
Automatic Loop Nest Parallelization
for the Predictable Execution Model

by

Zhao Gu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2023

© Zhao Gu 2023

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Zhao Gu was the sole author for Section 2.2, 2.3, 5.2, 5.3, 6.3 and 7 which were written
under the supervision of Prof. Rodolfo Pellizzoni and were not written for publication.

Research presented in rest Sections This research was conducted at the University
of Waterloo by Zhao Gu under the supervision of Prof. Rodolfo Pellizzoni. Zhao Gu
designed the study, completed the coding, data analysis and wrote the draft manuscripts
with assistance from Prof. Rodolfo Pellizzoni.

Citations: Zhao Gu and Rodolfo Pellizzoni. 2022. Optimizing parallel PREM compilation
over nested loop structures. In Proceedings of the 59th ACM/IEEE Design Automa-
tion Conference (DAC ’22). Association for Computing Machinery, New York, NY, USA,
1249–1254. https://doi.org/10.1145/3489517.3530610 [21]

As lead author of these sections, I was responsible for contributing to conceptualizing
study design, carrying out coding, data collection and analysis, and drafting and submit-
ting manuscripts. My supervisor provided guidance during each step of the research and
provided feedback on draft manuscripts.

iii

Abstract

Currently, embedded real-time systems still widely use single-core processors. A major
challenge in the adoption of multicore processors is the presence of shared hardware re-
sources such as main memory. Contention between threads executing on different cores
for access to such resources makes it difficult to tightly estimate the Worst-Case Execu-
tion Time (WCET) of applications. To safely employ multicore processors in real-time
systems, previous work has introduced a PRedictable Execution Model (PREM) for em-
bedded Multi-Processor Systems-on-a-Chip (MPSoCs). Under PREM, each thread is di-
vided into memory phases, where the code and data required by the thread are moved
from main memory to a local memory (cache or scratchpad) or vice versa, and execution
phases, where the thread computes based on the code and data available in local memory.
Memory phases are then scheduled by the Operating System (OS) to avoid contention
among threads, thus resulting in tight WCET bounds. The main challenge in applying the
model is to automatically generate optimized PREM-compliant code instead of rewriting
programs manually. Note that many programs of interests, such as emerging AI and neu-
ral network kernels, comprise both compute-intensive and memory-intensive deeply nested
loops. Hence, PREM code generation and optimization should be applicable to nested loop
structures and consider whether performance is constrained by computation or memory
transfers.

In this thesis, we address the problem of automatically parallelizing and optimizing
nested loop structure programs by presenting a workflow that automatically generates
PREM-compliant optimized code. To correctly model the structure of nested loop pro-
grams, we leverage existing polyhedral compilation tools that analyze the original program
and generate optimized executables. Two main techniques are adopted for optimization:
loop tiling and parallelization. We build a timing model to estimate the length of execu-
tion and memory phases, and then construct a Directed Acyclic Graph (DAG) of program
phases to estimate its makespan. During this process, our framework searches for the com-
bination of tile sizes and thread numbers that minimize the makespan of the program; given
the complexity of the optimization problem, we design a heuristic algorithm to find solu-
tions close to the optimal. Finally, to show its usefulness, we evaluate our technique based
on the Gem5 architectural simulator on computational kernels from the PolyBench-NN
benchmark.

iv

Acknowledgements

I would like to thank my advisor, Professor Rodolfo Pellizzoni, who gives me his maxi-
mum support and toleration during the days when progress stuck for my mental struggles.

I also want to thank my family who always care for me during this time.

v

Dedication

The thesis is dedicated to my grandparents, the childhood memories I had with you
are always precious to me.

vi

Table of Contents

Author’s Declaration ii

Statement of Contributions iii

Abstract iv

Acknowledgements v

Dedication vi

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Objective . 2

1.2 Contributions and Structure . 2

2 Background and Related Work 4

2.1 Predictable Execution Model . 4

2.1.1 Streaming Model . 6

2.1.2 PREM Compilers . 9

2.2 Polyhedral Loop Model . 10

vii

2.2.1 Basic Concepts . 11

2.2.2 Dependence Analysis . 12

2.3 Loop Transformation . 13

3 System Model and Parallel PREM Schedule 15

3.1 Target Architecture . 15

3.2 Code Assumptions . 16

3.3 Application Model . 17

3.4 Tilable Components . 19

3.5 Parallel Streaming PREM Schedule . 21

4 Schedule Optimization 38

4.1 Motivation . 38

4.2 Schedule Length . 39

4.3 Tiling Component Optimization . 42

4.4 Application Optimization . 43

5 PREM Compiler Implementation 46

5.1 Compiler Design . 46

5.2 Program transformations and Validity . 48

5.2.1 Legality of Transformation . 48

5.2.2 Tiling Transformation . 51

5.3 Data Transfer Statements Generation . 54

5.3.1 Memory Access Analysis . 55

5.3.2 API Call Parameters . 59

6 Evaluation 63

6.1 Platform Configuration . 63

6.2 Polybench Kernels . 65

viii

6.3 CNN kernels in GoogLeNet . 69

6.3.1 Comparison with greedy approach 71

6.3.2 Boundary region . 72

7 Conclusions and Future Work 74

References 76

ix

List of Figures

2.1 PREM API usage example adapted from [36] 6

2.2 PREM Execution on single core . 7

2.3 Sample C program of vector multiplication 11

3.1 Target hardware architecture . 16

3.2 Loop tree for LSTM. l.N and l.parallel are shown within the node, while
l.I is shown on the incoming edge. root(T) = (lt). 19

3.3 N-dimensional data transfer with N=2, adapted from [36] 22

3.4 Example parallel streaming PREM schedule on 3 cores. Up arrows represent
load memory phases and down arrows unload memory phases. 24

5.1 Toolchain block diagram. Gray rounded boxes represent data or interme-
diate representation produced by the previous step, white rectangles are
procedures. 47

5.2 dependent pairs of statement instances that is legal or illegal 49

5.3 canonical data element range of accessed data elements in arr[5][5] 57

5.4 3 dimension data transfer example . 61

6.2 Running time of generating Figure 6.1 with Optimization Heuristic 65

6.3 Running time of generating Figure 6.1 with Greedy Approach 65

6.1 Makespan of forward passes in PolyBench-NN, normalized by the ideal
single-core case . 66

6.4 Makespan vs SPM size of Polybench kernels 68

x

6.5 Loop Bounds in CNN . 70

6.6 Best selections for CNN with different loop bounds 70

6.7 Best selections for CNN under different bus speed 72

6.8 Makespan, transferred data and SPM utilization for CNN under different
bus speed . 73

xi

List of Tables

2.1 Proposed PREM API to manage SPM data from [36] 7

2.2 Comparison of PREM Compilers . 9

3.1 API operation and SPM status in each segment on Core 0 24

3.2 seg count to swap input parameters . 31

6.1 Normalized worst-case execution time of PREM APIs from [36] 64

xii

Chapter 1

Introduction

Novel embedded applications in domains such as autonomous cars and unmanned vehicles
are driving the adoption of Multi-Processor Systems-on-a-Chip (MPSoC) to satisfy their
performance requirements. Many such applications, such as Deep Neural Networks (DNN),
consist of computational kernels that can be parallelized across several processing cores.
At the same time, due to safety considerations, applications in such domains also typically
require real-time guarantees. Unfortunately, this is problematic in MPSoCs since the
presence of shared hardware resources between cores makes it difficult to estimate the
timing of concurrent threads.

In this thesis, we focus on the issue of predictably sharing access to main memory.
In recent years, the community has proposed memory-aware execution models, such as
the PRedictable Execution Model (PREM) [31] and its extensions [14, 27, 37, 16], which
address the memory contention problem from a software perspective. The PREM method
involves compiling each thread in a way that allows it to switch between two distinct phases:
memory and execution. During the memory phase, the thread accesses main memory to
retrieve necessary code and data and saves it into a local, private memory, in the form of a
cache or ScratchPad Memory (SPM). The thread also writes back any modified data from
the local memory to main memory during this phase. In contrast, the execution phase
involves the thread performing useful computation using only the code and data in its
local memory. The Operating System (OS) can then schedule memory phases in such a
way as to prevent saturating main memory. This ensures that the length of both memory
and execution phases of a thread remains unaffected by concurrent activity on other cores,
simplifying timing estimation.

A main complexity in PREM is how to divide a thread into memory and execution

1

phases. In general, the data used by a thread might be too large to entirely fit in its local
memory. To solve this issue, the thread can often be divided into multiple segments, where
each segment accesses only a portion of the total data footprint of the thread. In the case
of loop structures, this can be achieved by tiling the loop [14, 29, 37, 16], i.e., partitioning
the loop iterations into a set of disjoint ranges and executing the iterations in each range
as part of a different segment.

1.1 Objective

The overall objective of this thesis is to facilitate the adoption of PREM by studying how to
automatically generate optimized PREM-compliant application code. Specifically, we are
concerned with compiling and scheduling a single application on a multicore system, where
each core has a private SPM. We consider computational kernels written as sequential C
programs and consisting of a structure of nested loops. Our PREM compiler employs data
and loop analysis to understand the loop structure, and divides the program into segments
by employing loop tiling on multiple loop levels. Whenever possible, segments are assigned
to different threads and executed in parallel on multiple cores to minimize the worst-case
makespan of the application (total time required to run it once, including memory phases).

A key observation is that, outside the constraint on local memory size, properly selecting
tile/segment sizes is essential to optimize the makespan of the application. This is because
the segment size affects the ability of scheduling memory phases in parallel with execution
phases, thus “hiding” the overhead of memory operations; while the choice of which loop to
tile affects the data footprint, and thus the memory phase length, for any given segment.
For this reason, we seek not only to transform the program in a legal way, but also to
optimize such transformation by tiling the program in the optimal way. However, finding
the best tile sizes is in general difficult due to the size of the problem space: for example,
the convolutional DNN kernel we study in our evaluation consists of 7 nested loops.

1.2 Contributions and Structure

In summary, we provide the following main contributions: (1) We consider a system
where memory phases are performed by a dedicated DMA component, and we extend
the streaming PREM model[36] which was previously employed to schedule independent,
sequential tasks, to the case of an application consisting of parallel threads. Dependencies
are encoded in a DAG, which is then traversed to determine the makespan of the schedule.

2

(2) Due to the complexity of the tile optimization problem, we introduce a heuristic that
efficiently searches for optimized tile sizes and tile-to-thread assignments, even for kernels
comprising deeply-nested loop structures. (3) We demonstrate the applicability of our
technique by applying it to the kernels in the PolyBench-NN benchmark suite [42] for
DNN applications. Compared to previous work on PREM compilation [14, 29, 37, 16], our
solution is the first to target parallel applications with an arbitrary number of nested loop
levels.

The rest of the thesis is structured as following:

• In Chapter 2, we introduce the problem background and how it can be addressed
using PREM. We also introduce the basic concepts of Polyhedral Model which is
used for program analysis.

• In Chapter 3, we show step by step how we model the nested loop program and how
it is transformed and executed in a manner compliant with PREM.

• In Chapter 4, we demonstrate how to calculate the makespan of transformed program
and the algorithm of finding tiling and parallelization sizes that gives makespan close
to minimal.

• In Chapter 5, we show the whole compilation flow of transforming a nested loop
program into an optimized PREM-compliant program. Then we explain the key
steps in this compilation flow, including the validity of loop transformation and how
we calculate the bounding box of data transfer statements.

• In Chapter 6, we evaluate this approach on PolyBench-NN and compare it with a
greedy approach.

• Finally, in Chapter 7, we present the conclusions and directions for future research.

Note that most of the content in Chapters 3 and 4, and some of the content in Chap-
ters 5 and 6 have been previously published in conference paper [21], of which I am the
first author and sole student author.

3

Chapter 2

Background and Related Work

In this chapter, we cover the required background to understand the rest of the thesis, and
we discuss how our contribution compares to related work. We first provide a thorough
discussion of the Predictable Execution Model in Section 2.1. In particular, we detail
the execution model and related scheduling API used in the streaming model introduced
in [36], since they are most related to the approach used in this thesis. We also discuss
related work in PREM compilers for automatic program transformation and optimization.
Since our optimizing compiler relies on the polyhedral model for program analysis and
transformation, in Section 2.2 we introduce key concepts in the polyhedral loop model,
and we show how data dependencies are modeled using these concepts.

2.1 Predictable Execution Model

Modern MPSoCs are characterized by a variety of hardware resources, such as caches,
buses and main memory, that are shared among processing elements / cores. Interference
for access to such shared resources can significantly increase the execution time of tasks.
Main memory, which is typically implemented as DRAM, represent a potential significant
performance bottleneck and a major source of unpredictability [23, 22], making it difficult
to derive tight bounds on the worst-case execution time of tasks. For this reason, over
the past decade, the real-time community has spent significant effort in devising memory-
aware allocation, partitioning and scheduling mechanisms for shared resources. One such
approach is the PRedictable Execution Model (PREM) first introduced in [31]. Such work
attempts to solve the predictability issue of accesses to main memory by dividing the
execution of software tasks into two parts. First, a memory phase is used to load the

4

data required by the task from main memory into cache by performing suitable prefetch
instructions. During this phase, dirty cache lines evicted from cache are also written back
to main memory. Then, during the computation phase, the task executes using the data
prefetched to cache. Since the task does not access main memory during the computation
phase, either I/O devices or tasks executing on other cores are free to use main memory
without causing contention.

Following works [49, 3] have refined the approach proposed by [31] into a three-phase
model. In this extended model, the task is divided into three phases: first, a load or
acquisition memory phase is used to move required data from main memory into a local
memory; then, during the execution phase, the core computes using the content of the
local memory; and finally during an unload or restitution phase, modified data in local
memory is written back to main memory. The Operating System (OS) is responsible for
scheduling memory phases in such a way that main memory is not overutilized; for most
approaches, this means that only one memory phase is allowed to proceed at a time. In
turn, this prevents contention and slowdown in main memory, ensuring that it is possible
to tightly bound the length of both memory phases and execution phases.

The three-phase model has been employed by many published works [51, 50, 49, 3,
2, 1, 40, 41, 52, 26, 27, 14, 10, 30, 11, 12, 34, 4, 35, 19, 33]. Existing approaches differ
on several aspects, including: (1) whether they target sequential tasks or parallel tasks;
(2) depending on the employed scheduling discipline, that can follow either a partitioned
or global scheme, and either allow or disallow task preemption; (3) whether they require
loading data for the whole task, or support loading only a portion to allow it to fit into
limited local memory space. In the latter case, the task is generally divided into a set of
sequential segments, where every segment comprises one load, execution and unload phase.

Among the cited works, the approaches in [4, 10, 11, 12, 14, 27, 40, 41, 50, 19, 33] have
been implemented on actual MPSoC platforms. Employed platforms differ on two main
aspects: (1) while most of the works target general purpose CPU cores, some of them are
implemented on GPU cores; (2) some platforms use caches as local memory, while others
employ a ScratchPad Memory (SPM) which is private to each core. On platforms that
employ cache memory, memory phases must be executed on the CPU to prefetch / flush
the required data to / from cache. On the other hand, platforms employing SPM can use
a dedicated DMA component to execute the memory phases. Such approaches attempt
to hide the latency of memory operations by performing the load/unload of one task in
parallel with the execution of a different task. This is achieved by using a double-buffering
technique [49, 15, 14, 40], so that the DMA performs memory phases targeting one buffer
while the core executes using the other buffer.

5

2.1.1 Streaming Model

1 i n t a [3 0 0] ;
2 memset (a , 0 , s i z e o f (a)) ;
3

4 f o r (i = 0 ; i < 300 ; i++)
5 {
6 a [i] += 2 ∗ i + 1 ;
7 }

(a) Origin code of a simple loop

1 i n t a [3 0 0] ;
2 memset (a , 0 , s i z e o f (a)) ;
3

4 B1 = a l l o c a t e b u f f e r (a buf1 , RW) ;
5 B2 = a l l o c a t e b u f f e r (a buf2 , RW) ;
6 swap buf f e r (B1 , a , 100) ;
7 di spatch () ;
8 swap buf f e r (B2 , a+100 , 100) ;
9 end segment () ;

10

11 f o r (i = 0 ; i < 100 ; i++)
12 {
13 a buf1 [i] += 2 ∗ i + 1 ;
14 }
15 swap buf f e r (B1 , a+200 , 100) ;
16 end segment () ;
17

18 f o r (i = 0 ; i < 100 ; i++)
19 {
20 a buf2 [i] += 2 ∗ i + 1 ;
21 }
22 d e a l l o c a t e b u f f e r (B2) ;
23 end segment () ;
24

25 f o r (i = 0 ; i < 100 ; i++)
26 {
27 a buf1 [i] += 2 ∗ i + 1 ;
28 }
29 d e a l l o c a t e b u f f e r (B1) ;
30 end segment () ;

(b) After PREM program transformation

Figure 2.1: PREM API usage example adapted from [36]

In this section, we discuss in more detail the PREM streaming model introduced in [36].
The goal of [36] is to schedule a set of sequential programs (real-time tasks) based on the
three-phase model; each program is divided into multiple segments allocated on one core.
Memory phases are performed by a single programmable DMA engine, under the control of
the OS. The operating system schedules DMA operations of different cores based on a Time-
Division Multiple Access (TDMA) scheme. Compared to previous PREM approaches, the

6

Core

DMA

seg1

seg1 seg1seg2

seg2 seg3seg0

seg2 seg3seg3

a[0-100]a[100-200] a[200-300]a[0-100] a[100-200] a[200-300]

Figure 2.2: PREM Execution on single core

Table 2.1: Proposed PREM API to manage SPM data from [36]

int allocate(uint64 t *src, uint64 t *dst, int size, int attr) /

int allocate2d(uint64 t* src, uint64 t* dst, int width, int height, int spitch, int dpitch, int attr) :

Allocate an object at dst and copy 1D/2D array from src if attr is RO/RW → return the ID assigned to the object.

void deallocate(int id) : Release the object with ID id and write-back the data if the object is WO/RW .

int allocate buffer(uint64 t *dst, int attr) : Allocate a buffer at dst for mutable objects → return the buffer

ID.

void swap buffer(int id, uint64 t *src, int size) /

void swap2d buffer(int id, uint64 t *src, int width, int height, int spitch, int dpitch) :

Swap the 1D/2D data in the buffer with ID id by writing-back the current data for WO/RW buffer and copying data

from src for RO/RW buffer.

void deallocate buffer(int id) : Release the buffer with ID id and write-back the data if the buffer is WO/RW .

void dispatch() : Force all buffer DMA requests to move from waiting queue to dispatch queue.

void end segment() : End segment execution.

streaming model allows segments of the same program to be executed consecutively by
alternating between the two allocated buffers.

To control the execution of segments and data load/unload, the work in [36] introduces
a PREM API, which we detail in Table 2.1; the program must employ suitable API calls
in each segment to define required data buffers, specify the data to be transferred to/from
main memory, and determine the end of the segment. To illustrate the usage of the PREM
API, we introduce the example of a simple program, adapted from [36]; we provide the code
of the program in Figure 2.1, while Figure 2.2 shows the corresponding PREM execution
for the transformed program. Note that in the figure, up arrows represent load phases
and down arrows represent unload phases; furthermore, arrows linking different segments
represent precedence constraints between segments. Specifically, the execution phase of
segment segi can only start after the end of the load phase for segi, and the unload phase

7

of segi can only start after its execution phase. Finally, note that for simplicity we are
only showing the execution of a single program on one core; in reality, a program can
be preempted by another, higher priority program, leading to segment interleaving, and
furthermore as previously mentioned, the DMA services different cores based on assigned
TDMA slots.

The original program in Figure 2.1a performs a simple task that assigns a value to every
element of array a . In Figure 2.1b, we execute the same task. But instead of executing
the loop on line 4 of Figure 2.1a, we execute this loop in three separate loops, each of
which assigns a value to 100 elements of array a . Each loop is put into a segment to be
executed in streaming mode.

seg0, which comprises the execution in lines 4 to 9 of Figure 2.1b, is responsible for
buffer allocation and firing data transfer instructions for segments seg1 and seg2. On lines
4-5, allocate buffer is called to allocate two buffers for the array. Since the array a

is both read from and written to in the original program, these two buffers are allocated
as RW (read-write mode). After the streaming buffers are allocated on SPM, on line 6 a
swap buffer is called to schedule a load operation for data required by seg1. The design

of swap buffer is that if it is called with a buffer allocated as WO/RW , it checks whether
this buffer is bound to an address in main memory. If it is not bound to any address in
main memory, this swap buffer would bind this buffer to the input memory address,
otherwise it schedules a unload operation during the execution of next segment that copy
the data in this buffer to the previously bound address in main memory and bind the buffer
to the input address after unload operation completes. If swap buffer is called with a

buffer allocated as RO/RW , it schedules a load operation during the execution of the next
segment (possibly after the unload operation for a bound RW buffer). Since in this case
buffer B1 is RW and not bound to any address yet, this call would bind the buffer to the
address corresponding to the beginning of array a in main memory and schedule a load
operation, but not an unload one.

On line 7, we call dispatch to enforce an immediate load operation because seg1
cannot start executing before its data load completes. The OS will schedule the load
operations required by the swap buffer calls before the dispatch after the end of seg0,
and will not start the following segment seg1 until such load phases have completed. On
the other hand, load operations for swap buffer calls performed after the dispatch

will be scheduled by the OS in parallel with the execution of seg1. Specifically, on line
8, another load operation for data required by seg2 is scheduled by swap buffer to be

performed during seg1. It also binds the address of a+100 to a buf2 . Finally, on line 9,
end segment is called to end the execution of the current segment.

8

Table 2.2: Comparison of PREM Compilers

DMA task model optimization
[14] yes parallel, single greedy, 1 level
[29] no parallel, single greedy, 1 level
[37] yes sequential, multi optimal, 2 levels
[16] no sequential, multi heuristic, 1 level
This work yes parallel, single heuristic, any levels

seg1 comprises the execution from line 11 to line 16. On line 11-14, it executes a tiled
version of the original loop program with array a replaced by its corresponding data
structure in SPM, array a buf1 . On line 15, this time the swap buffer first schedules

an unload operation in the next segment from a buf1 to a in main memory and rebind
a buf1 to a+200 , then it also schedules a load operation in the next segment from a+200

to a buf1 . Then seg1 ends execution.

In seg2 from line 18 to line 23, line 18-21 are similar tiled computation code. The
deallocate buffer on line 22 schedules an unload operation from a buf2 to its last
bound address a+100 and deallocates the buffer on SPM after the unload operation com-
pletes during the execution of the next segment seg3.

seg3 from line 25 to line 30 is similar to seg2. The deallocate buffer on line 29 sched-
ules an unload operation from a buf2 to a+200 because it is bound by swap buffer on
line 15. After seg3 ends, the unload operation and buffer deallocation is performed, and
the whole program ends afterward.

2.1.2 PREM Compilers

The seminal work in [31] simply assumed that a program could be manually modified to
be made PREM-compliant. However, we argue that, for realistic programs, segmenting
the code and implementing the required memory and execution phases manually is not
practical. For this reason, previous work [14, 29, 37, 16] has introduced PREM compilers
that are able to automatically segment a program and introduce the required code to create
memory phases, as shown in the example of Figure 2.1.

Table 2.2 summarizes the key characteristics of the existing PREM compilers: whether
they use a dedicated DMA for memory phases, their assumed system model (sequential or
parallel applications and single or multitasking) and the employed optimization strategy.

9

All presented compilers employ loop tiling to break a program into segments so that they
fit in the available local memory space. Loop tiling partitions the iterations of a loop level
into a set of iteration ranges. Multiple loop levels can be simultaneously tiled; a tile is
a combination of iteration ranges, one for each tiled loop. The execution of a segment
corresponds to the execution of all iterations within a given tile. “Greedy” approaches
simply select the largest tile size that fits; in case of nested loops, only one loop level is
tiled. The approaches in [37, 16], which deal with multitasking real-time scheduling of
sequential applications, are more refined. Since both memory and execution phases are
executed non-preemptively to preserve local memory content, reducing the size of memory
phases by varying tile sizes helps decreasing the blocking time suffered by high-priority
tasks. [16] presents a fast heuristic that can only tile on one loop level. [36] provides a
slower, optimal approach that is limited to tiling the first two levels in a nested loop. In
contrast, this thesis targets optimized parallel scheduling of a single application with an
arbitrary number of nested loop levels. The parallel nature of the application makes it
harder to analytically compute its makespan, while tiling over many loop levels greatly
increases the search space for tile sizes. Therefore, an efficient search heuristic is needed.

2.2 Polyhedral Loop Model

The approach we adopt for modeling nested loops is to represent them in the polyhedral
model. In a traditional program representation, using the control flow graph, program
statements are placed in basic blocks and the whole program is represented by a directed
graph with basic blocks as its nodes. In contrast to the control flow graph, which represents
the whole program, the polyhedral model only represents the restricted loop structure part
of the program. In it, each program statement is modeled as a Z-polyhedron. A big
advantage of using the polyhedral model is that, not only does it capture the semantics of
statement, but also it gives enough information of statement execution in each iteration. In
a typical control flow graph representation of loop nest, each statement appears only once,
though it would be executed for many times. This makes it difficult or even impossible to
reason about information like dependencies between particular iterations, execution order
of statements in different loop nests, etc.

The polyhedral model solves this limitation by treating each loop iteration within nested
loops as lattice points inside a multidimensional polyhedron. With such a model, combi-
natorial and geometrical optimizations can be applied on these objects to analyze and
optimize the programs. The research community has developed many tools to apply this
model to program analysis and transformation. The PLuTo compiler [9] uses the polyhedral

10

model to generate automatic parallel programs with good locality. The PPCG compiler [47]
transforms nested loop programs to CUDA-compliant C code. The ISL library [45] is a C
library for manipulating sets and relations between integer points; it provides a framework
for polyhedral model related operations. Widely used compilers GCC and LLVM also have
polyhedral model based optimization components called Graphite [32] and Polly [20].

Yet, the polyhedral model still has its own limitations. The condition of for statement
must be an affine combination of loop indexes. This means all control flow must be known
during compile time. Conditions like a[i][j] < N are not legal because this information is
only known at run time, and it is impossible to know the execution order of statements
given such conditions.

2.2.1 Basic Concepts

The program segment that could be analyzed by polyhedral model is called static control
part of program which also referred to as SCoP. A SCoP contains multiple statements
contained in a sequence of nested loops. The reason why it is called SCoP is that it could
only handle program with compile time static control flow.

For a particular statement, we can use the values of its indexes to specify specific
iterations. To distinguish this notation from schedule, notice these indexes are used for
convenience and do not imply its execution order. This iteration is called an instance of
the statement, and these index values compose a vector named iteration vector. With
statement Stmti and iteration vector v, we denote its corresponding instance Stmti[v].
In Figure 2.3, Stmt2 is represented by an iteration vector [i], then Stmt2[0] is one of its
instances. And Stmt3 has instances of Stmt3[0][0], Stmt3[0][1], Stmt3[0][2]...Stmt3[99][99]

Figure 2.3: Sample C program of vector multiplication

1 i n t i , j , a [1 0 0] [1 0 0] , b [1 0 0] , c [1 0 0] ;
2 i n t n = 100 ; //Stmt1
3 f o r (i = 0 ; i < n ; i++) {
4 c [i] = 0 ; //Stmt2
5 f o r (j = 0 ; j < n ; j++) {
6 c [i] = c [i] + a [i] [j] ∗ b [j] ; //Stmt3
7 }
8 }

We call the set that contains all possible iteration vectors of this statement the domain.

11

The domain represents the range this statement lives in. For example, the domain of Stmt3
is DStmt3 = {(i, j) | 0 ≤ i < 100 ∧ 0 ≤ j < 100}.

The schedule is an integer tuple that corresponds to the execution order of each instance
in the domain. This tuple represents the lexicographic order in which they execute. We
use Φ to denote the function that maps one instance of a statement to its corresponding
schedule. In this example, the schedule of Stmt2 is Φ(Stmt2[i]) = (1, i, 0, 0), schedule of
Stmt3 is Φ(Stmt3[i, j]) = (1, i, 1, j). We can tell that Stmt2[10] executes after Stmt3[8][40]
because the order of Stmt2[10] is (1, 10, 0, 0) and the order of Stmt3[8][40] is (1, 8, 1, 40)
which is lexicographically smaller than schedule of Stmt2[10]. The concept of schedule is
crucial because we can formalize data dependence between statement instances and then
encode the program transformation as a transformation of the schedule. The program
transformation would be valid as long as the new schedule meets all the data dependencies.
For example, we can transform the program in Figure 2.3 by splitting the for loop on line
3 into 2 loops.

Data access is also modeled as a map from domain to array elements. In most cases, the
map between domain to array element is the identity. For example, in Stmt3, the access
to array a can be modeled as AStmt3

a = {Stmt3(i, j) → a(i, j)}. However, sometimes the
space of mapped elements can be different from the original space. If we change the access
of a from a[i][j] to a′[i+j][j], we could rename the index of a’ from (i+j, j) to (m, n). In
this case, the data access is AStmt3

a′ = {Stmt3(i, j) → a′(m,n) | m = i + j ∧ n = j}. The
procedure of calculating the corresponding mapped elements given input domain is called
applying the domain to the map, which is noted as DStmt × AStmt

a . The set of mapped
elements is called range. If we apply domain DStmt3 to map AStmt3

a′ , the resulting range is
Ra′ = DStmt3 ×AStmt3

a′ = {(m,n) | 0 ≤ n ≤ 99 ∧ n ≤ m ≤ n + 99} and this is the area of
array a’ that is accessed by Stmt3.

2.2.2 Dependence Analysis

Data dependence is crucial in program analysis because it provides constraints for pro-
gram transformation. In order to preserve the semantics of the original program, we must
preserve its data dependencies.

The algorithms of dependence analysis in polyhedral loop model have been studied since
Lamport in 1974 [25]. Dependence analysis in the polyhedral loop model is much more
fine-grained than in control flow graph representation. In control flow graph representation,
the minimal unit of dependence analysis is usually a reference to a variable or an array.
On the other hand, in the polyhedral loop model, the minimal unit can be a reference to a

12

particular array cell. A typical polyhedral transformation can reorder not only statements
that contain dependent references, but also particular statement instances. In the work
of PPCG [47], which is a polyhedral compiler that automatically compiles plain loop code
into optimized CUDA code that executes efficiently on GPGPU, they optimize the plain
loop code by reordering the execution order of statement instances.

In this thesis, we use the dependence analysis provided by PPCG [47], which is also
using Lamport’s dependency testing algorithm. It is a value based approach of dependence
analysis, which is also applied in popular polyhedral compilation frameworks like Pluto and
Candl [18]. If an instance s⃗ of a statement Stmti precedes another instance t⃗ of a statement
Stmtj and Stmtj [⃗t] reads/writes the data produced by Stmti[s⃗], then we call Stmti[s⃗] the
source of this dependence and Stmtj [⃗t] the sink of the dependence.

The data dependencies in a nested loop are often represented by a data dependence
graph. The nodes are statements in the program, and the directed edges are dependence
relations. One data dependence can be represented using a pair of source instance and sink
instance. We call this a dependent pair. In this thesis, we represent the data dependencies
graph with a set Dep, which contains all the dependent pairs of instances Stmti[s⃗] →
Stmtj [⃗t] in the whole SCoP.

Dep = {Stmti[s⃗] → Stmtj [⃗t] | Stmti [⃗t] depends on Stmtj[s⃗]} (2.1)

Note that in Equation 2.1, Stmti and Stmtj can be the same statement. We get this set
from dependency analysis result. The dependency analysis is conservative, which means as
long as we satisfy all the dependent pairs in Dep, the program transformation is guaranteed
to be legal. This is used to verify the legality of our program transformed procedure, as
we will discuss in Section 5.2.1.

2.3 Loop Transformation

In this thesis, our goal is to enable parallel execution of nested loops by program trans-
formations, constrained constrained under a limited SPM size. To achieve the above goal,
we have to transform the source program. Many similar studies have been published in
the field of polyhedral optimization. For example, the work in [9] applied combined loop
transformations in the Pluto compiler, including loop tiling, fusion, interchanging, etc.

However, these schemes do not meet our requirements well. First, they assume a cache-
based system, where the tiling transformation is only an optional approach to improve the

13

cache utilization of the program. However, in our approach, tiling is required because we
assume the usage of an SPM with limited space.

Second, although the polyhedral model libraries can support non-uniform nested loops,
due to the overly aggressive exploitation of data locality within nested loops, the code gen-
erated by these schemes tends to have irregular execution order and complex shapes. One
example is the diamond tiling transformation proposed by Bertolacci [6], which changes the
structure of the code significantly compared to the original program. These transformations
make it difficult to evaluate the transformed program’s execution time: if segments execute
widely different number of loop iterations, then the execution time of segments similarly
varies significantly, making WCET estimation difficult and bringing additional complexity
to segment scheduling. Thus, it is hard to guarantee their real-time performance through
static scheduling.

Finally, the main goal of these schemes is to reduce the communication overhead when
executing the programs in parallel, which is also an important aspect for our model. While
reducing the communication overhead allows us to reduce the data transfer cost and bring
us a greater performance improvement, it does not enable us to provide guarantees on the
program validity.

To address these issues, we use a program transformation template to generate opti-
mized code while respecting all the discussed constraints. We assume that each level of the
nested loop program is a constant iteration range that has fixed iteration stride. Under this
assumption, the polyhedron have a fixed rectangular shape, and the number of instances is
uniformly distributed. The nested loops can be partitioned into segments, most of which
have the same number of instances, by the transformation of loop tiling. We will further
discuss how the transformation is performed in Section 5.2.2.

14

Chapter 3

System Model and Parallel PREM
Schedule

In this chapter, we show how our approach leverages PREM to predictably execute a par-
allel application on an SPM-based multicore system. We begin by stating our assumptions
on the required computing architecture in Section 3.1. Our approach targets computa-
tional kernels comprising a nested loop structure. Therefore, in Section 3.3 we show how
we formally model such loop structure as a loop tree. Our approach does not construct
a PREM schedule for the whole loop tree; instead, we first decompose the loop tree into
a set of “linear” subtrees which we call tilable components, and then construct a sched-
ule for each component. Section 3.4 formally defines the concept of a tilable component
and shows how the component can be tiled and parallelized based on a set of tiling and
parallelization parameters (also called an optimization solution); note that for the sake of
clarity, we defer to Chapter 4 to show how to decompose the loop tree into components
and select optimization solutions. Finally, in Section 3.5, we show how the PREM schedule
is constructed for each tiled and parallelized component. Our solution is inspired by the
streaming model for sequential tasks introduced in Section 2.1.1; in particular, we reuse
the same scheduling API. Hence, we also provide a comprehensive example to show how
API calls are inserted in the application’s code to schedule DMA transfers.

3.1 Target Architecture

We consider the problem of compiling of a single sequential C application (a computational
kernel) to execute on a set of P processing cores, with the objective of minimizing the

15

Core 1
Local

Scratch Pad
Memory

Main Memory

Mem. Bus

Thread 1
execution

Core 2
Local

Scratch Pad
Memory

Thread 2
execution

Core P
Local

Scratch Pad
Memory

Thread P
execution

…

DMA

Figure 3.1: Target hardware architecture

kernel’s makespan. Like previous work discussed in Section 2.1, we adopt an SPM-based
memory hierarchy. As shown in Figure 3.1, each processing core has a local SPM and all
the data transfer operations on these SPMs are executed by a single dedicated DMA. To
execute the kernel program in parallel, the kernel is divided into up to P threads, with
one thread assigned per core. Each thread can be further divided into multiple segments,
executed according to the PREM streaming model discussed in Section 2.1.1. Following
the streaming model, we assume that the SPM is divided into two partitions, one for the
current segment execution and one for data transfers of the previous/next segment.

3.2 Code Assumptions

Before we introduce our application model, first we discuss the limitations of our approach.
We adopt the polyhedral model for program analysis, program transformation and code
generation. Our tool is designed to parallelize and transform the code in a single SCoP;
if the program comprises other constructs and/or multiple SCoPs, those have to be trans-
formed manually. Our tool has the same limitations of other polyhedral compilation tools:
the execution order of each loop iteration must be known at compile time. We also have
a more strict assumption on the program, the loops all have constant iteration ranges.

16

To perform data analysis on arrays, memory access relations must be affine functions (a
memory access relation is a map from loop iterator variables to the position in the array
of each element that is read or written in a loop iteration). Furthermore, we assume no
pointer aliasing in input code, since this would invalidate the analysis result of memory
accesses. To simplify the tiling transformation, we only handle loops with uniform-stride,
meaning the stride of each loop is a constant number.

3.3 Application Model

After performing data and loop analysis (see Section 5.1), our PREM compiler builds a
model for the kernel that can be used for scheduling optimization. Specifically, the kernel
is modeled as a loop tree T . Let root(T) be an ordered list of the first-level loops in
the kernel (possibly only one). We use l ∈ T to denote any one loop in the tree, where
l.C is an ordered list of children loops (or ∅ if the loop is a leaf). l.N is the number of
iterations of loop level l, note that this is different from the range of loop index because
loop stride could be larger than 1. l.begin is the beginning index of loop level l and l.S is
the stride, thus the last index of loop level l is l.begin + l.S · (l.N − 1). l.I is the number
of times the loop is executed (where l.I = 1 if l ∈ root(T), otherwise, l.I depends on the
number of iterations of predecessor loops in the tree). For each loop level from top to
bottom, we perform a validity check that is introduced later in Section 5.2.1 to determine
if the current loop level satisfies the dependency constraints after tiling. If not, we fold
all sub-loop levels including this node to the parent of the current node to make it a leaf
node. Finally, based on data dependencies, we define a parallelization attribute: if tiles
over different iteration ranges of l can be executed in parallel in different threads, then
l.parallel = true, otherwise, l.parallel = false.

We say that an ordered sequence of L ≥ 1 loops L = (l1, ..., lj, ..., lL) in the loop tree is
a tilable component if it is a perfectly nested loop, formally: ∀j = 1...L− 1, lj.C = {lj+1}.
We denote the set that contains all the arrays that are accessed in this tilable component
L to be L.A. Our framework constructs a parallel schedule for each tilable component by
tiling its loops and assigning them to different cores.

Example: Listing 3.1 shows the code of LSTM benchmark. The corresponding loop tree
is shown in Figure 3.2. Note that ls1 1.I = lb 0.I = lt.N − 1 rather than lt.N because loops
ls1 1, lb 0 are not executed during the 0− th iteration of lt.

1 f o r (i n t t = 0 ; t < NT; t++)
2 {
3 f o r (i n t s1 0 = 0 ; s1 0 < NS; s1 0++)

17

4 {
5 f o r (i n t p = 0 ; p < NP; p++)
6 {
7 i f (p==0)
8 {
9 i [s 1 0] = 0 . 0 ;

10 f [s 1 0] = 0 . 0 ;
11 o [s1 0] = 0 . 0 ;
12 g [s1 0] = 0 . 0 ;
13 }
14 i [s 1 0] += U i [s1 0] [p] ∗ inp F [t] [p] ;
15 f [s 1 0] += U f [s1 0] [p] ∗ inp F [t] [p] ;
16 o [s1 0] += U o [s1 0] [p] ∗ inp F [t] [p] ;
17 g [s1 0] += U g [s1 0] [p] ∗ inp F [t] [p] ;
18 }
19 }
20

21 i f (t > 0)
22 {
23 f o r (i n t s1 1 = 0 ; s1 1 < NS; s1 1++)
24 {
25 f o r (i n t s2 = 0 ; s2 < NS; s2++)
26 {
27 i [s 1 1] += W i [s1 1] [s2] ∗ s F [t − 1] [s2] ;
28 f [s 1 1] += W f [s1 1] [s2] ∗ s F [t − 1] [s2] ;
29 o [s1 1] += W o[s1 1] [s2] ∗ s F [t − 1] [s2] ;
30 g [s1 1] += W g[s1 1] [s2] ∗ s F [t − 1] [s2] ;
31 }
32 }
33 }
34

35 i f (t > 0)
36 {
37 f o r (i n t b 0 = 0 ; b 0 < NS; b 0++)
38 c F [t] [b 0] = c F [t − 1] [b 0] ∗ f [b 0] + g [b 0] ∗ i [b 0] ;
39 }
40

41 f o r (i n t b 1 = 0 ; b 1 < NS; b 1++)
42 s F [t] [b 1] = c F [t] [b 1] ∗ o [b 1] ;
43 }

Listing 3.1: Original LSTM benchmark code

18

ls1_1
NS
true

lb_0
NS
true

lb_1
NS
true

ls1_0
NS
true

lt
NT

false

1

NT-1
NT NT

NT-1

NT • NP (NT-1) • NP

lp
NP

false

ls2
NS

false

Figure 3.2: Loop tree for LSTM. l.N and l.parallel are shown within the node, while l.I
is shown on the incoming edge. root(T) = (lt).

3.4 Tilable Components

We next discuss how each tilable component L = (l1, ..., lj, ..., lL) is broken into a set of tiles,
each of which is executed in a different PREM segment, and how segments are mapped to
the P application threads.

Our optimization algorithm, which we will detail in Chapter 4, selects a scheduling
solution consisting of tile size lj.K and number of thread groups lj.R for each loop lj in
the component, where lj.R = 1 if lj.parallel = false. Based on the assigned parameters,
the loop lj is divided into lj.M = ⌈lj.N/lj.K⌉ iteration ranges. The total number of
tiles/segments is thus

∏
j=1...L lj.M . The iteration ranges of lj are partitioned among the

lj.R thread groups, where each thread group is assigned at most lj.Z = ⌈lj.M/lj.R⌉ ranges.
The total number of required threads/cores to execute the component is

∏
j=1...L lj.R;

therefore, for a thread group assignment to be valid,
∏

j=1...L lj.R ≤ P must hold.

The resulting code after transformation has two parts: tiled loop and element loop.
Both of them come from original loop level lj and their loop ranges come from parameter

19

set lj.N , lj.K, lj.M and lj.R. Tiled loop refers to the nested for statements that iterate
over the iteration ranges. Element loops are loops that are contained inside the tiled loop;
each element loop iterates over each instance element in the current iteration range.

If lj.parallel = false, then by definition the number of thread groups of this loop level
is 1, meaning that the iteration ranges of lj cannot be partitioned among cores. Thus, its
tiling variable jt which ranges from 0 to lj.M − 1 is used as the current iteration range
number. Specifically, on each thread/core it executes at most lj.Z = ⌈lj.M/lj.R⌉ tiles
(the last thread/core would execute fewer tiles). We assume we have access to an API
call threadID() to return the ID of the current thread. Its possible return values are
0, ..., P − 1. We can calculate for parallelizable loop level lj ∈ L that its thread group ID
is ⌊threadID()% (

∏
k=j...L lk.R) / (

∏
k=j+1...L lk.R)⌋ when lj ̸= lL and when lj = lL, its

thread group ID is ⌊threadID()%lL.R⌋.

Example: consider the L = (ls1 0, lp) tiling component in the LSTM example in Listing 3.1
with ls1 0.N = NS = 650 and lp.N = NP = 700 (LARGE problem size), together with an
example (non-optimal) scheduling solution ls1 0.K = 109, lp.K = 350, ls1 0.R = 3, lp.R = 1.
The resulting code after transformation is shown in Listing 3.2. The detailed transforma-
tion process will be discussed in Section 5.2.2; here we just show how this program is tiled
and executed based on the example scheduling solution.

There are ls1 0.M = ⌈ls1 0.N/ls1 0.K⌉ = ⌈650/109⌉ = 6 iteration ranges for ls1 0 and
lp.M = ⌈lp.N/lp.K⌉ = ⌈700/350⌉ = 2 for lp; the corresponding ranges are indexed by
tiling variables s1t and pt, which take values in 0...5 and 0...1, respectively. The resulting
6 · 2 = 12 tiles are partitioned across ls1 0.R · lp.R = 3 · 1 = 3 threads with IDs from 0 to 2.

Each of the three thread groups for ls1 0 (consisting of lp.R = 1 threads each) is assigned
ls1 0.Z = ⌈ls1 0.M/ls1 0.R⌉ = ⌈6/3⌉ = 2 iteration ranges. For lp, it only has one thread
group (consisting of ls1 0.R = 3 threads). The only one thread group is assigned lp.Z =
⌈lp.M/lp.R⌉ = ⌈2/1⌉ = 2 iteration ranges. For any given thread, its thread group ID on ls1 0

is computed as threadID()%(ls1 0.R · lp.R)/lp.R = threadID()%(3 · 1)/1 = threadID(),
while its thread group on lp is computed as threadID()%lp.R = threadID()%1 = 0. The
thread group IDs are used to determine the values for s1 0 t and p t used by each thread.

After transformation, we also insert three macro statements in Listing 3.2. These three
macro statements would expand to data transfer APIs that schedule data transfer from
main memory to SPM, the insertion of these macros are discussed later in Section 3.5.

1 f o r (i n t t = 0 ; t < NT; t++)
2 {
3 /∗ transformed code o f component (s1 0 , p) s t a r t ∗/
4 BUFFER ALLOC APIS //Macro Stmt

20

5 // Ti l ed loops
6 f o r (i n t s 1 0 t = threadID () ∗2 ; s 1 0 t < (threadID ()+1) ∗2 ; s 1 0 t += 1)
7 {
8 f o r (i n t p t = 0 ; p t < 2 ; p t += 1)
9 {

10 DATA SWAP APIS //Macro Stmt
11 f o r (i n t s1 0 = s 1 0 t ∗109 ; s1 0 < MIN(NS, s 1 0 t ∗109+109) ; s1 0

++)
12 //Element loops
13 {
14 f o r (i n t p = p t ∗350 ; p < MIN(NP, p t ∗350+350) ; p++){
15 i f (p==0){
16 i [s 1 0] = 0 . 0 ;
17 f [s 1 0] = 0 . 0 ;
18 o [s1 0] = 0 . 0 ;
19 g [s1 0] = 0 . 0 ;
20 }
21 i [s 1 0] += U i [s1 0] [p]∗ inp F [t] [p] ;
22 f [s 1 0] += U f [s1 0] [p]∗ inp F [t] [p] ;
23 o [s1 0] += U o [s1 0] [p]∗ inp F [t] [p] ;
24 g [s1 0] += U g [s1 0] [p]∗ inp F [t] [p] ;
25 }
26 }
27 }
28 }
29 BUFFER DEALLOC APIS //Macro Stmt
30 /∗ transformed code component (s1 0 , p) end ∗/
31
32 }

Listing 3.2: Component (ls1 0, lp) in LSTM code after tiling and core placement

3.5 Parallel Streaming PREM Schedule

In the previous section, we showed how to tile a tilable component and map the resulting
tiles to up to P application threads. From the perspective of scheduling, each tile is mapped
to a PREM segment. To execute these segments on the target architecture according to
PREM, we use a set of well-defined APIs to control data transfers and segment boundaries.

Our design of PREM API is similar to [36, 33]. We assume the OS provides functional-
ities to schedule the segments on each core and program DMA transfers. The j-th segment
executing on core i is denoted as segi,j. After tiling, the compiler inserts the required API

21

size[1] size[1]

size[0]size[0]

spitch[0] dpitch[0]

Figure 3.3: N-dimensional data transfer with N=2, adapted from [36]

calls throughout the kernel code. Before the execution of tiles on each core, an initialization
segment must be executed. The initialization segment segi,0 on core i contains API calls
to allocate buffers for the data elements used by the thread, and to start the DMA load for
the segment segi,1. In addition, before the initialization segment can start, the code and
initial stack content for the thread must be loaded in SPM (we assume such information
is contained in the process control block).

The API we employ has three main differences compared to the one in [36] that we
reviewed in Section 2.1.1: first, we assume that the OS now provides support for multi-
threaded applications. Since threads are statically created and bound to cores when the
application starts executing, this minimally impacts the API; we only need to add a func-
tion threadID() to return the thread ID. Second, the schedule of memory phases changes.
Specifically, in [36] the memory phases of a core are executed within assigned per-core
TDMA slots, while in this work, following the scheme in Figure 3.4, we assume a round-
robin schedule among threads. That is, we enforce a round-robin schedule of memory
phases across cores, except that we combine the unload phase for segment segi,j with the
load phase for segment segi,j+2, since we want to perform both memory phases in parallel
with the execution of segi,j+1. Finally, to support data structures with any number of di-
mensions, we assume that the following additional swap API swapnd buffer is available.
It is defined as:

void swapnd buffer(int id, uint64 t *src, size t dimension, int size[],

int spitch[], int dpitch[])

22

The design of swapnd buffer is similar to the design of swap2d buffer that is ex-

plained in [36]. The swapnd buffer is used to swap N-dimensional data (N is greater than

1) with ID id by writing-back the current data for WO/RW buffer and copying data from

src for RO/RW buffer. An N-dimensional buffer is the sub-array of the corresponding
array in main memory. The dimension , size , spitch and dpitch determines this

N-dimensional data transfer. The dimension parameter is restricted to be larger than 1.
As is shown in Figure 3.3 which is adapted from [36], this is an example when dimension

is 2 for a 2D data transfer. The value of dimension restricts the length of size pa-
rameter to be 2 and the length of spitch and dpitch parameters to be 1. The value

of size parameter determines the size of data that is transferred. The last elements of
these parameter arrays refer to the innermost dimension. The spitch parameter specifies
the shape of the source N-dimensional array in main memory, notice it contains N − 1
values as the outermost dimension is skipped. And similarly, dpitch specifies the shape

of the destination N-dimensional array in SPM. All the values in size , spitch and

dpitch are in bytes, e.g., spitch[0] of an int32 t 2D-array with 4 × 5 elements is

5 · (32/8) = 20. For the load operation in this example when dimension is 2, it transfers
data from main memory to SPM, the DMA reads size[1] bytes every spitch[0] in

main memory starting from the address src . Then, the DMA writes size[1] bytes

every dpitch[0] to the buffer on SPM associated with ID id .

To generate the corresponding API calls, the required information is: for each array
used in this entire tilable component, which sub-array area is possibly accessed in each
segment. To model this, we introduce the concept of canonical data element range. For a
segment segi,j on core i, the canonical data element range of array a is R̂a(segi,j). It is a
set of data elements of array a with rectangular shape. The set is computed by finding, for
each dimension of the array a, the minimum and maximum index for that dimension of any
data element of a that might be accessed during the segment. When we transfer the data
that is required for segment segi,j, we transfer the canonical data element ranges R̂a(segi,j)
of all arrays accessed in segi,j . The canonical data element ranges for all segments of all
arrays are provided by compiler analysis using polyhedral model, the details are discussed
in Section 5.3.1.

23

Core0

Core1

DMA

seg01 seg02 seg03 seg04

seg11 seg12 seg13 seg14

seg21 seg22 seg23 seg24

Core2

seg23seg01 seg03 seg21seg11 seg13seg01 seg11 seg21 seg02 seg12 seg22 seg24seg02seg04 seg22seg12seg14 seg03 seg23seg13 seg04 seg24seg14

seg00

seg10

seg20

Figure 3.4: Example parallel streaming PREM schedule on 3 cores. Up arrows represent
load memory phases and down arrows unload memory phases.

execution segment loop variable values PREM API calls load/unload in parallel SPM status at the end of segment

seg0,0 s1 0 t=0, p t=0

alloc RO U ifog buf1, U ifog buf2;
alloc RO inp F buf1, inp F buf2;
alloc WO ifog buf1, ifog buf2;

swap R̂U ifog(seg0,1) with U ifog buf1;

swap R̂inp F(seg0,1) with inp F buf1;

swap R̂ifog(seg0,1) with ifog buf1;
dispatch;

swap R̂U ifog(seg0,2) with U ifog buf2;

swap R̂inp F(seg0,2) with inp F buf2;
end segment;

U ifog buf1 = empty
U ifog buf2 = empty
inp F buf1 = empty
inp F buf2 = empty
ifog buf1 = empty
ifog buf2 = empty

after seg0,0
before seg0,1

s1 0 t=0, p t=0

// Load data for seg0,1
load R̂U ifog(seg0,1) to U ifog buf1;

load R̂inp F(seg0,1) to inp F buf1;

U ifog buf1 = R̂U ifog(seg0,1)
U ifog buf2 = empty

inp F buf1 = R̂inp F(seg0,1)
inp F buf2 = empty
ifog buf1 = empty
ifog buf2 = empty

seg0,1 s1 0 t=0, p t=0

swap R̂U ifog(seg0,3) with U ifog buf1;

swap R̂inp F(seg0,3) with inp F buf1;

swap R̂ifog(seg0,3) with ifog buf2;
end segment;

// Load data for seg0,2
load R̂U ifog(seg0,2) to U ifog buf2;

load R̂inp F(seg0,2) to inp F buf2;

U ifog buf1 = R̂U ifog(seg0,1)

U ifog buf2 = R̂U ifog(seg0,2)

inp F buf1 = R̂inp F(seg0,1)

inp F buf2 = R̂inp F(seg0,2)

ifog buf1 = R̂ifog(seg0,1)
ifog buf2 = empty

seg0,2 s1 0 t=0, p t=1

swap R̂U ifog(seg0,4) with U ifog buf1;

swap R̂inp F(seg0,4) with inp F buf1;
dealloc ifog buf1;
end segment;

// Load data for seg0,3
load R̂U ifog(seg0,3) to U ifog buf1;

load R̂inp F(seg0,3) to inp F buf1;

U ifog buf1 = R̂U ifog(seg0,3)

U ifog buf2 = R̂U ifog(seg0,2)

inp F buf1 = R̂inp F(seg0,3)

inp F buf2 = R̂inp F(seg0,2)

ifog buf1 = R̂ifog(seg0,2)
ifog buf2 = empty

seg0,3 s1 0 t=1, p t=0
dealloc U ifog buf1;
dealloc inp F buf1;
end segment;

// Unload data for seg0,1 and seg0,2
unload R̂ifog(seg0,2) from ifog buf1;
// Load data for seg0,4
load R̂U ifog(seg0,4) to U ifog buf2;

load R̂inp F(seg0,4) to inp F buf2;

U ifog buf1 = R̂U ifog(seg0,3)

U ifog buf2 = R̂U ifog(seg0,4)

inp F buf1 = R̂inp F(seg0,3)

inp F buf2 = R̂inp F(seg0,4)

ifog buf2 = R̂ifog(seg0,3)

seg0,4 s1 0 t=1, p t=1

dealloc U ifog buf2;
dealloc inp F buf2;
dealloc ifog buf2;
end segment;

U ifog buf2 = R̂U ifog(seg0,4)

inp F buf2 = R̂inp F(seg0,4)

ifog buf2 = R̂ifog(seg0,1)

after seg0,4
// Unload data for seg0,4
unload R̂ifog(seg0,4) from ifog buf2;

Table 3.1: API operation and SPM status in each segment on Core 0
24

To illustrate the usage of the PREM API to schedule the data transfer and creation
of segments, we again consider the example of the LSTM kernel in Listings 3.1 and 3.2.
Table 3.1 details the API calls inserted in each segment on core 0, the load/unload phases
performed in parallel which each segment, and the state of the SPM at the end of each
segment. Note that for simplicity, the arrays used in the tilable component are divided into
three groups, and we show API calls performed on all arrays within each group: specifically,
group U ifog comprises arrays U i , U f , U o , U g , group ifog comprises arrays i ,

f , o , g , while inp F represents the single array with the same name. The corresponding
PREM schedule is shown in Figure 3.4. We next discuss the usage of the API and how
API calls in Table 3.1 correspond to the three macro statements in Listing 3.2.

We have the initialization segment seg0,0 to allocate the buffers on each core’s SPM
and perform data transfer required by the first execution segment seg0,1. As is shown in

the first row of Table 3.1, first we allocate buffers with given R/W types, then we call swap
to transfer the canonical data element range required by the segment seg0,1. After that,
we call dispatch to order these data transfers for seg0,1 to be executed after the end of

seg0,0. These API calls are generated and inserted to the macro BUFFER ALLOC APIS in
Listing 3.2.

After the dispatch call, we generate the API calls of data transfers for segments

other than the first segment. These APIs are placed in the macro DATA SWAP APIS . This
includes swap calls, dealloc calls and end segment calls. Notice, the segment where
we execute swap call is different from the segment that requires the data of the swap

call. We determine the segment where to place each swap call based on the following

constraints: (1) For the first two segments that requires data transfer, if data is accessed
in segi,j, then the swap call of this data must be executed in segi,j−2 (or segi,0 before the

dispatch if j−2 = −1) because this would make the actual data transfer happen at segi,j−1,
right before the execution of segi,j. (2) For other segments, if the same data is accessed in
segments segi,j to segi,k, then the swap call to unload data of segments segi,j-segi,k and
load data for the 2nd segment afterward that requires data transfer is executed in segi,k.
This makes the actual data transfer happen during segi,k+1. (3) For the last two segments
that require data transfer, after the segment that last accesses the data, the dealloc call
would be executed to deallocate the buffers and unload the data if there is written access.

In the example of Table 3.1, DATA SWAP APIS includes the two swap calls and

end segment call after dispatch call in seg0,0 of Table 3.1. It also includes all other

swap calls, end segment calls and dealloc calls from seg0,1 to seg0,3 except the dealloc

and end segment calls in seg0,4.

25

In the end, we generate the dealloc and end segment calls in seg0,4 in the macro

BUFFER DEALLOC APIS . After this end segment call, the write-out data of seg0,4 would
be unloaded to main memory and all the buffers allocated on SPM are deallocated.

We generate API calls for these three different macros because we want to perform
data transfer operations at different positions. The APIs in BUFFER ALLOC APIS are ex-
ecuted before all execution segments. That is why we place the array allocation process,
data transfer for data required by the first execution segment and dispatch in the ini-
tialization segment into this macro. The second macro DATA SWAP APIS does the major
job of data transferring for segments other than the first segment. We put the part of
the initialization segment that transfer data for the second segment in this macro. The
macro DATA SWAP APIS also performs buffer deallocation for segment seg0,2 and segment
seg0,3 because we use two buffers for streaming execution. Segment seg0,2 is the sec-
ond last segment that accesses the first buffers of ifog and segment seg0,3 is the sec-

ond last segment that accesses the first buffer of U ifog and inp F . The third macro

BUFFER DEALLOC APIS is only for the last segment because the macro DATA SWAP APIS

is placed at the beginning of the tiled loop. Without the end segment call in macro

BUFFER DEALLOC APIS after all segments, the buffer deallocation would not be performed
for the last segment.

Next, we discuss the logic of generating these API calls and adding them to the code.
The challenges in this task mainly lie in the following five points:

1. Before the execution of any segment, we must allocate two buffers on SPM for each
array that is accessed in the tilable component.

2. Different cores might execute different numbers of segments. In this case, we must
generate different API calls for each core.

3. We need to determine in which segments to add each swap call, as well as the

required deallocate calls, for every array.

4. Since we allocate two buffers on the SPM for every array, we have to modify the
code so that for every original statement that accessed the array in main memory,
we instead access one of the two buffers; note that the accessed buffer must further
depend on the segment.

5. Finally, we also need to determine the parameters for each swap call.

26

To address all these challenges, we rely on the information provided by compiler
analysis. Specifically, for each array a used in this tilable component and every seg-
ment segi,j, we rely on its canonical data element range R̂a(segi,j). Then, we decide
what are the segments that access a different part of the array from the previous seg-
ment. We use SegmentToSwapa(i) to denote the tuple of segments that requires data
transfer for array a on core i. For segment segi,j starting from the segment segi,1 to

last segment on core i, if R̂a(segi,j−1) ̸= R̂a(segi,j), then the segment segi,j is added
to tuple SegmentToSwapa(i). Segment segi,1 is always in SegmentToSwapa(i) because
its canonical data element range is not on SPM before its execution. We use ST i

a(x)
to denote the segment index of x-th element in SegmentToSwapa(i). For example, if
SegmentToSwapa(i) = {segi,1, segi,3, segi,4, segi,7}, then ST i

a(1) = 1, ST i
a(2) = 3, ST i

a(3) =
4, ST i

a(4) = 7.

In the example of Table 3.1, core 0 executes 4 segments (the other 2 cores also execute
4 segments each). These four segments on core 0 are seg0,1, seg0,2, seg0,3, seg0,4. seg0,1
executes ls1 from 0 to 108 and l.p from 0 to 349, seg0,2 executes ls1 from 0 to 108 and l.p
from 350 to 699, seg0,3 executes ls1 from 109 to 317 and l.p from 0 to 349, seg0,3 executes
ls1 from 109 to 317 and l.p from 350 to 699.

Arrays U i , U f , U o , U g in group U ifog are only read in the tilable compo-

nent. We denote the canonical data element range of each segment as R̂U ifog(seg0,j).

The canonical data element range of seg1,1 is U ifog[0-108][0-349] according to code

in Listing 3.2. Similarly, R̂U ifog(seg0,2) is U ifog[0-108][350-699] , R̂U ifog(seg0,3) is

U ifog[109-217][0-349] and R̂U ifog(seg0,4) is U ifog[109-217][350-699] . We can
see that all these canonical data element ranges are not the same for each segment. Hence,
SegmentToSwapU ifog(0) contains all the segments on core 0 which are {seg0,1, seg0,2, seg0,3
, seg0,4}.

Array inp F , is also only read in the component. Similar to array group U ifog ,

SegmentToSwapinp F(0) contains all the segments on core 0 which are {seg0,1, seg0,2, seg0,3
, seg0,4}.

Arrays i , f , o , g in group ifog are both read and written in the component.
However, since every data element in the array is written in the tilable component, and it
is written before being read, we allocate them as WO in this tilable component. Different
from previous two groups, this group of arrays have some canonical data element ranges
equal to each other. R̂ifog(seg0,1) = R̂ifog(seg0,2) and R̂ifog(seg0,3) = R̂ifog(seg0,4). Hence,
SegmentToSwapifog(0) = {seg0,1, seg0,3}.

With the information of SegmentToSwap and canonical data element ranges, next

27

we demonstrate how to address the five points discussed above. The code of Listing 3.2
with API calls inserted is shown in Listing 3.3. For each tilable component, we use the
variable segCount to keep track of which segment is currently under execution. In this
example shown in Listing 3.3, the name of segCount is s1 0 p seg count to prevent
naming conflict.

For the first point, we allocate two buffers on SPM for each array accessed in tilable
component. The name of the pointers for these buffers are constructed by taking the name
of the array and adding either buf1 or buf2 . For example, in Table 3.1, the buffer
pointers for array inp F are named inp F buf1 and inp F buf2 . These two buffers
are allocated on two different partitions on SPM. Assume the starting address of the first
partition on core i is addr1(i) and the starting address of the second partition on core
i is addr2(i). Assume inp F buf1 is the first array that has buffer allocated on SPM,

the pointer to the first buffer for the array inp F buf1 on core i is assigned to addr1(i)

and the pointer to the second buffer is addr2(i). The pointer to the first buffer for the
next array would be addr1(i) plus the size of inp F buf1 and this is the same for the

pointers for all the successive arrays. The size of inp F buf1 would be the maximum
size of canonical data element ranges among all the segments executed on core i, we call
this size bounding box. The detailed process of computing the bounding box of a given
array will be discussed in Section 5.3.1. The code that sets the value of buf1 s and buf2 s
is inserted in macro BUFFER ALLOC APIS so that these pointers are available during the
execution of the current tilable component.

For the second point, we compare if the index of segments in SegmentToSwapa(i) is
the same for all cores, formally,

∀0 ≤ i, j ≤ P − 1,∀k, segi,k ∈ SegmentToSwapa(i) ⇐⇒ segj,k ∈ SegmentToSwapa(j)
(3.1)

If Equation 3.1 holds, then the API calls we generate are the same for all cores (albeit with
different parameters for the swap calls). Otherwise, we generate a different set of API calls
for each core, and at run-time select among them based on the threadID. In our example, for
arrays i , f , o , g , SegmentToSwapifog(0) = {seg0,1, seg0,3}, SegmentToSwapifog(1) =

{seg1,1, seg1,3}, SegmentToSwapifog(2) = {seg2,1, seg2,3}. Equation 3.1 holds true for array
i , f , o , g and also for the other two groups of arrays. Thus, the same set of API calls
as in Table 3.1 apply to all cores.

For the third point, the information of segments that require data transfer are stored
in SegmentToSwapa(i). To ensure that swap calls are executed in the correct segments,

we use conditional statements in DATA SWAP APIS such that a swap call is only executed

28

when a corresponding condition holds. Such condition is constructed differently under two
situations. We say that an array a has a constant change stride if ST i

a(x+ 1)− ST i
a(x) is

constant for all x; in this case, we call such constant the change stride of the array. For
example, in Table 3.1, the array group U i , U f , U o , U g and array inp F all have a

change stride of 1 because in SegmentToSwapU ifog(0) and SegmentToSwapinp F(0), the
distance between the segments is 1. And array group i , f , o , g have a change stride

of 2 because in SegmentToSwapifog(i) = {segi,1, segi,3} the distance between the segments
is 2. We next first discuss the case of constant change stride arrays, and then discuss the
case of arrays that do not have a constant change stride.

In the former case, we can compute ST i
a(x) given the value of change stride changeStride.

Since the first segment segi,j is always in SegmentToSwapa(i), we have ST i
a(1) = 1. Be-

cause changeStride = ST i
a(x+1)− ST i

a(x), we can compute ST i
a(x) = 1+ changeStride ·

(x− 1).

For the first two segments in SegmentToSwapa(i), which are segi,ST i
a(1)

and segi,ST i
a(2)

,
the segment that performs the swap call for them is two segments before. Since segi,ST i

a(1)
=

segi,1, the swap call for it is executed in segi,0 before the dispatch as part of macro

BUFFER ALLOC APIS , and the first buffer is used for data swap. The second segment in
SegmentToSwapa(i) is segi,ST i

a(2)
= segi,1+changeStride, the swap call for it is executed in

segi,changeStride−1 (note that is segi,0 after the dispatch if changeStride = 1). To select
this segment segi,changeStride−1, we simply use condition segCount = changeStride− 1 in a
conditional statement in the macro DATA SWAP APIS , and use the second buffer for data
swap.

For each other segment segi,ST i
a(x)

in SegmentToSwapa(i), the swap call for it is
executed at the last segment that accesses the data used in segi,ST i

a(x−2), which is seg-
ment segi,ST i

a(x−1) − 1. This ensures the write-out data be unloaded from SPM to main
memory immediately after execution of segments using such data is completed. To se-
lect this segment segi,ST i

a(x−1)−1, we have segCount = ST i
a(x − 1) − 1 when x = 3, 4, ...

length(SegmentToSwapa(i)). Since ST
i
a(x) = 1+ changeStride · (x− 1), ST i

a(x− 1)− 1 =
changeStride · (x − 2). Thus, we have segCount = changeStride · (x − 2) and x − 2 <
length(SegmentToSwapa(i))− 1. We can also compute x = segCount/changeStride+ 2.
When x = 3, 5, 7, ..., the first buffer is used for data swap and when x = 4, 6, 8, ..., the
second buffer is used. In summary, we use condition segCount mod changeStride = 0 ∧
segCount < changeStride · (length(SegmentToSwapa(i)) − 1) to select these segments,
and when (segCount/changeStride+ 2) mod 2 = 1, the first buffer is used, otherwise the
second buffer is used.

For the last two segments in SegmentToSwapa(i), in addition to the swap call de-

29

scribed above, we also need to use dealloc call to deallocate the buffer and unload
the data from SPM to main memory. Notice the dealloc call for last segment in
SegmentToSwapa(i) is inserted in macro BUFFER DEALLOC APIS , so there is no need to
generate a conditional statement for it. We just check length(SegmentToSwapa(i)) mod
2, if it is 1, we deallocate the first buffer, otherwise we deallocate the second buffer.
For the dealloc call for second last segment, it is selected by condition segCount =
changeStride·(length(SegmentToSwapa(i))−1). This is inserted in macro DATA SWAP APIS .

For arrays without a constant change stride, a different approach is required. In
this case, we use bit vectors to store the segments when swap and deallocate calls

must be made in DATA SWAP APIS , as well as which buffer to use. For example, when
SegmentToSwapa(i) = {segi,1, segi,2, segi,4, segi,5} and core i executes a total of 8 seg-
ments, then the bit vector encoding the swap calls is 0b00001011 , i.e., swap calls must

be performed in segi,0 (after dispatch, for segment segi,2), segi,1 (for segment segi,4), and
segi,3 (for segment segi,5) - in addition to segi,0 before the dispatch for segment segi,1,
which we remind is performed in BUFFER ALLOC APIS .

For the fourth point, to avoid modifying statements inside the loop that use the array
a, we employ the following strategy: we redefine a to be a pointer with the same type as
the original array. I.e., if a was declared as double a[3][4] , then we redefine it as a

pointer double (*a)[4] . To associate to the pointer the value of either a buf1 / a buf2

at the correct time, in the macro DATA SWAP APIS , we execute statements a=a buf1

or a=a buf2 whenever a segment in SegmentToSwapa(i) is encountered, using similar
conditions as the one discussed for point two.

For the fifth point, each data swap has different input parameters, specifically the
starting address in main memory and the data size (pitches remain equal, since they depend
on the shape of the original array in main memory, and the allocated buffer in SPM). Such
parameters can be calculated given the canonical data element range R̂a(segi,j), as we will
detail later in Section 5.3.2. Once we have these values of input parameters, we create a
global array to store the values of input parameters of swap call for each segment that

requires data swap. Then, the index x of the current segment in SegmentToSwapa(i) is
used to select the corresponding input parameters. As an example, for array group ifog

in Table 3.1, we create the array as is shown in Table 3.2 to store the parameters of swap
calls for corresponding segments. The table is inserted in the macro BUFFER ALLOC APIS .
In Listing 3.3, the table that stores the swap call parameters for the array i is named as

i swap params .

30

execution segment starting address in main memory data size

seg0,0 (int32 t*)ifog 109*4

seg0,1 (int32 t*)ifog+109 109*4

seg1,0 (int32 t*)ifog+218 109*4

seg1,1 (int32 t*)ifog+327 109*4

seg2,0 (int32 t*)ifog+436 109*4

seg2,1 (int32 t*)ifog+545 105*4

Table 3.2: seg count to swap input parameters

1 s t a t i c i n t s 1 0 p s e g coun t = 0 ;
2 /∗ Assume each array element has l ength o f 4 bytes ∗/
3 #de f i n e DTYPE LEN 4
4

5 s t r u c t param 1d {
6 u in t 64 t ∗ s t a r t i n g add r ;
7 i n t s i z e ;
8 } ;
9

10 s t r u c t param 2d {
11 u in t 64 t ∗ s t a r t i n g add r ;
12 i n t width ;
13 i n t he ight ;
14 } ;
15

16 f o r (i n t t = 0 ; t < NT; t++) {
17 /∗ transformed code o f component (s1 0 , p) s t a r t ∗/
18 /∗ content o f swap params shown in Table 3 .2 ∗/
19 s t r u c t param 1d i swap params [3] [2] = { . . . } ;

31

20 s t r u c t param 1d f swap params [3] [2] = { . . . } ;
21 s t r u c t param 1d o swap params [3] [2] = { . . . } ;
22 s t r u c t param 1d g swap params [3] [2] = { . . . } ;
23 s t r u c t param 2d U i swap params [3] [4] = { . . . } ;
24 s t r u c t param 2d U f swap params [3] [4] = { . . . } ;
25 s t r u c t param 2d U o swap params [3] [4] = { . . . } ;
26 s t r u c t param 2d U g swap params [3] [4] = { . . . } ;
27 s t r u c t param 1d inp F swap params [3] [4] = { . . . } ;
28 /∗ s e t va lue s f o r bu f f e r po i n t e r s on SPM ∗/
29 i n t 3 2 t ∗ i b u f 1 = . . . ;
30 i n t 3 2 t ∗ i b u f 2 = . . . ;
31 i n t 3 2 t ∗ f bu f 1 = . . . ;
32 i n t 3 2 t ∗ f bu f 2 = . . . ;
33 i n t 3 2 t ∗ o buf1 = . . . ;
34 i n t 3 2 t ∗ o buf2 = . . . ;
35 i n t 3 2 t ∗ g buf1 = . . . ;
36 i n t 3 2 t ∗ g buf2 = . . . ;
37 i n t 3 2 t (∗ U i buf1) [3 5 0] = . . . ;
38 i n t 3 2 t (∗ U i buf2) [3 5 0] = . . . ;
39 i n t 3 2 t (∗ U f buf1) [3 5 0] = . . . ;
40 i n t 3 2 t (∗ U f buf2) [3 5 0] = . . . ;
41 i n t 3 2 t (∗U o buf1) [3 5 0] = . . . ;
42 i n t 3 2 t (∗U o buf2) [3 5 0] = . . . ;
43 i n t 3 2 t (∗U g buf1) [3 5 0] = . . . ;
44 i n t 3 2 t (∗U g buf2) [3 5 0] = . . . ;
45 i n t 3 2 t ∗ inp F buf1 = . . . ;
46 i n t 3 2 t ∗ inp F buf2 = . . . ;
47 /∗ a l l o c a t e bu f f e r s ∗/
48 I1 = a l l o c a t e b u f f e r (i bu f1 , WO) ;
49 I2 = a l l o c a t e b u f f e r (i bu f2 , WO) ;
50 F1 = a l l o c a t e b u f f e r (f bu f1 , WO) ;
51 F2 = a l l o c a t e b u f f e r (f bu f2 , WO) ;
52 O1 = a l l o c a t e b u f f e r (o buf1 , WO) ;
53 O2 = a l l o c a t e b u f f e r (o buf2 , WO) ;
54 G1 = a l l o c a t e b u f f e r (g buf1 , WO) ;
55 G2 = a l l o c a t e b u f f e r (g buf2 , WO) ;
56 U I1 = a l l o c a t e b u f f e r (U i buf1 , RO) ;
57 U I2 = a l l o c a t e b u f f e r (U i buf2 , RO) ;
58 U F1 = a l l o c a t e b u f f e r (U f buf1 , RO) ;
59 U F2 = a l l o c a t e b u f f e r (U f buf2 , RO) ;
60 U O1 = a l l o c a t e b u f f e r (U o buf1 , RO) ;
61 U O2 = a l l o c a t e b u f f e r (U o buf2 , RO) ;
62 U G1 = a l l o c a t e b u f f e r (U g buf1 , RO) ;
63 U G2 = a l l o c a t e b u f f e r (U g buf2 , RO) ;
64 INP F1 = a l l o c a t e b u f f e r (inp F buf1 , RO) ;

32

65 INP F2 = a l l o c a t e b u f f e r (inp F buf2 , RO) ;
66 swap buf f e r (I1 , i swap params [threadID ()] [0] . s t a r t i ng addr , i swap params [

threadID ()] [0] . s i z e) ;
67 swap buf f e r (F1 , f swap params [threadID ()] [0] . s t a r t i ng addr , f swap params [

threadID ()] [0] . s i z e) ;
68 swap buf f e r (O1, o swap params [threadID ()] [0] . s t a r t i ng addr , o swap params [

threadID ()] [0] . s i z e) ;
69 swap buf f e r (G1, g swap params [threadID ()] [0] . s t a r t i ng addr , g swap params [

threadID ()] [0] . s i z e) ;
70 swap2d buf fer (U I1 , U i swap params [threadID ()] [0] . s t a r t i ng addr ,

U i swap params [threadID ()] [0] . width , U i swap params [threadID ()] [0] .
he ight , NP ∗ DTYPE LEN, 350 ∗ DTYPE LEN) ;

71 swap2d buf fer (U F1 , U f swap params [threadID ()] [0] . s t a r t i ng addr ,
U f swap params [threadID ()] [0] . width , U f swap params [threadID ()] [0] .
he ight , NP ∗ DTYPE LEN, 350 ∗ DTYPE LEN) ;

72 swap2d buf fer (U O1 , U o swap params [threadID ()] [0] . s t a r t i ng addr ,
U o swap params [threadID ()] [0] . width , U o swap params [threadID ()] [0] .
he ight , NP ∗ DTYPE LEN, 350 ∗ DTYPE LEN) ;

73 swap2d buf fer (U G1 , U g swap params [threadID ()] [0] . s t a r t i ng addr ,
U g swap params [threadID ()] [0] . width , U g swap params [threadID ()] [0] .
he ight , NP ∗ DTYPE LEN, 350 ∗ DTYPE LEN) ;

74 swap buf f e r (INP F1 , inp F swap params [threadID ()] [0] . s t a r t i ng addr ,
inp F swap params [threadID ()] [0] . s i z e) ;

75 di spatch () ;
76 f o r (i n t s 1 0 t = threadID () ∗ 2 ; s 1 0 t < (threadID () + 1) ∗ 2 ; s 1 0 t +=

1) {
77 f o r (i n t p t = 0 ; p t < 2 ; p t += 1) {
78 /∗ API c a l l executed at the end o f each segment s t a r t ∗/
79 {
80 /∗ s e t a l i a s v a r i a b l e f o r cur rent t i l e based on t i l e count ∗/
81 /∗ When segments are seg1 , seg2 ∗/
82 i f ((s 1 0 p s e g coun t / 2) % 2 == 0) {
83 i = i bu f 1 ;
84 f = f bu f 1 ;
85 o = o buf1 ;
86 g = g buf1 ;
87 } e l s e {
88 i = i bu f 2 ;
89 f = f bu f 2 ;
90 o = o buf2 ;
91 g = g buf2 ;
92 }
93 /∗ When segments are seg1 , seg3 ∗/
94 i f (s 1 0 p s e g coun t % 2 == 0) {
95 U i = U i buf1 ;

33

96 U f = U f buf1 ;
97 U o = U o buf1 ;
98 U g = U g buf1 ;
99 inp F = inp F buf1 ;

100 } e l s e {
101 U i = U i buf2 ;
102 U f = U f buf2 ;
103 U o = U o buf2 ;
104 U g = U g buf2 ;
105 inp F = inp F buf2 ;
106 }
107 i f (s 1 0 p s e g coun t == 0) {
108 swap2d buf fer (U I2 , U i swap params [threadID ()] [1] . s t a r t i ng addr ,

U i swap params [threadID ()] [1] . width , U i swap params [threadID ()] [1] .
he ight , NP ∗ DTYPE LEN, 350 ∗ DTYPE LEN) ;

109 swap2d buf fer (U F2 , U f swap params [threadID ()] [1] . s t a r t i ng addr ,
U f swap params [threadID ()] [1] . width , U f swap params [threadID ()] [1] .
he ight , NP ∗ DTYPE LEN, 350 ∗ DTYPE LEN) ;

110 swap2d buf fer (U O2 , U o swap params [threadID ()] [1] . s t a r t i ng addr ,
U o swap params [threadID ()] [1] . width , U o swap params [threadID ()] [1] .
he ight , NP ∗ DTYPE LEN, 350 ∗ DTYPE LEN) ;

111 swap2d buf fer (U G2 , U g swap params [threadID ()] [1] . s t a r t i ng addr ,
U g swap params [threadID ()] [1] . width , U g swap params [threadID ()] [1] .
he ight , NP ∗ DTYPE LEN, 350 ∗ DTYPE LEN) ;

112 swap buf f e r (INP F1 , inp F swap params [threadID ()] [1] . s t a r t i ng addr
, inp F swap params [threadID ()] [1] . s i z e) ;

113 }
114 i f (s 1 0 p s e g coun t == 1) {
115 swap buf f e r (I2 , i swap params [threadID ()] [1] . s t a r t i ng addr ,

i swap params [threadID ()] [1] . s i z e) ;
116 swap buf f e r (F2 , f swap params [threadID ()] [1] . s t a r t i ng addr ,

f swap params [threadID ()] [1] . s i z e) ;
117 swap buf f e r (O2, o swap params [threadID ()] [1] . s t a r t i ng addr ,

o swap params [threadID ()] [1] . s i z e) ;
118 swap buf f e r (G2, g swap params [threadID ()] [1] . s t a r t i ng addr ,

g swap params [threadID ()] [1] . s i z e) ;
119 }
120 i f (s 1 0 p s e g coun t % 2 == 0 && s1 0 p s eg coun t < 2 && (

s1 0 p s e g coun t / 2) % 2 == 1) {
121 swap buf f e r (I1 , i swap params [threadID ()] [s 1 0 p s e g coun t / 2 +

1] . s t a r t i ng addr , i swap params [threadID ()] [(s 1 0 p s e g coun t + 2) / 2] .
s i z e) ;

122 swap buf f e r (F1 , f swap params [threadID ()] [s 1 0 p s e g coun t / 2 +
1] . s t a r t i ng addr , f swap params [threadID ()] [(s 1 0 p s e g coun t + 2) / 2] .
s i z e) ;

34

123 swap buf f e r (O1, o swap params [threadID ()] [s 1 0 p s e g coun t / 2 +
1] . s t a r t i ng addr , o swap params [threadID ()] [(s 1 0 p s e g coun t + 2) / 2] .
s i z e) ;

124 swap buf f e r (G1, g swap params [threadID ()] [s 1 0 p s e g coun t / 2 +
1] . s t a r t i ng addr , g swap params [threadID ()] [(s 1 0 p s e g coun t + 2) / 2] .
s i z e) ;

125 }
126 i f (s 1 0 p s e g coun t % 2 == 0 && s1 0 p s eg coun t < 2 && (

s1 0 p s e g coun t / 2) % 2 == 0) {
127 swap buf f e r (I2 , i swap params [threadID ()] [s 1 0 p s e g coun t / 2 +

1] . s t a r t i ng addr , i swap params [threadID ()] [(s 1 0 p s e g coun t + 2) / 2] .
s i z e) ;

128 swap buf f e r (F2 , f swap params [threadID ()] [s 1 0 p s e g coun t / 2 +
1] . s t a r t i ng addr , f swap params [threadID ()] [(s 1 0 p s e g coun t + 2) / 2] .
s i z e) ;

129 swap buf f e r (O2, o swap params [threadID ()] [s 1 0 p s e g coun t / 2 +
1] . s t a r t i ng addr , o swap params [threadID ()] [(s 1 0 p s e g coun t + 2) / 2] .
s i z e) ;

130 swap buf f e r (G2, g swap params [threadID ()] [s 1 0 p s e g coun t / 2 +
1] . s t a r t i ng addr , g swap params [threadID ()] [(s 1 0 p s e g coun t + 2) / 2] .
s i z e) ;

131 }
132 i f (s 1 0 p s e g coun t < 3 && s1 0 p s eg coun t % 2 == 1) {
133 swap2d buf fer (U I1 , U i swap params [threadID ()] [s 1 0 p s e g coun t +

1] . s t a r t i ng addr , U i swap params [threadID ()] [s 1 0 p s e g coun t + 1] .
width , U i swap params [threadID ()] [s 1 0 p s e g coun t + 1] . he ight , NP ∗
DTYPE LEN, 350 ∗ DTYPE LEN) ;

134 swap2d buf fer (U F1 , U f swap params [threadID ()] [s 1 0 p s e g coun t +
1] . s t a r t i ng addr , U f swap params [threadID ()] [s 1 0 p s e g coun t + 1] .

width , U f swap params [threadID ()] [s 1 0 p s e g coun t + 1] . he ight , NP ∗
DTYPE LEN, 350 ∗ DTYPE LEN) ;

135 swap2d buf fer (U O1 , U o swap params [threadID ()] [s 1 0 p s e g coun t +
1] . s t a r t i ng addr , U o swap params [threadID ()] [s 1 0 p s e g coun t + 1] .

width , U o swap params [threadID ()] [s 1 0 p s e g coun t + 1] . he ight , NP ∗
DTYPE LEN, 350 ∗ DTYPE LEN) ;

136 swap2d buf fer (U G1 , U g swap params [threadID ()] [s 1 0 p s e g coun t +
1] . s t a r t i ng addr , U g swap params [threadID ()] [s 1 0 p s e g coun t + 1] .

width , U g swap params [threadID ()] [s 1 0 p s e g coun t + 1] . he ight , NP ∗
DTYPE LEN, 350 ∗ DTYPE LEN) ;

137 swap buf f e r (INP F1 , inp F swap params [threadID ()] [s 1 0 p s e g coun t
+ 1] . s t a r t i ng addr , inp F swap params [threadID ()] [s 1 0 p s e g coun t + 1] .
s i z e) ;

138 }
139 i f (s 1 0 p s e g coun t < 3 && s1 0 p s eg coun t % 2 == 0) {
140 swap2d buf fer (U I2 , U i swap params [threadID ()] [s 1 0 p s e g coun t +

35

1] . s t a r t i ng addr , U i swap params [threadID ()] [s 1 0 p s e g coun t + 1] .
width , U i swap params [threadID ()] [s 1 0 p s e g coun t + 1] . he ight , NP ∗
DTYPE LEN, 350 ∗ DTYPE LEN) ;

141 swap2d buf fer (U F2 , U f swap params [threadID ()] [s 1 0 p s e g coun t +
1] . s t a r t i ng addr , U f swap params [threadID ()] [s 1 0 p s e g coun t + 1] .

width , U f swap params [threadID ()] [s 1 0 p s e g coun t + 1] . he ight , NP ∗
DTYPE LEN, 350 ∗ DTYPE LEN) ;

142 swap2d buf fer (U O2 , U o swap params [threadID ()] [s 1 0 p s e g coun t +
1] . s t a r t i ng addr , U o swap params [threadID ()] [s 1 0 p s e g coun t + 1] .

width , U o swap params [threadID ()] [s 1 0 p s e g coun t + 1] . he ight , NP ∗
DTYPE LEN, 350 ∗ DTYPE LEN) ;

143 swap2d buf fer (U G2 , U g swap params [threadID ()] [s 1 0 p s e g coun t +
1] . s t a r t i ng addr , U g swap params [threadID ()] [s 1 0 p s e g coun t + 1] .

width , U g swap params [threadID ()] [s 1 0 p s e g coun t + 1] . he ight , NP ∗
DTYPE LEN, 350 ∗ DTYPE LEN) ;

144 swap buf f e r (INP F2 , inp F swap params [threadID ()] [s 1 0 p s e g coun t
+ 1] . s t a r t i ng addr , inp F swap params [threadID ()] [s 1 0 p s e g coun t + 1] .
s i z e) ;

145 }
146 i f (s 1 0 p s e g coun t == 2) {
147 d e a l l o c a t e (I1) ;
148 d e a l l o c a t e (F1) ;
149 d e a l l o c a t e (O1) ;
150 d e a l l o c a t e (G1) ;
151 }
152 i f (s 1 0 p s e g coun t == 3) {
153 d e a l l o c a t e (U I1) ;
154 d e a l l o c a t e (U F1) ;
155 d e a l l o c a t e (U O1) ;
156 d e a l l o c a t e (U G1) ;
157 d e a l l o c a t e (INP F1) ;
158 }
159 s 1 0 p s e g coun t++;
160 end segment () ;
161 }
162 /∗ API c a l l executed at the end o f each segment end ∗/
163 f o r (i n t s1 0 = s 1 0 t ∗ 109 ; s1 < MIN(NS, s 1 0 t ∗ 109 + 109) ; s1 0

++) {
164 f o r (i n t p = p t ∗ 350 ; p < MIN(NP, p t ∗ 350 + 350) ; p++) {
165 i f (p == 0) {
166 i [s 1 0 − s 1 0 t ∗ 109] = 0 . 0 ;
167 f [s 1 0 − s 1 0 t ∗ 109] = 0 . 0 ;
168 o [s1 0 − s 1 0 t ∗ 109] = 0 . 0 ;
169 g [s1 0 − s 1 0 t ∗ 109] = 0 . 0 ;
170 }

36

171 i [s 1 0 − s 1 0 t ∗ 109] += U i [s1 0 − s 1 0 t ∗ 1 0 9] [p − p t ∗ 350]
∗ inp F [p − p t ∗ 3 5 0] ;

172 f [s 1 0 − s 1 0 t ∗ 109] += U f [s1 0 − s 1 0 t ∗ 1 0 9] [p − p t ∗ 350]
∗ inp F [p − p t ∗ 3 5 0] ;

173 o [s1 0 − s 1 0 t ∗ 109] += U o [s1 0 − s 1 0 t ∗ 1 0 9] [p − p t ∗ 350]
∗ inp F [p − p t ∗ 3 5 0] ;

174 g [s1 0 − s 1 0 t ∗ 109] += U g [s1 0 − s 1 0 t ∗ 1 0 9] [p − p t ∗ 350]
∗ inp F [p − p t ∗ 3 5 0] ;

175 }
176 }
177 }
178 }
179 d e a l l o c a t e (I2) ;
180 d e a l l o c a t e (F2) ;
181 d e a l l o c a t e (O2) ;
182 d e a l l o c a t e (G2) ;
183 d e a l l o c a t e (U I2) ;
184 d e a l l o c a t e (U F2) ;
185 d e a l l o c a t e (U O2) ;
186 d e a l l o c a t e (U G2) ;
187 d e a l l o c a t e (INP F2) ;
188 end segment () ;
189 /∗ transformed code o f component (s1 0 , p) end ∗/
190 //
191 }
192 }

Listing 3.3: Component (ls1 0, lp) in LSTM code after inserting PREM APIs

37

Chapter 4

Schedule Optimization

We now show how our framework can be employed to minimize the makespan of an appli-
cation scheduled according to the model in Chapter 3. Specifically, following the discussion
in the previous chapter, we need to automatically perform two steps: (1) decompose the
loop tree into a set of disjoint tilable components; (2) for each component, find the opti-
mization solution that minimizes the length of the PREM schedule for that component.
We note that neither of the steps is trivial, since there are potentially multiple different
ways in which the loop tree could be decomposed, and many more different optimization
solutions for each component.

We begin by motivating why picking the best optimization solution is important to
minimize the schedule length in Section 4.1 through a clarifying example. We then discuss
how the schedule length is computed based on a given optimization solution in Section 4.2.
This procedure is used by the component optimizer in Section 4.3, which performs step (2)
above. Finally, in Section 4.4 we show how to perform step (1).

4.1 Motivation

To better understand how the optimization solution affects the makespan of the application,
we again consider the schedule for the tiled component L = (ls1 0, lp) shown in Figure 3.4,
where the total number of tiles is ls1 0.M · lp.M = 12. Let e, ld and ul denote the total
length of execution, load and unload phases, respectively. Note for this execution-bound
schedule, the makespan is equal to the length of the load phases for seg0,1, seg1,1 and seg2,1,
plus the four execution phases on core 2, plus the unload phase of seg2,4. Assuming that

38

all phases of the same type have equal length, the makespan is thus equal to 3 · (ld/12)+4 ·
(e/12) + ul/12 = ld/4 + e/3 + ul/12. Next, assume that tile sizes are reduced, so that the
application is divided in 15 segments. Following the same scheduling logic, if the values of
e, ld, ul remain the same, then the makespan decreases to ld/5+e/3+ul/15. In other words,
increasing the number of segments decreases the overhead of memory transfers. In reality,
the problem is more complex. Because tiling adds extra code overhead, in the example
above the value of e would actually increase, rather than stay the same. After a certain
number of segments, the overhead becomes larger than any memory gain. Furthermore,
certain data elements might be reused across tiles. Hence, ld and ul might also increase,
negating any makespan reduction from improved parallelism. Since data reuse across tiles
is strongly dependent on which loop level is tiled, in general it is necessary to explore all
levels to find a good solution.

4.2 Schedule Length

Once a optimization solution is selected, our framework would transform the code as dis-
cussed previously in Section 3.5. It also calculates the makespan of the tiling component
by constructing a DAG representation of the schedule. In this DAG representation, nodes
represent either segments or memory phases, and edges represent precedence constraints ei-
ther for sequential phases on the same core/DMA, or for data constraints between memory
and execution phases.

Note that Figure 3.4 shows the required precedence constraints for the depicted sched-
ule. The length of each node is determined by the compiler based on data and timing
analysis, and by incorporating the overhead of API calls. The makespan of the compo-
nent is equal to the longest path over the DAG. To quickly compute the makespan of the
schedule, we have to compute the length of execution and memory phases.

Length of execution phases. The length of an execution phase is a composite of two
parts: the API calls overhead and the length of the tiled program execution. For the API
call overhead, after we finish the dependency analysis of the segment, the API calls used
in each tile are determined. We simply sum the time required to execute all employed API
calls.

For program execution, worst-case execution time estimation can be performed by
either static analysis or through a measurement-based approach; here we use the latter.
Note that, as we will discuss in Section 4.3, our optimization heuristic needs to compute

39

the DAG makespan multiple times based on different scheduling solutions. Executing the
kernel to measure phase lengths every time would be too expensive. Instead, we first use
measurements to build an analytical timing model that is parametric in the tile sizes, and
then use this analytical model to quickly estimate execution times. Specifically, we use
parameters (l1.O, ..., lL.O) to denote the loop iteration overhead at each loop level, and W
for the worst-case execution time of innermost code. We can then model the execution time
of the phase as:

∑
j=1...L(lj.O ·

∏
k=1...j lk.K) +W ·

∏
j=1...L lj.K. We profile the program

to obtain multiple samples for the execution time under different (l1.K, ..., lL.K) values,
and perform parametric fitting on (l1.O, ..., lL.O,W) using the least square methods along
with the constraint that for each sample, the measured value of the execution time cannot
be larger than the estimated one.

Length of memory phases The length of memory phases is determined by the size of
data that is accessed in the corresponding segment. For a particular segment, its load-
/unload phases transfer multiple multi-dimensional arrays. The details of computing the
size of data arrays with tile sizes is discussed in Section 5.3.1. Next, we introduce how to
estimate the time of transferring an array given its sizes.

We have used R̂a(segi,j) to denote the canonical element range of array a that is accessed

in segment segi,j in Section 3.5. Here, we use R̂a to denote a general canonical element

range of array a. We denote Shape(R̂a) as its shape. The shape of canonical data element
range is calculated by computing the distance between maximum index and minimum index
on loop level l. Shape(R̂a)1 is the size of its outermost dimension. If it has n dimensions
meaning n = length(Shape(R̂a)), then Shape(R̂a)n is the size of its innermost dimension.
The formal definition of shape will be provided in Section 5.3.1.

We compute the data transfer time of this sub-area of array a with two parts:

1. TDMA(R̂a): DMA overhead, which increases with number of data lines.

2. TBUS(R̂a): Bus transfer time, which is proportional to total amount of transferred
data.

Data line refers to a consecutive range of locations in main memory. When the data
to be transferred in inner dimensions take up the whole dimension, e.g. Shape(R̂a)n =
Shape(a)n, those consecutive dimensions composite a single data line. Let α denote the
index of the first dimension (from 1 to n) such that, for all dimensions from the αth

40

(included) to nth dimension, R̂a always takes up the whole dimension of the array a; or
α = n+ 1 if no such dimension exists. Then, the number of data lines contained in R̂a is:

DataLineNum(R̂a) = max
(
1,

α−2∏
j=1

Shape(R̂a)j

)
,

while the size of each data line in number of elements is:

DataLineSize(R̂a) =
n∏

j=max(1,α−1)

Shape(R̂a)j.

Example: consider a two-dimensional array a with shape Shape(a) = ⟨3, 5⟩, i.e., 3
rows and 5 columns, and assume Shape(R̂a) = ⟨2, 5⟩. Then α = 2, and the transfer would
require one line of size 2·5 = 10; this is because we need to transfer whole rows, and succes-
sive rows are stored consecutively in main memory. Similarly, consider a three-dimensional
array a′ with shape Shape(a′) = ⟨6, 3, 5⟩, i.e., such that the size of the innermost dimension
is 5 and the outermost dimension 6. Assume Shape(R̂a′) = ⟨4, 2, 5⟩. Then α = 3; the size
of each line is DataLineSize(R̂a′) = Shape(R̂a′)2 · Shape(R̂a′)3 = 2 · 5 = 10, while the
number of lines is DataLineNum(R̂a′) = Shape(R̂a′)1 = 4.

We denote T overhead
DMA to be the DMA overhead time of one data line. Then the total

DMA overhead is:
TDMA(R̂a) = T overhead

DMA ·DataLine(R̂a)

To compute total bus transfer time, we assume the bus transfer is performed through
multiple burst transfers. Each burst transfer has a fixed size of data, which we call data
access granularity. We denote sizeof(G) to be the number of bytes for data access granu-
larity and denote T overhead

BUS to be the bus transfer time per burst transfer and a.etype to be
the type of one element in the array a. First, we compute the number of burst transfers
in one data line to be:

BurstTransfer(R̂a) = ⌈DataLineSize(R̂a) · sizeof(a.etype)/sizeof(G)⌉.

Then the total bus transfer time is:

TBUS(R̂a) = T overhead
BUS ·BurstTransfer(R̂a) ·DataLine(R̂a)

In the end, we compute the length of memory phase as TDMA(R̂a) + TBUS(R̂a).

41

4.3 Tiling Component Optimization

We next discuss how to derive an optimized scheduling solution (l1.R, ..., lL.R), (l1.K, ..., lL.K)
for tilable component L = (l1, ..., lj, ..., lL). Algorithm 1 returns a solution that is close
to the solution that has minimal makespan for one tilable component. The most straight
forward approach to find the values for the parameters set is to search the whole space of
all possible values, compute the makespan for all of them and pick the values that result
in the minimum makespan. However, this approach’s time complexity is exponential in
L which is too large for practical application. In fact, during our evaluation, even for a
component that has loop bound less than 100, searching the space of possible values would
take unacceptable time, usually more than 20 hours. Thus, we use Algorithm 1 which is a
heuristic optimization to shorten the time of finding a good scheduling solution.

On line 3, R is a set of thread group assignments of the form (l1.R, ..., lL.R). We
say that assignment (l′1.R, ..., l′L.R) dominates another assignment (l1.R, ..., lL.R) if ∀lj ∈
L : l′j.R ≥ lj.R. The function generate nondominated thread groups(P,L) returns all
valid assignments on P cores that are not dominated by another valid assignment. The
idea is that dominated assignments do not need to be checked since there exists another
assignment that has strictly better parallelism.
Example: consider a component (l1, l2) on P = 10 cores. The valid, non-dominated
thread group assignments are (10, 1), (5, 2), (3, 3), (2, 5), and (1, 10). Note that (3, 3) uses
less than P cores.

On lines 5-13, the algorithm iterates over the thread group assignments in R. For each
assignment, the function select tile sizes(lj) is used to select a set of possible tile sizes Kj

for loop level lj. The function iterates over lj.K from 1 to lj.N , and computes lj.M and
lj.Z at each step. The value of lj.K at that step is added to Kj if it causes lj.Z decreasing
compared to the previous step. This means that Kj comprises the smallest tile size for each
possible number lj.Z of iteration ranges per thread group. Intuitively, such tile sizes are
selected because they result in the most load-balanced schedules, where each thread group
is assigned (roughly) the same number of tiles and all iteration ranges have (roughly) the
same size.
Example: consider a loop level lj with lj.N = 24 and lj.R = 4. Then Kj = {1, 2, 3, 6}.
Note that for example, with lj.K = 3 we are assigning 24/3/4 = 2 iteration ranges per
thread group, and each iteration range comprises exactly 3 iterations; for lj.K = 6 we are
assigning 24/6/4 = 1 iteration range per thread group, and each iteration range comprises
exactly 6 iterations. Tile size 4 is not selected because it would result in 6 total itera-
tion ranges, which cannot be load-balanced on 4 thread groups. Tile size 7 would result
in 4 iteration ranges just like size 6, but the ranges would comprise 7, 7, 7, 3 iterations

42

respectively instead of the more balanced 6 each.

On lines 8-11, the algorithm performs an iterative gradient-descent search, starting
from a random solution in K1, ...,KL and iterating over the loop levels. At loop level lj, we
consider the makespan of the schedule as a function of the tile size lj.K in Kj, assuming
that tile sizes for all other loop levels are fixed. Based on our evaluation in Chapter 6, we
experimentally verified that such makespan function is always convex. This is because for
decreasing tile sizes, there are two opposite effects at play: memory parallelism improves
but the tiling overhead increases. Therefore, the function has a unique minimum, which we
can find efficiently; the tile size corresponding to such minimum makespan is assigned to
lj.K on line 11. The overall procedure is repeated max iter times; based on our evaluation,
we experimentally set max iter = 3, as we found that increasing the number of iterations
does not further improve the makespan. Finally, on lines 12-13, the algorithm updates
the res variable to the smallest makespan value of any solution found so far, which is
then returned on line 14. Note that if for a given optimization solution, we cannot fit the
data in the available SPM space, the makespan function on line 12 simply returns +∞ to
denote that the solution is not feasible. Further note that the result of our heuristic is not
guaranteed to be optimal due to the discrete nature of the possible tile sizes in Kj and
thread group assignments in R.

4.4 Application Optimization

Finally, Algorithm 2 shows how to compute the makespan for the whole kernel. The
algorithm extracts maximum-size tilable components by performing a depth-first search
over the tree recursively calling function extract component(l,L), where l is the next loop
level to inspect and L is either a tilable component or the empty set. The function is first
invoked on each loop in root(T) to return the makespan for the subtree rooted at that
loop (lines 3-6). The function first adds l to the component L (line 9). If l is a leaf (lines
10-11), it then uses the function optimize(L, P) to determine an optimization solution for
L (see Section 4.3) on P cores/threads; optimize returns the makespan for one execution
of L, which is then multiplied by the number of times the first loop in L (and thus L itself)
is executed. If instead l has a single child (lines 12-13), extract component is recursively
called to extend the component. Finally, if l has multiple children (lines 14-18), we consider
the best of two solutions: the one where L is tiled, and the one where the subtrees rooted
at each of the children of l are tiled instead.

Example: when invoked on the tree in Figure 3.2, Algorithm 2 first invokes optimize(lt).
It then invokes optimize on components (ls1 0, lp), (ls1 1, ls2), (lb 0) and (lb 1), returning the

43

Algorithm 1: Optimize Tilable Component Schedule

Input: tilable component L = (l1, ..., lL), number of cores P
Output: optimized makespan of L

1 R = generate nondominated thread groups(P,L)
2 res = +∞
3 for (l1.R, ..., lL.R) ∈ R do
4 for j ∈ 1...L do
5 Kj = select tile sizes(lj)
6 end
7 pick random solution (l1.K, ..., lL.K) in K1, ...,KL

8 for i ∈ 1...max iter do
9 for j ∈ 1...L do

10 lj.K = find minimum(Kj)
11 end

12 end

13 if makespan
(
(l1.R, ..., lL.R), (l1.K, ..., lL.K)

)
< res then

14 res = makespan
(
(l1.R, ..., lL.R), (l1.K, ..., lL.K)

)
15 end

16 end
17 return result
18

19 Function select tile sizes(lj) is
20 Kj = ∅, prev Z = +∞
21 for lj.K ∈ 1...lj.N do
22 lj.M = ⌈lj.N/lj.K⌉, lj.Z = ⌈lj.M/lj.R⌉
23 if lj.Z < prev Z then
24 Kj = append(Kj, lj.K)
25 prev Z = lj.Z

26 end

27 end
28 return Kj

44

following makespan: min
(
optimize(la), NT ·(optimize(ls1 0, lp)+optimize(lb 0))+(NT−1) ·

(optimize(ls1 1, ls2)+ optimize(lb 1))
)
. Note that, since la.parallel = false, the first solution

cannot use more than one core. The second solution has better scalability but incurs more
overhead since the schedule for each component must be repeated multiple times.

Algorithm 2: Compute makespan

Input: loop tree T , number of cores P
Output: makespan

1 res = 0
2 for l ∈ root(T) do
3 res += extract component(l, ∅)
4 end
5 return res
6

7 Function extract component(l,L) is
8 L = append(L, l)
9 if l.C == ∅ then

10 return optimize(L, P) ·first(L).I
11 end
12 if l.C == {l′} then
13 return extract component(l′,L)
14 end
15 parent makespan = optimize(L, P) · first(L).I
16 children makespan = 0;
17 for l′ ∈ l.C do
18 children makespan += extract component(l′, ∅)
19 end
20 return min(parent makespan, children makespan)

45

Chapter 5

PREM Compiler Implementation

In this chapter, we discuss the program transformation methods applied during our com-
pilation flow to enable the parallel PREM schedule. We begin by introducing the design
of our toolchain in Section 5.1. Then we introduce the important procedures inside the
compiler. Section 5.2 explains the procedure of performing program transformation, in-
cluding check of transformation legality in Section 5.2.1 and transformation in polyhedral
model in Section 5.2.2. We next discuss the details in data transfer statements generation
in Section 5.3, including data access information in Section 5.3.1 and API call parameters
in Section 5.3.2.

5.1 Compiler Design

Figure 5.1 shows the high-level block diagram of our implemented toolchain, which can be
generally divided in two parts: the compiler proper and the component optimizer. The
PREM compiler is built on top of a series of polyhedral compilation tools. The polyhedral
model [13] provides a representation of loop iterations of a program as a polytope over the
space of iteration variables, and is commonly used in optimizing compilers like Pluto [8].

First, pet [43], the polyhedral extraction tool, is adopted to extract the polyhedral
schedule tree from source code. The schedule tree [44] is a data structure containing the
polyhedral representation along with data access information of analyzed loop iterations.
Then, reusing the dependence analysis [48] implemented by PPCG [47], we retrieve infor-
mation about data dependencies. After the loop tree T is generated from the schedule
tree, we determine whether each loop level is tilable and parallelizable by checking the

46

Input code
Extract

Polyhedral
information

Template
Code

Check
Tiling

legality

Component
extraction
Footprint
analysis

Parallelize
Tiling

Component
timing model

Profiling

Optimization
Heuristic

Execution
time data

Model
parameter fitting

Optimized
Code

Compiler

Optimizer

Figure 5.1: Toolchain block diagram. Gray rounded boxes represent data or intermediate
representation produced by the previous step, white rectangles are procedures.

47

legality of transformation with the information of data dependencies. This legality check
is performed so that we can generate the loop tree and parallelization information in the
application model of Section 3.3. This process is discussed in detail in Section 5.2.1. In
this legality check, we also check the canonical data element ranges of segments. The
canonical data element ranges of different segments cannot overlap when written access
dependencies exist. The details are discussed in Section 5.3.1. After that, we perform tiling
transformation on the extracted tilable component, this part is discussed in Section 5.2.2.

Finally, we perform code generation for each tilable component over the loop tree (see
Algorithm 1), inserting corresponding memory transfer API calls for each data structure
used by the component, and output template code over the tile sizes to be searched.

5.2 Program transformations and Validity

In this section, we first explain how to verify the legality of the transformations. Then we
discuss how we perform loop transformations of tiling and parallelization.

5.2.1 Legality of Transformation

One major challenge we encounter during segmenting the loop nest is ensuring the legality
of our transformation. Even for a loop nest with fixed-stride and fixed iteration range,
it is possible that after tiling and parallelization, the program execution produces wrong
results because the program schedule has been changed. For this reason, we have to check
the legality of both tiling and parallelization transformations for every loop. As mentioned
in Section 3.3, if the legality check fails for tiling a loop level, that loop level is removed
from the loop tree by folding it into its parent. If the legality check fails for parallelizing a
loop level but succeeds for tiling it, we set the parallelization attribute for this loop to be
false.

Once we pick an optimization solution using Algorithm 1 in Section 4.3, we transform
the program by tiling or parallelizing it on some of its loop levels. Since the data depen-
dency constraints are extracted from the original program, the original program must have
satisfied all the data dependency constraints. There is a possibility that some of the data
dependency constraints no longer hold true for the transformed program. In Section 2.2.2,
we introduced the data dependence we get from dependence analysis: it is a set that con-
tains all the dependent pairs of instances of statements. We determine if the program still

48

i

j

(0, 0)

(0, 1)

(0, 2)

(0, 3)

(0, 4)

(1, 0)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 0)

(2, 1)

(2, 2)

(2, 3)

(2, 4)

(3, 0)

(3, 1)

(3, 2)

(3, 3)

(3, 4)

(4, 0)

(4, 1)

(4, 2)

(4, 3)

(4, 4)

legal dependence from (1, 1) to (2, 2)

illegal dependence from (1, 1) to (0, 0)

Figure 5.2: dependent pairs of statement instances that is legal or illegal

satisfies these constraints by iterating over each dependent pair in this set and check if the
following equation still holds:

ΦStmtj (⃗t)− ΦStmti(s⃗) ≥ 0⃗ (5.1)

In Equation 5.1, t⃗ is the iteration vector of sink instance of Stmtj, s⃗ is the iteration
vector of source instance of Stmti. This equation assures that the sink instance always
executes after the source instance in the given execution schedule. We call ΦStmtj (⃗t) −
ΦStmti(s⃗) the dependency distance between Stmti and Stmtj. Note that the ≥ operator
in Equation 5.1 compares schedules based on lexicographic order.

49

In Figure 5.2, the lattice points represent the instances of a statement Stmtx[i, j] in
a nested loop where i is the outside loop level and j is the innermost loop level. The
schedule of this statement is ΦStmtx([i, j]) = (i, j). Then, if we have a data dependency
Dep1 = {Stmtx[1, 1] → Stmtx[2, 2]}, this data dependency is legal because the schedule of
source and sink instances satisfies Equation 5.1. On the other hand, if we have another data
dependency Dep2 = {Stmtx[1, 1] → Stmtx[0, 0]}, this data dependency is illegal because
the distance vector is (−1,−1) which is less than 0⃗ and does not satisfy Equation 5.1.
Notice if we have the data dependency Dep3 = {Stmtx[1, 2] → Stmtx[2, 1]}, it is still legal
because the distance vector is (1,−1) is larger than 0⃗ since the dependency distance vector
is in lexicographic order.

1 f o r (i n t t = 0 ; t < NT; t++)
2 {
3 /∗ Component 1 s t a r t ∗/
4 f o r (i n t s1 = 0 ; s1 < NS; s1++)
5 {
6 f o r (i n t p = 0 ; p < NP; p++){
7 i f (p==0){
8 i [s1] = 0 . 0 ; //Stmt1
9 }

10 i [s1] += U i [s1] [p] ∗ inp F [t] [p] ; //Stmt2
11 }
12 }
13 /∗ Component 1 end ∗/
14
15 do something (i) ; //Stmt3
16 }

Listing 5.1: code example of component

Example: In Listing 5.1, the schedule of Stmt1 is {Stmt1[t, s1, p] → (t, s1, p, 0)}, the
schedule of Stmt2 is {Stmt2[t, s1, p] → (t, s1, p, 1)}. The domain of Stmt1 is DStmt1 =
{(t, s1, p | 0 ≤ t < NT ∧ 0 ≤ s1 < NS ∧ p = 0}, the domain of Stmt2 is DStmt2 = {(t, s1, p |
0 ≤ t < NT ∧ 0 ≤ s1 < NS ∧ 0 ≤ p < NP}. Because of this difference of DStmt1 and
DStmt2 , Stmt1 is placed inside the if statement. The dependency analysis result of this
program in Listing 5.1 is a union of map relations between statement instances. The first
part of data dependency is between Stmt1 and Stmt2, we can see that in first iteration
of loop p, Stmt1 must be executed before Stmt2. Thus, we have the dependency Dep1 =
{Stmt1[t, s1, p] → Stmt2[t′ = t, s′1 = s1, p

′ = p] | 0 ≤ t < NT ∧ 0 ≤ s1 < NS ∧ p = 0}.
This means Stmt2 must execute after Stmt1 when p is 0.

The second data dependency is between Stmt2’s instances because each of Stmt2’s
instance must read array i, which is the output from its last iteration. The dependency

50

is Dep2 = {Stmt2[t, s1, p] → Stmt2[t′ = t, s′1 = s1, p
′ = p + 1] | 0 ≤ t < NT ∧ 0 ≤ s1 <

NS ∧ 0 ≤ p < NP − 1} The complete dependency is the union of these two map relations.

The schedule of Stmt1 is {Stmt1[t, s1, p] → (t, s1, p, 0)}, the schedule of Stmt2 is
{Stmt2[t, s1, p] → (t, s1, p, 1)}. We apply the schedule to the dependency relation to get
the dependence distance {(0, 0, 0, 1)} for Dep1 and {(0, 0, 1, 0)} for Dep2. For each loop
level in component, we check its corresponding index in related dependence distances, if
all of them are 0, then this loop level can be parallelized. We can see clearly that s1 is
parallelizable, but p is not because it does not meet the requirement in Dep2.

To check if it is legal to tile both loop levels s1 and p, we tile s1 with ls1.K = 3 and p
with lp.K = 4. The process will be discussed in details in next Section 5.2.2. The resulting
schedule of Stmt1 would be (t, s1, p, 0) → (t, f loor(s1/3), f loor(p/4), s1 mod 3, p mod 4, 0)
and the resulting schedule of Stmt2 would be (t, s1, p, 0) → (t, f loor(s1/3), f loor(p/4), s1 mod
3, p mod 4, 1). If we again apply the two schedules to the dependency relation Dep1,
for which it must hold p = 0, we obtain ΦStmt1 = (t, f loor(s1/3), 0, s1 mod 3, 0, 0) and
ΦStmt2 = (t, f loor(s1/3), 0, s1 mod 3, 0, 1), their dependency distance is {0, 0, 0, 0, 0, 1}
which is larger than 0⃗. Hence, Dep1 is still satisfied. Similarly, if we apply the schedules to
Dep2, for which p ≥ 0, we have ΦStmt1 = (t, f loor(s1/3), f loor(p/4), s1 mod 3, p mod 4, 0)
and ΦStmt2 = (t, f loor(s1/3), f loor((p+1)/4), s1 mod 3, (p+1) mod 4, 1), their dependency
distance is {0, 0, f loor((p+1)/4)− floor(p/4), 0, ((p+1) mod 4)− (p mod 4), 1}. Though
((p+ 1) mod 4)− (p mod 4) could be less than 0, floor((p+ 1)/4)− floor(p/4) is always
larger than 0 for p ≥ 0. Hence, their dependency distance is larger than 0⃗ and Dep2 is still
satisfied. Since all the dependencies are satisfied, it is legal to tile loop levels s1 and p.

5.2.2 Tiling Transformation

As discussed in Section 4.3, we search the loop tree of tilable components to find a set of
l.R and l.K parameters, which we call optimization solution. It is used to transform the
original loop program into a tiled loop program. Next, we discuss how we perform the
transformation given the optimization solution.

In Section 2.3, we decided to use a loop transformation template modeled by the poly-
hedral model to tile the nested loop program. We model the SCoP of a tilable component
as a set of statements. From the definition of tilable component in Section 3.4, we know
that the number of the loop indexes that is shared by all the statements are the loop num-
ber of the tilable component. Since the loops are perfectly nested, they must be shared by
all the statements inside them. Thus, for a tilable component L = (l1, ..., lj, ..., lL) which

51

has L perfectly nested loops, the statements inside L share the first L indexes as common
indexes.

In the SCoP of the tilable component L.SCoP = {Stmt1, Stmt2, ..., Stmtn}, for each
statement, the innermost leaf loop level could be different sub-loops inside tilable com-
ponent L, we denote the sub-loop levels below shared loop levels until leaf loop level of
statement Stmti to be l

Stmti
L+1 .idx, ..., lStmti

leaf .idx if the leaf loop level is not lL. Also, we denote
all the loop levels from root loop level to the starting loop level of tilable component L to
be lroot, ..., l1. Thus, any instance of statement Stmti is:

Stmti[lroot.idx, ..., l1.idx, ..., lL.idx, l
Stmti
L+1 .idx, ..., lStmti

leaf .idx].

To apply the tiling transformation to each statement, we construct a transformation func-
tion that maps the original schedule of each statement to the tiled schedule. If multiple
statements are contained in the same innermost leaf loop, we use Stmti.order to denote
the relative execution order of Stmti, Stmti.order = 0 if Stmti is the first statement to be
executed in this innermost leaf loop. The original schedule of any statement is denoted to
be:

Φ(Stmti[lroot.idx, ..., l1.idx, ..., lL.idx, ...l
Stmti
leaf .idx]) =

(lroot.idx, ..., l1.idx, ..., lL.idx, ...l
Stmti
leaf .idx, Stmti.order),

where l.begin ≤ l.idx < l.begin + l.N · l.S holds true for any loop l that contains this
statement. The transformed schedule for this statement is:

Φ(Stmti[lroot.idx, ..., l1.idx, ..., lL.idx]) = (lroot.idx, ..., ⌊l1.idx/l1.K⌋, ...⌊lL.idx/lL.K⌋,
l1.idx mod l1.K, ..., lL.idx mod lL.K, lStmti

L+1 .idx, ..., lStmti
leaf .idx, Stmti.order).

This transformation is for the condition of single core execution. For multicore execution,
we simply replace the index of tiled loops as discussed in Section 3.4.

Example: as an example, we apply the transformation to component L1 = (ls1, lp) in
Listing 5.1. In this component, there are two statements. The schedule of Stmt1 is

Φ(Stmt1[t, s1, p]) = (t, s1, p, 0)

and schedule of Stmt2 is
Φ(Stmt2[t, s1, p]) = (t, s1, p, 1)

When ls1.R = 1, lp.R = 1, meaning single core execution and ls1.K = 4, lp.K = 3, we
construct the transformation for Stmt1 which is

T1(Φ(Stmt1)) = (t, s1, p, 0) → (t, f loor(s1/3), f loor(p/4), s1 mod 3, p mod 4, 0)

52

and transformation for Stmt2 which is

T2(Φ(Stmt2)) = (t, s1, p, 1) → (t, f loor(s1/3), f loor(p/4), s1 mod 3, p mod 4, 1)

Given the transformation, isl library would transform the corresponding schedule of each
instance of the statements and perform code generation. The resulting code is shown in
Listing 5.2.

1 f o r (i n t t = 0 ; t < NT; t++)
2 {
3 /∗ Ti led component 1 s t a r t ∗/
4 f o r (i n t s 1 0 t = 0 ; s 1 0 t < f l o o r (NS/3) ; s 1 0 t++)
5 {
6 f o r (i n t p t = 0 ; p t < f l o o r (NP/4) ; p t++)
7 {
8 f o r (i n t s1 0 = s 1 0 t ∗ 3 ; s1 0 < MIN(NS, s 1 0 t ∗3+3) ; s1 0++)
9 {

10 f o r (i n t p = p t ∗ 4 ; p < MIN(NP, p t ∗4+4) ; p++)
11 {
12 i f (p==0){
13 i [s1] = 0 . 0 ; //Stmt1
14 }
15 i [s1] += U i [s1] [p] ∗ inp F [t] [p] ; //Stmt2
16 }
17 }
18 }
19 }
20 /∗ Ti led component 1 end ∗/
21
22 do something (i) ; //Stmt3
23 }

Listing 5.2: code example of tiled component

We then add extra nodes in the schedule for the three macros for data transfer state-
ments: BUFFER ALLOC APIS , DATA SWAP APIS and BUFFER DEALLOC APIS , as detailed in
Section 3.5. They are inserted before the tilable component, before execution of each tile
and right after the tilable component. To add extra schedule dimensions for these data
transfer statements, we perform another transformation on the statements, which is

Tmacro(Φ(Stmt)) = (t, f loor(s1/3), f loor(p/4), s1 mod 3, p mod 4, ...) →
(t, 1, f loor(s1/3), f loor(p/4), 1, s1 mod 3, p mod 4, ...)

This transformation adds a 1 before the schedule of element loop part and another 1 before
the schedule of tiled loop part, then we insert the three macro statements, whose schedules

53

are Φ(StmtAlloc) = ((t, 0)), Φ(StmtSwap) = ((t, 1, f loor(s1/3), f loor(p/4), 0, 0, 0, 0)) and
Φ(StmtDealloc) = ((t, 2)). The index of schedule for BUFFER ALLOC APIS and BUFFER

DEALLOC APIS is 0 and 2, respectively, this makes them execute before/after the tilable
component. The index of schedule for DATA SWAP APIS is 0, this makes it execute before
the other statements in each tile. The result code is shown in Listing 5.3.

1 f o r (i n t t = 0 ; t < NT; t++)
2 {
3 /∗ Ti led component 1 s t a r t ∗/
4 BUFFER ALLOC APIS //Macro Stmt
5 f o r (i n t s 1 0 t = 0 ; s 1 0 t < f l o o r (NS/3) ; s 1 0 t++)
6 {
7 f o r (i n t p t = 0 ; p t < f l o o r (NP/4) ; p t++)
8 {
9 DATA SWAP APIS //Macro Stmt

10 f o r (i n t s1 0 = s 1 0 t ∗ 3 ; s1 0 < MIN(NS, s 1 0 t ∗3+3) ; s1++)
11 {
12 f o r (i n t p = p t ∗ 4 ; p < MIN(NP, p t ∗4+4) ; p++)
13 {
14 i f (p==0){
15 i [s 1 0] = 0 . 0 ; //Stmt1
16 }
17 i [s 1 0] += U i [s1 0] [p] ∗ inp F [t] [p] ; //Stmt2
18 }
19 }
20 }
21 }
22 BUFFER DEALLOC APIS //Macro Stmt
23 /∗ Ti led component 1 end ∗/
24
25 do something (i) ; //Stmt3
26 }

Listing 5.3: code example of tiled component with macro statement inserted

5.3 Data Transfer Statements Generation

To explicitly generate the data transfer statements, we need memory access analysis of the
accessed arrays. In Section 2.2.1, we discussed how data access is modeled in polyhedral
compilation model and how to calculate the elements visited by a certain data access
under a specified domain. The data access information of each statement is extracted by
pet, including if this data access is read or write. In Section 3.5, we discussed the generation

54

of the API calls, yet we have not talked about the parameters required by such calls. In
this section, we further explain how to compute them.

5.3.1 Memory Access Analysis

Based on Section 3.5 and Section 4.2, to generate the data transfer statements for each
tilable component and to compute the length of memory phases, for each array a we
need to compute: (1) its canonical data element range R̂a for each tile/segment in the
component; (2) its bounding box, which is the maximum size of the canonical range over
all tiles/segments. In details:

1. The canonical data element range determines the size parameter for all swap calls.

2. The canonical data element range is also used to determine the number of data lines
and the size of each line, which is needed to compute the memory phase length.

3. The bounding box determines how much memory area to be allocated on SPM for
each array buffer allocated in the BUFFER ALLOC APIS macro.

4. The bounding box provides the dpitch parameter for swap2d buffer and swapnd

buffer calls.

In Section 5.2.2, we applied tiling transformation to divide the instances of a statement
into tiles. For convenience, we denote the domain of a statement tile as Dtile

Stmt[P1, ..., Px].
P1, ..., Px are the values of outer loop indexes and tiled loop indexes of a particular tile of
Stmt. UDtile

Stmt
is defined as the set that contains all the tile domain set of Stmt.

Example: In Listing 5.1, in tilable component L1 = (ls1, lp), the accessed arrays are i ,
U i and inp F . Among them, array i is both read and written to by Stmt1 and Stmt2.
For simplicity, we show the access relations of the original program because tiling would
not change the access relations of statement instances. Its access relations are:

AStmt1
i = {Stmt1(t, s1, p) → i(s1)}

AStmt2
i = {Stmt2(t, s1, p) → i(s1)}

Access relation of array U i is:

AStmt2
U i = {Stmt2(t, s1, p) → U i(s1, p)}

55

And access relation of array inp F is:

AStmt2
inp F = {Stmt2(t, s1, p) → inp F (t, p)}

If we put all the instances of Stmt1 which are executed in a tile in a domain set, it is
denoted as:

Dtile
Stmt1

[T, S1, P] = {(t, s1, p) | t = T∧
ls1.begin+S1·ls1.K·ls1.S ≤ s1 < min(ls1.begin+(S1+1)·ls1.K·ls1.S, ls1.begin+ls1.N ·ls1.S)∧
lp.begin+ P · lp.K · lp.S ≤ p < min(lp.begin+ (P + 1) · lp.K · lp.S, lp.begin+ lp.N · lp.S)}

In this domain set of a tile Dtile
Stmt1

[T, S1, P], T is the value of loop level t, S1 is the index
of iteration ranges of loop level s1, ranging from 0 to ls1.M − 1, P is the tile index of
iteration ranges of loop level p, ranging from 0 to lp.M − 1. Given Dtiled

Stmt1
and the value

of T, S1, P , we can calculate the set of data elements that are read/write in the given tile.
Here we have ls1.begin = 0, lp.begin = 0, ls1.S = 1, lp = 1, when T = 0, S1 = 0, P = 0 and
ls1.R = 1, ls1.K = 3, lp.R = 1, lp.K = 4, the domain set of this tile is Dtiled

Stmt1
= {(t, s1, p) |

t = 0∧ 0 ≤ s1 < 3∧ 0 ≤ p < 4}. After we apply Dtiled
Stmt1

to access relation map AStmt1
i , the

resulting data element range is:

RStmt1
i = Dtiled

Stmt1
×AStmt1

i = {i(s1) | 0 ≤ s1 < 3}

This means in the tile where T = 0, S1 = 0, P = 0, the elements i[0], i[1], i[2] of array i
are written to since AStmt1

i is a write access. In SPM, what we allocate is an area that has
fixed width and height. However, the data element range of an array is a set of accessed
elements, which implies the data elements could be sparse and not in fixed range. However,
in execution, we load a range of data. To ensure the range of data elements can be fit into
the allocated area on SPM, given data element rangeRStmt

a , we calculate the canonical data
element range and use it for data transfer. The canonical data element range is calculated
by finding the minimum and maximum index among all the data element accesses. It uses
a rectangular shaped range instead of sparse data elements for the accessed data element
range.

Assume the length of dimensions of the array a is n = length(Shape(a)), then an
element in the array a is denoted as a(idx1, ..., idxn). We define the minimum index on
loop level l of the data element accesses in RStmt

a to be:

idxmin
l (RStmt

a) = min{idxl | ∃idx1, ..., idxl−1, idxl, idxl+1, ..., idxn :

a(..., idxl−1, idxl, idxl+1, ...) ∈ RStmt
a }

56

and maximum index to be

idxmax
l (RStmt

a) = max{idxl | ∃idx1, ..., idxl−1, idxl, idxl+1, ..., idxn :

a(..., idxl−1, idxl, idxl+1, ...) ∈ RStmt
a }

Then the canonical data element range is:

R̂Stmt
a = {a(idx1, ..., idxn) | ∀idxl ∈ {idx1, ..., idxn} : idxmin

l (RStmt
a) ≤ idxl ≤ idxmax

l (RStmt
a)}

column

row

(0, 0) (0, 1) (0, 2) (0, 3) (0, 4)

(1, 0) (1, 1) (1, 2) (1, 3) (1, 4)

(2, 0) (2, 1) (2, 2) (2, 3) (2, 4)

(3, 0) (3, 1) (3, 2) (3, 3) (3, 4)

(4, 0) (4, 1) (4, 2) (4, 3) (4, 4)

Figure 5.3: canonical data element range of accessed data elements in arr[5][5]

Example: In Figure 5.3, we show the dots as data elements in an array arr[5][5]. We
assume that during the execution of a tile, arr[1][1], arr[2][1], arr[2][2], arr[3][0], arr[3][1],

57

arr[3][2] and arr[4][3] are accessed. Then, the canonical data element range of them is
R̂arr = {arr[i][j] | 1 ≤ i ≤ 4 ∧ 0 ≤ j ≤ 3}, which is marked in gray box.

Once we have the canonical data element range R̂Stmt
a of statement Stmt accessing

array a, we can compute the canonical data element range of all statements in tilable
component R̂a. We define the minimum index of loop level l in R̂a to be

idxmin
l (R̂a) = min{idxmin

l (R̂Stmt
a) | ∀Stmt ∈ L.SCoP}

and the maximum index to be

idxmax
l (R̂a) = max{idxmax

l (R̂Stmt
a) | ∀Stmt ∈ L.SCoP}

Then R̂a is defined as

R̂a = {a(idx1, ..., idxn) | ∀idxl ∈ {idx1, ..., idxn} : idxmin
l (R̂a) ≤ idxl ≤ idxmax

l (R̂a)}

Given the canonical data element range R̂a, we denote Shape(R̂a) as its shape. It
contains dimension sizes that is computed as |idxmax

l −idxmin
l +1|, which means the distance

between maximum index and minimum index on loop level l. Hence, Shape(R̂a) contains
all the distances between maximum index and minimum indexes on each loop level.

Shape(R̂a) = ⟨|idxmax
l (R̂a)− idxmin

l (R̂a) + 1| : l ∈ {1, ..., n}⟩

Shape(R̂a) is a tuple, the lth element of Shape(R̂a) is Shape(R̂a)l, starting from 1. UR̂a

is defined as the set that contains all the canonical data element ranges for each tile of the
array a.

Example: In Figure 5.3, the shape of canonical data element range of arr is Shape(R̂arr) =
{4, 4} and Shape(R̂arr)1 = 4.

After we compute the shape of canonical data element range of every tile, we find the
minimum area on SPM that each canonical data element range can be fitted in, which
is named bounding box. We use BoundingBox(a) to denote the bounding box of all the
accesses of array a in the whole tile.

BoundingBox(a) = ⟨max{Shape(R̂a)l | ∀R̂a ∈ UR̂a
} | l ∈ {1, ..., length(Shape(R̂a))}⟩

The bounding box is a sequence where the lth element is noted as BoundingBox(a)l
where l ∈ {1, ..., length(BoundingBox(Stmt, a))}. BoundingBox(Stmt, a)1 refers to the
size of the outermost dimension that should be allocated for an array a on SPM.

58

Finally, after we compute the information of the canonical data element ranges of all
the tiles/segments, we need to check these canonical data element ranges to verify if the
transformation is legal. On the same core, if there exist a RAW or WAW dependency
between two consecutive segments of the same array when their canonical data element
ranges are overlapped to each other and are not the same, then this transformation is not
legal. This is because we are using the double buffer streaming strategy, after the execution
of the first segment, the written-out data of this segment is transferred from one buffer
on SPM to main memory. At the same time, the second segment is reading/writing data
on another buffer on SPM. If these two data areas are overlapped to each other, then the
second segment would read the invalid input data or its written-out data could overwrite
part of the written-out data of the last segment. Similarly, if there is a RAW or WAW
dependency between two segments of the same array on different cores when their canonical
data element ranges are overlapped to each other, we also mark this transformation illegal
because each core has a separate SPM and this could also cause invalid data being read
or written. In both cases, the loops involved in the transformation would be marked as
non-tilable / non-parallelizable when constructing the loop tree.

5.3.2 API Call Parameters

Next, we discuss how API calls are generated. This includes the allocate buffer call
and the swap call.

The allocate buffer call is used to allocate a buffer with R/W attributes using the
attr parameter. For an array a, if it is read by any statement Stmt in L.SCoP and never
written to in the tilable component L, it is allocated as RO . If the array a is only written
in the tilable component L, or all elements of the array a are read and written, and there
is no read access to one element happen before the written access to the same element of
the array a, the array a is allocated as WO . If the array a is both read and written in the
tilable component L and there is any read access to one element happen before the written
access to the same element of the array a, the array a is allocated as RW .

The swap call is used to transfer arrays with any number of dimensions. The algorithm
of generating API calls for buffer swap is shown in Algorithm 3. Given the shape of the ar-
ray a that is Shape(a), the canonical data element range of array a for a given tile/segment
R̂a and its bounding box BoundingBox(a), this algorithm generates the swap buffer /

swap2d buffer / swapnd buffer calls required by the segment and array. In this algo-

rithm, the function generate is used for generating a given API call in macro block. The

59

generate function takes two inputs: first is the name of the function that would be gener-
ated, second is a list of values of parameters for the function to be generated. Note that for
simplicity of exposition, in Algorithm 3 we explain how to generate the API calls required
by each segment. Each such API call is inserted in an early segment, so that data can
be loaded before the segment starts, as explained in Section 3.5. Furthermore, for arrays
with constant change stride, as also explained in Section 3.5, in reality we only generate
four swap calls: two for the first and second segment in SegmentToSwapa(i), and two

more for the remaining segments; one for the 3rd, 5th... segments in SegmentToSwapa(i)
and another one for the 4th, 6th... segments. In addition, the starting addresses and sizes
computed in Algorithm 3 are put in an array swap params that is then accessed by the
swap calls.

In each swap buffer / swap2d buffer , a id parameter is used to specify the informa-

tion of buffer on SPM, this id is one of the two buffer pointers buf1 / buf2 on SPM. One
id is bonded to one buffer on SPM with its shape. For an array a with one or two dimen-
sions, we allocate buffer that binds to id named a id on SPM. The process of selecting
buf1 or buf2 in each segment is discussed in Section 3.5. For an array a of n dimensions,
the buffer bonded to a id is an N-dimensional array with size of

∏n
i=1BoundingBox(a)i.

src is the address of the data to be transferred in main memory, which is the address
of R̂a. Given R̂a, we know the index of its first element is a[idxmin

1 (R̂a)][idx
min
2 (R̂a)]...

[idxmin
n (R̂a)]. Assume the element type of the array a is etype, then we have the starting

address to be (etype∗)a which is a pointer that points to an element of type etype. The
relative offset AddressOffset between the starting address of the array a and the starting
address of R̂a is the sum of starting index of each dimension multiplied the production of
length of the following dimensions. The starting index of dimension i is idxmin

i (R̂a), the
rest of the dimensions are from i+1 to n , thus the length of production of rest dimensions
is
∏n

j=i+1 Shape(a)j. Then the relative offset can be computed as the sum of this term in

each dimension, which is
∑n−1

i=1 (idx
min
i (R̂a) ·

∏n
j=i+1 Shape(a)j) + idxmin

n (R̂a). And src is

(etype∗)a+AddressOffset cast to type uint64 t* .

The rest parameters are data sizes size , array sizes in main memory spitch and

buffer sizes on SPM dpitch . They are computed as Shape(R̂a), Shape(a) and

BoundingBox(a) multiply the size of element type sizeof(etype). Notice Shape(a) and
BoundingBox(a) are only used from dimension 2 to n since spitch and dpitch do not
require the outermost dimension.

Example: In Figure 5.4, we have an array d in main memory, its data type is double
meaning etype is double and sizeof(etype) = 8. We call its innermost dimension dim3,

60

outermost dimension dim1. It has shape of Shape(d) = ⟨6, 5, 4⟩ which means dim1=6,
dim2=5, dim3=4. Its canonical data element range is a cube with shape of Shape(R̂d) =
⟨4, 3, 2⟩ starting at index of ⟨2, 0, 2⟩. The elements in this canonical data element range
are:

R̂d = {d(2, 0, 2), d(2, 0, 3), d(2, 1, 2), d(2, 1, 3), d(2, 2, 2), d(2, 2, 3),
d(3, 0, 2), d(3, 0, 3), d(3, 1, 2), d(3, 1, 3), d(3, 2, 2), d(3, 2, 3),

d(4, 0, 2), d(4, 0, 3), d(4, 1, 2), d(4, 1, 3), d(4, 2, 2), d(4, 2, 3),

d(5, 0, 2), d(5, 0, 3), d(5, 1, 2), d(5, 1, 3), d(5, 2, 2), d(5, 2, 3)}

Its bounding box on SPM is BoundingBox(d) = ⟨5, 4, 3⟩. In this case, the dimension of
array d is 3 which is more than two, so we would use swapnd buffer for data swap. The

SPM buffer has size 5× 4× 3 as the bounding box of the array d is ⟨5, 4, 3⟩.

The relative offset in main memory is computed as idxmin
1 (R̂d)·(Shape(d)2·Shape(d)3)+

idxmin
2 (R̂d) ·Shape(d)3+ idxmin

3 (R̂d) =2 · (5 ·4)+0 ·4+2 = 42, then src is (double∗)a+42.
size is {Shape(R̂d)1, Shape(R̂d)2, Shape(R̂d)3 · sizeof(etype)} = {4, 3, 16}, spitch is

{Shape(d)2, Shape(d)3 · sizeof(etype)} = {5, 32} and dpitch is {BoundingBox(d)2,

BoundingBox(d)3 · sizeof(etype)} = {4, 24}. Hence, the generated API is:

swapnd buffer(d id, (uint64 t*)((double*)a+42), 3, (int[]){4, 3, 16},
(int[]){5, 32}, (int[]){4, 24});

dim3

dim1 dim2

dim3

dim1 dim2

Figure 5.4: 3 dimension data transfer example

61

Algorithm 3: Generate API for N-dimension buffer swap

Data: shape of array a: Shape(a)
canonical data element range of array a: R̂a

bounding box of array a: BoundingBox(a)
type of one data element in array a: etype

1 switch n = length(Shape(R̂a)) do
2 case 1 do

3 generate(swap buffer , {a id, (uint64 t*)((etype*)a+idxmin
1 (R̂a)),

Shape(R̂a)1 · sizeof(etype)})
4 end
5 case 2 do

6 AddressOffset=Shape(a)2 · idxmin
1 (R̂a) + idxmin

2 (R̂a)

7 generate(swap2d buffer , {a id, (uint64 t*)((etype*)a+AddressOffset),

Shape(R̂a)2 · sizeof(etype), Shape(R̂a)1, Shape(a)2 · sizeof(etype),
BoundingBox(a)2 · sizeof(etype)})

8 end
9 otherwise do

10 AddressOffset=
∑n−1

i=1 (idx
min
i (R̂a) ·

∏n
j=i+1 Shape(a)j) + idxmin

n (R̂a)

11 generate(swapnd buffer ,{a id, (uint64 t*)((etype*)a+AddressOffset), n,

(int[]){Shape(R̂a)1, ..., Shape(R̂a)n−1, Shape(R̂a)n · sizeof(etype)},
(int[]){Shape(a)2, ..., Shape(a)n−1, Shape(a)n · sizeof(etype),
(int[]){BoundingBox(a)2, ..., BoundingBox(a)n−1, BoundingBox(a)n ·
sizeof(etype)}})

12 end

13 end

62

Chapter 6

Evaluation

In this chapter, we evaluate the effectiveness of our optimizer on a variety of kernels. Specif-
ically, we employ kernels from PolyBench-NN[42], which includes CNN, LSTM, Maxpool,
Sumpool and RNN kernel with pre-configured loop bound size. We begin by detailing
the platform configuration in Section 6.1. We then present results for all listed kernels in
Section 6.2. Finally, we provide a more in-depth evaluation of the CNN kernel based on
loop bound sizes selected from GoogLeNet[39] in Section 6.3 to highlight how the solution
picked by our optimizer changes depending on the loop bounds and shape of arrays.

6.1 Platform Configuration

We use the following default system configuration throughout this section. The system
is configured with 8 cores running at 1 GHz, each of them is connected with an inde-
pendent 128 KByte SPM. These SPMs are connected and controlled by a central DMA
controller. The main memory is configured with a data access granularity of 64 bytes and
a line overhead of T overhead

DMA = 40 ns, which are representative of a 64 bits width DRAM
device. The default bus speed between main memory and SPM is 16 GByte/s, resulting
in T overhead

BUS = 0.0625 ns/byte.

We compile the code to ARM64. For execution time estimation, we run the kernel on the
gem5 architectural simulator [7] using the AtomicSimpleCPU model for ARM architecture.
After each end segment call, a pseudo instruction dumpstats is inserted. When this
instruction get executed, the simulator records the statistics during the execution of this
tile.

63

Note that the simulated code does not include the time of API calls; therefore, we
decided to add the API overhead to each execution phase length based on the worst-case
time measured in [36] on a similar hardware platform with core frequency normalized by
1 Ghz. The data of API overhead is shown in Table 6.1. We verified that for all tested
scenarios, the maximum difference between the actual makespan of a kernel and the one
predicted through our timing model introduced in Section 4.2 is within 5% by running the
final compiled kernel in gem5.

PREM API WCET normalized

allocate buffer 1139 ns

dispatch 861 ns

DMA int handler 1187 ns

allocate 1503 ns

end segment 1878 ns

deallocate 861 ns

allocate2d 1103 ns

deallocate buffer 776 ns

swap buffer 1914 ns

swap2d buffer 1248 ns

Table 6.1: Normalized worst-case execution time of PREM APIs from [36]

Note that since we did not modify the API implemented in [36], we do not have overhead
results for the threadID and swapnd buffer calls. We decided to assume that threadID

has no additional time cost as the value of it is stored in a specific register on core, while
swapnd buffer has a similar worst case execution time as swapnd buffer call as they

share structural similarity in implementation. Note that similarly to [36], this assumes
the availability of a programmable DMA component that can efficiently load/unload the
multidimensional array (including the required strides in SPM and memory) in hardware;
practically speaking, this could only be implemented for a limited number of dimensions.
This said, we notice that in the kernels that are used in this evaluation, the maximum
number of dimensions of any employed array is 4. We argue that on these corpus of kernels,
the actual programs are unlikely to use arrays with more than 4 dimensions. We further
argue that since CNN kernel used in the evaluation is widely used in image processing, it
is also representive in the area of computer vision.

64

6.2 Polybench Kernels

We apply our optimizer on kernels in the PolyBench-NN benchmark suite, which was
proposed to test polyhedral optimizations on machine learning kernels. Specifically, we use
all 5 forward passes (for inference), representing 5 DNN layers. We use the LARGE problem
size since it uses approximately 25 MB in each kernel and thus cannot fit entirely in the
local memory of a typical MPSoC system.

When compiling the kernels, we enable PolyBench’s POLYBENCH USE SCALAR LB option.
This option ensures that scalar loop bounds, rather than parametric ones, are passed to pet.
Under this option, our toolchain can compute the tiling size and parallelization selections
during compile time.

We compare our optimized results with the following approaches: (1) An ideal single-
core case where we assume that the SPM size is unlimited, and data transfers take 0 time;
hence, there is no need to tile the kernel. (2) The greedy approach from related work [29].
In this case, we find the outermost loop level that can be tiled while guaranteeing that the
resulting segments fit into the SPM, and tile only at that loop level with the maximum
allowed tile size. Whether possible, iterations of outer loops are executed in parallel.

Figure 6.2: Running time of generating Figure 6.1 with Optimization Heuristic

cnn lstm maxpool sumpool rnn
min 154.66 sec 1.77 sec 58.02 sec 28.57 sec 56.92 sec
max 407.03 sec 30.71 sec 277.98 sec 296.53 sec 571.11 sec
average 154.66 sec 10.93 sec 138.79 sec 118.03 sec 251.21 sec

Figure 6.3: Running time of generating Figure 6.1 with Greedy Approach

cnn lstm maxpool sumpool rnn
min 0.52 sec 0.0013 sec 0.10 sec 0.10 sec 0.27 sec
max 0.55 sec 0.0016 sec 0.11 sec 0.12 sec 0.31 sec
average 0.52 sec 0.0014 sec 0.10 sec 0.10 sec 0.27 sec

Figure 6.1 shows results for our approach on either 1 or 8 cores, as well as the greedy
case on 8 cores, normalized by the ideal single-core case, where we vary the memory
bandwidth from 1/16 to 16 Gbytes/s. Note that due to the logarithmic scale on the
y-axis, a value of 0 corresponds to the makespan of the ideal case, while a value of -3

65

Figure 6.1: Makespan of forward passes in PolyBench-NN, normalized by the ideal single-
core case

4 3 2 1 0 1 2 3 4
log2(GByte/sec)

3

2

1

0

1

2

3

4

5

lo
g2

(m
ak

es
pa

n
no

rm
al

ize
d

by
 id

ea
l) CNN

one core
eight core greedy
eight core

4 3 2 1 0 1 2 3 4
log2(GByte/sec)

3

2

1

0

1

2

3

4

lo
g2

(m
ak

es
pa

n
no

rm
al

ize
d

by
 id

ea
l) LSTM

one core
eight core greedy
eight core

4 3 2 1 0 1 2 3 4
log2(GByte/sec)

3

2

1

0

1

2

3

4

lo
g2

(m
ak

es
pa

n
no

rm
al

ize
d

by
 id

ea
l) Maxpool

one core
eight core greedy
eight core

4 3 2 1 0 1 2 3 4
log2(GByte/sec)

3

2

1

0

1

2

3

4

5
lo

g2
(m

ak
es

pa
n

no
rm

al
ize

d
by

 id
ea

l) Sumpool

one core
eight core greedy
eight core

4 3 2 1 0 1 2 3 4
log2(GByte/sec)

3

2

1

0

1

2

3

4

lo
g2

(m
ak

es
pa

n
no

rm
al

ize
d

by
 id

ea
l) RNN

one core
eight core greedy
eight core

66

represents perfect scalability on 8 cores. All graphs reach a plateau for different values
of memory bandwidth, indicating that the schedule becomes computation-bound. Given
sufficient memory bandwidth, for the 1 core case, our approach comes very close to the
ideal case, while for the 8 core case, 4 out of the 4 benchmarks show excellent scalability.
RNN performs worse because one major component inside this kernel is not parallelizable.
Except for lstm, our approach can better utilize memory bandwidth compared to greedy.
Specifically for the CNN case in Figure 6.1, greedy performs poorly because the single loop
level it tiles on results in large data arrays being loaded every tile.

As we can see in Figure 6.1, the overhead of API calls which are inserted is very small,
as the result of one core case is very close to ideal one case. In fact, the maximum API
overhead suffered in all these experiments is 4.37%, thus the overhead of API calls does not
make a big difference. This contributes to the fact that, at fast bus speed, our optimizer
produces similar result with greedy approach. The reason for this is at fast bus speed,
memory time is practically zero compared to computation time, thus not only we are
computation bound, but we also do not care too much about the memory transfer time
of first/last segment. Plus, as we have a small API call overhead, it turns out that the
number of segments does not matter. Thus, the conclusion is any solution that performs
reasonable load-balancing among the cores would have basically the same performance.
This also implies that we should potentially focus more on the optimization of balance
between memory phase length and computation phase length than the optimization of
API call overhead.

We can also see that at slow bus speed, the kernels’ total makespans are largely deter-
mined by bus speed. This is because at slow bus speed, the total makespan is bounded
by memory time as we are using a single DMA controller for all the memory operations
on all cores. Hence, in this case, our optimizer attempts to maximize memory reuse and
minimize the memory transfers during program’s execution. This is also the case where our
optimizer outperforms the greedy approach. In Section 6.3, we would show the detailed
mechanism of our optimization approach.

Finally, Table 6.2 shows the runtime required to generate the graphs in Figure 6.1
for our approach on 8 cores, where we execute Algorithm 2 with single process python
interpreter on an Intel Xeon processor running at 3.5Ghz. There exists difference between
min and max time because our search algorithm picks a random tiling and parallelization
selection as initial search position. When a small tiling size is picked, it would construct a
DAG graph with much more nodes compared with normal tiling size, and it takes longer
to compute the longest path length in this DAG. Compared with the greedy approach,
our approach takes longer to produce a best selection because instead of simply computing
array size to fit in SPM, our approach searches for tile sizes that produce shortest makespan.

67

Figure 6.4: Makespan vs SPM size of Polybench kernels

6 7 8 9 10 11 12
log2 of SPM size(kBytes)

1.30

1.32

1.34

1.36

1.38

m
ak

es
pa

n
in

 c
yc

le
s

1e8 CNN

6 7 8 9 10 11 12
log2 of SPM size(kBytes)

1.20

1.22

1.24

1.26

1.28

1.30

m
ak

es
pa

n
in

 c
yc

le
s

1e8 LSTM

6 7 8 9 10 11 12
log2 of SPM size(kBytes)

1.4

1.5

1.6

1.7

1.8

m
ak

es
pa

n
in

 c
yc

le
s

1e10 Maxpool

6 7 8 9 10 11 12
log2 of SPM size(kBytes)

1.4

1.5

1.6

1.7

1.8
m

ak
es

pa
n

in
 c

yc
le

s
1e10 Sumpool

6 7 8 9 10 11 12
log2 of SPM size(kBytes)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

m
ak

es
pa

n
in

 c
yc

le
s

1e10 RNN

68

To better study the benefit a larger SPM size could bring to these kernels, in Figure 6.4,
we show the makespan under different SPM sizes. In this figure, the y-axis is the total
makespan in cycles and the x-axis is log2 of the SPM size on each core. The dotted line
in each sub-figure shows the makespan under infinite SPM size. We can see that as the
SPM size increases, the makespan decreases until it reaches a plateau. Notice that under
infinite SPM size, the best selection does not necessarily load everything at the beginning
of the first segment. Even at slow bus speed, given large enough SPM size, our approach
performs better than greedy approach because with limited SPM size, it is not enough for
greedy approach to maximize memory reuse by loading everything, but it is enough for
our approach to have max memory reuse pattern. Limited SPM size is not a significant
drawback if tiling overhead is small enough because loading an array’s different parts over
multiple segments requires the same total data transfer size in bytes as loading all of the
array once.

6.3 CNN kernels in GoogLeNet

To further study the behavior of our optimization framework, in this section, we use the
CNN kernel as an example and study its performance under a wider range of parameters.

1 f o r (i n t n = 0 ; n < NN; n++)
2 f o r (i n t k = 0 ; k < NK; k++)
3 f o r (i n t p = 0 ; p < NP; p++)
4 f o r (i n t q = 0 ; q < NQ; q++)
5 f o r (i n t c = 0 ; c < NC; c++)
6 f o r (i n t r = 0 ; r < NR; r++)
7 f o r (i n t s = 0 ; s < NS; s++)
8 out F [n] [k] [p] [q] += W[k] [c] [r] [s] ∗ inp F [n] [c] [p + NR

− r − 1] [q + NS − s − 1] ;

Listing 6.1: source code of CNN kernel used in Polybench

Listing 6.1 is the source code of CNN kernel with filter stride set to 1. Three arrays
are involved in computation. out F is the array of output feature map, W is the array of
feature weights and inp F is the array of input features. CNN is a kernel with multiple
loop levels, Table 6.5 shows what each loop bound represents.

69

Figure 6.5: Loop Bounds in CNN

NN Number of Input Images in batch
NK Number of Output feature maps
NP, NQ Size of output feature map
NC Number of Input feature maps
NR, NS Size of filter kernel

In an actual neural network architecture, the size of convolution operator changes in
different network layers. Generally, the convolution’s map size becomes smaller as the
number of features grows. We study the CNN kernels used by GoogLeNet [39] as an
example to show the best tiling and parallelization selections can be different under different
loop bound sizes.

GoogLeNet uses three different filter sizes, 1x1, 3x3 and 5x5. Here, we use the 3x3 filter
with different feature number and feature map size for comparison. Table 6.6 shows the
best tiling and parallelization selection for the various kernels. We only test with batch
size NN set to 1 and filter stride set to 1, thus the table only reports feature map size and
number of input/output features. It also only reports the thread group number and tile
size for loop level k, c, p, q because the two filter loops r, s are only 3 iterations, and they
are too small to tile efficiently. For the sake of conciseness, for each map size, we use the
kernel with only the largest and smallest number of features.

The thread group numbers and tile sizes are the best selections under 1/512 GBytes/s
bus speed, which is very slow. We can see these selections are different with the same CNN
kernel of different loop bounds, and they are generally difficult to find manually, justifying
the need for an automated optimization tool.

Figure 6.6: Best selections for CNN with different loop bounds

loop bound (NK/NP/NQ/NC) thread group number (lk.R/lp.R/lq.R) tile size (lk.K/lp.K/lq.K/lc.K)
128 / 28 / 28 / 96 4 / 2 / 1 32 / 14 / 28 / 5
192 / 28 / 28 / 128 2 / 3 / 1 48 / 10 / 28 / 3
208 / 14 / 14 / 96 4 / 1 / 1 52 / 14 / 14 / 7
320 / 14 / 14 / 160 1 / 1 / 1 64 / 14 / 14 / 3
320 / 7 / 7 / 160 4 / 1 / 1 80 / 7 / 7 / 16
384 / 7 / 7 / 192 8 / 1 / 1 80 / 7 / 7 / 16

70

6.3.1 Comparison with greedy approach

Figure 6.1 shows that our approach significantly outperforms the Greedy one at low bus
speeds. To understand why, in this section we discuss the solutions found by Greedy and
our approach in more details. The CNN kernel we use for comparison is selected from
GoogLeNet. It has a loop bound of {’k’: 128, ’p’: 28, ’q’: 28, ’c’: 96, ’r’: 3, ’s’: 3}. The
greedy selection is R: {’k’: 8, ’p’: 1, ’q’: 1} K: {’k’: 1, ’p’: 2, ’q’: 28, ’c’: 96, ’r’: 3, ’s’: 3},
we call it selection greedy. Under 1/32 Gbyte/s, the obtained makespan is 1,460,278,989
cpu cycles. The best selection of this CNN kernel for our approach under 1/32 Gbyte/s
is R: {’k’: 4, ’p’: 2, ’q’: 1}, K: {’k’: 32, ’p’: 7, ’q’: 28, ’c’: 16, ’r’: 3, ’s’: 3}, we call it
selection best. It has a total makespan of 142,497’144 cycles, which is around 10x less than
selection greedy.

The reason why selection best outperforms selection greedy is that selection best trans-
fers a total of 4,579,328 bytes, while selection greedy transfers 45,628,416 bytes, which
is nearly 10x larger. In each segment, we access the following arrays: out F[n][k][p][q],
W[k][c][r][s], inp F[n][c][p+2-r][q+2-s]. In selection best, we load the following arrays,
out F, W, inp F. In array out F, n = 1, k = 32, p = 7, q = 28 and it is an 32 · 196
array, which is 6272 elements. In array W, k = 32, c = 16, r = 3, s = 3 and it is an 32 ·144
array, which is 4608 elements. In array inp F, n = 1, c = 16, p = 7, q = 28 and it is an
16 · (7 + 3) · (28 + 3) array which is 4960 elements. The total SPM occupation is 15840
elements · 4 bytes per element · 2 buffers, which is 126,720 bytes.

In selection greedy, we load out F of a 2 · 28 array which is 56 elements, W of an 864
elements array, inp F of 96 · (2+3) · (28+3) array which is 14880 elements. The total SPM
occupation is 15800 · 4 · 2, which is 126,400 bytes.

We can see that selection greedy has a similar SPM occupation per segment with se-
lection best. However, the memory efficiency of selection greedy is worse because each
time a new segment is executed, loop index p would change, thus selection greedy requires
swapping in/out inp F which is a very large array every segment. This can be solved if
a much larger SPM is provided to store the whole inp F array, then it would not need to
swap in/out, thus save a lot of memory loading time in selection greedy. Yet with current
SPM size, it cannot see that this is a bad idea to reload such a large array every time and
thus causing a very long total makespan.

On the other hand, selection best performs better because with similar memory transfer
per segment, the segments in selection best contains more innermost loop iterations. selec-
tion best has 104 segments in total, and selection greedy has 776 segments in total. For the
number of innermost iterations captured in one segment, we find a full selection best seg-
ment contains 903,168 innermost iterations and a full selection greedy segment contains

71

Figure 6.7: Best selections for CNN under different bus speed

bus speed (Gbytes/sec) thread group number (lk.R/lp.R/lq.R) tile size (lk.K/lp.K/lq.K/lc.K)
1/64 4 / 2 / 1 32 / 14 / 28 / 3

1/64 + 0.01 4 / 2 / 1 32 / 14 / 28 / 4
1/64 + 0.02 2 / 4 / 1 32 / 7 / 28 / 12
1/64 + 0.03 2 / 4 / 1 32 / 7 / 28 / 8
1/64 + 0.04 8 / 1 / 1 16 / 14 / 14 / 12
1/64 + 0.05 8 / 1 / 1 16 / 7 / 14 / 16
1/64 + 0.06 2 / 2 / 2 16 / 7 / 14 / 16
1/64 + 0.07 8 / 1 / 1 8 / 4 / 28 / 16
1/64 + 0.08 8 / 1 / 1 8 / 7 / 14 / 24
1/64 + 0.09 2 / 2 / 2 8 / 7 / 14 / 24
1/64 + 0.10 2 / 2 / 2 8 / 7 / 14 / 24

120,960 innermost iterations. This means that the bad tiling shape of selection greedy
would create inefficient memory transfer patterns and increase CNN kernel’s makespan.

6.3.2 Boundary region

Our evaluation so far provides two key insights: at fast bus speeds, where the execution is
computation bounded, the tile sizes, and thread group selections do not significantly affect
the resulting makespan - it is simply sufficient to balance execution between the available
threads/cores. On the other hand, at slow bus speeds, where the execution becomes
memory bounded, our optimizer is driven to find solutions that maximize memory reuse.
But what happens at the boundary between these two extreme situations? To study the
behavior of our optimizer in the boundary region, we use the same CNN kernel in the last
subsection with loop bounds of {’k’: 128, ’p’: 28, ’q’: 28, ’c’: 96, ’r’: 3, ’s’: 3}. For this
kernel, we experimentally set the boundary region to range from around 1/64 Gbyte/s to
1/8 Gbyte/s. We then increase the bus speed with the step of 0.01 Gbyte/s and Figure 6.8
shows the result and Table 6.7 are the best selections we found for each bus speed value.

From the figure, we can see the program’s execution transits from totally memory
bounded to computation bounded in the non-linear bus speed region. Under relatively fast
bus speed, we can see the best selections tend to take less SPM size. This enables them to
have shorter time loading/unloading before/after first/last segment, which is crucial when
each selection has a similar total computation time. Meanwhile, the total bytes transferred
increase, but this does not become a problem any more under faster bus speed. Thus, the
conclusion is that it is acceptable to progressively increase the total bytes transferred as a

72

Figure 6.8: Makespan, transferred data and SPM utilization for CNN under different bus
speed

0.02 0.04 0.06 0.08 0.10 0.12
bus_speed(GB/s)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

to
ta

l b
yt

es
 tr

an
sf

er
re

d

1e7 GoogLeNet CNN1

0.02 0.04 0.06 0.08 0.10 0.12
bus_speed(GB/s)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

m
ak

es
pa

n
in

 c
yc

le
s

1e8 GoogLeNet CNN1

0.02 0.04 0.06 0.08 0.10 0.12
bus_speed(GB/s)

40

60

80

100

120

siz
e

of
 sp

m
 o

cc
up

an
cy

(k
B)

GoogLeNet CNN1

price paid to reduce the time of loading/unloading before/after first/last segment, as long
as the program’s execution does not become memory bounded.

73

Chapter 7

Conclusions and Future Work

In this thesis, we extended PREM to execute nested loop structure programs as a par-
allel application on an SPM-based system. We presented a workflow that automatically
generates PREM-compliant optimized nested loop programs. To achieve this, polyhedral
compilation tools are adopted to analyze the original program and generate an optimized
program using techniques of tiling and parallelization. We modeled the timing cost for
API call overhead and data transfer time based on the optimization solution selection. An
optimization solution is then found using a heuristic algorithm to minimize the makespan
of the program. We evaluated the proposed approach on kernels from the PolyBench-NN
benchmark, using the gem5 architectural simulator to obtain execution time bounds. We
exhibit that a complex interplay exists between tile sizes and the quality of the resulting
schedule.

This work could be further expanded in multiple directions. First, in this work, SPM
is only adopted as a first level SPM which load data directly from main memory. The
disadvantage of this approach is the first level SPM is usually small. This disadvantage
could be potentially addressed by adopting a multi-level SPM system. Instead of loading
required data from main memory to L1 SPM every single segment, the required data of
multiple segments can be loaded into L2 SPM at once and later again load into L1 SPM
when the data is required in current segment. The challenge of this approach might be
grouping multiple segments into a larger “block” and hiding the data transfer time from
main memory to L2 SPM every a few segments. This might also bring challenges to the
scheduling algorithm on multicore architecture.

Second, this work provides parallel execution functionality, but only for a single appli-
cation. In real world, multiple applications execute on real-time operating system. This

74

is supported in [38] using multi-segment streaming with 3-phase execution model. This
functionality could be better integrated with multi-level SPM described above. By break-
ing the schedule into blocks that contain multiple segments, a different application can be
scheduled after the block of the current application completes. The double buffer stream-
ing strategy can also be applied for application switch, using one partition of the L2 SPM
to load/unload the data of one application from/to main memory while the another ap-
plication is used to run the current application. This idea could be used to achieve faster
context switching time between different tasks since the data is already in L2 SPM before
the execution of the task.

Third, in this work, we only evaluate our approach by executing the code in a simulator
environment. It would be highly desirable to execute the compiled applications on an actual
platform. This would require extensions to the OS infrastructure introduced in [36] for the
PREM streaming system. In addition, the hardware platform employed in [36] uses only
three cores, while our technique is designed to scale to a larger number of cores. Ideally,
we would thus prefer to target a larger multicore system. A potential target is the open
hardware design introduced in [24]; this platform provides a multicore accelerator that
integrates up to 8 RISC-V cores with individual SPMs, plus a larger platform-level L2
SPM.

75

References

[1] A. Alhammad, S. Wasly, and R. Pellizzoni. Memory efficient global scheduling of
real-time tasks. In 21st IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 285–296, April 2015.

[2] Ahmed Alhammad and Rodolfo Pellizzoni. Schedulability analysis of global memory-
predictable scheduling. In Proceedings of the 14th International Conference on
Embedded Software - EMSOFT ’14, New York, New York, USA, 2014. ACM Press.

[3] Ahmed Alhammad and Rodolfo Pellizzoni. Time-predictable execution of multi-
threaded applications on multicore systems. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2014, New Jersey, 2014. IEEE Conference Publi-
cations.

[4] Matthias Becker, Dakshina Dasari, Borislav Nicolic, Benny Akesson, Vincent Nelis,
and Thomas Nolte. Contention-Free Execution of Automotive Applications on a Clus-
tered Many-Core Platform. In 2016 28th Euromicro Conference on Real-Time Systems
(ECRTS). IEEE, 2016.

[5] M. Benabderrahmane, L. Pouchet, A. Cohen, and C. Bastoul. The polyhedral model
is more widely applicable than you think. In R. Gupta, editor, Compiler Construction,
pages 283–303, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[6] Ian J. Bertolacci, Catherine Olschanowsky, Ben Harshbarger, Bradford L. Chamber-
lain, David G. Wonnacott, and Michelle Mills Strout. Parameterized diamond tiling
for stencil computations with chapel parallel iterators. In Proceedings of the 29th
ACM on International Conference on Supercomputing, ICS ’15, page 197–206, New
York, NY, USA, 2015. Association for Computing Machinery.

[7] N. Binkert, B. Beckmann, G. Black, S. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. Hill,

76

and D. Wood. The gem5 simulator. SIGARCH Comput. Archit. News, 39(2):1–7, aug
2011.

[8] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and
P. Sadayappan. Automatic transformations for communication-minimized paralleliza-
tion and locality optimization in the polyhedral model. In International Conference
on Compiler Construction (ETAPS CC), April 2008.

[9] Uday Bondhugula, J Ramanujam, and P Sadayappan. PLuTo: A Practical and Fully
Automatic Polyhedral Program Optimization System. In PLDI 2008 - 29th ACM
SIGPLAN Conference on Programming Language Design and Implementation, 2008.

[10] Paolo Burgio, Andrea Marongiu, Paolo Valente, and Marko Bertogna. A memory-
centric approach to enable timing-predictability within embedded many-core acceler-
ators. In 2015 CSI Symposium on Real-Time and Embedded Systems and Technologies
(RTEST). IEEE, 2015.

[11] Nicola Capodieci, Roberto Cavicchioli, Paolo Valente, and Marko Bertogna.
SiGAMMA: Server based integrated GPU Arbitration Mechanism for Memory Ac-
cesses. In Proceedings of the 25th International Conference on Real-Time Networks
and Systems - RTNS ’17, New York, New York, USA, 2017. ACM Press.

[12] Guy Durrieu, Madeleine Faugère, Sylvain Girbal, Daniel Gracia Pérez, Claire Pagetti,
and W. Puffitsch. Predictable Flight Management System Implementation on a Mul-
ticore Processor. Embedded Real Time Software (ERTS’14), 2 2014.

[13] P. Feautrier and C. Lengauer. The polyhedron model. In David Padua, editor,
Encyclopedia of Parallel Computing, pages 1581–1592. Springer, 2011.

[14] Bjorn Forsberg, Luca Benini, and Andrea Marongiu. HePREM: Enabling predictable
GPU execution on heterogeneous SoC. In 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2018.

[15] Bjorn Forsberg, Andrea Marongiu, and Luca Benini. GPUguard: Towards supporting
a predictable execution model for heterogeneous SoC. In Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2017. IEEE, 2017.

[16] Bjorn Forsberg, Maxim Mattheeuws, Andreas Kurth, Andre Marongiu, and Luca
Benini. A synergistic approach to predictable compilation and scheduling on com-
modity multi-cores. In Proceedings of Languages, Compilers, Tools and Theory of
Embedded Systems, LCTES’20, 06 2020.

77

[17] Björn Forsberg, Luca Benini, and Andrea Marongiu. Heprem: A predictable execution
model for gpu-based heterogeneous socs. IEEE Transactions on Computers, 70(1):17–
29, 2021.

[18] Philip Ginsbach, Lewis Crawford, and Michael F. P. O’Boyle. Candl: A domain
specific language for compiler analysis. In Proceedings of the 27th International
Conference on Compiler Construction, CC 2018, page 151–162, New York, NY, USA,
2018. Association for Computing Machinery.

[19] G. Gracioli, R. Tabish, R. Mancuso, R. Pellizzoni, and M. Caccamo. Designing
mixed criticality applications on modern heterogeneous mpsoc platforms. In 2019
31th Euromicro Conference on Real-Time Systems (ECRTS), pages 1–23, July 2019.

[20] Tobias Grosser, Armin Größlinger, and Christian Lengauer. Polly - performing polyhe-
dral optimizations on a low-level intermediate representation. Parallel Process. Lett.,
22, 2012.

[21] Zhao Gu and Rodolfo Pellizzoni. Optimizing parallel PREM compilation over
nested loop structures. In Rob Oshana, editor, DAC ’22: 59th ACM/IEEE Design
Automation Conference, San Francisco, California, USA, July 10 - 14, 2022, pages
1249–1254. ACM, 2022.

[22] M. Hassan and R. Pellizzoni. Bounding dram interference in cots heterogeneous mp-
socs for mixed criticality systems. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(11):2323–2336, Nov 2018.

[23] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bound-
ing memory interference delay in cots-based multi-core systems. In 2014 IEEE 19th
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages
145–154, April 2014.

[24] Andreas Kurth, Pirmin Vogel, Alessandro Capotondi, Andrea Marongiu, and Luca
Benini. HERO: heterogeneous embedded research platform for exploring RISC-V
manycore accelerators on FPGA. CoRR, abs/1712.06497, 2017.

[25] Leslie Lamport. The parallel execution of do loops. Commun. ACM, 17(2):83–93, feb
1974.

[26] Renato Mancuso, Roman Dudko, and Marco Caccamo. Light-PREM: Automated
software refactoring for predictable execution on COTS embedded systems. In 2014

78

IEEE 20th International Conference on Embedded and Real-Time Computing Systems
and Applications. IEEE, 2014.

[27] Joel Matějka, Björn Forsberg, Michal Sojka, Zdeněk Hanzálek, Luca Benini,
and Andrea Marongiu. Combining PREM compilation and ILP scheduling for
high-performance and predictable MPSoC execution. In Proceedings of the 9th
International Workshop on Programming Models and Applications for Multicores and
Manycores - PMAM’18, New York, New York, USA, 2018. ACM Press.

[28] Joel Matějka, Björn Forsberg, Michal Sojka, Přemysl Š̊ucha, Luca Benini, Andrea
Marongiu, and Zdeněk Hanzálek. Combining PREM Compilation and Static Schedul-
ing for High-Performance and Predictable MPSoC Execution. Parallel Computing, 12
2018.

[29] J. Matějka, B. Forsberg, M. Sojka, Z. Hanzálek, L. Benini, and A. Marongiu. Combin-
ing prem compilation and ilp scheduling for high-performance and predictable mpsoc
execution. In Proceedings of the 9th International Workshop on Programming Models
and Applications for Multicores and Manycores, PMAM’18, pages 11–20, New York,
NY, USA, 2018. ACM.

[30] Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-
Spaccamela, and Giorgio Buttazzo. Memory-processor co-scheduling in fixed priority
systems. In Proceedings of the 23rd International Conference on Real Time and
Networks Systems - RTNS ’15, New York, New York, USA, 2015. ACM Press.

[31] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Cac-
camo, and Russell Kegley. A predictable execution model for COTS-based embedded
systems. In Real-Time Technology and Applications - Proceedings, 2011.

[32] Sebastian Pop, Albert Cohen, Cédric Bastoul, Sylvain Girbal, Georges-André Silber,
and Nicolas Vasilache. Graphite: Polyhedral analyses and optimizations for gcc. In
proceedings of the 2006 GCC developers summit, volume 6, pages 90–91. Citeseer,
2006.

[33] Juan M. Rivas, Joël Goossens, Xavier Poczekajlo, and Antonio Paolillo. Implementa-
tion of Memory Centric Scheduling for COTS Multi-Core Real-Time Systems. In 31st
Euromicro Conference on Real-Time Systems (ECRTS 2019), volume 133, 2019.

[34] Benjamin Rouxel, Steven Derrien, and Isabelle Puaut. Tightening Contention De-
lays While Scheduling Parallel Applications on Multi-core Architectures. ACM
Transactions on Embedded Computing Systems, 16(5s), 2017.

79

[35] Benjamin Rouxel, Stefanos Skalistis, Steven Derrien, and Isabelle Puaut. Hiding com-
munication delays in contention-free execution for spm-based multi-core architectures.
In 2019 31th Euromicro Conference on Real-Time Systems (ECRTS), pages 1–23, July
2019.

[36] M. Soliman, G. Gracioli, R. Tabish, R. Pellizzoni, and M. Caccamo. Segment stream-
ing for the three-phase execution model: Design and implementation. In Proceedings
of the 40th Real-Time Systems Symposium, RTSS’19, 12 2019.

[37] M. R. Soliman and R. Pellizzoni. PREM-based Optimal Task Segmentation under
Fixed Priority Scheduling. In 2019 31th Euromicro Conference on Real-Time Systems
(ECRTS), pages 1–23, July 2019.

[38] Muhammad Refaat Sedky Soliman. Automated compilation framework for
scratchpad-based real-time systems. PhD thesis, University of Waterloo, 2019.

[39] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions, 2014.

[40] Rohan Tabish, Renato Mancuso, Saud Wasly, Ahmed Alhammad, Sujit S. Phatak,
Rodolfo Pellizzoni, and Marco Caccamo. A Real-Time Scratchpad-Centric OS for
Multi-Core Embedded Systems. In 2016 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 2016.

[41] Rohan Tabish, Renato Mancuso, Saud Wasly, Sujit S. Phatak, Rodolfo Pellizzoni,
and Marco Caccamo. A Reliable and Predictable Scratchpad-centric OS for Multi-
core Embedded Systems. In 2017 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 2017.

[42] H. Vaidya, A. Patwardhan, R. Upadrasta, and A. Badrinaaraayanan. When polyhedral
optimizations meet deep learning kernels. 12 24th IEEE International Conference on
High Performance Computing, Data, and Analytics, 2017.

[43] S. Verdoolaege and T. Grosser. Polyhedral extraction tool. 01 2012.

[44] S. Verdoolaege, S. Guelton, T. Grosser, and A. Cohen. Schedule trees. 01 2014.

[45] Sven Verdoolaege. isl: An integer set library for the polyhedral model. volume 6327,
pages 299–302, 09 2010.

80

[46] Sven Verdoolaege. isl: An integer set library for the polyhedral model. In Komei
Fukuda, Joris van der Hoeven, Michael Joswig, and Nobuki Takayama, editors,
Mathematical Software – ICMS 2010, pages 299–302, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

[47] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Christian
Tenllado, and Francky Catthoor. Polyhedral parallel code generation for CUDA. ACM
Transactions on Architecture and Code Optimization, 9(4):1–23, 1 2013.

[48] Sven Verdoolaege and Gerda Janssens. Scheduling for PPCG. 06 2017.

[49] S. Wasly and R. Pellizzoni. Hiding memory latency using fixed priority scheduling. In
2014 IEEE 19th Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 75–86, April 2014.

[50] Saud Wasly and Rodolfo Pellizzoni. A Dynamic Scratchpad Memory Unit for Pre-
dictable Real-Time Embedded Systems. In 2013 25th Euromicro Conference on
Real-Time Systems. IEEE, 2013.

[51] Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Emiliano Betti, and Marco Caccamo.
Memory-centric scheduling for multicore hard real-time systems. Real-Time Systems,
48(6), 2012.

[52] Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Heechul Yun, and Marco Caccamo. Global
Real-Time Memory-Centric Scheduling for Multicore Systems. IEEE Transactions on
Computers, 65(9), 2016.

81

	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Objective
	Contributions and Structure

	Background and Related Work
	Predictable Execution Model
	Streaming Model
	PREM Compilers

	Polyhedral Loop Model
	Basic Concepts
	Dependence Analysis

	Loop Transformation

	System Model and Parallel PREM Schedule
	Target Architecture
	Code Assumptions
	Application Model
	Tilable Components
	Parallel Streaming PREM Schedule

	Schedule Optimization
	Motivation
	Schedule Length
	Tiling Component Optimization
	Application Optimization

	PREM Compiler Implementation
	Compiler Design
	Program transformations and Validity
	Legality of Transformation
	Tiling Transformation

	Data Transfer Statements Generation
	Memory Access Analysis
	API Call Parameters

	Evaluation
	Platform Configuration
	Polybench Kernels
	CNN kernels in GoogLeNet
	Comparison with greedy approach
	Boundary region

	Conclusions and Future Work
	References

