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Abstract

The crossing number of a graph is the minimum number of pairwise edge crossings in
a drawing of the graph in the plane. A graph G is k-crossing-critical if its crossing number
is at least k and if every proper subgraph H of G has crossing number less than k.

It follows directly from Kuratowski’s Theorem that the 1-crossing-critical graphs are
precisely the subdivisions of K3,3 and K5. Characterizing the 2-crossing-critical graphs is
an interesting open problem.

Much progress has been made in characterizing the 2-crossing-critical graphs. The only
remaining unexplained such graphs are those which are 3-connected, have a V8 minor but
no V10 minor, and embed in the real projective plane RP 2. This thesis seeks to extend
previous attempts at classifying this particular set of graphs by examining the graphs in
this category where a tree structure is attached to a subdivision of V8.

In this paper, we analyze which of the 106 possible 3-stars can be attached to a subdi-
vision H of V8 in a 3-connected 2-crossing-critical graph. This analysis leads to a strong
result, where we demonstrate that if a k-star is attached to a V8 in a 2-crossing-critical
graph, then k ≤ 4. Finally, we significantly restrict the remaining trees which still need to
be investigated under the same conditions.
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Chapter 1

Introduction

The crossing number of a graph G is the minimum number of pairwise edge crossings in a
plane drawing of G. Planar graphs, by definition, have crossing number 0, and non-planar
graphs have crossing number at least 1. The crossing number of a graph G is denoted
cr(G).

A graph G is k-crossing-critical if cr(G) ≥ k and, for every edge e ∈ E(G), cr(G\{e}) <
k.

Two graphs G and H are topologically isomorphic if there exists some graph A such
that both G and H are subdivisions of A. As remarked by Bokal, Oporowski, Richter, and
Salazar in [4], if two graphs G and H are topologically isomorphic, then cr(G) = cr(H)
and G is k-crossing-critical if and only if H is k-crossing-critical. Practically speaking,
replacing paths with internal vertices of degree 2 with edges and vice versa has no effect
on the crossing number or criticality of a graph. As such, in this work, we consider graphs
with no vertices of degree 2.

Under this assumption, it is a corollary of Kuratowski’s Theorem that the only 1-
crossing-critical graphs are K3,3 and K5.

Classifying the 2-crossing-critical graphs is a significantly more interesting and difficult
problem. It is currently incomplete. Past attempts have made significant progress at such
a classification. This thesis attempts to summarize previous partial classifications, and
contribute more understanding to the remaining unclassified 2-crossing-critical graphs.

Graphs which are 2-crossing-critical were first studied by Bloom, Kennedy, and Quintas
in [3], in which they discovered 21 examples. After this, Širàň demonstrated an infinite
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family of 3-connected n-crossing-critical graphs, for all n ≥ 3 [12]. Kochol later discovered
an infinite family of 3-connected 2-crossing-critical graphs [6].

Other notable results include Richter finding precisely eight cubic 2-crossing-critical
graphs [9]. Vitray proved that there exists a single 2-crossing-critical graph G such that
cr(G) > 2, and it is C3□C3, the Cartesian product of two 3-cycles [11] (it is worth noting
that in earlier works, the notation C3 × C3 is used). We note cr(C3□C3) = 3.

Furthermore, there are 103 graphs which minimally do not embed in the real projective
plane RP 2, as determined by Archdeacon in [1].

Most 2-crossing-critical graphs were successfully classified by Bokal, Oporowski, Richter,
and Salazar in [4]. First, they were able to enumerate all of the 2-crossing-critical graphs
which minimally do not embed in the real projective plane RP 2; this is a subset of the 103
graphs found by Archdeacon in [1]. Therefore, the rest of their characterization focused
on 2-crossing-critical graphs which embed in the real projective plane RP 2.

In their partial characterization, 2-crossing-critical graphs are considered separately
depending on their V2n minors. The graph V2n (sometimes denoted M2n) is formed by
adding chords to the 2n-cycle, such that their incident vertices are at distance n on the
2n-cycle. The V8, comprised of an 8-cycle with four chords at distance four, is seen below.

Figure 1.1: The V8 graph.

They characterized most 2-crossing-critical graphs as follows:

1. 2-crossing-critical graphs which are not 3-connected: These graphs were fully classi-
fied. They exist in two categories. The first contains 49 graphs which consist of two
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K3,3’s and/or K5’s which are either not connected (three examples), have a cut vertex
(ten examples), or have a 2-cut (36 examples). The second category is a family of
graphs which is constructed from 3-connected examples, by replacing parallel edges
incident to u and v with chains of parallel edges which are incident to u and v.

2. 3-connected 2-crossing-critical graphs with no V8 minor: Robertson’s (written with
Maharry) characterization [7] of graphs without a V8 minor is used by Bokal et al
[4] to give a (fairly complicated) method for finding all the 2-crossing-critical graphs
with no V8 minor.

3. 3-connected 2-crossing-critical graphs with a V8 minor but no V10 minor: These
graphs were not fully classified. Bokal, Oporowski, Richter, and Salazar demon-
strated in [4] that these graphs can have at most 7 million vertices. After this,
Arroyo in [5] reduced this upper bound to 4,001 vertices. Therefore, we can conclude
that there are finitely many such graphs remaining to be classified.

4. 3-connected 2-crossing-critical graphs with a V10 minor: These graphs were found to
be completely described by an infinite family. This family can be constructed from a
set of 42 tiles. These tiles are constructed by inserting one of 13 pictures (Figure 1.3)
into one of two frames (Figure 1.2) by identifying the square of the picture with the
square of the frame. To construct a 2-crossing-critical graph in this family out of
tiles, a positive integer m is chosen. Then 2m + 1 tiles are chosen and enumerated
T0, T1, . . . , T2m; this is referred to as a composition of tiles. Tiles with odd index are
flipped (top to bottom) and then tiles are attached by their endpoints. This is known
as a twisted cycling of tiles, and twisted cyclings completely define this infinite family
of graphs. See Figure 1.4 for one such example of a twisted cycling when m = 2.

Figure 1.2: The two frames used to construct all 3-connected 2-crossing-critical graphs
with a V10 minor. (Figure 1.5 from Austin’s thesis [2]).
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Figure 1.3: The 13 pictures used to construct all 3-connected 2-crossing-critical graphs
with a V10 minor. (Figure 1.4 from Austin’s thesis [2]).

Figure 1.4: An example 3-connected 2-crossing-critical graph with a V10 minor formed via
a twisted cycling. (Figure 1.0.3 from Arroyo’s thesis [5]).

Further work has been done to attempt to classify the remaining finite set of 3-
connected, 2-crossing-critical graphs with a V8 minor but no V10 minor, which can be
embedded in the real projective plane RP 2. Urrutia Schroeder first proposed in her mas-
ter’s essay a method of thinking about these graphs known as covering [10]. Covering will
be discussed later in detail. She claimed to have found 326 examples of graphs in this set,

4



but only 214 were indeed 2-crossing-critical. Austin followed up this work by introducing
the idea of fully covering, and was able to expand the list of these 2-crossing-critical graphs
to 312 [2].

In this thesis, we seek to follow up on the work done by Urrutia Schroeder and Austin
on the subject of covering, with the hopes to further narrow down the conditions under
which a 3-connected graph with a V8 minor but no V10 minor, which embeds in the real
projective plane RP 2, can be 2-crossing-critical. We first proceed to a summary of their
work.

1.1 Regarding V8’s

As discussed, the graph V8, also known as the Wagner Graph, the Möbius Ladder with
eight vertices, or the M8 graph, comprises an 8-cycle with four chords at distance four.
The 8-cycle is referred to as the rim and the four chords are referred to as the spokes. The
V10, as one might expect, is comprised of a 10-cycle with five chords at distance five.

Since we are concerned with graphs with a V8 minor, then the V8’s which we study may
be subdivided. It is worth noting that spokes are sometimes referred to as spoke edges and
rims are sometimes referred to as rim edges or rim branches. This does not necessarily
imply that they do not contain subdivisions.

The (potentially subdivided) 4-cycles containing two rim branches and two spokes are
referred to as quads.

The V8 graph is embeddable in the Möbius strip and the real projective plane RP 2. In
this paper, we will represent the V8 graph in the Möbius strip. Typically, graphs embedded
in the Möbius strip are drawn as follows, where vertices or edges on one side are associated
with those on the other side, to demonstrate an implied “twist” of the Möbius strip.

b

a

a

b

Figure 1.5: For example, a K3,3 embedded in the Möbius strip.
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Therefore, our V8 embedded in the Möbius strip will be demonstrated as follows. Since
rim edges and spokes may be subdivided, we introduce a canonical labelling of a V8 with
each edge subdivided once. (In our work, rim edges and spokes may occasionally be
subdivided multiple times, in which case we make note of this and specify new notation).

0 12 1 13 2 14 3

3 15 4 16 5 17 6 18 7 19 0

8 9 10 11

Figure 1.6: A subdivided V8 embedded in the Möbius strip with the canonical labelling.

1.2 Crossings in a 1-Drawing of a V8

A k-drawing of a graph G is a drawing in the plane which contains k pairwise edge crossings.
It is important to note that in a k-drawing, pairwise edge crossings must truly be crossings;
tangential intersection between edges is not permitted. Below are a couple of examples of
k-drawings of graphs.

Figure 1.7: An example of a 2-drawing of a planar graph.
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Figure 1.8: An example of a 1-drawing of a K3,3.

Since a V8 has crossing number 1, then its 1-drawings are of particular interest to us.
In this section, we cover some helpful lemmas and definitions from Austin’s work in [2] to
the possible 1-drawings of both V8 and small extensions of V8.

Lemma 1. Disjoint cycles do not cross in a 1-drawing.

Proof. Suppose that disjoint cycles C1 and C2 cross in a 1-drawing D of a graph G. That
is, suppose that there are edges e0 ∈ C1 and f0 ∈ C2 such that e and f are crossed in
D. But every time C1 crosses into C2, it must cross out of it. Therefore, there must be a
second pair of edges e1 ∈ C1, f1 ∈ C2 such that e1 and f1 are crossed in D, a contradiction.
Therefore, C1 and C2 cannot cross in D.

We note that G\A, where A is a set of edges, is the graph formed by deleting the edges
in A from G.

Lemma 2. Let e be an edge in a graph G. If G \ {e} has a K3,3 minor, then e is not
crossed in a 1-drawing.

Proof. If e is crossed in a 1-drawing, then G \ {e} is planar. By Kuratowski’s Theorem, it
does not have a K3,3 minor, a contradiction.

Let si through si+3 denote the four spokes of a V8 in order. Let ri through ri+7 denote
the eight rim branches of a V8 in order. Indices of spokes are counted modulo 4 and indices
of rim branches are counted modulo 8.
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Lemma 3. No spokes can be crossed in a 1-drawing of a V8.

Proof. The graph V8 \ {sj} is a subdivision of a K3,3. By the previous lemma, sj is not
crossed in a 1-drawing.

Lemma 4. If rim edges ri and rj are crossed in a 1-drawing of a V8, then |i− j| ∈ {3, 4}.

Proof. It suffices to prove that, for all i ∈ [8], ri crosses neither ri+1 nor ri+2.

Two rim branches ri and ri+2 are on disjoint quads. By Lemma 1, they cannot be
crossed in a 1-drawing.

Now suppose two adjacent rim branches, ri and ri+1, are crossed in a 1-drawing of a
V8. Removing the spoke si+1 leaves a 1-drawing of K3,3 in which the single crossing is one
edge of the K3,3 crossing itself. Since K3,3 has crossing number 1, there must be a crossing
between two distinct edges, so such a drawing is not possible. Thus, it is not possible to
have a 1-drawing of the V8 in which adjacent rim branches are crossed.

Therefore any crossed rim branches must be at distance 3 or 4, as required.

By the preceding lemmas, the crossing in a 1-drawing of a V8 must be between rim
edges at a rim distance of 3 or 4. Therefore, a V8 has, up to topological isomorphism, two
1-drawings. These are demonstrated below.

Figure 1.9: The two 1-drawings of a V8. (Figure 2.3 in Austin’s thesis [2]).

Now let G be a graph with a V8 minor. Then a rim branch of a V8 in G is covered if
there does not exist a 1-drawing D of G where the rim branch is crossed. In other words,
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a covered rim branch is one which cannot be crossed in a 1-drawing. A V8 in G is fully
covered if all of its rim branches are covered. Since all 1-drawings of a V8 involve rim edge
crossings, necessarily a graph G with a fully covered V8 has crossing number 2.

Lemma 5. Let G be a graph with a subdivision H of V8. If five consecutive rim branches
of H in G are covered, then H in G is fully covered.

Proof. By definition, any crossing in a 1-drawing G must be between the remaining three
uncovered rim branches of H. But they are not separated by a distance of three or four
in the rim, and by Lemma 4 are not crossed in a 1-drawing. Therefore, this V8 is, by
definition, fully covered.

To understand the conditions under which a V8 can become fully covered, and therefore
potentially 2-crossing-critical, following Urrutia Schroeder in [10], Austin in [2] considered
the effects of adding individual edges to the (potentially subdivided) V8. To assist in the
discussion, let H be a subdivision of V8 contained within a graph G. The rim R in H is
the cycle in H that is the subdivision of the rim of V8. A V8 vertex is one of the eight
vertices in H that is incident with spoke and distinct rim branches.

A jump is an edge not in H but with both endpoints in the rim of H. A slope is an
edge joining a vertex in the rim of H with a vertex in a spoke. A bar joins internal vertices
in two distinct spokes of H.

The span of a jump, slope, or bar S is a shortest section of the rim between the
endpoints of S. Jumps, slopes, and bars are defined by the length of their span. An n-
jump has V8 vertices as endpoints and spans n rim branches with n ≤ 4. An n1

2
-jump has a

V8 vertex as an endpoint and another vertex in the rim as its other endpoint. Off-n-jumps
span n rim branches (that is, two halves and n − 1 whole rim branches), with endpoints
on rim branches. 3-jumps are referred to as diagonals and 31

2
-jumps are referred to as

semi-diagonals. A 4-jump is referred to as a spoke jump.

Below are a couple of examples of these structures.
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0

6

1 2 3

3 4 5 7 0

0

6

1 2 3

3 4 5 7 0

0

6

1 2 3

3 4 5 7 0

Figure 1.10: A 11
2
-jump (upper left), 1-slope (upper right), and 1-bar (or bar) (lower), with

their spans denoted by dashed lines.

We say that a structure S (in this context, a jump, slope, or bar) covers a rim branch r
of a V8 if r cannot be crossed in the graph G containing S attached to a V8 or, consequently,
any supergraph of G. The following theorem from Austin’s thesis in [2] explains how each
structure covers the rim branches of the V8. This is referred to as coverage. The original
proof of this theorem contained some errors (for instance, disjoint cycles which were not
actually disjoint). For our work, we have verified the theorem with a computer. The
techniques used to do so will be described in the next section.

Theorem 6 (Theorem 2.6 from Austin’s work in [2]). Consider a graph consisting of a V8

with some structure S added.

1. If S is a slope, bar, k-jump, or off-k-jump, with k ≤ 2, then it covers the section of
rim it spans.

2. If S is an off-2-jump from ri to ri+2, then it also covers ri+5.

3. If s is a 11
2
-slope or 2-slope from si that spans ri, then it also covers ri+2, ri+3, ri+5,

and ri+6.

4. If S is a 21
2
-jump from ri that spans ri+1, then it covers ri+1, ri+2, and ri+5. Fur-

thermore, the section of ri spanned by S can only cross ri+3.
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5. If S is an off-3-jump from ri that spans ri+1, then it covers ri+1, ri+2, and ri+5.
Furthermore, the section of ri spanned by S can only cross ri+3 and the section of
ri+3 spanned by S can only cross ri.

6. If S is a semi-diagonal from i to ri+4, then the section of ri+4 spanned by S cannot
cross ri+1.

Diagrams demonstrating each of these structures and the coverage they provide can be
found in section A.1.

A proof for the following conjecture was also included in Austin’s work in [2]. However,
this proof was found to contain some errors. In particular, the proof relied on deleting rim
branches from the V8, without considering if they were subdivided and had other edges
attached. If the branches in question were indeed subdivided, then the desired method can
no longer be applied.

We were unable to provide a correct proof of this conjecture, which has been slightly
rephrased here. However, no counterexamples are known, and it is expected that the
conjecture is indeed true. Proving it would be an interesting future endeavor.

Conjecture 7 (Theorem 3.1 from Austin’s work in [2]). In a 3-connected 2-crossing-critical
with a fully covered V8 and no V10 minor, the sections of rim covered by bars, 2-bars, 1

2
-,

1-, 11
2
-, 2-, off-1

2
-, and off-1-jumps must be disjoint.

1.3 A Note about Computing

This work, and the work that has preceded it, relies heavily on the use of computers for
discovering and verifying results. We use the nauty C library, created and maintained by
B. McKay [8], which provides the necessary structures and algorithms for working with
graphs.

Contained within nauty is an efficient algorithm to check if a graph is planar. This
algorithm is complex and its details are omitted here. We will refer to it as isPlanar.
Also included within nauty are subroutines which utilize the efficient planarity checking
algorithm to check if a graph has a 1-drawing with a given pairwise edge crossing, the
crossing number of a graph, and if a graph is critical. These subroutines, implemented
by D. Bokal, are those which are used to verify the results of this paper. We proceed to
providing brief descriptions of each.
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The key to the subroutine which checks if a graph has a 1-drawing where edges e and
f are crossed, is to construct an auxiliary graph H. Let e = (e0, e1) and f = (f0, f1) in G.
To construct H, remove e and f from G and add vertex r. Then add the following edges
(r, e0), (r, e1), (r, f0), and (r, f1). In other words, H is constructed from G by simulating a
crossing of edges e and f with a vertex. We note that, if G is planar, then this simulation
will yield e and f being either tangential in H or crossed. Since the examples which use
this routine in this thesis are all non-planar, then we assume G is non-planar. Then we
can conclude that if H is planar and G is non-planar, then G has a 1-drawing where e and
f are crossed.

So, to check if a graph G has a 1-drawing with a pairwise crossing of edges e and f ,
one performs the following:

• Algorithm has1Drawing

• Input: graph G and edges e = (e0, e1) and f = (f0, f1) in G.

• Output: True if G has a 1-drawing where e and f are crossed; False otherwise.

• Construct auxiliary graph H from G as follows. Remove e and f from G and add
vertex r. Then add the following edges (r, e0), (r, e1), (r, f0), and (r, f1).

• Return True if H is planar; False otherwise.

To check if G has crossing number at most 1, we simply check if there exists a pair of
edges e, f ∈ E(G) such that e and f can be crossed in a 1-drawing of G:

• Algorithm hasCrossingNumber1

• Input: a graph G

• Output: True if cr(G) ≤ 1; False otherwise

• For each pair of edges e, f ∈ E(G)

– If has1Drawing(G, e, f), return True

• Return False

To check if G is 1-crossing-critical, we check if, for each edge e ∈ E(G), G \ {e} is
planar.
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• Algorithm is1crossingCritical

• Input: a graph G

• Output: True if G is 1-crossing-critical or planar; False otherwise

• For each edge e ∈ E(G)

– If not isPlanar(G \ {e}), return False

• return True

These three routines (has1Drawing, hasCrossingNumber1, and is1crossingCri-
tical) can be extended for any integer n. To check if a G has an n-drawing given n pairs
of edges, we simulate the n pairwise edge crossings with vertices, as in has1Drawing.
To check if G has crossing number n, we check all possible combinations of n pairs of
edges to see if G has an n-drawing with those pairs of edges. To check if a graph G is
n-crossing-critical, we check if G \ {e} has an (n− 1)-drawing for all edges e ∈ E(G).

All statements about the “crossability” of an edge or pair of edges, the crossing number
of a graph, and criticality of a graph in this paper have been verified by these techniques,
unless otherwise stated.

For instance, to verify Theorem 6, we used these tools to determine the coverage pro-
vided by each structure S. For a given structure S, we let G be the graph containing a
subdivided V8 with S attached. Then, using has1Drawing, we check, for each pair of rim
edges e, f ∈ E(G), e ̸= f , if G has a 1-drawing where e and f cross. If G does not have a
1-drawing where a rim edge e is crossed, then we conclude that, by definition, e is covered
by S.

Beyond the previously described tools, nauty also provides an algorithm to check if
graphs are isomorphic. This algorithm is takes as input a set of graphs, and returns as
output all of the non-isomorphic graphs within that set. Outlining how this algorithm
works is beyond the scope of this project, so we simply note that this is the tool used to
verify all statements about sets of graphs being non-isomorphic.

1.4 Attaching Stars to V8’s

We can now proceed to the main contributions of this thesis. Recall that a k-star is the
complete bipartite graph K{1,k}; that is, the tree with one root vertex and k leaves (when
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k > 1). In Austin’s thesis [2], following her work done with adding edges to a V8, she
outlined an unexplained class of 2-crossing-critical graphs, where a k-star is attached to
a V8. We follow her work by analyzing this class of graphs. What happens when we add
edges between a single external vertex and k vertices in a subdivided V8? How does this
process make progress towards making the V8 2-crossing-critical, without creating a V10

minor? This is the primary focus of this thesis.

Attaching a 1-star to a V8 does not affect the crossing number. Attaching a 2-star (K1,2)
is topologically isomorphic to adding an edge to the V8, which has already been discussed.
Therefore, we are concerned with what happens when a 3+-star is attached to a V8.

We first consider 3-stars. How many possibilities are there for a 3-star attached to a
V8? First of all, we do not permit the 3-star to attach to the same vertex twice, as the
resulting graph would be non-critical.

Under this restriction, there are 106 non-isomorphic possible ways to attach a 3-star to
a subdivided V8, as checked by a computer. We note that, since this number is obtained
by attaching a 3-star to a subdivided V8, there are a small handful of pairs of these 106
cases which are isomorphic after smoothing all degree 2 vertices. These cases will be noted
in our discussion.

We proceed by breaking these 106 non-isomorphic 3-star attachments into cases based
on how the 3-star attaches to the subdivision of V8.

We first consider the cases where the 3-star attaches to each rim or spoke of the sub-
divided V8 at most once:

• 1 case where the 3-star attaches at 3 spoke edges.

• 8 cases where the 3-star attaches at 2 spoke edges.

• 6 cases where the 3-star attaches to two opposing rims (that is, two rims branches
at a cyclic distance of four; in other words, two rim branches in the same quad), and
therefore forms a V10 minor.

• 34 cases where the 3-star attaches at 1 spoke edge.

• 38 cases where the 3-star attaches to 0 spoke edges.

After this, we consider the cases where the 3-star is permitted to attach to a rim or
spoke of the V8 more than once:
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• 2 cases where the 3-star attaches to the same edge 3 times.

• 7 cases where the 3-star attaches to the same spoke edge 2 times.

• 10 cases where the 3-star attaches to the same rim edge 2 times.

As explained in the previous section, with a computer it is easy to determine which rim
edge crossings a given 3-star eliminates by its attachments to a V8. However, this does not
guarantee that the 3-star can be included in a 2-crossing-critical graph. Therefore, in this
analysis, we seek to achieve one of two objectives for each 3-star attached to a V8:

• Demonstrate that the 3-star can be included in a 3-connected 2-crossing-critical graph
with a V8 minor but no V10 minor, which embeds in the projective plane, by providing
an example of one such graph. (We determine which rim edges the 3-star covers in
section A.2).

• Demonstrate that the 3-star cannot be included in such a graph, typically by con-
tradiction.

To do so, we assume that we are working with a 3-connected 2-crossing-critical graph
G with a V8 minor but no V10 minor, which is embeddable in the real projective plane RP 2.

Such a graph may contain multiple V8 minors. Therefore, we wish to consider a partic-
ular V8. Importantly, we assume that the V8 with which we are working is a V8 in G with
the minimum number of subdivisions. We again note that, because G is 3-connected, each
vertex must have degree at least 3.

1.5 Key Results

The rest of this thesis is concerned with analyzing the effects of 3-stars on covering a
subdivided V8, and then proceeding to do the same with 4+-stars. Chapter 2 handles the
cases where a 3-star attaches to a V8 via at least two spoke edges. In fact, in Chapter 2,
we were able to generalize our argument to reach a stronger conclusion about H-bridges,
where H is a subdivision of V8, which attaches to multiple spokes of H. Chapter 3 handles
those cases where a 3-star attaches to precisely one spoke. Chapter 4 handles the cases
where a 3-star attaches to no spokes. Chapter 5 covers those cases where a 3-star attaches
to a single spoke or rim multiple times. Combining the results of Chapters 2, 3, 4, and 5
yields our primary result, Theorem 8.
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Chapter 6 extends this case analysis to 4-stars, yielding our primary result regarding
4-stars, Theorem 10. Chapter 6 concludes with the strong result about 5+-stars in The-
orem 12. Chapter 7 contains a discussion of future research questions, including how one
might extend this discussion about k-stars attaching to a V8 subdivision to include trees
with k leaves as well.

Theorem 8. Let G be a 3-connected 2-crossing-critical graph with a V8 minor but no V10

minor, such that G embeds in the real projective plane RP 2.

Let G contain a 3-star T which attaches to the V8 minor in G with the minimum number
of subdivisions.

Then the connections of the 3-star T are one of the following sets of vertices, under a
canonical labelling of the V8:

• (0, 2, 15)

• (0, 3, 13)

• (0, 5, 6)

• (0, 5, 17)

• (0, 6, 9)

• (0, 13, 15)

• (0, 13, 18)

• (0, 17a, 17b)

• (1, 5, 6)

• (1, 5, 17)

• (1, 17a, 17b)

• (2, 5, 17)

• (2, 6, 9)

• (3, 5, 17)

• (5, 6, 12)

• (5, 6, 19)

• (5, 12, 17)

• (5, 14, 17)

• (5, 17, 19)

• (6, 9, 12)

• (7, 16, 17)

• (8, 13, 14)

• (10, 14, 17)

• (12, 17a, 17b)

• (16, 17, 19)

(where 17a and 17b represent two distinct points on the rim branch (5, 6)).

We note that not all of the above 3-stars were demonstrated to be contained within
a 2-crossing-critical graph. For a subset of the above 3-stars, it is suspected, but not yet
proven, that they cannot be included in a 2-crossing-critical graph.

Conjecture 9. Let G be a 3-connected 2-crossing-critical graph with a V8 minor but no
V10 minor, such that G embeds in the real projective plane RP 2, and such that G contains
a 3-star T which attaches to the V8 minor in G with the minimum number of subdivisions.
Then the connections of the 3-star T are not one of the following sets of vertices, under a
canonical labelling of the V8:
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• (0, 2, 15)

• (0, 13, 18)

• (2, 6, 9)

• (5, 6, 19)

• (5, 17, 19)

• (7, 16, 17)

• (8, 13, 14)

Theorem 10. Let G be a 3-connected 2-crossing-critical graph with a V8 minor but no V10

minor, such that G embeds in the real projective plane RP 2, and such that G contains a
4-star T which attaches to the V8 minor in G with the minimum number of subdivisions.
Then the connections of the 4-star T are one of the following sets of vertices, under a
canonical labelling of the V8:

• (0, 1, 5, 6)

• (0, 1, 5, 17)

• (0, 2, 14, 19)

• (0, 4, 12, 15)

• (0, 12, 17a, 17b)

• (1, 2, 5, 6)

• (1, 12, 17a, 17b)

• (2, 5, 14, 17)

(where 17a and 17b represent two distinct points on the rim branch (5, 6)).

We note that not all of the above 4-stars were demonstrated to be contained within
a 2-crossing-critical graph. For a subset of the above 4-stars, it is suspected, but not yet
proven, that they cannot be included in a 2-crossing-critical graph.

Conjecture 11. Let G be a 3-connected 2-crossing-critical graph with a V8 minor but no
V10 minor, such that G embeds in the real projective plane RP 2, and such that G contains
a 4-star T which attaches to the V8 minor in G with the minimum number of subdivisions.
Then the connections of the 4-star T are not one of the following sets of vertices, under a
canonical labelling of the V8:

• (0, 2, 14, 19) • (0, 12, 17a, 17b) • (1, 2, 5, 6)

Theorem 12. Let G be a 2-crossing-critical graph with a V8 minor but no V10 minor. Let
T be a k-star which attaches to the V8 minor. Then k ≤ 4.

1.6 Navigating This Thesis

Due to the symmetries of a V8, a given 3-star attached to a subdivided V8 will have
many different relabellings under the canonical labelling of a V8. Thus, our work does
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not organize 3-stars by their attachments under a canonical labelling, and instead opts
for a more general approach. This is intended to make navigating this thesis relatively
simple, while maintaining certain internal consistencies necessary if the reader wished to
work with the examples in this thesis with a computer. Here, we give a brief description
of the organization of the thesis so that the reader can easily find the discussion for any
3-star (which, as mentioned, will either be an example that it can be contained within
a 2-crossing-critical graph, a proof that it cannot, or a brief discussion if the result is
unknown). We note that the Table of Contents is also fully linked and contains the same
information as below, in a more concise manner.

• Does the 3-star in question attach to a single rim or spoke edge multiple times?

• If yes: The 3-star is discussed in Chapter 5.

– Does it attach three times to the same spoke edge? Then it is found in Section
5.1.

– Does it attach three times to the same rim edge? Then it is found in Section
5.2.

– Does it attach two times to the same spoke edge? Then it is found in Section
5.3.

– Does it attach two times to the same rim edge? Then it is found in Section 5.4.

• If not: The 3-star is discussed in Chapter 2, 3, or 4.

– How many spokes does the 3-star attach to?

– Two or More Spokes: The 3-star is discussed in Chapter 2.

∗ If it attaches to non-adjacent spokes, it is discussed in Section 2.2.

∗ Otherwise, it attaches to adjacent spokes. If the third attachment is in the
quad bounded by these spokes, it is discussed in Section 2.3.

∗ Otherwise, it is discussed in Section 2.4.

– One or Fewer Spokes, and Opposing Rims: If the 3-star attaches to
opposing rim edges, it forms a V10 minor and is discussed in Section 3.1.

– One Spoke: The 3-star is discussed in Chapter 3.

∗ The 3-star attaches to a single spoke. Does it attach to the endpoint of an
adjacent spoke? If so, it is discussed in Section 3.2.
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∗ Does it attach to the endpoint of the same spoke? If so, it is discussed in
Section 3.3.

∗ Does it attach to a rim edge incident to the endpoint of the same spoke? If
so, it is discussed in Section 3.4.

∗ Otherwise, it is one of a small handful of miscellaneous cases which do not
have obvious similarities. These are discussed in Section 3.5 and Section
3.6.

– No Spokes: The 3-star is discussed in Chapter 4.

∗ Does it attach to consecutive V8 vertices? (i.e. vertices of a non-subdivided
V8?) Then it is found in Section 4.1.

∗ Does it attach to consecutive rim edges of the V8? Then it is found in
Section 4.2.

∗ Does it attach to a V8 vertex and an incident rim edge? Then it is found in
Section 4.3.

∗ Otherwise, it is one of a handful of miscellaneous cases which are not easily
categorized. These are discussed in Section 4.4, Section 4.5, and Section
4.6, depending on their crossing number.

The linked sections above each contain multiple 3-stars. Therefore, each section has
an introduction explaining how to find a given 3-star within that section. This is the final
piece for navigating to a specific case within this thesis. Furthermore, for the reader’s sake,
all 3-stars contained in 2-crossing-critical graphs can also be found in Appendix A.2.

For example, suppose that a reader wanted to find where the following 3-star is dis-
cussed.

0 1 213 3

3 4 5 6 7 0

r

16

9

Figure 1.11: An example of a 3-star attached to a subdivided V8.

19



First, the 3-star does not attach to a single rim or spoke edge multiple times. Next, it
attaches to precisely one spoke, so it can be found in Chapter 3. No attachment is an end
of an adjacent spoke or the end of the same spoke to which it is attached. It does attach
to a rim edge incident with an end of the same spoke. Therefore, it is in Section 3.4.

Turning to Section 3.4 reveals a short introduction and the following diagram. In
this section, two of the 3-star attachments have been determined, and there are eight
possibilities for the third attachment. These are denoted ti; i ∈ [1, 8]. It is easy to see that
the case when t = t3 (that is, vertex 14 in this canonical labelling) is isomorphic to the
reader’s example.

t1 t2 1 2 t3 3

3 t4 t5 t6 5 6 t7 7 t8 0

r

v

s

t 0 12 1 2 14 3

3 15 4 16 5 6 18 7 19 0

r

v

s

t

Figure 1.12: A 3-star attached to a V8 by a spoke and an incident rim edge. Possible non-
isomorphic third attachments, which have not been considered in other cases, are labeled
ti; i ∈ [1, 8].

Indeed, turning to the case when t = t3 reveals that the reader’s example can be
included in a 2-crossing-critical graph, and one such example is the following. Notably,
the reader’s example has eight relabellings under the canonical labelling, and the below
example is one such relabelling.
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0 1 2 14 3

3 4 5 6 7 0

r

17

10

Figure 1.13: A 2-crossing-critical graph containing a V8 with this 3-star attached when
t = t3.
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Chapter 2

Bridges Attached to Multiple Spokes

In this chapter, we concern ourselves with proving Theorem 13. We note that the assump-
tions of this theorem are far more general than the assumptions of the other theorems in
this paper; in particular, we need not assume that the subdivisionH of V8 in G is minimally
subdivided. This chapter is the only chapter in which this assumption is not employed.

Theorem 13. Let G be a 2-crossing-critical graph with subdivision H of V8 and no V10

subdivision. If there is an H-bridge B with at least three attachments to H, two of which
are in adjacent spokes, then G is isomorphic to the graph shown in Figure 2.1.

0 1 2 3

3 4 5 6 7 0

9 10
r

15

Figure 2.1: The unique 2-crossing-critical graph when a tree T attaches to two distinct
spoke edges of a V8.

In fact, the graph in Figure 2.1 does not embed in the real projective plane RP 2. Since
the stated goal of this thesis is to describe the effects of attaching k-stars to a V8 under
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specific conditions including embeddability in the real projective plane, then we note the
following corollary of Theorem 13.

Corollary 14. Let G be a 3-connected 2-crossing-critical graph with a subdivision H of
V8 but no V10 subdivision, such that G embeds in the real projective plane. Let T be a tree
which attaches to H. Then T does not attach to distinct spokes of H.

2.1 Preliminaries

To aid with this analysis, we introduce some helpful concepts from Bokal, Oporowski,
Richter, and Salazar’s characterization of most 2-crossing-critical graphs [4].

The following definitions and lemma are summaries of Definition 5.1, Definition 5.2,
Lemma 5.3, and Definition 5.4 in [4]. Let G be a graph and let H be a subgraph of G.
Then an H-bridge in G is a subgraph B of G such that either B is an edge not in H,
together with its ends, both of which are in H, or B is obtained from a component K of
G \ V (H) by adding to K all the edges from vertices in K to vertices in H, along with
their ends in H.

For an H-bridge B in G, a vertex u of B is an attachment of B if u ∈ V (H). We write
att(B) to denote the attachments of B.

In this work, we work with the bridges of a cycle C. Let C be a cycle in graph G with
distinct C-bridges B and B′. Then the residual arcs are the B-bridges in B ∪ C. The
C-bridges B and B′ do not overlap if all of the attachments of B are in the same residual
arc of B′; otherwise they overlap.

The overlap diagram OD(C) of C is an auxiliary graph with C-bridges as its vertex
set and edges between two C-bridges if they overlap in C. Then C has bipartite overlap
diagram (BOD) if its overlap diagram is bipartite. The following is a well-known result.

Lemma 15 (Lemma 5.3 in [4]). Let C be a cycle in a graph G. Distinct C-bridges B and
B′ overlap if and only if either:

1. There are attachments u, v of B and u′, v′ of B′ so that the vertices u, u′, v, v′ are
distinct and occur in this order in C; or

2. att(B) = att(B′) and |att(B)| = 3.
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Now let C be a cycle in a graph G and let B be a C-bridge. Then B is a planar C-bridge
if C ∪B is planar.

Using all of the preceding definitions, we are now prepared to introduce a concept which
proves to be tremendously powerful in our case analysis of 3-stars, and, more generally,
H-bridges where H is a subdivision of V8. Let G be a 2-crossing-critical graph. A cycle C
in G is a hole if:

• C has precisely one non-planar bridge B̂;

• For every 1-drawing D of C ∪ B̂, C is not crossed in D; and

• C has a bipartite overlap diagram.

We note that C ∪ B̂ need not have any 1-drawings D for C to be a hole.

Theorem 16. Let G be a 3-connected 2-crossing-critical graph and let C be a hole with
non-planar C-bridge B̂. Then B̂ is the only C-bridge.

Proof. By way of contradiction, suppose that there is a planar C-bridge B. Let B# denote
the union of C and all the C-bridges other than B. Because B# is a proper subgraph of
the 2-crossing-critical graph G, there is a drawing D of B# in the plane with at most one
crossing.

Let B̂ be the non-planar C-bridge. Since C ∪ B̂ ⊆ B#, and since C is not crossed in D
by the definition of a hole, D[C] is a simple closed curved in the plane.

Let (X, Y ) be the bipartition of the overlap diagram (in G) of C such that B̂ ∈ X. By
moving all the planar C-bridges in B#, we may rearrange the drawing D into a 1-drawing
drawing D such that all the C-bridges in B# that are in X are on the same side of D[C],
while the remaining C-bridges (namely those in Y ) are on the other side of D[C]. Now
B can be added to the appropriate side, because of BOD, yielding the contradiction that
cr(G) ≤ 1.
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0

6

1 2 3

3 4 5 7 0

Figure 2.2: The cycle (4, 5, 6, 4) is an example of a hole.

The question arises: when is a cycle C a hole? The following theorem provides a
sufficient condition for a cycle C having some of the requirements of a hole. We first must
introduce a definition.

The representativity of a graph G, embedded in a compact and connected surface Σ, is
the largest integer n such that every non-contractible, simple, closed curve in Σ intersects
G in at least n points. Representativity is also known as face-width, an idea which was used
in the Graph Minors Project of Robertson and Seymour. This concept is rather technical
and we need a basic understanding for only the following theorem, so we provide only a
brief overview. Bokal, Oporowski, Richter, and Salazar in [4] enumerated precisely the 2-
crossing-critical graphs with a V8 minor but no V10 minor which embed in the real projective
plane with representativity greater than 2. Furthermore, every graph embedded in the real
projective plane with representativity at most one is planar. So, for our purposes, we can
assume any uncharacterized 2-crossing-critical graph (i.e. those with which we concern
ourselves) has representativity precisely 2.

Theorem 17. Let G be a 2-connected graph embedded in the real projective plane with
V8-minor H with representativity equal to 2. Let C be a contractible cycle in G such that:

• there is a C-bridge B̂ such that C ∪ B̂ is a non-planar graph; and

• for each face F of H, C ∩ ∂F is a path, where ∂F is the boundary of the face F .

Then C satisfies:

• for every other C-bridge B, C ∪B is planar; and C has BOD.
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Proof. The subgraph C ∪ B̂ of G is non-planar. Thus, its induced embedding in RP 2 has
representativity at least 2 and, since C ∪ B̂ is 2-connected, every face is bounded by a
cycle.

The representativity of G is exactly two, so there is a non-contractible curve γ in RP 2

the meets G in exactly two points, which we may take to be vertices a and b. Add the
parallel edges ab to C ∪ B̂ to get the embedded graph H. A C-bridge B different from B̂
is contained in a face F of H and C meets the boundary of F in a path PF .

It follows that:

• C ∪B is planarly embedded in RP 2; and

• B is on one side of C, either the disc side or the Möbius strip side.

Evidently, B̂ is on the Möbius strip side of C.

This gives the bipartition of the C-bridges. Obviously, for those C bridges on the
same side of C, different faces of H yield internally-disjoint subpaths of C, so C-bridges in
different faces of H and on the same side of C and if B is on the Möbius strip side of C,
its attachments are in the same residual arc of B̂. In particular, no two C-bridges in the
Möbius strip side of C overlap, nor do two C-bridges in the same face of H overlap.

In our work, we present cycles as holes without further justification. First, the cycles
we consider will clearly have precisely one non-planar bridge. The non-planar bridge is
typically a subdivision H of V8, and the other bridges will be planar as they will be edges
or trees. Second, the cycles we consider will be contractible and intersect faces of a V8

subdivision through a path1, so they will have BOD by Theorem 17. This is, in almost
every case, plain to see as the cycles we consider are small in their intersection with a V8

subdivision. Therefore, we omit justification for this requirement of a hole as well.

Now let C be a cycle in a graph K, where K is typically a subgraph of a purportedly 2-
crossing-critical graph G. In order to verify that the cycle C fulfills the second condition in
the definition of a hole, it suffices to have a computer verify that, for each edge e of C, there
does not exist a 1-drawing of K where e is crossed. To do so, we can use the has1Drawing
algorithm from before to check, for all edges e ∈ E(C), for all edges f ∈ E(K), if K has

1This is not true in one case, Figure 6.6, as the cycle in question is not contractible in all real projective
planar embeddings, but we have separately verified BOD in this case.
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a 1-drawing where e and f are crossed. If the answer is no for all pairs e and f , then the
cycle C is not crossed in any 1-drawing of K.

Having shown that C has this property in K implies that C has this property in every
supergraph of K, including G. This is the approach we have taken in this work, as we have
used a computer to verify the second requirement of each hole. We make this note here
and omit justification of holes throughout the paper.

A curious reader looking to check the second hole requirement by hand should refer to
Theorem 6 and Appendix A as useful tools.

We can now proceed to a case analysis of bridges attached to multiples spokes of a V8

subdivision. Throughout the remainder of this chapter, let G be a 3-connected 2-crossing-
critical graph with a subdivision H of V8 but no V10 subdivision, such that G contains an
H-bridge B which connects to multiple spokes of H. We first consider if B is attached to
non-adjacent spokes, and then proceed to analyze two cases when B is attached to adjacent
spokes.

2.2 Two non-adjacent spokes

If B is attached to two non-adjacent spokes, then G contains as a proper subgraph H with
a 2-bar attached. The graph with a 2-bar attached to H is 2-crossing-critical (it is one of
the 103 graphs which minimally do not embed in RP 2), so cr(G) ≥ 2 and G is non-critical,
a contradiction.

2.3 Two adjacent spokes and another vertex outside

of the quad

Since B does not attach to two non-adjacent spokes, then it attaches to two adjacent
spokes. We now consider where a third attachment of B to H might be. Let t be this
vertex. In this first case, we consider if t is outside the quad bounded by the two spokes
to which B attaches. There are three non-isomorphic possibilities for t, as demonstrated
in Figure 2.3.
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0 1 2 3

3 t1 t2 t3 5 6 7 0

s1 s2
r

t

Figure 2.3: Possible non-isomorphic placements of t, denoted t1, t2, t3.

2.3.1 Case t = t1

When t = t1, then B has a subdivision of a 3-star. As checked by a computer, B must
itself be a 3-star, and the resulting graph as shown in Figure 2.4 is 2-crossing-critical.

0 1 2 3

3 4 5 6 7 0

9 10
r

15

Figure 2.4: The 2-crossing-critical graph when t = t1.

2.3.2 Case t = t2 or t = t3

When t = t2 or t = t3, then, as checked by a computer, G has crossing number at least 2
and is non-critical, a contradiction.
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2.4 Two adjacent spokes and another vertex within

the quad

So now we consider if B is attached to two adjacent spokes, and B has a third attachment
to H contained within the quad bounded by those spokes. Let t be the vertex on H which
is this third attachment of B.

2.4.1 t is on a rim edge of the quad

If t is on a rim edge of the quad, then G has a V10 minor, a contradiction.

0 1 2 3

3 4 5 6 7 0

t

s1 s2
r

Figure 2.5: A 3-star attached to a V8 by adjacent spokes and a rim edge.

0 1 2 3

3 4

5 6

s1 s2 7 0

t

r

Figure 2.6: Transformation of Figure 2.5 demonstrating a V10 minor.
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2.4.2 t is not on a rim edge of the quad

Now suppose t is one of the four original V8 vertices contained within the quad. Without
loss of generality, let t = 1 as in Figure 2.7. If (r, t) is an edge, then the cycle (r, s1, t, 2, s2, r)
is a hole with planar bridge (r, t), a contradiction with Theorem 16.

0 1 (t) 2 3

3 4 5 6 7 0

s1 s2
r

Figure 2.7: A 3-star attached to a V8 by adjacent spokes and the endpoint of one of them.

Then (r, t) is not an edge. Let T be the 3-tree subdivision of B with attachments to H
at s1, s2, and t. Let i be an internal vertex of the path (r, t) with degree at least 3. Then
there exists an H ∪ T -avoiding path from i to a vertex a in H ∪ T . Then, as checked by a
computer, if a is not contained within the (potentially subdivided) cycle (r, s1, t, 2, s2, r),
the resulting graph has crossing number at least 2 and is non-critical. So a is contained
within the cycle (r, s1, t, 2, s2, r). Then the cycle (r, s1, t, 2, s2, r) is a hole with a planar
bridge, a contradiction with Theorem 16. Therefore, a contradiction arises in all cases.

2.5 Conclusion

In conclusion, every case of an H-bridge B with at least three attachments to H, two of
which are in adjacent spokes, has been considered. The only case which is 2-crossing-critical
is demonstrated in Figure 2.4; in every other case, a contradiction was demonstrated. This
completes the proof of Theorem 13.
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Chapter 3

3-Star Case Analysis: One Spoke
Attachment

We now continue with the 3-star case analysis. Recall that Corollary 14 in Chapter 2
explained all 3-stars which attach to at least two spokes of a V8 subdivision. In this
chapter, we consider 3-stars which attach to precisely one spoke of a V8 subdivision. As
discussed previously, henceforth we assume that we are working with a V8 subdivision in
our graph G which has the fewest vertices.

Theorem 18. Let G be a 3-connected 2-crossing-critical graph with a V8 minor but no
V10 minor, such that G embeds in the real projective plane RP 2, and such that G contains
a 3-star T which attaches to the V8 subdivision H in G with the minimum number of
subdivisions. Suppose that T attaches to H at precisely one spoke edge. Then T attaches
to H at one of the following sets of vertices, under the canonical labelling of a V8 subdivision
and up to symmetry:

• (0, 6, 9)

• (2, 6, 9)

• (6, 9, 12)

• (8, 13, 14)

• (10, 14, 17)

Further, some of the above 3-stars were not demonstrated to be included in a 2-crossing-
critical graph. It is suspected, but not yet proven, that these cannot be included in a
2-crossing-critical graph.

Conjecture 19. Let G be a 3-connected 2-crossing-critical graph with a V8 minor but no
V10 minor, such that G embeds in the real projective plane RP 2, and such that G contains
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a 3-star T which attaches to the V8 minor in G with the minimum number of subdivisions.
Then the connections of the 3-star T are not one of the following sets of vertices, under a
canonical labelling of the V8:

• (2, 6, 9) • (8, 13, 14)

There are 34 non-isomorphic cases to be considered in this section, as verified by a
computer.

3.1 Opposing rims

In this section, we consider 3-stars attached to opposing rims of a V8 subdivision. This
section can be explained by a useful, more general Lemma.

Lemma 20. Let G be a graph with a V8 minor but no V10 minor. Let H be a V8 subdivision
in G. Let B be an H-bridge. Then B does not attach to opposing rim edges of H.

Proof. Suppose towards a contradiction that an H-bridge B attaches to opposing rim edges
of H. Then the path in B between opposing rim edges of H forms a fifth spoke, and thus
G contains a V10 minor, a contradiction.

3.2 One spoke and an endpoint of an adjacent spoke

Now let a 3-star with root r be attached to one spoke of the V8 at s, the endpoint of an
adjacent spoke at v, and at a third non-spoke attachment at vertex t. The vertex t can
be at any point on the rim of the subdivided V8, and this case contains 15 non-isomorphic
possibilities depending on the placement of t.

t1 t2 t3 t4 t5 t6 t7

3 t8 t9 t10 t11 t12 v t13 t14 t15 0

s r

t

0 12 1 13 2 14 3

3 15 4 16 5 17 6 18 7 19 0

s r

t

Figure 3.1: A 3-star attached to one spoke and opposing V8 vertex. Possibilities for a third
attachment t are denoted ti; i ∈ [1 : 15].
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We note that, throughout this discussion, labelling of t on the left and the canonical
labelling of the V8 will both be referenced as appropriate. We include the canonical labelling
here again for the sake of the reader.

3.2.1 Case t = t1 = 0

If t is at t1, then a V8 with this 3-star attached can be contained in a 2-crossing-critical
graph. One such example is Figure 3.2.

1 2 3

3 4 5 7 0

t

s

v

r

Figure 3.2: A fully-covered 2-crossing-critical graph containing the 3-star when t = t1.

3.2.2 Case t = t2 = 12

If t is at t2, then a V8 with this 3-star attached can be contained in a 2-crossing-critical
graph. One such example is Figure 3.3.

0 1 2 3

3 4 5 7 0

t

s

v

r

Figure 3.3: A fully-covered 2-crossing-critical graph containing the 3-star when t = t2.
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3.2.3 Case t = t3 = 1

Now suppose that t = t3. If (s, 1) is an edge, then delete it. Redefine the spoke (1, s, 5) to
go through (1, r, s, 5). Then (s, 1) can be drawn parallel to the non-crossed path (1, r, s)
in G \ {(s, 1)}, resulting in a 1-drawing of G, a contradiction.

So (s, 1) is a path. By the minimality of V8 subdivisions, (s, 1) contains precisely one
subdivision (this can be seen by again redefining the spoke (1, s, 5) to be (1, r, s, 5)). Let
i be the internal vertex of the (s, 1) path. Then there is an H-bridge which attaches to i
and some other vertex a, which is somewhere in H, the V8 subdivision.

0 1 2 3

3 4 5 7 0

s

6

r
i

?

Figure 3.4: The 3-star when t = t3, if (s, 1) contains an internal vertex i.

If a is on a spoke, then we have a 3-star with root i which attaches to two distinct
spokes. This has already been fully explained by Theorem 13.

If a is in the 7, 0, 1, 2, 3 path, then let the cycle C = (s, i, a, P, 1, r, s), with P being
the path from a through 7, 0, 1, 2, 3 to 1. Then C is a hole with planar bridge (i, 1), a
contradiction with Theorem 16.

If a is in the 3, 4, 5, 6, 7 path, then let the cycle C = (i, a, P, 5, s, r, 1, i), with P being
the path from a through 3, 4, 5, 6, 7 to 5. Then C is a hole with planar bridge (s, i), a
contradiction with Theorem 16.

Since these cases cover all possible placements of a, then a contradiction arises in all
cases and we conclude that t ̸= t3.

3.2.4 Case t = t4 = 13

If t is at t4, then the resulting graph contains a V10 minor, a contradiction.

34



0 1 2 3

3 4

5 s r

v 7 0

t

Figure 3.5: Transformation of Figure 3.1 when t is at t4, demonstrating a V10 minor.

3.2.5 Case t = t5 = 2

If t is at t5 as in Figure 3.6, then it is suspected, but not yet proven, that the resulting
graph cannot be the subgraph of a 2-crossing-critical graph. This is the first of a small
handful of interesting cases which are beyond the scope of this project. See section 7.1 for
further discussion.

0 1 t5 3

3 4 5 6 7 0

s r

Figure 3.6: Figure 3.1 when t is placed at t5.

3.2.6 Case t = t6 = 14 or t = t7 = 3

If t is at t6 or t7, then the resulting graph has crossing number 2 and is not critical (as
checked by a computer), a contradiction.
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3.2.7 Case t = t8 = 15

If t is at t8, then the additional transformation below demonstrates that the resulting graph
contains an V8 subdivision H ′ and an H ′-bridge connecting to two spokes. This case has
already been explained by Theorem 13 and is therefore not considered here.

0 1 2 3

3 t

4 5

r

s

v 7 0

Figure 3.7: Transformation of Figure 3.1 when t is at t8.

3.2.8 Case t = t9 = 4 or t = t10 = 16

If t is at t9 or t10, then the resulting graph has crossing number at least 2 and is non-critical
(as checked by a computer), a contradiction.

3.2.9 Case t = t11 = 5 or t = t12 = 17

If t is at t11 or t12, then the cycle (t, s, r, v, t) is a hole with a planar bridge (r, 5), a
contradiction with Theorem 16. Therefore, this case cannot be 2-crossing-critical.

3.2.10 Case t = t13 = 18 or t = t14 = 7

If t is at t13 or t14, then the cycle (5, s, r, t, v, 5) is a hole with planar bridge (r, v), a
contradiction with Theorem 16. Therefore, this case cannot be 2-crossing-critical.

3.2.11 Case t = t15 = 19

Now suppose that t is placed at t15. If the path (6, 7) is an edge, then the cycle (r, 6, 2, 3, 7, t, r)
is a hole with planar bridge (6, 7), a contradiction with Theorem 16.
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So (6, 7) contains at least one subdivision. But under the transformation in Figure 3.8,
the resulting graph has a V8 subdivision H ′ with an H ′-bridge attached to two consecutive
spokes. This case has already been fully explained by Theorem 13, and is therefore not
considered here.

0 1 2 3

3 4 s t 0

?

v
7

5 r

Figure 3.8: Transformation of Figure 3.1 when t is placed at t15, under the assumption
that (6, 7) contains at least one subdivision.

Therefore, in all cases when t is at t15, the resulting graph has already been explained
or yields a contradiction.

3.2.12 Conclusion

To conclude this section’s analysis, if a 3-star T is attached to a subdivision H of a V8 at
one spoke, and the endpoint of an adjacent spoke, there are fifteen possibilities. If this
occurs in a 3-connected 2-crossing-critical graph G, then T is attached to H at one of the
following two sets of vertices, under the canonical labelling of a subdivided V8 and up to
symmetry:

• (0, 6, 9)

• (6, 9, 12)

• (2, 6, 9)

The first two have been shown to be contained in 2-crossing-critical examples, and it is
suspected, but not yet proven, that third is not contained in a 2-crossing-critical example.
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3.3 One spoke and an endpoint of the same spoke

Let the 3-star with root r be attached to a spoke of the V8 at s, and the endpoint of that
spoke at v, and a third non-spoke attachment at vertex t. Then there are six possible non-
isomorphic placements for t. The vertex t cannot be at 1, 3, 5, or 7, as these were considered
in the previous case. This leaves 12 remaining options, but only six are non-isomorphic as
s and v are symmetric with respect to the quads [1, 2, 6, 5] and [3, 2, 6, 7].

t1 t6 1 t5 t2 3

3 4 5 6 (v) 7 0t4t3

s

r

t

Figure 3.9: Possible non-isomorphic placements of t are denoted t1, t2, t3, t4, t5, t6.

3.3.1 Case t = t1 = 0

If t is placed at t1, then the cycle (6, s, r, 0, 7, 6) is a hole with a planar bridge (r, 6), a
contradiction with Theorem 16.

3.3.2 Case t = t2 = 2

If t is placed at t2, then the cycle (6, r, 2, s, 6) is a hole with a planar bridge (r, s), a
contradiction with Theorem 16.

3.3.3 Case t = t3 = 17

If t is placed at t3, then the cycle (6, t, r, s, 6) is a hole with planar bridge (r, 6), a contra-
diction with Theorem 16.
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3.3.4 Case t = t4 = 19

If t is placed at t4, then the cycle (6, 7, t, r, s, 6) is a hole with planar bridge (r, 6), a
contradiction with Theorem 16.

3.3.5 Case t = t5 = 13

Now suppose that t is placed at t5. By the minimality of V8 subdivisions, the replacement
spoke (t, r, 6) shows that (s, 6) is not subdivided. So (s, 6) is an edge. Redefining the
spoke as (2, s, r, 6), and deleting (s, 6) gives a 1-drawing of the resulting graph. But then
(s, 6) can be added back alongside the uncrossed path (s, r, 6), yielding a 1-drawing of the
original graph, a contradiction.

3.3.6 Case t = t6 = 12

Now suppose t is placed at t6. First, we suppose that (s, 6) is an edge. Now redefine
the spoke (2, s, 6) to instead be (2, s, r, 6). Delete this edge to form G′. Since the spoke
(2, s, r, 6) is not crossed in any 1-drawing D′ of G′, then the edge (s, 6) can be added back
alongside the spoke in D′, resulting in a 1-drawing of G, a contradiction. Therefore, this
case cannot be 2-crossing-critical and is discarded.

Thus, (s, 6) is not an edge. By the minimality of V8 subdivisions, (s, 6) can have at
most one subdivision. To see this, redefine the spoke (2, s, 6) to be (2, s, r, v). If (s, 6)
had more than one subdivision, then this new spoke would be a part of a V8 with fewer
subdivisions than the original one, a contradiction.

So let k be the single internal vertex on the path (s, 6). Then there is an H-avoiding
path from k to another vertex i on H. As checked by a computer, except for the vertices
14,11,18,17,2,3, and 7, all other cases yield a non-critical graph with crossing number at
least two. The vertices 14,11,18,17,2,3, and 7, are denoted ij; j ∈ [7] below.
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0 t 1 i1 i2 i3
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3 4 5 6 7 0
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17
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11
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Figure 3.10: Possible non-isomorphic attachments of a second attachment of an H-bridge
attached at i, when t = t6, are denoted ij; j ∈ [7]. A partial canonical labelling of a
subdivided V8 is included for the reader’s sake.

If i = i1 = 2 or i = i2 = 14 or i = i3 = 3, then the cycle (k, [2, 3], s, r, 6, k), where [2, 3]
represents the path from i through the rim branch (2, 3) to 2, is a hole with planar bridge
(k, s), a contradiction with Theorem 16

If i = i4 = 17, then the cycle (k, 17, 6, r, s, k) is a hole with planar bridge (k, 6), a
contradiction with Theorem 16.

If i = i5 = 18 or i = i6 = 7, then the cycle (k, [6, 7], 6, r, s, k), where [6, 7] represents
the path from i through the rim branch (6, 7) to 7, is a hole with planar bridge (k, 6), a
contradiction with Theorem 16.

If i = i7 = 11, then the cycle (k, 11, 7, 6, r, s, k) is a cycle with planar bridge (k, 6), a
contradiction with Theorem 16.

Therefore, in all cases of an H-bridge with k as an endpoint, a contradiction arises.

Therefore, a contradiction arises when (s, 6) is an edge and when it is not an edge, and
we conclude that t ̸= t6.

3.3.7 Conclusion

Therefore, in a 3-connected 2-crossing-critical graph G with a subdivision H of a V8, such
that H is the minimally subdivided V8 subdivision in G, a 3-star T cannot attach to a
spoke of H and the endpoint of that same spoke.
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3.4 One spoke, and a rim edge incident to the end-

point of the spoke

In this case, let the 3-star connect to a spoke of the V8 at s, and a rim edge incident to an
endpoint of this spoke at v. Let the third connection of the 3-star be connected to the V8

at t. Connections at vertices 1,3,5, and 7 were considered in section 3.2, and connections at
vertices 2 and 6 were considered in section 3.3. Furthermore, the connection to the (1, 2)
rim edge forms a V10 minor as covered in section 3.1. As such, there are 8 non-isomorphic
possibilities for t.

t1 t2 1 2 t3 3

3 t4 t5 t6 5 6 t7 7 t8 0

r

v

s

t 0 12 1 2 14 3

3 15 4 16 5 6 18 7 19 0

r

v

s

t

Figure 3.11: A 3-star attached to a V8 by a spoke and an incident rim edge. Possible non-
isomorphic third attachments, which have not been considered in other cases, are labeled
ti; i ∈ [1, 8].

3.4.1 Case t = t1 = 0

If t is placed at t1, then the resulting graph has crossing number 2 and is non-critical (as
checked by a computer), a contradiction.

3.4.2 Case t = t2 = 12

If t is placed at t2, then the resulting graph has a V10 minor under the transformation in
Figure 3.12, a contradiction.
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0 t s 2 3

3 4 5 6 7 0

r

v

1

Figure 3.12: Transformation of Figure 3.11 demonstrating a V10 minor when t is placed at
t2.

3.4.3 Case t = t3 = 14

If t is placed at t3, then a V8 with this 3-star attached can be contained in a 2-crossing-
critical graph. One such example is Figure 3.13.

0 1 2 14 3

3 4 5 6 7 0

r

17

10

Figure 3.13: A 2-crossing-critical graph containing a V8 with this 3-star attached when
t = t3.

3.4.4 Case t = t4 = 15

Now let t be placed at t4. If the path (4, 5) is an edge, then the cycle (t, 4, 0, 1, 5, v, r) is a
hole with planar bridge (4, 5), a contradiction with Theorem 16.

Therefore, the path (4, 5) contains at least one subdivision. But under the transfor-
mation in Figure 3.14, the resulting graph has a subdivision H ′ of a V8 with an H ′-bridge
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attached to two consecutive spokes. This case has already been fully explained by Theo-
rem 13, and is therefore not considered here.

Therefore, all cases when t = t4 lead to a contradiction or have already been explained.

0 1 2 3

3 t r s 6 7 0

4 5
v

?

Figure 3.14: Further transformation of Figure 3.11 when t is placed at t4.

3.4.5 Case t = t5 = 4 or t = t6 = 16

If t is at t5 or t6, then the cycle (t, 5, v, 6, s, r, t) is a hole with planar bridge (r, v), a
contradiction with Theorem 16.

3.4.6 Case t = t7 = 18

If t is at t7, then the resulting graph has crossing number at least 2 and is non-critical (as
checked by a computer), a contradiction.

3.4.7 Case t = t8 = 19

If t is placed at t8, then this case has already been considered as it is equivalent to a 3-star
attached to a V8 at two spokes, as demonstrated under the transformation in Figure 3.15.
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3 4 5

r
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t
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v

Figure 3.15: Further transformation of Figure 3.11 when t is at t8, demonstrating that this
case has already been considered (and discarded) in the Two Spoke case.

3.4.8 Conclusion

To conclude this section’s analysis, if a 3-star T is attached to a subdivision H of a V8 at
one spoke, and a rim edge incident to the endpoint of that spoke, then there were eight
cases which had not been previously considered. If this scenario occurs in a 3-connected
2-crossing-critical graph G, then T is attached to H at the vertices (10, 14, 17), under the
canonical labelling of a V8 subdivision and up to symmetry.

3.5 One spoke, such that a 2-bar is formed

At this point, as checked by a computer, all cases of a 3-star attaching to a V8 at precisely
one spoke have been considered, except for five. Three of the remaining cases have a similar
structure and are considered here.

In this case, let the 3-star connect to a spoke of the V8 at s. Let the remaining
connections between the 3-star and the V8 be such that the 3-star contains a two-bar,
following some transformation as depicted in Figure 3.16. Then the resulting graph contains
a 2-crossing-critical subgraph, but is not 2-crossing critical itself. This can be seen as the
resulting graph contains a 2-bar, and a V8 with a 2-bar is 2-crossing-critical. However, the
resulting graph also has an extra edge; by the labelling in Figure 3.16, this is the edge
(1, 5).
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0 v1 2 3

3 4 v2 6 7 0

r s

0 v1 2 3

3 4 v2 6 7 0

r s

0 1 v1 2 3

3 4 v2 6 7 0

r s

0 1 v1 2 3

3 4 v2 6 7 0

r s

0 1 v1 2 3

3 4 v2 5 6 7 0

r s

0 1 v1 2 3

3 4 v2 5 6 7 0

r s

Figure 3.16: All possible non-isomorphic 3-star attachments in this case (left); and their
transformations (right), demonstrating that the resulting graph contains a 2-bar and thus
has crossing number at least 2, but also contains an extra edge and is therefore not critical.

3.6 One spoke, remaining cases

There remain two non-isomorphic cases of a 3-star attaching to a V8 at precisely one spoke
edge; all other cases have been considered as verified by a computer. These two do not fall
neatly into any category and we consider them individually here.

3.6.1 Case 1

In the first special case, let the 3-star attach to the V8 as in Figure 3.17. Then the cycle
(s, r, 0, v, 1, 2, s) is a hole with a planar bridge (r, v), a contradiction with Theorem 16.
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0 1 2 3

3 4 5 6 7 0

r
s

v

Figure 3.17: The first of two special cases of a 3-star attaching to a V8 at precisely one
spoke.

3.6.2 Case 2

In the second of the two special cases, let the 3-star attach to the V8 as in Figure 3.18. It
is suspected, but not yet proven, that this case cannot be included in a 2-crossing-critical
graph. See section 7.1 for further discussion.

0 1 2 3

3 4 5 6 7 0

r
8

13 14

Figure 3.18: The second of two special cases of a 3-star attaching to a V8 at precisely one
spoke.

3.7 Conclusion

Thus concludes the analysis of the 34 non-isomorphic cases where a 3-star T attaches to a
subdivision H of V8, such that T attaches at precisely one spoke edge. As we have seen, if
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a 3-star T is attached to a subdivision H of a V8 at one spoke in a 3-connected 2-crossing-
critical graph G, then T is attached to H at one of the following two sets of vertices, under
the canonical labelling of a subdivided V8 and up to symmetry:

• (0, 6, 9)

• (6, 9, 12)

• (2, 6, 9)

• (10, 14, 17)

• (8, 13, 14)

Furthermore, it is suspected, but not yet proven, that the 3-stars attached at vertices
(2, 6, 9) or (8, 13, 14) cannot be contained in 2-crossing-critical examples.
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Chapter 4

3-Star Case Analysis: No Spoke
Attachments

We now continue our 3-star case analysis. We consider 3-stars with no attachment in any
spoke of a V8 subdivision. The majority of 2-crossing-critical examples come from this
case.

Theorem 21. Let G be a 3-connected 2-crossing-critical graph with a V8 minor but no
V10 minor, such that G embeds in the real projective plane RP 2, and such that G contains
a 3-star T which attaches to the V8 subdivision H in G with the minimum number of
subdivisions. Suppose that T attaches to H at no spoke edge. Then T attaches to H at one
of the following sets of vertices, under the canonical labelling of a V8 subdivision and up to
symmetry:

• (0, 2, 15)

• (0, 3, 13)

• (0, 5, 6)

• (0, 5, 17)

• (0, 13, 15)

• (0, 13, 18)

• (1, 5, 6)

• (1, 5, 17)

• (2, 5, 17)

• (3, 5, 17)

• (5, 6, 12)

• (5, 6, 19)

• (5, 12, 17)

• (5, 14, 17)

• (5, 17, 19)

• (7, 16, 17)

• (16, 17, 19)

Further, some of the above 3-stars were not demonstrated to be included in a 2-crossing-
critical graph. It is suspected, but not yet proven, that these cannot be included in a
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2-crossing-critical graph.

Conjecture 22. Let G be a 3-connected 2-crossing-critical graph with a V8 minor but no
V10 minor, such that G embeds in the real projective plane RP 2, and such that G contains
a 3-star T which attaches to the V8 minor in G with the minimum number of subdivisions.
Then the connections of the 3-star T are not one of the following sets of vertices, under a
canonical labelling of the V8:

• (0, 2, 15)

• (0, 13, 18)

• (5, 6, 19)

• (5, 17, 19)

• (7, 16, 17)

There are 38 non-isomorphic cases to be considered in this section, as verified by a
computer.

4.1 No spokes, consecutive vertices of the V8

In this case, let the 3-star connect to consecutive vertices of the V8, 5 and 6 under the
canonical labelling. Let the third connection of the 3-star be connected to the V8 at vertex
t. Since t cannot attach to a spoke edge as these cases have already been considered, then
there are 8 non-isomorphic possibilities for t. We note that this number is 8 rather than
15 due to the symmetry between the quads [0, 1, 5, 4] and [3, 2, 6, 7].

t1 t2 t3 2 3

3 t7t4 t5 5

t6

6 7 0
r

t

t8 0 12 1 2 3

3 194 16 5

17

6 7 0
r

t

13

Figure 4.1: A 3-star attached to two adjacent vertices of the V8. Possible non-isomorphic
attachment are denoted ti; i ∈ [1, 8].

4.1.1 Case t = t1 = 0 or t = t3 = 1

If t is placed at t1 or t3, then a V8 with this 3-star attached can be contained in a 2-crossing-
critical graph. One such example containing both the 3-star when t = t1 and the 3-star
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when t = t3 is Figure 4.2.

0 1 2 3

3 4 5

6

7 0
r

Figure 4.2: A 2-crossing-critical graph containing a V8 with the 3-star when t = t1 and the
3-star when t = t3 attached.

4.1.2 Case t = t2 = 12

If t is placed at t2, then a V8 with this 3-star attached can be contained in a 2-crossing-
critical graph. One such example is Figure 4.3.

0 1 2 3

3 4 5

6

7 0

12

r

Figure 4.3: A 2-crossing-critical graph containing a V8 with the 3-star when t = t2 attached.

4.1.3 Case t = t4 = 4 or t = t5 = 16

If t is placed at t4 or t5, then the cycle (t, 5, 6, r, t) is a hole with planar bridge (r, 5), a
contradiction with Theorem 16.
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4.1.4 Case t = t6 = 17

If t is at t6, then the cycle (5, t, 6, r, 5) is a hole with planar bridge (r, t), a contradiction
with Theorem 16.

4.1.5 Case t = t7 = 19

If t is placed at t7, then it is suspected, but not yet proven, that the resulting graph cannot
be included in a 2-crossing-critical graph. See section 7.1 for further discussion.

0 1 2 3

3 4 5

6

7 0

19

r

Figure 4.4: Figure 4.1 when t = t7.

4.1.6 Case t = t8 = 13

If t = t8, then a V10 minor is formed, a contradiction, as seen in Figure 4.5.

0 1 2 3

3 4 5

6

7 0

r

t8

Figure 4.5: Transformation of Figure 4.1 when t = t8 demonstrating a V10 minor.
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4.1.7 Conclusion

To conclude this section’s analysis, when a 3-star T attaches to a subdivision H of V8 in
a 2-crossing-critical graph G, such that T attaches to H at two consecutive V8 vertices
and no spoke edges, then T attaches to H at one of the following sets of vertices, under
the canonical labelling of H and up to symmetry: (0,5,6); (1,5,6); (5,6,12); or (5,6,19).
Furthermore, it is suspected, but not yet proven, that T cannot attach to (5,6,19).

4.2 No spokes, consecutive rim edges of the V8

In this case, let the 3-star connect to consecutive rim edges of the V8 at vertices v1 and v2.
Let the third connection of the 3-star be connected to the V8 at vertex t. Since t cannot
be a spoke edge, or an opposing rim edge to v1 or v2, then there are 7 possibilities for t.
We note that it is 7 as opposed to 13 due to the symmetry of the quads [0, 1, 5, 4] and
[2, 1, 5, 6].

t5 t6 2 3

3 4 t1 t2 t3 t4 0

t

r

t7v1 v2

0 1 2 3

3 4 6 18 7 19 0

t

r

516 17

Figure 4.6: A 3-star attached to two adjacent rim edges.

4.2.1 Case t = t1 = 6

If t is placed at t1, then the cycle (v1, r, t, v2, 5, v1) is a hole with planar bridge (r, v2), a
contradiction with Theorem 16.

4.2.2 Case t = t2 = 18

If t is placed at t2, then the cycle (v1, r, t, 6, v2, 5, v1) is a hole with planar bridge (r, v2), a
contradiction with Theorem 16.
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4.2.3 Case t = t3 = 7

If t is placed at t3, then it is suspected, but not yet proven, that the resulting graph cannot
be included in a 2-crossing-critical graph. See section 7.1 for further discussion.

0 1 2 3

3 4 6

7

0
r

516 17

Figure 4.7: Figure 4.6 when t = t3 = 7.

4.2.4 Case t = t4 = 19

When t is placed at t4, then a V8 with this 3-star attached can be contained in a 2-crossing-
critical graph. One such example is Figure 4.8.

0 1 2 3

3

4

6 7 0
r

516 17 19

Figure 4.8: A 2-crossing-critical graph containing a V8 with the 3-star when t = t4 attached.
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4.2.5 Case t = t5 = 0 or t = t6 = 1

If t is at t5 or t6, then the resulting graph has crossing number at least 2 and is not critical
(as checked by a computer), a contradiction.

4.2.6 Case t = t7 = 5

If t is at t7, then the cycle (v1, t, v2, r, v1) is a hole with planar bridge (r, t), a contradiction
with Theorem 16.

4.2.7 Conclusion

To conclude this section’s analysis, when a 3-star T attaches to a subdivision H of V8 in a
2-crossing-critical graph G, such that T attaches to H at two rim branches and no spoke
edges, then T attaches to H at one of the following sets of vertices, under the canonical
labelling of H and up to symmetry: (7,16,17) or (16,17,19). Only the latter is known to
be contained in a 2-crossing-critical example.

4.3 No spokes, a consecutive vertex and rim edge

In this case, let the 3-star connect to a vertex and an incident rim edge of the V8 at vertices
5 and 17. Let the third connection of the 3-star be connected to the V8 at vertex t. The
vertex t cannot be 4 or 6, nor at the rim edges (1, 2), (4, 5), (6, 7), as these were considered
in the previous cases. Therefore, there are 9 non-isomorphic possibilities for t.

t1 t2 t3 t4 t5 t6

3 t7 4 5 6 t8 t9 0
r

t

0 12 1 2 14 3

3 15 4 5 6 7 19 0
r

t

Figure 4.9: A 3-star attached to a rim edge and incident vertex. Possible third attachments
are denoted ti; i ∈ [1, 9].
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4.3.1 Case t = t1 = 0 or t = t3 = 1

If t is at t1 or t is at t3, then a V8 with one of these 3-stars attached can be contained
in a 2-crossing-critical graph. One such example containing both 3-stars in question is
Figure 4.10.

0 1 2 3

3 4 6 7

0

r

5 17

Figure 4.10: A 2-crossing-critical graph with a V8 subdivision and the 3-stars when t = t1
and t = t3.

4.3.2 Case t = t2 = 12

If t is at t2, then a V8 with this 3-star attached can be contained in a 2-crossing-critical
graph. One such example is Figure 4.11.

0 12 1 2 3

3 4 6 7

0

r

5 17

Figure 4.11: A fully covered 2-crossing-critical graph containing Figure A.29 as a subgraph.
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4.3.3 Case t = t4 = 2

If t is at t4, then a V8 with this 3-star attached can be contained in a 2-crossing-critical
graph. Indeed, Figure 4.12 is one such example.

0 1 2 3

3 4 6 7

0

r

5 17

14

Figure 4.12: A 2-crossing-critical graph containing a V8 with the 3-star when t = t4 at-
tached.

4.3.4 Case t = t5 = 14

If t is at t5, then a V8 with this 3-star attached can be contained in a 2-crossing-critical
graph. One such example is Figure 4.13.

0 1 2 3

3 4

6 7 0

r

5 17

14

Figure 4.13: A fully-covered 2-crossing-critical graph containing a V8 with the 3-star when
t = t5 attached.
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4.3.5 Case t = t6 = 3

If t is at t6, then a V8 with this 3-star attached can be contained in a 2-crossing-critical
graph. Indeed, Figure 4.14 is one such example.

0 1 2 3

3 4 6 7 0

r

5 17

Figure 4.14: A fully-covered 2-crossing-critical graph containing a V8 with the 3-star when
t = t6 attached.

4.3.6 Case t = t7 = 15

If t is at t7, then the cycle (t, 4, 5, v, r, t) is a hole with planar bridge (r, 5), a contradiction
with Theorem 16.

4.3.7 Case t = t8 = 7

If t is at t8, then the cycle (5, r, t, 6, 17, 5) is a hole with planar bridge (r, 17), a contradiction
with Theorem 16.

4.3.8 Case t = t9 = 19

If t is at t9, then it is suspected, but not yet proven, that the resulting graph cannot be
the subgraph of a 2-crossing-critical graph. See section 7.1 for further discussion.
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0 1 2 3

3 4

6 7 0
r

5 17 19

Figure 4.15: Figure 4.9 when t = t9 = 19.

4.3.9 Conclusion

To conclude this section’s analysis, when a 3-star T attaches to a subdivision H of V8 in a
2-crossing-critical graph G, such that T attaches to H at a rim edge and incident V8 vertex,
then T attaches to H at one of the following sets of vertices, under the canonical labelling
of H and up to symmetry: (0,5,17); (1,5,17); (5,12,17); (2,5,17); (5,14,17); (3,5,17); or
(5,17,19). Furthermore, it is suspected, but not yet proven, that T cannot attach to
(5,17,19) in a 2-crossing-critical example.

4.4 No spokes, and a V10 minor is formed

There remain two additional cases of a 3-star attachment to a V8 at no spoke edges, such
that a V10 minor is formed. These two cases, and the transformations demonstrating a V10

minor, are shown below.
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0 1 2 3

3 4

v1 v2

5 6 7 0

v3

r

Figure 4.16: A 3-star connected to a V8, at no spokes, such that a V10 minor is formed.

0 1 2 3

3 4

v1 v2

5 6

7 0

v3

r

Figure 4.17: Transformation of Figure 4.16 demonstrating a V10 minor.
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0 1 2 3

3 4

v2v1

6 7 0

v3

r

Figure 4.18: A second example of a 3-star connected to a V8, at no spokes, such that a V10

is formed.

0 1 2 3

3 4

v1 v2

6

7 0

v3

r

Figure 4.19: Transformation of Figure 4.18 demonstrating a V10 minor.

4.5 No spokes, remaining cases which have crossing

number at least 2 and are non-critical

As checked by a computer, there are twelve remaining cases of attaching a 3-star to a V8,
such that it attaches to no spoke edges. Six of these have crossing number at least 2 and
are non-critical, as checked by a computer. These cases do not fall neatly into any other
category, but are represented below in Figure 4.20.
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0 1 2 3

3 4 5 6 7 0

r

0 1 2 3

3 4 5 6 7 0

r

0 1 2 3

3 4 5 6 7 0

r

0 1 2 3

3 4 5 6 7 0

r

0 1 2 3

3 4 5 6 7 0

r

0 1 2 3

3 4 5 6 7 0

r

Figure 4.20: Six non-isomorphic 3-star attachments to a subdivision H of V8, which have
crossing number at least 2 and are non-critical.

4.6 No spokes, remaining cases

As checked by a computer, there remain six non-isomorphic 3-star attachments to a V8

which do not fit neatly into any of the previous cases. All other 3-star attachments to the
V8, such that the 3-star does not attach to any spoke edges, have already been considered.
We handle these six individually here.

4.6.1 Cases 1 and 2

In this case, suppose that the 3-star is connected to the subdivisionH of V8 as in Figure 4.21
or as in Figure 4.22. The arguments for these two cases are the same.
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0 1 2 3

3 4 5 6 7 0

r

Figure 4.21: The first of six special cases where a 3-star is connected to a V8 at no spoke
edges.

0 1 2 3

3 4 5 6 7 0

13

r

Figure 4.22: The second of six special cases where a 3-star is connected to a V8 at no spoke
edges.

If the path (0, 4) contains no internal vertices, then it may be deleted to yield a 1-
drawing where the path (0, r, 4) is not crossed (this can be seen by replacing the (0, 4)
spoke with (0, r, 4)). Then (0, 4) can be added parallel to (0, r, 4), yielding a 1-drawing of
the original graph G, a contradiction.

So (0, 4) contains an internal vertex. By minimality, by the same argument as before
(that is, replacing (0, 4) with (0, r, 4)), the (0, 4) path has precisely one internal vertex. So
let i be this vertex.

Let H ′ be the V8 subdivision formed by replacing (0, i, 4) with (0, r, 4). Then i is part
of an H ′-bridge B′, which is attached to H ′ via at least one other vertex j. As checked by
a computer, if j is not in either [4, 5] or [0, 7], then the resulting graph has crossing number
at least 2 and is non-critical, a contradiction. So j is in either [4, 5] or [0, 7].

62



If j is in [4, 5], then the cycle (0, r, 4, j, i, 0) is a hole with a planar bridge (i, 4), a
contradiction with Theorem 16. If j is on [0, 7], then the cycle (4, r, 0, j, i, 4) is a hole with
a planar bridge (i, 0), a contradiction with Theorem 16. Since a contradiction arises in all
cases, then we conclude that this case cannot lead to a 2-crossing-critical graph.

4.6.2 Case 3

In this case, let the 3-star attach to the V8 as in Figure A.34. Indeed, this graph is a 2-
crossing-critical graph, and thus this 3-star can be included in a 2-crossing-critical graph.

0 1 2 3

3 4 5 6 7 0

13

15

r

Figure 4.23: A 2-crossing-critical graph containing the third of six special cases where a
3-star is connected to a V8 at no spoke edges.

4.6.3 Case 4

In this case, let the 3-star attach to the V8 as in Figure 4.24. It is suspected, but not yet
proven, that this graph cannot be the subgraph of a 2-crossing-critical graph.
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0 1 2 3

3 4 5 6 7 0

13

18

r

Figure 4.24: The fourth of six special cases where a 3-star is connected to a V8 at no spoke
edges.

4.6.4 Case 5

In this case, let the 3-star attach to the V8 as in Figure 4.25. It is suspected, but not yet
proven, that this graph cannot be the subgraph of a 2-crossing-critical graph.

0 1 2 3

3 4 5 6 7 015

r

Figure 4.25: The fifth of six special cases where a 3-star is connected to a V8 at no spoke
edges.

4.6.5 Case 6

In this case, let the 3-star attach to the V8 as in Figure A.35. Indeed, this graph is a
2-crossing-critical graph.
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0 1 2 3

3 4 5 6 7 0

13

r

Figure 4.26: A 2-crossing-critical graph containing the sixth of six special cases where a
3-star is connected to a V8 at no spoke edges.

4.6.6 Conclusion

In conclusion of this section’s analysis, six special cases were considered. Let T be a 3-star
attached to a subdivision H of V8 in a 3-connected 2-crossing-critical graph G. Under the
canonical labelling and up to symmetry, T cannot be attached at (0,2,4) or (0,4,13). The
3-star T could be attached at (0,13,15) or (0,3,13). It is suspected, but not yet proven,
that T cannot be attached at (0,13,18) or (0,2,15).

4.7 Conclusion

In conclusion of this chapter, we examined 38 non-isomorphic 3-star attachments to a
subdivided V8, such that the 3-star attaches to the subdivided V8 at no spoke edges. We
concluded that 12 such cases can certainly be included in a 2-crossing-critical graph; it
is suspected that 5 other cases cannot be included in a 2-crossing-critical graph; and the
remaining 21 cases were proven not to be contained in a 2-crossing-critical graph.
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Chapter 5

3-Star Analysis: Multiple
Attachments to a Spoke or Rim

We now proceed to consider what happens when a 3-star is permitted to attach multiple
times to a single edge of a V8. As mentioned in the introduction, there are 19 cases to be
considered in this chapter:

• 2 cases where the 3-star attaches to the same edge 3 times.

• 7 cases where the 3-star attaches to the same spoke edge 2 times.

• 10 cases where the 3-star attaches to the same rim edge 2 times.

The primary result of this chapter is as follows.

Theorem 23. Let G be a 3-connected 2-crossing-critical graph with a V8 minor but no V10

minor, such that G embeds in the real projective plane RP 2, and such that G contains a
3-star T which attaches to subdivision H of V8 in G such that H has the minimum number
of subdivisions. Suppose that T attaches to the same spoke or rim of H at multiple distinct
points. Then the connections of the 3-star T are one of the following sets of vertices, under
the canonical labelling of the V8 and up to symmetry:

• (0, 17a, 17b)

• (1, 17a, 17b)

• (12, 17a, 17b)

(where 17a and 17b represent two distinct points on the rim branch (5, 6)).
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5.1 Three attachments to a spoke edge

If a 3-star attaches to the same spoke edge of a V8 at three points as in Figure 5.1, then the
resulting graph contains a cycle (r, s1, s2, s3, r) with planar bridge (r, s2), a contradiction
with Theorem 16.

0 1 2 3

3 4 5 6 7 0

s2
r s1

s3

Figure 5.1: A 3-star attached to a V8 spoke at three distinct points.

5.2 Three attachments to a rim edge

If a 3-star attaches to the same rim edge of a V8 at three points as in Figure 5.2, then the
resulting graph contains a cycle (r, v1, v2, v3, r) with planar bridge (r, v2), a contradiction
with Theorem 16.

0 1 2 3

3 4 5 6 7 0

v1

r

v2 v3

Figure 5.2: A 3-star attached to a V8 rim branch at three distinct points.
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5.3 Two attachments to a spoke edge

In this case, let the 3-star attach to a V8 twice on the same spoke edge, and at another at-
tachment. This scenario contains 7 non-isomorphic cases, due to the symmetry between the
quads [1, 2, 6, 5] and [3, 2, 6, 7], as well as the vertical symmetry along the spoke (2, s2, s1, 6).

t1 t2 t3 t4 t5 3

3 4 5 6 7 0

t

t6 t7
r s1

s2

Figure 5.3: Possible 3-star attachments to a V8, where the 3-star attaches to one spoke
edge twice. Possible non-isomorphic third attachment locations are denoted ti; i ∈ [1, 5].

5.3.1 Case t = t1 or t = t2

If t is at t1 or t2, then the cycle (s1, t, 1, 2, s2, s1) is a hole with a planar bridge (r, s2), a
contradiction with Theorem 16. Therefore, the graphs in these cases cannot be 2-crossing-
critical.

5.3.2 Case t = t3 or t = t4

If t is at t3 or t4, then the cycle (s1, t, 2, s2, s1) is a hole with a planar bridge (r, s2), a
contradiction with Theorem 16. Therefore, the graphs in these cases cannot be 2-crossing-
critical.

5.3.3 Case t = t5

If t is at t5, then the cycle (s1, r, t, s2, s1) is a hole with planar bridge (r, s2), a contradiction
with Theorem 16. Therefore, this case cannot be 2-crossing-critical.
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5.3.4 Case t = t6 or t = t7

If t is at t6 or t7, then the 3-star is an H-bridge between two spokes of a V8 subdivision H.
These cases have already been eliminated by Theorem 13.

5.4 Two attachments to a rim edge

In this case, let the 3-star attach to a V8 twice on the same rim edge, and at another
attachment. This scenario contains 10 non-isomorphic cases due to the symmetry between
quads [0, 1, 5, 4] and [3, 2, 6, 7].

t1 t2 t3 t4 2 3

t5 t6

3 t7 t8 t9 t10 6 7 0

t

r

v1 v2

Figure 5.4: Possible 3-star attachments to a V8, where the 3-star attaches to one rim edge
twice. Possible non-isomorphic third attachment locations are denoted ti; i ∈ [1, 10].

5.4.1 Case t = t1

If t is at t1, then the 3-star can be included in a 2-crossing-critical graph. Figure 5.5 is an
example.
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0 1 2 3

3 4 5 6 7 0

r

v1 v2

Figure 5.5: A 2-crossing-critical graph containing the 3-star when t = t1.

5.4.2 Case t = t2

If t is at t2, then the 3-star can be included in a 2-crossing-critical graph. Figure 5.6 is an
example.

0 12 1 2 3

3 4 5 6 7 0

r

v1 v2

Figure 5.6: A 2-crossing-critical graph containing the 3-star when t = t2.

5.4.3 Case t = t3

If t is at t3, then the 3-star can be included in a 2-crossing-critical graph. Figure 5.7 is an
example.
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0 1 2 3

3 4 5 6 7 0

9 r

v1 v2

Figure 5.7: A 2-crossing-critical graph containing the 3-star when t = t2.

5.4.4 Case t = t4

If t is at t4, then the resulting graph contains a 3-star attached to two opposing rim edges
of H, a contradiction with Lemma 19.

5.4.5 Case t = t5

If t is at t5, then the cycle (t, v2, v1, 5, 4, t) is a hole with planar bridge (r, v1), a contradiction
with Theorem 16.

5.4.6 Case t = t6

If t is at t6, then the cycle (t, r, v2, v1, 5, t) is a hole with planar bridge (r, v1), a contradiction
with Theorem 16.

5.4.7 Case t = t7, t = t8, t = t9, or t = t10

If t is at t7, t8, t9, or t10, then the cycle (r, t, v1, v2, r) is a hole with planar bridge (r, v1), a
contradiction with Theorem 16.
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5.5 Conclusion

To conclude this chapter’s analysis, of the 19 possible 3-star attachments to a subdivided
V8, such that the 3-star attaches to one rim or spoke edge twice, there are only three
which can be included in a 3-connected 2-crossing-critical graph G. These are, under the
canonical labelling of the V8 and up to symmetry:

• (0, 17a, 17b)

• (12, 17a, 17b)

• (1, 17a, 17b)

(where 17a and 17b represent two distinct points on the rim branch (5, 6)). All of these
cases were found to be contained in 2-crossing-critical examples.
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Chapter 6

4+-Star Case Analysis

We now proceed to consider the possible ways that a 4+-star could be attached to a fully-
covered, 2-crossing-critical V8. The two main goals of this chapter are to prove Theorem 10
and Theorem 12, restated below. In this chapter, as with before, let G be a 3-connected 2-
crossing-critical graph which embeds in the real projective plan RP 2, such that G contains
a V8 subdivision H but no V10 subdivision. We again emphasize here that we assume that
H is a V8 subdivision in G with the minimum number of vertices. Let T be a 4+-star
which is an H-bridge in G.

Theorem 10. Let G be a 3-connected 2-crossing-critical graph with a V8 minor but no V10

minor, such that G embeds in the real projective plane RP 2, and such that G contains a
4-star T which attaches to the V8 minor in G with the minimum number of subdivisions.
Then the connections of the 4-star T are one of the following sets of vertices, under a
canonical labelling of the V8:

• (0, 1, 5, 6)

• (0, 1, 5, 17)

• (0, 2, 14, 19)

• (0, 4, 12, 15)

• (0, 12, 17a, 17b)

• (1, 2, 5, 6)

• (1, 12, 17a, 17b)

• (2, 5, 14, 17)

(where 17a and 17b represent two distinct points on the rim branch (5, 6)).

Conjecture 11. Let G be a 3-connected 2-crossing-critical graph with a V8 minor but no
V10 minor, such that G embeds in the real projective plane RP 2, and such that G contains
a 4-star T which attaches to the V8 minor in G with the minimum number of subdivisions.
Then the connections of the 4-star T are not one of the following sets of vertices, under a
canonical labelling of the V8:
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• (0, 2, 14, 19) • (0, 12, 17a, 17b) • (1, 2, 5, 6)

Theorem 12. Let G be a 2-crossing-critical graph with a V8 minor but no V10 minor. Let
T be a k-star which attaches to the V8 minor. Then k ≤ 4.

In Chapters 2, 3, 4, and 5, we were able to demonstrate that some 3-stars cannot be
attached to a fully-covered V8 in a 2-crossing-critical graph. We will refer to these as the
eliminated 3-stars. The other 3-stars will be referred to as the viable 3-stars.

A 4-star has four 3-star subgraphs. Clearly, none of the 3-star subgraphs of T can be in
the eliminated 3-stars, as we have already demonstrated that the eliminated 3-stars cannot
be included in a graph G under our assumptions.

Therefore, we consider only those possibilities for a 4-star H-bridge T , for which all
four 3-star subgraphs of T are included in the viable 3-stars. Using a computer to check
all possible 3-star subgraphs of all possible 4-stars, we determine that there are 11 such
4-stars attached to a V8 which fulfill this requirement.

This computer check was completed with a brief Python script. We first stored the set
of 3-stars as a set of lists of 3 vertices (v0, v1, v2), where each vi is an integer in [20] so that vi
refers to a vertex in the canonical labelling of a subdivided V8. Then we designed a routine
which takes in a list of vertices l = (v0, v1, v2, v3) representing the vertex attachments of a
4-star under the canonical labelling of a V8. This routine iterated over each 3-subset l3 ⊂ l,
and checked if l3 could be relabelled to any of the viable 3-stars, by checking all possible
relabellings of the subdivided V8. If l3 is not a viable 3-star or cannot be relabelled as such,
the 4-star is discarded. Checking all 4-stars in this manner yielded the list of 11 viable
non-isomorphic 4-stars.

Three of these 4-stars we have already encountered, and we have already demonstrated
that these can be contained within a 2-crossing-critical graph. These can be found in
Figure 4.2, Figure 4.10, and Figure 4.12. We proceed to analyzing the remaining eight
cases to complete the proof of Theorem 10.

6.1 4-Star 1

When we have a 4-star attached to a V8 as in Figure 6.1, then it is suspected, but not yet
proven, that the resulting graph cannot be contained within a 2-crossing-critical graph.
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0 1 2 3

3 4 5 6 7 0

r

Figure 6.1: A 4-star in Layout 4. Neither (1,2) nor (5,6) can be crossed in a 1-drawing.

6.2 4-Star 2

With the 4-star in Figure 6.2, the cycle (r, 1, 2, 3, 15, r) is a hole with a planar bridge (r, 3),
contradicting Theorem 16.

0 1 2 3

3 4 5 6 7 0

r

15

Figure 6.2: 4-Star 2.

6.3 4-Star 3

When we have a 4-star attached to a V8 as in Figure 6.3, then it is suspected, but not yet
proven, that the resulting graph cannot be contained within a 2-crossing-critical graph.
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0 1 2 3

3 4 5 6 7 0

r

19

14

Figure 6.3: 4-Star 3.

6.4 4-Star 4

This 4-star can be included in a 2-crossing-critical graph, as seen in Figure 6.4.

0 1 2 3

3 4 5 6 7 0

r

15

12

Figure 6.4: 4-Star 4.

6.5 4-Star 5

Now suppose that we have a 4-star as in Figure 6.5. If the path (1, 2) is an edge, then the
cycle (r, 12, 1, 5, 6, 2, 14, r) is a hole with a planar bridge (1, 2), contradicting Theorem 16.

If (1, 2) is not an edge, then any H-bridge connecting to (1, 2) must have all of its
attachments to H in the cycle (r, 12, 1, 5, 6, 2, 14, r), as a computer check demonstrates
that all other options yield a graph G with crossing number at least two such that G is
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non-critical. But then the cycle (r, 12, 1, 5, 6, 2, 14, r) is still a hole with a planar bridge
(1, 2), contradicting Theorem 16.

Therefore, a contradiction arises in all cases.

0 1 2 3

3 4 5 6 7 0

12 14

r

Figure 6.5: 4-Star 5.

6.6 4-Star 6

With the 4-star in Figure 6.6, the cycle (0, r, v1, v2, 6, 7, 0) is a hole with a planar bridge
(r, v2), contradicting Theorem 16.

0 1 2 3

3 4 5 6 7 0

r

v1 v2

Figure 6.6: 4-Star 6.
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6.7 4-Star 7

When we have a 4-star attached to a V8 as in Figure 6.7, then it is suspected, but not yet
proven, that the resulting graph cannot be contained within a 2-crossing-critical graph.

0 1 2 3

3 4 5 6 7 0

r

v1 v2

12

Figure 6.7: 4-Star 7.

6.8 4-Star 8

This 4-star can be included in a 2-crossing-critical graph, as seen in Figure 6.8.

0 1 2 3

3 4 5 6 7 0

r

v1 v2

12

Figure 6.8: 4-Star 8.

6.9 5-Star Case Analysis

A 5-star has 10 3-star subgraphs. As with the 4-star analysis, to have a 2-crossing-critical
graph with a V8 minor and a 5-star attached to it, then none of the 5-star’s 3-star subgraphs

78



can be in the eliminated 3-stars. Therefore, we consider only those 5-star for which all 10
3-star subgraphs are included in the viable 3-stars.

Indeed, as checked by a computer in the same manner as before, we determined that
there are no such 5-stars. By the same reasoning, there are no such 5+-stars. Therefore,
the proof of Theorem 12 is complete.
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Chapter 7

Future Work

Following the analysis of star attachments to a V8, we have a significantly stronger under-
standing of the conditions under which a 3-connected 2-crossing-critical graph containing a
V8 minor but no V10 minor can occur. Still, such graphs are far from being fully character-
ized. In this section, we present some remaining questions which may need to be answered
to complete the characterization.

7.1 Remaining 3- and 4-Stars

The analysis in this paper left seven 3-stars and three 4-stars unexplained, as enumerated
in Corollary 9 and Corollary 11. These will likely require additional tools and techniques.
Here, we present the outline of a proof technique that may be sufficient in explaining some
or all of these remaining cases. We use Figure 7.1 as an example to demonstrate this
technique.
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0 1 2 3

3 4 5 6 7 0

r
8

13 14

Figure 7.1: The second of two special cases of a 3-star attaching to a V8 at precisely one
spoke.

In this example, the only permitted crossing in a 1-drawing is between rim branches
(0, 7) and (4, 5). By Theorem 6, covering (0, 7) with additional structure(s) yields a graph
with crossing number at least 2. However, doing so and then removing the edge (r, 13)
still yields a graph with crossing number at least 2, by Theorem 6, provided that removing
(r, 13) does not affect the coverage of (0, 7).

The same is true symmetrically for (4, 5). Covering (4, 5) with additional structure(s)
yields a graph with crossing number at least 2, but removing (r, 14) still yields a graph
with crossing number at least 2, provided that removing (r, 14) does not affect the coverage
of (4, 5).

If we can demonstrate that either (0, 7) or (4, 5) is covered (i.e. a second crossing is
caused by some other effect) and that removing (r, 13) or (r, 14) does not affect the covering
of (0, 7) or (4, 5), respectively, then the argument is complete and we have shown that this
3-star cannot be included in a 2-crossing-critical example.

Let large bridges refer to H-bridges in which every H-avoiding path is a large jump
(i.e. spanning more than two rim edges). Demonstrating that large bridges cover neither
(0, 7) nor (4, 5), nor force as second crossing between themselves, accomplishes the two
objectives in the preceding paragraph, as small structures are well-understood by Austin’s
work in [2].

To do so, we examine all possible large bridges which may attach to (0, 7) or (4, 5). We
need not investigate any other large bridges, as any structure embedded in the projective
plane in one of the five faces bounded by a quad or incident to r has the same embedding in
a 1-drawing. However, large bridges outside of these faces may have a different embedding
in a 1-drawing from the projective plane. This could lead to overlap, and therefore a second
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crossing. In this argument, we seek to rule out this possibility, as well as the possibility
that large bridges could cover (0, 7) or (4, 5).

Let e and f be the sections of (0, 7) and (4, 5), respectively, which can be crossed in
a 1-drawing. There are three possibilities for the locations of e and f in this embedding;
here, we have shown the one where e and f are both on the top of the drawing. The
other two are e and f both on the left (symmetrically the right), and e and f both on the
bottom.

In Figure 7.2, we examine two possible large bridges. Here, they are represented by I
and J , but they may have more than two H-attachments provide that the requirements
for a large bridge are met.

0 4

1 2 3

5 6 7

8

13 14

r

a b

b a

e f

I

J

Figure 7.2: The only embedding of Figure 7.1 in the real projective plane RP 2 with
representativity 2.
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I

J

r

0

4
1

5
6

8

2

3

7

Figure 7.3: The 1-drawing of Figure 7.1.

If J and I do not overlap in Figure 7.3, then there is no problem as e and f remain
uncovered, and therefore the crossing number remains at most 1. If J and I overlap in
Figure 7.3, then their attachments to either (0, 7) or (4, 5) must be equal or interlace. In
either case, a hole with a planar bridge can be demonstrated. Therefore, we conclude that
I and J cover neither e nor f , and that I and J can be embedded in a 1-drawing.

Performing this analysis for all possible combinations of large bridges in the three
possible layouts of e and f can demonstrate that there are no large bridges attaching to
(0, 7) or (4, 5), and that the resulting graph has crossing number 1. Therefore, we can
conclude that (0, 7) or (4, 5) is covered by a set of small structures, and the rest of the
argument becomes valid.

As mentioned, it is believed that this approach could eliminate the remaining ten 3-
and 4-stars. However, the amount of effort required to examine all possible large bridges in
every possible planar embedding and 1-drawing of the remaining cases forced this approach
outside the scope of this paper.

7.2 4+-Trees

In the previous chapter, we considered 4+-stars attaching to V8. However, unlike in the
case of a 3-tree, where a 3-star is the only tree with three leaves, there are multiple possible
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4+-trees which could attach to a V8. In the case of a 4-tree, the two tree arrangements are
a 4-star and a perfect binary tree with four leaves.

In contrast to the 4+-star analysis, we can no longer eliminate any 4+-tree which
contains an eliminated 3-star subgraph. The 3-star elimination arguments which use The-
orem 16 do not work if the planar bridge in question, typically an edge of the 3-star, is
permitted to have attachments to the rest of the V8. As such, the 4+-trees which remain
to be considered are precisely the following:

1. 3-stars which were eliminated by a contradiction with Theorem 16, where the edge
which formed the planar bridge in question is permitted to be subdivided; and

2. 4+-trees which are attached at the same points as the 4-stars in chapter 6.

It is hypothesized that the 4+-trees in the first category cannot be included in a 2-
crossing-critical graph with a fully covered V8.

Conjecture 24. Let G be a 3-connected 2-crossing-critical graph with a subdivision H of
V8 but no V10 subdivision. Let T be a 4+-tree which is an H-bridge in G. Then G does not
contain as a subgraph any eliminated 3-star T ′ attached to the V8 subdivision H.

This conjecture may be slightly generalized as the following conjecture.

Conjecture 25. Let G be a 3-connected 2-crossing-critical graph with a subdivision H of
V8 but no V10 subdivision, such that G is embeddable in the real projective plane RP 2. Let
T be a 4+-tree which is an H-bridge in G. Then contracting the internal vertices of T to a
single vertex to yield T ′, where T ′ a 4+-star with the same attachments to H as T , yields a
3-connected 2-crossing-critical graph which is embeddable in the real projective plane RP 2.

Furthermore, Bokal, Oporowski, Richter, and Salazar demonstrated that any H-bridge
with three attachments is a 3-star. Following this reasoning, the previous conjecture raises
one more question.

Conjecture 26. Let G be a 3-connected 2-crossing-critical graph with a subdivision H of
V8 but no V10 subdivision, such that G is embeddable in the real projective plane RP 2. If
B is an H-bridge, then B has at most four H-attachments, and B is a tree.

Addressing these three conjectures is beyond the scope of this work. But, we are able
to give some consideration to the 4-trees in the second category above, to attempt to fully
explain those H-bridges which would not explained by the preceding three conjectures.
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Unlike in the case of a 3-tree, where a 3-star is the only tree with three leaves, there are
two possible 4-trees which could attach to a V8: a 4-star and a complete binary tree with
four leaves (sometimes referred to as a perfect binary tree). The complete binary trees
with the same attachments to the V8 as in chapter 6 are the trees with which we concern
ourselves here.

In the complete binary tree with four leaves, there are three possible layouts of the
tree with respect to the attachments to the V8. Let a, b, c, d be the four connections of
the tree to the V8, in that order around the rim. The binary tree which pairs (a, c) and
(b, d) cannot be embedded in the real projective plane RP 2 when attached to a V8 in the
manner described, unless this occurs within a quad of the V8. Therefore, we only consider
this possibility in Layout 4. We do consider the other two layouts, which pair (a, d) and
(b, c), and which pair (a, b) and (c, d).

7.2.1 Layout 1

Suppose that a complete binary tree with this layout is attached to a V8, with leaf pairing
(1,0) and (5,6), as in Figure 7.4. Then the cycle (0, r0, r1, 5, 1, 0) is a hole with planar
bridge (r0, 1), a contradiction with Theorem 16. Therefore, this case cannot be contained
within a 2-crossing-critical graph.

0 1 2 3

3 4 5

6

7 0

r0 r1

Figure 7.4: A complete binary tree in Layout 1.

Now suppose that a complete binary tree with this layout is attached to a V8, with leaf
pairing (0, 6) and (1, 5), as in Figure 7.5.

If (1, 5) is an edge, then delete it. The resulting graph has a 1-drawing D. But then,
in D, the path (1, r1, 5) is not crossed, as this can be defined to replace the (1, 5) spoke in
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a V8. So (1, 5) can be drawn alongside this path, and we have a 1-drawing of the original
graph, a contradiction.

Then (1, 5) has at least one subdivision. And it has at most one subdivision, by the
minimality of subdivisions of the V8. (To see this, redefine the (1, 5) spoke to be (1, r1, 5)
as before). Let i be the internal vertex of (1, 5). Then, besides 1 and 5 (which would
yield a non-critical edge), an H-bridge attaching to i could only be adjacent to r1 or 13,
as checked by a computer (the other possibilities have crossing number at least 2 and are
non-critical). Let B′ be this H-bridge.

If B′ is adjacent to r1, then the cycle (1, 5, r1, 1) is a hole with planar bridge (i, r1), a
contradiction with Theorem 16.

If B′ is adjacent to 13, then the cycle (r0, r1, 1, 0, 7, 6, r0) is a hole with planar bridge
(r0, 0), a contradiction with Theorem 16.

Since a contradiction arises in all cases, then this case cannot be contained within a
2-crossing-critical graph.

0 1 2 3

3 4 5

6

7 0

r0 r1

Figure 7.5: Another complete binary tree in Layout 1.

7.2.2 Layout 2

In this layout, if the 4-tree is a complete binary tree with leaf pairing (1,0) and (5,17), then
we can produce the following 2-crossing-critical graph. It is worth noting that contracting
the edge (r0, r1) yields the 2-crossing-critical graph seen in Figure 4.2.
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0 1 2 3

3 4 6 7

0

r0

r1

5 17

Figure 7.6: A 2-crossing-critical graph with a fully covered V8 and a 4-tree with Layout 2.

It is suspected, but not yet proven, that the other possible complete binary tree in this
layout, with leaf pairing (0,17) and (1,5), cannot be included in a 2-crossing-critical graph.

0 1 2 3

3 4 6 7

0

r0

r1

5 17

Figure 7.7: Another complete binary tree with four leaves in Layout 2.

7.2.3 Layout 3

In this layout, if the 4-tree is a complete binary tree with leaf pairing (2,14) and (5,17),
then we can produce a 2-crossing-critical graph. It is worth noting that contracting the
edge (r0, r1) yields the 2-crossing-critical graph seen in Figure 4.12.
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0 1 2 3

3 4 6 7

0

r0

r1

5 17

14

Figure 7.8: A 2-crossing-critical graph with a fully covered V8 and a 4-tree with Layout 3.

It is suspected, but not yet proven, that the other possible complete binary tree in this
layout, with leaf pairing (2,17) and (5,14) cannot be included in a 2-crossing-critical graph.

0 1 2 3

3 4 6 7

0

r0

r1

5 17

14

Figure 7.9: Another complete binary tree with four leaves in Layout 3.

7.2.4 Layout 4

In Layout 4, it is possible to embed all three complete binary trees attached to the V8 in
the real projective plane RP 2, so all three cases are considered here.

When we have a complete binary tree as in Figure 7.10, then the graph cannot be
2-crossing-critical. The cycle (1, 5, r0, 6, 2, r1, 1) is a hole with planar bridge (r0, r1), a
contradiction with Theorem 16. Therefore, this case cannot be contained within a 2-
crossing-critical graph.
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0 1 2 3

3 4 5 6 7 0

r0
r1

Figure 7.10: A complete binary 4-tree in Layout 4.

It is suspected, but not yet proven, that the other possible complete binary tree in this
layout, as seen below, cannot be included in a 2-crossing-critical graph.

0 1 2 3

3 4 5 6 7 0

r0 r1

Figure 7.11: Another complete binary 4-tree in Layout 4.

When we have a complete binary tree as in Figure 7.12, then the resulting graph has
crossing number at least 2 and is non-critical, as checked by a computer. Therefore, this
case cannot be contained within a 2-crossing-critical graph.
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0 1 2 3

3 4 5 6 7 0

r0 r1

Figure 7.12: The third complete binary 4-tree in Layout 4.

7.2.5 Layout 6

With the complete binary tree in Layout 6 with leaf pairing (0, 1) and (3, 15), the cy-
cle (r1, r0, 1, 2, 3, 15, r1) is a hole with a planar bridge (r1, 3), contradicting Theorem 16.
Therefore, this case cannot be contained within a 2-crossing-critical graph.

0 1 2 3

3 4 5 6 7 0

r0

r1

15

Figure 7.13: A complete binary tree in Layout 6.

With the complete binary tree in Layout 6 with leaf pairing (0, 15) and (1, 3), the
cycle (3, 2, 1, r1, r0, 15, 3) is a hole with a planar bridge (r1, 3), contradicting Theorem 16.
Therefore, this case cannot be contained within a 2-crossing-critical graph.
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0 1 2 3

3 4 5 6 7 0

r0 r1

15

Figure 7.14: Another complete binary tree in Layout 6.

7.2.6 Layout 7

Now let the complete binary tree in Layout 7, with leaf pairings (0, 19) and (2, 14), attach to
a V8. It is suspected, but not yet proven, that this case cannot lead to a 2-crossing-critical
graph.

0 1 2 3

3 4 5 6 7 0

r0

r1

19

14

Figure 7.15: A complete binary tree in Layout 7.

Now let the complete binary tree in Layout 7, with leaf pairings (0, 19) and (2, 14),
attach to a V8. It is suspected, but not yet proven, that this case cannot lead to a 2-
crossing-critical graph.
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0 1 2 3

3 4 5 6 7 0

r0 r1

19

14

Figure 7.16: Another complete binary tree in Layout 7.

7.2.7 Layout 8

In this layout, if the 4-tree is a complete binary tree with leaf pairings (0, 12) and (4, 15),
then we can produce a 2-crossing-critical graph. It is worth noting that contracting the
edge (r0, r1) yields the 2-crossing-critical graph seen in Figure 6.4.

0 1 2 3

3 4 5 6 7 0

r0 r1

15

12

Figure 7.17: A fully covered, 2-crossing-critical graph containing the 4-tree in Layout 8
with leaf pairing (0,12) and (15,4).

Now let the complete binary tree in Layout 8 with leaf pairings (0,4) and (12,15) attach
to a V8. It is suspected, but not yet proven, that this case cannot yield a 2-crossing-critical
graph.
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0 1 2 3

3 4 5 6 7 0

r0
r1

15

12

Figure 7.18: A 4-tree in Layout 8 with leaf pairings (0,4) and (12,15).

7.2.8 Layouts 5, 9, 10, and 11

It is unknown if the complete binary trees in these layouts (as in Figure 6.6, Figure 6.7,
Figure 6.8, and Figure 6.5) can be included in 2-crossing-critical graphs.

7.3 Structures with Multiple V8 Embeddings

The 3-jump (diagonal) and 31
2
-jump (semi-diagonal) can be drawn inside of a V8 quad

or outside of the V8. When permitted to be drawn inside of a V8 quad in a 1-drawing,
these structures provide very little coverage. By itself, the diagonal eliminates no crossings
from the V8 and the semi-diagonal only eliminates one. However, if either one is prevented
from being drawn inside of a V8 quad in a 1-drawing by some other structure, then the
structure provides significantly more coverage. Understanding the possible combinations
of structures which take advantage of this fact and can be included in a 2-crossing-critical
graph is an open question.

For example, the 3-star in Figure 4.10 can be transformed into a V8 with a semi-diagonal,
1
2
-jump, and 21

2
-jump, as seen below.

93



0 1 2 3

3 4 6 7

0r

5

17

Figure 7.19: A transformation of Figure 4.10.

In this case, the 1
2
-jump forces the semi-diagonal to be drawn outside of the (1, 2, 6, 5)

quad in a 1-drawing. But this, combined with the 21
2
-jump (r, 0), eliminates all possible

1-drawings of the V8, by fully covering 5 consecutive rim branches.

Another simpler example occurs when two opposing diagonals are placed in a quad, as
seen in Figure 7.20. Recall that, by themselves, diagonals do not eliminate any rim edge
crossings of a V8. However, two opposing diagonals cover the edges (3, 4) and (0, 7). This
can be seen by considering which diagonal of the two is drawn outside of the quad in a 1-
drawing. If (1, 6) is outside of the quad in a 1-drawing, then (6, 7), (0, 7), and (0, 1) cannot
be crossed. As a consequence, (3, 4) cannot be crossed as well, since all of its crossing pairs
have been eliminated. If (2, 5) is drawn outside of the quad in a 1-drawing, then (2, 3),
(3, 4), and (4, 5) cannot be crossed. As a consequence, (0, 7) cannot be crossed as well.

In either scenario, neither (3, 4) nor (0, 7) can be crossed. Therefore, we conclude
that this combination of structures covers these edges. (This fact has been verified by a
computer).
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0 1 2 3

3 4 6 7 05

Figure 7.20: A V8 with two opposing diagonals inside of a quad. Covered edges are denoted
with dashed lines.

Explaining the possible ways that combinations of structures can yield greater coverage
than the union of the coverage of the individual structures is an important step towards
classifying 3-connected 2-crossing-critical graphs with a V8 minor but no V10 minor.

7.4 2-crossing-critical Graphs with a V8 Minor, with-

out a Fully Covered V8

Perhaps the most important question towards a full characterization still remains: are
graphs with a fully covered V8 subdivision the only 3-connected 2-crossing-critical graphs
with a V8 minor but no V10 minor which can be embedded in the real projective plane
RP 2? It is hypothesized that this is the case. Resolving this conjecture remains, at the
moment, the biggest hurdle towards fully characterizing 2-crossing-critical graphs with a
V8 minor but no V10 minor.

Conjecture 27. If G is a 3-connected 2-crossing-critical graph with a V8 subdivision but
no V10 subdivision, such that G can be embedded in the real projective plane RP 2, then G
contains a fully covered V8 subdivision.

7.5 Miscellaneous

Finally, we conclude with some miscellaneous open questions. These may or may not be
directly helpful in fully classifying 2-crossing-critical graphs with a V8 minor but no V10

minor, but are interesting nonetheless.
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Let T be a tree attached to a fully covered V8 in a 2-crossing-critical graph G. The
tree T will have some number of 2-star subgraphs, which are topologically isomorphic to
attaching an edge to the V8. It is a direct corollary of Theorem 6 that the 1-drawing
crossings eliminated by T are at least those 1-drawing crossings which are eliminated by
all of the 2-star subgraphs of T . It is an interesting question to determine if these are all
of the 1-drawing crossings which are eliminated by T .

Conjecture 28. Let G be a 2-crossing-critical graph with a V8 minor but no V10 minor,
such that the V8 is fully covered. Then the coverage provided by a tree attached to the V8

is precisely the union of the coverage provided by its 2-star subgraphs.

Finally, finding a correct proof or counterexample of the following conjecture (as dis-
cussed in Chapter 1) is another interesting open question.

Conjecture 29 (Theorem 3.1 from Austin’s work in [2]). In a 3-connected 2-crossing-
critical with a fully covered V8 and no V10 minor, the sections of rim covered by bars,
2-bars, 1

2
-, 1-, 11

2
-, 2-, off-1

2
-, and off-1-jumps must be disjoint.
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Chapter 8

Conclusion

In conclusion, significantly further progress has been made towards understanding the 3-
connected 2-crossing-critical graphs with a V8 minor but no V10 minor, which embed in
the real projective plane RP 2. The remaining possibilities to be considered have been
narrowed, and we have achieved a deeper understanding of the ways in which preventing
rim edge crossings (i.e. coverage) can lead to 2-crossing-critical graphs.

However, there still remain open questions. Many of these are still in the area of
determining which structures can be used to fully cover a V8. There remain a handful
of trickier cases of trees which need to be dealt with in order to fully explain how trees
can fully cover a V8. Combinations of structures, both trees and edges, also need to be
examined. Additionally, it is still an open question if fully covered V8’s can lead to a full
characterization of this class of graphs, or if some additional analysis will be required.

Still, investigating these questions appears to be, at this moment, the best way to finish
characterizing all 2-crossing-critical graphs.

97



References

[1] D. Archdeacon. A Kuratowski theorem for the projective plane. J. Graph Theory,
5:243–246, 1981.

[2] E. Austin. 2-crossing critical graphs with a V8 minor. MMath Thesis, University of
Waterloo, 2012.

[3] G. S. Bloom, J. W. Kennedy, and L. V. Quintas. On crossing numbers and linguistic
structures. Lecture Notes in Math, 1018:14–22, 1983.

[4] D. Bokal, B. Oporowski, R. B. Richter, and G. Salazar. Characterizing 3-connected,
2-crossing-critical graphs. unpublished.

[5] A. Arroyo Guevara. On 2-crossing critical graphs with a V8 minor. MMath Thesis,
University of Waterloo, 2014.

[6] M. Kochol. Construction of crossing-critical graphs. Discrete Math, 66:311–313, 1987.

[7] J. Maharry and N. Robertson. The structure of graphs not topologically containing
the Wagner graph. J. Combin. Theory, Ser. B 121:398–420, 2016.

[8] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, ii, 2013.
10.48550/ARXIV.1301.1493, https://arxiv.org/abs/1301.1493.

[9] B. Richter. Cubic graphs with crossing number 2. J. Graph Theory, 12.3:363–374,
1988.

[10] I. Urrutia Schroeder. Finding 3-connected 2-crossing-critical graphs with V8 minors
and no V10 minors. MMath Essay, University of Waterloo, 2011.

[11] R. P. Vitray. Graphs containing graphs of crossing number 2. Presentation at AMS
Summer Conference, Ohio State University, August 1990.

98

https://arxiv.org/abs/1301.1493
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Appendix A

Coverage Provided by Structures
Attached to a V8

When adding structure to a V8 in order to increase the crossing number, it is helpful to
know the rim edge crossings which a given structure eliminates. For each 3- and 4-star
which we determined can be contained in a 2-crossing-critical graph, the coverage provided
is contained below. Dashed rim edges represent rim edges which cannot be crossed in a
1-drawing of the graph.

It is important to note that the coverage given here is a minimum for each structure.
Some structures may also eliminate a single crossing from a given rim edge, without elim-
inating all three crossings (recall that, in a 1-drawing of a V8 with no structure added, a
given rim edge has three possible crossings with other rim edges).

Furthermore, some structures may eliminate a small number of crossings when embed-
ded in one face, but a great many crossings when embedded in another face.
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A.1 Edges

0

6

1 2 3

3 4 5 7 0

Figure A.1: Coverage provided by a 1
2
-jump.

0

6

1 2 3

3 4 5 7 0

Figure A.2: Coverage provided by an off-1
2
-jump.

0

6

1 2 3

3 4 5 7 0

Figure A.3: Coverage provided by a 1-jump.
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0

6

1 2 3

3 4 5 7 0

Figure A.4: Coverage provided by a off-1-jump.

0

6

1 2 3

3 4 5 7 0

Figure A.5: Coverage provided by a 1-1
2
-jump.

0

6

1 2 3

3 4 5 7 0

Figure A.6: Coverage provided by a 2-jump.
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0

6

1 2 3

3 4 5 7 0

Figure A.7: Coverage provided by an off-2-jump.

0

6

1 2 3

3 4 5 7 0

Figure A.8: Coverage provided by a 21
2
-jump.

0

6

1 2 3

3 4 5 7 0

Figure A.9: Coverage provided by a 3-jump (diagonal).
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0

6

1 2 3

3 4 5 7 0

Figure A.10: Coverage provided by an off-3-jump.

0

6

1 2 3

3 4 5 7 0

Figure A.11: Coverage provided by a 31
2
-jump (semi-diagonal).

0

6

1 2 3

3 4 5 7 0

Figure A.12: Coverage provided by a spoke jump.
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0

6

1 2 3

3 4 5 7 0

Figure A.13: Coverage provided by a 1
2
-spoke jump.

0

6

1 2 3

3 4 5 7 0

Figure A.14: Coverage provided by an off-1
2
-spoke jump.

0

6

1 2 3

3 4 5 7 0

Figure A.15: Coverage provided by a 1
2
-slope.
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0

6

1 2 3

3 4 5 7 0

Figure A.16: Coverage provided by a 1-slope.

0

6

1 2 3

3 4 5 7 0

Figure A.17: Coverage provided by a 11
2
-slope.

0

6

1 2 3

3 4 5 7 0

Figure A.18: Coverage provided by a 2-slope.
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0

6

1 2 3

3 4 5 7 0

Figure A.19: Coverage provided by a 1-bar.

0

6

1 2 3

3 4 5 7 0

Figure A.20: Coverage provided by a 2-bar. This graph is 2-crossing-critical.

A.2 3-Stars

1 2 3

3 4 5 7 0

t

s

v

r

Figure A.21: Coverage provided by the 3-star in Figure 3.2.
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0 1 2 3

3 4 5 7 0

t

s

v

r

Figure A.22: Coverage provided by the 3-star in Figure 3.3.

0 1 2 14 3

3 4 5 6 7 0

r

17

10

Figure A.23: Coverage provided by the 3-star in Figure 3.13.

0 1 2 3

3 4 5

6

7 0
r

Figure A.24: Coverage provided by the 3-star in Figure 4.2.
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0 1 2 3

3 4 5

6

7 0
r

12

Figure A.25: Coverage provided by the 3-star when t = t1 in Figure 4.3.

0 1 2 3

3 4 5

6

7 0
r

Figure A.26: Coverage provided by the 3-star when t = t3 in Figure 4.3.
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0 1 2 3

3 4 6 7 0
r

516 17 19

Figure A.27: Coverage provided by the 3-star in Figure 4.8.

0 1 2 3

3 4 6 7

0

r

5 17

Figure A.28: Coverage provided by the 3-star in Figure 4.10, when t = t1.
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0 12 1 2 3

3 4 6 7

0

r

5 17

Figure A.29: Coverage provided by the 3-star in Figure 4.11.

0 1 2 3

3 4 6 7

0

r

5 17

Figure A.30: Coverage provided by the 3-star in Figure 4.10 when t = t3.

0 1 2 3

3 4 6 7 0

r

5 17

Figure A.31: Coverage provided by the 3-star in Figure 4.12 when t = t4.
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0

r

5 17

14

Figure A.32: Coverage provided by the 3-star in Figure 4.13 when t = t5.

0 1 2 3

3 4 6 7 0

r

5 17

Figure A.33: Coverage provided by the 3-star in Figure 4.14, when t = t6.
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3 4 5 6 7 0

13

15

r

Figure A.34: Coverage provided by the 3-star in Figure 4.23.

113



0 1 2 3

3 4 5 6 7 0

13

r

Figure A.35: Coverage provided by the 3-star in Figure 4.26.
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3 4 5 6 7 0

r

v1 v2

Figure A.36: Coverage provided by the 3-star in Figure 5.5.

0 1 2 3

3 4 5 6 7 0

12

r

v1 v2

Figure A.37: Coverage provided by the 3-star in Figure 5.6.
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0 1 2 3

3 4 5 6 7 0

r

v1 v2

Figure A.38: Minimum coverage provided by the 3-star in Figure 5.7.

A.3 4-Stars

0 1 2 3

3 4 5 6 7 0

r

15

12

Figure A.39: Coverage provided by the 4-star in Figure 6.4.

0 1 2 3

3 4 5 6 7 0

r

v1 v2

12

Figure A.40: Coverage provided by the 4-star in Figure 6.8.
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A.4 4+-Trees

0 1 2 3

3 4 5 6 7 0

r0 r1

15

12

Figure A.41: Coverage provided by Figure 7.17.

A.5 Miscellaneous

0 1 2 3

3 4 6 7 05

Figure A.42: A V8 with two opposing diagonals inside of a quad. Covered edges are denoted
with dashed lines.

116


	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	Introduction
	Regarding V_8's
	Crossings in a 1-Drawing of a V_8
	A Note about Computing
	Attaching Stars to V_8's
	Key Results
	Navigating This Thesis

	Bridges Attached to Multiple Spokes
	Preliminaries
	Two non-adjacent spokes
	Two adjacent spokes and another vertex outside of the quad
	Two adjacent spokes and another vertex within the quad
	Conclusion

	3-Star Case Analysis: One Spoke Attachment
	Opposing rims
	One spoke and an endpoint of an adjacent spoke
	One spoke and an endpoint of the same spoke
	One spoke, and a rim edge incident to the endpoint of the spoke
	One spoke, such that a 2-bar is formed
	One spoke, remaining cases
	Conclusion

	3-Star Case Analysis: No Spoke Attachments
	No spokes, consecutive vertices of the V_8
	No spokes, consecutive rim edges of the V_8
	No spokes, a consecutive vertex and rim edge
	No spokes, and a V_10 minor is formed
	No spokes, remaining cases which have crossing number at least 2 and are non-critical
	No spokes, remaining cases
	Conclusion

	3-Star Analysis: Multiple Attachments to a Spoke or Rim
	Three attachments to a spoke edge
	Three attachments to a rim edge
	Two attachments to a spoke edge
	Two attachments to a rim edge
	Conclusion

	4+-Star Case Analysis
	4-Star 1
	4-Star 2
	4-Star 3
	4-Star 4
	4-Star 5
	4-Star 6
	4-Star 7
	4-Star 8
	5-Star Case Analysis

	Future Work
	Remaining 3- and 4-Stars
	4+-Trees
	Structures with Multiple V_8 Embeddings
	2-crossing-critical Graphs with a V_8 Minor, without a Fully Covered V_8
	Miscellaneous

	Conclusion
	References
	APPENDICES
	Coverage Provided by Structures Attached to a V_8
	Edges
	3-Stars
	4-Stars
	4+-Trees
	Miscellaneous


