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Abstract

The Simplified Wasserstein Barycenter problem, the problem of picking k points each chosen
from a distinct set of n points as to minimize the sum of distances to their barycenter, finds appli-
cations in various areas of data science. Despite the simple formulation, it is a hard computational
problem. The difficulty comes in the lack of efficient algorithms for approximating the solution. In
this thesis, I propose a doubly non-negative relaxation to this problem and apply the alternating
direction method of multipliers (ADMM) with intermediate update of multipliers, to efficiently
compute tight lower and upper bounds on its optimal value for certain input data distributions. Our
empirics show that generically the gap between upper and lower bounds is zero, though problems
with symmetries exhibit positive gaps.
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Chapter 1

Introduction

Today’s society has seen a growing popularity and use of data science, with applications rang-
ing widely from medical science to business development. What lies at the heart of many data
science problems are mathematical formulations that use tools from the areas of probability and
optimization. What I intend to study in this thesis is one such problem.

Before we dive into the specific problem, it is important to understand the motivation behind
it. When people talk about data, they often picture it as a set of points. However, only limited
applications can be attempted with this form of representation. In order to broaden the scope of
practically, one needs to generalize the representation from single points to probability distributions
over candidate points. In fact, data collected in the modern world tends to be represented in this
way. However, experienced mathematicians in e.g., functional analysis and other areas, may wonder
why we stop here. Why not further generalize optimization problems to infinite dimensional space,
e.g., optimization over functionals, or in a partial differential equation setting. A response is that
probability distribution functions are more structured, and we intend to exploit certain structures in
order to develop efficient algorithms for manipulating data. With this being said, it is fundamental
to have tools that manipulate data in the form of probability distributions rather than just discrete
single points.

The ability of processing data over probability distributions finds applications in numerous sci-
entific fields [4]. For example, in reinforcement learning and game theory, probability distributions
are used to represent mixed strategies and/or policies for maximizing utility. In statistical infer-
ence, posterior probability distribution is used to characterize fidelity to observations. In generative
modelling, deep fakes1 for maximizing plausibility are defined using probability distributions. In
machine learning, a point cloud2 is often represented by a probability distribution. In document
clustering, word embeddings are characterized by probability distributions. In computer vision and
computer graphics, a probability distribution is used to represent an image or an object mesh. In
signal processing, sensor measurements are often represented by probability distributions. In neu-
roscience, a probability distribution over Functional magnetic resonance imaging (fMRI) scans is
often used in various applications. In geometric data analysis, transport plans are often represented
by probability distributions.

In order to analyze data, it is expected that various operations can be performed on it, such as
de-noising, searching, interpolation, summarizing, and clustering. Since the object here is proba-

1Deep fakes are fake images or videos in which a person’s countenance is replaced by someone else’s likeliness.
2A point cloud is a discrete set of data points in space, which could represent certain shapes.

1



bility distribution, a proper distance measure is required to characterize similarity and difference
among the data. One choice is to integrate vertical mass difference between two probability distri-
butions. Such measures include Lp norms and Kullback- Leibler divergence. However, this measure
captures only the magnitude of mass difference between two probability distributions instead of the
locations in which the differences lie, hence lacks geometric meaning. Another choice that remedies
this pitfall is to integrate horizontal mass difference. Such measure includes optimal transport dis-
tance, i.e: Wasserstein distance.3 Even though this measure contains information about locations
of mass difference, as for geometrically oriented applications, efficient computation of Wasserstein
distance between probability distributions is the bottleneck.

After selecting an appropriate distance measure, an additional primitive for manipulating data
as aforementioned is to be able to average probability distributions. A canonical way of geo-
metrically averaging data in metric space is to compute their Wasserstein barycenter, the closest
probability distribution to all given probability distributions. Efficient computation of Wasser-
stein barycenter finds applications in numerous fields, such as shape interpolation in computer
graphics [28], improving Bayesian learning in statistics [26], unsupervised representation learning
in natural language processing [14], sensor improvement [17], and clustering of documents [30, 31]
and multilevel clustering of datasets [13,23].

The problem I study in this thesis is called the Simplified Wasserstein Barycenter problem
(3.2.1). Instead of averaging over probability distributions, the problem concerns averaging a
group of k points each uniquely selected from each of the given n data sets, such that the aggregate
pairwise distances are minimized. Results in [2] show that the standard Wasserstein barycenter
problem can be (polynomially) reduced to the Simplified Wasserstein Barycenter problem. Hence,
once an efficient algorithm for the Simplified Wasserstein Barycenter problem is discovered, it can be
modified to construct an efficient algorithm to solve the standard Wasserstein Barycenter problem.

Despite the simple formulation, the Simplified Wasserstein Barycenter problem has proven to
be NP-hard [2], i.e., a type of very hard computational problem. The difficulty of this problem
comes from the lack of efficient numerical algorithms when the size of the input data grows to large
scale. All state of the art algorithms have either inefficient running time or inaccurate approximate
solutions(Section 4.3).

In this thesis, we develop an algorithm and study under what circumstances, specifically under
what input data distributions, the algorithm becomes efficient in approximating the optimal solu-
tion of the Simplified Wasserstein Barycenter problem. Our approach is to introduce and apply
a doubly non-negative relaxation to the Simplified Wasserstein Barycenter problem. We split its
primal variables using a technique called facial reduction, and then apply the Peachman-Rachford
algorithm (rPRSM), a variant of the well-known alternating direction methods of multipliers
(ADMM), to compute tight lower and upper bounds on the optimal value of this NP-hard prob-
lem. Our empirical experiments illustrate that for input data sampled from the standard normal
distribution, we get a zero duality gap between the bounds and thus exactly solve the original hard
problem. However, we also show that problems with symmetries result in positive duality gaps.

3Wasserstein distance (Kantorovich-Rubinstein metric) is named after Russian-American mathematician Leonid
Vaserstein. It intuitively measures the minimum cost for transforming one unit pile of sand into another unit pile of
sand.
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1.1 Outline

In Chapter 2, we introduce some of the background knowledge in convex analysis, complexity
theory, and Euclidean distance matrices that we need in the thesis.

In Chapter 3, we survey some historical motivations for the Wasserstein barycenters problem
and its NP-hardness result. Then, we introduce the Simplified Wasserstein Barycenter problem,
the main problem of interest in this thesis. We apply a doubly non-negative (DNN) relaxation to
the problem.

In Chapter 4, we survey some historical developments of the alternating method of multipliers
(ADMM). Then, we apply the Peaceman-Rachford (rPRSM) algorithm, An ADMM with in-
termediate update of multipliers, to the DNN relaxation formulation of the Simplified Wasserstein
Barycenter problem. In addition, we investigate certain input data distributions for which the
rPRSM algorithm runs efficiently in approximating the optimal solutions of the DNN relaxation
formulation of the Simplified Wasserstein Barycenter problem, and some techniques for speeding
up the algorithm. At last, we reference some past algorithmic approaches to the Wasserstein
barycenters problem for historical interest and present our own numerical experiments.

In Chapter 5, we conclude this thesis and suggest further research directions for approximat-
ing the optimal solutions of the Simplified Wasserstein Barycenter problem using the ADMM
algorithm.
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Chapter 2

Preliminaries

This chapter is devoted to the background required for the latter chapters. This includes details
in convex analysis, complexity of problems, and Euclidean distance matrices. Well versed readers
in these areas can skip this chapter for convenience. We have included both an Index (page ??)
and an Appendix (page 53) for the readers’ convenience.

2.1 Notation

In this thesis, we use vectors and matrices to formulate our problem of interest. Given vector
x ∈ Rn, we use xi to denote its ith coordinate entry. Given matrix X ∈ Rm×n, we use Xij to denote
its entry at ith row and jth column. In addition, we use XS to denote the principal submatrix of X
formed by deleting rows and columns with indices not in S, for any S ⊆ [n]. In addition, we use the
following operations on vectors and matrices. The inner product is the map 〈·, ·〉 : Rn × Rn → R
such that for any pair of vectors v, g ∈ Rn,

〈v, g〉 :=
n∑
i=1

vigi.

The Hadamard product is the map ◦ : Rn × Rn → Rn such that for any pair of vectors v, g ∈ Rn,

v ◦ g :=

v1g1

...
vngn

 .
For certain applications, we want to be able to measure the length of a vector. For example,

given any vector v ∈ Rn, its 2-norm is ‖v‖2 :=
√∑n

i=1 |vi|2.

As for operations on matrices, the inner product is the map 〈·, ·〉 : Rm×n×Rm×n → R such that
for any pair of matrices M,N ∈ Rm×n,

〈M,N〉 := trace(MTN).

The Hadamard product is the map ◦ : Rm×n × Rm×n → Rm×n such that for any pair of matrices

4



M,N ∈ Rm×n,

M ◦N :=

M11N11 ... M1nN1n

... ... ...
Mn1Nn1 ... MnnNnn

 .
The tensor product is the map ⊗ : Rm×n × Rp×q → Rmp×nq such that for any pair of matrices
M ∈ Rm×n, N ∈ Rp×q,

M ⊗N :=

M11N ... M1nN
... ... ...

Mm1N ... MmnN

 ∈ Rmp×nq.

In order to measure a matrix, there are two perspectives. One perspective is to treat a matrix
as a generalized vector and measure its norm by the 2-norm of the generalized vector. We use the
Frobenius norm ‖ · ‖F :=

√
〈·, ·〉 to denote such a measure. Another perspective exploits the fact

that any matrix is a linear transformation on vectors, and its measure should be the maximum
scaling effect of the linear operation. We use the matrix 2-norm ‖ · ‖2 := σmax(·) to denote such a
measure.

A generalization of a matrix in high dimensions is called a tensor. We use ⊗mi=1Rni to denote
a tensor which is a tensor product of real vector spaces. One example is a probability tensor
P ∈ (Rn+)⊗k where each of its entries signals a probability. We use mi(P ) to denote its ith marginal,
i.e: [mi(P )]j :=

∑
j1,...,ji−1,ji+1,...,jk

Pj1,...,jk . In addition, for probability distributions {µ1, ..., µk},
we use the polytope M(µ1, ..., µk) := {P ∈ (Rn+)⊗k : mi(P ) = µi,∀i ∈ [k]} to denote the set of
probability tensors with each of its marginals matching the respective probability distribution. We
call such polytope a transportation polytope. This object is our primary concern when we introduce
the Multimarginal Optimal Transport problem in Chapter 4.

In addition, we are also interested in vectors and matrices with certain structures that aid in
formulating our problem of interest. For instances, we use Sn to denote the space of symmetric
matrices of dimension n × n equipped with the trace inner product, and Sn+ ⊂ Sn to denote the
cone of positive semidefinite matrices of dimension n × n. A comprehensive list of mathematical
objects is presented in Appendix A.

We now begin to present the background information required for the latter chapters.

Throughout the thesis, we use E to denote a general Euclidean space and En to infer the
dimension of the Euclidean space.

Definition 2.1.1 (Minkowski sum). Let C1, C2 ⊆ E, α1, α2 ∈ R. Then

α1C1 + α2C2 := {α1c1 + α2c2 : c1 ∈ C1, c2 ∈ C2} .

Definition 2.1.2 (Orthogonal complement of a set). Given S ⊆ E, its orthogonal complement

S⊥ := {x ∈ E : 〈s, x〉 = 0,∀s ∈ S}.

2.2 Background of linear algebra

In this section, we review some basic definitions and theorems from linear algebra. A compre-
hensive list of linear operators used in this thesis is presented in Appendix B.
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Definition 2.2.1 (Null space of linear map, null(·)). Given a linear map A : En → Em, its null
space is

null(A) := {x ∈ En : A(x) = 0}.

Definition 2.2.2 (Range of linear map, range(·)). Given a linear map A : En → Em, its range
space is

range(A) := {y ∈ Em : A(x) = y for some x ∈ En}.

Definition 2.2.3 (Adjoint of linear map). Given a linear map A : En → Em, its adjoint is the
unique linear map A∗ : Em → En such that

〈A(x), y〉 = 〈x,A∗(y)〉, ∀x ∈ En,∀y ∈ Em.

Here is a fact that brings the concepts of null space, range, adjoint, and orthogonal complement
all together.

Fact 2.2.4. (Proposition 7.7, [8]) Given linear map A : En → Em, null(A) = range(A∗)⊥.

The next fact characterizes any symmetric matrix as a linear transformation consisting of scaling
and rotation.

Fact 2.2.5. (Spectral Decomposition Theorem, Proposition 7.29, [8]): For every X ∈ Sn, let

λ(X) =

λ1

...
λn

 where {λ1, ..., λn} is the set of eigenvalues. Then, there is an orthogonal matrix

Q =
[
q1 ... qn

]
∈ Rn×n composed of orthonormal eigenvectors for X such that

X = QDiag(λ(X))QT =
n∑
i=1

λiqiq
T
i .

2.3 Positive (semi)definite matrices

For our problem of interest and more broad real world applications, the convex cone of positive
(semi)definite matrices is an important set to understand. Hence, we review some of its properties.

Definition 2.3.1 (Positive (semi)definite (P.S.D.) matrix ). A matrix X ∈ Sn is positive semidef-
inite, denoted by X � 0, if

(∀z ∈ Rn) zTXz ≥ 0,

and is positive definite (P.D.), denoted by X � 0, if

(∀0 6= z ∈ Rn) zTXz > 0.

The following two facts are characterization of positive semidefinite matrices and positive defi-
nite matrices.

Fact 2.3.2. (Characterization of P.S.D. matrix, Proposition 1.10, [27]) Let X ∈ Sn. Then the
following are equivalent.

6



1. X is P.S.D.

2. For every nonsingular L ∈ Rn×n, LXLT � 0.

3. (∀i ∈ [n]) λi(X) ≥ 0.

4. (∀S ⊆ [n]) det(XS) ≥ 0.

5. (∀Y ∈ Sn+) 〈X,Y 〉 ≥ 0.

Fact 2.3.3. (Characterization of P.D. matrix, Proposition 1.11, [27]) Let X ∈ Sn. Then the
following are equivalent.

1. X is P.D.

2. For every nonsingular L ∈ Rn×n, LXLT � 0.

3. (∀i ∈ [n]) λi(X) > 0.

4. (∀S ⊆ [n]) det(XS) > 0.

5. (∀Y ∈ Sn+\{0}) 〈X,Y 〉 > 0.

Here is a way to test whether a symmetric matrix with positive definite leading block is positive
(semi)definite.

Fact 2.3.4. (Schur’s complement lemma, Proposition 1.22, [27]) Let X ∈ Sm, U ∈ Rm×n, T ∈ Sn++.
Then, [

T UT

U X

]
� 0 ⇐⇒ X − UT−1UT � 0.

In addition, [
T UT

U X

]
� 0 ⇐⇒ X − UT−1UT � 0.

Relationship between faces of Sn+ and subspaces of Rn

There is a nice relationship between faces of Sn+ and subspaces of Rn. To understand this
relationship, we need some terminology.

Definition 2.3.5 (Interior). Given a set C ⊆ E,

int(C) := {x ∈ C : ∃ε > 0, Bε(x) ⊆ C}.

Sometimes, we are only interested in the ”interior” of a set within its dimension.

Definition 2.3.6 (Relative interior). Given a set C ⊆ E,

relint(C) := {x ∈ C : ∃ε > 0, Bε(x) ∩ aff(C) ⊆ C}.

Definition 2.3.7 (Face of a convex set). Given convex set C ⊆ E, F ⊆ C is defined to be a face
of C if

7



1. F is convex.

2. (∀x ∈ F) (∀y, z ∈ C) such that x ∈ lineseg(y, z), we have y, z ∈ F .

Definition 2.3.8. A face F of a convex set C ⊆ E is proper if ∅ 6= F 6= C.

Fact 2.3.9 (Equivalence between faces of Sn+ and subspaces of Rn, Example 2.2.3, [16]). For any
face F of Sn+, there exists a linear subspace L ⊆ Rn such that

F = {X ∈ Sn+ : range(X) ⊆ L}

and vice versa. In addition, for a face F of Sn+ that corresponds to a linear subspace L, we have

relint(F) = {X ∈ Sn+ : range(X) = L},

and for any V ∈ Rn×m such that range(V ) = L,

F = V Sm+V T .

2.4 Background of convex analysis and convex optimization

In this section, we review some basic definitions and results of convex analysis and convex
optimization. See e.g., the classical book [25].

Definition 2.4.1 (Affine subspace). A subspace A ⊆ E is defined to be affine if

(∀x, y ∈ A)(∀α ∈ R) αx+ (1− α)y ∈ A.

Sometimes, we are interested in sets with the property that given any pair of points in the set,
the line segment passing through them is also in the set.

Definition 2.4.2 (Convex set). A set C ⊆ E is defined to be convex if

(∀x, y ∈ C)(∀α ∈ [0, 1]) αx+ (1− α)y ∈ C.

Then, we need a notion to describe the smallest affine set containing a subset of a Euclidean
space.

Definition 2.4.3 (Affine hull). Given a set C ⊆ E,

aff(C) := {
k∑
i=1

αixi : xi ∈ C,αi ∈ R, k > 0,
k∑
i=1

αi = 1}

is the affine combinations of elements of C.

Analogously, the smallest convex set containing a subset of a Euclidean space is just its affine
hull restricted onto non-negative coefficients.

8



Definition 2.4.4 (Convex hull). Given a set C ⊆ E,

conv(C) :=

{
k∑
i=1

αixi : xi ∈ C,αi ∈ R, k > 0,
k∑
i=1

αi = 1, αi ≥ 0

}

is the convex combinations of elements of C.

2.4.1 Normal cone

The normal cone is an important tool to characterize optimality conditions of optimization
problems. To understand it, we first define the concept of a cone.

Definition 2.4.5 (Cone). A set C ⊆ E is defined to be a cone if

(∀c ∈ C)(∀α ∈ R+) αc ∈ C.

A cone is a generalization of the ray of non-negative numbers from one dimension to arbitrary
dimensions. One useful cone is normal cone.

Definition 2.4.6 (Normal cone, NC(·)). Given non-empty and convex set C ⊆ E, the normal cone
to C at point x ∈ E is

NC(x) :=

{
{d ∈ E : 〈c− x, d〉 ≤ 0, ∀c ∈ C}, x ∈ C;

∅, x /∈ C.

Example 2.4.7. For any linear subspace C of E, NC(x) =

{
C⊥, x ∈ C;

{0}, x /∈ C.

Proof.
(∀x ∈ C) NC(x) = {d ∈ E : 〈c− x, d〉 ≤ 0,∀c ∈ C}

= {d ∈ E : 〈v, d〉 ≤ 0, ∀v ∈ C}
= {d ∈ E : 〈v, d〉 = 0, ∀v ∈ C}
= C⊥.

Example 2.4.8 (The fundamental theorem of linear algebra). Given linear map A : En → Em,
Nnull(A)(x) = range(A∗), ∀x ∈ En.

Proof. Since null(A) is a subspace of En, (∀x ∈ null(A)) Nnull(A)(x) = null(A)⊥ = range(A∗).

2.4.2 Proper function

Definition 2.4.9 (Proper function). A function f : E→ [−∞,∞] is defined to be proper if it never
attains the negative infinity value and its domain is non-empty, where

dom(f) := {x ∈ E : f(x) is finite}.

9



Example 2.4.10. Any continuous function is proper.

Definition 2.4.11 (Indicator function). Given set C ⊆ E, the indicator function with respect to
C is defined to be

iC : E→ {0,∞} : x 7→

{
0, x ∈ C;

∞, x /∈ C.

Example 2.4.12. The indicator function with respect to any non-empty set is proper.

2.4.3 Lower semicontinuous function

Definition 2.4.13 (Lower semicontinuous function(l.s.c.)). A function f : E→ [−∞,∞] is defined
to be l.s.c. at point x ∈ E if

(∀(xn)n → x) f(x) ≤ lim inf
n→∞

f(xn).

f is defined to be l.s.c. if it is l.s.c. at all points in E.

Definition 2.4.14 (Lower level set of a function). The lower level set of a function f : E →
[−∞,∞] at height α ∈ R is defined to be

levα(f) := {x ∈ E : f(x) ≤ α}.

Fact 2.4.15 (Characterization of l.s.c. function, Thm 3.17, [20]). Given a function f : E →
[−∞,∞], the following are equivalent:

1. f is l.s.c.

2. epi(f) is closed.

3. (∀α ∈ R) levα(f) is closed.

2.4.4 Convex function

Definition 2.4.16 (Epigraph of a function). The epigraph of a function f : E → [−∞,∞] is
defined to be

epi(f) := {(x, α) : f(x) ≤ α}.

Definition 2.4.17 (Convex function). A function f : E → [−∞,∞] is defined to be convex if
epi(f) is convex.

Fact 2.4.18 (Characterization of convex function(Jansen’s inequality), Thm 3.6, [20]). A function
f : E→ [−∞,∞] is convex if and only if

(∀x, y ∈ dom(f))(∀λ ∈ (0, 1)) f [λx+ (1− λ)y] ≤ λf(x) + (1− λ)f(y).

The mere convexity of the objective function of an optimization problem does not guarantee
convergence of many algorithms applied on it. Hence, we require a stronger notion than convexity.
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Definition 2.4.19 (Strongly convex function). A proper function f : E → (−∞,∞] is defined to
be β-strongly convex if

(∀x, y ∈ E)(∀λ ∈ (0, 1)) f [λx+ (1− λ)y] ≤ λf(x) + (1− λ)f(y)− 1

2
βλ(1− λ) ‖x− y‖2 .

The parameter β is usually related to the convergence rate of algorithms applied on optimization
problems with β-strongly convex objective functions.

Fact 2.4.20 (First characterization of strongly convex functions, Fact 24.4, [20]).

A proper function is β-strongly convex ⇐⇒ f − β

2
‖·‖2 is convex.

Local and global minimizers of convex functions

As the objective of most optimization problems is to search for a global minimizer of some
function, we need a notion to define local and global minimizers of a function.

Definition 2.4.21 (Local minimizers of a function). Given a proper function f : E→ (−∞,∞], t
is a local minimizer of f if

∃δ > 0 such that (∀x ∈ Bδ(t)) f(t) ≤ f(x).

A nice property of proper convex function is that each local minimizer coincides with the global
minimizer.

Fact 2.4.22 (Proposition 5.9, [20]). Every local minimizer of a proper and convex function is a
global minimizer.

Fact 2.4.23 (Thm 24.8, [20]). Given β-strongly convex and l.s.c. function f : E → (−∞,∞], it
has a unique minimizer x∗ such that

f(x)− f(x∗) ≥ β

2
‖x− x∗‖2 ,∀x ∈ dom(f).

Proper, l.s.c., and convex functions

Proper, lower semicontinuous, and convex functions admit many nice properties. For example,
in the latter chapters, we will see that the ADMM algorithm converges only on optimization prob-
lems with proper, l.s.c., and convex objective functions. Hence, we want to characterize functions
with these three properties.

Fact 2.4.24 (Characterization of non-emptiness, closeness, and convexity of a set by its indicator
function, Example 3.19, [20]). Given a set C ⊆ E,

1. C 6= ∅ ⇐⇒ iC is proper.

2. C is closed ⇐⇒ iC is l.s.c.

3. C is convex ⇐⇒ iC is convex.
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Here is one proper, l.s.c., and convex function.

Example 2.4.25. Given non-empty C ⊆ E, the support function of C:

σC : E→ [−∞,∞] : u 7→ sup
c∈C
〈c, u〉

is proper, l.s.c., and convex.

The support function can be used to characterize equivalent non-empty closed convex sets.

Fact 2.4.26 (Lemma 8.15, [20]). Given non-empty closed convex sets C and D,

C = D ⇐⇒ σC = σD.

Fact 2.4.27 (Second characterization of strongly convex functions, Fact 24.4, [20]). Given a proper,
l.s.c., and convex function f : E→ (−∞,∞], the following are equivalent:

1. f is β-strongly convex.

2. (∀x ∈ dom(∂f))(∀y ∈ dom(f))(∀u ∈ ∂f(x)) f(y) ≥ f(x) + 〈u, y − x〉+ β
2 ‖y − x‖

2.

3. (∀x, y ∈ dom(∂f))(∀u ∈ ∂f(x))(∀v ∈ ∂f(y)) 〈x− y, u− v〉 ≥ β ‖y − x‖2.

2.4.5 Fenchel conjugacy and duality

Definition 2.4.28 (Fenchel conjugate of a function). Given function f : E→ [−∞,∞], its Fenchel-
Legendre convex conjugate is

f∗ : E→ (−∞,∞] : u 7→ sup
x∈E

[〈x, u〉 − f(x)].

Example 2.4.29. Given any non-empty, closed, and convex set C ⊆ E, i∗C = σC .

Proof.
i∗C(u) = sup

x∈E
[〈x, u〉 − iC(x)] = sup

x∈C
〈x, u〉 = σC(u).

2.4.6 Differentiability and subgradient calculus

Definition 2.4.30 (Subgradient of a function at a point). Given function f : E → (−∞,∞] and
point x ∈ E,

u ∈ E is a subgradient of f at x ⇐⇒ f(y) ≥ f(x) + 〈y − x, u〉,∀y ∈ E.

Definition 2.4.31 (Subdifferential of a function at a point). Given function f : E→ (−∞,∞] and
a point x ∈ E, the subdifferential of f at x is

∂f(x) := {u ∈ E : u is a subgradient of f at x}.
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Definition 2.4.32 (Subdifferentiability). A function f : E → (−∞,∞] is defined to be subdiffer-
entiable over a set C if (∀x ∈ C) ∂f(x) 6= ∅.

The subdifferential of a proper functions admits many nice properties.

Fact 2.4.33 (Proposition 13.1, [20]). The subdifferential of a proper function is positive homoge-
nous, i.e: Given proper function f : E→ (−∞,∞],

(∀α > 0) ∂(αf) = α(∂f).

Fact 2.4.34 (Proposition 13.2, Thm 13.4, [20]). The subdifferential of a proper function is quasi-
linear, i.e: Given proper convex functions f1, f2,

∂f1(x) + ∂f2(x) ⊆ ∂(f1 + f2)(x), ∀x ∈ dom(f1) ∩ dom(f2).

and linear, i.e:
∂f1(x) + ∂f2(x) = ∂(f1 + f2)(x), ∀x ∈ dom(f1) ∩ dom(f2),

if
int[dom(f1)] ∩ int[dom(f2)] 6= ∅ or relint[dom(f1)] ∩ relint[dom(f2)] 6= ∅.

In addition, if f1 and f2 are also l.s.c., then the equality constraint holds if

int[dom(f1)] ∩ dom(f2) 6= ∅ or relint[dom(f1)] ∩ relint[dom(f2)] 6= ∅.

Fact 2.4.35 (Proposition 9.7, Proposition 9.9, [20]). The subdifferential of a proper function at
any point is both closed and convex. In addition, any function f is l.s.c. on dom(∂f).

Here is a characterization of the subdifferential of proper convex functions.

Fact 2.4.36 (Proposition 10.12, [20]). Given proper convex function f : E → (−∞,∞] and point
x ∈ E,

u ∈ ∂f(x) ⇐⇒ (u,−1) ∈ Nepi(f)[x, f(x)].

Furthermore, subdifferential can also be used to guarantee convexity of proper functions.

Fact 2.4.37 (Proposition 9.10, [20]). Given proper function f : E→ (−∞,∞], if dom(f) is convex
and f is subdifferentiable over dom(f), then f is convex.

Here is a nice example relating normal cone, subdifferential, and indicator function.

Example 2.4.38. Given non-empty, closed, and convex C ⊆ E, (∀x ∈ E) NC(x) = ∂iC(x).

Proof. If x /∈ C,NC(x) = ∅ = ∂iC(x); otherwise d ∈ NC(x) ⇐⇒ (∀c ∈ C)〈c − x, d〉 ≤ 0 ⇐⇒
〈c− x, d〉+ iC(x) ≤ iC(c) ⇐⇒ d ∈ ∂iC(x).

Directional derivative

When a function is defined on a high dimensional Euclidean space, it is useful to understand
the rate of change of the function along some given direction.
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Definition 2.4.39 (Directional derivative of a function at a point). The directional derivative of
a function f : E→ (−∞,∞] at point x is defined to be

f ′(x, ·) : E→ R : d 7→ lim
α→0

f(x+ αd)− f(x)

α
.

Here is a nice characterization of the directional derivative of proper convex functions on the
interior of their domains using the support function.

Fact 2.4.40 (Thm 11.7, [20]). Given proper and convex function f : E → (−∞,∞], point x ∈
int[dom(f)], and direction d ∈ E,

f ′(x, d) = σ∂f(x)(d).

The subgradient calculus

Definition 2.4.41 (Differentiability of a proper function). A proper function f : E→ (−∞,∞] is
defined to be differentiable at point x ∈ int[dom(f)] if there exists a unique subgradient of f at x:
∇f(x) such that

lim
h→0

f(x+ h)− f(x)− 〈∇f(x), h〉
‖h‖

= 0.

Here is a characterization for a proper convex function to be differentiable at a point.

Fact 2.4.42 (Fact 11.9, [20]). Given proper convex function f : E → (−∞,∞] and point x ∈
int[dom(f)],

f is differentiable ⇐⇒ f has a unique subgradient at x.

Unsurprisingly, there is a relationship between directional derivative and gradient of a differen-
tiable function.

Fact 2.4.43 (Proposition 11.8, [20]). Given differentiable, proper, and convex function f : E →
(−∞,∞], point x ∈ int[dom(f)], and direction d ∈ E,

f ′(x, d) = 〈∇f(x), d〉.

Differentiability of convex function

Differentiable convex functions admit many nice properties. One of them is the monotonicity
of their gradients.

Definition 2.4.44. A function g : E→ (−∞,∞] is defined to be monotone if

〈x− y, g(x)− g(y)〉 ≥ 0,∀x, y ∈ E.

Fact 2.4.45 (Fact 6.2(iii), [20]). Given proper, differentiable, and convex function f : E→ (−∞,∞]
whose domain is open and convex, ∇f is monotone.

Example 2.4.46. Given non-empty, closed and convex C ⊆ E, 1
2d

2
C(·) is differentiable and convex.

Hence, ∇[1
2d

2
C(·)] = id− PC is monotone.
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A condition that guarantees the convergence of many algorithms on optimization problems with
differentiable objective functions is smoothness.

Definition 2.4.47 (L-smooth function). A function f : E→ (−∞,∞] is defined to be L-smooth
over D ⊆ E if f is differentiable over D and ∇f is L-Lipschitz continuous over D, i.e:

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ ,∀x, y ∈ D.

Fact 2.4.48 (The descent lemma, Lemma 23.6 [20]). Given L-smooth function f : E→ (−∞,∞]
over D ⊆ E,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖y − x‖2 .

Smoothness of convex differentiable functions can be algebraically characterized as follows:

Fact 2.4.49 (Fact 23.8, [20]). Given convex and differentiable function f : E → R, the following
are equivalent:

1. f is L-smooth.

2. f(y) ≤ f(x) + 〈∇f(x), y − x〉+ L
2 ‖y − x‖

2 ,∀x, y ∈ E.

3. f(y) ≥ f(x) + 〈∇f(x), y − x〉+ 1
2L ‖∇f(y)−∇f(x)‖2 ,∀x, y ∈ E.

4. 〈x− y,∇f(x)−∇f(y)〉 ≥ 1
L ‖∇f(x)−∇f(y)‖2 , ∀x, y ∈ E.

2.4.7 Constrained convex optimization

In this section, we review some basic definitions and results of constrained convex optimization.

A constrained convex optimization problem has the following form:

minx∈E f(x)
s.t. x ∈ C

where the objective function f : E → (−∞,∞] is proper, l.s.c., and convex and the constraint set
C is non-empty, closed, and convex.

Two typical examples are linear programs and semidefinite programs.

Definition 2.4.50 (Linear program, LP). Given linear map A : Rn → Rm, b ∈ Rm, c ∈ Rn, an
LP has the following form:

minx∈Rn 〈c, x〉
s.t. Ax ≤ b

x ≥ 0

Definition 2.4.51 (Semidefinite program, SDP). Given linear map A : Sn → Rm, b ∈ Rm, C ∈
Rn×n, a SDP has the following form:

minX∈Sn 〈C,X〉
s.t. A(X) = b

X � 0

15



Here are two examples that are not constrained convex optimization problems.

Definition 2.4.52 (Integer quadratic program, IQP). Given linear map A : Rn → Rm, b ∈
Rm, D ∈ Sn, an IQP has the following form:

minx∈Rn xTDx
s.t. Ax = b

x ∈ {0, 1}n

Definition 2.4.53 (Binary-constrained quadratic program, BCQP). A BCQP is an instance of
an IQP where A is binary and b = e.

The following lemma characterizes the global minimizer of a constrained convex optimization
problem.

Fact 2.4.54 (Rockafellar-Pshenichnyi lemma, Thm 2.1, [24]). Given convex set C ⊆ E and convex
function f : C ⊆ E→ R,

a point x ∈ C is a minimizer of f if and only if 0 ∈ ∂f(x) +NC(x).

Sometimes, the constraint set can be formulated as the intersection of finitely many sets which
can be described using non-linear inequalities and equalities. We call such convex constrained
problems as nonlinear programs.

Definition 2.4.55. Given convex functions {f : Rn → R, gi : Rn → R : i ∈ [n]} and affine
functions {hi : Rn → R : i ∈ [m]}, a convex optimization problem has the following form:

inf f(x)
s.t. gi(x) ≤ 0,∀i ∈ [n]

hj(x) = 0,∀j ∈ [m]

Karush, Kuhn and Tucker refined the Rockafellar-Pshenichnyi lemma to the following conditions
in order to characterize optimal solutions of a convex optimization problem.

Definition 2.4.56 (Slater point). x ∈ Rn is a Slater point if

1. (∀i ∈ [n]) gi(x) < 0.

2. (∀i ∈ [m]) hi(x) = 0.

Fact 2.4.57 (Karush-Kuhn-Tucker, KKT conditions, Thm 16.1, Thm 16.2, [20]). Given a con-
vex optimization problem that has a Slater point, a primal-dual pair (x∗, λ1, ..., λn, β1, .., βm) is an
optimal solution if and only if the following KKT conditions hold:

1. Primal feasibility: (∀i ∈ [n])gi(x
∗) ≤ 0 and (∀i ∈ [m])hi(x

∗) = 0.

2. Dual feasibility:

(a) 0 ∈ ∂f(x∗) +
∑n

i=1 λi∂gi(x
∗) +

∑m
i=1 βi∂hi(x

∗).

(b) (∀i ∈ [n]) λi ≥ 0.

3. Complementary slackness: (∀i ∈ [n]) λigi(x
∗) = 0.
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Optimality conditions for split problems

As we use a splitting algorithm to solve our problem of interest, we are particularly interested
in the optimality conditions of the following convex split problem:

minX∈Sn,Y ∈Sm f(X,Y )
s.t. A1(X) +A2(Y ) = 0

X ∈ X
Y ∈ Y

(2.4.1)

where the objective function f is differentiable and convex, both A1 : Sn → Rm and A2 : Sm → Rm
are linear, and both X and Y are nonempty, closed and convex sets.

Define the linear manifold

C := {(X,Y ) ∈ Sn × Sm : A1(X) +A2(Y ) = 0}

corresponding to the linear constraint. Then, the feasible set of (2.4.1) is

K := C ∩ (X × Y).

By Rockafellar-Pshenichnyi lemma,

(X∗, Y ∗) is an optimal solution to (2.4.1) ⇐⇒ −∇f(X∗, Y ∗) ∈ NK(X∗, Y ∗).

This characterization has very limited use as NK(X∗, Y ∗) is very hard to describe. It’s much
nicer to be able to characterize the optimality conditions using A1,A2,NX (·), and NY(·) directly
as they usually admit more structures to exploit. This motivates the next result.

Theorem 2.4.58. Under the above setting, assume that there exists X∗ ∈ X and Y ∗ ∈ Y such
that

NK(X∗, Y ∗) = NC(X∗, Y ∗) +NX (X∗)×NY(Y ∗).

Then,

(X∗, Y ∗) is an optimal solution to (2.4.1) ⇐⇒

{
−∇Xf(X∗, Y ∗) ∈ range(A∗1) +NX (X∗);

−∇Y f(X∗, Y ∗) ∈ range(A∗2) +NY(Y ∗).

Proof. Define A(X,Y ) := A1(X) +A2(Y ). By (2.4.8), NC(X∗, Y ∗) = range(A∗).

We now show that range(A∗) = range(A∗1)× range(A∗2).

(∀w ∈ Rm)

〈(X,Y ),A∗(w)〉 = 〈A(X,Y ), w〉 = 〈A1(X) +A2(Y ), w〉
= 〈A1(X), w〉+ 〈A2(Y ), w〉
= 〈X,A∗1(w)〉+ 〈Y,A∗2(w)〉
= 〈(X,Y ), (A∗1(w),A∗2(w))〉.
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Hence, NC(X∗, Y ∗) = range(A∗1)× range(A∗2). With the assumption, we conclude

NK(X∗, Y ∗) = NC(X∗, Y ∗) + [NX (X∗)×NY(Y ∗)]
= [range(A∗1)× range(A∗2)] + [NX (X∗)×NY(Y ∗)]
= [range(A∗1) +NX (X∗)]× [range(A∗2)×NY(Y ∗)].

Note that the above nice characterization relies on the decomposability of the normal cone.
Does this condition hold all the time? Rockafellar gives a sufficient condition.

Fact 2.4.59 (Corollary 23.8.1 [25]). Given convex sets C1, .., Cm such that the intersection of their
relative interiors is non-empty. Then,

NC1∩...∩Cm(x) = NC1(x) + ....+NCm(x).

If in addition C1, .., Ck are polyhedral, the above conclusion holds if the intersection of
C1, .., Ck, relint(Ck+1), ..., relint(Cm) is non-empty.

2.4.8 Projection and proximal point mapping

While solving optimization problems, if the current iterate of someone’s algorithm is infeasible,
he naturally wants to know the closest feasible point to the current iterate point. We use the
projection operator to denote such an operation.

Definition 2.4.60 (Projection onto a set). Given set S ⊆ E, the projection operator onto S is

PS : E→ S : x 7→ argmins∈S ‖s− x‖ .

For example, here is an algebraic characterization of projection onto hyperplanes.

Example 2.4.61 (Projection onto hyperplane). Let H := {x ∈ E : aTx = b, a 6= 0} be a hyperplane
in E. The projection onto H is

PH : E→ H : x 7→ x+
b− 〈a, x〉
‖a‖2

a.

In order to understand the projection operator, we need to firstly understand the proximal point
mapping of a function.

Definition 2.4.62 (Proximal point mapping of a function). The proximal point mapping of a
function f : E→ (−∞,∞] is define to be

Proxf : E→ P(E) : x 7→ argminu∈E{f(u) +
1

2
‖u− x‖2}.

The connection between projection operator and proximal point mapping is through the indi-
cator function.

Proposition 2.4.63. Given non-empty, closed, and convex set C ⊆ E, P roxiC = PC .
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Proof. (∀x ∈ E)ProxiC (x) = argminu∈E{iC(u) + 1
2 ‖u− x‖

2} = argminu∈C{‖u− x‖
2} = PC(x).

Fact 2.4.64. The proximal point mapping of a proper, l.s.c., and convex function is single-valued.

Corollary 2.4.65. The projection onto any non-empty, closed and convex subset of a Euclidean
space is single-valued.

Proof. (∀∅ 6= C ⊆ E) such that C is both closed and convex, iC is proper, l.s.c., and convex.

Fact 2.4.66 (Characterization of the proximal point mapping of a proper, l.s.c., and convex func-
tion, Thm 25.3, [20]). Given proper, l.s.c., and convex function f : E→ (−∞,∞] and point x ∈ E,

p = Proxf (x) ⇐⇒ x− p ∈ ∂f(p) ⇐⇒ f(y) ≥ f(p) + 〈y − p, x− p〉,∀y ∈ E.

Corollary 2.4.67 (Characterization of projection onto non-empty, closed, and convex set, Corol-
lary 25.4, [20]). Given non-empty, closed, and convex set C ⊆ E and x ∈ E,

p = PC(x) ⇐⇒ p ∈ C and 〈c− p, x− p〉 ≤ 0,∀c ∈ C.

Fact 2.4.68 (Characterization of minimizers of a proper, l.s.c., and convex function, Thm 25.9,
[20]). Given proper, l.s.c., and convex function f : E→ (−∞,∞],

x is a minimizer of f ⇐⇒ x = Proxf (x).

Fact 2.4.69 (Projection translation theorem, Example 25.15, [20]). Given non-empty, closed, and
convex C ⊆ E, points x, y ∈ E,

Py+C(x) = y + PC(x− y).

Fact 2.4.70 (Characterization of projection onto affine subspace). Given affine subspace U of E
and point x ∈ E,

p = PU (x) ⇐⇒ p ∈ U and 〈y − z, x− p〉 = 0,∀y, z ∈ U.

Fact 2.4.71 (Characterization of projection onto linear subspace). Given linear subspace U of E
and point x ∈ E,

p = PU (x) ⇐⇒ p ∈ U and x− p ∈ U⊥.

Example 2.4.72 (Generalized (Moore-Penrose) inverse of linear operator). Given linear operator
L : Rn → Rm, its pseudo-inverse operator is

L+ : Rm → Rn : y 7→ PCy(0),

where Cy := {x ∈ Rn : L∗Lx = L∗y}.

In order to prove that an algorithm does not diverge, it is often necessary to prove that the
operator T for each iteration of the algorithm is 1-Lipschitz, i.e:

‖Tx− Ty‖ ≤ ‖x− y‖ ,∀x, y ∈ E.

We call such an operator contractive.
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If in addition, T satisfies:

‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉,

we can prove that the algorithm converges. We call such an operator firmly contractive.

Fact 2.4.73. The proximal point mapping of a proper, l.s.c., and convex function is firmly con-
tractive.

Corollary 2.4.74. The projection operator onto non-empty, closed, and convex set is firmly con-
tractive.

Fact 2.4.75. Given smooth, proper, l.s.c., and convex finite function f with L-Lipschitz continuous
gradient ∇f , both ∇fL and id− ∇fL are firmly contractive.

2.4.9 Algorithms - Subgradient methods

In this section, we will investigate some historical first-order methods developed for solving
optimization problems. All of them use a descent direction of the objective function for each
iterate update.

Definition 2.4.76 (descent direction of a function at a point). Given proper function f :
E → (−∞,∞] and point x ∈ int[dom(f)], a vector d is called a descent direction of f at x if the
directional derivative f ′(x, d) exists and is negative.

Example 2.4.77. If ∇f(x) exists and is non-zero, then −∇f(x) is a descent direction of f at x.

Gradient steepest descent method (GSD)

The gradient steepest descent method is a greedy approach that assumes that the objective
function f is differentiable and simply takes the steepest descent direction at each iterate update:

xn+1 := xn − tn∇f(xn), where tn ∈ argmint>0 f [xn − t∇f(xn)].

Peressini, Sullivan, and Uhl proved that when f is strictly convex, coercive, i.e: limx:‖x‖→∞ f(x) =
∞, and the set of global minimizes of f is non-empty, the convergence of GSD is guaranteed.

Projected subgradient method (PSM)

The projected subgradient method solves the constrained convex optimization problem (2.4.7)
with the additional assumptions that

1. ∂f on C is bounded by some constant L > 0, i.e: (∀c ∈ C)(∀d ∈ ∂f(c)) ‖d‖ ≤ L.

2. The set of global minimizers S is non-empty.

Each iterate update rule is
xn+1 := xn − tnf ′(xn).

where
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1. f ′(xn) ∈ ∂f(xn).

2. The sequence of step sizes {tn}n are such that
∑∞

n=0 t
2
n∑∞

n=0 tn
= 0, e.g : { 1

n+1}n∈N.

For error tolerance ε, PSM is guaranteed to converge in
L2d2S(x0)

ε2
−1 iterations, where dS(x0) :=

‖x0 − s‖ denotes the distance between the initial point to the closest global minimizer s.

Proximal gradient method (PGM)

The proximal gradient method solves optimization problems of the form:

minx∈E f(x) + g(x)

with the following assumptions:

1. The set of global minimizers is non-empty.

2. f : E→ (−∞,∞] is proper, l.s.c., convex, and L-smooth on int[dom(f)].

3. g : E→ (−∞,∞] is proper, l.s.c. and convex such that dom(g) ⊆ int[dom(f)].

Optimization problems of this form can be viewed as a generalization of the constrained opti-
mization problem (2.4.7) with g = iC .

The update rule of each iterate is

xn+1 := Prox 1
L
g[(id−

1

L
∇f)(xn)].

At iteration n, the gap between the current objective value and the optimal value is upper

bounded by
Ld2S(x0)

2n ∈ O( 1
n) with the asymptotic regularity rate ‖xn+1 − xn‖ upper bounded by

√
2dS(x0)√

n
∈ O( 1√

n
).

Fast iterative soft thresholding algorithm (FISTA)

The convergence rate of PGM can be improved by using an auxiliary sequence {yn}n∈N at each
iterate. The pseudocode is as follows:

Algorithm 1 FISTA

Initialization: x0 ∈ E, y0 := x0; t0 := 1.
while stopping criterion is not satisfied do

tn+1 :=
1+
√

1+4t2n
2 .

xn+1 := Prox 1
L
g[(id−

1
L∇f)(yn)].

yn+1 := xn+1 + tn−1
tn+1

(xn+1 − xn).
end while

At iteration n, the gap between the current objective value and the optimal value is upper bounded

by
Ld2S(x0)

(n+1)2
∈ O( 1

n2 ), a quadratic improvement compared to that of PGM.
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2.5 Background of complexity theory

Complexity theory is the study of hardness of computational problems. To classify different
computational problems into their respective echelons, we need some notions to characterize how
hard these problems are.

Naturally, we want to start with easy problems.

Definition 2.5.1 (Deterministic polynomial time, P). Let Γ be an alphabet. A language L ⊆ Γ∗ is
in the computation complexity class P if there exists a deterministic Turing Machine that decides
whether any string is in L in polynomial time.

It describes the class of decision problems solvable by a deterministic Turing machine in poly-
nomial time, which we characterize as easy problems. Certainly, there are harder computational
problems.

Definition 2.5.2 (Non-deterministic polynomial time, NP). Let Γ be an alphabet. A language
L ⊆ Γ∗ is in the computation complexity class NP if there exists a nondeterministic Turing Machine
that decides whether any string is in L in polynomial time.

It describes the class of decision problems for which the correctness of a given answer can be
verified by a deterministic Turing machine in polynomial time. Note that it is not required for
a NP-problem to be solvable in polynomial time, but to simply verify the correctness of a given
answer.

Definition 2.5.3 (NP-hard). Let Γ be an alphabet. A language L ⊆ Γ∗ is NP-hard if any language
in NP can be reduced to L in polynomial time.

Definition 2.5.4 (NP-complete). Let Γ be an alphabet. A language L ⊆ Γ∗ is NP-complete if it
is both NP-hard and in NP.

A natural approach to efficiently tackle a NP-hard problem is to approximate the solution
instead. Hence, we need a notion to characterize easy approximation problems.

Definition 2.5.5 (Bounded-error probabilistic polynomial time, BPP). Let Γ be an alphabet. A
language L ⊆ Γ∗ is in the computation complexity class BPP if there exists a randomized Turing
Machine that decides whether any string is in L with error probability upper bounded by 1

3 in
polynomial time.

It describes the class of computational decision problems solvable by a probabilistic Turing
machine in polynomial time with an error probability upper bounded by 1

3 .

Here is a nice relationship between NP problems and BPP problems.

Fact 2.5.6 ( [7]). Under standard cryptographic assumptions, NP 6⊂ BPP.

2.6 Basic results about Euclidean distance matrix

Euclidean distance matrix plays a significant role in the reformulation of our problem of interest.
In this section, we review some definitions and results about Euclidean distance matrices. See
e.g., [1]
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Definition 2.6.1 (Euclidean Distance Matrix, EDM ). A matrix D = (Dij) ∈ Sn is defined to be a

Euclidean distance matrix (EDM ) if there exists a matrix of associated points P :=

pT1...
pTn

 ∈ Rn×r

such that Dij = ‖pi − pj‖ 2
(
= ‖pi‖2 + ‖pj‖2 − 2pTi pj

)
.

We are particularly interested in the relationship between Euclidean distance matrix and posi-
tive semidefinite matrix. To bring these two concepts together, we need a couple of definitions.

Definition 2.6.2 (Hollow space, SnH). The hollow space of Sn is SnH := {D ∈ Sn : diag(D) = 0}.

Definition 2.6.3 (Centred space, SnC). The centred space of Sn is SnC := {Y ∈ Sn : Y e = 0}.

Definition 2.6.4 (Lindenstrauss operator, K). The Lindenstrauss operator between symmetric
matrices is K : Sn → Sn : G 7→ diag(G)eT + ediag(G)T − 2G.

Fact 2.6.5. The Moore-Penrose generalized inverse of Lindenstrauss operator K is

K† : Sn → Sn : D 7→ −1

2
J offDiag(D)J

where

1. J := proje⊥ = I − 1
nee

T ;

2. offDiag : Sn → Sn : D 7→ D −Diag[diag(D)] is the orthogonal projection onto SnH .

Now, we are ready to state the relationship between Euclidean distance matrix and positive
semidefinite matrix.

Fact 2.6.6 ( [22, Pg. 5], Relationship between EDM and P.S.D.matrix ). Given an EDMD with
associated points P , D = K(PP T ). Conversely, K†(D) ∈ Sn+ ∩ SnC .
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Chapter 3

Wasserstein barycenter

In this chapter, we explore the Wasserstein barycenter problem. At first, we illustrate NP-
hardness of its computation. Then, we seek to develop an efficient approximation algorithm for the
simplified Wasserstein barycenter problem, a simplified version of the dual feasibility problem to
an equivalent NP-hard problem called Multimarginal Optimal Transport (MOT) problem, in high
dimensions. There exists a polynomial algorithm that reduces the standard Wasserstein barycenter
problem to the simplified Wasserstein barycenter problem. Hence, in order to tackle the standard
Wasserstein barycenter problem, it suffices to develop an efficient approximation algorithm for
the simplified Wasserstein barycenter problem. Our approach is to invoke a doubly non-negative
relaxation to the simplified Wasserstein barycenter problem and apply the Peaceman-Rachford
algorithm (rPRSM), an ADMM with intermediate update of multipliers, to approximate the
optimal value of the simplified Wasserstein barycenter problem.

3.1 NP-hardness of the Wasserstein barycenter problem

At first, we define Wasserstein distance. Let (M,d) be a metric space. Define Γ(µ, ν) to be
the set of joint probability distributions on M ×M whose first and second marginals are µ and ν
respectively, i.e: µ(x) =

∫
M γ(x, y)dy and ν(y) =

∫
M γ(x, y)dx. For p ∈ [1,∞), the Wasserstein

p-distance between probability distributions µ and ν on M is

Wp(µ, ν) := [ inf
γ∈Γ(µ,ν)

E(x,y)∼γd(x, y)p]
1
p .

Next, we define the standard Wasserstein barycenter problem. Let d be the l2 norm. Given
probability distributions {ψ1, ..., ψk} over Rd and non-negative weights {β1, ..., βk}, the standard
Wasserstein barycenter problem is to search for a probability distribution in

argminν

k∑
i=1

βiW2
2 (ψi, ν). (3.1.1)

The general Wasserstein barycenter problem extends the l2 norm to a general lq norm. Given
(p, q) ⊆ [1,∞), we use Wp,q to denote the p-Wasserstein distance on metric space (Rd, lq). The
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general (p, q)-Wasserstein barycenter problem is to search for a probability distribution in

argminν

k∑
i=1

βiWp
p,q(ψi, ν). (3.1.2)

Observe that when p = 2 = q, the standard Wasserstein barycenter problem is recovered. The
rational for generalizing the standard Wasserstein barycenter problem is simple. The parameter
p ∈ [1,∞) controls the effect of outliers on the notion of average. For example, when p = 1, the
problem computes the geometric medians of given probability distributions, which is very robust to
outliers. However, when p approaches infinity, an outlier can affect the average magnitude greatly
and deviates the true optimal distribution, since any optimal distribution is constrained to be close
to all given distributions simultaneously. As many real world applications vary in significance of
outliers, we need the flexibility to control p. The parameter q ∈ [1,∞) represents the underlying
geometry structure. For instance, if q = 2, the geometry is Euclidean space. However, since we
want to extend our notion to other geometry structures, such as Riemannian geometry, we need
the flexibility to control q.

3.1.1 Wasserstein barycenter of discrete probability distributions

For most computational applications, the given probability distributions represent point clouds
over a finite number of points. By this discrete structure, we can confine the support of each
probability distribution to a number of points that is upper bounded by some number n.

A natural optimization question arises. Does there exist an efficient algorithm that computes
the standard Wasserstein barycenter of discrete distributions? Specifically, does there exist an
algorithm that solve (3.1.1) with time complexity polynomial in the number of distributions k, the
number of supported points n, the point dimension d, and the bit complexity logU of each entry
in the given distributions and weights?

Theorem 1.1 of [2] shows that the answer is no.

Fact 3.1.1 ( [2, Thm 1.1]). Assume P 6= NP. There does not exist an algorithm that solves (3.1.1)
with uniform weights β1 = ... = βk = 1

k in poly(n, k, d, logU) time.

Does this problem become easier to solve when the goal is only to approximate the optimal
solution up to some error bound ε. Unfortunately, Theorem 1.2 of [2] brings the bad news again.

Fact 3.1.2 ( [2, Thm 1.2]). Assume NP 6⊂ BPP. Let R be an upper bound on the squared diameter
of the supports of given probability distributions. There does not exist a randomized algorithm that
approximates (3.1.1) with uniform weights β1 = ... = βk = 1

k to an accuracy of ε with probability
lower bounded by 2

3 in poly(n, k, d, logU, Rε ) time.

Unsurprisingly, the NP-hardness result extends to the general Wasserstein barycenter problem
as well.

Fact 3.1.3 ( [2, Thm 1.3]). Assume NP 6⊂ BPP. Let Rp,q be an upper bound on the pth power
of the lq norm diameter of the supports of given probability distributions. There does not exist a
randomized algorithm that approximates (3.1.2) with uniform weights β1 = ... = βk = 1

k to an

accuracy of ε with probability lower bounded by 2
3 in poly(n, k, d, logU,

Rp,q

ε ) time.

25



Next, we outline the techniques the author employed in proving these NP-hardness results. At
first, we consider an equivalent NP-hard problem called Multimarginal Optimal Transport (MOT).
The MOT problem corresponding to probability distributions {ψ1 = {x1,1, ..., x1,n}, ..., ψk =
{xk,1, ..., xk,n}} and cost tensor C ∈ (Rn)⊗k is defined to be

min
P∈M(ψ1,...,ψk)

〈C,P 〉 (3.1.3)

which is a LP over nk variables.

Proposition 2.1 of [2] proves that (3.1.2) is equivalent to (3.1.3) with cost tensor C ∈ (Rn)⊗k

for entries Cj = miny∈Rd

∑k
i=1 βi ‖xi,ji − y‖

p
q , ∀j ∈ [n]k.

It is worth mentioning that certain MOT problems with special structures of their cost tensors
can be solved efficiently. For examples, some applications in financial risk management concern cost
tensors with low ranks, and some applications in network reliability testing concern cost tensors
with certain sparsity patterns. For these types of MOT problems, there exists polynomial-time
algorithms.

However, general MOT problems with no particular structures on their cost tensors remain
NP-hard. [2] reduces CHEAPEST-HUBp,q, a simplified version of the dual feasibility problem to
(3.1.3), to (approximately) solving the MOT problem. The problem of CHEAPEST-HUBp,q is to
compute

min
j∈[n]k

Fp,q(x1,j1 , ..., xk,jk)

where the cheapest p-distances measured in lq norm with respect to locations {z1, ..., zk} is defined
to be

Fp,q(z1, .., zk) := min
y∈Rd

k∑
i=1

‖zi − y‖pq .

CHEAPEST-HUBp,q has an intuitive geometric interpretation: If we are given k sets each
consisting of n points, how do we find one point from each set in order to minimize the average
distance to their closest hub. The geometry of searching for k points that are close to each other
mimics the k-CLIQUE problem which is NP-hard [21]. The k-CLIQUE problem is to search for
k vertices in a graph such that all pairs of them are close in the sense of being adjacent to each
other. Due to the similar structures of these two problems, [2] shows a reduction from k-CLIQUE
to CHEAPEST-HUBp,q.

Note that for p = 2 = q, we are considering simply the Euclidean geometry. We call this
problem (CHEAPEST-HUB2,2) the simplified Wasserstein barycenter problem, the main problem
of interest in this thesis.

3.1.2 Wasserstein barycenter of continuous probability distributions

One may also wonder how to compute Wasserstein barycenter of continuous probability distri-
butions. However, the continuous setting faces more challenges than the discrete setting. The first
issue is how to concisely represent a continuous probability distribution. Another issue concerns the
efficiency of computing the Wasserstein distance between two continuous probability distributions.
One particular continuous probability distribution that eases these two issues is the Gaussian distri-
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bution. Many algorithms proposed for computing Wasserstein barycenter of continuous probability
distributions are restricted only to the Gaussian setting.

3.2 The simplified Wasserstein barycenter problem

In this section, we apply a doubly non-negative relaxation to the simplified Wasserstein barycen-
ter problem (CHEAPEST-HUB2,2).

3.2.1 A reformulation using Euclidean distance matrix

Proposition 3.2.1. Let S1, . . . , Sk ⊂ Rn be the set of points initially given. The simplified Wasser-
stein barycenter problem

p∗W := min
p1∈S1,...,pk∈Sk

F2,2(p1, ..., pk)

is equivalent to the problem of finding exactly one point in each set Si, i = 1, . . . , k, that minimizes
the sum of squared distances:

(WIQP ) 2kp∗W = p∗ := min
p1∈S1,...,pk∈Sk

∑
i,j∈[k]

‖pi − pj‖ 2. (3.2.1)

Proof. Assume pi, i ∈ [k] are optimal points with barycenter y. Without loss of generality, we may
assume y = 0 by translating all the points by y, i.e: pj ← pj−y,∀j. Note that this translation does
not affect the objective function. Define matrix P with rows pi. Then, P is centred, i.e., P T e = 0.
Hence, the Gram matrix of P , G = PP T admits the property Ge = 0. Define the Euclidean
distance matrix corresponding to P by the Lindenstrauss operator K such that Dij = ‖pi − pj‖2,

D := K(G) = diag(G)eT + ediag(G)T − 2G.

The result follows by noting that the sum of squared norms is∑
i,j∈[k] ‖pi − pj‖ 2 = eTDe

= eT
(
diag(G)eT + ediag(G)T − 2G

)
e

= 2k traceG
= 2k

∑
i∈[k] ‖pi‖22

= 2kp∗W .

where
eT e = k, eT diag(G) = trace(G) =

∑
i∈[k]

‖pi‖22.
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We now show an alternative proof. Firstly note that

p∗W = min
y∈Rd
pi∈Si

∑
i∈[k] ‖pi − y‖ 2

= minpi∈Si miny∈Rd

∑
i∈[k] ‖pi − y‖ 2

= minpi∈Si

∑
i ‖pi −

∑
j pj
k ‖

2

= minpi∈Si

∑
i ‖

1
k

∑
j 6=i pi − pj‖2

= 1
k2

minpi∈Si [
∑

i

∑
j∈[k] ‖pi − pj‖2 +

∑
i,j,l∈[k],i,j,l are all differenet 〈pi − pj , pi − pl〉].

We now show that
∑

i,j,l∈[k],i,j,l are all differenet 〈pi − pj , pi − pl〉 = k−2
2

∑
i,j∈[k] ‖pi − pj‖2.

Base case: k = 3: Note that 2[〈pi − pj , pi − pl〉+ 〈pj − pi, pj − pl〉+ 〈pl − pi, pl − pj〉]
= [〈pi − pj , pi − pl〉+ 〈pj − pi, pj − pl〉] + [〈pi − pj , pi − pl〉+ 〈pl − pj , pl − pi〉] + [〈pj − pi, pj − pl〉+
〈pl − pj , pl − pi〉]
= ‖pi − pj‖2 + ‖pi − pl‖2 + ‖pj − pl‖2 = 1

2

∑
i,j∈[k] ‖pi − pj‖ 2.

Strong inductive hypothesis: Assume the statement holds for 1,...,k-1.

For k: There are in total
(
k
3

)
different (i, j, l) tuples for the sum, each tuple corresponds to

‖pi − pj‖2 + ‖pi − pl‖2 + ‖pj − pl‖2. Once (i, j) is fixed, there are only k-2 possible choices left for
l, resulting in the factor k−2

2 .

By rearranging we get

k2p∗W =
k

2
min
pi∈Si

∑
i,j∈[k]

‖pi − pj‖2 ⇐⇒ 2kp∗W = min
pi∈Si

∑
i,j∈[k]

‖pi − pj‖2.

Define
x := [vT1 , ..., v

T
k ]T ∈ {0, 1}nk, A := blkdiag[eT , ..., eT ] ∈ Rk×nk.

Then, the constraints of picking exactly one point from each set are equivalent to

Ax = e.

Hence, an BCQP reformulation using Euclidean distance matrix is as follows:

(BCQP)
p∗ = min xTDx = 〈D,xxT 〉

s.t. Ax = e
x = [vT1 , ..., v

T
k ]T ∈ {0, 1}nk

(3.2.2)

3.2.2 Difficulty of the simplified Wasserstein barycenter problem

We now look at the simplified Wasserstein barycenter problem from another angle that illus-
trates its NP-hardness. In essence, this problem can be formulated as a constrained minimization
of a concave function.
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Theorem 3.2.2. Let G = K†(D) denote the centred Gram matrix, and let S ∈ Snk+ be its positive
semidefinite square root. Define g := k

2S
−1 diag(G). Then the objective function in (3.2.1) is

equivalent to
xTDx = −2‖Sx− g‖2 + 2‖g‖2.

Proof.
xTDx = xT (K(G))x

= xT [diag(G)eT + e diag(G)T − 2G]x
= xT diag(G)(eTx) + (xT e) diag(G)Tx− 2xTGx
= 2kxT diag(G)− 2xTGx
= 4〈x, Sg〉 − 2xTS2x
= −2[〈Sx, Sx〉 − 2〈Sx, g〉]
= −2‖Sx− g‖2 + 2‖g‖2.

Remark 3.2.3. Theorem 3.2.2 implies that the objective function can be reduced to max ‖Sx−g‖2 =
‖Sx − k

2S
−1 diag(S2)‖2, a convex maximization problem. Note that we started with an EDMD,

but the equivalence using G = S2 and the properties that xT e = k allowed for the reduction to S.

A brute force approach is to partition columns of S into k sections each consisting of n columns,
and then enumerate all possible k-sums. Pick the one that is farthest from g. The complexity is
O(nk). This assumes that no particular structures for Sx and g can be exploited.

3.2.3 Semidefinite programming(SDP) relaxation

In this subsection, we present a SDP relaxation of (3.2.2). The idea is to append an extra 1 in

front of a feasible vector x:

[
1
x

]
, lift it into a rank-1 matrix Yx :=

[
1
x

] [
1
x

]T
, and relax the rank-1

constraint. During the relaxation stage, we will impose additional redundant constraints, such as
arrow(Yx) = e0, in order to maintain certain properties of (3.2.2).

SDP reformulation via facial reduction

With respect to matrix variate Yx, define D̂ :=

[
0 0
0 D

]
, then the objective function of (3.2.2)

becomes 〈D,xxT 〉 = 〈D̂, Yx〉.

For the ”only-one-element-from-each-set” binary linear constraint, we observe that

Ax = e ⇐⇒
[

1
x

]T [−eT
AT

]
= 0

⇐⇒ YxK :=

[
1
x

] [
1
x

]T [−eT
AT

] [
−eT
AT

]T
= 0

⇐⇒ 〈Yx,K〉 = 0
⇐⇒ KYx = 0, i.e: range(Yx) ⊆ null(K)

29



The last step follows since K :=

[
−eT
AT

] [
−eT
AT

]T
� 0 and Yx � 0. This implies that the binary

linear constraint on vector x is equivalent to the constraint on the lifted matrix Yx : KYx = 0.

Now, it remains to consider the structure of Yx.

Proposition 3.2.4.

{
Y ∈ Snk+1 : rank(Y ) = 1, arrow(Y ) = e0

}
=

{
Y =

[
1
x

] [
1
x

]T
: x ∈ {0, 1}nk

}
.

Proof. (⊇): This is obvious.

(⊆): Since Y is symmetric and has rank 1, there exists

[
x0

x

]
∈ Rnk+1 such that Y =

[
x0

x

] [
x0

x

]T
.

Since arrow(Y ) = e0, x2
0 = 1 and x ◦ x = x0x. If x0 = 1, x ∈ {0, 1}nk; otherwise x0 = −1 and

x ∈ {0,−1}n and it is easy to verify that{[
1
x

] [
1
x

]T
: x ∈ {0, 1}nk

}
=

{[
−1
x

] [
−1
x

]T
: x ∈ {0,−1}n

}
.

Therefore, the SDP reformulation is

(SDP)

p∗ = minY ∈Snk+1 〈D̂, Y 〉
arrow(Y ) = e0

rank(Y ) = 1
KY = 0

Relaxing the rank-1 constraint

Since the NP-hardness of the SDP formulation comes from the rank-1 constraint, we now
remove this constraint. The SDP relaxation of the above model is

(SDP relax)
p∗ = minY ∈Snk+1 〈D̂, Y 〉

arrow(Y ) = e0

KY = 0

However, the improved processing efficiency of the relaxation model trades off the accuracy of
the original model. The rank of an optimal Y now can be greater than 1. The idea now is to impose
a ”right” amount of redundant constraints in the SDP model that reduces the rank of an optimal
solution as much as possible, without hurting the processing efficiency of the model too much.

Imposing the Gangster constraint

The Gangster constraint with respect to a Gangster index on a matrix zeros out some of its
entries corresponding to the Gangster index. The Gangster constraint in our case comes from the bi-
nary linear constraint Ax = e. Specifically, for feasible x of (3.2.2), defineDA := Diag[diag(ATA)] =
I.
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Proposition 3.2.5.
[ATA−DA] ◦ xxT = 0.

Proof.

Ax = e ⇐⇒ ATAx = AT e = diag(ATA)
⇐⇒ ATAx−DAx = AT e−DAx = diag(ATA)−Diag[diag(ATA)]x
⇐⇒ (ATA−DA)x = diag(ATA) ◦ (e− x) = e− x
⇐⇒ (ATA−DA)xxT = (e− x)xT = exT − xxT
⇐⇒ trace[(ATA−DA)xxT ] = trace[exT − xxT ] =

∑nk
i=1 xi − x2

i = 0
⇐⇒ (ATA−DA) ◦ xxT = 0.

Following the proposition, we define the unlifted Gangster index J to be ATA−I. Geometrically,
J represents the set of off-diagonal indices of the n-by-n diagonal blocks of Yx(2 : end, 2 : end), i.e:
the set of star indices of the following matrix:

× ? ?

?
. . . ?

? ? ×

 × ? ?

?
. . . ?

? ? ×


. . . × ? ?

?
. . . ?

? ? ×





.

To align with the extra dimension of the lifted Yx, we define our lifted Gangster index Ĵ :=
{(0, 0)} ∪ J . Then, the binary linear constraint Ax = e is equivalent to[

0
AT

] [
0
AT

]T
−
[
−1 0
0 Ink

]
= GĴ(Yx) = D00 := e0e

T
0 .

Now, the SDP relaxation model becomes

p∗ = minY ∈Snk+1 〈D̂, Y 〉
arrow(Y ) = e0

GĴ(Y ) = D00

KY = 0

(3.2.3)

3.2.4 Doubly non-negative(DNN) relaxation

In this subsection, we split the primal variable Y into two variables {Y,R} and apply a doubly
non-negative relaxation to (3.2.3).
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Recall that a feasible Yx has the form

[
1
x

] [
1
x

]T
, where x ∈ {0, 1}nk. Hence, we can impose the

redundant element-wise [0, 1]-bound constraint on Y , i.e: 0 ≤ Y ≤ 1.

For the constraint KY = 0, we apply the following facial reduction technique. Since null(K) is
a linear subspace of Rnk+1, {Yx ∈ Snk+1

+ : range(Yx) ⊆ null(K)} is a face of Snk+1
+ . Hence, for any

V ∈ R(nk+1)×(nk+1−k) with full column rank such that range(V ) = null(K) = null(

[
−eT
AT

]T
),

{Yx ∈ Snk+1
+ : range(Yx) ⊆ null(K)} = V Snk+1−k

+ V T .

We call such V a facial reducer. The facial reduction naturally brings a second primal variable
R ∈ Snk+1−k

+ . With this additional variable, we can easily see that

KY = 0 ⇐⇒ Y = V RV T , R ∈ Snk+1−k
+ .

Next, we derive a redundant trace constraint on Y and transform it onto R.

Proposition 3.2.6.

{Y ∈ Snk+1 : KY = 0, arrow(Y ) = e0} ⊆ {Y ∈ Snk+1 : trace(Y ) = k + 1}.

Proof. Recall that K :=

[
−eT
AT

] [
−eT
AT

]T
. Since null(K) = null[

[
−eT
AT

]T
],

KY = 0 ⇐⇒ 0 = DY =

−1 eT ... 0T

... ... ... ...
−1 0T ... eT

 Y0,0 ... Y0,nk

... ... ...
Ynk,0 ... Ynk,nk

 .
By expanding the first column of DY , we get

∑n
i=1 Yjn+i,0 = 1, ∀j ∈ {0, ..., k − 1}. Since

arrow(Y ) = e0, this implies that trace(Y ) = Y0,0 +
∑k

j=1

∑n
i=1 Yjn+i,0 = 1 + k.

Now, the facial constraint says that 1 + k = trace(Y ) = trace(V RV T ) = trace(RV TV ) =
trace(R).

Next, we incorporate all these constraints into the SDP relaxation model to form the DNN
relaxation model. Define

Y := {Y ∈ Snk+1 : GĴ(Y ) = D00, arrow(Y ) = e0, 0 ≤ Y ≤ 1}, R := {R ∈ Snk+1−k
+ : trace(R) = k+1}.

Thus, the DNN relaxation model is:

(DNN)

minR,Y 〈D̂, Y 〉
s.t. Y = V RV T

Y ∈ Y
R ∈ R

(3.2.4)

Observe that every feasible Y is non-negative element-wise and every feasible R is P.S.D..
Hence, this relaxation model admits the nomenclature doubly non-negative relaxation.
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Optimality conditions

Define
A1 : Snk+1 → Snk+1 : Y 7→ Y.

and
A2 : Snk+1−k → Snk+1 : R 7→ −V RV T .

Then,
A∗1 : Snk+1 → Snk+1 : Z 7→ Z.

and
A∗2 : Snk+1 → Snk+1−k : Z 7→ −V TZV.

In addition, as the objective function f(Y,R) = 〈D̂, Y 〉,

−∇Y f(Y,R) = −D̂.

Applying the results in section 2.4.7 gives the following optimality characterization conditions.

A primal-dual pair (Y,R,Z) is optimal if and only if

Y = V RV T , R ∈ R, Y ∈ Y, (primal feasibility) (3.2.5a)

0 ∈ −V TZV +NR(R), (dual R feasibility) (3.2.5b)

0 ∈ D̂ + Z +NY(Y ), (dual Y feasibility) (3.2.5c)

By the definition of the normal cone, we can easily obtain the following (3.2.7).

Proposition 3.2.7 (characterization of optimality for DNN in (3.2.4)). The primal-dual pair
(R, Y, Z) is optimal for (3.2.4) if, and only if, (3.2.5) holds if, and only if,

R = PR(R+ V TZV ) (3.2.6a)

Y = PY(Y − D̂ − Z) (3.2.6b)

Y = V RV T (3.2.6c)
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Chapter 4

ADMM algorithm

In this chapter we begin with a survey of some historical methods that motivate the development
of ADMM algorithms. Then, we apply the Peaceman-Rachford version, i.e., an ADMM with
intermediate update of multipliers, to solve the model (3.2.4) and obtain tight upper and lower
bounds for the simplified Wasserstein barycenter problem. This approach in this thesis follows
closely upon the work in [12]. We conclude in Section 4.3 with a review of some historical algorithmic
approaches to the general Wasserstein barycenter problem.

4.1 Development of the ADMM algorithm

The alternating direction method of multipliers was first introduced by Gabay, Glowinski,
Mercier, and Marrocco in the mid 1970s. The motivation originated from two optimization al-
gorithms: the dual ascent method and the method of multipliers. We next survey these two
algorithms and the rationale for the development of ADMM.

4.1.1 Dual ascent

Consider the equality constrained convex optimization problem

min f(x) subject to Ax = b, (4.1.1)

where f : Rn → R is convex, A ∈ Rm×n, b ∈ Rm. Its Lagrangian is

L(x, y) := f(x) + 〈y,Ax− b〉,

and the dual function is
g(y) := inf

x
L(x, y) = −f∗(−AT y)− bT y,

and hence the (unconstrained) dual problem is

max
y∈Rm

g(y).

Problem (4.1.1) admits the following optimality conditions:
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1. Primal feasibility: Ax∗ = b;

2. Dual feasibility: ∇f(x∗) +AT y∗ = 0.

The dual ascent method solves the dual problem using gradient ascent. Assume that an optimal
primal-dual pair (x∗, y∗) exists. Then x∗ ∈ argminx L(x, y∗). If in addition L(x, y∗) has a unique
minimizer, e.g: f is strictly convex, then x∗ = argminx L(x, y∗). Furthermore, assume the dual
function g is differentiable so that ∇g(y) can be evaluated. The dual ascent update is defined as
follows:

1. Primal update: xk+1 := argminx L(x, yk);

2. Dual update: yk+1 := yk + αk∇g(yk) = yk + αk(Axk+1 − b).

Here (xk, yk) denotes the current iterate and αk > 0 denotes the current step size.

If the step size at each iterate is selected appropriately and some other assumptions hold, i.e:
f is proper. Then, the primal-dual iterates converge to an optimal pair. One main benefit of
the dual ascent method is dual decomposability, i.e: if the objective function is separable, then
its Lagrangian is also separable and the primal updates can be performed in parallel instead of in
sequence, which boosts the processing speed. However, as mentioned above, one major disadvantage
is that it imposes many restrictions on f , which can fail to hold for many applications.

4.1.2 The method of multipliers

Define the Augmented Lagrangian for (4.1.1) with respect to penalty parameter ρ > 0 as

Lρ(x, y) := f(x) + 〈y,Ax− b〉+
ρ

2
‖Ax− b‖22 .

It can be treated as the (unaugmented) Lagrangian associated with the following equality con-
strained convex optimization problem

min f(x) +
ρ

2
‖Ax− b‖22 subject to Ax = b.

Its dual function is
gρ(y) := inf

x
Lρ(x, y),

which is differentiable under mild assumptions on (4.1.1).

The method of multipliers update is defined as follows:

1. Primal update: xk+1 := argminx Lρ(x, yk);

2. Dual update: yk+1 := yk + ρ∇gρ(yk) = yk + ρ(Axk+1 − b).

Note that the step size at each dual update is fixed at ρ. The intuition is that we want the
primal update to resemble the dual feasibility condition (2). As the method progresses, the primal
residual

∥∥Axk − b∥∥ approaches 0, yielding primal feasibility and hence optimality.
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One advantage of the method of multipliers over dual ascent method is that it imposes less
constraints on f . For example, the iterates converge even if f is not strictly convex or takes on the
value of positive infinity. However, as Lρ is not separable because of the quadratic term, it foregoes
the dual decomposability as a trade-off.

4.1.3 The ADMM algorithm

The rationale of the alternating direction methods of multipliers is to combine the decom-
posability of the dual ascent method with the advanced convergence property of the method of
multipliers. It is designed to solve convex optimization problems with two variables:

min f(x) + g(z) subject to Ax+Bz = c, (4.1.2)

where x ∈ Rn, z ∈ Rm, A ∈ Rd×n, B ∈ Rd×m, c ∈ Rd, both f and g are convex. The augmented
Lagrangian of (4.1.2) is

Lρ(x, z, y) := f(x) + g(z) + 〈y,Ax+Bz − c〉+
ρ

2
‖Ax+Bz − c‖22 .

The ADMM updates contain two primal variable updates and one dual update:

1. xk+1 := argminx Lρ(x, zk, yk);

2. zk+1 := argminz Lρ(xk+1, z, yk);

3. yk+1 := yk + ρ(Axk+1 +Bzk+1 − c).

Peaceman-Rachford algorithm

An ADMM with intermediate update of multipliers is called the Peaceman-Rachford algo-
rithm. It updates the dual variable twice, one after the x-update and the other after the z-update.
Hence, both the x-update and the z-update take into account of the newly informed dual variable.

1. xk+1 := argminx Lρ(x, zk, yk);

2. yk+ 1
2 := yk + ρ(Axk+1 +Bzk − c);

3. zk+1 := argminz Lρ(xk+1, z, yk+ 1
2 );

4. yk+1 := yk+ 1
2 + ρ(Axk+1 +Bzk+1 − c).

Convergence of the ADMM algorithm

The convergence of the ADMM algorithm was first proved by Gabay [18]. (In the appendix
of [11], Boyd et al. also presents a proof.) Assume:

1. both f and g are proper, l.s.c., and convex;
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2. the (unaugmented) Lagrangian of (4.1.2) has a saddle point, i.e., there exists a feasible primal-
dual pair (x∗, y∗, z∗) such that

L0(x∗, y∗, z) ≤ L0(x∗, y∗, z∗) ≤ L0(x, y, z∗), ∀ feasible primal-dual pair (x, y, z).

Remark 4.1.1. An equivalent characterization of saddle point (x∗, y∗, z∗) is obtained from
first order conditions, i.e.: 

0 ∈ ∂xL0(x, y∗, z∗);

0 ∈ ∂yL0(x∗, y, z∗);

0 ∈ ∂zL0(x∗, y∗, z).

Then,

• The primal residual rk := Axk +Bzk − c→ 0 as k →∞.

• The objective value converges to the optimal value.

• The dual variable yk → y∗ as k →∞.

Optimality conditions and stopping criterion

The optimality conditions of (4.1.2) are

• Primal feasibility: r∗ := Ax∗ +Bz∗ − c = 0.

• Dual feasibility:

x : 0 ∈ ∂f(x∗) +AT y∗;

z : 0 ∈ ∂g(z∗) +BT y∗.

Now, we analyze the primal updates in the ADMM step.

1. zk+1 minimizes Lρ(xk+1, z, yk) ⇐⇒ 0 ∈ ∂g(zk+1) +BT yk + ρBT rk+1 = ∂g(zk+1) +
BT [yk + ρrk+1] = ∂g(zk+1) +BT yk+1 ⇐⇒ The dual z feasibility is satisfied.

2. xk+1 minimizes Lρ(x, zk+1, yk) ⇐⇒ 0 ∈ ∂f(xk+1)+AT yk+ρAT (Axk+1+Bzk−c) =
∂f(xk+1)+AT [yk+ρrk+1+ρB(zk−zk+1)] = ∂f(xk+1)+AT yk+1+ρATB(zk−zk+1) ⇐⇒
ρATB(zk+1 − zk) ∈ ∂f(xk+1) +AT yk+1.

Therefore, we define the dual residual at step k to be sk := ρATB(zk − zk−1). Clearly, as

(rk, sk)
k→∞−−−→ (0, 0), the optimality conditions tend to be satisfied. Hence, we stop the algorithm

when

1.
∥∥rk∥∥

2
< εprimal :=

√
dεabs + εrel max{

∥∥Axk∥∥
2
,
∥∥Bzk∥∥

2
, ‖c‖2};

2.
∥∥sk∥∥

2
< εdual :=

√
nεabs + εrel

∥∥AT yk∥∥
2
.

Empiric results [11] suggest that εrel ∈ {10−3, 10−4} and εabs depends on the size of the primal
variable.
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Tuning the step size

One heuristic is to keep the primal and dual residual norms close to each other as they converge
to 0, e.g: keeping them within a factor of µ . A large penalty ρ prioritizes primal feasibility over dual
feasibility and a small penalty ρ prioritizes dual feasibility over primal feasibility. Hence, we want
to scale ρ up if primal residual overshoots dual residual and scale ρ down if dual residual overshoots
primal residual. Let τ incr and τdecr be scaling factors. We define the ρ-update as follows:

ρk+1 :=


τ incrρk,

∥∥rk∥∥
2
> µ

∥∥sk∥∥
2

;
ρk

τdecr
,

∥∥sk∥∥
2
> µ

∥∥rk∥∥
2

;

ρk, otherwise.

4.2 The simplified Wasserstein barycenter problem

In this section, we apply the Peaceman-Rachford algorithm to our problem of interest.

4.2.1 Convergence of the ADMM algorithm

At first, we prove that applying the ADMM algorithm to the DNN model (3.2.4) results in
convergence.

Recall the convergence conditions of the ADMM algorithm in section 4.1.3. Since our objective
function is linear and any linear function is proper, l.s.c., and convex, the first condition is satisfied.
It suffices to show that the second condition is also satisfied.

In our DNN model (3.2.4), the objective function is continuous and the feasible set is compact.
By the extreme value theorem, an optimal primal pair (Y ∗, R∗) always exists. By the strong duality
theorem, a corresponding optimal dual variable Z∗ exists.

Proposition 4.2.1. The optimal primal-dual pair (Y ∗, R∗, Z∗) is a saddle point of the (unaug-
mented) Lagrangian

L0(Y,R,Z) = 〈D̂, Y 〉+ 〈Z, Y − V RV T 〉+ 1Y(Y ) + 1R(R).

Proof. Note that {
∂Y L0(Y,R∗, Z∗) = D̂ + Z∗ +NY(Y );

∂RL0(Y ∗, R, Z∗) = −V TZ∗V +NR(R).

By the optimality conditions of the DNN model (3.2.5), we have{
0 ∈ ∂Y L0(Y,R∗, Z∗);

0 ∈ ∂RL0(Y ∗, R, Z∗).

In addition,
0 = Y ∗ − V R∗V T = ∇ZL0(Y ∗, R∗, Z).

Hence, (Y ∗, R∗, Z∗) is indeed a saddle point of the (unaugmented) Lagrangian.
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4.2.2 Peaceman-Rachford splitting method(PRSM) updates

Recall the DNN model (3.2.4). Its augmented Lagrangian is

Lβ(Y,R,Z) := 〈D̂, Y 〉+ 〈Z, Y − V RV T 〉+
β

2
‖Y − V RV T ‖2F + 1Y(Y ) + 1R(R).

Hence, its PRSM updates are

1. Rk+1 := argminR∈R Lβ(R, Y k, Zk);

2. Zk+ 1
2 := Zk + β(Y k − V Rk+1V T );

3. Y k+1 := argminY ∈Y Lβ(Rk+1, Y, Zk+ 1
2 );

4. Zk+1 := Zk+ 1
2 + β(Y k+1 − V Rk+1V T ).

Primal updates

As for the R-update,

argminR∈R Lβ(R, Y k, Zk) = argminR∈R ‖Y k − V RV T + 1
βZ

k‖2F by completing the square

= argminR∈R ‖V TY kV −R+ 1
βV

TZkV ‖2F since V TV = I

= argminR∈R ‖R− V T (Y k + 1
βZ

k)V ‖2F
= PR[V T (Y k + 1

βZ
k)V ] =: PR(M)

= U Diag[P∆k+1
(d)]UT M = U Diag(d)UT

where P∆k+1
denotes the projection onto the simplex ∆k+1 := {x ∈ Rn+ : 〈e, x〉 = 1 + k}.

As for the Y -update,

argminY ∈Y Lβ(Rk+1, Y, Zk+ 1
2 ) = argminY ∈Y ‖Y − [V Rk+1V T − 1

β (D̂ + Zk+ 1
2 )]‖2F by completing the square

= PY [V Rk+1V T − 1
β (D̂ + Zk+ 1

2 )]

= Pbox[GĴ [V Rk+1V T − 1
β (D̂ + Zk+ 1

2 )]]

where GĴ shoots the Gangster entries to 0 and Pbox projects onto the polyhedral set {Y ∈ Snk+1 :
Yij ∈ [0, 1]}.

Dual updates

The correct choice of the Lagrange dual multiplier Z is important in obtaining strong lower
bound. In addition, if the set of dual multipliers for all iterations is compact, then it indicates
the stability of the primal problem. If an optimal Z∗ for (3.2.4) is known in advance, then there
is no need to impose the primal feasibility constraint Y = V RV T . Hence, following the idea of
exploiting redundant constraints, we aim to identify certain properties of an optimal dual multiplier
and impose that property at each iteration of our algorithm.

Fact 4.2.2. Define ZA := {Z ∈ Snk+1 : (Z+D̂)i,i = 0, (Z+D̂)0,i = 0, (Z+D̂)i,0 = 0, i = 1, ..., nk}.
Then, for every optimal primal-dual pair (Y ∗, R∗, Z∗) to (3.2.4), Z∗ ∈ ZA.
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The proof of this fact uses the dual Y feasibility condition (3.2.5c) and a reformulation of the
Y -feasible set. The details are in [19, Thm 2.14] and [12]. This fact suggested that instead of
updating Z as above, we should project the dual variable onto ZA at each iterate, i.e:

• Zk+ 1
2 := Zk + βPZA

(Y k − V Rk+1V T );

• Zk+1 := Zk+ 1
2 + βPZA

(Y k+1 − V Rk+1V T ).

4.2.3 Relaxed Peaceman-Rachford splitting method (rPRSM)

In this subsection, we present a relaxed version of the PRSM algorithm called rPRSM. The
relaxation parameter is denoted by γ.

Algorithm 2 rPRSM

Initialization: Y 0 = 0 ∈ Snk+1, Z0 = PZA
(0), β = max(bnk+1

k c, 1), γ = 0.9
while termination criteria are not met do
Rk+1 = U Diag[P∆k+1

(d)]UT where U Diag(d)UT = eig(V T (Y k + 1
βZ

k)V )

Zk+ 1
2 = Zk + γβPZA

(Y k − V Rk+1V T )

Y k+1 = Pbox[GĴ(V Rk+1V T − 1
β (D̂ + Zk+ 1

2 ))]

Zk+1 = Zk+ 1
2 + γβPZA

(Y k+1 − V Rk+1V T )
end while

4.2.4 Bounding and duality gaps

The Lagrangian dual function to the DNN model is

g : Snk+1 → R : Z 7→ minR∈R,Y ∈Y〈D̂, Y 〉+ 〈Z, Y − V RV T 〉
= minY ∈Y,R∈R〈D̂ + Z, Y 〉 − 〈Z, V RV T 〉
= minY ∈Y〈D̂ + Z, Y 〉+ minR∈R(−〈V TZV,R〉)
= minY ∈Y〈D̂ + Z, Y 〉 −maxR∈R〈V TZV,R〉
= minY ∈Y〈D̂ + Z, Y 〉 −max‖v‖2=(k+1) v

TV TZV v

= minY ∈Y〈D̂ + Z, Y 〉 − (k + 1)λmax(V TZV ).

Hence, at iteration k, a lower bound to the optimal value of the DNN model is

g(Zk) = min
Y ∈Y
〈D̂ + Zk, Y 〉 − (k + 1)λmax(V TZkV ).

As for the upper bound, we consider two strategies for finding feasible solutions to the BCQP.
Let Y (2 : end, 2 : end) denote the unlifted part of the output matrix Y for the algorithm.

The first column approach is to take the first column of Y (2 : end, 2 : end) and compute its
nearest feasible solution to BCQP. It is equivalent to signal only the maximum weight index for
each consecutive block of length n. The proof is in [12, section 3.2.2].

40



The dominant eigenvector approach is to take the dominant eigenvector of Y (2 : end, 2 : end)
and compute its nearest feasible solution to BCQP. It is again equivalent to signal only the
maximum weight index for each consecutive block of length n.

Then, we compare the objective values for both approaches and select the upper bound with
smaller magnitude.

The relative duality gap at the current iterate k is defined to be UBk−LBk
|UBk|+|LBk|+1 where UBk

denotes upper bound at the current iterate and LBk denotes lower bound at the current iterate.

4.2.5 Stopping criterion

By Proposition 3.2.7, we can define the primal and dual residuals of the rPRSM algorithm at
iterate k as follows:

• Primal residual rk := Y k − V RkV T ;

• Dual-R residual skR := Rk − PR[Rk + V TZkV ];

• Dual-Y residual skY := Y k − PY [Y k − D̂ − Zk+ 1
2 ].

We terminate the algorithm once one of the following conditions is satisfied:

• The maximum number of iterations(maxiter) := 104 + k(nk + 1) is reached;

• The relative duality gap is upper bounded by ε := 10−5;

• KKTres := max{rk, skR, skY } < η := 10−5;

• Both the least upper bound and the greatest lower bound have not changed for boundCoun-
terMax:=200 times.

4.2.6 Speed-up

Adaptive step size

We apply the heuristic idea presented in Section 4.1.3, namely we bound the gap between the
primal and dual residual norms within a factor of µ := 2 as they converge to 0. This guarantees that
they converge to 0 at about the same rate and one residual will not overshoot the other residual
by too much. Since a large penalty β prioritizes primal feasibility over dual feasibility and a small
penalty β prioritizes dual feasibility over primal feasibility, we scale β by a factor of τinc := 2 if
the primal residual overshoots the dual residual by a factor of µ and scale β down by a factor of
τdec := 2 if the dual residual overshoots the primal residual by a factor of µ. Otherwise, we keep β
unchanged. Specifically,

βk+1 :=


τ incrβk,

∥∥rk∥∥
2
> µ

∥∥sk∥∥
2

;
βk

τdecr
,

∥∥sk∥∥
2
> µ

∥∥rk∥∥
2

;

βk, otherwise.
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Transformation of EDM

In this subsection, we explore techniques that can be applied to D̂ without contaminating the
objective function, such as scaling by a factor δ > 0, or translation by α ∈ R. Define the orthogonal
projection map PV := V V T . Then,

〈D̂, Y 〉 := 〈D̂ + αI, Y 〉 − (n+ 1)α

= 〈D̂ + αI, PV Y PV 〉 − (n+ 1)α

= 〈(PV D̂PV + αI), Y 〉 − (n+ 1)α.

Hence,

〈D̂, Y 〉 is minimized ⇐⇒ δ〈D̂, Y 〉 = 〈δ(PV D̂PV + αI), Y 〉 − (n+ 1)δα is minimized

⇐⇒ 〈δ(PV D̂PV + αI), Y 〉 is minimized.

This lets us transform D̂ into δ(PV D̂PV + αI) without contaminating the objective function.

Scaling EDM by δ < 0

Numerical experiments show that once we scale D̂ by some δ < 0, the convergence becomes
faster for the aforementioned input data distributions. There seems to be an optimal δ that mini-
mizes the number of iterations for convergence.

4.2.7 Input data distributions

In this subsection, we investigate some input data distributions for which the proposed rPRSM
algorithm achieves efficient convergence. The MATLAB command randn returns a random number
sampled from the normal distribution with mean 0 and variance 1. We found that when we group
each cluster of n points together following the standard normal distribution, the rPRSM algorithm
converges very efficiently.

The following table provides running time and relative gap comparisons for a sample of problems.

Table 4.2.1 Performance comparison: rPRSM and CVX solvers

Specifications Time (s) Rel. Dist. to Sol.
d n k rPRSM Mosek rPRSM Mosek

2 7 5 2.33e-01 3.66e-01 9.80e-08 2.41e-09

2 8 6 3.90e-01 6.94e-01 2.76e-10 5.91e-11

2 9 7 3.53e-01 1.30e+00 6.59e-07 1.55e-11

2 10 8 3.75e-01 3.92e+00 4.82e-08 4.96e-12

2 11 9 4.63e-01 1.30e+01 1.92e-09 2.21e-12

2 12 10 5.41e-01 3.09e+01 9.32e-10 8.41e-10

2 13 11 7.22e-01 7.31e+01 1.83e-08 2.94e-11

This table shows the scalability of the rPRSM algorithm for data of large size.
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Table 4.2.2 Scalability of rPRSM algorithm

d n k Time(s) KKT residual Relative duality gap

3 3 3 2.36e-02 2.20e-07 7.52e-15

4 4 4 1.38e-01 3.10e-08 9.95e-17

5 5 5 1.80e-01 7.02e-09 3.42e-16

6 6 6 3.06e-01 1.89e-08 9.09e-15

7 7 7 4.79e-01 1.19e-06 1.65e-14

8 8 8 3.16e-01 1.51e-06 5.83e-15

9 9 9 5.11e-01 1.43e-07 1.42e-14

10 10 10 5.46e-01 1.51e-07 1.46e-14

11 11 11 2.71e-01 7.38e-09 3.01e-14

12 12 12 1.01e+00 2.34e-08 2.02e-14

13 13 13 1.48e+00 4.76e-09 1.64e-14

14 14 14 2.98e+00 1.21e-06 2.75e-14

15 15 15 1.54e+00 9.83e-08 1.10e-14

16 16 16 1.27e+00 6.76e-08 1.70e-14

17 17 17 1.80e+00 1.36e-08 -2.46e-14

18 18 18 2.44e+00 2.93e-06 3.17e-15

19 19 19 3.19e+00 9.19e-10 1.15e-14

20 20 20 5.53e+00 1.56e-09 -4.15e-15

21 21 21 6.25e+00 1.53e-08 -3.86e-14

22 22 22 1.38e+01 2.67e-06 -1.32e-14

23 23 23 1.35e+01 4.16e-09 -1.42e-14

24 24 24 1.64e+01 8.28e-07 3.56e-14

25 25 25 2.72e+01 1.73e-09 -8.10e-16

If the proposed rPRSM algorithm outputs both tight lower and upper bounds for all input
data distributions, doesn’t this imply that P = NP? Note that the above result is achieved when
each group of input points are clustered to each other according to a normal distribution. It is
suspicious to assume that the same efficient convergence result still holds for different input data
distributions. In fact, I will propose two particular input data distributions for which the duality
gap between the optimal value of the BCQP formulation and the lower bound is non-trivial. Both
of them share the same characteristic that more than one optimal solutions of the the simplified
Wasserstein barycenter problem problem exist. In this circumstance, the rPRSM algorithm fails
to break ties among them, resulting in a non-trivial duality gap.

A simple example

At first, we consider the simplest case where n = k = 2. Define S1 :=

{[
0
0

]
,

[
10
0

]}
and

S2 :=

{[
0
1

]
,

[
0
−1

]}
. Clearly, the optimal solution of the simplified Wasserstein barycenter problem

with respect to this data distribution is to pick the first point of S1 and either the first or the
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second point of S2. The former selection matches the solution vector x =


1
0
1
0

 corresponding to the

lifted matrix


1 1 0 1 0
1 1 0 1 0
0 0 0 0 0
1 1 0 1 0
0 0 0 0 0

 of the DNN formulation. The latter selection matches the

solution vector x =


1
0
0
1

 corresponding to the lifted matrix


1 1 0 0 1
1 1 0 0 1
0 0 0 0 0
0 0 0 0 0
1 1 0 0 1

 of the DNN

formulation. Observe that the convex combination of these two matrices with coefficients {0.5, 0.5}
is

Ỹ =


1 1 0 0.5 0.5
1 1 0 0.5 0.5
0 0 0 0 0

0.5 0.5 0 0.5 0
0.5 0.5 0 0 0.5

 whose facially reduced component R̃ =

2 1 0
1 0.5 0
0 0 0.5

 has

rank 2.

Recall the Lagrangian dual function that we used in section 4.2.4 for computing the lower
bound:

g(Z) = min
Y ∈Y
〈D̂ + Z, Y 〉 −max

R∈R
〈V TZV,R〉.

With Z̃ :=


−0.3619 0 0 0 0

0 0 1.3699 −1 −1
0 1.3699 0 −1.5826 −1.5826
0 −1 −1.5826 0 0.7873
0 −1 −1.5826 0.7873 0

, the rPRSM algorithm

terminates with a KKT residual of 8.9157e-11.

With D̂ =


0 0 0 0 0
0 0 0 1 1
0 0 0 101 101
0 1 101 0 0
0 1 101 0 0

, we have g(Ẑ) = 1.6381 < 2 = 〈D̂, Ỹ 〉, admitting a

strictly positive duality gap.

Odd wheels

We next present another input data distribution for which the duality gap between the optimal
value of the BCQP formulation and the Lagrangian dual value is non-trivial. The issue is again
the non-uniqueness of the optimal solutions and the rPRSM algorithm fails to break ties among
them.
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The data distributions compose of a wheel with an odd number of sets, hence we call it an odd
wheel. Given problem size parameters (k, n, d), define

• θk := 2π
k .

• a set of k centroids encoded by a matrix C ∈ Rk×2 such that

C(i, :) =
[
cos(i− 1)θk sin(i− 1)θk

]
, i = 1, ..., k.

• the radius of each cluster rk :=

√
cos(θk−1)2+sin θ2k

4 .

• the set of input points encoded by a matrix P := (C ⊗ e) + rk(e⊗ C) ∈ Rk2,2.

When k is odd, there exists more than one optimal solution. A simple example with k = 3 = n
is as follows:

Figure 4.2.1: k=3=n
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A simple inspection of the picture shows that reflecting the selected green points along the
x-axis gives another optimal solution. In fact, for this example, six different optimal solutions
exist.

However, when k is even, only one optimal solution exists and the duality gap becomes trivial.
An example with k = 6 = n is as follows:

Figure 4.2.2: k=6=n
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A heuristic strategy for breaking ties

We have demonstrated that the existence of more than one optimal solutions gives a non-trivial
duality gap. However, this does not mean that we are unable to find an optimal solution of the
simplified Wasserstein barycenter problem from the outputs of the proposed rPRSM algorithm.

Let’s consider the odd wheel case (4.2.1). The unlifted part of the output matrix Y is

0 0 0
0 0.5 0
0 0 0.5

  0 0 0
0.375 0 0.125
0.125 0 0.375

  0 0 0
0.125 0.375 0
0.375 0.125 0


0 0.375 0.125

0 0 0
0 0.125 0.375

 0.5 0 0
0 0 0
0 0 0.5

 0.375 0.125 0
0 0 0

0.125 0.375 0


0 0.125 0.375

0 0.375 0.125
0 0 0

 0.375 0 0.125
0.125 0 0.375

0 0 0

 0.5 0 0
0 0.5 0
0 0 0




.

We can treat it as a probability matrix where the entry at index (ij) denotes the weight for
selecting the jth point in the ith set. For example, in order to break ties for the first group, we can
either select the second point or the third point, as they are equally weighted. However, once the
second point in the first group is selected, we must select the first point in the second group and
the second point in the third group, each attaining an equal weight of 0.375 > 0.125. Similarly,
once the third point in the first group is selected, we must select the third point in the second
group and the first point in the third group by the same logic. This strategy guarantees the sum
of probabilities for the selected point at each group is maximal.

This approach also suggests a better upper bound approximation method for the BCQP when
more than one optimal solutions of the simplified Wasserstein barycenter problem exist, compared
to the first column approach and the dominant eigenvector approach.

4.3 Historical algorithmic approaches to the Wasserstein barycen-
ter problem

In this section, we survey some past algorithms proposed for solving the general Wasserstein
barycenter problem. Unsurprisingly, either their running time depend exponentially on one of the
input parameters or they fail to approximate the optimal value well.

4.3.1 Algorithms with time complexity exponential in d

The ”fixed-support approximations” approach assumes that the barycenter is supported on a
polynomial-sized set, hence the optimization problem becomes an efficiently solvable LP. However,
the pitfall is that it implicitly requires S to be an ε-cover of the space Rd, meaning any point in
Rd must be approximated within error ε by some point in S. This implicit requirement costs all
fixed-support approximation algorithms running time Ω[(Rε )d], which is exponential in d. Another
issue is that the accuracy suffers due to the running time’s dependence to 1

ε . Similar approaches,
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such as the Frank-Wolfe algorithm and the Functional Gradient Descent algorithm, have the same
pitfalls.

It’s interesting to investigate whether the efficiency improves when d is fixed. In fact, [5] shows
that the answer is yes. Specifically, (3.1.2) can be computed in poly(n, k, logU) time.

4.3.2 Algorithms with time complexity exponential in k

Since (3.1.2) is equivalent to (3.1.3), some algorithms just solve the MOT problem by brute
force and transform the solution into an optimal solution of (3.1.2). Since (3.1.3) is a LP with nk

variables, it takes Ω(nk) running time [6, 9].

4.3.3 Polynomial-time approximation algorithms with a factor of 2

An approximation algorithm called 2-approximation restricts the support of the candidate prob-
ability distribution onto the union of the supports of given probability distributions, hence reduces
from nk weight variables to only nk weight variables. [10] proved that the optimal value at most
doubles the optimal value of the standard Wasserstein barycenter problem.

4.3.4 Algorithms based on entropic regularization

Some algorithms used entropic regularization for large-scale optimal transport problems. The
idea is to penalize the objective function by an entropy cost, which makes it strongly convex and
easier to optimize. However, [2] shows that this approach becomes inefficient for computing the
general Wasserstein barycenter in high dimensions.

4.3.5 Developing efficient algorithms by exploiting structures of input distribu-
tions

Despite these theoretical hardness results, the broad applicability of the Wasserstein barycenter
problem over discrete probability distributions motivated researchers to understand properties of
input data and probability distributions under which efficient approximation algorithms can be
developed.

One candidate is the uniform probability distribution. Unfortunately, Theorem 5.1 of [2] shows
that this does not help in improving the efficiency of existing algorithms.

However, for probability distributions with certain structures, efficient computation of Wasser-
stein barycenter is possible. [3] shows that the Gaussian distributions, or more generally location-
scatter families, assist in constructing polynomial-time algorithms for the Wasserstein barycenter
problem. In addition, [15] shows that probability distributions represented by convolution neural
network generative models and data distributions supported on low-dimensional manifolds assist
in obtaining accurate empirical results.

In this thesis, as we focus on the simplified Wasserstein barycenter problem, we concern only
the input data distributions. In particular, we investigated two types of data distributions, with
one drawn from a Gaussian process and the other represents a graph structure for which tie of
distances exists.
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Chapter 5

Conclusion

In this thesis, we identified a NP-hard computational problem called the Simplified Wasserstein
Barycenter problem that has applications in various fields of data science. For the sake of efficiently
approximating the solution of this problem, we formulated the problem as a binary constrained
quadratic program and applied doubly non-negative relaxations to it. In order to solve this relaxed
optimization problem, we applied a relaxed Peaceman-Rachford (rPRSM) algorithm, an ADMM
with intermediate update of multipliers, to compute tight lower and upper bounds on the optimal
values of the Simplified Wasserstein Barycenter problem. The empirical numerical results suggest
that both the efficiency and accuracy of our algorithm depend on input data distributions. For
examples, as for input data sampled from a standard normal distribution, the accuracy of our
algorithm is comparable to the state of the art SDP solvers such as Mosek, and the rate of
convergence of our algorithm even outperforms those SDP solvers. However, as for input data
with multiple optimal solutions, the algorithm has difficulty breaking ties among them, which
results in a loose lower bound. Some heuristic approaches which address this issue include treating
the output matrix as a probability matrix and select points based on their index weights.

As for future research, one direction is to identify more types of input data distributions for
which the proposed algorithm either achieves great efficiency and accuracy, or has difficulty achiev-
ing either good efficiency or accuracy. Another direction is to explore more speeding-up techniques
for the proposed algorithm. The idea of adaptive penalty parameter surveyed in [11] seems to work
well for the standard normal data distribution. However, [29] suggests a more advanced technique
for adapting the penalty parameter.
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Appendix A

List of math symbols

[n] {1,....,n}
[n]k The k-fold product space [n]⊗ ...⊗ [n]
E Euclidean space
En Euclidean space of dimension n
R+ The set of non-negative real numbers
Rn The set of real vectors of dimension n
(Rn)⊗k The k-fold product space Rn ⊗ ...⊗ Rn
(Rn+)⊗k The k-fold product space Rn+ ⊗ ...⊗ Rn+
Rm×n The set of real matrices of dimension m× n
Sn The set of symmetric matrices of dimension n× n
Sn+ The set of positive semidefinite matrices of dimension n×n
en The standard basis vector with 1 in the nth index
e The all-ones vector
ES The indicator matrix with respect to index S
In The identity matrix in Rn×n
Bε(x) The open ball of radius ε centred at x
∆k+1 The k-simplex
SnH The hollow space of Sn
SnC The centred space of Sn
lineseg(y, z) The line segment defined by points y and z
inf,min Infimum and minimum
sup,max Supremum and maximum
lim inf Limit inferior
lim sup Limit superior
argmin(·) The set of global minimizers of a function
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Appendix B

List of linear maps

• vec : Rn×n → Rn2
: X 7→



X11

...
X1n

...
Xn1

...
Xnn


.

• Mat : Rmn → Rm×n : x 7→


x1 xm+1 ... xm(n−1)

x2 xm+2 ... xm(n−1)+1

... ... ... ...
xm x2m ... xmn

.

• diag : Rn×n → Rn : X 7→


X11

X22

...
Xnn

.

• Diag : Rn → Sn : x 7→


x1 0 ... 0
0 x2 ... ...
... ... ... ...
0 ... ... xn

.

• trace : Rn×n → R : M 7→
∑n

i=1Mii.

• blkdiag : Rm1×n1 × ...× Rmt×nt → R
∑t

i=1mi×
∑t

i=1 ni : (A1, ..., At) 7→


A1 0 0 0
0 A2 0 0
... ... ... ...
0 0 0 At

.

• BlkDiag : R
∑t

i=1mi×
∑t

i=1 ni 7→ Rm1×n1 × ...× Rmt×nt :


A1 × × ×
× A2 × ×
... ... ... ...
× × × At

 7→ (A1, ..., At).
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• arrow : Sn+1 → Rn+1 :

[
s0 sT

s S̄

]
7→
[

s0

diag(S̄)− s

]
.

• Arrow : Rn → Sn+1 : w 7→
[

0 −wT

2
−w

2 Diag(w)

]
.

• Qarrow : Sn+1 → Rn :

[
s0 sT

s S̄

]
7→ arrow(QT0

[
s0 sT

s S̄

]
Q0) = diag(QS̄QT ) − Qs, where

Q0 :=

[
1 0T

0 Q

]
.

• QArrow : Rn → Sn+1 : w 7→ QT0 Arrow(w)Q0 =

[
0 −wTQ

2

−QTw
2 QT Diag(w)Q

]
.

• Gangster operator with respect to gangster index set J ∈ {0, ..., n}2:

GJ : Sn+1 → Sn+1 : Y 7→ GJ(Y )ij =

{
Yij , (i, j) ∈ J or (j, i) ∈ J ;

0, o.w.

• Lindenstrauss operator K : Sn → Sn : G 7→ diag(G)eT + e diag(G)T − 2G.

• K∗ : Sn → Sn : D 7→ 2[Diag(De)−D].

55



Index

(Rn)⊗k, 50
(Rn+)⊗k, 50
Bε(x), 50
ES , 50
In, 50
J , 23
[n], 50
[n]k, 50
Arrow, 51
BlkDiag, 51
∆k+1, 50
Diag, 51
Mat, 51
QArrow, 51
Qarrow, 51
argmin, 50
arrow, 51
blkdiag, 51
diag, 51
D̂ scaled, 42
lineseg(x, y), 50
E, 50
En, 50
Rn, 50
Rm×n, 50
R+, 50
Sn, 50
Sn+, 50
SnC , 50
SnH , 50
offDiag, 23
inf,min, 50
lim inf, 50
lim sup, 50
sup,max, 50
NP-complete, 22
NP-hard, 22
trace, 51
e, 50

en, 50
p∗, 28, 30, 31
p∗ = 2kp∗W , 27
p∗W , 28
G, 52
K, 52
K∗, 52
vec, 51

Adjoint of linear map, 6
Affine hull, 8
Affine subspace, 8

Binary-constrained quadratic program, BCQP,
16

Bounded-error probabilistic polynomial time, BPP,
22

Centred space, SnC , 23
Characterization of convex function(Jansen’s in-

equality), 10
Characterization of l.s.c. function, 10
Characterization of minimizers of a proper, l.s.c.,

and convex function, 19
Characterization of non-emptiness, closeness, and

convexity of a set by its indicator func-
tion, 11

Characterization of projection onto affine sub-
space, 19

Characterization of projection onto linear sub-
space, 19

Characterization of projection onto non-empty,
closed, and convex set, 19

Characterization of the proximal point mapping
of a proper, l.s.c., and convex function,
19

Cone, 9
Convex function, 10
Convex hull, 9
Convex set, 8
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Deterministic polynomial time, P, 22
Differentiability of a proper function, 14
Directional derivative of a function at a point,

14

Epigraph of a function, 10
Equivalence between faces of Sn+ and subspaces

of Rn, 8
Euclidean Distance Matrix, EDM, 23

Face of a convex set, 8
Fenchel conjugate of a function, 12
First characterization of strongly convex func-

tions, 11

Generalized (Moore-Penrose) inverse of linear op-
erator, 19

Hollow space, SnH , 23

Indicator function, 10
Integer quadratic program, IQP, 16
Interior, 7

Karush-Kuhn-Tucker, KKT conditions, 16

Lindenstrauss operator, K, 23
Linear program, LP, 15
Local minimizers of a function, 11
Lower level set of a function, 10
Lower semicontinuous function(l.s.c.), 10

Minkowski sum, 5

Non-deterministic polynomial time, NP, 22
Normal cone, NC(·), 9
Null space of linear map, null(·), 6

Orthogonal complement of a set, 5

Positive (semi)definite (P.S.D.) matrix, 6
Projection onto a set, 18
Projection onto hyperplane, 18
Projection translation theorem, 19
Proper function, 9
Proximal point mapping of a function, 18

Range of linear map, range(·), 6
Relationship between EDM and P.S.D.matrix,

23
Relative interior, 8

Rockafellar-Pshenichnyi lemma, 16

Saddle point, 37
Second characterization of strongly convex func-

tions, 12
Semidefinite program, SDP, 15
Slater point, 16
Strongly convex function, 11
Subdifferentiability, 13
Subdifferential of a function at a point, 12
Subgradient of a function at a point, 12

The fundamental theorem of linear algebra, 9
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