, superconducting loops have properties periodic in Φ0, so that ωr(fz′ , fx, fr) =
ωr(fz′ + 1, fx + 1, fr + 1). Combining these two relations we find that ωr(fz′ +Nz/2, fx +
Nx/2, fr +Nr/2) = ωr(−fz′ +Nz/2,−fx +Nx/2,−fr +Nr/2), where N(z′,x,r) are integers.

In Stage 3 we assumed that each flux cell is isolated from the rest, and the resonator
calibration is exact, so that fr = 0. The fluxes fz′ and fx are completely specified by the
affine transformation (see Sec. 3.4.1).
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The analysis for Stage 3(a) data relies on the fact that the data has point reflection sym-
metry in the Vz, Vx coordinates. Hence, we need to show that point reflection symmetries
are preserved under affine transformation. To show this, consider two sets of points A and
B, related by an affine transformation F , such that F(B) = A. It is also known that A has
point reflection symmetry so that R(A) = A. Here R is the point reflection operation with
the property R = R−1. To show that B also possesses some point reflection symmetry, we
need to a) find some operation R′ which satisfies the symmetry condition R′(B) = B and
b) show that R′ is indeed a point reflection operation. To find R′ we write

F(B) = A = R(A) = R ◦ F(B), (3.58)

F−1 ◦ R ◦ F(B) = B. (3.59)

Hence R′ ≡ F−1 ◦ R ◦ F satisfies the symmetry condition. To show that R′ is indeed a
point reflection operation, we just need to show that it is isometric and involutive. It is
involutive because we can write

F−1 ◦ R ◦ F ◦ F−1 ◦ R ◦ F = I, (3.60)

where I is the identify operation and we used R ◦ R = I. It can be shown that R′ is
also isometric because it is composed of F−1, R and F , which are individually isometric.
Therefore point reflection symmetry holds both in the flux coordinates f ′

z, fx as well as the
voltage coordinates Vz, Vx.

3.9.2 Coupler-resonator inductive loading model

This section describes in detail the inductive loading model between a single coupler and
its coupled tunable resonator used in Sec. 3.4.1. We start by defining the effective quantum
inductance of the coupler, Leff

C , based on [161],

1

Leff
C

=
1

Φ0

∂⟨IC⟩
∂fcz

, (3.61)

94



where Leff
C is the coupler effective inductance, ⟨IC⟩ is the ground state current in the coupler

z-loop and fcz is the z-flux bias for the coupler. The quantity Leff
C is obtained using the full

circuit model of the coupler (see Sec. 4.5.1) and a quantum circuit simulation package [40].

The tunable resonator can be modeled as a waveguide terminated to ground through
the effective inductance of the rf-SQUID. For a classical rf-SQUID with junction critical
current Ic and geometric inductance Lg, its effective inductance is given by

1

Leff
SQUID

=
1

Lg

+
2πIc cosφ

Φ0

, (3.62)

where φ is the phase across the junction. The phase φ can be found by minimizing the
SQUID classical potential

U(φ) = −IcΦ0

2π
cos(φ) +

Φ2
0

2Lg

( φ
2π

− fr

)2
. (3.63)

Then the resonance frequency ωr for the λ/4 waveguide together with the rf-SQUID is
found by numerically solving the equation

exp

(
2iωrl

c

)
=
iωrL

eff
SQUID − Z0

iωrLeff
SQUID + Z0

, (3.64)

where l, c, Z0 are the waveguide length, phase velocity, and characteristic impedance re-
spectively.

With inductive loading, the geometric inductance of the SQUID changes via

Lg −→ Lg −
M2

coupler,SQUID

Leff
C

, (3.65)

where Mcoupler,SQUID is the mutual inductance between coupler z and rf-SQUID loops. As
the coupler bias changes, its effective inductance also changes, which then changes the
SQUID effective inductance and resonator frequency.

3.9.3 Circuit parameters

To give more concrete numbers on the strength of circuit interaction, Tab.3.2 tabulates the
range of persistent currents for the qubits, couplers resonator SQUIDs as well as their geo-
metric mutual inductances in Devices A and B. For comparison, we also present the design
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Table 3.2: Persistent current and mutual inductances between different circuit elements
Circuit parameter Value

Ip(qubit) within ±0.14µA
⟨IC⟩(coupler) within ±0.45µA
Ip(SQUID) within ±1.2µA
Ip(QFP) within ±2.0µA

Mqubit,SQUID 29.5(mΦ0/µA)
Mcoupler,SQUID 28.7(mΦ0/µA)
Mqubit,coupler 30.2(mΦ0/µA)
Mcoupler,coupler 31.0(mΦ0/µA)
MQFP,SQUID 32.5(mΦ0/µA)
MQFP,qubit 32.5(mΦ0/µA)

numbers for the QFP based on Ref. [62]. We note the QFP in device C has slightly different
target persistent current and mutual inductance to the qubit, but we do not disclose them
here. For the qubit and couplers, the persistent currents are found by numerically solving
the quantum circuit Hamiltonian. For the resonator, the current is calculated by solving
the classical rf-SQUID equation. A complete list of the circuit parameters is presented in
the next chapter, Sec. 4.5.1.

The maximum possible induced flux from one circuit element to another is 36mΦ0.
This is consistent with the fact that about 10mΦ0 of error is measured on device B when
only one iteration of CISCIQ is applied.

3.9.4 Simulation of mutual inductances using Sonnet

To simulate the mutual inductances, the design drawings are first imported into Sonnet,
a microwave modeling software for 3D planar circuits. The model includes both the in-
terposer and qubit layer, as well as all the bump bonds and air bridges. Gaps in the
superconducting loop left for Josephson junctions are connected in the simulation. Ports
are assigned to each superconducting loop and bias line. The inductances are extracted by
computing the impedance matrix at 1GHz. It is also found that there is little dependence
on frequency.
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3.10 Additional experimental results

3.10.1 Recurrence analysis and line detection

This section discusses the various image processing applied during the analysis of Stage 1 of
CISCIQ. In this stage, resonator transmission is measured as a function of probe frequency
and resonator bias. As the background transmission is different at different frequencies, a
background filter is applied, which is specified by,

S ′
21(ωp, Vr) =

S21(ωp, Vr)

M (S21(ωp))
, (3.66)

where S ′
21 stand for the filtered results and M stand for taking the complex median over

the Vr dimension.

Furthermore, to enhance the resonance dip feature relative to the background, a median
filter is applied to the image along the frequency axis. The raw measurement data and the
data after applying the background and median filters are shown in Fig. 3.17(a) and (b).

To obtain the recurrence plot, the first step is to compute the pair-wise distance between
the columns of the image. This calculation results in Fig. 3.17(c). Then the pair-wise dis-
tance image goes through Sobel horizontal and vertical filters sequentially to enhance the
features that correspond to translational symmetry. This results in Fig. 3.17(d). Finally,
the filtered image is thresholded using Otsu thresholding [194] to give the recurrence plot,
which is Fig. 3.3(d) in the main text. To identify lines and thus translations, the Hough
transform is applied. This then completes our custom implementation of translational sym-
metry detection. Compared to readily available image registration functions, the custom
algorithm allows specifying ranges within which to look for translations, hence avoiding
finding translations that are multiple periods away.

3.10.2 Iterative calibration results on Devices A and B

Figure 3.18 presents coupling matricesM(n)′ and flux offsets f
(n)′
0 measured at each iteration

of CISCIQ for both devices A and B. As can be seen from the iteration 2 and 3 results,
for both devices, the convergence is indicated by the decreased intensity of the colors on
the off-diagonal elements and flux offsets, as well as the diagonal elements approaching 1.
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Figure 3.18: Left (right) three panels show for device A (B) the coupling matrices and flux
offsets measured for iteration 1 (top), 2 (middle) and 3 (bottom)
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Figure 3.19: Measurement-noise-induced error in the coupling matrix for device B. The
induced errors on the measured crosstalk to resonators are much smaller than on the qubits.

3.10.3 Error due to measurement noise

Since the analysis of CISCIQ data relies heavily on identifying symmetries in the measured
S21 images, one could ask whether the fluctuations in S21 due to measurement noise cause
significant errors. For this reason, we characterized the error of the coupling coefficients
solely due to measurement noise. This is done by resampling the measurement data with
added Gaussian noise on measured |S21|. The noise parameters are chosen to reflect typical
values at the choice of measurement parameters, such as the number of repetitions and
readout integration time. We apply re-sampling on the data taken during the last iteration
of device B. After applying the analysis procedure on 100 sets of resampled data, the
standard deviation of the resultant coupling matrix is plotted in Fig. 3.19. The largest
element is 0.2mΦ0/Φ0, about 10 times lower than the total error measured in the main
text. This shows that the error of calibration is not limited by the measurement noise.
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3.10.4 Iterative calibration results for device C

The iterative calibration method is applied to device C, the two-qubit circuit used to
demonstrate the periodicity maximization method. In Fig. 3.20 we show how the measured
crosstalk and flux offsets converge towards identity and zeros. In Fig. 3.21 we show the final
crosstalk matrix from the iterative procedure for the qubit, QFP, and tunable resonator,
on which the periodicity optimization approach is implemented.

3.10.5 Optimization initialized with single iteration of translation-
based calibration

In this section, we describe the results obtained by performing the periodicity optimization,
starting from the estimated crosstalk of one iteration of the translation-based approach.
In Fig. 3.22(a) we show the estimated crosstalk matrix obtained by a single iteration. This
can be compared with the reference matrix elements plotted in Fig. 3.21. It can be seen
that after a single iteration, the estimated crosstalk still deviates from the reference values,
by as large as ∼ 10%.

In Fig. 3.22(b), we plot the deviation between the reference crosstalk matrix and the
estimated crosstalk matrix after the optimization. Most of the deviation is about or less
than 3 × 10−3. This is comparable to the accuracy of the results discussed in the main
text, which starts the optimization directly from Cref. The only exception is the QFPZ
diagonal element, which corresponds to its period. This is probably due to the hysteresis
of the QFP, which can be resolved by repeating the QFPZ periodicity measurement at a
different QFPX biasing point.

3.10.6 Optimization with SPSA

In this section, we discuss the optimization results using an alternative optimizer called
the Simultaneous Perturbation Stochastic Approximation (SPSA) [191]. This algorithm
approximates the gradient of the objective function by measuring the finite difference due
to a perturbation vector along a random direction in the parameter space, and performs
gradient descent. We start the SPSA optimization with Cref and the initial point is chosen
uniformly randomly in the range [−0.1, 0.1]. In Fig. 3.23(a) a typical optimization process
is shown, plotting the compensation parameters to QFPX and the periodicity versus the
optimization step. The optimization converges after about 60 iterations and oscillates
afterward. The optimized compensation parameters are used to compute the estimated
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Figure 3.20: For device C, statistical box plots of the diagonal (top), off-diagonal (middle)

coupling coefficients in C(n)′, and the flux offsets (bottom) in f
(n)′
0 versus the iteration

number. The orange bar is the median, the black box corresponds to the lower and upper
quartiles, the segments contain the 5th to 95th percentiles of the data and the dots are
outliers.
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Cres′ and its difference from the identity matrix is shown in Fig. 3.23(b). The difference is
about twice as large as compared to the results obtained using Bayesian optimization. We
expect the results to improve by using better hyper-parameters for the optimization, such
as the magnitude of the perturbation, which would likely remove the parameter oscillations
near the end of the optimization.

3.10.7 Evidence for hysteresis of QFP and how to resolve it

It is found that the optimization landscape for the periodicity of the QFPX loop is often
not well-behaved. As mentioned in Sec. 3.7, this is attributed to the hysteresis of the QFP.
In this section, we briefly discuss the evidence of the hysteresis in the data and the solution
to this problem based on the double-well potential of the QFP.

We first note that during the demonstration of the optimization-based calibration, we
follow the convention in which all flux biases are defined based on external fluxes in a
fundamental loop. This is in contrast to most applications in annealing, where the Z loop
bias takes a compensated bias convention, such that the Z symmetry bias, corresponding
to a symmetric double-well potential, is independent of X bias. The benefit of working
with the fundamental loop bias is that the periodicity with respect to the bias is 1, as
opposed to 2 in the compensated Z bias (see Appendix D).

In Fig. 3.24(a) we show the transmission versus the probing frequency and the QFPX
bias at two different values of the compensation parameter ΩQFPZ QFPX = ±0.001, during
the landscape measurement discussed in Sec. 3.7.2. It can be seen that when ΩQFPZ QFPX =
0.001, there are three periodically separated resonance traces while when ΩQFPZ QFPX =
−0.001, the resonance trace at around f ′

QFPX ≈ −1 is missing. This suggests that QFP is
not responding to the flux bias variations within the experiment time.

Due to the fundamental flux bias convention, when the X flux is being swept, both the
tunneling and the biasing between the two persistent current states are changing. Due to
the large persistent current of the QFP (∼ 1µA), there is a region in flux bias where the
tunneling is small and the QFP could not tunnel to the persistent current state with lower
energy. To solve this problem, we could work with the compensated Z bias convention (see
Appendix D). In this convention, when sweeping fX, one can avoid switching the sign of the
bias between the two persistent current states, and hence avoiding the need for tunneling
to occur for the QFP to respond to changes in flux biases. The periodicity along X bias
increases to 2 in this convention.
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Chapter 4

Demonstration of long-range
correlations via susceptibility
measurements in a one-dimensional
superconducting Josephson spin
chain

Long-range, high-degree connectivity between qubits is a highly-desired feature for quan-
tum annealers. However, the simple approach of extending the size of the qubit or the
coupler which mediates the interaction faces challenging drawbacks. On the one hand,
extending the qubit size increases the noise experienced by the qubit, which negatively
affects coherence. On the other hand, extending the size of the coupler leads to a reduc-
tion in its energy scale, which could affect the qubit dynamics. In this chapter, we explore
the properties of a spin chain, made of a chain of rf-SQUID couplers, designed to act as a
connectivity medium between two superconducting qubits. The susceptibility of the chain
is probed and shown to support long-range, cross-chain correlations. In addition, interac-
tions between the two end qubits, mediated by the coupler chain, are demonstrated. This
work has direct applicability in near-term quantum annealing processors as a means of
generating long-range, coherent coupling between qubits.
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4.1 Introduction

Superconducting quantum information platforms have reached a level of maturity where
tens of individual qubits, comprising a computational device, can provide proof of principle
demonstrations of quantum simulations, quantum algorithms, and basic error correction
functionality [22]. As these devices, and the tasks they seek to address, scale in size and
complexity, so does the need for realizing qubit networks with increased dimensionality and
expanded connectivity. These two desired features of future quantum processors prompt
the development of long-range, qubit coherence preserving interactions [195, 196]. Quan-
tum spin chains have been proposed as an effective medium for qubit interactions with
these desired properties [197, 198, 199, 200, 201, 202]. In this chapter, we explore the pos-
sibility of long-range interactions supported by quantum spin chains for superconducting
qubits [146, 144]. This architecture has direct application in recently proposed quantum
annealing platforms based on superconducting capacitively shunted flux qubits [161, 178],
rf-SQUIDs [203], fluxmon qubits [65], and fluxonium qubits [204].

Quantum annealing is emerging as a promising paradigm for near-term quantum com-
puting [205, 206, 30, 16]. An initial Hamiltonian, whose ground state is straightforward to
prepare, is transformed continuously to the problem Hamiltonian. The prepared state of
the problem Hamiltonian is located in the vicinity of the true ground state and represents
a useful solution to the optimization problem. In the limit of weak coupling to the envi-
ronment, adiabatic quantum computing has been shown to be immune to dephasing in the
energy basis, making it a particularly attractive candidate for near-term, noisy quantum
computing platforms [207]. Commercial quantum annealers, based on superconducting
Josephson flux qubits [89, 208, 209], have recently become available to the larger com-
munity and are beginning to make their mark as a valuable research tool, see e.g., Refs.
[210, 211, 212].

There are strong motivations for improving upon the performance of quantum anneal-
ing processors [213], in particular with respect to how their constituent qubits interact with
one another. Increasing both the graph dimensionality of qubit networks [195, 214], and
improving connectivity [215], the degree to which the qubits are coupled to one another,
would greatly reduce physical hardware overhead by increasing the types and sizes of opti-
mization problems that can be natively embedded. Existing quantum annealing processors
based on superconducting qubits possess either nearest neighbor [216] or a combination
of inter- and intra- unit cell interactions [217] between qubits. Commercial annealers,
possessing this combination of inter- and intra- unit cell interactions, currently rely on
minor embedding [141, 142], a procedure of extending logical qubits over multiple physical
qubits to implement problems that require higher dimensionality or connectivity than the
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processor’s hardware natively allows.

As each connection made to a qubit introduces additional noise and decoherence chan-
nels, expanding qubit connectivity in quantum annealing processors must be balanced
against the need to maintain the qubits’ coherence properties. Developing quantum an-
nealing processors that support improved qubit coherence times would allow greater func-
tionality in computation. Higher precision flux control, afforded by improved coherence, is
required by many computational problems of interest [218, 108, 219]. In general, just how
much of a computational advantage greater qubit coherence provides in quantum anneal-
ing processes is itself an open scientific question [130, 220]. Furthermore, more coherent
quantum annealers will enable diabatic annealing protocols that require a greater degree
of qubit coherence throughout the annealing process [221, 222, 32].

These two, often competing, improvements - creating qubit networks with higher di-
mensionality and expanded connectivity and maintaining qubit coherence - call for further
development of long-range qubit interactions. One proposed scheme that accomplishes this
dual need is utilizing spin chains as the qubit interaction medium [197, 199, 200]. Gapped
spin chains, in the context of semiconducting quantum dots [198, 201, 202], have been
proposed to support long-range, Ruderman-Kittel-Kasuya-Yoshida (RKKY) type qubit
interactions [223]. Recent progress in this direction includes a demonstration of adiabatic
quantum state transfer along a linear array of four electron spin qubits [224]. In addition to
the possibility of supporting coherent coupling between two distant qubits, the spin chain
architecture lends itself to higher connectivity schemes. Multiple qubits can be simultane-
ously interacting with a single 1-D chain [198]. Additionally, paramagnetic trees, formed
by spin chains forking into multiple paths, offer another possible scheme for higher qubit
connectivity [146, 144].

This work presented in this chapter demonstrates the viability of this coupling scheme
in the context of superconducting Josephson qubit hardware. In the following, we discuss
long-range coupling mediated by quantum spin chains in a hardware-independent fashion.
This is a more natural language to describe long-range coupling as a consequence of the
system’s underlying quantum phase transition [225, 226, 227] 1. Following this discussion,
we demonstrate a realization of the quantum spin model with superconducting circuits.
To accomplish this, we design a system of two qubits, coupled together through a chain
of seven spin units. The spin chain, shown in Fig. 4.1, is realized by a one-dimensional
array of seven tunable rf-SQUIDs [228, 229, 54, 230, 231, 161] inductively coupled to their
nearest neighbor through the SQUIDs’ main loops. Each end coupler is inductively coupled

1More precisely, these parameters are where the quantum phase transition happens for an infinite
system.
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to a tunable, capacitively shunted, superconducting flux qubit [45, 232, 233, 48]. Finally,
to illustrate the viability of mediating long-range, coherent qubit interactions with our
device, we characterize the non-local susceptibility of the coupler chain, demonstrate long-
range qubit-qubit interactions, and identify the parameter region where both long-range
correlations exist and the detrimental effects of low-frequency flux noise are negligible.

The Hamiltonian for the quantum spin chain is the one-dimensional Ising model. In-
corporating the two end qubits, it can be written as

H = Hq +Hc +Hint, (4.1)

with

Hq =
2∑

i=1

(
ϵqi
2
σz
qi
+

∆qi

2
σx
qi
), (4.2)

Hc =
7∑

i=1

(
ϵci
2
σz
ci
+

∆ci

2
σx
ci
) +

6∑
i=1

Jcici+1
σz
ci
σz
ci+1

, (4.3)

and
Hint = Jq1c1σ

z
q1
σz
c1
+ Jq2c7σ

z
c7
σz
q2
. (4.4)

In the previous equations, ∆qi/2 (∆ci/2) and ϵqi/2 (ϵci/2) are the transverse and longitudi-
nal components of the qubits’ (couplers’) spin while Jcici+1

and Jqicj represent the coupling
strength between adjacent coupler units and between qubits and their nearest coupler
unit. For the remainder of this chapter, we will assume the coupler units are operated
homogeneously, that is ϵci = ϵc, ∆ci = ∆c and Jcici+1

= Jcc.

Virtual excitations of the coupler chain can be integrated over to derive an expression for
the coupler-chain-mediated effective qubit-qubit interaction strength, Jeff

q1q2
. By considering

the qubit-adjacent coupler unit interaction, Jqicj , to be a weak perturbation to the coupler
Hamiltonian, the interaction energy can be calculated to second order as the shift of the
ground state energy of the coupler Hamiltonian. As the operating temperature of the device
will be much less than the coupler chain excitation energy, it is reasonable to assume that
the coupler chain remains in its ground state and the cross-chain interactions are supported
by virtual excitations [199, 202]. This is reminiscent of the RKKY interaction whose
long-range interaction between magnetic impurities is mediated by virtual excitations of
conduction electrons above the Fermi surface [223].

By taking these above-stated approximations into account it is possible to derive an
expression for the chain-mediated effective coupling strength between the end qubits (see
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b. c.

Figure 4.1: Coupler Chain Device. (a)A schematic showing the full device and circuit
geometry: two end qubits, shown in magenta, and seven coupler units, shown in orange,
each equipped with individual readout resonators. Also indicated are the flux control lines
for the qubits, couplers, and readout resonators as well as the microwave control lines for
the qubits and the microwave feed-through line for state readout. (b, c) Optical images
of the device chip and an expanded view of one end of the coupler chain. The end qubit,
capacitively coupled qubit microwave control line, the two adjacent coupler units, and
respective readout structures are shown expanded in Panel (c). The readout rf-SQUIDs,
connecting to both the qubit and coupler units, terminate at the end of their meandering
resonators. The flux control lines are located on the opposing interposer tier.
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Sec. 4.5.4 for calculation details). The effective Hamiltonian is

Heff
q1,q2

= Hq + Jeff
q1q2

σz
q1
σz
q2
,

Jeff
q1q2

≈ Jq1c1Jq2c7
Ωc

(⟨0c|σz
c1
|0c⟩⟨0c|σz

c7
|0c⟩

− ⟨0c|σz
c1
σz
c7
|0c⟩),

(4.5)

where Ωc is the energy gap between the coupler chain ground and first excited state and |0c⟩
represents the collective ground state of the unperturbed seven unit coupler chain. Note
that an exact expression for the effective coupling between qubits contains the integrals of
frequency dependent connected coupler correlation functions. The ground state connected
correlation function in Eq. 4.5 is an approximation assuming a large excitation gap, Ωc, and
that the coupler chain excitation frequencies are sufficiently degenerate [200, 201]. This
approximation is strictly valid for the coupler chain in its paramagnetic phase, where the
transverse field on each coupler unit is much larger than the exchange interaction between
coupler units. Writing this expression in terms of the zero temperature, bulk susceptibility
of the response function in the Lehmann representation, χ̃c1c7 , [200] the effective interaction
can be expressed as

Jeff
q1q2

= χ̃c1c7 Jq1c1 Jq2c7 . (4.6)

The main objective of this work is to measure the quantity χ̃cicj as a function of
Jcc/(∆c/2), the ratio of the inter-coupler longitudinal coupling strength, proportional to
σz
ci
σz
ci+1

, to the individual coupler unit transverse field strength, oriented along σx
ci
, for

the homogeneously tuned chain. Long-range coherent coupling becomes possible when
the spin chain is tuned to the vicinity of its quantum critical point [225, 226]. In the
case presented here, this occurs when the strength of the transverse fields of the coupler
spins and inter-unit longitudinal coupling energies between the nearest-neighbor coupler
spins become comparable. The coupler chain susceptibility is determined by measuring
the response of the longitudinal fields of the coupler units along the chain when a small
longitudinal field, δϵ, is applied to the end coupler unit. It is shown that the response truly
becomes long-range, that is entirely cross chain, for Jcc/(∆c/2) ≳ 1, where the system
approaches and enters its ordered phase.

The one-dimensional transverse field Ising spin model can be realized by multilevel
superconducting Josephson circuits. With the assumption of negligible state occupation of
higher levels, the two lowest energy levels of the circuit define the qubit subspace where the
transverse and longitudinal components of the unit’s spin can be determined as a function
of the applied magnetic flux. The individual qubit and coupler circuits utilize inductive
couplings for implementing the inter-unit interactions Jq1c1 , Jc7q2 , and Jcici+1

. Coupling of
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this type for single unit coupler circuits has been demonstrated in flux qubits [228, 229,
54, 161], phase qubits [230, 231], and fluxmons [65]. The design choice of independent
coupler circuits, as opposed to direct coupling between qubits, is particularly appealing
for use in annealing processors where it is necessary to independently control the qubit
properties and coupling strengths. This single unit method of identifying both the qubit
and coupler’s spin components is not as universally applicable as more general means such
as the Schrieffer-Wolff transformation [234], particularly in the strong coupling regime.
However, as we will restrict our analysis to the weak coupling limit, the results of the two
methods coincide [235, 57, 236]. With these assumptions, the behavior of the physical
device can be mapped to the one-dimensional, transverse field Ising spin model.

Each coupler circuit can be approximately characterized by its susceptibility, χ, which
is the change in current induced by a biasing flux. Assuming the coupler remains in its
ground state, this is equivalent to the curvature of the ground state energy with respect to
the flux in the coupler’s main loop.

χ =
1

Leff

=
d⟨Izc ⟩
d fz

≈ d2E0
c

d f 2
z

(4.7)

In Eq. 4.7, ⟨Izc ⟩ represents the ground state expectation value of the current in the coupler’s
main loop and E0

c is the ground state energy of the coupler unit. The character of these
two quantities, ⟨Izc ⟩ and E0

c , is determined by fx, the magnetic flux in the coupler’s small
loop. The coupler circuit’s susceptibility, χ, is optimized as the unit’s βc ≡ Lc/Leff =

2πLcI
(c)
c /Φ0 ≈ 1, where the coupler’s local potential minimum is highly sensitive to biasing

flux. As shown in Fig. 4.2, this occurs in the same fx region where Jcc/(∆c/2) ≈ 1, a
design choice made to optimize the generation of long-range correlations across the device.
In addition, the device can be operated in a regime such that the coupler’s minimum
excitation energy, larger than 5 GHz, is much greater than the temperature of the system,
approximately 400 MHz, the strength of the qubit-coupler interaction, which is below 1
GHz, and the typical qubit excitation frequency, approximately 2 GHz. This ensures the
ground state properties of the coupler dictate its behavior, entanglement between qubits
mediated by the coupler is supported, and fast (coupler) and slow (qubit) modes can be
separated to preserve the qubit subspace.

The same notions of susceptibility and design constraints can also be applied to a long
but finite chain of couplers. The current induced in coupler j when a flux is applied to
coupler i is expressed as χcicj , the inter-chain susceptibility. The design constraints are
slightly more involved for the chain when compared to a single coupler. For example, the
length of the chain has a closing effect on the size of the gap as the fundamental mode
frequency of the chain decreases with length. This introduces a trade-off between the
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a. b.

Figure 4.2: Single Coupler Behavior. (a) The ratio of the Josephson inductance to the
geometrical inductance, βc, dictates the shape of the potential energy of the tunable rf-
SQUID coupler circuit. When the geometrical inductance dominates, βc ≪ 1, the potential
energy landscape is approximately harmonic. When the Josephson inductance dominates,
βc ≫ 1, the energy landscape becomes double-welled with each minimum representing
oppositely circulating current states. Due to the large energy barrier between the states,
moderate changes in fz do not change the current state of the circuit. The coupling is
optimized when the geometrical and Josephson inductances are approximately equal. This
results in a wide, shallow energy minimum where even slight changes in fz can induce
strong fluctuations between the oppositely circulating current states of the coupler circuit.
(b) Both the single coupler transverse field, ∆c/2, and the inter-coupler interaction energy,
Jcici+1

= Mcici+1
IzciI

z
ci+1

, are displayed as a function of the coupler fx when fz = Φ0/2.
These parameters are calculated in single coupler simulations and then transcribed into
spin model parameters. The equality of these two terms appearing in the transverse field
Ising model for fx ≃ 0.14Φ0 signals the location of the quantum critical point, in the
vicinity of which we expect long-range correlations to emerge. In addition, the dependence
of βc is displayed as a function of the coupler’s fx for fz = Φ0/2. By design, the optimum
coupling point, βc ≈ 1, coincides with the coupler fx value where we expect critical behavior
in the coupler chain.
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physical range of interaction and the need to preserve the excitation energy gap of the
chain [237].

Taking the same concept of single coupler susceptibility to hold for the coupler chain,
as well as adhering to the extra constraints introduced by the many-body chain system,
it is possible to construct the form of the effective qubit-qubit interaction, Eq. 4.5, in
terms of circuit parameters. Assuming the coupler gap is much greater than the qubit
working frequencies allows one to separate the device spectrum into ‘slow’ qubit-like states
and ‘fast’ coupler-like states. Invoking the Born-Oppenheimer approximation restricts the
coupler spectrum to its unperturbed ground state [238]. Further restricting our analysis
to the weak coupling limit, Mqc/Lc ≪ 1, allows us to write the qubit-chain interaction,
in general a complicated nonlinear quantity, as an inductive interaction between qubit
currents [65, 56], given by

Hint = χc1c7(Mq1c1 Î
z
q1
)(Mq2c7 Î

z
q2
)

= χ̃c1c7(Jq1c1)(Jq2c7)σ
z
q1
σz
q2
.

(4.8)

The final line of Eq. 4.5 connects the circuit model of the coupler chain to the spin chain
model by recognizing that the two versions of the susceptibility are related by χ̃c1c7 =

χc1c7

Ipc1I
p
c7
.

The symbol Ipci refers to the persistent current of the ith coupler, which, when operated at

fz = Φ0/2, is simply the current dipole moment ⟨0|Îzci |1⟩ [57].

Now that the long-range, effective interaction between the two qubits is expressed in
terms of circuit parameters, it is possible to measure the response function, χc1c7 , of the
coupler chain in a quantitative manner. This task is accomplished by performing two simi-
lar measurements. Firstly, only the behavior of the coupler chain units is considered. This
measurement is performed with both flux qubits placed at a magnetic flux bias operating
point where the circuit has its maximum transition frequency which is much greater than
the operating frequencies of the remaining chain units. This decouples the qubits from the
coupler chain dynamics and allows the coupler susceptibility to be characterized. Secondly,
with knowledge of the chain susceptibility, the two flux qubits are brought into an interact-
ing flux operating point and cross-chain qubit-qubit interactions are demonstrated. Finally,
to quantitatively measure the effective qubit-qubit interaction strength, Jeff

q1q2
, we revisit

the coupler chain only measurements in more detail to extract the cross-chain susceptibil-
ity, χc1c7 . We find that our measurements of Jeff

q1q2
through susceptibility measurements

agree well with full device simulations of the qubit-qubit spectral line splitting.
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4.2 Results

4.2.1 Device details and control

The coupler chain device consists of two capacitively shunted, tunable flux qubits and seven
tunable rf-SQUIDs, all equipped with individual readout resonators. The measurement
setup is the same as the experiments done in Chapter 3 (see also Appendix B). Device
characterization and circuit parameter extraction are presented in Sec. 4.5.3. The device is
fabricated using the architecture described in Ref. [180], and consists of two separate chips
– called the qubit layer and the interposer layer. The interposer layer, seated on the device
package’s printed circuit board cavity and wire-bonded to the exterior control lines, holds
the flux bias lines. The qubit layer, hosting the qubits, couplers, resonators, and co-planar
waveguide, is Indium bump bonded atop. The indium bumps provide structural stability,
common ground paths between layers, and a conduit for microwave signals originating
on the interposer layer, running through the bumps, and continuing on the qubit layer.
This device environment allows greater flexibility than planar devices for distributing flux
bias lines, represents a step towards full 3-D integration, and supports an electromagnetic
environment suitable for quantum annealing controls.

Each unit, qubit or coupler, possesses a meandering resonator terminated in an rf-
SQUID for purposes of readout and calibration. These resonators, when their terminating
rf-SQUID is biased to a flux-sensitive region, act as magnetic flux detectors, capable of
discerning the qubit or coupler unit’s persistent current state. When the terminating rf-
SQUID is biased to its flux-insensitive operating point, the resonator is exclusively sensitive
to the unit’s energy level occupation through the resonator-unit dispersive interaction [62].
Being able to operate in these two modes alleviates the need for multiple readout structures,
further freeing up space on the chip.

Gaining full flux control of a device of this size is a difficult task for a number of reasons.
Complete individual control of each unit requires 27 flux bias control lines corresponding to
the 27 Josephson flux loops. Current in one control line provides magnetic flux for its target
Josephson loop but also couples to nearby loops. Hence, it is necessary to determine the full
27×27 element mutual inductance matrix before one can expect adequate control of this
device. In addition, these inductive elements need to be determined while in the presence
of spurious interactions between units. Strong inter-unit interactions can easily mask the
linear line-loop inductive interaction. In order to address these points, scalable, device-
independent, automated methods have been developed and implemented to characterize the
bias line to circuit flux inductive matrix to within acceptable errors for device control [239].
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4.2.2 Determination of the cross-chain susceptibility

To explore the behavior of long-range qubit interactions mediated by the coupler chain, it is
necessary to characterize the inter-coupler susceptibility, χcicj . To isolate the coupler chain
dynamics, we first flux bias the two end qubits to their high frequency, uncoupled state.
Every coupler unit is operated such that its main loop is flux biased at one-half magnetic
flux quanta and its small loops are uniformly biased with f c

x. In this configuration, Coupler
7’s fz is swept across its half quanta point for a range of uniformly biased coupler f c

x values.
Instead of directly measuring the current response in the target unit, we observe the shift
of the target unit’s effective main loop half-quanta point (see Sec. 4.4 for experimental
methods). As the unit’s main loop half-quanta flux operating point corresponds to its
minimum transition frequency, the dispersive interaction with the unit’s resonator provides
an accurate determination of the unit’s effective half-quanta point in the presence of strong
inter-unit and unit-resonator interactions.

The magnitude of the induced fluxes for each coupler unit are displayed in Fig. 4.3.
Recall that f c

x simultaneously controls the unit’s transverse field, ∆c, in the Ising spin model
picture as well as the magnitude of the unit’s persistent current, thus the longitudinal
coupling strength, Jcc = MccI

z
ci
Izci+1

. For larger values of f c
x, the flux propagation signal

attenuates over short length scales, up to a few coupler units. As shown in Fig. 4.2(b), this is
the regime where the transverse field dominates and the chain system is in its paramagnetic
state. For f c

x ≤ 0.18Φ0, long-range correlations are supported across the entire chain. This
is where the critical region of the underlying Ising spin model is expected to be located.

The critical region of the Ising spin model is determined by single coupler properties.
To further validate our results, full device simulations of the experimental protocol were
performed. To perform simulations of a device with such a large Hilbert space, a hierar-
chical scheme is employed [240]. First, the low energy spectrum, eigenstates, and other
operator eigenvalues are computed for individual units. These eigenstates then form the
initial basis for computing the energy spectrum of two- and three-unit systems comprising
subsections of the full device. Finally, the subsections are appropriately coupled together
and the full device energy spectrum, eigenstates, and relevant operator eigenvalues are
calculated. At each step of this procedure, necessary mode occupation numbers are in-
cluded in the calculation such that the low-lying energy and other operator spectra are
well converged. Simulating the identical procedure as the measurement protocol allows us
to track the target unit’s effective main loop half-quanta point yielding results that match
well with the experimental outcome (see Fig. 4.6(b-e)).

With the derived information on the chain susceptibility, we now place the two end
qubits at flux operating points where it is possible to couple to the adjacent chain unit.
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Figure 4.3: The Flux Propagation Experiment. (a) A schematic depicting the flux propa-
gation experiment. Either Coupler 7 [results in (c)], or Qubit 2 [results in (d)], act as the
source unit generating the flux signal. The flux response is then measured in the different
units along the chain. (b) The flux signal is generated by sweeping the fz of the source
unit across its one-half magnetic flux bias point causing that unit’s circulating current
to change direction. (c,d) The magnitude of the experimentally measured flux signal is
displayed for different homogeneously tuned coupler fx values for the coupler-only (c) and
full device (d). The displayed signal is the difference in effective fz = Φ0/2 point when
the source unit is placed at fz = Φ0/2 ± 20mΦ0. Based on full device simulations, this
range fully captures the transition of the target unit’s flux response (see Fig. 4.6(f)). This
prediction is further validated by measurements extending to larger fz offsets of the source
unit. As the strong coupling between the tunable resonator and the qubit (coupler) makes
it challenging to model the resonator response, we therefore resort to image processing
techniques to determine the effective symmetry point of the qubit (coupler) unit. This
sets the uncertainty of the extracted flux signal to be on the order of the pixel size of the
scan, 2.4 mΦ0. In the case of both the coupler-only and qubit-to-qubit measurements, the
cross-chain signal becomes non-zero in the vicinity of the coupler chain’s predicted critical
region.
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Qubit 1, the target qubit, is operated such that its main loop is flux biased at one-half
magnetic flux quantum and its smaller x-loop is flux biased such that its transverse field
has strength ∆q1 = 2.3 GHz, approximately where the qubit’s potential becomes double-
welled. Qubit 2, the source qubit, is placed at its minimum ∆q2 ≃ 10 MHz, deep in its
double well regime, and its flux bias fz is swept across its one-half magnetic flux quantum
point. This measurement protocol is repeated for the different coupler chain operating
points described in the coupler chain susceptibility experiment.

The results of the qubit-qubit interaction experiment are shown in Fig. 4.3. This figure
displays the magnitude of the flux signal propagating along the coupler chain and ulti-
mately into the opposite qubit. These results agree well with full device simulations of the
equivalent protocol. As shown in Fig. 4.3(c, d), long-range, cross-chain interactions become
supported at approximately f c

x ∼ 0.15 − 0.18Φ0 in both the coupler chain susceptibility
and long-range qubit interaction experiments.

Furthermore, the full results of the coupler-only susceptibility measurements can be
used to predict the strength of the effective qubit coupling, Jeff

q1q2
, mediated by the chain.

Equations (4.9, 4.10) show how the measured coupler susceptibility,
dfz

c1

dfz
c7

, determines the

effective qubit interaction strength.

Jeff
q1q2

= χc1c7(Mq1c1I
z
q1
)(Mq2c7I

z
q2
) (4.9)

χc1c7 =
d⟨Izc1⟩
df z

c7

=
d⟨Izc1⟩
df z

c1

df z
c1

df z
c7

(4.10)

Shown in Fig. 4.4 are the effective one-half magnetic flux quantum points of Coupler
1’s main loop as a function of Coupler 7’s fz for various homogeneous coupler unit settings.
As expected, for the flux regime where the transverse fields dominate, Coupler 1’s effective
half quanta point is unaffected by the fz of Coupler 7. As the transverse field is lowered
and the coupler-coupler longitudinal coupling strength increases, the effect of Coupler 7’s

fz on Coupler 1 becomes more pronounced. The slope at the center of these curves,
dfz

c1

dfz
c7

,

can then be extracted. The remaining factors, Izqi and
d⟨Izc1 ⟩
dfz

c1

, are determined from single

unit simulations (see Fig. 4.13).

A proper comparison of the qubit interaction strength, Jeff
q1q2

, derived from both full
device simulations and the measured coupler susceptibility, is necessary to confirm that
the coupler susceptibility is a valid measure of qubit coupling strength. As illustrated in
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Figure 4.4: Cross Chain Susceptibility. (a)The effective one-half magnetic flux quantum
points for Coupler 1’s main loop as a function of Coupler 7’s fz for different homogeneous
coupler fx settings. The response becomes non-zero in the vicinity of the couplers’ fx =
0.15Φ0. The offset of both Coupler 1’s Φeff

0 /2 − Φ0/2 average value from zero and the
inflection point of Coupler 1’s flux response from Coupler 7’s fz = Φ0/2 is due to slight
mistuning of the couplers’ longitudinal fields. It is the change in Coupler 1’s Φeff

0 /2−Φ0/2
with respect to Coupler 7’s fz that is the relevant quantity. The uncertainty in the extracted
values is identical to those in Fig.4.3. (b) The curves in Panel (a), and the corresponding
figures for the other units, were then fit to a sigmoid function. Displayed here is the
midpoint slope extracted from those fits for all units for different homogeneous coupler
fx settings. The error bars were generated by repeating this procedure many times with
small offsets picked from a normal distribution with a standard deviation of 1.2 mΦ0

applied to the nominal effective symmetry point values. The error bars are the resultant
standard deviation of the large array of slopes extracted from the fit sigmoid function.
(c) Using the slopes from Panel (b) for Coupler 1, the effective coupling between the
two qubits is calculated via Eq. 4.9 and displayed. This is compared to Jeff

q1q2
calculated

from the splitting of the otherwise degenerate qubit transitions as predicted by full device
simulations incorporating reasonable levels of flux noise. The strong agreement between
the two different measures of Jeff

q1q2
indicates that the optimal operating region of the chain

is coupler 0.15 ≲ fx ≤ 0.18Φ0, where there is significant coupling strength and, as shown
in Fig. 4.5, both the detrimental effects of flux noise and the qubit-coupler state mixing is
negligible.
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Fig. 4.5, The effective qubit-qubit interaction strength is derivable from full device simula-
tions by noting the energy level splitting between the two end qubits’ previously degenerate
energy spectrum. This is done by first setting both qubits to have the same finite trans-
verse field and zero longitudinal field. As the cross-chain coupling is increased by lowering
the f c

x of all couplers, the initially degenerate qubit states, |+−⟩ and |−+⟩, develop a
splitting that, for weak coupling, is twice the coupling strength 2Jeff

q1q2
. A comparison can

then be made between the qubit interaction strength, Jeff
q1q2

, as measured in the flux signal
propagation experiment, and the qubit level splitting exhibited in full device simulations.
As shown in Fig. 4.4, the simulated results find strong agreement with the results of our
coupler susceptibility measurements in the weak interaction limit. The quantitative diver-
gence of these two results is expected in the strong coupling regime, for the coupler flux
biases f c

x < 0.15Φ0. In this case, the weak interaction limit assumed in Eq. 4.8 breaks down
and the effective qubit-qubit interaction can no longer be described as a linear inductive
coupling. Additionally, in the strong coupling regime shown in Fig. 4.5, the qubit energy
levels become dressed by the coupler levels. Hence, the two lowest energy levels can no
longer be identified as purely qubit-like and their spectral distance no longer represents a
simple qubit-qubit interaction.

4.2.3 Analysis of the impact of noise on cross-chain correlations

Low-frequency flux noise is expected to play a detrimental role in the coherence-preserving
properties of this long-range interaction. As demonstrated, flux signals can be transported
and even amplified in certain coupler flux operating regimes. Therefore, it is crucial to
identify a flux operating regime for the coupler units where strong, long-range coupling is
present and the detrimental effects of flux noise are not amplified across the device.

With this goal in mind, full device simulations were performed with realistic values of
low-frequency flux noise. Flux noise has been measured, across many different platforms
and frequencies [241, 48, 242], to be approximately 1/fα in nature, α ∼ 0.9, with magnitude
1 − 5µΦoHz

−1/2. For moderate-frequency measurements, the effect of this low-frequency
noise is to effectively add a small random flux offset to the flux operating point of the
measurement. This small random flux offset is sampled from a Gaussian distribution whose
standard deviation is determined by integrating the noise spectrum over the appropriate
frequency range, from measurement repetition rate to pertinent experimental frequencies,
as well as accounting for the circuit geometry. This amounts to a typical random flux offset
in the tens of µΦo.

Simulations of this type were performed repeatedly to determine the behavior of the de-
vice energy level structure in the presence of low-frequency flux noise. As shown in Fig. 4.5,
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the energy spectrum of the device is highly susceptible to flux noise in its deeply coupled
state. Significant line broadening occurs for the uniformly tuned coupler f c

x between 0 -
0.15 Φ0. This allows us to identify a region of flux operation, coupler f c

x from 0.15 to 0.18
Φ0 where significant long-range interactions are present yet the detrimental effects of flux
noise are still minimal.

Another source of experimental imperfection is caused by device fabrication variations.
In particular, expected variations in Josephson junction critical currents from device to
device can cause offsets both in the targeted ∆c and inter-unit coupling strengths, causing
inhomogeneities across the coupler chain. Note that these errors are set at fabrication,
unlike the flux offsets due to low-frequency flux noise which are fluctuating. Spin model
simulations of the effective long-range coupling strength and flux propagation experiments
were performed with random inhomogeneities added to the targeted values of ∆ci , Jcici+1

,
Jq1c1 , and Jq2c7 . For errors typical of measured devices, both the energy level splitting and
flux propagation signal are robust against these imperfections (see Sec. 4.5.5).

4.3 Discussion

Quantum annealing processors stand to benefit from higher dimensional qubit networks,
expanded connectivity, and improved qubit coherence. Accomplishing this will require
long-range qubit interactions that do not degrade qubit behavior. The use of spin chains
as a quantum bus is a promising venue for this. Presented here is a preliminary step in this
direction in the context of a superconducting Josephson system. To build on this idea, there
have been proposals to generalize one-dimensional spin chains, capable of entangling end
qubits, to both paramagnetic trees [146, 144] and two-dimensional spin networks capable of
providing entanglement amongst a perimeter of qubits [243, 144]. However, as we look to
scale this coupling architecture to larger processors, there are important scientific questions
to answer. In particular, it is an open question as to how the effective coupling scales with
respect to the chain length when operating in the weak coupling, paramagnetic regime.
Nonetheless, the coupler chain architecture holds promise for use in scalable, coherent
quantum annealing devices with high graph dimensionality.

Susceptibility measurements in quantum systems, such as those performed in this study,
have been considered as a possible measure of the system’s entanglement [244]. The suscep-
tibility experiment’s close agreement with full device simulations, which also demonstrate
qubit energy level splitting in the presence of expected noise levels, suggests the qubits can
be prepared in an entangled doublet state. In this view, the susceptibility measurements
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Figure 4.5: Effects of Low Frequency Flux Noise. (a) Average energy levels of the full device
versus coupler X-flux fx, compiling ten separate calculations with random flux operating
point offsets (see text). At small coupling, or large fx, the orange and blue energy levels
are identified as the two initially degenerate qubit levels, |+−⟩ and |−+⟩. As the coupler
fx is lowered and cross-chain coupling becomes significant, the previously degenerate qubit
levels, split in the presence of cross-chain coupling. The lightly faded color lines are the few
next higher energy levels of the full device consisting of a mixture of the coupler and higher
qubit levels. Note that the coupler chain and the qubit levels have become comparable
in frequency by coupler fx ≲ 0.15Φ0. In this region, what were initially qubit-like energy
levels, are now dressed by the coupler levels and the splitting of these two energy states
no longer represents the effective qubit-qubit interaction strength. In addition, a coupler
chain state anti-crosses with the qubit state |↑↑⟩ at approximately coupler fx = 0.17 mΦ0.
While this does appear to violate our previous assumptions concerning the separation of
coupler chain and qubit operating frequencies, for adiabatic annealing protocols the |↑↑⟩
state should rarely be accessed. Additionally, this property can be improved upon in future
design iterations. (b) Shown is the linewidth of the lower qubit-like level, calculated as the
standard deviation of the transition frequency over multiple simulation runs in the presence
of realistic flux noise. There is a region, fx = 0.15− 0.18Φ0, where significant cross-chain
coupling is present but where the effects of flux noise do not significantly broaden the
lower qubit-like level’s linewidth. For fx < 0.15Φ0, the calculated linewidth suggests the
coherence times of the qubit have deteriorated to the nanosecond scale.
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presented here are a consequence and valid measure of a coherent long-range qubit inter-
action. This view, however, needs further experimental validation. Future experimental
work will address the measurement of the coherent coupling enabled by this method using
spectroscopic characterization as well as adiabatic transfer protocols. Additionally, the de-
tection of entanglement can be augmented by measuring other observables and witnesses
for interacting quantum spin systems [245].

In closing, we have demonstrated long-range interactions in a superconducting Joseph-
son spin bus by probing the device’s response function. Simulations of the device, which
agree well with measured quantities, predict significant long-range interaction simultane-
ous with satisfactory qubit coherence. This device has immediate application in near-term
quantum annealing devices where both long-range and coherent qubit couplings are nec-
essary for quantum computation speedup.

4.4 Experimental Methods

Both the coupler-only susceptibility measurement and full device qubit interaction demon-
stration experiments were conducted in a similar fashion. Either Coupler 7, for the coupler-
only, or Qubit 2, in the full device, acted as the source unit. For uniformly tuned coupler
units, all couplers at their z-symmetry point and homogeneously tuned x-flux settings,
the source unit’s z-flux is swept across its z-symmetry point, causing the source unit to
transition from its ‘left’ to ‘right’ circulating current state. This acts to shift the effective
z-symmetry point of the remaining units in a manner dependent on the coupler units’
x-flux.

The response of the target units is measured by observing the dispersive shift in the
target units’ resonator. The target units’ resonators are maintained at zero flux, or their
high-frequency point. The dispersive interaction between the unit and the resonator can be
used to ascertain the unit’s z-symmetry point. So, for each source unit’s z-flux setting, the
target unit’s resonator is probed over a range of frequencies for a range of the target unit’s
z-flux settings. In this way, the target unit’s effective z-symmetry point can be tracked as
a function of the source unit’s z-flux setting.

This procedure was applied iteratively starting with the unit adjacent to the source
unit, and then continued down the chain. Applying this process iteratively also allowed
us to fine-tune the target units’ z-flux. As the coupler units’ x-flux is lowered and the
inter-coupler interactions become stronger, slight mistuning of the unit’s z-flux away from
their symmetry point can shift the effective symmetry point of nearby units. Applying the
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measurement/fine-tuning procedure iteratively allows the units to be tuned correctly even
in the presence of slight imperfections further down the chain.

Simulations using the platform described in Sec. 4.5.2 were used to validate the experi-
mental flux signal propagation results. The fz symmetry point of the target unit is defined
as the unit’s fz where the ground state expectation value of the z-loop current equals zero.
To track the magnitude of the flux signal, we recorded the difference in the target unit’s
z-symmetry point when the source unit was 20 mΦ0 on either side of the z-symmetry point.
This protocol was followed in both simulation and experiment.

4.5 Additional details on device modeling and char-

acterization

4.5.1 Circuit model

The Coupler Chain device consists of 7 tunable rf-SQUIDS coupled through their z-loop
mutual inductance with the two end couplers coupled mutually to two capacitively shunted
flux qubits. Shown in Fig. 4.7 are schematics of the qubit and coupler design. The qubit and
coupler are divided into four and three floating islands respectively. Design work utilized
Ansys Maxwell finite element electromagnetic simulations supplemented with simulations
run in Sonnet to correctly account for higher frequency inductive effects. Effort was made
to reproduce effective circuit parameters found in [48, 161]. The results of these simulations
are displayed in Table. 4.1.

4.5.2 Simulation framework

Upon attaining all lumped element circuit parameters from the classical electromagnetic
Ansys Maxwell and Sonnet simulations, quantum simulations of the lumped element single
qubit and coupler units and full device were performed using the MIT-Lincoln Laboratory
developed JJSim quantum circuit simulation package [240]. With this software package,
energy spectra and operator matrix elements can be extracted. Single unit simulations
are performed by identifying internal modes and evaluating the circuit Hamiltonian in
the harmonic level basis for high enough levels of internal modes such that the operator
expectation values in the low energy qubit subspace converge.

For full device simulations, individual units were grouped and coupled to one another
in a hierarchical structure. The end qubits remain their own two subgroups. The coupler
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Figure 4.6: Flux Propagation Signal Methods. (a) Shown are the target unit’s resonator
for the source unit being in its ’Left’ and ’Right’ circulating current state. The resonator is
maintained at fr = 0 while the unit fz is swept. The dispersive unit-resonator interaction
leads to the frequency dip and can be used to ascertain the unit’s Φ0/2 point. (b, c)
The experimental and simulated results showing the magnitude of the coupler-only flux
signal at the different units for various homogeneously tuned coupler fx settings. (d, e)
The experimental and simulated results showing the magnitude of the full device flux
signal at the different units for various homogeneously tuned coupler fx settings. (f)
The induced ground state expectation value of Coupler 1’s z-loop current with respect to
Coupler 7’s z-flux bias is displayed for different coupler x-flux biases. The induced ground
state expectation value of the target coupler unit reaches its maximum value in less than
20 mΦ0 from the source unit’s z-flux symmetry point, warranting the use of this value in
the flux signal propagation experiment.
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Figure 4.7: Qubit and Coupler Details. (a, b) Shown is the schematic and layout of the
capacitively shunted flux qubit. (c, d) Shown is the schematic and layout of the coupler
unit.
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Qubit Properties Coupler Properties
ILc 210 nA Ic 240 nA
ISc 90 nA
Cga 97.4 fF Cgr 32.7 fF
Cgb 62.0 fF Cgl 25.8 fF
Cgc 0.17 fF Cgz 49.5 fF
Cgd 30.4 fF
Cab 9.81 fF Crl 6.54 fF
Cac 0.032 fF Crz 7.22 fF
Cad 2.49 fF Clz 7.19 fF
Ccd 0.29 fF

Ll = Lr 78 pH Lx 31.4 pH
Lz 690 pH Li = Lo 378 pH
Mqc 62.6 pH Mcc 64.2 pH

Table 4.1: Designed and simulated values for the circuit model parameters of the qubit
and the coupler
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chain was partitioned into groups of couplers (1,2), (3,4,5), and (6,7). These individual
groups then underwent convergence tests exploring how many group energy levels need to
be included in simulations such that the low energy operator expectation values converge.
Each of the 5 groups was then coupled together for the full device simulations. Again,
convergence tests were performed at this final level. Finally, to validate our simulated
results with our agreed upon energy level structure, energy levels at lower levels of the
hierarchy were varied to double check the validity of the simulated results.

The JJSim lumped element simulations were then incorporated into the full simulation
workflow, from classical electromagnetic simulations of the physical device to energy spec-
trum simulations of the derived lumped element circuits, to optimize the device design.
Once the device design was finalized, an additional simulation platform calling JJSim was
then developed. This enables an efficient means of adding variation in circuit parameters
and flux value assignment in order to account for low-frequency flux noise and fabrication
uncertainties, as well as visual result presentation.

4.5.3 Device calibration and parameter extraction

Single unit coherence and annealing measurements have been performed in the two-stack
environment. Coherence times measured match well with measurements taken on similar
qubits in a single planar tier [178]. Single qubit annealing experiments, as shown in Fig. 4.8,
were also performed yielding comparable transition widths as those performed on planar
devices [166].

In addition to these encouraging results, the two-stack qubit environment [180], also
provides a ‘clean’ electromagnetic environment. Initial annealing experiments on single-
tier qubit environments were hindered by long electromagnetic ring-down times following
annealing flux control pulses. As shown in Fig. 4.9, this could be measured by tracking the
flux-dependent frequency of the readout resonator. Settling times for the planar geometry
devices could reach 100s of µs. Repeating these measurements in the two-stack environ-
ment yields settling times of approximately a microsecond. Our initial investigations into
this effect broadly agree with the results of [246], i.e., that the long ring down times can be
attributed to charge redistribution of the normal metal ground plane but that the super-
conducting ground planes on both tiers of the two-stack effectively shield the Josephson
elements from this effect.

Each qubit/coupler unit is equipped with its readout resonator. These resonators are
quarter wavelength meandering resonators terminated with an rf-SQUID. To model this
component we consider a quarter wave transmission line resonator [67] terminated in a
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Figure 4.8: Single Qubit Annealing Experiments. (a) Shown is a ’topographical’ map of
the qubit in flux space. The arrows indicate the path in flux space for a typical annealing
experiment. First, a small offset in fz is applied. Then the change in fx is applied. (b)
Shown are the dynamics of the Ising coefficients during the fx journey. Initially, the qubit is
dominated by the transverse field. As the fx journey continues the transverse field turns off
while the longitudinal field increases. There is a minimum gap at ≃ 0.68Φo where these two
energy scales are equal and the nature of the qubit ground state transitions between the σ̂x
and σ̂z basis. (c) Single shot data showing the histogrammed output voltage of 10,000 runs
as a function of initial qubit fz. The bi-modal distribution of output voltages corresponds
to the measuring frequency being on-resonance with the qubit in its ‘left’ circulating current
state and then off-resonance with the qubit in its ‘right’ circulating current state. (d) The
output voltages are then thresholded and the ground state probability is displayed as a
function of qubit fz. (e) The center fz and transition widths are plotted as a function
of fx journey time. The shift in the center is a reflection of the qubit x-loop junction
asymmetry. For a range of longer annealing times, the system thermally exits its ground
state at different points along the anneal, shifting the effective fz symmetry point. These
annealing pulses were conducted through low-frequency lines, acting as low-pass filters of
approximately 20 MHz. The optimal annealing time of ∼ 1 µs results in a width of ∼ 3
mΦ0, similar to previously reported time and widths on these flux bias lines [166].
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Figure 4.9: Flux Transient Measurements. The dynamic resonator response is measured in
both a single-tier (a) and two-stack (b) device environment following a typical annealing-
type flux pulse. The single-tier devices have electromagnetic ring-down times of 100s
of µs whereas the double stack environment is shielded from this effect, settling into its
equilibrium flux within 1 µs.

variable inductor whose value is dictated by the rf-SQUID properties [247]. Bare resonator
frequencies came out slightly higher than design values by 0.5-2%. To investigate this
discrepancy, three-parameter fits, involving resonator length, junction critical current, and
geometrical inductance in one case and a common phase velocity, junction critical current,
and geometrical inductance in another were applied to the resonator spectra. In the first
case, the resonator lengths came out consistently 2% lower than design values, while in
the second case, the phase velocity turned out to be 2.4% larger than design. Both cases
showed a similar spread in values of critical currents and geometric inductances.

Qubit 2’s circuit parameter values were extracted by matching spectroscopy measure-
ments to single unit circuit simulations described above. Qubit 1 suffered an unresponsive
capacitive drive line during the experimental run. Displayed in Fig. 4.10, the data are well
fit to the simulation and extracted values agree well with the design.

From coupler ‘topographical’ scans, i.e., probing the coupler resonator at a fixed fre-
quency while varying the coupler’s two flux bias currents as shown in Fig. 4.11, we are able
to extract couplers’ x-loop junction asymmetry, d =

Jx1−Jx2
Jx1+Jx2

. Even small asymmetries of a

few percent, due to fabrication imperfections, can appreciably shift the z-symmetry point
of the qubit/coupler unit.
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Figure 4.10: Qubit 2 Parameter Extraction. Top Left Panel. Two-tone spectroscopy
measurements were taken for Qubit 2 for a range of fx values. Using a rejection sampling
method, multi-variable fits were performed on various circuit parameters. Top Right Panel.
As shown in the table, all parameters match well with design values. Bottom Panel. Shown
are the Qubit 2 0-1 transition frequencies predicted by design and extracted from the
parameter fits. We assume the frequency variation in Qubit 2 is typical of other devices in
the study.
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Figure 4.11: Coupler X-Loop junction asymmetry. (a) A ‘topographical’ scan of Coupler
3. By performing inversion symmetry analysis on these data sets [239], it is possible
to extract the effective Φ0/2 points. (b) These points are well fit by the x-loop junction
asymmetry model. (c) Shown are the asymmetry parameters for the coupler units measured
approximately 4 months apart during different dilution refrigerator cooldowns.

4.5.4 Spin chain model

For the derivation of the effective qubit-qubit interaction strength, we assume that the
coupler chain is operated in its paramagnetic regime such that its ground state is non-
degenerate and the energy gap to its first excited state is sufficiently larger than the tem-
perature of the system, the qubit-coupler interaction strength, and the qubit operating
frequencies. As the chain approaches its critical region, where we expect long-range cor-
relations to emerge, the gap does become smaller. But, as shown in Fig. 4.5 of the main
text, the gap still exceeds these other energy scales.

Treating the qubit-chain interaction as a small perturbation on the coupler chain system
allows us to write

Heff ≃
2∑

i=1

Hqi + Jeff
q1q2σ

z
q1
σz
q2
. (4.11)

First-order perturbation expansion shifts the longitudinal field of the qubits,

Hqi =
ϵqi
2
σz
qi
+

∆qi

2
σx
qi
, (4.12)

ϵqi = ϵqi + Jqicadj⟨0c|σz
cadj

|0c⟩, (4.13)
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where Jqicadj = Jq1c1 or Jq2c7 . The effective qubit-qubit interaction, mediated by virtual
excitations of the chain out of its ground state, can be calculated to second order in
perturbation theory as

Jeff
q1q2

= −Jq1c1Jq2c7
27−1∑
nc=1

⟨0c|σz
c1
|nc⟩⟨nc|σz

c7
|0c⟩

ω0,nc

≃ −Jq1c1Jq2c7
27−1∑
nc=1

⟨0c|σz
c1
|nc⟩⟨nc|σz

c7
|0c⟩

Ω
,

(4.14)

where Ω ≡ ω01, the energy gap between the ground and the first excited state. In Eq. 4.14
it is recognized that there is a band of N = 7 approximately degenerate excited states with
gap Ω and finite matrix elements from the ground state. The higher coupler chain levels
past this have, at best, exponentially (in energy difference) small σz

ci
matrix elements from

the ground state and can be neglected. Now the outer product of states,
27−1∑
nc=1

|nc⟩⟨nc| can

be written as ⊮− |0c⟩⟨0c|. The effective coupling strength then reduces to

Jeff
q1q2

=
Jq1c1Jq2c7

Ω
(⟨0c|σz

c1
|0c⟩⟨0c|σz

c7
|0c⟩ − ⟨0c|σz

c1
σz
c7
|0c⟩). (4.15)

4.5.5 Spin model simulations

Spin model simulations, based on Eq. (4.1-4.4) of the main text, of the qubit level splittings
and the flux propagation experiments were performed using QuTiP [248] to compare to
the full circuit simulations and to test the robustness of the long-range coupling to device
variations. As displayed in Fig. 4.12(a, b), by using values of ∆c, Jcc, and Jqc predicted
by the single unit simulations in Fig. 4.13, we find quantitatively similar results for the
effective long-range coupling and flux propagation signal as those found for the full device.
In Fig. 4.12(c, d), the same simulations were repeated 10 times with random offsets in the
spin model parameters on the order of the variation shown in Fig. 4.10, of ± 500 MHz.
Displayed are the repeated instances of the results over the 10 trials. These simulations
show that the effective long-range coupling is tolerant to the typical fabrication variations
of these devices.
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Figure 4.12: Spin model simulation. (a, c) The effective coupling between the two qubit-like
states, analogous to Fig. 4.5 in the main text, and the flux signal propagation, analogous
to Fig. 4.3(d), are quantitatively similar to the circuit model simulations. (b, d) Random
variations, similar in magnitude to that shown in Fig. 4.10, are added to ∆c, Jcc, and
Jqc over 10 different trial simulations. Shown are repeated instances of trials with these
random offsets. Both the long-range effective coupling, as shown in the splitting of the
qubit-like levels, and the flux propagation signal are robust with respect to these typical
device parameter variations.
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Figure 4.13: Calculation of Jeff
q1q2

. Left Panel. The longitudinal coupling strength between
coupler units, the persistent current of the coupler, proportional to the square of ⟨0|Iz|1⟩,
along the coupler’s fz = Φo/2 was calculated by single coupler simulations. Center Panel.
The persistent current of the qubit, ⟨0|Iz|1⟩, along the qubit’s fz = Φo/2 was calculated by
single qubit simulations. Right Panel. The ground state expectation value of the z-loop
current of the coupler, ⟨0|Iz|0⟩, was calculated for a number of coupler fx values, by single
coupler simulations. This sweep was then fit to a sigmoid function and the slope at the

z-loop symmetry point,
d⟨Izc1 ⟩
dfz

c1

, was extracted.
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Chapter 5

Decoherence of a tunable capacitively
shunted flux qubit

In this chapter, we present a comprehensive study of the coherence of a tunable capacitively-
shunted flux qubit, designed for coherent quantum annealing. The measured relaxation
and pure dephasing rates are shown to be mainly due to intrinsic flux noise in the qubit
control loops, with considerable contributions from the control signal designed to execute
fast annealing. The flux bias dependency of the dephasing time also reveals noise corre-
lation between the two control loops and hence the transverse and longitudinal noise of
the qubit. Our results are relevant for ongoing efforts on building quantum annealers with
increased coherence.

5.1 Introduction

Quantum annealing (QA) is a computational paradigm that shows promise for outperform-
ing classical computers in solving hard optimization problems [20, 88, 30]. In comparison
to the more commonly pursued gate-model quantum computation (GMQC), QA is ad-
vantageous in that it doesn’t require precisely calibrated pulses delivered to each qubit,
and hence it is more amenable to scaling up in the near term. Outside the context of
optimization, QA also offers potential quantum advantages in machine learning and quan-
tum simulation [249, 250]. Moreover, QA is motivated by the fact that the closed-system
version of QA, adiabatic quantum computation [16], is equivalent to GMQC [17].

Superconducting circuits are one of the most prominent physical platforms for both
QA and GMQC, owing to a large engineering space and fabrication techniques that build
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on conventional electronics [22, 251]. In the context of QA, superconducting flux qubits
efficiently implement the transverse field Ising Hamiltonian [50, 65, 178], and can be pro-
grammed to solve NP-hard optimization problems [89]. Quantum annealers based on this
architecture have been made commercially available by D-Wave, with the latest genera-
tion devices containing as many as 5000 qubits [31]. Recent experiments with these devices
demonstrate a scaling advantage over Monte-Carlo methods for solving spin glass problems,
showing great potential for quantum-enhanced optimization [133].

Decoherence, or the loss of information from a system to its environment, is an impor-
tant problem both in GMQC and QA [252, 253, 16]. For a single qubit, decoherence is
usually characterized by two time scales- T1 and Tϕ, which correspond to the time it takes
for the system to lose energy (relaxation) to the environment, and to lose phase coherence
between different eigenstates (dephasing), respectively. In the limit of weak-coupling to an
environment, the Bloch-Redfield theory [254, 255] applies and the relaxation and dephasing
times are given by [256]

1

T1
=

1

ℏ2

∣∣∣∣⟨e|∂Hq

∂λ
|g⟩
∣∣∣∣2 [Sλ(ωq) + Sλ(−ωq)] , (5.1)

1

Tϕ
≈
(
∂ωq

∂λ

)2

Sλ(0). (5.2)

Here |g(e)⟩ is the qubit ground (excited) state, Hq is the qubit Hamiltonian, ωq is the qubit
angular frequency, λ is the noise operator, and Sλ is the noise power spectral density (PSD).
The approximate sign in Eq. 5.2 becomes exact when the noise is white (Markovian limit).
It can be seen that decoherence is determined by both the quadratic qubit sensitivity term
and the strength of the noise, characterized by its noise PSD.

Studying and improving the decoherence time of superconducting qubits is critical for
building practically relevant quantum computers. The rf-SQUID flux qubit was one of
the first superconducting circuits that were identified to behave as a two-state quantum
system, a qubit [257, 258]. Over the last three decades, a few variants of flux qubits have
been explored, including the persistent current qubit [46, 45, 232], the capacitively-shunted
flux qubits [259, 260, 48, 261], and the fluxonium [51, 204, 262]. A continuous effort on
understanding the mechanisms of noise in flux qubits has led to an increase of the coherence
times from nanoseconds in the first implementations to a millisecond in recent designs [22].
The key to this progress has been the investigation and understanding of a wide range of
noise sources, including intrinsic 1/f flux noise [241, 263, 264, 265, 266, 235, 242], photon
noise in the readout resonator [267, 268, 269, 48, 270], dielectric loss [271, 272, 273, 262, 274,
275, 276] and junction critical current noise [277, 278]. In spite of the above improvements,
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the coherence time for the rf-SQUID qubit used in the DWave annealers has been estimated
to be about ∼ 10 ns [89], due to a number of reasons, including requirements to simplify
control calibration and allow large coupling strength for annealing application [50].

The role of decoherence in QA is an open question under active research. Theoretical
studies have suggested that in the limit of weak coupling to the environment, decoherence
occurs in the instantaneous energy eigenbasis and is not detrimental so long as the system
remains in its ground state during the computation [124, 253, 207]. However, in the
strong coupling limit, the situation is more complex and decoherence times as given in
Eqs. (5.1,5.2) are no longer well-defined as the system and environment becomes highly
correlated. While some previous research suggests that strong coupling to the environment
renders quantum annealing impossible [207], other work points out that quantum-assisted
tunneling is still possible, which could still lead to a quantum advantage [130].

Most previous experimental studies of coherence in the context of quantum annealing
focused on D-Wave devices [126, 82, 279]. While they offer valuable insight about co-
herence for a large quantum processor, they often rely on assumptions about the sources
of the noise and how strongly coupled they are to the system, which cannot be verified
independently. Furthermore, the relatively short coherence time compared to the typically
available bandwidth in D-Wave devices (control timescales of the order of µs) limits the
parameter space that could be explored. That being said, recent work by D-Wave on
annealing a 2000-qubit spin chain through its paramagnetic to ferromagnetic transition
has shown good agreement with a coherent model when annealing is performed on the
time scale of the order of 10 ns [280]. This highlights the importance of expanding by the
parameter space to be explored, for example by increasing the control flexibility.

In this work presented in this chapter, we study the coherence of a single tunable
capacitively-shunted flux qubit (CSFQ), designed to be incorporated in a large-scale an-
nealer. The CSFQ is a variant of the persistent-current qubit, and features higher coherence
when compared to the rf-SQUID flux qubit used in D-Wave devices, by combining high-
quality capacitive shunts and reduced influence of flux noise due to the lower persistent
current [48]. We measure the coherence times of the CSFQ for a wide range of flux biases,
and model the results with a comprehensive list of noise sources. Although the measured
coherence times only apply to the weak-coupling limits, the inferred noise power provides
a solid basis for future coherence studies in more complex settings. We found that relax-
ation is dominated by 1/f flux noise at lower frequencies and flux bias line thermal noise
at higher frequencies, while dephasing is mostly dominated by intrinsic flux noise. In ad-
dition, we point out that control with high bandwidth introduces challenges to dephasing.
Our results are immediately relevant to upcoming experiments that explore coherent QA
based on CSFQs, and could inform the design of other variants of flux qubits, such as
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fluxoniums.

This chapter is organized as follows. In Sec. 5.2 we introduce the CSFQ, including the
control and readout circuitry. This is followed by a discussion of the basic characterization
measurement of the CSFQ. In Sec. 5.4 we present the main results of this chapter, which
are the coherence time measurements, and discuss the various noise sources considered.
In Sec. 5.5 we comment on the effect of flux noise on the parameters used to define an
annealing Hamiltonian, followed by conclusions in Sec. 5.6.

5.2 The CSFQ device

The measured CSFQ, together with the control and readout circuitry is schematically
shown in Fig. 5.1(a). The CSFQ has a main loop and a secondary split junction loop. In
the two-state approximation, the CSFQ has the Hamiltonian

Hq = −∆(Φx)

2
σx − Ip(Φx)(Φz − Φsym

z )σz, (5.3)

where Ip is the persistent current in the qubit main loop, ∆ is the tunneling amplitude
between the two persistent current states, Φsym

z
1 is the effective flux bias symmetry point,

and σz,x are the qubit Pauli operators in the persistent current basis. The flux bias Φx

is the externally applied flux in the secondary loop. The flux bias Φz is the effective flux
bias in the main loop, defined such that the native crosstalk from the X loop Φx/2 is
accounted for [45]. To a large extent Φz controls the longitudinal field strength while Φx

controls the transverse field strength, hence the name Z and X respectively. The X loop
has a symmetrized design, allowing nearly independent control of the qubit’s transverse
and longitudinal field (see Appendix D).

The external flux biases are controlled by currents through on-chip flux bias lines,
which are supplied by DC voltage sources and arbitrary waveform generators (AWGs) at
room temperature, combined through cryogenic bias-Ts. In the experiment reported here,
the high-frequency port of the bias-T that controls the X loop was unresponsive, and is
hence neglected in the schematic in Fig. 5.1(a). In addition to flux biasing, the CSFQ is
capacitively coupled to an rf source, allowing microwave excitation of the qubit.

Readout of the qubit is achieved by coupling the qubit Z loop inductively to an rf-
SQUID terminated λ/4-resonator, coupled to a transmission line. The external flux bias of

1We use Φx,z in this and the next chapter, as opposed to the reduced biases fz,x used in the previous
two chapters, as f is used for frequency here.
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the rf-SQUID, Φr is controlled by current through the on-chip bias line. When Φr = 0, the
resonator is at its maximum frequency and the qubit-resonator coupling is linear. At this
point, the resonator experiences a qubit-state dependent dispersive shift. Away from zero
bias, the resonator has a flux-sensitive resonance, which can be used for persistent current
basis readout of the qubit (see Sec.. 2.1.5 for more details regarding the qubit-resonator
interaction).

The device is fabricated at MIT Lincoln Laboratory using a flip-chip process [180],
combining a high-coherence qubit chip hosting the CSFQ, and a control chip that hosts
the readout and control circuitry. Optical images of the two chips are shown in Fig. 5.1(b).

5.3 Device characterization

In this section, we discuss the characterization measurements for the CSFQ, focusing on
aspects that concern annealing implementation with the CSFQ.

Experiments were performed with the device cooled down in a dilution refrigerator,
with a base temperature of 10 mK (see Appendix C for the measurement setup). The
crosstalk between the flux bias lines was measured using the iterative procedure introduced
in Chapter 3. After three iterations, the error in flux biasing is expected to be about
1 mΦ0/Φ0 (see Sec. 6.5.1 for additional information on crosstalk characterization). In
Fig. 5.2 we show the transmission through the line coupled to the resonator, at a frequency
near the resonator maximum frequency versus the calibrated external fluxes Φz,Φx. This
measurement shows that the Φz symmetry point has a non-linear dependence on Φx. This
is due to the asymmetry between the two junctions in the DC-SQUID, which results in an
effective contribution of the X loop flux to the Z loop [166]. Assuming negligible X loop
inductance, the Z loop symmetry point is given by [235]

Φsym
z = 0.5 + arctan

[
d tan(

πΦx

Φ0

)

]
, (5.4)

where d is the asymmetry between the two DC-SQUID junctions and Φ0 is the flux quan-
tum. The symmetry point can be extracted by checking the point of reflection symmetry
for each trace of the transmission measurement at each value of Φx, and the fitted asymme-
try is d = 0.069±0.001. To verify the effect of finite X loop inductance, we use a full circuit
model (see Sec. 6.5.2) to numerically extract the symmetry points and compare them with
the analytical expression. As shown in Fig. 5.2(b), using the same junction asymmetry d,
the discrepancy between the numerically simulated and analytical Φsym

z grows larger as Φx
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Figure 5.1: (a)Schematic of the CSFQ (black), as well as the readout (blue) and the control
(purple) circuit. (b)Optical images of the qubit and interposer chips, around the CSFQ.
These two chips face each, with indium bumps to hold them in place.
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increases, but always remain below 1 mΦ0 for the relevant range where the experiments
were performed, justifying the use of the analytical expression.

Once the crosstalk and junction asymmetry are calibrated, spectroscopy of the qubit is
performed at a range of Φz and Φx biases, with the resonator SQUID biased at Φr = 0. A
circuit model of the device is fitted to the transition frequencies between ground, first, and
second excited states. The model includes the full capacitance matrix between islands, the
loop inductances, and the Josephson junction critical currents, and is simulated using a
package developed in Ref. [240] (see Sec. 6.5.2 for circuit model parameter values).

Using the circuit model, the qubit persistent current Ip and tunneling amplitude ∆
versus the flux bias in the X loop Φx can be obtained. The persistent current Ip can be
calculated using two different methods. In the first method, we rely on the operator matrix
element defined on the CSFQ circuit

Ip,c = ⟨0c|
∂Hc

∂Φz

|1c⟩, (5.5)

where |0c(1c)⟩ is the circuit ground (excited) state, and Hc is the circuit Hamiltonian,
all evaluated at the symmetry point Φsym

z . In the second method, we find the ground to
excited states transition frequencies and fit to the qubit frequencies given by the two-state
Hamiltonian Eq. 5.3. The corresponding persistent current is denoted as Ip,q. In Fig. 5.3
we show Ip,c, Ip,q versus Φx. It can be seen that they agree with each other for small values
of Φx. At larger Φx, Ip,q becomes smaller than Ip,c. This can be seen as a result of the
breakdown of the two-state approximation, as the lowest energy states of the circuit are no
longer spanned by the two persistent current states as Φx (or equivalently the tunneling
amplitude) increase. Nevertheless, this breakdown of the two-state approximation is not
expected to affect annealing, since the system largely remains in the ground state for large
values of ∆.

When compared with rf-SQUID flux qubits used in commercially available annealers,
the CSFQ presented here has persistent current that is at least an order of magnitude
smaller, hence reducing its sensitivity to flux noise. The smaller Ip also leads to smaller
interaction strength between qubits, which potentially limits the optimization problems
that can be mapped to the annealer. We note that this could be compensated by galvanic
coupling, using shared sections of lines [161], and even shared junction or junction arrays
between the circuits that need to be coupled.

The tunneling amplitude ∆, also the qubit frequency at the symmetry point, is shown
in Fig. 5.3. To implement a standard annealing experiment, the CSFQ is initialized at a
large ∆, aroundΦx ≈ 0.5, and then the tunneling amplitude is gradually reduced following
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Figure 5.2: (a)Transmission measurement versus the qubit external flux biases Φz,Φx. The
green dots correspond to extracted Φsym

z by finding the point of reflection symmetry for
each Φx trace in the transmission measurement, and the blue line is a fit to the analytical
expression. (b)Z loop bias symmetry point Φsym

z as a function of Φx, calculated from the
analytical (blue line) and numerical (orange dots) model respectively.
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Figure 5.3: Left axis, the qubit persistent current Ip versus X loop external flux bias Φx,
obtained using the circuit operator (black) and fitting to qubit approximation (light blue
dashed) (see text for detail). Right axis, the qubit tunneling amplitude ∆ versus X loop
external flux bias Φx.

a specific annealing schedule. The CSFQ has a more gentle dependence of ∆ on Φx as
compared to the rf-SQUID qubit. Given the same resolution in the biasing sources, this ∆
dependence allows finer control of the annealing schedule, and assists in future experimental
demonstrations of the novel annealing protocols, such as those proposed in Refs. [222, 236].

5.4 Characterization of decoherence and discussion of

results

In this section, we present the measurements of the relaxation and dephasing times T1, Tϕ
of the CSFQ. We note that T1, Tϕ coherence times are only well-defined when the system is
weakly coupled to the environment, which is commonly the case in devices made for GMQC.
In the context of annealing, the validity of the weak-coupling approximation depends on
the relative strength of the qubit fields and the noise. In this work, we only measure the
coherence times for qubit ∆ ≳ 1GHz, limited by the poorer efficiency of state preparation
and microwave excitation at lower ∆. In this regime, we do not expect signatures of strong
coupling. However, these measurements serve as a useful benchmark to compare with other
qubit architectures. Furthermore, the noise amplitude extracted from the coherence time
measurements can be used to predict the qubit dynamics in the strong coupling limit, as
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is done in the work presented in Chapter 6.

5.4.1 Relaxation time measurements

We first discuss the T1 relaxation data, which is shown in Fig. 5.4. The relaxation time T1
was measured by initializing the qubit to the first excited state with a π pulse and then
performing the readout with a variable delay time. The relaxation time T1 is measured
both as a function of Φx, at the Z loop symmetry point, as shown in Fig. 5.4(a), and as
a function of Φz near the symmetry point at three different Φx, as shown in Fig. 5.4(c).
Each relaxation measurement (and dephasing measurement presented later) is repeated 30
times and the average value is reported. It can be seen that as Φx varies from 0.27 to 0.4,
corresponding to ∆ changing from 1 GHz to 6.2 GHz, the T1 at the Z loop symmetry point
increases at first, reaching a maximum at Φx = 0.32 (∆/h = 3.2 GHz), and then decreases.
This is similar to other coherence studies on flux qubits and fluxoniums [48, 235, 276],
where the qubit coherence is limited by 1/f flux noise at low frequency, and transitions to
a different noise channel at frequencies higher than ∼ 1 GHz.

To better understand the relaxation data, we consider several relaxation channels and
show their individual and combined relaxation times in Fig. 5.4, including intrinsic flux
noise in the Z loop, thermal noise from the Z bias line, and Purcell decay. We assume the
intrinsic flux noise has noise PSD of 2πAΦz/ω, with ω being the angular frequency and the
noise coefficient AΦz set by fitting to the dephasing time (see Section 5.4.2). The flux bias
line can be modeled as a 50 Ω impedance in parallel with a bias inductor which is coupled
to the qubit loops. The noise temperature of the bias line can be estimated based on the
attenuations used along the signal line [281]. The Purcell lifetime is estimated by [282]

TPurcell
1 =

g2

(ωr − ω01)2
κ. (5.6)

Here ωr, ωq, and g are the resonator, qubit transition frequencies and the linear coupling
strength between the qubit and the resonator. The coupling strength g is calculated using
the circuit model parameters (see Sec. 2.1.5 for the qubit-resonator interaction model and
Sec. 6.5.2 for the circuit parameter values), and is found to range from about 100 MHz to
200 MHz depending on the flux bias. The resonator decay rate κ is estimated based on
resonator linewidth measurement. At the readout point, the resonator frequency and decay
rate are ωr = 7.89 × 2π GHz and κ = 12.2 MHz. Besides the above noise channels, we
also note that the intrinsic flux in the X loop has a negligible contribution to relaxation.
The microwave port of the X bias line is found to be unresponsive in the experiments,
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Figure 5.4: (a) Measured (black square markers) and simulated T1 values as a function of
Φx, at the Φz symmetry point. Each measured point is the result of averaging 30 repeated
measurements. The simulated T1 considered contributions from different sources, with the
combined simulated T1 shown in black. (b) Simulated qubit frequency ∆ as a function of
Φx, at the Φz symmetry point. (c) Measured (solid markers) and simulated (lines) T1 as a
function of Φz at multiple values of Φx. The simulated T1 combines all noise sources shown
in panel (a).
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and therefore we do not expect noise at qubit frequency to enter through the X bias line.
Details of the relaxation calculations are given in Sec. 5.7.2. As shown in Fig. 5.4(b), at
each X flux bias, the predicted relaxation time by combining the above known sources of
noise comes within a factor of 2 of the highest T1 measured at that value of X flux bias.

We discuss the potential causes for the disagreement between the experimental data and
the model used for energy relaxation. First, at lower Φx, the 1/f noise power could differ
from the noise power extrapolated using the dephasing time fits based on the simple 1/f
dependence. Indeed, measurements done on devices fabricated using a similar process show
that the actual flux noise has 1/fα dependence, with 0.9 < α < 1 [48, 242]. This means that
the flux noise power at the qubit frequency is potentially higher than that assuming α = 1.
Second, at higher Φx, there could be additional high-frequency (super)ohmic flux or charge
noise, as found in previous coherence measurements on flux qubits [278, 235, 275, 276]. In
this work, it is found that there is significant scatter in the measured T1 data, especially
at values of Φx > 0.32. This can be seen from the T1 versus Φz measurements shown in
Fig. 5.4, where the measured relaxation varies by as large a factor of 4 between neighboring
points. This makes it difficult to determine the nature of the high-frequency noise.

The scatter in the T1 data could be due to non-equilibrium quasi-particles or coupling to
a bath of two-level systems (TLS). Quasi-particle tunneling is known to cause fluctuations
in T1 [283] over time. However, as the spread of the repeated T1 measurements at the
Z symmetry point is small (see Fig. 5.4(a)), fluctuations due to quasi-particles are likely
not significant enough to explain the scatter completely (see also Sec. 5.7.3 for repeated
T1 measurement analysis). On the other hand, although the underlying physical nature of
TLSs is still under active investigation [284], resonant coupling to TLSs usually leads to
variations in T1 over qubit frequencies [285], and sometimes fluctuations over time [286].
This is also in line with recent measurements on fluxoniums, showing that TLSs indeed
have a strong contribution to relaxation [276].

5.4.2 Dephasing time measurements

We next discuss the dephasing measurement, which is also performed at a range of X
and Z loop biases. Tϕ times were measured using a Ramsey oscillation protocol (see
Ref. [256], for example) which consists of initializing the qubit with a π/2 pulse (detuned
approximately 10 MHz from the qubit transition frequency) and then applying a second
pulse after a variable delay time just before performing readout. As shown in Fig. 5.5(a),
at the Z loop symmetry point, the Ramsey pure dephasing time Tϕ varies from ∼ 200 ns
to ∼ 100 ns as Φx is reduced from 0.4 to 0.27. The spin-echo dephasing time TE

ϕ , measured
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with a sequence that has an additional π pulse in between the two π/2 pulses [256], shows
an improvement of about a factor of 5. This improvement, and the fact that all the
phase decay have been well-fitted with a Gaussian envelope, are consistent with dephasing
dominated by 1/f noise. When examining the Φz dependence of Tϕ, it is found that the
maximum dephasing time occurs near, but to the left of the Z loop symmetry point Φsym

z ,
which stands in contrast to the non-tunable flux qubit.

To model dephasing, we assume 1/f flux noises in the Z and X loops are the only
sources of dephasing, with noise power spectral density SΦz = 2πAΦz/ω and SΦx =
2πAΦx/ω respectively, with ω the angular frequency. In addition, we assume the flux noises
in the Z and X loops have correlated noise PSD CΦzΦx , represented by the dimensionless
coefficient, czx = CΦzΦx/

√
SΦzSΦx . The frequency sensitivity to flux noise is determined

directly from the circuit model, without the two-state approximation. The noise power
that fit the measured Tϕ best are

√
AΦz = 13.3 µΦ0/

√
Hz,

√
AΦx = 7.6 µΦ0/

√
Hz. These

numbers are consistent with previous devices fabricated using a similar process [161], con-
sidering flux noise scales as length over the width of the loop wires [265, 242].

The best fit of the dephasing times indicates a correlation coefficient of czx = 0.47. Flux
noise correlation in tunable flux qubits have been measured previously [287, 276], and it
has been pointed out that positive (negative) correlation shifts the maximum dephasing
time to the left (right) of the symmetry point. Assuming flux noise arises from uniformly
distributed environmental spins on the metal surface of the superconducting loop, Ref. [287]
suggests that the correlation could be understood in terms of spins that occupy the shared
arm between the Z and X loops. However, given the symmetrized X loop design used
here, the expected correlation using this simple model for flux noise is zero, and hence
does not explain the measured correlation.

Junction asymmetry could also lead to an offset between the maximum dephasing time
and the qubit symmetry point. To see this, one could define another effective Z flux bias
Φz̃, such that the symmetry point in Φz̃ is independent of Φx. This means

Φz̃ = Φz − F (Φx), (5.7)

where F is given by Eq. 5.4 when X loop inductance is negligible. Then it can be found
that the noise correlation coefficient between Φz̃ and Φx is given by (see Appendix D)

cz̃x = czx −
dF

dΦx

SΦx√
SΦzSΦx

. (5.8)

Therefore, for negligible czx, as would be the case if noise purely comes from uniformly
distributed spins on the metal surface, cz̃x would be negative given a positive junction
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Figure 5.5: (a) Measured relaxation time T1 (black squares), Ramsey Tϕ (red dots) and
spin-echo TE

ϕ (green triangles) dephasing times, as a function of Φx, with Φz set at the sym-
metry point. Each point is the result of averaging 30 repeated measurements. (b)Measured
(solid points) and calculated values (solid lines) of Tϕ as a function of Φz at three values
of Φx. The vertical dashed lines indicate the position of the symmetry point at each value
of Φx.
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asymmetry d. In other words, the effect of junction asymmetry in the device is to shift the
point of maximum dephasing time to the right of the symmetry point, which is the opposite
of what is observed experimentally. We note that this apparent offset should not be
confused with the fitted correlation czx, as the fitting uses numerically extracted frequency
sensitivity to Φz and Φx, which implicitly contains information about the asymmetry.

To further investigate the source of this correlation, we considered additional sources of
dephasing, including bias line thermal noise, voltage noise of the bias source, photon shot
noise, second order coupling to flux noise, charge noise, and junction critical current noise
(see Sec. 5.7.4). We found that using previously reported values of 1/f noise of the critical
current of the junctions, its contribution to dephasing can be non-negligible compared to
dephasing due to first-order coupling to flux noise. Furthermore, junction critical current
noise leads to maximum dephasing time to the left of Φsym

z , hence could contribute to the
apparent positive correlation between the two flux biases.

We also observed over multiple cooldowns of the dilution fridge and changes to the
setup that the choice of bias source could have an impact on the coherence times as well.
Experiments performed during earlier cooldowns used AWGs as the DC bias sources for
the device. After switching from using AWGs to a lower noise DC bias source for the X
bias, we found the measured Ramsey pure dephasing time at Φx = 0.32 improved from
∼ 80 ns initially to ∼ 150 ns after the switch. In Sec. 5.7.4, we show that by assuming
the AWG has a 1/f and white noise combined at low frequency, it alone could lead to a
dephasing time of Tϕ ∼ 350 ns. This is roughly consistent with the reduction in Ramsey
dephasing time when the AWG is used, given the crude model on the AWG noise. As
the DC bias source does not support fast annealing, strategies need to be developed to
mitigate the noise from the AWG. This could be done by either using a cryogenic bias-T
to combine the DC and fast signal, allowing smaller coupling strength of the more noisy
signal, or simply applying heavier low-pass filtering to the fast signal.

5.5 Noise in annealing parameters

It is useful to put the measured noise here in the context of annealing applications. For a
”single-qubit anneal” [166, 288], the qubit Hamiltonian starts with a large value of ∆, at
which the qubit is initialized in the ground state, and the qubit Hamiltonian is gradually
changed to a target Hamiltonian where ∆ close to zero. The only parameter defining the
target Hamiltonian is the qubit longitudinal field

ϵ = 2Ip(Φz − Φz,sym). (5.9)
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Noise in the control fluxes gives rise to noise in the annealing parameters ϵ,∆, with the
same frequency dependence. We focus on the intrinsic 1/f flux noise, assuming noise
arising from wiring and electronics can be minimized through careful engineering. Using
the qubit approximation Hamiltonian Eq. 5.3, we can find the individual and correlated
1/f noise in ϵ,∆, given by

Aϵ =

(
∂ϵ

∂Φz

)2

AΦz +

(
∂ϵ

∂Φx

)2

AΦx

+ 2
∂ϵ

∂Φz

∂ϵ

∂Φx

AΦzΦx , (5.10)

A∆ =

(
∂∆

∂Φx

)2

AΦx , (5.11)

A∆ϵ =
∂ϵ

∂Φz

∂∆

∂Φx

AΦzΦx +
∂ϵ

∂Φx

∂∆

∂Φx

A2
Φx
, (5.12)

where AΦzΦx = czx
√
AΦzAΦx is the 1/f amplitude of the flux noise correlation. In Fig. 5.6

we show these three quantities versus the transverse field ∆, for the target longitudinal
field ϵ = 0, noting these quantities are weakly dependent on ϵ. It can be seen that the ϵ
noise, Aϵ is always the dominant noise factor. The correlated noise A∆ϵ is mainly due to
the measured flux noise correlation, and is about an order of magnitude lower than Aϵ.
The noise in A∆ is comparable to A∆ϵ for large ∆, but diminishes quickly with decreasing
∆. The role of the relative strength of the noises would be explored in future work. One
interesting direction is to extend previous analysis of the effect of correlated noise on single
qubit Landau-Zener tunneling [289], to the general case of multi-qubit annealing.

5.6 Conclusion

We have presented a detailed characterization of coherence in a CSFQ design relevant for
quantum annealing. We measured the T1 relaxation and Tϕ dephasing times and modeled
them considering all relevant noise sources. We find that the T1 values are influenced
primarily by 1/f flux noise with additional contributions from the thermal noise from the
bias lines, while the Tϕ is dominated by 1/f flux noise, with a possible contribution from
1/f noise in junction critical current. We point out that for annealing application, the
external flux biases can introduce significant relaxation and dephasing as compared to the
intrinsic noises of the qubit. This suggests that future annealing experiments that aim to
combine high coherence and high control flexibility need to carefully evaluate the trade-off
between the added noise and the improved control bandwidth.
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Figure 5.6: Individual and correlated 1/f noise amplitude at 1Hz for the annealing param-
eters ϵ,∆ as a function of the transverse field ∆, calculated from the measured 1/f flux
noise in the two control loops.

Additionally, we observe a positive correlation between the X and Z control flux noise,
as manifested in the maximum dephasing time versus Φz occurring on the left of the
symmetry point. This correlation may arise due to a combination of correlations between
intrinsic flux noise in the two loops, and junction critical current noise. Future experiments
that are able to distinguish the different sources of 1/f noise are needed to quantitatively
determine the origin of this noise correlation.

Our work provides a detailed characterization of noise sources of a flux qubit, relevant
for future analysis of coherent annealers based on CSFQs. Besides quantum annealing,
the work presented here is also relevant for flux qubit devices made for GMQC, such as
fluxonium qubits. Future extension of the work will be directed at extending the coherence
characterization to the strong coupling limit, multi-qubit systems, as well as studying
coherence in a dynamic setting, which will lead to a deeper understanding of the role of
coherence in quantum annealing.
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5.7 Additional details on decoherence modeling

5.7.1 Noise spectrum and decoherence

In this work, we define the noise power spectral density (PSD) of a random variable δλ as
the Fourier transform of its auto-correlation function,

Sλ(ω) =

∫ ∞

−∞
dτeiωτ ⟨δλ(τ)δλ(0)⟩. (5.13)

If the noise arises from a quantum bath, the noise PSD is asymmetric in positive and
negative frequencies. However, our noise measurement is only sensitive to the symmetrized
noise spectrum, which we define as

S+
λ (ω) =

1

2

∫ ∞

−∞
dτeiωτ ⟨δλ(τ)δλ(0) + δλ(0)δλ(τ)⟩ (5.14)

=
1

2
(Sλ(ω) + Sλ(−ω)) . (5.15)

The symmetrized correlation between two random variables δκ and δλ is given by the cross
power spectral density

Cλκ(ω) =
1

2

∫ ∞

−∞
dteiωt (⟨δλ(t)δκ(0) + δλ(0)δκ(t)⟩) (5.16)

≡ cλκ

√
S+
λ (ω)S

+
κ (ω), (5.17)

where cλκ is a dimensionless number describing the relative correlation between the two
noise variables.

5.7.2 Relaxation

We considered qubit relaxation time T1 in general to be given by

1

T1
=

1

TPurcell
1

+
1

T z1f
1

+
1

T x1f
1

+
1

T zb
1

+
1

T xb
1

(5.18)

+
1

TQOhmic
1

+
1

T zOhmic
1

+
1

T xOhmic
1

, (5.19)

155



where TPurcell
1 is the resonator induced Purcell decay rate, T

z(x)1f
1 is the relaxation time due

to the intrinsic 1/f flux noise in the Z(X) loops, T
z(x)b
1 are the relaxation time due to

Johnson-Nyquist noise in the Z(X) bias lines, and T
Q(z,x)Ohmic
1 are additional ohmic noise

that couples to the qubit charge degrees of freedom [290, 48, 235].

The Purcell lifetime is estimated by [282]

TPurcell
1 =

g2

(ωr − ω01)2
κ, (5.20)

where g is the exchange interaction strength between the qubit and the resonator, ωr is
the resonator frequency and κ is the resonator decay rate.

For the rest of the noise channels, we assume the noise is weak and the decay rates
from the Bloch-Redfield theory (or equivalently the Fermi’s Golden rule) is given by,

1

T λ
1

= |⟨1|∂Hq

∂λ
|0⟩|2 (Sλ(ω01) + Sλ(−ω01)) , (5.21)

where ∂Hq

∂λ
is understood as the qubit operator that is coupled to the noise, and Sλ(ω01)

is the noise PSD of λ at qubit frequency ω01. For the intrinsic flux noise, we assume they
are of the form 2πAλ/ω, with the same noise amplitude as found in the pure dephasing
rate fits. For the Johnson-Nyquist noise, we considered the bias line as an inductor with
inductance Lb shunted by an impedance of Z0 = 50Ω. The current noise is given by

SI(ω) =
ℏωRe[Zb](1 + coth ℏω

2kBTN
)

ω2L2
b

, (5.22)

where
1

Zb

=
1

Z0

+
1

iωLb

, (5.23)

and Lb = 25 pH based on electromagnetic simulation. For the noise temperature TN of the
bias lines, we use the formula

T i+1
N =

T i
N − T i+1

Ai+1
+ T i+1 (5.24)

to propagate the noise down the different stages of the dilution. Here T i, T i
N and Ai are

respectively the fridge temperature, incoming noise temperature and attenuation used at
that stage. In particular for the Z bias, we used 20, 10, 10 dB attenuation at the 3 K, 0.5 K
and 20 mK stages of the dilution fridge. This attenuation scheme leads to an effective noise
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temperature of 123 mK, which is relatively large compared to the base temperature of the
fridge.

For the additional Q(z, x) ohmic noise, we assume they are of the form

SOhmic = Bω|ω|γ−1(1 + coth
ℏω

2kBT
), (5.25)

with γ = 1 and the different noise coefficients BQ, Bz, Bx corresponding to charge noise,
Φz flux noise and Φx flux noise. Previous experiments on flux qubits have found that the
dominant relaxation channel at higher qubit frequencies(≳ 1 GHz) could be either ohmic
charge or (super)ohmic flux noise [48, 235, 276]. In our experiments, due to the relatively
significant scatter in our T1 data, we do not investigate the possibilities of any additional
(super)ohmic noises.

5.7.3 Fluctuations in relaxation time due to quasi-particles

In addition to the above mentioned relaxation channels, inelastic quasiparticle tunneling
across the qubit junctions could lead to additional qubit energy decay. Modeling the
number of quasiparticle tunneling events in each shot of the T1 measurement as a Poisson
distribution, the average qubit excited state decay follows [283],

⟨P (t)⟩ = eλqp(exp(−t/T̃1qp)−1)e−t/T1R , (5.26)

where ⟨P (t)⟩ is the excited state population averaged over many shots, λqp is the average
quasiparticle tunneling event., T1qp is the qubit relaxation rate due to one quasiparticle
tunneling and T1R is the qubit relaxation time due to all other noise channels. Due to
fluctuations in the quasiparticle numbers, the qubit decay measurement also experiences
fluctuations. To investigate this, we perform 100 repetitions of T1 measurements at the
symmetry point at Φx = 0.32. Each repetition is averaged over 10 thousand shots, with a
repetition time of 100 µs. The result of each repetition is then fitted to Eq. 5.26, with λqp
being independent in each measurement and T1qp and T1R shared for all the repetitions.
This gives T1qp = 3.6 µs, T1R = 3.4 µs. The average number of quasiparticle tunneling
events for each repetition is shown in Fig. 5.7, with an average of 0.43 and a standard
deviation of 0.097, which is slightly larger than previous measurements on CSFQs [48, 261].
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Figure 5.7: Fitted average number of quasiparticle tunneling event λqp over 100 hundred
repetitions of T1 measurements, performed at the Φz symmetry point with Φx = 0.32.

5.7.4 Pure dephasing

Dephasing is caused by low-frequency fluctuations in the qubit energy splitting ω01 due to
various noise sources. The noise spectrum of the the qubit ω01 is given by

S+
ω01

=
∑
λ

(
∂ω01

∂λ

)2

S+
λ + 2

∑
λ̸=κ

∂ω01

∂λ

∂ω01

∂κ
Cλκ, (5.27)

where the summation runs over the noise sources under consideration. For classical noise,
dephasing can be described by the decay ⟨exp (−χ(τ))⟩, where χ is given by

χ(τ) =
τ 2

2π

∫ ∞

ωlow

dωS+
ω01

(ω)gN(ωτ). (5.28)

Here gN(ωτ) is the filter function for the specific coherence measurement, and ωlow is a
low-frequency cut-off determined by the total experiment time. We have N = 0 for Ramsey

158



and N = 1 for spin-echo measurement. Their respective filter functions are

g0 = sinc2
(ωτ

2

)
and (5.29)

g1 = sinc2
(ωτ

4

)
sin2

(ωτ
4

)
. (5.30)

In general the decay of χ(τ) is not exponential. We associate the pure dephasing time Tϕ
as the 1/e decay time, where ⟨exp (−χ(τ = Tϕ))⟩ = 1/e.

Noises that couple via the fluxes

In order to realize the large energy scale required for annealing, the tunable CSFQs have
relatively large superconducting loops and flux sensitivities. This large sensitivity, to-
gether with the measured flux noise correlation, motivate grouping the noises that couple
to control fluxes together. We consider three different such sources, intrinsic flux noise,
Johnson-Nyquist noise of the bias lines and noise due to biasing sources. Denoting the
intrinsic flux noises on the two fluxes as Sint

Φz
, Sint

Φx
, the Johnson-Nyquist current noise on

the two bias lines as SIz , SIx and the voltage noise from the bias sources as SVz , SVx , the
self and cross PSD of the two flux biases are

SΦz = Sint
Φz

+M2
zz(
SVz

R2
z

+ SIz) +M2
zx(

SVx

R2
x

+ SIx), (5.31)

SΦx = Sint
Φx

+M2
xz(

SVz

R2
z

+ SIz) +M2
xx(

SVx

R2
x

+ SIx) and (5.32)

CΦzΦx = C int
ΦzΦx

+MzzMxz(
SVz

R2
z

+ SIz) (5.33)

+MzxMxx(
SVx

R2
x

+ SIx), (5.34)

where Mz(x)z(x) are the mutuals between the bias line and the fluxes, and Rz(x) are the
resistances between the source and the bias line on the chip. We note that the intrinsic
flux noise is non-negligible at both low and high frequencies. The voltage noise from the
bias sources is only strong at low frequencies, as the bias source is coupled to the device
through a low-pass filter, and the Johnson-Nyquist current noise is only apparent at high
frequencies.

159



Dephasing due to intrinsic flux noise alone

The intrinsic flux noise usually has a noise PSD of the form

S+
λ (ω) = A2

λ

(
2π

|ω|

)α

, (5.35)

for λ ∈ [Φz,Φx], where α ∼ 1. If dephasing is dominated by flux noise, we can assume S+
ω01

has the same frequency dependence, with

S+
ω01

= A2
ω01

(
2π

|ω|

)α

. (5.36)

In this case, the integral in Eq. (5.28) can be simplified, which leads to dephasing time

1

Tϕ
=
(
Aω01η

1/2
N

)2/(1+α)

. (5.37)

Following Ref. [161], for Ramsey and spin-echo measurements, the factors η0, η1 are deter-
mined numerically by

η0 = (2π)α−1

∫ ∞

ωlowt

dz

zα

(
sin(z/2)

z/2

)2

, (5.38)

η1 = (2π)α−1

∫ ∞

0

dz

zα

(
sin(z/4)

z/4

)2

sin2(z/4), (5.39)

where t is the typical free evolution time in a single Ramsey sequence. The fitting result
shown in Sec. 5.4.2 corresponds to ωlow = 10Hz× 2π and t = 100ns.

Dephasing due to biasing sources

During a separate cooldown of the device, a different measurement setup was used and
the coherence time of the device dropped significantly. Among other changes in the setup,
we found that biasing the qubit circuit using an AWG is the likely cause of the lower
coherence. In this section, we present the estimated dephasing rate due to typical noise
from the AWG (Keysight model M3202a).

The AWG can be considered to have a classical voltage noise source, with a noise PSD
that is close to a combination of 1/f and white noise. For low-frequency biasing, the noise
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is also low-pass filtered at some cutoff frequency ωl. This motivates a simple voltage noise
PSD for the AWG, given by

S+
V (ω) =

[
A2

V

(
2π

|ω|

)
+ SV 0

]
1

1 + (|ω|/ωl)2
, (5.40)

where AV is related to the noise amplitude of the 1/f part, SI0 describes the white noise
power and we assumed the filter is first-order for simplicity.

For the numerical computation, we take AV = 8 × 10−7V/
√
Hz and SV 0 = 7.9 ×

10−17V2/Hz, for both the Z and Z low frequency bias. Ignoring other sources of noise,
we show the estimated flux bias noise PSD for two different low-frequency cutoffs, 32 kHz
and 100 MHz in Fig. 5.8. The dephasing rate is computed numerically for a range of Φz at
Φx = 0.32, by solving χ(τ = Tϕ) = −1 from Eq. 5.28, which is shown in Fig. 5.8(b). It can
be seen that when the low-frequency cutoff is 100 MHz, the dephasing rate becomes close
to the intrinsic flux noise limited rate shown in Sec. 5.4.2. When the low-frequency cutoff
is 32 kHz, the dephasing rate due to voltage noise is about an order of magnitude larger.

For the data presented in Sec. 5.4.2, the DC bias has a low-frequency cutoff of 32 kHz,
and the biasing source is a Yokogawa DC voltage source (model GS200), which is expected
to have lower noise than the AWG. On the other hand, the microwave port of Z couples
about 20 times more weakly than the DC port. The microwave port of X is unused. These
considerations allow us to eliminate the effect of the biasing sources on the dephasing.

Estimated dephasing for other noise sources

In this section, we consider a number of additional sources of dephasing.

First, we briefly note that the thermal noise of the bias lines at low frequency leads to
a dephasing time of about 1 ms and can be neglected.

It was previously observed in high-coherence CSFQ that the dominant noise channel
at the symmetry point is photon-shot noise [48], with a dephasing rate given by

Γth
ϕ =

κ2

κ2 + 4χ2

4χ2

κ
n̄, (5.41)

where κ is the resonator decay rate and χ is the qubit-induced dispersive shift of the
resonator, and n̄ is the average thermal photon in the resonator. In our experiments, at
Φx = 0.4, we found a dispersive shift of χ ∼ 0.8 MHz, and a resonator decay rate of
0.7 MHz. To obtain a dephasing rate of 5 MHz, the required average thermal photon
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Figure 5.8: (a)Z-flux noise PSD due to the AWGs used to bias the circuit, when using a
100 MHz (blue solid) or a 32 kHz (orange dotted) low-pass filter (LPF). (b) Ramsey pure
dephasing time as a function of Φz for Φx = 0.32, due to AWG noise with the 100 MHz
(blue solid) or 32 kHz (orange dotted) LPF.
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number is n̄ ≈ 2, much higher than than the expected value, given the readout resonator
should be reasonably well thermalized with the readout line in the fridge. Therefore photon-
shot noise is unlikely to be dominant in our device.

We also consider the second-order coupling of flux noise following [256]. Given our
typical experimental timescales, we take the quasistatic limit flux noise and found the
second-order coupling to flux noise contributes to dephasing rate

Γf2nd
ϕ ≈ 1.6

∂2ω01

∂λ2
Aλ. (5.42)

Using the numerically simulated qubit spectrum and the fitted 1/f flux noise amplitudes,
we estimate that the second order coupling to flux noise leads to Γf2nd

ϕ ∼ 1 kHz, which is
negligible compared to the dephasing due to first order coupling.

It has also been reported that quasi-particles could lead to frequency fluctuation in
certain flux qubits [291]. We checked the fluctuation in ω01 in our circuit as a function
of charge offsets in each island, and found a maximum of 100 kHz, which is much smaller
than the observed Γϕ. Therefore dephasing due to quasi-particles or charge noise is likely
negligible.

Defects in the junction tunneling barrier could lead to 1/f noise of the critical current
of the junctions [277] and have been shown to be the main source of dephasing at the
symmetry point in some earlier flux qubit[278]. To estimate the critical-current noise
induced dephasing, we follow Ref. [278] to assume a normalized critical current noise of
Aic = 4.0 × 10−6 on each of the four junctions independently. The noise sensitivity to
junction ith critical current ∂ω01/∂Ici can be computed numerically from the circuit model,
and leads to a noise sensitivity to the normalized critical current noise defined as

∂ω01

∂ic
=

√√√√∑
i

(
∂ω01

∂ici

)2

. (5.43)

where ici is junction ith critical current normalized by its nominal value Ici. In Fig. 5.9
we show the critical current noise sensitivity and the corresponding dephasing time over
different biases. It can be seen that the dephasing rate can be a substantial fraction of
the measured dephasing rate. We also note that for each Φx, the Φz bias corresponding
to the minimum sensitivity, and hence maximum dephasing time, is to the left of the
symmetry point. This trend is qualitatively in line with the experimentally measured
Ramsey dephasing versus Φz. Therefore the critical current noise could be a potential
explanation for the apparent correlation between the Z and X loop flux noise, although
further understanding and investigations into the physical origin of these noises are required
to distinguish them.
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Chapter 6

Dissipative Landau-Zener tunneling:
crossover from weak to strong
environment coupling

Landau-Zener tunneling, which describes transitions in a two-level system during the pas-
sage through an anti-crossing, is a model applicable to a wide range of physical phenomena.
Dissipation due to the coupling between the system and environment is an important factor
in determining the transition rates. Using a superconducting tunable capacitively shunted
flux qubit, we observe the crossover from weak to strong coupling to the environment.
The weak coupling limit corresponds to small system-environment coupling and leads to
environment-induced thermalization. In the strong coupling limit, environmental polariza-
tions dress the system and incoherent tunneling occurs between the dressed states. Our
results confirm previous theoretical studies of dissipative Landau-Zener tunneling in the
weak and strong coupling limits, and motivate further work on understanding the interme-
diate regime. The work presented in this chapter is relevant for understanding the role of
open system effects in quantum annealing, where Landau-Zener transitions at small gaps,
occurring in large-scale systems, are important for the success probability.

This chapter is organized as follows. In Sec. 6.1, we review previous literature on
Landau-Zener transitions and summarize our results. Then we will present the main ex-
perimental and numerical results in Sec. 6.2, followed by a discussion in Sec. 6.3. The
methods used, as well as various experimental and numerical details are left in Sec. 6.4-6.7.
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6.1 Introduction

Landau-Zener (LZ) tunneling [292, 293, 294, 295] describes non-adiabatic transitions in a
two-state quantum system when it is swept through an anti-crossing with linearly chang-
ing energy separation. The LZ tunneling model is applicable to a wide range of physical
phenomena, such as atomic collisions [296], chemical reactions [297], and molecular mag-
nets [298] and has been extensively studied theoretically and experimentally [299, 300, 301,
302, 303, 304, 305]. In experiments with superconducting systems, single or repeated LZ
transitions have been used to demonstrate phase coherence [301, 306], to realize quantum
gates [307] and to validate theories of incoherent tunneling (MRT) in the presence of strong
1/f noise [308, 309].

In the closed-system case, analytical solutions for transition probabilities were obtained
in Ref. [292, 293, 294, 295]. Specifically, for a given tunneling amplitude (or minimum gap
size) ∆ and sweep velocity v, the probability for the system to tunnel from one to the other
diabatic state is 1− PLZ, where PLZ is the non-adiabatic transition probability and in the
coherent limit is given by

PLZ = exp

(
−π∆

2

2ℏv

)
. (6.1)

In the open system case, analytical results have been obtained in various limiting cases for
the temperature and coupling strength of the environment [299, 300, 310]. In the particular
case of longitudinal coupling (coupling to the diabatic basis) to high-frequency noise, the
transition probability, for fast sweep, is unchanged when compared to the coherent case.
For the slow sweep, the transition probability remains unchanged if the noise temperature
of the environment is low compared to the minimum gap size [311, 299, 310, 312, 289], and
approaches the asymptotic value of 1/2 when the noise temperature is high [313, 314, 300].
At intermediate temperatures, numerical studies found that high-frequency longitudinal
noise leads to non-monotonic dependence of the tunneling probability versus sweep rate,
due to the competition between adiabaticity, thermal excitation near the anti-crossing, and
thermal relaxation after the anti-crossing [315, 316].

More, recently, there is growing interest in studying dissipative LZ transitions in the
context of quantum annealing [20, 317]. The success probability for a quantum annealer to
find the target ground state crucially depends on the system tunneling across the minimum
gap between the instantaneous ground and excited state, a situation well-described by the
LZ model [124, 309, 126, 222]. Therefore, studying LZ tunneling in the presence of realistic
environment is an important step towards understanding the computational capability of
a quantum annealer.
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One of the most prominent realizations of large-scale quantum annealer is based on
superconducting flux qubits. The dominant source of noise in the flux qubit is usually
the ubiquitous low-frequency flux noise that couples longitudinally to the qubit. The
long correlation time of such noise presents a considerable difficulty for numerical study,
although analytical results exist in some limiting cases. First, if the noise correlation
time is longer than a relevant time window in which LZ tunneling occurs, the noise does
not alter the transition when compared to the coherent case [313]. Second, in the limit
of small tunneling and strong low-frequency noise, the polaron transformation can be
applied, which leads to incoherent macroscopic resonant tunneling (MRT) between diabatic
states [308, 318]. This analysis was applied to an earlier measurement of LZ transition in
flux qubits, which showed that the LZ tunneling rate is the same as in the coherent limit,
provided the integrated power of the low-frequency noise is much larger than the noise
temperature [309].

In this work, we perform the LZ transition measurement with tunable flux qubit for
a wide range of minimum gap ∆ and sweep velocity v. We find that for large enough ∆,
the experimental data agree with previous numerical studies which show a non-monotonic
dependence of transition probability versus sweep time [315, 316]. For small ∆, we find
our results agree with the previous LZ measurement on flux qubit [309], where the mea-
sured transition probability is close to the coherent limit transition probability. The two
respective limits are modeled using the master equations introduced in Sec. 2.2. To model
the full range of experimental data, we explore using a quantum spin bath to represent the
low-frequency noise. Preliminary simulation results using this model show good agreement
with the experiments, and suggest that the crossover happens when the time taken for the
qubit to tunnel from one diabatic state to the other, set by ∆, becomes comparable to the
timescale at which the environment reorganizes itself as the qubit tunnels.

6.2 Results

Our experiments are performed using a two-level quantum system implemented using a
tunable superconducting flux qubit. A schematic of the experiment setup is shown in
Figure 6.1(a). The qubit circuit consists of two flux loops, designated as z, x respectively,
including Josephson tunnel junctions. Under suitable flux bias conditions, the circuit has
a double-well potential energy landscape, with the two wells corresponding to persistent
currents flowing in opposite directions in the z loop. At energies lower than the plasma
frequencies of both wells, the system is confined to the ground states of the two wells,
described by the two-state (qubit) Hamiltonian
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a)

b)

Control Qubit Readout

Figure 6.1: The flux qubit and the dissipative LZ transition. (a) Schematic of the tunable
capacitively-shunted flux qubit and the control and readout circuitry. The flux biases
Φx,Φz are each supplied by a DC voltage source and the Φz is further controlled by a fast
arbitrary waveform generator, joined to the DC control through a bias-tee. Readout is
done by measuring the transmission through an rf-SQUID terminated waveguide resonator
coupled inductively to the qubit. (b) Schematic representation of the LZ sequence. The
blue and red dashed lines indicate the energies of the diabatic states, which are separated
by ϵ(Φz) = 2Ip(Φz − Φsym

z ). The grey lines indicate the eigenenergies of the qubit, which
has a minimum gap of ∆ at the symmetry point Φsym

z . The curly arrows indicate the
dominant open system effects in the LZ measurements in the weak-coupling limit, which
are excitations around the symmetry point and relaxation after the symmetry point. The
double-well plots on either side of the energy level diagram are a representation of the
qubit potential at the beginning and end of the LZ sweep.
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Hq = −ϵ(Φz)

2
σz −

∆(Φx)

2
σx, (6.2)

with σz,x being the Pauli operators. Here ϵ = 2Ip(Φz − Φsym
z ) and ∆ are respectively

the bias and tunneling amplitude between persistent current states, Ip is the persistent
current, Φz(x) is the flux bias in the z(x) loop, and Φsym

z is the Φz bias which gives a
symmetric double-well potential. The Φx,Φz biases are controlled by DC voltage sources
and the Φz bias is additionally coupled to a fast arbitrary waveform generator (AWG),
combined with the DC control through a bias-tee. Readout of persistent current states is
done by inductively coupling the qubit z loop to a flux-sensitive resonator. The circuit is
also capacitively coupled to a waveguide used to send microwave signals, allowing resonant
excitation of the circuit. Spectroscopically measured transition frequencies are fit using
a circuit network model, which allows for finding the circuit parameters (see Sec. 6.5.2).
The two-state model parameters Ip and ∆ can then be obtained from the circuit model at
arbitrary flux bias near the symmetry point Φz = Φsym

z .

6.2.1 Short-time limit

A diagram representation for the LZ measurement is shown in Figure 6.1(b). At t = 0,
the qubit is prepared in the left well at Φinit

z ≈ −0.005Φ0 + Φsym
z . Then the qubit z flux

Φz is linearly swept to Φfinal
z ≈ 0.005Φ0 + Φsym

z over the duration TLZ. The initial and
final values of Φz ensure the LZ sweep starts and ends far enough from the anti-crossing so
that the qubit energy eigenstates approximately overlap with the persistent current states.
The qubit state population after the sweep is read out by measuring the state-dependent
transmission through the resonator. The sequence is repeated for a range of Φx and TLZ
values. With decreasing Φx, ∆ decreases nearly exponentially whereas Ip increases by
about 10% over the entire range.

The measured final excited state probabilities Pe versus TLZ at short times are shown
in Figure 6.2(a). In the weak-coupling limit, the system is expected to behave nearly
coherently for short sweep times, implying that the final excited state probabilities are
well described by Eq. 6.1 with v the sweep velocity, given by v = 2Ip(Φ

final
z −Φinit

z )/TLZ. To
confirm the coherent-limit behavior, we fit an exponential decay to the short-time decay of
the measured final excited probabilities, and then convert the decay constant to an effective
gap ∆LZ assuming Ip given by the circuit model. The extracted values of the effective gap
∆LZ are compared to values of ∆ given by the circuit model in Figure 6.2(b). There is
excellent agreement for the full range of Φx measured in LZ experiments, with ∆ in the
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Figure 6.2: LZ data in the short sweep time range and fitted effective gap. (a) Experimental
data (open markers) and exponential fits (dashed lines) to Pe versus TLZ. The maximum
sweep time included in the fit is determined adaptively, by first starting from 30 ns and
then increasing until the mean square loss of the fit exceeds 0.01. (b) The minimum gap
∆ versus x-bias flux Φx from spectroscopy (green triangle), LZ (orange dots) and circuit
model (blue line). Error bars in the LZ data represent standard error propagated from the
exponential decay fit error. The circuit model is a result of fitting spectroscopy data for a
range of Φx, Φz (not shown here). The black dashed line indicates the noise temperature,
which is assumed to be the base temperature of the dilution fridge, T = 20mK. The brown
horizontal band indicates the qubit energy splitting at the end of the LZ sweep.

range of 12 − 120MHz. This range of ∆ corresponds to a(n) (non-)adiabatic time scale
that approaches the lower and upper limit of the flux control bandwidth.

6.2.2 Long-time limit

After confirming the short-time behavior, we observe the dynamics at longer sweep times,
where coupling to the environment is expected to affect the LZ transition. We first discuss
the characterization of the environment. Measurement of the noise spectrum is done based
on its effect on qubit relaxation and dephasing at ∆/h ≳ 1GHz, where the weak coupling
limit holds. We find that the coherence is flux noise limited and can be explained by a noise
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power spectral density (PSD) consistent with previous work [48, 235, 290], where the noise
power varies to a good approximation as 1/f , with f the frequency, up to 1 GHz, combined
with quasi-ohmic noise at higher frequencies. Our noise measurements, which are sensitive
to the symmetrized noise power, combined with the assumption that the environment is in
thermal equilibrium at the fridge base temperature, allow us to write the quantum noise
PSD (unsymmetrized) as

Sλ(ω) = Sλ,1/f (ω) + Sλ,ohmic(ω), (6.3)

Sλ,1/f (ω) =
Aλω

|ω|α

[
1 + coth

(
βℏω
2

)]
and (6.4)

Sλ,ohmic(ω) = Bλω|ω|γ−1

[
1 + coth

(
βℏω
2

)]
, (6.5)

with λ ∈ {Φx,Φz}. Here β = 1/kBT is the inverse temperature and Aλ(Bλ) and α(γ)
characterize the strength and frequency dependence of the 1/f(quasi-ohmic) component
respectively1. Given the smaller noise power and coupling matrix elements of the Φx noise
for flux biases probed in the LZ measurement, we only consider Φz noise from here onward.

The measured final ground state probabilities Pg = 1 − Pe for different Φx are shown
in Figure 6.3(a,b), versus the full range of sweep time TLZ and the dimensionless time
τ = ∆2/ℏv, with ∆ being the predicted value from the circuit model. Analyzing the
dependence on both the actual time TLZ, and dimensionless time τ allows us to make
complementary observations about the changes in the effect of the environment as Φx, or
equivalently ∆, is tuned.

6.2.3 Master equations

The weak-coupling limit between the system and the environment is expected to apply
when the system-environment coupling strength is much smaller than the system’s own
energy scale, in this case, ∆. In the weak coupling limit, the adiabatic master equation
(AME) [77] can be applied, where the environment is in thermal equilibrium and does not
have memories of the system’s states in the past (Markovian environment). The dom-
inant environmental effects are thermal transitions and decoherence between the energy
eigenstates of the system. The AME-simulated final ground state probabilities are shown
in Figure 3(c,d). For large Φx, Pg increases non-monotonically with TLZ. This can be

1see Sec. 6.6 for details of the noise PSD definition and the noise parameters
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Figure 6.3: LZ data for the full range of Φx and sweep time, and comparison with simu-
lation. Final ground-state probability Pg versus the sweep time TLZ (top) and the dimen-
sionless sweep time τ = ∆2/ℏv (bottom), for (a, b) experimental data, (c,d) Adiabatic
master equation simulation (labeled as AME) results with nominal noise parameters and
(e,f) Polaron-transformed Redfield equation simulation with nominal noise parameters (la-
beled as PTRE) and 4 times larger MRT width W (labeled as PTRE 4W). All panels also
contain the coherent limit given by Pg = 1− PLZ.
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interpreted in terms of the competition between thermal excitation around the minimum
gap and relaxation after the minimum gap at intermediate and long time scales, as seen
in previous numerical studies of dissipative LZ [315, 319, 316]. As the total sweep time
increases, Pg first increases following the coherent limit, until the qubit has enough time
to thermalize around the minimum gap and Pg starts to decrease. Further increase of the
total sweep time allows the qubit to relax after crossing the minimum gap, increasing the
final ground state probabilities again. Since the instantaneous matrix element of the Φz

noise is proportional to ∆/
√
∆2 + ϵ(t)2, thermal relaxation after the minimum gap is only

significant at very long sweep times, and becomes very slow at smaller Φx.

Comparing the experimental data and AME simulation, we find qualitative agreement
at large Φx. The experimental data show smaller Pg local maxima, which could indicate
that the noise experienced by the qubit in LZ sweep is larger than the extrapolated noise
values based on qubit decoherence measurements. There is significant disagreement be-
tween the data and the AME simulation at smaller Φx. Looking at the TLZ dependence,
while the AME predicts Pg to nearly settle at 0.5, the experimental data shows Pg to
continue increasing with increasing sweep time. In fact, the experimental final ground
state probability Pg for different Φx crosses at long times and the highest Pg is obtained
at the lowest Φx. Furthermore, when looking at the τ dependence, it can be seen that for
τ ≫ 1, where relaxation after the gap is expected to dominate, the simulated Pg curves for
different Φx collapse onto the same τ dependence. This is contrasted with experimental
data, where the Pg curves shift left towards the coherent limit as Φx is reduced. These
signatures indicate that the weak-coupling limit breaks down as the minimum gap ∆ is
reduced.

To understand the data in the strong-coupling limit, the polaron-transformed mas-
ter equation (PTRE) is used [320, 318]. PTRE incorporates strong system-environment
coupling by transforming into the dressed polaron frame and treats the tunneling param-
eter ∆ perturbatively. The noise PSD in the polaron frame is separated into low- and
high-frequency components. Particularly, the low-frequency part is characterized by two
parameters,

W 2 = 2I2p

∫
dω

2π
S+
Φz ,1/f

(ω), and (6.6)

ϵp = 2I2p

∫
dω

2π

S−
Φz ,1/f

(ω)

ℏω
, (6.7)

which are known as the MRT width and reorganization energy respectively [308]. The

functions S
−(+)
Φz

are the (anti-) symmetrized low frequency Φz noise. The PTRE is expected
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to hold when the environment-induced dephasing is much larger than the qubit’s minimum
energy gap, or W ≫ ∆. By integrating the 1/f noise obtained from dephasing time
measurements, we obtain W/h ≈ 48 − 59MHz. Assuming the environment is in thermal
equilibrium, ϵp is related toW via the fluctuation-dissipation theorem ϵp = W 2/2kBT . The
result of PTRE simulations is shown in Figure 6.3(e,f). The final ground-state probability
Pg first increases with increasing sweep time, closely following the coherent LZ probabilities
until around Pg = 0.5 where it flattens. It is found through numerical experiments that
increasing W while keeping T unchanged, or equivalently increasing ϵp/W , brings the
PTRE results closer to the coherent LZ probabilities. Indeed, it has been demonstrated
previously that for a flux qubit strongly coupled to low-frequency noise, the LZ transition
probability recovers the coherent LZ probability when ϵp ≫ W [309].

In the experimental data, the transition probabilities approach the coherent limit as Φx

or ∆ is reduced, indicating a strong coupling between the qubit and the environment. At
the smallest Φx, the measured Pg does not flatten near 0.5, contrasting the PTRE prediction
with nominal noise values, but is closer to the PTRE prediction with larger MRT widthW .
This suggests that the noise seen by the qubit is larger than the integrated 1/f noise. This
is not entirely surprising, given that previous MRT measurements on superconducting flux
qubits also revealed larger W than the integrated power of 1/f flux noise (see Sec. 6.6).

6.2.4 Spin bath model for the crossover regime

To further understand the result in the crossover regime, we propose a hybrid noise model,
that incorporates both the high-frequency noise and the low-frequency noise through an
explicit spin bath. The spin bath is chosen because it is an appropriate physical model for
the underlying origin of low-frequency flux noise [321, 322, 140], although simplification
is needed for the simulation to be computationally feasible. Specifically, we consider Ns

spins coupled to the qubit via the interaction

HqS =
Ns∑
i

Jiσzτz,i, (6.8)

where τz,i is the i’th spin’s Pauli Z operator and Ji is its coupling strength to the qubit.
The bath spins do not have internal dynamics, but each of them is transversely coupled
to its own environment, at a temperature that we assume to be the same as the qubit’s
environment, T . This environment leads to thermal transitions between the spin states,
with depolarization rate γi. For appropriately chosen distribution of γi and Ji, the noise
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PSD due to the spins effectively represents the 1/f noise seen by the qubit in the chosen
frequency range (see Sec. 6.7 for details of the model).

The spin bath model is simulated using the AME, with the high-frequency noise defined
in the same as the single-qubit AME, and the parameters defining the spin bath are the
number of spins, the minimum and maximum depolarization rate γi of the spins, and the
target low-frequency noise amplitude. As a preliminary demonstration, we choose a model
with three spins, with uniform J , and γi distributed between 1−10 MHz to match a target
low frequency 1/fα flux noise. This range of γi is chosen such that they are lower than
the minimum qubit frequency, and therefore can be characterized as low-frequency noise,
but they are not too slow to the extent that they do not display any dynamics within
the LZ sweep time. As shown in Fig. 6.4, it is found that if the target low-frequency
noise amplitude is 8 times larger than the noise amplitude deduced from decoherence
measurements, corresponding to Ji/h = J/h = −0.09 GHz, the simulated ground state
probabilities versus sweep time at different Φx qualitatively matches the experimental
results, including the crossover regime. Specifically, for large Φx or ∆, the spin bath
simulation results display the non-monotonic dependence of ground state probability Pg

versus the dimensionless sweep time τ , and is almost indistinguishable from the single
qubit AME result. However, at smaller Φx or ∆, the spin bath simulation result displays a
monotonic increase of Pg with increasing sweep time τ , which is similar to the PTRE. The
spin bath simulation results also differ from both AME and PTRE in that the Pg curves
for different Φx at large τ do not collapse.

Further intuition about the spin bath model can be obtained by observing the evolution
of the polarization of the qubit and the spin bath during the LZ sweep. The collective effect
of the spins can be captured by the parameter

ϵSB = −
∑

Ji⟨τz,i⟩, (6.9)

which is the effective longitudinal bias applied by the spins on the qubit. In Fig. 6.4(d, e)
we show the evolution of the qubit polarization ⟨σz⟩ and the effective bias ϵSB for τ ∼ 10 at
two different X flux bias. It can be seen that for Φx = 0.225, the effective bias ϵSB changes
slowly after the qubit has tunneled. Therefore the spin bath presents negligible influence
on the qubit dynamics. For Φx = 0.185, the change in ϵSB almost overlaps with the changes
in qubit polarization ⟨σz⟩. This is because for the same dimensionless sweep time τ , the
depolarization rate of the spins becomes much shorter as compared to the tunneling time
of the qubit 2 as Φx or ∆ reduces. In other words, the spins quickly reorganize themselves

2This is roughly the adiabatic timescale, or the time required for the qubit to adiabatically transition
from one to the other persistent current/diabatic state
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to align with the new qubit polarization, due to their ferromagnetic interaction. This fast
change in ϵSB, together with its relatively large magnitude as compared to ∆, effectively
shifts the qubit away from the anti-crossing as soon as the qubit has tunneled to the
opposite polarization. Away from the anti-crossing, the qubit rarely experiences thermal
excitation, hence the non-monotonic Pg dependence disappears and Pg continues to increase
with sweep time as it has more time to complete the tunneling. If however the noise is
not strong and does not induce a large enough ϵSB to shift the qubit away from the anti-
crossing, thermalization excitation would still occur, and Pg would barely increase above
0.5, similar to the single-qubit AME when ∆ is small (see Sec. 6.7 for the simulation results
with weaker low-frequency noise).

6.3 Discussion

In summary, we experimentally characterized the LZ transition probability in a supercon-
ducting flux qubit with a wide range of sweep velocities v and minimum gap sizes ∆, and
we showed that the dominant physics of coupling to the environment shows a crossover
from weak coupling to high-frequency noise to strong coupling to low-frequency noise. We
found that for large gap ∆, the competition between adiabaticity and environment-induced
thermalization leads to non-monotonic dependence of the final ground state probability Pg

on sweep time, which can be reproduced by a weak-coupling model, the AME. However,
as ∆ becomes smaller, the non-monotonicity gradually disappears and Pg becomes closer
to the coherent LZ transition rate, which is consistent with a strong-coupling model, the
PTRE. These findings confirm previous analytical and numerical results on the dissipative
LZ dynamics in the weak- and strong-coupling limits.

We also explored a spin bath model that qualitatively reproduces the full range of ex-
perimental data. The spin bath model explicates that the crossover depends on the relative
timescale between the tunneling time of the qubit, and the time taken for the environment
to reorganize itself after the qubit has tunneled. At large ∆, the qubit tunneling time is
short and the low-frequency environment does not respond to, and hence has no impact
on the qubit dynamics. As ∆ decreases, the environment reorganization time becomes
comparable and eventually shorter than the qubit tunneling time. If coupling to the envi-
ronment is strong enough, the reorganized environment exerts a large effective bias which
shifts the qubit away from the symmetry point, preventing the qubit from thermalizing
near the anti-crossing.

The spin bath model presented in this chapter is still at a preliminary stage. The next
step would be to explore the parameters of the spin bath more systematically, including
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Figure 6.4: Simulation results of the spin bath model. (a) The energy spectra of the qubit
LZ transition with 3 spins ferromagnetically coupled to the qubit, versus the normalized
time s ∈ [0, 1], for Φx = 0.225. There are 4 distinct levels visible in the manifold of
the qubit being in the left state, corresponding to 0, 1, 2, and 3 spins aligned with the
qubit (with degeneracies of 1, 3, 3, and 1 respectively). Each of them anti cross with the
corresponding state in the manifold of the qubit being in the right state. Energy levels of
states with different numbers of aligned spins cross each other, as there is no matrix element
coupling them. (b) The symmetrized 1/fα flux noise PSD as measured by the decoherence
measurement (green dash-dotted line), the equivalent flux noise PSD generated by the
spins (blue solid line), calculated by summing the individual contribution using Eq. 6.40,
as well as the targeted noise PSD (orange dash line) that the spin bath is set to match,
which has 8 times larger magnitude than the measured. (c) The simulated final ground
state probabilities versus dimensionless sweep time τ , using the spin bath model with 3
spins targeting the noise PSD shown in (b). (d, e) The instantaneous evolution of the
qubit polarization and effective bias by the spin bath, versus the normalized time s, for
Φx = 0.185 and Φx = 0.225 respectively. Both plots correspond to τ ≈ 10 (see text for
discussion).
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the number of spins, the range of their polarization rates, and possibly different noise
temperatures for the low and high-frequency noise. Ideally, the spin bath model parameters
should be completely specified by the actual environment of the flux qubit, in terms of
the noise PSD, and other experimentally measured properties, such as the environment
polarization time [140]. This requires both further experimental characterization of the
noise properties over a wide range of frequencies, as well as expanding the simulation
capabilities.

The dissipative LZ transition studied here can be considered a toy model for dy-
namics in quantum annealing, where small gap anti-crossings between the lowest two
energy eigenstates are expected to play an important role [124, 82]. Our results thus
contribute to the understanding of the role of open system effects in a quantum an-
nealer [126, 127, 82, 323, 324]. In the weak-coupling limit, although thermal relaxation
helps the system to reach the ground state, the rate of this process is only proportional to
the minimum gap ∆, which is expected to close for hard annealing problems. On the other
hand, remaining in the strong coupling limit is not necessarily detrimental, as the experi-
mental data and PTRE simulation show a counter-intuitive result that higher ground state
probabilities can be achieved in the intermediate to strong coupling limit, as compared to
the weak-coupling limit, when ϵp/W is large enough. It should be noted that coupling to
classical noise gives ϵp = 0, which would limit the maximum Pg to 0.5.

We expect future work employing more complex annealing protocols, such as those in-
volving repeated LZ transitions or locally adiabatic annealing schedule [10] could build on
the understanding developed here and reveal more information about the qubit environ-
ment. It would be interesting to see if there is a general relationship between the annealing
rate and the relevant environmental noise. An optimistic outcome would be the discovery
of annealing protocols similar to dynamical decoupling, which have been extensively used
in GMQC to reduce the impact of low-frequency noise. Another interesting direction is
engineered environment. For the simple LZ problem, it is known that transverse coupling
to low-temperature noise could enhance the ground state probability beyond the limit
posed by adiabaticity [325]. To implement this idea for an annealer, the generalization of
transverse noise needs to be developed for multi-qubit cases, and the enhancement needs
to be verified in the presence of strong low-frequency noise, as is the case studied here.
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6.4 Methods

6.4.1 Qubit control and readout

The qubit x, z flux biases are each controlled using on-chip flux bias lines, with current
supplied by a DC voltage source and a fast AWG. The DC source has a stronger coupling
to the qubit loops to achieve flux biasing of more than a flux quantum. The AWG has
weaker coupling to the flux biases, corresponding to a bias range of about 100 mΦ0, where
Φ0 is the flux quantum.

Before the LZ sweep, the qubit needs to be prepared in its ground state. Passive cooling
is not possible when the tunneling barrier between persistent current states is large. We
use a cooling protocol similar to that demonstrated in Ref. [326]. Using the large tunneling
amplitude between the ground state of the higher well and the excited state of the opposite
well, residual excited populations can be adiabatically transferred to the lower well and
the system quickly relaxes to the ground state. Additional details of the energy spectrum
and this cooling method are discussed in Sec. 6.5.5.

The qubit state is read by measuring the state-dependent transmission through the
tunable resonator. When doing spectroscopy and coherence measurements, the resonator
is biased at a flux-insensitive position (0 flux in the SQUID), and readout is in the qubit
energy eigenbasis, due to dispersive interaction between the qubit and resonator. During
the LZ measurement, the resonator is biased at a flux-sensitive position (−0.15 Φ0 flux
in the SQUID), which allows measuring the qubit’s persistent current states. Since the
readout point of the LZ experiment is far from the qubit’s symmetry point, the persistent
current basis and energy eigenbasis of the qubit nearly coincide, with more than 99%
overlap, and we do not distinguish the two bases at the readout point.

6.4.2 Master equation simulation

The master equation simulations were performed using HOQST, a Julia package for open
system dynamics with time-dependent Hamiltonians [320]. The simulation takes the qubit
Hamiltonian in Eq. (6.2), with Ip,∆ given by the circuit model. The qubit-bath interaction
considered is

Hint = −Ipσz ⊗Q, (6.10)

where σz acts on the qubit and Q acts on the environment degrees of freedom which causes
the qubit z loop flux noise.
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The AME is a time-dependent version of the frequency form Redfield equation. Al-
though a rigorous upper bound on the error of the AME is only small in the adiabatic
limit [327], it is likely that the error is still small in the non-adiabatic limit, as shown in
previous literature where the master equation results are compared to numerically exact
path integral based simulation results [319, 316]. Specifically, the form used in this work
is the one-sided AME that first appeared in [77], given by

ρ̇q(t) = − i

ℏ
[Hq(t), ρq(t)]

+
1

ℏ2
∑
ω

ΓΦz(ω) [Lω(t)ρq, Ipσz] + h.c.,

where ρq is the reduced density matrix of the qubit,

ΓΦz(ω) =
1

2
SΦz(ω) + iγΦz(ω) (6.11)

γΦz(ω) =
1

2π

∫ ∞

−∞
SΦz(ω

′)P
(

1

ω − ω′

)
dω′, (6.12)

with P denoting the Cauchy principal value3. The operators Lω are given by

Lω(t) =
∑

Eβ−Eα=ω

⟨α(t)|Ipσz|β(t)⟩|α(t)⟩⟨β(t)|, (6.13)

where Eα(β) and |α(β)⟩ are the system’s instantaneous energy eigenvalues and eigenstates,
and α, β ∈ {g, e}.

The PTRE is a model that accounts for strong system-environment coupling and has
been found to explain experimental data in quantum annealers coupled strongly to low-
frequency noise [309, 318]. The form of PTRE we use here has Lindblad form, given
by

˙̃ρq(t) = − i

ℏ
[H̃q(t), ρ̃q(t)]

+
1

ℏ2
∑
ω,λ

S̃(ω)

[
L̃ω,λρ̃qL̃

†
ω,λ −

1

2

{
L̃†
ω,λL̃ω,λ, ρ̃q

}]
,

3Note the notations for real and imaginary components of the Fourier transform of the noise correlation
function change from the those presented in Chapter 2.2. This is to stay in line with the experimental
convention of using S to denote noise PSD.
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where tilde is used to denote operators in the polaron frame. Specifically,

H̃q = −Ip(Φz − Φsym
z )σz, (6.14)

L̃ω,λ∈{+,−} =
∆

2

∑
Ei−Ej=ℏω

⟨i|σλ|j⟩|i⟩⟨j|, (6.15)

where σ+(−) are the qubit Pauli raising and lowering operators and i, j ∈ {0, 1} are the
qubit persistent current state index. The low- and high-frequency parts of the noise give
a convolutional form for the PSD in the polaron frame

S̃(ω) =

∫
dω′

2π
GL(ω − ω′)GH(ω

′), (6.16)

where GL and GH are contributions from the low- and high-frequency noise respectively,
given by

GL(ω) =

√
2πℏ2
W 2

exp

[
−(ℏω − ϵp)

2

2ℏ2W 2

]
(6.17)

GH(ω) =
4SΦz ,ohmic(ω)I

2
p/ℏ2

ω2 + 4[SΦz ,ohmic(0)/ℏ2]2I4p
. (6.18)

6.5 Additional details on the experiment

6.5.1 Crosstalk calibration

DC flux crosstalk between different bias lines and flux loops is calibrated using the CISCIQi
method developed in Ref. [239]. We first measure the flux bias dependent resonator spec-
trum and the crosstalk into the resonator from other bias lines. This allows us to fix the
resonator bias to measure the qubit-bias-dependent transmission through the resonator.
The procedure is iterated a few times until the crosstalk is compensated to within 1mΦ0

accuracy. The full crosstalk matrix is shown in Figure 6.5(a).

Crosstalk from the fast pulses sent to the qubit z loop to other loops is not compensated
due to bandwidth limitations on other bias lines. For the small pulse amplitude used
for the LZ sweep, reaching up to 10mΦ0, the induced flux on the x, r loop should be
inconsequential.
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6.5.2 Circuit model

The device used in this experiment consists of a capacitively-shunted flux qubit coupled
to a tunable rf-SQUID terminated resonator. The coupling between these two circuits
is done via the mutual inductance between the qubit z loop and the rf-SQUID loop. A
lumped element representation of the qubit and resonator circuit is shown in Figure 6.5(b).
The qubit eigenstates and eigenvalues are obtained using the numerical tools developed in
Ref. [240]. The circuit persistent current Ip and gap ∆ were verified experimentally via
qubit spectroscopy, as shown in Figure 6.5(c). The simulated Ip and ∆ values are plotted
as a function of Φx in Figure 6.5(d).

The parameters of the resonator rf-SQUID were determined by fitting the experimental
values of the resonator frequency versus resonator flux bias Φr, shown in Figure 6.6(a).
The resonator model allows for the extraction of the value of the screening current in the
rf-SQUID, which was used to determine the shift in the symmetry point of the qubit,
induced by the rf-SQUID when biased away from zero. In order to confirm this value
experimentally, spectroscopy curves were taken at a fixed value of Φx at two different
values of resonator bias Φr at zero and -0.15, the value used for persistent current readout.
The two spectroscopy curves are shown in Figure 6.6(b). The circuit parameters are
summarized in Table 6.1.

6.5.3 Fast flux line coupling characterization

As described in Section C, fast voltage pulses are applied to the qubit z loop via a bias tee
in order to control the flux bias of the qubit during the LZ sweep. In order to determine
the transfer function between the voltage of the AWG and the flux fed to the qubit loop,
a procedure using Ramsey interferometry was used.

The protocol is shown in Figure 6.7(a). Two π/2 pulses are applied using the capac-
itively coupled waveguide, separated by the time τdelay. During the interval between the
two π/2 pulses, a trapezoidal flux pulse with 1 ns rise and fall time is applied to the z
loop of the qubit. This flux pulse adiabatically changes the qubit frequency, depending on
the pulse amplitude and duration, which induces an additional phase for the superposition
created by the first π/2 pulse, inducing an oscillation whose period depends on the flux
amplitude. An example is shown in Figure 6.7(b) for the case of no flux pulse applied (i.e.
pure Ramsey with no detuning) and with a 60 mV pulse applied.

The above sequence is repeated at a range of pulse amplitudes such that the detuning
varied between approximately from 0 to 60 MHz. This detuning versus flux pulse am-
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Lr 16.4pH
Ll 16.4pH
Lz 799.8pH
Icr 77.6nA
Icl 89.1nA
Ic1 244.7nA
Ic2 244.7nA
Ccd 0.4fF
Cad 3.6fF
Cac 0.04fF
Cab 14.2fF
Cgd 44.1fF
Cgc 0.2fF
Cga 141.4fF
Cgb 90.0fF

SQUID inductance Ls 238.7pH
SQUID junction Is 1187nA
resonator length lr 3.364mm

Mutual between qubit and SQUID M 60.3pH

Table 6.1: Best fit circuit parameter values for the qubit and resonator circuits.
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Figure 6.5: a) Matrix of mutual inductances between on-chip bias lines and flux loops. b)
Circuit diagram for the qubit and coupler. c) Experimentally measured qubit transition
frequency and simulated qubit transition frequencies for the best-fit parameters, as a func-
tion of the biases Φx and Φz, and comparison with experiment. Filled symbols (solid lines)
correspond to the experimentally obtained (simulated) transition frequencies between the
ground and the first excited state. Open symbols (dashed lines) correspond to the ex-
perimental (simulated) transition frequencies between the ground and the second excited
state. d) Simulated minimum gap (left axis, solid curve) and persistent current (right axis,
dashed curve) values as a function of the bias Φx.
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Figure 6.6: a) Readout resonator resonance frequency vs bias: experiment (solid points)
and simulation with best-fit parameters (solid line). b) Experimentally measured shift of
the qubit z symmetry point due to the SQUID screening current. Solid symbols correspond
to qubit frequencies determined from spectroscopy, and dashed lines correspond to a fit
using a two-level system anticrossing relation.
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Figure 6.7: Bias line characterization using a Ramsey protocol. a) Pulse sequence for
Ramsey measurements. The qubit is initialized in a superposition using a π/2 pulse,
then a flux pulse applied to the qubit Z bias adiabatically detunes the qubit away from the
symmetry point. The spacing between the two π/2 pulses τdelay equal to the pulse duration
τflux plus the rise and fall times. The qubit acquires a phase dependent on the amplitude
and duration of the pulse. b) Ramsey oscillation curves with Vz = 0 and 60 mV. c) Fitted
detuning as a function of pulse amplitude.

plitude is shown in Figure 6.7(c). Combining the detuning and the drive frequency gives
the effective qubit frequency during the delay time in the Ramsey sequence. Comparing
the qubit frequency versus flux pulse amplitudes allows us to deduce the voltage-to-flux
conversion for the fast flux line.

6.5.4 Fast flux line pulse distortion characterization

During the LZ measurement sequence, time-dependent flux pulses are applied to the qubit
via a bias tee, as discussed in Sections C and 6.5.3. As the experiment involved the
application of long pulses (duration > 1 µs), we characterize the transmission of the AC
port of the bias tee to check for possible frequency-dependent attenuation effects that
would distort the pulse shape.

In order to check for distortion effects, we used an experimental protocol based on a
Ramsey sequence, shown in Figure 6.8(a). Two microwave π/2 pulses are applied with a
fixed delay time τdelay. The delay time is chosen to correspond to the inflection point of one
of the Ramsey oscillations, so that the readout signal is maximally sensitive, and responds
linearly to changes in qubit frequency and hence the flux pulse amplitude. The spacing
between the Ramsey sequence and readout is fixed. In addition, a square pulse from Φz
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a) b)

Figure 6.8: Characterization of pulse distortion from the bias tee. a) Schematic of Ramsey-
based sequence used to quantify the pulse distortion. b) Readout voltage as a function of
pulse duration τflux. The flat profile of the readout voltages out to several tens of µs shows
that the bias tee negligibly distorts the pulse shape.

fast line is applied with duration τflux. The position of the rising edge of the square pulse
is varied, spanning a range of times relative to the Ramsey pulses, from the rising edge
following the first π/2 pulse to preceding the first π/2 pulse. This is done by increasing
τflux while keeping the falling edge and the Ramsey pulses at a fixed position relative to
the readout pulse.

The readout signal as a function of pulse duration is shown in Figure 6.8(b) for several
values of pulse amplitudes. For short pulse duration, the pulse starts after the Ramsey
sequence and does not change the readout signal. As the pulse duration increases, the
leading edge of the pulse moves past the second and then the first π/2 pulse. The flux pulse
experienced by the qubit in between the two π/2 pulses changes the phase of the Ramsey
oscillation, causing a sharp change in the measured signal, with a width corresponding to
τdelay. The Ramsey signal shown in Figure 6.8(b) is flat up to a pulse duration as long as
30 µs, indicating that the pulse is negligibly distorted at these time scales.

6.5.5 State preparation and readout calibration

In this section, we describe the protocol for preparing the qubit in its ground state and the
method for calibrating the readout voltage to obtain the state populations.

The qubit can in general be prepared in the ground state by waiting long enough.
However, for some of the small gap ∆ values used in the Landau- Zener experiments, the
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Figure 6.9: Energy Spectrum of the qubit circuit at Φx = 0.185Φ0, with close up of the 01
and 12 anticrossing

transition rate between the ground states of the two wells is very slow. Therefore, to
prepare the qubit in the ground state before the LZ measurements, we use a sideband
cooling method similar to that used in Ref. [326] A plot of the qubit energy levels is shown
in Figure 6.9. The qubit is prepared in its ground state at a bias about Φz−Φz,sym ≈ 0.005
away from the symmetry point, as follows. A sinusoidal pulse is applied which, on its
positive side, sweeps the qubit further away from the symmetry point and past the anti-
crossing between the first and second excited states. Prior to this sinusoidal pulse, the
qubit is in a mixture of the ground and excited states. Due to the larger anti-crossing
between the higher levels, the excited state can be adiabatically transferred into the same
well as the ground state, which allows fast relaxation back to the ground state. By repeated
sweeping across the anti-crossing between the first and second excited state, it is possible
to prepare the qubit in the ground state. In our experiments, the qubit was cycled 5-10
times in order to prepare the ground state prior to the LZ sweep.

Next, we discuss the calibration of the readout signal. Given a fixed readout frequency,
the transmission measured is given by a complex number Vg(Ve) for the qubit at the
ground (excited) state. For a qubit in the mixed state, the readout voltage is given by
V = Vg +Pe(Ve −Vg) where we assume populations beyond the qubit states are negligible.
Therefore to obtain the qubit excited state population we need to obtain Vg and Ve.
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For the LZ measurements, Vg and Ve are calibrated at each Φx. To measure Vg we
prepare the qubit in the ground state at the readout point (at the end of the LZ sweep)
using the cooling procedure discussed above. To measure Ve, we prepare the qubit in the
excited state by preparation in the ground state at the opposite side of the symmetry point,
followed by a fast, 1 ns long, LZ sweep through the minimum gap. Taking the qubit model
parameters and the coherent LZ formula, a 1 ns LZ is expected to lead to a final excited
state probability larger than 99% for even the largest ∆ measured in our experiments.

6.6 Additional details on noise parameters and mas-

ter equation simulation

In this section, we discuss the noise model used in the master equation simulation. We first
introduce the general form of noise and then discuss some specificities regarding including
them in the adiabatic master equation (AME) and polaron-transformed Redfield equation
(PTRE). For reference, we also provide a comparison of the noise parameters used in this
work with noises measured in three other flux-qubit-based quantum annealing devices, as
summarized in Table 6.2.

As the qubit circuit has relatively large flux loops, we assume the flux noise in the
qubit x and z loops are the dominant sources of noise. The noises lead to fluctuation in
the circuit Hamiltonian via

δHc(Φz,Φx) =
∑

λ∈{Φz ,Φx}

∂Hc

∂λ
δλ. (6.19)

In particular for λ = Φz, in the two level approximation ∂Hc

∂Φz
= −Ipσz. Note here when the

noise source is quantum, δλ is a quantum operator of the environment.

The noise power spectral density (PSD) due to δλ is given by the Fourier transform of
its auto-correlation function,

Sλ(ω) =

∫ ∞

−∞
dτeiωτ ⟨δλ(τ)δλ(0)⟩. (6.20)

Various previous measurements have shown that flux noise has roughly 1/f dependence,
with f being frequency, up to around 1GHz, and then a quasi-ohmic spectrum at higher
frequencies [48, 235, 290]. Furthermore, we follow Ref. [235] to consider a quantum noise
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PSD with the positive and negative frequency components related by a phenomenological
thermodynamic model. These considerations lead to the noise PSD given by

Sλ = Sλ,1/f + Sλ,ohmic (6.21)

Sλ,1/f =
Aλω

|ω|α

[
1 + coth

(
βℏω
2

)]
, (6.22)

Sλ,ohmic = Bλω|ω|γ−1

[
1 + coth

(
βℏω
2

)]
, (6.23)

where β = 1/kBT is the inverse temperature, Aλ, Bλ determines the noise strength and
α, γ determine the frequency dependence. For 1/f noise, α = 1 and for ohmic noise γ = 1.
The temperature is assumed to be the base temperature of the fridge, T = 20mK.

The parameters of 1/f noise are obtained by measuring the flux bias dependent Ramsey
dephasing times. The Ramsey dephasing time probes symmetrized 1/f noise in the low-
frequency limit, satisfying ℏω ≪ kBT . In this limit, we have

S+
λ,1/f (ω) =

1

2

(
Sλ,1/f (ω) + Sλ,1/f (−ω)

)
(6.24)

≈ Aλω

|ω|α
2

ℏωβ
(6.25)

= A∗
λ

(
2π

|ω|

)α

, (6.26)

where we defined A∗
λ = 2Aλ/[ℏβ(2π)α] to relate to the more commonly used expression for

1/f flux noise, used in for example Ref. [161]. Given the similarity between our device and
the device used in Ref. [161], we assume α = 0.91 and found A∗

Φz
= (8.7× 10−6)

2
Φ2

0/Hz,

A∗
Φx

= (5.× 10−6)
2
Φ2

0/Hz fits the measured Ramsey dephasing time best 4.

The quasi-ohmic component of the flux noise mainly contributes to qubit relaxation. It
is more difficult to give a quantitative estimate of the quasi-ohmic noise power as it leads to
similar flux bias dependence of relaxation rates as other noise sources, such as ohmic charge
noise [48, 235]. For this reason, we use the reported ohmic noise strength measured in
Ref. [235] and scale it according to the ratio of the 1/f noise strength at 1Hz between the two
devices. This gives γ = 1 and BΦz ≈ 1.3× 10−30Φ2

0/Hz
2, BΦx ≈ 4.1× 10−31Φ2

0/Hz
2. These

4Note that we used α = 0.91 here but assumed α = 1 in Chapter 5, and the corresponding fitted noise
amplitudes differ. This might appear contradictory, but the essential features of the LZ simulation are not
expected to change based on the exact frequency dependence
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This work Quintana et. al 5 DWave CJJ qubit 6 DWave CCJJ qubit 7

A∗
Φz

(Φ2
0/Hz) (8.7× 10−6)2 ∼ (5× 10−6)2/2 (1.3× 10−6)2/2
α 0.91 0.96− 1.05 0.95

Ip(µA) 0.104− 0.129 ∼ 0.5 ∼ 1.0
W/h(predicted)(GHz) 0.048− 0.059 ∼ 0.16 0.05
W/h(measured)(GHz) ∼ 0.25 2.6 1.4

Teff(mK)8 20 20 21 53
ηg29 6.8× 10−6 ∼ 5× 10−5 ∼ 0.065[290]

Table 6.2: Comparison of noise parameters used for simulation in this work and other work
using flux qubits for quantum annealing.

values give reasonable agreement with the qubit T1 relaxation times we have measured. In
Table 6.2, we also provide these numbers in terms of the dimensionless coupling constant
η that is often discussed in spin-boson literature. We also want to note that the simulation
result is largely unchanged if the ohmic component of the noise spectrum is not included.

6.6.1 Effect of X-noise coupling

In the master equation simulations, noise from Φx is not included. This is justified based
on three considerations. Firstly, the noise power of Φx is less than half the noise power in
Φz. Secondly, as plotted in Figure. 6.10, the matrix elements of the flux operators between
the circuit energy eigenstates ⟨α|∂H/∂Φx|β⟩ is smaller than ⟨α|∂H/∂Φz|β⟩ by a factor
of 50. Finally, Φx noise only primarily leads to transverse noise assuming small Φx and
small x loop junction asymmetry. Previous studies suggested that for transverse noise to
have similar dissipative effects, its coupling strength needs to be at least about 1/10 of the
longitudinal noise [325]; this condition is far from being satisfied in our case.

5The numbers are based on Ref. [235].
6The numbers are based on Ref. [309] where the LZ experiment is performed.
7The numbers are based on Refs. [203, 290].
8This is the effective temperature that describes the MRT data assuming low-frequency noise is at

thermal equilibrium.
9ηg2 is defined such that, the system bath coupling is given as gA⊗B, where A,B are norm-1 system

and bath operators respectively and the noise PSD of B is given as S(ω) = 2πηℏ2ω exp(−|ω|/ωc)
1−exp(−βℏω) . See for

example Ref. [77] for more details.
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Figure 6.10: Matrix elements for the x and z flux biases
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6.6.2 Adiabatic master equation (AME)

In order to implement in AME the noise PSD in Eq. (6.21), additional low- and high-
frequency cutoffs ωl and ωh are added to avoid divergence. This introduces SAME

Φz
, the PSD

used in AME simulations, defined as

SAME
Φz

=

SΦz ,1/f(ω) exp
(

−|ω|
ωh

)
+ SΦz ,ohmic(ω) exp

(
−|ω|
ωh

)
|ω| > ωl

SΦz ,1/f(ωl) exp
(

−|ωl|
ωh

)
+ SΦz ,ohmic(ω) exp

(
−|ω|
ωh

)
|ω| ≤ ωl.

(6.27)

The high-frequency cutoff is chosen to be ωh/2π = 10GHz, which is roughly the charac-
teristic oscillation frequency in either of the qubit potential wells. For the low-frequency
cutoff, given that we are primarily concerned with thermalization effects, we choose ωl/2π=
10MHz, which corresponds to the minimum qubit frequency for the LZ measurement pre-
sented in this work.

6.6.3 Polaron-transformed master equation (PTRE)

In the PTRE simulation, the noise model consists of an ohmic noise just as in AME, and
the 1/f noise is represented by the MRT parameters W and ϵp [308]. The MRT width W
characterizes the integrated effect of the symmetrized low-frequency noise,

W 2 = 2I2p

∫ ωhigh

ωlow

dω

2π
S+
Φz ,1/f

(ω). (6.28)

The anti-symmetrized low frequency noise S−
Φz ,1/f

(ω) = 1/2(SΦz ,1/f(ω) − SΦz ,1/f(−ω))
gives the reorganization energy ϵp

ϵp = 2I2p

∫ ωhigh

ωlow

dω

2π

S−
Φz ,1/f

(ω)

ℏω
. (6.29)

For the integration limit, we choose ωlow/2π = 4Hz based on the experiment time taken for
all the repetitions at each Φx and TLZ, and ωhigh/2π = 10GHz based on the characteristic
oscillation frequency in the qubit potential wells. We assume that the low-frequency noise
is in thermal equilibrium, which relates W and ϵp via the fluctuation-dissipation theorem,
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Figure 6.11: Final ground state probabilities versus the dimensionless sweep time τ =
∆2/ℏv for different PTRE parameters.

W 2 = 2kBTϵp. We also note that 1/f noise has a significant contribution to the noise
power at high frequency, up to around 1GHz. This contribution breaks the normalization
condition for the high-frequency noise in the current numerical implementation of PTRE
(see discussion around Eq. [16] of Ref. [318]). The effect of the high-frequency component
of 1/f noise in the strong coupling limit is to be explored in future work.

As discussed in Sec. 6.2, the values of W or T need to be adjusted for better agreement
between PTRE simulation and the experiment data at low Φx. The results are shown in
Figure 6.11. Interestingly, it is found that increasing W by 4(8) times is equivalent to
decreasing T by 4(8) times. This indicates that the ratio ϵ/W is most critical to the result,
with increasing ϵp/W leading to closer to the coherent limit of the ground state population.

6.6.4 Symmetric versus asymmetric LZ Sweep

As discussed in Section 6.5.2, the screening current in the rf-SQUID leads to an effective
bias to the qubit z loop. Due to an initial inaccurate estimation of this effect, the LZ
data presented in Sec. 6.2 has an asymmetric scan range, with initial and final z loop
bias being Φz,init = −3.1 × 10−3Φ0 and Φz,final = 6.9 × 10−3Φ0. This was later identified
via the spectroscopy method mentioned in Section 6.5.2, but leaving insufficient time to
repeat the full range of LZ experiments. However, with this asymmetric scan range, the
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Figure 6.12: Final ground state probabilities comparing the symmetric and asymmetric
sweep around Φz symmetry point, for experiment data on the left panel, AME simulation
on the center panel and PTRE simulation on the right panel. The simulated results use
the nominal noise parameters discussed in Sec. 6.6 and the symmetric and asymmetric
sweep overlap. The experiment data presented in Sec. 6.2 is asymmetric in range and the
simulated data is symmetric in range.

validity of the LZ model is not affected, since the initial and final longitudinal fields are
still much larger than the tunneling amplitude. In Figure 6.12, we compare the measured
and simulated results for symmetric and asymmetric Φz sweep range. The experiment
data show some differences but the qualitative features discussed in Sec. 6.2 remain the
same. In particular, the symmetric data also show that as Φx decreases, Pg becomes closer
to the coherent limit behavior. The simulated results using either AME or PTRE for the
symmetric and asymmetric sweep range do not differ significantly.

6.7 Additional details on the spin bath model

Given the Markovian master equations, AME and PTRE failed to capture the crossover
from the weak to strong coupling limit in the experiment data, it is natural to ask whether
this crossover can be captured by simulating the experiment incorporating an explicit
quantum environment. The spin bath is a natural choice for this quantum environment.
First, the dominant noise in the experiment, 1/f flux noise, has long been thought to
originate from either clusters of coupled spins or randomly distributed two-level systems,
which are also essentially spins. Second, spins ferromagnetically coupled to the qubit offer
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an intuitive picture of the MRT phenomenon, a canonical example of the strong coupling
limit. The non-zero expectation of the spins’ polarization acts as an environmental bias to
the qubit, resembling the reorganization energy in MRT. Fluctuations of this polarization
due to the internal dynamics of the spins effectively dephase and broaden the longitudinal
bias seen by the qubit, analogous to the MRT width.

6.7.1 Single spin

The simplest toy model for a quantum environment coupled to the system is a single
spin ferromagnetically coupled to the system qubit, with an additional bath that causes
depolarization of the spin. This system can be described by the Hamiltonian

H = Hq +Hqb +HqS +HSB +HS +Hb +HB, (6.30)

Hqb = IpσzQΦz , (6.31)

HqS = Jσzτz, (6.32)

HS = 0, (6.33)

HSB = τxQ
′, (6.34)

SQΦz
(ω) = SAME

Φz
(ω) and (6.35)

SQ′(ω) = ℏ2λ
1

1 + exp (−βℏω)
exp

(
− ω

ωc

)
, (6.36)

where Ns is the total number of spins in the bath. The model Hamiltonian is understood
as follows. First, the high-frequency, Markovian part of the noise is captured by the noise
PSD used in the previous AME simulation. On top of this, a single spin is added to capture
the effect of a strong low-frequency noise. The qubit is ferromagnetically coupled to the
spin with coupling strength J . The environmental spin does not have internal dynamics,
but it is transversely coupled to its own environment. This environment is nearly a white
noise, but with the induced relaxation and excitation rate of the spin satisfying detailed
balance. The strength of this noise λ is essentially the depolarization rate of the spin, in the
limit where the qubit-spin coupling approaches zero. Similar to the noise PSD describing
the environment of the qubit, the noise PSD for the environment of the spin also has an
exponential cutoff, the role of which is essentially to ensure numerical convergence.

Next, assuming the temperature and the cutoff frequency of the spin’s environment
are the same as the qubit’s environment, there are only two parameters to the model, the
coupling strength J and the free spin depolarization rate λ. We numerically simulate the LZ
experiment with the above model, initializing the system in the ground state (initialization
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Figure 6.13: Final ground state probabilities versus the dimensionless sweep time τ ,
using the single spin bath model (see text). Parameters for the single spin are λ =
0.0001, 0.001, 0.01 GHz from left to right and J/h = 0.1(1.0) GHz on the top(bottom).

in the thermal state doesn’t give significant changes to the result). The result is shown in
Fig. 6.13, with a range of J and λ taken in geometric steps. It can be seen that for small J
and λ, the result of the single spin bath model is almost the same as the qubit AME result.
This can be understood from two perspectives. First, small λ corresponds to the spin being
nearly coherent and has no dynamics. Therefore its effect is to merely shift the location
of the anticrossing to ϵ + 2J = 0. Second, for small J , the thermal equilibrium state of
the spin always has its polarization ⟨τz⟩ ≈ 0, irrespective of the qubit state. Therefore it
has a negligible impact on the qubit. As λ and J increase the spin bath model predicts
a behavior that closely resembles the experimental data. For large Φx, the single spin
bath model simulated ground state probably has a non-monotonic dependence versus LZ
sweep time, but as Φx decreases, the dependence becomes monotonic and approaches the
coherent limit. Among the parameters simulated, there is a good qualitative agreement
between the simulated and experiment data for λ = 0.001 GHz and J/h = 1.0 GHz.

Further insight into the model can be obtained by looking at the instantaneous state
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Figure 6.14: Evolution of the instantaneous qubit and spin states as a function of the
normalized time s ∈ [0, 1], for different parameters of the qubit and the spin.

probabilities, which are shown in Fig. 6.14. First, when λ is small (Fig. 6.13(a)), the spin
is nearly coherent and simply adds an additional bias J to the qubit. This effectively shifts
the position of the anti-crossing seen by the qubit, but does not change the final ground
state probabilities, as long as J is well within the initial and final Z bias of the qubit. For
small J such that β|J | ≪ 1(Fig. 6.13(b)), the thermal average of the spin’s polarization is
almost always close to zero, regardless of the state of the qubit, or the depolarization rate
λ, Therefore the spin has a negligible effect on the qubit.

Finally, for βJ ≳ 1, a qualitative difference arises for small and large ∆. When ∆ is
large (Fig. 6.13(c)), the qubit completes the tunneling before the spin has time to re-align
with the qubit. Therefore the qubit sees a static effective bias due to the spin, which
allows thermalization to happen across the energy eigenstates of the qubit near the anti-
crossing. This leads to a local minimum of ground state probability Pg ≈ 0.5 as sweep
time increases. However, when ∆ is small (Fig. 6.13(d)), the spin quickly relaxes to the
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opposite state, following the qubit. After the spin has relaxed, the qubit effectively sees a
Z bias of −2J , which suppresses thermalization induced by the qubit’s own environment.
Therefore for small ∆, as the sweep time increases, ground state probability no longer has
a local minimum around 0.5.

6.7.2 Multiple spins

A general spin bath has a large parameter space, such as the distribution of their longitu-
dinal and transverse fields, the distribution of couplings among them, and the distribution
of couplings of them to their respective environments. While some of these parameters
can be motivated based on plausible models of flux noise, these models often assume a
macroscopic number of spins, and it is not clear whether they have an efficient numerical
representation [321, 322]. Given this complexity, we leave it as future work to systemati-
cally explore the parameters of the spin bath and its relation to the physical 1/f flux noise.
In this work, we adopt a simplified approach which can be seen as a quantum extension of
simulating classical 1/f noise with two-level fluctuators [328].

In the multi-spin model, the Hamiltonian changes from the single-spin model by making
the changes given by

HqS =
Ns∑
i

Jiσzτz,i, (6.37)

HSB =
Ns∑
i

τx,iQ
′
i, and (6.38)

SQ′
i
(ω) = ℏ2λi

1

1 + exp (−βℏω)
exp

(
− ω

ωc

)
. (6.39)

The spin bath parameters Ji and λi can be chosen based on the measured 1/f flux noise
strength. To see this, we first consider the large Ns, weak coupling limit, where the effect
of the spin bath can be well captured by the noise PSD. Following Refs. [321, 329], the
symmetrized noise PSD of the i’th spin is

Si(ω) = (1− ⟨τi⟩)
2γiJ

2
i

ω2 + γ2i
, (6.40)

where ⟨τi⟩ is the expectation value of spin i’s longitudinal polarization, and γi is its depo-
larization rate. In general, the expectation value and the depolarization rate depend on
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the instantaneous qubit Hamiltonian. However, for a small enough coupling between the
qubit and the spin, the effect of the qubit on the spin is an effective longitudinal bias with
strength, −Ji⟨σz⟩/2. In this case, the expectation value and the depolarization rate are

⟨τi⟩ = tanh (β⟨σz⟩Ji), (6.41)

γi = λi exp (−β|Ji|⟨σz⟩) . (6.42)

Then to obtain 1/f like noise with exponent α, we assume that the distribution of λ for all
the spins is given by

Pλ(λ) =
1

Nλ

1

λα
, (6.43)

Nλ =

(
1

−α + 1

)(
λ−α+1
max − λ−α+1

min

)
, (6.44)

where λmin, λmax can be chosen based on the frequency range of the noise PSD that we are
interested in simulating. For simplicity, we also assume that the ferromagnetic coupling is
constant for all spins, Ji = J . Then the collective noise PSD of the spin bath is

SS(ω) = Ns(1− ⟨τ⟩)
∫ λmax

λmin

Pλ(λ)
2γi(λ)J

2

ω2 + γ2(λ)
(6.45)

= (1− ⟨τ⟩)NsJ
2

Nλ

cα−1 1

ωα
I (6.46)

where we have introduced

⟨τ⟩ = tanh (β⟨σz⟩Ji) (6.47)

c = exp(−β|Ji|) (6.48)

I =

∫ cλmax/ω

cλmin/ω

x1−α

1 + x2
dx, (6.49)

and x = cλ. We can notice that for βJ −→ 0, the J dependence of the noise PSD primarily
comes from the J2 term. This allows us to set J based on the measured flux noise power.
Comparing SS(ω) with the symmetrized flux noise power we have

J =

√
A∗

Φz
Nλ

INs

Ip. (6.50)

In the above expression, the integral I can evaluate at a typical ω in between λmax and
λmin, and it is always close to 1.
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To confirm the intuition that the spin bath captures the MRT parameters, we can
compare the following two expressions. First, from the fluctuation-dissipation theorem
and the definition of MRT width using symmetrized noise PSD in Eq. 6.28, we have

ϵp =
β

2
W 2 (6.51)

= βI2pA
∗
Φz

1

−α + 1

[(ωhigh

2π

)−α+1

−
(ωlow

2π

)−α+1
]
. (6.52)

On the other hand, the effective bias applied to the qubit by the spin bath is

NsJ tanh βJ ≈ NsβJ
2 (6.53)

= βA8
Φz
I2p

1

I
1

−α + 1

[(
λhigh
2π

)−α+1

−
(
λlow
2π

)−α+1
]
. (6.54)

Therefore, if we choose λmax ≳ ωmax and λmin ≲ ωmin, these two expressions, Eq. 6.52 and
6.54 indeed match each other, up to a constant I that is close to unity.

As mentioned in Sec. 6.7, when the low-frequency noise is not large enough, the spin
bath simulation results closely resemble that of the single-qubit AME. This is exemplified
in Fig. 6.15, where the spin bath parameters are chosen to target an 1/fα noise spectrum
with the same amplitude as deduced from the decoherence measurements, therefore being
8 times smaller than the simulation presented in Sec. 6.7.
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Figure 6.15: Simulated LZ final ground state probabilities versus the dimensionless sweep
time τ for different Φx or ∆, using the spin bath model, with 3 spins and targeting the
nominal 1/f noise amplitude.
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Chapter 7

Conclusion

We have studied components of a quantum annealer based on capacitively-shunted flux
qubits and tunable rf-SQUID couplers. This new architecture has two essential features.
First, the qubits and couplers have individual bias lines that in principle allow annealing in
the nanosecond timescale, with independent control of each qubit and coupler. Second, the
CSFQs have coherence times on the order of hundreds of nanoseconds. These two features
combined together open the possibility of exploring high-coherence, high control flexibility
annealing, beyond the capabilities of commercially available quantum annealers.

Realizing a highly-controllable annealer requires careful calibration of control crosstalk,
which is challenging for the strongly interacting circuits studied here. This is tackled by
the two crosstalk calibration methods presented in Chapter 3 of this thesis. We have
demonstrated these methods on superconducting flux circuits with various sizes. The
accuracies of these methods are comparable to contemporary gate-model devices, and also
approach the lower bound posed by fluctuations due to intrinsic flux noise. An important
future direction on crosstalk calibration is to address the frequency-dependence of crosstalk,
which is relevant for high-bandwidth control of the annealing schedule.

Long-range and high-degree connectivity is another desired quality in a quantum an-
nealer. In Chapter. 4 we presented a device made of a chain of couplers, used to realize
long-range coupling between flux qubits without degrading qubit coherence. Susceptibility
measurements were performed, showing that the coupler chain can indeed support effective
coupling between qubits at the two ends of the chain, even considering realistic fluctua-
tions due to flux noise. A relevant next step is to demonstrate the effective qubit coupling
through coherent driving, and characterize the qubit coherence as a function of chain size
and coupling strength.
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There is little doubt that improving coherence is beneficial in harnessing the quantum
advantage. However, the role of noise and coherence in quantum annealing is not so clear,
especially going beyond the weak coupling limit of the system and the environment. In
Chapter. 5 we measure and model the coherence times of a single CSFQ designed for
annealing. While the concept of coherence time is in general not well defined for an
annealer, these measurements allow us to characterize the dominant noise channel in the
system, which is intrinsic 1/f flux noise. The coherence times measured also serve as a
useful benchmark when considering future improvements to annealing-compatible qubits,
for example a tunable fluxonium. In Chapter. 6 we extrapolate these measured noise
strengths to interpret the Landau-Zener tunneling measurement for the CSFQ. Landau-
Zener tunneling is a toy model for a large annealer going through its minimum gap, and
by tuning the minimum gap, it allows going beyond the weak-coupling limit of system-
environment coupling in a controllable manner. The measurement result confirms previous
predictions and experiments in the weak and strong coupling limits.

The experiment also reveals the cross-over regime of weak to strong coupling, which has
not been explored before in either theory or experiments. We proposed a phenomenological
quantum spin bath model, which we have numerically simulated and found qualitative
agreement with the experiment results. The spin bath hints at an important concept that
needs to be further studied, that is the timescale over which the bath reorganizes itself as
the system tunnels to a new state. Further experiments, for example repeated Landau-
Zener crossings are needed to systematically explore this concept and further validate the
spin bath model. A better understanding in this respect could lead to novel protocols that
evade noise and speed up quantum tunneling, bringing us closer to solving optimization
problems with a quantum speedup.
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[3] R. Alléaume, C. Branciard, J. Bouda, T. Debuisschert, M. Dianati, N. Gisin, M. God-
frey, P. Grangier, T. Länger, N. Lütkenhaus, C. Monyk, P. Painchault, M. Peev,
A. Poppe, T. Pornin, J. Rarity, R. Renner, G. Ribordy, M. Riguidel, L. Salvail,
A. Shields, H. Weinfurter, and A. Zeilinger. Using quantum key distribution for
cryptographic purposes: A survey. Theoretical Computer Science, 560:62–81, De-
cember 2014.

[4] C. L. Degen, F. Reinhard, and P. Cappellaro. Quantum sensing. Reviews of Modern
Physics, 89(3):035002, July 2017.

[5] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, Cambridge ; New York, 10th anniversary
ed edition, 2010.

[6] Richard P. Feynman. Simulating physics with computers. International Journal of
Theoretical Physics, 21(6):467–488, June 1982.

[7] David Deutsch and Richard Jozsa. Rapid Solution of Problems by Quantum Compu-
tation. Proceedings: Mathematical and Physical Sciences, 439(1907):553–558, 1992.

[8] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, pages 212–219, New York, NY, USA, July 1996. Association for Comput-
ing Machinery.

205



[9] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Journal on Computing, 26(5):1484–
1509, October 1997.

[10] Jérémie Roland and Nicolas J. Cerf. Quantum search by local adiabatic evolution.
Physical Review A, 65(4):042308, March 2002.

[11] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum Algorithm for
Linear Systems of Equations. Physical Review Letters, 103(15):150502, October 2009.

[12] Ashley Montanaro. Quantum algorithms: An overview. npj Quantum Information,
2(1):1–8, January 2016.

[13] P.W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring.
In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages
124–134, November 1994.

[14] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M. Van den Nest.
Measurement-based quantum computation. Nature Physics, 5(1):19–26, January
2009.

[15] David Elieser Deutsch and Roger Penrose. Quantum computational networks. Pro-
ceedings of the Royal Society of London. A. Mathematical and Physical Sciences,
425(1868):73–90, 1989.

[16] Tameem Albash and Daniel A. Lidar. Adiabatic quantum computation. Reviews of
Modern Physics, 90(1):015002, January 2018.

[17] Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded
Regev. Adiabatic Quantum Computation Is Equivalent to Standard Quantum Com-
putation. SIAM Rev., 50:755–787, November 2008.

[18] B. Apolloni, C. Carvalho, and D. de Falco. Quantum stochastic optimization.
Stochastic Processes and their Applications, 33(2):233–244, December 1989.

[19] A. B. Finnila, M. A. Gomez, C. Sebenik, C. Stenson, and J. D. Doll. Quantum
annealing: A new method for minimizing multidimensional functions. Chemical
Physics Letters, 219:343–348, November 1993.

[20] Tadashi Kadowaki and Hidetoshi Nishimori. Quantum annealing in the transverse
Ising model. Phys. Rev. E, 58(5):5355–5363, 1998.

206



[21] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing.
Science, 220(4598):671–680, May 1983.

[22] Morten Kjaergaard, Mollie E. Schwartz, Jochen Braumüller, Philip Krantz, Joel I.-J.
Wang, Simon Gustavsson, and William D. Oliver. Superconducting Qubits: Current
State of Play. Annual Review of Condensed Matter Physics, 11(1):369–395, March
2020.

[23] Lieven M. K. Vandersypen and Mark A. Eriksson. Quantum computing with semi-
conductor spins. Physics Today, 72(8):38–45, August 2019.

[24] Colin D. Bruzewicz, John Chiaverini, Robert McConnell, and Jeremy M. Sage.
Trapped-ion quantum computing: Progress and challenges. Applied Physics Reviews,
6(2):021314, June 2019.
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Vepsäläinen, Steven J. Weber, Roni Winik, Alexander Melville, Bethany M. Niedziel-
ski, Danna Rosenberg, et al. Demonstration of tunable three-body interactions be-
tween superconducting qubits. arXiv:2205.04542, May 2022.

[163] P. V. Klimov, J. Kelly, Z. Chen, M. Neeley, A. Megrant, B. Burkett, R. Barends,
K. Arya, B. Chiaro, Yu Chen, et al. Fluctuations of Energy-Relaxation Times in
Superconducting Qubits. Phys. Rev. Lett., 121(9):090502, August 2018.

[164] M. W. Johnson, P. Bunyk, F. Maibaum, E. Tolkacheva, A. J. Berkley, E. M. Chapple,
R. Harris, J. Johansson, T. Lanting, I Perminov, E. Ladizinsky, T. Oh, and G. Rose.
A scalable control system for a superconducting adiabatic quantum optimization
processor. Supercond. Sci. Technol., 23(6):065004, 2010.

[165] Mostafa Khezri, Xi Dai, Rui Yang, Tameem Albash, Adrian Lupascu, and Daniel A.
Lidar. Customized quantum annealing schedules. arXiv:2103.06461, 2021.

[166] Mostafa Khezri, Jeffrey A. Grover, James I. Basham, Steven M. Disseler, Huo Chen,
Sergey Novikov, Kenneth M. Zick, and Daniel A. Lidar. Anneal-path correction in
flux qubits. npj Quantum Inf., 7(1):26, February 2021.

[167] Juan I. Adame and Peter L. McMahon. Inhomogeneous driving in quantum anneal-
ers can result in orders-of-magnitude improvements in performance. Quantum Sci.
Technol., 5(3):035011, jun 2020.

[168] Yuki Susa, Yu Yamashiro, Masayuki Yamamoto, Itay Hen, Daniel A. Lidar, and
Hidetoshi Nishimori. Quantum annealing of the $p$-spin model under inhomogeneous
transverse field driving. Phys. Rev. A, 98(4):042326, oct 2018.

[169] Tameem Albash and Matthew Kowalsky. Diagonal catalysts in quantum adiabatic
optimization. arXiv:2009.05726, sep 2020.

221



[170] M. Kounalakis, C. Dickel, A. Bruno, N. K. Langford, and G. A. Steele. Tuneable
hopping and nonlinear cross-Kerr interactions in a high-coherence superconducting
circuit. Npj Quantum Inf., 4(1):1–7, August 2018.

[171] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyanskiy,
A. Megrant, B. Chiaro, A. Dunsworth, K. Arya, et al. A blueprint for demonstrating
quantum supremacy with superconducting qubits. Science, 360(6385):195–199, April
2018.

[172] Deanna M. Abrams, Nicolas Didier, Shane A. Caldwell, Blake R. Johnson, and
Colm A. Ryan. Methods for Measuring Magnetic Flux Crosstalk between Tunable
Transmons. Phys. Rev. Appl., 12(6):064022, December 2019.

[173] Sebastian Krinner, Nathan Lacroix, Ants Remm, Agustin Di Paolo, Elie Genois,
Catherine Leroux, Christoph Hellings, Stefania Lazar, Francois Swiadek, Johannes
Herrmann, et al. Realizing Repeated Quantum Error Correction in a Distance-Three
Surface Code. arXiv:2112.03708, December 2021.

[174] P. I. Bunyk, E. M. Hoskinson, M. W. Johnson, E. Tolkacheva, F. Altomare, A. J.
Berkley, R. Harris, J. P. Hilton, T. Lanting, A. J. Przybysz, and J. Whittaker.
Architectural considerations in the design of a superconducting quantum annealing
processor. IEEE Trans. Appl. Supercond., 24(4):1–10, aug 2014.

[175] Fritz London. Superfluids. Volume 1. Macroscopic Theory of Superconductivity.
Dover, New York, 1961.

[176] N. Byers and C. N. Yang. Theoretical Considerations Concerning Quantized Mag-
netic Flux in Superconducting Cylinders. Phys. Rev. Lett., 7(2):46–49, July 1961.

[177] Jochen Braumüller, Amir H. Karamlou, Yariv Yanay, Bharath Kannan, David Kim,
Morten Kjaergaard, Alexander Melville, Bethany M. Niedzielski, Youngkyu Sung,
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[205] Bruno Apolloni, Nicolò Cesa-Bianchi, and Diego De Falco. A numerical implemen-
tation of quantum annealing. In Stochastic Processes, Physics and Geometry: Pro-
ceedings of the Ascona-Locarno Conference, pages 97–111, 1990.

[206] Arnab Das and Bikas K. Chakrabarti. Colloquium: Quantum annealing and analog
quantum computation. Rev. Mod. Phys., 80:1061–1081, Sep 2008.

[207] Tameem Albash and Daniel A. Lidar. Decoherence in adiabatic quantum computa-
tion. Phys. Rev. A, 91(6):062320, June 2015.

[208] T. Lanting et al. Entanglement in a quantum annealing processor. Phys. Rev. X,
4:021041, May 2014.

[209] R. Harris et al. Phase transitions in a programmable quantum spin glass simulator.
Science, 361(6398):162–165, 2018.

[210] Kazuki Ikeda, Yuma Nakamura, and Travis S. Humble. Application of quantum
annealing to nurse scheduling problem. Sci. Rep., 9(1):12837, Sep 2019.

[211] Daisuke Inoue, Akihisa Okada, Tadayoshi Matsumori, Kazuyuki Aihara, and Hiroaki
Yoshida. Traffic signal optimization on a square lattice with quantum annealing. Sci.
Rep., 11(1):3303, Feb 2021.

225



[212] Richard Y. Li, Rosa Di Felice, Remo Rohs, and Daniel A. Lidar. Quantum anneal-
ing versus classical machine learning applied to a simplified computational biology
problem. npj Quantum Inf., 4(1):14, Feb 2018.

[213] Helmut G Katzgraber. Viewing vanilla quantum annealing through spin glasses.
Quantum Sci. Tech., 3(3):030505, jun 2018.

[214] Bettina Heim, Troels F Rønnow, Sergei V Isakov, and Matthias Troyer. Quantum
versus classical annealing of Ising spin glasses. Science, 348(6231):215–217, 2015.

[215] Davide Venturelli et al. Quantum optimization of fully connected spin glasses. Phys.
Rev. X, 5:031040, Sep 2015.

[216] Sergey Novikov, Roy Murray, Edward Leonard, Alexander Marakov, Thomas Cham-
berlin, James Basham, Jeffrey Grover, Steven Disseler, Rabindra Das, David Kim,
et al. 3d-integrated 25-qubit quantum annealing processor with high coherence, indi-
vidualized control, and modular architecture. part 1: design. In APS March Meeting
Abstracts, volume 2021, pages C30–001, 2021.

[217] Kelly Boothby, Paul Bunyk, Jack Raymond, and Aidan Roy. Next-generation topol-
ogy of D-Wave quantum processors. Preprint at http://arXiv.org/abs/2003.00133,
2020.

[218] Andrew Lucas. Ising formulations of many NP problems. Front. Phys., 2:5, 2014.

[219] G Passarelli, V Cataudella, and P Lucignano. Improving quantum annealing of the
ferromagnetic p-spin model through pausing. Phys. Rev. B, 100(2):024302, 2019.

[220] Tameem Albash and Daniel A Lidar. Demonstration of a scaling advantage for a
quantum annealer over simulated annealing. Phys. Rev. X, 8(3):031016, 2018.

[221] Rolando D Somma, Daniel Nagaj, and Mária Kieferová. Quantum speedup by quan-
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Appendix A

Details of circuit quantization

In this section, we discuss details of the numerical simulation of superconducting circuits,
complementing the discussion in Sec. 2.1.2.

A.1 Efficient numerical representation

First, we introduce an alternative way to write down the inductive energy that is analogous
to the capacitive energy, in anticipation of the fact that they can later be combined to
give energy expressions like harmonic oscillators. This is done by first considering the
branch inductance matrix LB, with dimensions NB × NB where NB is the total number
of branches in the circuit. The only non-zero entries of the branch inductance matrix are
the inductances of a branch, which are on the diagonals, and mutual inductances between
two branches, which are on the off-diagonals. Next, we define an inductive transformation
matrix RBN, with dimensionNB×NN . Its entries are +1 for the ending node of an inductive
branch, and −1 for the starting node of an inductive branch. Combining Lb and RBN, we
can define the inverse node inductance matrix

L−1
n = RT

BNL
+
b RBN, (A.1)

where the superscript + denotes pseudo inverse. If we have chosen our branching tree such
that there are only Josephson junctions in L (which is always possible as long as there are
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no inductor-only loops), we have in terms of L−1
n the inductive energy 1

Uind =
ϕ0

2
(φ⃗N)

TL−1
n (φ⃗N). (A.2)

Following [40], an efficient numerical representation of the circuit Hamiltonian requires
distinguishing different types of coordinates

• Harmonic oscillator coordinates. Nodes that are connected to inductors lead to such
coordinates. The potential energy goes to ∞ when such coordinates go to ∞.

• Josephson coordinates. Nodes that are connected to Josephson junctions and no
inductors lead to such coordinates. The Hamiltonian is invariant under a 2π shift of
such coordinates.

• Island coordinates. Nodes that are only connected to capacitors lead to such coor-
dinates. Such coordinates do not appear in the potential energy, and the conjugate
momentum is a conserved quantity.

To explicitly keep track of the different types of coordinates, we define a transformation
matrixR that is of size NN×NN . This transformation is not unique, but the optimal choice
could lead to faster convergence of the numerical simulation. The transformed coordinates
and conjugate momentum are

φ⃗ = Rφ⃗N , (A.3)

p⃗ = (RT )−1p⃗N . (A.4)

Any such transformation should preserve the commutation relations, i.e. [φi, pj] = iδij.
After this transformation, the circuit Hamiltonian is given by

Hcirc =
1

2ϕ2
0

p⃗TC−1p⃗

+
ϕ0

2
φ⃗TL−1φ⃗

−
∑
i

Ej,i cosφi, (A.5)

1If there are inductors in L, the flux bias needs to go into the expression for the inductive energy of
these inductors.
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where in the last line, the phase across the i’th Josephson junction can be expressed in the
new coordinates using φ⃗N = R−1φ⃗ and applying Eq. 2.11. The new inverse capacitance
and inductance matrix are defined as C−1 = RC−1

N RT and L−1 = (RT )−1L−1
N R−1.

To obtain a concrete matrix representation of the Hamiltonian, different bases are used
for different types of coordinates. For Josephson coordinates, the natural basis is the charge
basis, where

p|n⟩ = ℏn|n⟩ (A.6)

cosφ =
1

2
(exp (iφ) + exp (−iφ)) (A.7)

=
1

2
(|n⟩⟨n+ 1|+ |n+ 1⟩⟨n|), (A.8)

where |n⟩ corresponds to the state with n Cooper pairs.

For harmonic oscillator coordinates, the natural basis is the Fock basis. Each harmonic
oscillator mode is associated with a characteristic frequency and impedance,

ωi =
√

C−1
ii L

−1
ii and (A.9)

Zi =

√
C−1

ii

L−1
ii

. (A.10)

The operators for harmonic oscillator modes are given by

φi =
1

ϕ0

√
ℏZi

2
(a+i + ai) and (A.11)

pi = −iϕ0

√
ℏ
2Zi

(ai − a+i ). (A.12)

Besides, the Josephson junction connected to an inductor leads to non-linearity in the
harmonic oscillator potential and gives terms of the form

cos (xφi + 2πδf), (A.13)

where x, δf are some constant of order unity arising from theR transformation. The matrix
form of such operator in the harmonic oscillator basis, unlike other operators previously
presented, is not sparse. Care needs to be given to theR transformation matrix to minimize
the large computational cost associated with such non-sparsity.
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1

2

3

Figure A.1: An example superconducting circuit to illustrate the quantization procedure.
The red lines indicate the spanning tree.

To illustrate the above procedure of circuit quantization, we look at the example circuit
shown in Fig. A.1. The fluxoid quantization conditions are

γJ1 + γJ2 + γL + 2πf1 = 0. (A.14)

−γL + γJ3 + 2πf2 = 0. (A.15)

Choosing the spanning tree as highlighted in red, the circuit Hamiltonian in terms of node
coordinates are

Hcirc =
1

2ϕ2
0

p⃗TNC
−1
N p⃗N + EJ1 cos (φN2 − φN1) + EJ2 cos (φN3 − φN2 − 2πf1) (A.16)

+EJ3 cos (φN1 − φN3 − 2πf2) +
ϕ2
0

2L
(φN1 − φN3), (A.17)

where φNi are the node generalized flux coordinates, p⃗N is the vector of node conjugate
momenta and the node capacitance matrix is given by

CN =

Cg1 + C12 + C13 −C12 −C13

−C12 Cg2 + C12 + C23 −C23

−C13 −C23 Cg3 + C13 + C23

 . (A.18)
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We then introduce the transformed coordinates

φ⃗ = Rφ⃗N (A.19)

R =

−1 1 0
1 0 −1
1 1 1

 . (A.20)

After the transformation, φ1 is a Josephson mode, φ2 is a harmonic oscillator mode, and
the third mode φ3 is an island mode corresponding to charge conservation in the island.
The Hamiltonian after the transformation is

Hcirc =
1

2ϕ0

p⃗TC−1p⃗+
ϕ2
0

2
φ⃗TL−1φ⃗+ EJ1 cos φ̃1 + EJ2 cos (−φ1 − φ2 − 2πf1) + EJ3 cos (φ2 − 2πf2),

(A.21)

where

C−1 = RC−1
N RT (A.22)

L−1 = (RT )−1

 1
L

0 − 1
L

0 0 0
− 1

L
0 1

L

R−1 (A.23)

=

0 0 0
0 1

L
0

0 0 0

 (A.24)

A.2 Combining subcircuits

When a large circuit is made by coupling a few subcircuits together inductively or capaci-
tively, it is desirable to first numerically diagonalize the subcircuits and then combine them
together, to avoid the large computational cost of directly diagonalizing the large coupled
circuit. When doing this, it needs to be noted that the coupling, besides generating the
interaction terms, also leads to inductive/capacitive loading of each subcircuit.

For example, when considering two superconducting circuits joined capacitively, the
combined capacitance matrix can be written in block-matrix form as

CN =

(
CN1 CN12

CN21 CN2

)
, (A.25)
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where CN1,2 are the node capacitance matrix of the respective subcircuit, and C12 = CT
21

describes the capacitive coupling between the subcircuits. Taking the inverse of the above
matrix, we obtain

C−1
N =

(
C

−1

N1 C
−1

N12

C
−1

N21 C
−1

N2

)
, (A.26)

where C
−1

N1,2 are in general different from C−1
N1,2 and captures the capacitive loading effect.

Similarly for inductive interactions between two subcircuits, we first write down the
branch inductance matrix in block matrix form

LB =

(
LB1 LB12

LB21 LB2

)
. (A.27)

The branch inductance matrix is then converted to the inverse node inductance matrix via

L−1
N =

(
RBN1 0
0 RBN2

)
L+

B

(
RBN1 0
0 RBN2

)
=

(
L

−1

N1 L
−1

N12

L
−1

N21 L
−1

N2

)
, (A.28)

where RBN1,2 are the node-to-branch transformation matrix for subcircuit 1 and 2, and
Ln1,2 are the loaded inverse node inductance matrix.
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Appendix B

Measurement setup and wiring for
Chapters 3 and 4

In Fig. B.1 we present a diagram of the setup showing the room temperature electronics
and the wiring inside the dilution refrigerator. Arbitrary waveform generators (AWG) are
used for flux biasing the circuit. The AWGs (Keysight AWG3202A) can supply voltages
ranging from −1.5V to +1.5V with 14 bits of precision. The bias current is carried to the
packaged chip through twisted wires. Inline resistors of appropriate resistances (typically
1000Ω) are used to apply current leading to a voltage-to-flux conversion of the order of
1Φ0/V . The twisted wires have a limited bandwidth of about 10MHz. Later generations
of the experiment employ customized wiring, which is designed to have higher bandwidth.
The qubit can also be driven with a capacitively coupled gate voltage, supplied by an rf
source (Rohde-Schwarz SGS100A), through a coaxial cable.

For readout, the output signal from the device first goes through two Quinstar 4-16 GHz
isolators. It is then combined with a pump pulse through a Marki 1-16GHz directional
coupler, before going into the traveling-wave-parametric-amplifier (TWPA) [330] at the
mixing chamber of the dilution refrigerator. The signal goes through another two isolators
and a 12GHz low-pass filter, before being amplified again at the 3K stage by an LNF
4-8GHz high-electron-mobility transistor (HEMT) amplifier. At room temperature, two
setups are used for readout. In the first, a KeySight N5222a Vector Network Analyzer
is used to measure transmission through the device. In the other, the readout pulse is
generated by the AWG, which is then upconverted by combining with a stable tone from
a microwave synthesizer (Agilent PSG 8275A), through an IQ mixer (Marki MLIQ-0218).
The output of the device is then demodulated by another IQ mixer and goes through two
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Figure B.1: Measurement Setup for crosstalk calibration and coupler chain experiments.
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80MHz filters, after which it gets processed by a field programmable gate array (FPGA)
digitizer (KeySight M3102A).
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Appendix C

Measurement setup and wiring for
Chapters 5 and 6

In Figure C.1 we present a diagram of the room-temperature and cryogenic setup used
in the experiments. The qubit flux bias for the x and z loops, Φx and Φz, are controlled
by currents generated by a DC voltage source and a high bandwidth source, combined
through a bias tee at the mixing chamber stage of the dilution refrigerator. The DC
biases are supplied by Yokogawa GS 200 voltage sources through twisted pair cable and
low-pass filtered to below 32 kHz to minimize noise. The high bandwidth components of
the current are supplied by a 1 GHz arbitrary waveform generators (AWGs) (Keysight
M3202A), through coaxial cables. The fast line coupling to Φx suffered from a cold open
during the cooldown and is not used for the Landau-Zener experiment. The attenuators and
filters on the cable are chosen to allow a sufficiently large current range for driving Rabi
oscillation and performing annealing experiments, while minimizing decoherence due to
thermal and electronic noise. The resonator SQUID bias is supplied by an AWG (Keysight
M3202A), but through twisted pair cable. The qubit can be driven with a capacitively
coupled driving line, supplied by an rf source with an integrated IQ modulator, through
a coaxial cable. The readout signal is amplified by a traveling-wave-parametric-amplifier
(TWPA) [330] at the mixing chamber stage of the fridge, followed by a high-electron
mobility transistor amplifier (HEMT) at the 4K stage, and room temperature amplifiers,
before being processed by a field-programmable gate array (FPGA) digitizer (Keysight
M3102A).
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Appendix D

Qubit, coupler and QFP loop
geometry

The qubits, couplers, and QFPs used in this thesis all have two fundamental loops, denoted
by z′, x, and they all share the same symmetrized X loop design. In this appendix, we
discuss the reason for this design. Figure D.1 shows the circuit schematic of a two-loop
device, using the tunable flux qubit as an example, including the flux bias lines. The
panels D.1(a, b) show a planar and a symmetrized X loop geometry respectively. In both
cases, the flux biases are applied through the loops labeled x and z′. These loops are
defined as follows:

x : 1
red−→ 3

yellow−−−→ 1, and (D.1)

z′ : 1
blue−−→ 2

blue−−→ 3
red−→ 1, (D.2)

where the numbers are the node indices, as indicated in Fig. D.1. The external fluxes in
these two loops are denoted by Φx,Φz′ respectively.

1

We also introduced the compensated Z bias flux bias

Φz = Φz′ +
1

2
Φx. (D.3)

As discussed in Sec. 2.1.3, Φz = (1/2 + n)Φz corresponds to the symmetry point of the
circuit, provided the two junctions in the x-loop have identical sizes [166]. Around the

1Or fx, fz′ , which is the flux biases normalized by the flux quantum, Φ0, as is used in Chapters 3, 4.
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Figure D.1: Schematic of the tunable flux qubit, in a (a) planar geometry and a (b)
symmetrized X loop geometry. In both cases, the red and blue arms form the z′ loop and
the red and yellow arms form the x loop. Bias line currents Iz′ , Ix induce fluxes in the
loops through their mutual inductances to the loops. While the x and z′ are intended to
induce coupling to their respective loops, unintended crosstalk exists.

symmetry point, the Hamiltonian projected onto the subspace formed by the lowest two
energy eigenstates can be written as

H = −Ip(Φx) (Φz − Φz,sym)σz −
∆(Φx)

2
σx, (D.4)

where Ip is the persistent current and ∆ is the gap at the symmetry point. During a
typical quantum annealing experiment, one starts with large ∆ and ends with minimal
∆ ≈ 0. This corresponds to varying Φx from 1/2Φ0 to 0, while keeping Φz close to the
symmetry point Φz,sym. As the flux qubit energy is very sensitive to Φz, it is beneficial to
keep the excursion in its corresponding bias current Iz small during the annealing, so that
pulse distortion does not cause significant errors. This motivates the symmetrized X-loop
design, as used in the coupler design in Ref. [55]. An illustration of the design is shown
in Fig. D.1(b). In this geometry, the mutual between the x bias line and z′-loop, Mz′x, is
designed to be about −1/2 of the mutual between the x bias line and the x-loop, Mxx.
The relation between the two control loop fluxes and bias current becomes(

Φz

Φx

)
=

(
1 1

2

0 1

)(
Φz′

Φx

)
(D.5)

=

(
1 1

2

0 1

)(
Mz′z Mz′x

Mxz Mxx

)(
Iz
Ix

)
(D.6)

=

(
Mz′z +

1
2
Mxz Mz′x +

1
2
Mxx

Mxz Mxx

)(
Iz
Ix

)
. (D.7)
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Since Mz′x+
1
2
Mxx ≈ 0 by the symmetrized design, Φz remains largely unchanged when Ix

pulses are applied. This hence minimizes the excursions in Iz during annealing experiments.

D.1 Bias periodicities during calibration

Since z′,x loops are physical loops in the superconducting circuit, properties of the circuit
can be considered as a lattice in the Φz′ ,Φx coordinates, with primitive lattice vectors
(1, 0)T and (0, 1)T . In the flux coordinates Φz,Φx, the primitive lattice vectors become
(1, 0)T and (1/2, 1)T . During CISCIQ iterations and error measurements, it is easier to work
with another set of independent lattice vectors (1, 0)T and (0, 2)T in the Φz,Φx coordinates.
This means that when periodic steps are used for the crosstalk source bias, the choice of
step for x bias becomes 2Φ0 instead of 1Φ0.

D.2 Flux noise correlations

An asymmetry between the critical currents of the X loop junctions shifts the symmetry
point that corresponds to a symmetric double well. Since we are interested in the shift in
flux bias corresponding to maximum coherence, relative to the Φz symmetry point, it is
also useful to define Φz̃, a coordinate in which the symmetry point is independent of Φx.
This is

Φz̃ = Φz − F (Φx), (D.8)

where F (Φx) is the X loop junction asymmetry induced shift.

Next, we relate the flux noise PSDs and correlations among the three different Z flux
bias conventions, which further clarifies the role of loop geometry and junction asymmetry
on the measured flux noise correlation. To make connection between noise in Φz and Φ′

z,
we consider small variations in the flux biases,

⟨δΦzδΦz⟩ = ⟨δΦz′δΦz′⟩+
1

2
⟨δΦz′δΦx⟩

+
1

2
⟨δΦxδΦz′⟩+

1

4
⟨δΦxδΦx⟩. (D.9)

This allows us to calculate the PSD of Φz

SΦz = SΦz′
+ CΦz′Φx +

1

4
SΦx . (D.10)
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To obtain the cross PSD between SΦz and SΦx use

⟨δΦzδΦx⟩ = ⟨δΦz′δΦx⟩+
1

2
⟨δΦxδΦx⟩, (D.11)

which gives

CΦzΦx = CΦz′Φx +
1

2
SΦx (D.12)

= czx
√
SΦzSΦx (D.13)

Similarly, the noise in Φz̃ can be related to noise in Φz,Φx by considering the relation

⟨δΦz̃δΦz̃⟩ = ⟨δΦzδΦz⟩ −
dF

dΦx

⟨δΦxδΦz⟩

− dF

dΦx

⟨δΦzδΦx⟩+
(

dF

dΦx

)2

⟨δΦxδΦx⟩, (D.14)

which gives

SΦz̃
= SΦz − 2

dF

dΦx

CΦzΦx +

(
dF

dΦx

)2

SΦx . (D.15)

For the cross PSD between SΦz̃
and SΦx we use

⟨δΦz̃δΦx⟩ = ⟨δΦzδΦx⟩ −
dF

dΦx

⟨δΦxδΦx⟩, (D.16)

which gives

CΦz̃Φx = CΦzΦx −
dF

dΦx

SΦx . (D.17)

Previous studies [287, 331] suggest that flux noise can be explained by local fluctuating
spins uniformly distributed along the surface of the circumference of the qubit loops. This
model indicates the scaling of flux noise amplitude with the geometry of superconducting
loops as

AΦα = B
lα
wα

. (D.18)
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Here AΦα refers to the flux noise amplitude from a particular superconducting loop or arm,
B is a constant assumed to be constant for the same fabrication procedure, lα and wα are
the length and width of a superconducting loop or arm. We can also relate the fluctuations
δΦz′ , δΦx to the flux fluctuation contributed by spins on each of the arms in our device,

δΦz′ = −δΦred + δΦblue and (D.19)

δΦx = δΦred + δΦyellow. (D.20)

Then

⟨δΦz′δΦx⟩ = −⟨δΦredδΦred⟩ − ⟨δΦredδΦyellow⟩
+ ⟨δΦblueδΦred⟩+ ⟨δΦblueδΦyellow⟩ (D.21)

= −⟨δΦredδΦred⟩. (D.22)

We can also obtain SΦx in terms of the contribution from the two arms since

⟨δΦxδΦx⟩ = ⟨δΦredδΦred⟩+ ⟨δΦredδΦyellow⟩
+ ⟨δΦyellowδΦred⟩+ ⟨δΦyellowδΦyellow⟩ (D.23)

= ⟨δΦredδΦred⟩+ ⟨δΦyellowδΦyellow⟩. (D.24)

If the red and yellow arms are of equal length and wire width, then

⟨δΦredδΦred⟩ = ⟨δΦyellowδΦyellow⟩ (D.25)

⟨δΦxδΦx⟩ = −2⟨δΦz′δΦx⟩ and (D.26)

SΦx = −2CΦz′Φx , (D.27)

where in the second line we used Eq. D.22 and Eq. D.24. To summarize the results obtained
by assuming the geometric dependence of intrinsic flux noise and symmetric x-loop, we have

SΦz′
= SΦred

+ SΦblue
(D.28)

SΦx = SΦred
+ SΦyellow

(D.29)

CΦz′Φx = −1

2
SΦx (D.30)

Combines this with Eq. D.10 and D.12 we get

SΦz = SΦz′
− 1

2
SΦx = SΦblue

, (D.31)

CΦzΦx = 0. (D.32)

Therefore the expected flux noise correlation coefficient czx is zero, assuming independent
and uniform contributions from each superconducting wire segment.
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