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Abstract

Database query optimization studies the problem of finding equivalent and efficient query
execution plans for user queries under schema constraints. Logic-based approaches to query
optimization leverage automated theorem proving and Craig interpolation to enumerate
query plans that are correct and performance-optimal. In this thesis, we investigate and
improve one of the state-of-the-art logic-based query optimizers – the Interpolation Test
Bed (ITB).

We begin by formally capturing the physical data independence framework and query
optimization problem with first-order logic. Then, we give a gentle introduction to the
classical results from logic that form the basis of logic-based query optimizers.

We re-establish the correctness of ITB’s conditional tableau interpolation mechanism by
reduction to free-variable tableau interpolation. To facilitate the reduction proof, we in-
troduce interpolation rules for the free-variable tableau and prove the correctness of inter-
polation. Then we show the correctness of conditional tableau interpolation by reduction.

We investigate a limitation of ITB’s forward chaining design, which causes missing optimal
plans. To address this limitation, we propose a rewriting procedure inspired by Magic Set
Transformation (MST), to extend the plan space for the current ITB system. We show
that the propose rewriting procedure effectively generates the missing query plans, which
are otherwise not found, while accommodating the existing forward chaining design.
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Chapter 1

Introduction

Any application that manages information, ranging from Excel to Google search, is powered
and limited by its ability to store and retrieve data; in particular, its ability to answer
queries and update data efficiently. A query plan implements how a high-level user query
or update is answered through specifying a sequence of operations over the data storage.
Performance among query plans, however, varies substantially [28, 16]. The study of query
reformulation tackles the task of query optimization by finding logically equivalent and
computationally efficient query plans for each user query or update [1].

Traditional query optimization techniques, such as join ordering based on cost models [20]
and fixed transformations based on an initial plan, preserve logical equivalence without
directly confronting the query reformulation problem [28, 16]. However, these transforma-
tions commonly explore only a restricted neighbourhood around the initial plan, limiting
improvements to a local optimum [7].

Over the last decade, a novel logic-based approach has emerged to address the problem
of query reformulation under constraints. Since the set of all equivalent query plans is
recursively enumerable under unrestricted semantics, and logic-based approaches can, in
principle, search over all possible query plans [7, 31, 25]. State-of-the-art logic-based query
optimizers, Interpolation Test Bed (ITB) [32] and Proof Driven Querying (PDQ) [8], both
leverage automated theorem proving techniques and Craig interpolation (Section 2.2) to
produce logically equivalent query plans [32, 25, 31, 14]. In particular, a variant of the ana-
lytic tableau proof system, called the conditional tableau, is developed for ITB to construct
Craig interpolants for the purpose of query optimization. The correctness of conditional
tableau inference and interpolation has been established previously in [25]. Since then, the
conditional tableau and ITB have undergone significant changes and improvements. The
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aim of this thesis is twofold:

1. Establish the correctness of the conditional tableau in full details; and

2. Extend the space of enumerable query plans for the current ITB system.

For (1), we prove the correctness of conditional tableau interpolation by reduction to
another tableau variant called the free-variable tableau [21]. To our knowledge, previous
work has not explored interpolation in the context of free-variable tableau [21]. To facilitate
the reduction proof, in Chapter 3, we propose a set of interpolation rules for the free-
variable tableau and prove the correctness of free-variable tableau interpolation. Following
the preparatory work on the free-variable tableau, in Chapter 4, we present the inference
rules and interpolation mechanism for the conditional tableau and prove the correctness of
conditional tableau interpolation.

For (2), we present a rewriting procedure inspired by the Magic Set Transformation (MST)
technique originally developed in the area of logic programming [6, 5] in Section 4.3. The
current ITB system implements the conditional tableau using forward chaining and derives
positive ground literals only to improve the performance of theorem proving. However, a
limitation of the current design is that certain negative ground literals can never be gener-
ated, which leads to missing potentially optimal query plans. We show that the proposed
MST-based rewriting procedure addresses the aforementioned limitation by extending the
space of query plans.

In addition to the conditional tableau, an independent planning component [29] based
on the A∗ search algorithm [22] is responsible for efficient query plan enumeration. We
summarize ITB’s system design and implementation details in Chapter 5.

Finally, we briefly comment on related work and future directions in Chapter 6.
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Chapter 2

Background

2.1 Query Optimization

Abstraction is one of the fundamental principles in computer science. Two canonical exam-
ples are the idea of data independence [4, 3] from database systems and the idea of abstract
data type (ADT) [27] from data structures – both can be dated back to the early 70s.
Making the interface and implementation independent of each other provides numerous
advantages in application development, including user-friendliness, ease of maintenance,
better performance and scalability, greater flexibility, improved security, etc. For instance,
modern file systems allow the users to manipulate files without understanding the low-level
disk layouts and enable the developers to optimize disk layouts without affecting the user
interface.

Today, data independence is a standard practice in the area of database design, following
the development of the relational model (RM) [12] with accompanying data manipulation
languages [13] based on first-order logic [17]. However, the abstraction of low-level imple-
mentation, such as C programs, in database management systems (DBMSs) often comes
at the cost of increased development time and decreased quality of deployed systems. This
thesis describes a novel approach [11, 31, 25, 32, 34] to tackle this crucial challenge in-
herent to data independence: automating the search for performance-optimal, low-level
instructions that correctly implement high-level user commands in DBMSs.

The remainder of Section 2 describes the data independence property and query opti-
mization problem for relational databases in terms of first-order signatures and integrity
constraints (i.e., sentences over these signatures).
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2.1.1 The Logical Schema

The logical schema captures the user-level conceptual description of a database. It consists
of a first-order signature SLog, called the logical vocabulary, and a set of integrity constraints
ΣLog over SLog, called the logical constraints.

ΣLog SLog φoo Logical Schema
and User Query

Figure 2.1: Logical schema.

Users can request data from the database by formulating a user query φ over the atoms
in SLog under the constraints in ΣLog. From an application perspective, SLog represents the
set of all tables that are visible to the users, and user queries must be formulated using
tables in SLog under the constraints imposed by ΣLog. Notably, the following are sufficient
for database users to develop applications:

1. Familiarity with SLog and ΣLog; and

2. Presumption of a single database instance (i.e., a single interpretation on SLog that
is a model of ΣLog) instead of all valid instances.

Example 2.1 (Logical Schema) We illustrate the features of the logical schema through
the following SQL declaration.

CREATE TABLE employee ( CREATE TABLE department (

num INTEGER NOT NULL, num INTEGER NOT NULL,

name CHAR(20), name CHAR(50),

worksin INTEGER NOT NULL manager INTEGER NOT NULL,

PRIMARY KEY (num), PRIMARY KEY (num),

FOREIGN KEY (worksin) FOREIGN KEY (manager)

REFERENCES department REFERENCES employee

) )

The above declarations specify the content of employee and department instances: em-
ployee contains information about employee numbers, names and departments they work
in, and department contains information about departments’ names and managers. In our
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formalism, this is equivalent to the following signatures SLog (where “/i” indicates predicate
arity) and integrity constraints ΣLog:

SLog = {employee/3, department/3, manager/3, worker/3},

ΣLog = {
// All free variables are assumed to be universally quantified.

// employee numbers are unique
employee(x, y1, z1) ∧ employee(x, y2, z2) → y1 = y2 ∧ z1 = z2,

// every employee belongs to a department

employee(x, y, z) → ∃u, v.department(z, u, v),

// a (virtual) view for managers
manager(x, y, z) ↔ (employee(x, y, z) ∧ ∃n.department(z, n, x))),

// disjoint partition of employees to managers and workers
employee(x, y, z) ↔ (manager(x, y, z) ∨ worker(x, y, z)),
manager(x, y, z) → ¬∃u, v.worker(x, u, v),

// business logic: managers work for their own departments
(department(x, y, z) ∧ employee(z, u, w)) → x = w

}.

As illustrated by ΣLog, the user can specify integrity constraints in the logical schema
to express advanced functionalities that are beyond the typical implementations of the
relational model, such as view, business rule, and partition.

2.1.2 The Physical Schema

The physical schema captures the low-level implementation of a database and the means
to retrieve data from physical storage, such as disks. The physical schema, similar to its
logical analog, consists of a physical vocabulary SPhys and a set of physical constraints ΣPhys

over both the logical and physical vocabulary, SLog ∪ SPhys. A subset of symbols SA in the
physical vocabulary SPhys corresponds to access paths which are subroutines that retrieve
data from data structures in physical storage.
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ΣLog SLog φoo

(compile)

��

Logical Schema
and User Queries

ΣPhys

SA ⊆ SPhys ψoo Physical Schema
and Query Plans

Figure 2.2: Logical and physical schema.

Each access path is associated with a binding pattern which specifies the input and output
variables of the access path. Values for the input variables must be given to the access path
in order to retrieve corresponding values for the output variables. The binding pattern is
provided as a part of the signature in SA and specified using the signature R/i/j, where
R is a predicate symbol, i the arity of the predicate symbol, and j the number of input
variables. We assume input variables always appear before output variables.

Example 2.2 (Physical Schema) We define a physical schema for the logical schema
in Example 1. In general, we observe the following properties regarding physical imple-
mentation of DBMSs:

1. Programs/subroutines can access and retrieve data records by traversing the data
structures in physical storage; and

2. Each data record is associated with a unique address in the physical storage.

For the sake of illustration, let us use a linked list data structure to store two types of
records, emp and dept corresponding to employee and department:

record emp of

integer num

string name

reference dept

record dept of

integer num

string name

reference mgr

Our formalism implements the above definitions of employee and department records using
a set of physical predicate symbols and their access paths for SPhys:
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• empfile/1/0: set of addresses of emp records; this access path abstracts navigating
a linked list (of emp records) in physical storage.

• emp-num/2/1: a set of addresses of emp records paired with the emp numbers; this ac-
cess path corresponds to extracting a field (num in this case) from an emp record (given
an address of such a record). The access paths emp-name/2/1 and emp-dept/2/1
and dept-num/2/1, dept-name/2/1, and dept-mgr/2/1 similarly abstract the field
extraction of the remaining fields from the emp and dept records.

Recall that the first and second integers specify the arity and number of input variables in
the binding pattern respectively, where all input variables appear before output variables
in a list of arguments. We illustrate the effect of binding patterns with emp-num: the first
argument of emp-num is an input argument which consumes an emp record address and
retrieves the corresponding num value as output of the second argument. In addition to
physical symbols corresponding directly to access paths, we can define auxiliary symbols
emp/1 and dept/1 of arity 1 to represent sets of addresses of emp and dept records.

Finally, we define constraints in ΣPhys to specify the connections between the logical and
physical schemata:

// design of emp and dept structs; emp/dept addresses, fields functional

emp(e) → ∃y.emp-num(e, y),
emp(e) → ∃y.emp-dept(e, y),
emp-num(e, y) ∧ emp-num(e, z) → y = z,
emp-dept(e, y) ∧ emp-dept(e, z) → y = z,
emp-num(y, x) ∧ emp-num(z, x) → y = z,
emp-dept(e, d) → dept(d),

emp(e) → ∃y.emp-name(e, y),
dept(d) → ∃y.dept-name(d, y),
emp-name(e, y) ∧ emp-name(e, z) → y = z,
dept-name(d, y) ∧ dept-name(d, z) → y = z,

dept(d) → ∃y.dept-num(d, y),
dept(d) → ∃y.dept-mgr(d, y),
dept-num(d, y) ∧ dept-num(d, z) → y = z,
dept-mgr(d, y) ∧ dept-mgr(d, z) → y = z,
dept-num(y, x) ∧ dept-num(z, x) → y = z,
dept-mgr(d, e) → emp(e),
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// linked list addresses for emp’s and record attributes

empfile(x) ↔ emp(x),

// user predicates and mappings

employee(x, y, z) ↔ ∃e.baseemployee(e, x, y, z),
emp(e) ∧ emp-num(e, x) ∧ emp-name(e, y) ∧ ∃d.emp-dept(e, d) ∧ dept-num(d, z))
↔ baseemployee(e, x, y, z),

department(x, y, z) ↔ ∃d.basedepartment(d, x, y, z),
dept(d) ∧ dept-num(d, x) ∧ dept-name(d, y) ∧ ∃e.(dept-mgr(d, e) ∧ emp-num(e, z))
↔ basedepartment(d, x, y, z).

This completes our definition of the physical schema for Example 1.

2.1.3 Query Plans

Recall that the ultimate goal of our system is to output a program that retrieves data from
physical storage for an input user query.

Definition 2.3 (Range-Restricted Formulae [2]) Let ψ be a formula, and let R range
over a set of predicate names. Let Fv(ψ) denote the set of all free variables in ψ. Given
a set of variable names {x1, x2, . . . }, range-restricted formulae are defined by the following
grammar:

ψ ::= R(x1, . . . , xk)

| ψ1 ∧ ψ2

| ∃xi.ψ1

| ψ1 ∨ ψ2 where Fv(ψ1) = Fv(ψ2)

| ψ1 ∧ ¬ψ2 where Fv(ψ1) ⊇ Fv(ψ2)

Definition 2.4 (Range-Restricted Schema Constraints [2]) Let ψ and φ be range-
restricted formulae, and let x1, . . . .xn be variables. A range-restricted schema constraint
is a range-restricted formula of the form ∀x1, . . . .xn.(ψ → φ), where Fv(ψ → φ) =
{x1, . . . .xn}, Fv(φ) ⊆ Fv(ψ).
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Definition 2.5 (Range-Restricted Query [2]) A range-restricted query has the form
{(x1, . . . , xn) | ψ}, where {x1, . . . , xn} = Fv(ψ) and ψ is a range-restricted formula. For the
sake of convenience, we use ψ and {(x1, . . . , xn) | ψ} interchangeably, assuming (x1, . . . , xn)
is a lexicographical ordering of the free variables.

Definition 2.6 (Valid Query Plan [2]) A valid query plan for user query φ and con-
straints Σ is a range-restricted query ϕ over SA such that all binding patterns are satisfied
and ϕ ≡ φ.

Up to this point, we have expressed everything in the DBMS in terms of first-order formulas.
However, a machine cannot simply execute a query plan expressed in first-order logic. The
following mapping suggests a non-trivial but straightforward procedure to transform a
first-order query plan into an executable program in any language of choice:

atomic formula 7→ access path (a get-first / get-next iterator)
conjunction 7→ nested loops join
existential quantifier 7→ projection (with optional duplicate information)
disjunction 7→ concatenation
negation 7→ simple complement

We shall revisit the issue of program generation in more details in Section 5, but first, let
us illustrate the utility of our system with examples.

Example 2.7 Considering query plans and their resulting programs for the following user
queries:

Q1: List employee numbers, names, and departments (employee(x, y, z)).

We can show that this user query is logically equivalent under the integrity constraints to
the query plan SA:

∃e, d.empfile(e) ∧ emp-num(e, x) ∧ emp-name(e, y)
∧ emp-dept(e, d) ∧ dept-num(d, z)

Assuming our formula to program transformation mapping, this formula would correspond
to the following C-like code (with trivial simplifications and inlining of the ea-xxx(x, y)
access paths to y := x->xxx):

for e in empfile do

x := e->num; y := e->name;
d := e->dept; z := d->num; return (x, y, z);
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The formula above satisfies the binding patterns associated with the access paths used as it
retrieves the address of an emp record before attempting to extract the values of it’s fields.

Q2: List worker numbers and names (∃z.worker(x, y, z)).
Again, the user query is logically equivalent to the query plan:

∃e, d.empfile(e) ∧ emp-num(e, x) ∧ emp-name(e, y)
∧ emp-dept(e, d) ∧ ¬dept-mgr(d, e)

Note that a negation, ¬dept-mgr(d, e), is required, and that there is no negation in the
query nor in the schema that provides any direct clue that it is needed. (We are not
aware of any system that can synthesize this plan given the physical data independence
framework.)

Q3: List all department numbers and their names (∃z.department(x, y, z)).
Finding a plan for this query is more difficult since we do not have a direct way to “scan”
dept records. However, it is an easy exercise to verify that the following two formulae over
SA are logically equivalent to the query:

∃d, e.empfile(e) ∧ emp-dept(e, d)
∧ dept-num(d, x) ∧ dept-name(d, y)

(relying on the constraint that “departments have at least one employee”)

∃d, e.empfile(e) ∧ emp-dept(e, d)
∧ dept-num(d, x) ∧ dept-name(d, y) ∧ dept-mgr(d, e)

(relying on the constraint that “managers work in their own departments”)

Both correspond to plans. However, while the second might seem to be less efficient than
the first, a query optimizer should prefer it on the grounds that, in this case, the quantified
variables d and e are functionally determined by the answer variable x. Hence, the final
projection generated for the second does not need to eliminate duplicate answers, assuming
the aforementioned translation procedure from first-order logic to executable program.
This is not the case for the first of these formulae since it would return a copy of the
department information for every employee of the department should duplicate elimination
in the final projection not be performed. A more detailed discussion of duplicate elimination
can be found in [33].
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Many other problems and issues in physical design and query plans can be revolved
in this framework, including standard RDBMS physical designs (and more), access to
search structures (index access and selection), horizontal partitioning/sharding, column
store/index-only plans, hash-based access to data (including hash-joins), multi-level stor-
age (aka disk/remote/distributed files), materialized views, etc., all without any need for
coding in C beyond the need for the generic specifications of get-first / get-next tem-
plates for concrete data structures.

2.2 Query Rewriting via Interpolation

2.2.1 Definability

In the previous section, we introduced the data independence property which abstracts
the physical implementation of database applications from the users. Consequently, it is
sensible to presume a single interpretation (i.e., database instance) of the symbols in SLog, as
users are oblivious to the physical implementation ΣPhys∪SPhys of SLog. Unfortunately, this
seemingly innocuous presumption does not always hold. For example, Q3 in Section 2.1.3
may have multiple valid interpretations under a fixed instance of SA when the constraint
“departments have at least one employee” is removed from the schema. Queries with no
‘sensible’ answers have undefined behaviour from the users’ perspective and fall outside
the scope of our discussion. To formalize the notion of ‘sensible queries’, we appeal to
definability. To simplify notation, we hereon use finite sets of formulae X, Y in the context
of X → Y to denote the conjunctions of formulae in X, Y respectively.

Proposition 2.8 (Projective Beth Definability [10]) Let Σ = ΣLog∪ΣPhys be a finite
set of constraints. Let M|S denote the reduct of model M to set S. Then the following
formulations of definability condition are equivalent:

1. (Implicit Definability) For any two models M1,M2 of Σ where M1|SA = M2|SA, it
holds that M1 |= q(ā) if and only if M2 |= q(ā) for all tuples ā of M1.

2. (Explicit Definability) q is logically equivalent to a formula ψ over SA.

Projective Beth definability also applies to an infinite set of constraints Σ. In the context
of query optimization, (1) formalizes the notion of sensible queries with respect to the
users’ expectation: queries that are definable must have the same answer in every model
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of Σ for a fixed interpretation of SA. Hence, projective Beth definability condition holds if
and only if the user query is sensible.

In Chapter 3 and Sections 4.1 and 4.2, we show how to construct free-variable and condi-
tional tableau proofs to verify that projective Beth definability condition holds. In order
to do so, it is constructive to reformulate the definability condition as a single entailment.
Let •L(•R) superscripts denote uniform renaming of atoms by adding L(R) superscripts to
their predicate names respectively. Let ΣA = {∀x̄.(P L(x̄) ↔ P (x̄) ↔ PR(x̄)) | P ∈ SA}
be a finite set of constraints. Given Proposition 2.8, it is not difficult to reformulate the
definability condition as the following:

ΣL ∪ ΣR ∪ ΣA |= ∀x̄.(qL(x̄) → qR(x̄)).

2.2.2 Interpolation

Returning to the query optimization problem, since users expect sensible query answering
behaviour, we hereon only consider definable queries. Then the following result reduces
query rewriting to interpolation.

Proposition 2.9 (Craig Interpolation and Interpolant [14]) Suppose there exists a
proof of projective Beth definability condition in Proposition 2.8. Then one can construct
a first order formula ψ over SA such that

ΣL ∪ ΣR ∪ ΣA |= ∀ȳ.(qL(ȳ) → ψ → qR(ȳ)),

or equivalently, given finite sets of formulae, ΣL and ΣA, and 0̄ a set of Skolem constants,

(ΣL ∪ ΣA ∪ {qL(0)}) → ψ[ȳ/0̄] → (ΣR ∪ ΣA → qR(0)).

We call ψ an interpolant for q with respect to Σ and ΣA.

The second formulation in Proposition 2.9 also applies to infinite sets of formulae in the
sense that if ψ is an interpolant for a finite subset of an infinite set of formulae, then it
is also an interpolant for the infinite set by the compactness of first-order logic. Notice
that by Definition 2.6, ψ is a valid query plan for the user query q(x̄) if all of its binding
patterns are satisfied. Moreover, Proposition 2.9 not only guarantees the existence, but
also the construction of an interpolant. Hence, if a proof of definability exists, we can find
a query plan for the user query q(x̄) by constructing an interpolant such that all of its
binding patterns are satisfied.
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Chapter 3

Free-Variable Tableau

To construct interpolants for the purpose of query optimization, we start by considering
one of the standard interpolation methods based on a family of proof systems called the
analytic tableaux [19]. Tableaux-based interpolation methods usually consist of 2 phases:

1. Constructing a closed proof of the definability condition in Proposition 2.8; and

2. Applying interpolation rules to construct interpolants inductively on the structure of
the proof tree.

In particular, we consider the free-variable tableau, which is a variant of the general analytic
tableau. We denote the free-variable tableau system F. The soundness and completeness of
F-tableau are established in [21]. To our knowledge, existing work has not applied F-tableau
to interpolation (i.e., the construction of interpolants). In this section, we present inference
and interpolation rules for F-tableau as well as the proof of correctness of interpolation.

3.1 Inference and Interpolation Rules

A tableau is a proof tree whose nodes are labelled with formulae. The root of a tableau
represents a set of input formulae, called premises. A branch represents the conjunction
of formulae appearing on it, and a tree represents the disjunction of its branches. A proof
tree F is attached at the tip of a branch of another proof tree by appending F below
the leaf node of that branch. Similar to the biased tableau [19], to facilitate interpolant
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construction, F-tableau uses a signed system, which assigns each formula in the proof tree
with either a left or right bias, denoted by L() and R() respectively. For the sake of brevity,
whenever a rule applies to both left and right biased formulae, we denote its bias by X to
represent either of the cases, and we denote its opposite bias by X.

Definition 3.1 (F-Tableau Inference Rules [19]) Let S be a set containing all biased
formulae along a branch in a F-tableau. Let v be a fresh variable, α, β be formulae, x a
free variable in α, and x1, . . . , xn free variables in ∃x.α. Let fX be a fresh n-place Skolem
function symbol for X(∃x.α) with bias X. F-tableau inference rules are defined as follows:

Conjunctive

{X(α),X(β)} ∪ S
X(α ∧ β) ∈ S

(IC1)
{X(¬α),X(¬β)} ∪ S
X(¬(α ∨ β)) ∈ S

(IC2)

Disjunctive

{X(α)} ∪ S {X(β)} ∪ S
X(α ∨ β) ∈ S

(ID1)
{X(¬α)} ∪ S {X(¬β)} ∪ S

X(¬(α ∧ β)) ∈ S
(ID2)

Existential

{X(α[x/fX(x1, . . . , xn)])} ∪ S
X(∃x.α) ∈ S

(IE1)
{X(¬α[x/fX(x1, . . . , xn)])} ∪ S

X(¬∀x.α) ∈ S
(IE2)

Universal

{X(α[x/v])} ∪ S
X(∀x.α) ∈ S

(IU1)
{X(¬α[x/v])} ∪ S
X(¬∃x.α) ∈ S

(IU2)

We perform Skolemization on biased formulae to ensure that the original Skolem function
symbols present in the premises are not biased.

Definition 3.2 (Skolemization [19]) Let α be a formula with free variables x, y1, . . . , yn
and fX a fresh n-place function symbol with bias X. The Skolemization of X(∃x.α) is
X(α[x/fX(y1, . . . , yn)]). To Skolemize all ∃ quantifers in a formula, repeatedly perform
Skolemization until the formula is free of ∃ quantifiers; we say that the resulting formula
is fully Skolemized.
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Definition 3.3 (Maximal Skolem Term) We call a biased Skolem term tX maximal
with respect to a set of formulae S if there is at least one occurrence of tX in S such that
tX is not a proper subterm of another Skolem term.

Definition 3.4 (Partial Order on Skolem Terms) Let ti1 , ti2 be biased Skolem terms.
We define a partial order < on biased Skolem terms: ti1 < ti2 if and only if ti1 is a proper
subterm of ti2. Given a list of biased Skolem terms (t1, . . . , tn), we say that the order of ti1
and ti2 satisfies the subterm property if ti1 = tj and ti2 = tk such that j < k.

Most standard texts recommend performing Skolemization from the outside in to reduce
the complexity of Skolem terms. However, the order of Skolemization does not affect
equisatisfiability. The next proposition and corollary allow us to freely Skolemize input
formulae before proof construction.

Proposition 3.5 (Equisatisfiability [19]) Let α be a formula and α′ the Skolemization
of α. Then α is satisfiable if and only if α′ is satisfiable.

Corollary 3.6 Let S be a set of formulae, and let S ′ be the set obtained by Skolemizing
each formula in S. Then there is a F-tableau proof that shows S is inconsistent if and only
if there is a F-tableau proof that shows S ′ is inconsistent.

proof: Follows Proposition 3.5 and the soundness and completeness of F-tableau. ■

The defining characteristic of F-tableau is that it permits the introduction of free variables
in universal expansions. Notably, the introduction of free variables allows universal and
existential expansions to be applied in arbitrary order and without immediate ground
instantiations of universally quantified variables; atomic formulae are then unified to find
‘clashes’ (i.e., atomic closures) for proof closure after sufficiently many inference rules have
been applied. Once a substitution is applied to unify atomic formulae, inference rules may
not be applied to expand the substituted proof tree, and the proof construction terminates.

Moreover, we should only consider free variables for unification and closure. To illustrate,
consider substitution σ defined by xσ = y. Then, applying σ on ∀y.(R(x, y))∧P (x) results
in ∀y.(R(y, y)) ∧ P (y), but x being a free variable means that it serves as a place holder
for the instantiation of another universally quantified variable, so substituting x by bound
variable y is not sound.

Definition 3.7 (Free Substitution [19]) Let α and β be formulae. A substitution σ
being free for a formula is defined as follows:
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1. σ is free for α whenever α is atomic;

2. σ is free for ¬α if σ is free for α;

3. σ is free for (α ◦ β) if σ is free for α and σ is free for β, where ◦ ∈ {∧,∨}; and

4. Let σx be such that yσx = x if y = x, and yσx = yσ otherwise. Then σ is free for
∀x.α and ∃x.α provided that σx is free for α, and if y is a free variable of α other
than x, yσ does not contain x.

We apply substitution σ to a branch b by applying σ to every formula on the branch b.
We apply substitution σ to a proof tree F by applying σ to every branch in the proof tree
F . As a consequence of free variables and substitutions, the notions of witness and proof
closure for F-tableau are adapted accordingly.

Definition 3.8 (Witness) Let α be a formula and tX a biased Skolem term. If tX is
introduced by the existential expansion of X(∃x.α), then we say that tX is a witness for the
∃x in X(∃x.α). If tX is introduced by the Skolemization of ∃x in X(∃x.α), then we also say
that tX is a witness for the ∃x in X(∃x.α).

Definition 3.9 (Term up to Substitution) Let σ be a substitution, and let t denote an
instance of some term in a formula ψ. We say t is a term up to substitution if we use t to
denote the same instance of the term under substitution σ.

Definition 3.10 (Scope of Witnesses) Let t1, t2, t3 be terms up to substitution. We say
that t3 is a witness inside the scope of t1 if at any stage during F-tableau construction either
(i) t1 is a proper subterm of t3, or (ii) t3 is a witness within the scope of t2 and t2 a witness
within the scope of t1.

Definition 3.11 (F-Tableau Closure) Let Fv be a F-tableau, and let σ be a free sub-
stitution for Fv such that for every free variable x appearing in the premises (i.e., input
formulae), xσ = x. A branch b in Fv is atomically closed under σ if bσ contains an atom
and its negation, ignoring bias labels. F is closed if all branches are closed under σ. We
call σ a closing substitution for Fv and F = Fvσ a closed F-tableau for Fv.

A branch is open if it is not atomically closed. A literal in F is open if it is not on any
closed branch in F .

Once a closed F-tableau is found, we can apply F-tableau interpolation rules to construct
an interpolant inductively on the structure of the proof tree. Given a set of biased formulae
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S = {L(α0), . . . , L(αn),R(β0), . . . ,R(βk)}, we use S
int−→ ψ to denote α0 ∧ · · · ∧ αn → ψ →

¬β0 ∨ · · · ∨ ¬βk.

Definition 3.12 (F-Tableau Interpolation Rules) The interpolatioin rules define the
int−→ relation inductively on the structure of the proof tree. Let α, αi, β, βi denote formulae
for all i. Let F be a closed F-tableau proof and S = {L(α0), . . . , L(αn),R(β0), . . . ,R(βk)} a
set containing all biased formulae along a branch in F . Let fX be a fresh l-place Skolem
function symbol for X(∃x.α) or X(¬∀x.α) with bias X, t, t1, . . . , tl terms, v a free variable
that does not appear in the premises, and r an atom.

Base Cases

S ∪ {L(r), L(¬r)} int−→ ⊥ (B1) S ∪ {R(r),R(¬r)} int−→ ⊤ (B2)

S ∪ {L(r),R(¬r)} int−→ r (B3) S ∪ {R(r), L(¬r)} int−→ ¬r (B4)

S ∪ {L(⊥)} int−→ ⊥ (B5) S ∪ {R(⊥)} int−→ ⊤ (B6)

Conjunctive Cases

S ∪ {X(α),X(β)} int−→ ψ

X(α ∧ β) ∈ S
int−→ ψ

(C1)
S ∪ {X(¬α),X(¬β)} int−→ ψ

X(¬(α ∨ β)) ∈ S
int−→ ψ

(C2)

Disjunctive Cases

S ∪ {L(α)} int−→ ψ1 S ∪ {L(β)} int−→ ψ2

L(α ∨ β) ∈ S
int−→ ψ1 ∨ ψ2

(D1)
S ∪ {R(α)} int−→ ψ1 S ∪ {R(β)} int−→ ψ2

R(α ∨ β) ∈ S
int−→ ψ1 ∧ ψ2

(D2)

S ∪ {L(¬α)} int−→ ψ1 S ∪ {L(¬β)} int−→ ψ2

L(¬(α ∧ β)) ∈ S
int−→ ψ1 ∨ ψ2

(D3)
S ∪ {R(¬α)} int−→ ψ1 S ∪ {R(¬β)} int−→ ψ2

R(¬(α ∧ β)) ∈ S
int−→ ψ1 ∧ ψ2

(D4)

Existential Cases

S ∪ {X(α[x/fX(t1, . . . , tl)]}
int−→ ψ

X(∃x.α) ∈ S
int−→ ψ

(E1)
S ∪ {X(¬α[x/fX(t1, . . . , tl)]}

int−→ ψ

X(¬∀x.α) ∈ S
int−→ ψ

(E2)
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Universal Cases

S ∪ {X(α[x/t]} int−→ ψ

X(∀x.α) ∈ S
int−→ ψ

(U1)
S ∪ {X(¬α[x/t]} int−→ ψ

X(¬∃x.α) ∈ S
int−→ ψ

(U2)

Quantification Cases

S
int−→ ψ

S
int−→ ∃x.(ψ[fL(t1, . . . , tl)/x])

(Q1)
S

int−→ ψ

S
int−→ ∀x.(ψ[fR(t1, . . . , tl/x])

(Q2)

fL(t1, . . . , tl) does not appear in β0, . . . , βk fR(t1, . . . , tl) does not appear in α0, . . . , αn
and does not appear as a proper subterm and does not appear as a proper subterm
of another Skolem term in α0, . . . , αn, ψ of another Skolem term in β0, . . . , βk, ψ

S
int−→ ψ

S
int−→ ∃x.(ψ[v/x])

(Q3)
S

int−→ ψ

S
int−→ ∀x.(ψ[v/x])

(Q4)

v does not appear in S v does not appear in S

Intuitively, a fresh free variable v may either be universally or existentially quantified since
we may substitute any term, including biased Skolem terms, constants and free variables,
in place of v. We illustrate this intuition behind quantification rules (Q3) and (Q4) with
Example 3.13.

Example 3.13 (Fresh Free Variable Quantification) Consider the implication

(∀x.R(x)) → (∃x.R(x)).

To prove the implication, we assign bias labels and start with input formulae L(∀x.R(x))
and R(∀x.¬R(x)). Apply inference rule (IU1) to L(∀x.R(x)) and R(∀x.¬R(x)), we get a
F-tableau Fv consisting of {L(∀x.R(x)),R(∀x.¬R(x))} at the root and L(R(v1)),R(¬R(v2))
on a single branch, where v1, v2 are fresh free variables.

By inspection, ∀x.R(x) and ∃x.R(x) are both interpolants for the implication. F can
be closed by the closing substitution v1σ = v2, v2σ = v2, so we obtain a closed tableau
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F = Fvσ. Notice that v2 in F can be quantified by applying either (Q3) or (Q4), resulting
in ∀x.R(x) and ∃x.R(x) respectively. This observation generalizes to more complicated
inputs and interpolants.

Moreover, (Q1), (Q2), (Q3), and (Q4) provide as much flexibility for quantification as
needed: instead of quantifying terms as soon as possible, we may delay quantification as
long as the biased Skolem terms and free variables are quantified using the correct type
of quantifiers within appropriate scopes based on the partial order of witnesses. Example
3.14 shows that we may delay all quantifications until the end to construct an interpolant
in prenex normal form.

Example 3.14 (Delayed Quantification) Consider the implication

(∃x.(P (x) ∧ ∃y.R(x, y))) → (∃x.(P (x) ∧ ∃y.R(x, y))).

To prove the implication, we assign bias labels and start with input formulae L((∃x.(P (x)∧
∃y.R(x, y)))) and R(∀x.(¬P (x) ∨ ∀y.¬R(x, y))). It is easy to verify that we can delay the
application of quantification rule (Q1) until the final interpolation step and construct the
interpolant (∃y.∃x.(P (x) ∧R(x, y))) in prenex normal form.

Finally, we remark that the universal rules (U1) and (U2) and quantification rules (Q1),
(Q2), (Q3), and (Q4) are the only interpolation rules that are significantly different from the
ground interpolation rules for the biased tableau presented in [19], which applies quantifiers
inductively based on the structure of universal expansions in the proof tree. Notice that
(Q1), (Q2), (Q3), and (Q4) rely solely on the partial order (i.e., the subterm property)
and bias labels of biased Skolem terms. The new quantification rules for F-tableau are
appropriate given the following considerations (details and proofs in Section 3.2):

1. The order of witnesses may not follow the structure of universal expansions in the
proof tree because free variables and closing substitution allow universal and exis-
tential expansions to be applied in arbitrary order;

2. The order of witnesses follows the partial order of biased Skolem terms (i.e., the
subterm property);

3. The type of quantifier (∃/∀) for a biased Skolem term is given by the Skolem term’s
bias label; and

4. Free variables that do not appear in the premises are can be either universally or
existentially quantified.
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3.2 Correctness of Interpolation Rules

To prove the correctness of F-tableau interpolation rules, we start by proving Lemmas 3.15
and 3.16, which help establish the correctness of the quantification of interpolants. We
refer to free variables that that do not appear in the premises as fresh free variables. For
an implication of the form ϕ→ ψ, the say ϕ and ψ are the left and right hand side of the
implication respectively.

Lemma 3.15 Let Fv be a F-tableau, σ a closing substitution for Fv, and F = Fvσ a
closed tableau. Let fX(x1, ..., xn) be a biased Skolem term in Fv and tX = fX(x1, ..., xn)σ
a biased Skolem term in F . Then fX(x1, ..., xn) does not appear in any X biased formulae
in Fv. Moreover, tX can only appear in a X biased formula in F as a result of variable
substitution σ for some X biased universal expansion.

proof: By Definition 3.1, each biased Skolem function symbol is introduced by either
Skolemization or existential expansion. By Definition 3.2, ∃ quantifiers in X biased formulae
are always Skolemized using X biased Skolem function symbols, which are disjoint with the
set of X biased Skolem function symbols. By Definition 3.1, X biased existential expansions
always introduce X biased Skolem function symbols, which are also disjoint with the set of
X biased Skolem function symbols. Hence, since fX is X biased by assumption, it cannot
appear in any X biased formulae, or else it contradicts either Definition 3.2 or Definition
3.1. It immediately follows that tX can only appear in a X biased formula via substitution
of free variables since inferences may not be applied after unification by Definition 3.11.

■

Lemma 3.16 Let Fv be a F-tableau, σ a closing substitution for Fv, and F = Fvσ a
closed tableau. If ti, tj are biased Skolem terms in F such that tj is a witness within the
scope of ti, then ti < tj. If tj is a witness within the scope of fresh free variable v, then v
is a proper subterm of tj.

proof: We can find biased Skolem terms tvi , t
v
j in Fv such that ti = tvi σ and tj = tvjσ. By

Definition 3.11, the closing substitution σ is only applied once immediately before proof
construction terminates. Then by Definition 3.10, tj is a witness within the scope of ti
if either (1) tvi < tvj , or (2) vσ = tk, where v is a free variable in tvj and ti ≤ tk. Since
F-tableau never interleaves inferences with substitutions, biased Skolem term creation in
Fv is acyclic, so in case (1), tvi < tvj implies that ti < tj. In case (2), since σ is applied
to v only once in the end, we get ti < tj. The proof for v being a proper subterm of tj is
analogous. ■
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Now we are ready to prove the correctness of F-tableau interpolation rules. The main
difficulty in proving interpolation rules for F-tableau is that the order of witnesses, hence
quantification, does not always follow the order of existential and universal expansions
in the proof tree. Hence, unlike the biased tableau [19], we cannot simply quantify the
interpolant based on the structure of the proof tree but have to rely on the order of witnesses
(i.e., the subterm property) to quantify biased Skolem terms and fresh free variables in the
correct order.

Lemma 3.17 Let F be a closed F-tableau and S = {L(α0), . . . , L(αn),R(β0), . . . ,R(βk)}
a set containing all biased formulae along a branch in F . If S

int−→ ψ by F-tableau interpo-
lation rules from Definition 3.1, then the following invariants hold:

1. α0 ∧ · · · ∧ αn → ψ and ψ → ¬β1 ∨ · · · ∨ ¬βk; and

2. Constant, function and relational symbols in ψ are either in the common language
of α0 ∧ · · · ∧ αn and ¬β1 ∨ · · · ∨ ¬βk or appear in a biased Skolem term.

proof: We prove that the above invariants hold for F-tableau interpolation rules.

Base cases: For (B1), we know that r ∧ ¬r → ⊥, and ⊥ implies an arbitrary formula, so
α0 ∧ · · · ∧ αn ∧ r ∧ ¬r → ⊥ → ¬β1 ∨ · · · ∨ ¬βk. For (B2), we know that arbitrary formula
implies⊤, and⊤ → ¬r∨r, so α0∧· · ·∧αn → ⊤ → ¬β1∨· · ·∨¬βk∨r∨¬r. For (B3) and (B4),
since r → r and ¬r → ¬r are tautologies, we get α0∧· · ·∧αn∧r → r → ¬β1∨· · ·∨¬βk∨r
and α0 ∧ · · · ∧ αn ∧ ¬r → ¬r → ¬β1 ∨ · · · ∨ ¬βk ∨ ¬r respectively. Finally, for (B5) and
(B6), we know that ⊥ → ⊥ and ⊤ → ⊤ are tautologies, ⊥ implies an arbitrary formula,
and arbitrary formula implies ⊤, so we get α0 ∧ · · · ∧ αn ∧ ⊥ → ⊥ → ¬β1 ∨ · · · ∨ ¬βk and
α0 ∧ · · · ∧ αn → ⊤ → ¬β1 ∨ · · · ∨ ¬βk ∨ ⊤ respectively. Hence, invariant (1) holds for all
base cases. Invariant (2) holds for all base cases since ⊤ and ⊥ are basic logical symbols,
and (B3) and (B4) only apply when r appears both L and R biased.

Left conjunctive cases: Let us prove the conjunctive interpolation rule (C1) for X = L.

Suppose invariant properties hold for S ∪ {L(α), L(β)} int−→ ψ. We prove that the invariant

properties also hold for S
int−→ ψ, where L(α∧β) ∈ S. By invariant (1), we have α0∧· · ·∧αn∧

α∧β → ψ → ¬β1∨· · ·∨¬βk, so we get α0∧· · ·∧αn∧(α∧β) → ψ → ¬β1∨· · ·∨¬βk. Hence,
since L(α∧β) ∈ S, invariant (1) holds for S

int−→ ψ. By invariant (2), all constant, function
and relational symbols in ψ are either in the common language of α0∧ · · · ∧αn∧α∧β and

¬β1∨· · ·∨¬βk or in a biased Skolem term. Since α∧β ∈ S, invariant (2) holds for S
int−→ ψ.

The correctness of (C2) for X = L follows by replacing α, β, α ∧ β by ¬α,¬β,¬(α ∨ β).
Thus, both invariants hold for all left conjunctive cases.
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Right conjunctive cases: Let us prove the conjunctive interpolation rule (C1) for X = R.

Suppose invariant properties hold for S ∪{R(α),R(β)} int−→ ψ. We prove that the invariant

properties also hold for S
int−→ ψ, where R(α∧ β) ∈ S. By invariant (1), we have α0 ∧ · · · ∧

αn → ψ → ¬β1∨· · ·∨¬βk∨¬α∨¬β, so we get α0∧· · ·∧αn → ψ → ¬β1∨· · ·∨¬βk∨¬(α∧β).
Hence, since R(α ∧ β) ∈ S, invariant (1) holds for S

int−→ ψ. By invariant (2), all constant,
function and relational symbols in ψ are either in the common language of α0 ∧ · · · ∧ αn
and ¬β1 ∨ · · · ∨ ¬βk ∨ ¬α ∨ ¬β or in a biased Skolem term. Since R(α ∧ β) ∈ S, invariant

(2) holds for S
int−→ ψ. The correctness of (C2) for X = R follows by replacing α, β, α ∧ β

by ¬α,¬β,¬(α ∨ β). Thus, both invariants hold for all right conjunctive cases.

Left disjunctive cases: Let us prove the left disjunctive interpolation rule (D1). Suppose

invariants hold for S ∪ {L(α)} int−→ ψ1 and S ∪ {L(β)} int−→ ψ2. We prove that invariants

hold for S
int−→ ψ1 ∨ψ2, where L(α∨ β) ∈ S. By invariant (1), we have α0 ∧ · · · ∧αn ∧α →

ψ1 → ¬β1 ∨ · · · ∨ ¬βk and α0 ∧ · · · ∧ αn ∧ β → ψ2 → ¬β1 ∨ · · · ∨ ¬βk. Then we get
α0 ∧ · · · ∧ αn ∧ (α ∨ β) → ψ1 ∨ ψ2 → ¬β1 ∨ · · · ∨ ¬βk. Simplify, we get α0 ∧ · · · ∧ αn →
ψ1 ∨ ψ2 → ¬β1 ∨ · · · ∨ ¬βk, so invariant (1) holds for S

int−→ ψ1 ∨ ψ2. By invariant (2),
all relational, function and constant symbols in ψ1(ψ2) are either in the common language
of α0 ∧ · · · ∧ αn ∧ α(α0 ∧ · · · ∧ αn ∧ β) and ¬β1 ∨ · · · ∨ ¬βk respectively or in a biased
Skolem term. Then all relational, function and constant symbols in ψ1 ∨ ψ2 are either in
the common language of α0 ∧ · · · ∧ αn and ¬β1 ∨ · · · ∨ ¬βk or in a biased Skolem term, so

invariant (2) holds for S
int−→ ψ1 ∨ ψ2. The correctness of the left conjunctive interpolation

rule (D3) follows by replacing α, β, α ∨ β by ¬α,¬β,¬(α ∧ β). Thus, both invariants hold
for all left disjunctive cases.

Right disjunctive cases: Let us prove the right disjunctive interpolation rule (D2).

Suppose invariants hold for S ∪ {R(α)} int−→ ψ1 and S ∪ {R(β)} int−→ ψ2. We prove that

invariants hold for S
int−→ ψ1∧ψ2, where α∨β ∈ S. By invariant (1), we have α0∧· · ·∧αn →

ψ1 → ¬β1 ∨ · · · ∨ ¬βk ∨ ¬α and α0 ∧ · · · ∧ αn → ψ2 → ¬β1 ∨ · · · ∨ ¬βk ∨ ¬β. Then since
¬α ∧ ¬β ≡ ¬(α ∨ β), we get α0 ∧ · · · ∧ αn → ψ1 ∧ ψ2 → ¬β1 ∨ · · · ∨ ¬βk ∨ ¬(α ∨ β), so
invariant (1) holds for S

int−→ ψ1 ∧ ψ2. Analogous to the proof of the left disjunctive cases,

invariant (2) holds for S
int−→ ψ1∧ψ2. The correctness of the right conjunctive interpolation

rule (D4) follows by replacing α, β, α ∨ β by ¬α,¬β,¬(α ∧ β). Thus, both invariants hold
for all right disjunctive cases.

Left existential cases: Let us prove the existential rule (E1) for X = L. Suppose in-

variants hold for S ∪ {L(α[x/fL(t1, . . . , tl)])}
int−→ ψ. We prove that invariants hold for

S
int−→ ψ, where L(∃x.α) ∈ S. By invariant (1), we have α0∧· · ·∧αn∧α[x/fL(t1, . . . , tl)] →
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ψ → ¬β1 ∨ · · · ∨ ¬βk. Then since ∃x.α → α[x/fL(t1, . . . , tl)] and L(∃x.α) ∈ S, we
get α0 ∧ · · · ∧ αn → ψ → ¬β1 ∨ · · · ∨ ¬βk, so invariant (1) holds. By invariant (2),
all constant, function and relational symbols in ψ are either in the common language of
α0 ∧ · · · ∧ αn ∧ α[x/fL(t1, . . . , tl)] and ¬β1 ∨ · · · ∨ ¬βk or in a biased Skolem term. Since
fL(t1, . . . , tl) only contains symbols appearing in the original premise, new Skolem func-
tion symbols and fresh free variables, invariant (2) still holds after removing fL(t1, . . . , tl)
from S. The correctness of (E2) follows from replacing α[x/fL(t1, . . . , tl)] and ∃x.α by
¬α[x/fL(t1, . . . , tl)] and ¬∀x.α respectively.

Right existential cases: Let us prove the existential rule (E1) for X = R. Suppose

invariants hold for S ∪ {R(α[x/fR(t1, . . . , tl)])}
int−→ ψ. We prove that invariants hold for

S
int−→ ψ, where R(∃x.α) ∈ S. By invariant (1), we have α0 ∧ · · · ∧ αn → ψ → ¬β1 ∨ · · · ∨

¬βk ∨ ¬α[x/fR(t1, . . . , tl)]. Then since ¬(∃x.α) → ¬α[x/fR(t1, . . . , tl)] and R(∃x.α) ∈ S,
we get α0 ∧ · · · ∧ αn → ψ1 → ¬β1 ∨ · · · ∨ ¬βk, so invariant (1) holds. Analogous to the
proof for the left universal case, invariant (2) holds. The correctness of (E2) follows from
replacing α[x/fR(t1, . . . , tl)] and ∃x.α by ¬α[x/fR(t1, . . . , tl)] and ¬∀x.α respectively.

Left universal cases: Let us prove the universal rule (U1) for X = L. Suppose invariants

hold for S∪{L(α[x/t])} int−→ ψ. We prove that invariants hold for S
int−→ ψ, where L(∀x.α) ∈

S. By invariant (1), we have α0 ∧ · · · ∧ αn ∧ α[x/t] → ψ → ¬β1 ∨ · · · ∨ ¬βk. Then since
∀x.α → α[x/t] and L(∀x.α) ∈ S, we get α0 ∧ · · · ∧ αn → ψ → ¬β1 ∨ · · · ∨ ¬βk, so invariant
(1) holds. By invariant (2), all constant, function and relational symbols in ψ are either
in the common language of α0 ∧ · · · ∧ αn ∧ α[x/t] and ¬β1 ∨ · · · ∨ ¬βk or in a biased
Skolem term. Since c only contains symbols appearing in the original premise, new Skolem
function symbols and fresh free variables, invariant (2) still holds after removing t from
S. The correctness of (U2) follows from replacing α[x/t] and ∀x.α by ¬α[x/t] and ¬∃x.α
respectively.

Right universal cases: Let us prove the universal rule (U1) for X = R. Suppose invariants

hold for S∪{R(α[x/t])} int−→ ψ. We prove that invariants hold for S
int−→ ψ, where R(∀x.α) ∈

S. By invariant (1), we have α0 ∧ · · · ∧ αn → ψ → ¬β1 ∨ · · · ∨ ¬βk ∨ ¬α[x/t]. Then since
∀x.α → α[x/t] ≡ ¬α[x/t] → ¬∀x.α and R(∀x.α) ∈ S, we get α0 ∧ · · · ∧ αn → ψ1 →
¬β1 ∨ · · · ∨ ¬βk, so invariant (1) holds. Analogous to the proof for the left universal case,
invariant (2) holds. The correctness of (U2) follows from replacing α[x/t] and ∀x.α by
¬α[x/t] and ¬∃x.α respectively.

Left biased Skolem quantification cases: Let us prove the left biased Skolem quantifi-

cation rule (Q1). Suppose invariants hold for S
int−→ ψ, where L biased Skolem t does not

appear in β0, . . . , βk, and t does not appear as a proper subterm of another Skolem term
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in α0, . . . , αt, ψ. We prove that invariants hold for S
int−→ ∃x.ψ[t/x]. By invariant (1), we

have α0 ∧ · · · ∧αn → ψ → ¬β1 ∨ · · · ∨¬βk. Since c does not appear as a proper subterm of
another Skolem term in ψ, α0, . . . , αt, β0, . . . , βk, by Lemma 3.16, all biased Skolem terms
within the scope of t have already been quantified, so we may quantify t. Then since
ψ → ∃x.ψ[t/x], we get α0, . . . , αt → ∃x.ψ[t/x], so the left hand side of implication holds.
For the right hand side of implication, since t does not appear in β0, . . . , βk and every
appearance of t in R biased formulae is a result of variable substitution by Lemma 3.15,
we have β1 ∧ · · · ∧ βk → ∀x.(¬ψ[t/x]), so we get ∃x.ψ[t/x] → ¬β1 ∨ · · · ∨ ¬βk. Combining

both side, invariant (1) holds for S
int−→ ∃x.ψ[t/x]. Since invariant (2) holds for S

int−→ ψ
and t is removed from ψ, invariant (2) holds.

Right biased Skolem quantification cases: Let us prove the right biased Skolem

quantification rule (Q2). Suppose invariants hold for S
int−→ ψ, where R biased Skolem t

does not appear in α0, . . . , αn, and t does not appear as a proper subterm of another Skolem

term in β0, . . . , βk, ψ. We prove that invariants hold for S
int−→ ∀x.ψ[t/x]. By invariant (1),

we have α0 ∧ · · · ∧ αn → ψ → ¬β1 ∨ · · · ∨ ¬βk. Since t does not appear as a proper
subterm of another Skolem term in ψ, β0, . . . , βk, α0, . . . , αn, by Lemma 3.16, all biased
Skolem terms within the scope of t have already been quantified, so we may quantify t.
Then since ¬ψ → ∃x.(¬ψ[t/x]), we get ∀x.ψ[t/x] → ¬β1 ∨ · · · ∨ ¬βk, so the right hand
side of implication holds. For the left hand side of implication, since t does not appear in
α0, . . . , αn and every appearance of t in L biased formulae is a result of variable substitution
by Lemma 3.15, we have α0 ∧ · · · ∧ αt → ∀x.ψ[t/x]. Combining both sides, invariant (1)

holds. Since invariant (2) holds for S
int−→ ψ and t is removed from ψ, invariant (2) holds.

Fresh free variable quantification cases: Let us prove the fresh free variable quan-

tification rules (Q3) and (Q4). Suppose invariants hold for S
int−→ ψ, where v is a fresh

free variable in ψ not in S. Then since free variable v is fresh, v can be quantified using
either universal or existential. Then, since v does not appear in S, we get α0, . . . , αn →
∀x.ψ[v/x] → β0, . . . , βk in (Q3) and α0, . . . , αn → ∃x.ψ[v/x] → β0, . . . , βk in (Q4). Since

invariant (2) holds for S
int−→ ψ and v is removed from ψ, invariant (2) holds.

This covers all the cases. Therefore, invariant properties hold for all F-tableau interpolation
rules. ■

The following lemma ensures that all biased Skolem terms and fresh free variables can be
quantified in the final interpolant.

Lemma 3.18 Let S be a set of biased input formulae, and suppose S is the root of a

closed tableau F . If S
int−→ ψ′ by F-tableau interpolation on F , then there is a formula ψ
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such that S
int−→ ψ and ψ does not contain any biased Skolem terms or fresh free variables.

proof: By quantification rules, we can always apply (Q1) and (Q2) to quantify all biased
Skolem terms in ψ′. We can then apply (Q3) and (Q4) to quantify all fresh free variables
in ψ′ to obtain ψ. Hence, we can always construct an interpolant that is free of biased
Skolem terms and fresh free variables when an interpolant exists. ■

By Lemma 3.18, we can assume from hereon that all biased Skolem terms and fresh free

variables have been quantified in ψ given S
int−→ ψ.

Theorem 3.19 (Correctness of F-Tableau Interpolation Rules) Let S = {L(α0),
. . . , L(αn),R(β0), . . . ,R(βk)} be a set of formulae at the root of a F-tableau Fv. Let σ be a

closing substitution for Fv, and let F = Fvσ be a closed tableau. If S
int−→ ψ by F-tableau

interpolation on F , then ψ is an interpolant for the sentence α0∧· · ·∧αn → ¬β1∨· · ·∨¬βk.

proof: By invariant (1) in Lemma 3.17, α0 ∧ · · · ∧αn → ψ → ¬β1 ∨ · · · ∨ ¬βk. By Lemma
3.18 and invariant (2) in Lemma 3.17, every constant, function, variable and relational
symbol in ψ is in the common language of α0 ∧ · · · ∧ αn and ¬β1 ∨ · · · ∨ ¬βk. Hence, by
definition, ψ is an interpolant for α0 ∧ · · · ∧ αn → ¬β1 ∨ · · · ∨ ¬βk. ■

Finally, Lemma 3.20 generalizes the correctness of interpolation rules to Skolemized input
formulae.

Lemma 3.20 (Skolemization Preserves Interpolant) Let S1, S2 be finite sets of for-
mulae, S ′

1, S
′
2 their respective Skolemizations, and ψ a formula that does not contain any

biased Skolem terms. Then ψ is an interpolant for S1 → S2 if and only if ψ is an interpolant
for S ′

1 → S ′
2.

proof: Since ψ does not contain any biased Skolem terms, all constant, function and
relational symbols in ψ appear in the common language of S1 and S2. By Proposition 3.5,
S1 and S ′

1 are equisatisfiable, so S1 → ψ if and only if S ′
1 → ψ. Similarly, we have ψ → S2

if and only if ψ → S ′
2. Hence, S

′
1 → ψ → S ′

2 if and only if S1 → ψ → S2, as desired. ■

As a consequence of Craig Interpolation (Proposition 2.9), we can construct query plans
(i.e., interpolants) for definable user queries via F-tableau interpolation from input formulae
{L(ΣL∪ΣA∪{qL(0)}),R(ΣR∪ΣA∪{¬qL(0)}}, where a set of formulae is shorthand for the
conjunction of formulae in the set.

Example 3.21 (F-Tableau Interpolation) We use F-tableau to construct an interpolant
for X −→ Y . Let X = {RL(v, 0),∀x.(RL(x, 0) → ∃y, z.P (x, y, z) ∧ O(x))} and Y =
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{∀x, y, z.(P (x, y, z) ∧ O(x) → RR(x, 0)) → RR(v, 0)}, where v is an initial free variable
and 0 is a special Skolem constant. To initialize the F-tableau, we assigned bias labels to
formulae and Skolemize ∃y as follows:

S = {L(RL(v, 0)), L(∀x.(RL(x, 0) → ∃z.P (x, fL
y (x, z), z) ∧O(x))),

R(∀x, y, z.(P (x, y, z) ∧O(x) → RR(x, 0))), R(¬RR(v, 0))}.

Then, we construct a F-tableau proof for S, find a closing substitution, and construct an
interpolant inductively on the structure of the proof tree from its closed proof as shown in
Figure 3.1.

Although it is feasible to use F-tableau for query optimization, this approach is problematic
due to the following drawbacks:

1. Each F-tableau proof corresponds to a single interpolant, but the goal is to enumerate
different interpolants (i.e., query plans);

2. Finding alternative interpolants requires backtracking and unification which can lead
to performance issues; and

3. The interpolant constructed depends on the syntactic structures of the input formu-
lae, so näıve backtracking will not work in principle.

To enumerate query plans efficiently, in the next chapter, we introduce another tableau
variant called the condition tableau which addresses all of the above issues.
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Closing Substitution

σ(x′) = v, σ(x′′) = v, σ(y′) = fL
y (v, f

L
z (v)), σ(z′) = fL

z (v)

F-Tableau and Interpolation

S Initialization
∃y∃z.P (v, y, z) ∧O(v) −

|
L(∀x.(RL(x, 0) → ∃z.P (x, fL

y (x, z), z) ∧O(x))) Premise
∃y∃z.P (v, y, z) ∧O(v) U1

|
L(RL(x′, 0) → ∃z.P (x′, fL

y (x
′, z), z) ∧O(x′)) IU1

/ ⊥ ∨ ∃y∃z.P (v, y, z) ∧O(v) D1
/ \

L(¬RL(x′, 0)) L(∃z.P (x′, fL
y (x

′, z), z) ∧O(x′)) ID1
⊥ ∃y∃z.P (v, y, z) ∧O(v) −, C1
| |

L(RL(v, 0)) L(O(x′)) Premise, IC1
⊥ ∃y∃z.P (v, y, z) ∧O(v) B1,−

|
L(∃z.P (x′, fL

y (x
′, z), z))

∃y∃z.P (v, y, z) ∧O(v)

|
L(P (x′, fL

y (x
′, fL

z (x
′)), fL

z (x
′)) IE1

∃y∃z.P (v, y, z) ∧O(v) E1
|

R(∀x, y, z.(P (x, y, z) ∧O(x) → RR(x, 0))) Premise
∃y∃z.P (v, y, z) ∧O(v) −

|
R(∀y, z.(P (x′′, y, z) ∧O(x′′) → RR(x′′, 0))) IU1

∃y∃z.P (v, y, z) ∧O(v) Q1
|

R(∀z.(P (x′′, y′, z) ∧O(x′′) → RR(x′′, 0))) IU1
P (v, fLy (v, f

L
z (v)), f

L
z (v)) ∧O(v) U1

|
R(P (x′′, y′, z′) ∧O(x′′) → RR(x′′, 0)) IU1

P (v, fLy (v, f
L
z (v)), f

L
z (v)) ∧O(v) ∧ ⊤ D2, −

/ \
R(¬(P (x′′, y′, z′) ∧O(x′′))) R(RR(v, 0)) ID1
P (v, fLy (v, f

L
z (v)), f

L
z (v)) ∧O(v) ⊤ D4, −

/ \ |
R(¬P (x′′, y′, z′)) R(¬O(x′′)) R(RR(x′′, 0)) ID2, Premise

P (v, fLy (v, f
L
z (v)), f

L
z (v)) O(v) ⊤ B3, B3, B2

Figure 3.1: A free-variable tableau.
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Chapter 4

Conditional Tableau

To address the drawbacks of F-tableau interpolation, we introduce the conditional tableau
which improves interpolant enumeration for the purpose of query optimization. We denote
the conditional tableau system K. The intuition behind K-tableau is as follows: instead
of constructing a single proof tree with fixed structural properties, we remember partial
information about past derivations to represent many tableau proof trees simultaneously
by a single K-tableau. Consequently, the interpolation mechanism is adapted accordingly:
inductive construction is replaced by a ‘meet-in-the-middle’ approach that (i) extracts
common features among many tableau proof trees from a single K-tableau proof tree, then
(ii) checks whether an externally supplied formula is an interpolant based on the features
extracted from the K-tableau. To focus on K-tableau, in this chapter, we assume that
a black box supplies all candidate interpolants externally. We discuss how to generate
candidate interpolants in Chapter 5.

The remainder of Chapter 4 is organized as follows. First, we describe K-tableau by
defining its input normalization, inference rules, and interpolation mechanism. Then, we
prove the correctness of its inference rules and interpolation mechanism by reduction to
F-tableau, which is defined in Chapter 3. Lastly, we discuss how to effectively apply a set of
special K-tableau rules, called physical rules, to optimize theorem proving and enumerate
interpolants that are otherwise not found.
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4.1 Description

4.1.1 Schema Normalization

Normalization is a common optimization technique in automated theorem proving [26, 30].
Preprocessing input premises admits two main advantages: (1) fewer and simpler in-
ference rules; and (2) optimization during theorem proving. For our purposes, we ap-
peal to standard absorptions [23] and define absorption normal form (ANF) for input
constraints. Roughly speaking, ANF captures range-restricted constraints of the form
∀x̄.(R1(x̄1) ∧ · · · ∧ Rn(x̄n) → P1(x̄n+1) ∨ · · · ∨ Pk(x̄n+k)), where R1, . . . , Rn, P1, . . . , Pk are
predicate symbols, x̄i a set of variables for each i, and x̄ the set of all free variables in the
constraint. A constraint in ANF only needs to be expanded if all R1, . . . , Rn match with
positive ground instances. Moreover, instantiations of all universally quantified variables
x̄ are determined by matching positive ground instances of R1, . . . , Rn.

Definition 4.1 (Absorption Normal Form (ANF) [25]) The set of ANF formulae,
Q, is defined by the following grammar:

A ::= R(x̄)

C ::= A | C ∧ C
Q ::= ∀x̄.(C → A) | ∀x̄.(C → ⊥) | ∀x̄.(A→ A ∨ A) | ∀x̄.(A→ ∃v.R(v, x̄))

where R ranges over a set of predicate symbols, Q is range-restricted without free variables.

Proposition 4.2 (Correctness of Absorption [23]) Let S be a set of constraints in
ANF. We say a tableau proof is restricted if every constraint ∀x̄.(R1(x̄1) ∧ · · · ∧Rn(x̄n) →
P1(x̄n+1) ∨ · · · ∨ Pk(x̄n+k)) is expanded only if all R1, . . . , Rn match with positive ground
instances. Then there is a tableau proof that shows S is inconsistent if and only if there is
a restricted tableau proof that shows S is inconsistent.

Given a range-restricted user query αq and schema consisting of range-restricted con-
straints, we can normalize the user query and constraints at once by introducing a new
constraint q ↔ αq, where q is a special atom reserved for formulating the user query, then
initializing the tableau with the ground atom q. Moreover, we can apply the same tech-
nique to remove constraints of the form ⊥ → R() by adding ground atom R() to the initial
tableau. Then a set of range-restricted input constraints can always be transformed into
a set of ANF formulae via the following normalization procedure. For the sake of conve-
nience, let Fv(α) denote the set of free variables in α; we omit writing out ∀ quantification
for Fv(ψ → φ), and assume they are universally quantified.
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Procedure 4.3 (ANF Normalization) Let α, β, α1, α2, β1, β2, α
′
1, α

′
2, β

′, β′′ denote for-
mulae. Let Ri be predicate symbols and x̄, x̄i variables for all i. We treat ⊥ as an atom
with empty arguments. A range-restricted constraint α → β can be transformed into a set
of logically equivalent formulae in ANF by a mutually recursive normalization procedure
that begins with NormRight(α → β). The mutually recursive procedures NormRight and
NormLeft are defined as follows:

Normalize right hand side:

1. NormRight(α → R1(x̄1)) = NormLeft(α → R1(x̄1))

2. NormRight(α → ∃v.β) = NormLeft(α → P1(x̄)) ∪ NormLeft(P1(x̄) → ∃v.P2(v, x̄)) ∪
NormRight(P2(v, x̄) → β), where P1, P2 are fresh predicates for ∃v.β and x̄ =
Fv(β)\{v}

3. NormRight(α → β1 ∧ ¬β2) = NormRight(α → β1) ∪ NormRight(α ∧ β2 → ⊥)

4. NormRight(α → β1 ∧ β2) = NormRight(α → β1) ∪ NormRight(α → β2)

5. NormRight(α → β1∨β2) = NormLeft(α → P1(x̄))∪NormLeft(P1(x̄) → P2(x̄)∨P3(x̄))∪
NormRight(P2(x̄) → β1) ∪ NormRight(P3(x̄) → β2), where P1 is a fresh predicates for
β1 ∨ β2, P2, P3 fresh for β1, β2 and x̄ = Fv(β1) ∪ Fv(β2)

Normalize left hand side:

1. NormLeft(R1(x̄1)∧· · ·∧Rk(x̄k) → Rk+1(x̄k+1)) = {R1(x̄1)∧· · ·∧Rk(x̄k) → Rk+1(x̄k+1)}

2. NormLeft(R1(x̄1) → ∃v.R2(x̄1)) = {R1(x̄1) → ∃v.R2(x̄1)}

3. NormLeft(R1(x̄1) → R2(x̄2) ∨R3(x̄2)) = {R1(x̄1) → R2(x̄2) ∨R3(x̄2)}

4. NormLeft(α ∧ ⊥ → β) = {α → β}

5. NormLeft(α1 ∧ ¬α2 → β) = NormRight(α1 → β ∨ α2)

6. NormLeft(α1 ∨ α2 → β) = NormLeft(α1 → β) ∪ NormLeft(α2 → β)

7. NormLeft(α1 ∧ α2 → β) = {α′
1 ∧ α′

2 → β′′ | α′
1 → β′ ∈ NormLeft(α1 → β), α′

2 → β′′ ∈
NormLeft(α2 → β′)}
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proof of correctness: Assume the input formula is a range-restricted constraint. First,
we show that NormRight recurs on a set of logically equivalent, range-restricted formulae.
We can prove that the same holds for NormLeft.

Case (1): Statement holds since the input formula is unchanged, so it is logically equiva-
lent to itself and still range-restricted.

Case (2): Since P1, P2 are fresh predicates and x̄ = Fv(β)\{v} = Fv(∃v.β), we have α →
∃v.β ≡ {α → P1(x̄), P1(x̄) → ∃v.P2(v, x̄), P2(v, x̄) → β}. Also, since α → ∃v.β is range-
restricted if and only if α, ∃v.β are range-restricted and Fv(∃v.β) ⊆ Fv(α) by Definition
2.4, we have that each constraint in {α → P1(x̄), P1(x̄) → ∃v.P2(v, x̄), P2(v, x̄) → β} is
also range-restricted. Hence, statement holds for case (2).

Cases (3), (4), (5): Proofs are analogous to the proof of case (2).

We can prove that the same holds for NormLeft. For cases (1)-(6), the proofs are analogous
to the proof of NormRight case (2). For case (7), logical equivalence and range-restrictedness
follow from the fact that NormLeft(α1 → β) is equivalent to normalizing α1∧α2 → β while
keeping α2 unchanged and NormLeft(α2 → β′) equivalent to normalizing α′

1 ∧ α2 → β′

while keeping α′
1 unchanged.

Second, we show that each non-mutually recursive call either terminates in a base case or
in a mutually recursive call. For NormRight, the right hand sides of input formulae cover
all range-restricted formulae by Definition 2.3. For NormLeft, the left hand sides of input
formulae cover all range-restricted formulae by Definition 2.3, and the right hand sides of
input formulae cover all input formulae from NormRight’s recursive call by NormRight cases
(1), (2) and (5). By inspection, every non-mutually recursive call decreases the degree of
the input formula by at least 1, so each non-mutually recursive call either terminates in a
mutually recursive call or in a base case.

Third, we show that each mutually recursive call terminates in a base case. Notice that
the only mutually recursive call for NormLeft is case (5). By inspection, NormLeft and
NormRight never adds negation in recursive calls, so case (5) in NormLeft can only be
applied for a finite number of times until all negations have been removed. Hence each
mutually recursive call terminates in a base case.

Combine all of the above, Procedure 4.3 transform each range-restricted formula into a set
of logically equivalent formulae in ANF. ■

Notice that auxiliary atoms are introduced to break the right hand sides of implications
into binary disjunctions. Inserting an extra auxiliary atom before disjunctions reduces
the number of branches since the argument of the extra auxiliary atom only contains free
variables in the disjunction.
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Example 4.4 (ANF Normalization) Let us illustrate Procedure 4.3 by normalizing se-
lected constraints from the employee-department schema in Section 2.1. Applying Proce-
dure 4.3, we can transform the logical constraint manager(x, y, z) → ¬∃u, v.worker(x, u, v)
into ANF constraint manager(x, y, z) ∧ worker(x, u, v) → ⊥. Similarly, we can trans-
form the physical constraint emp(e)∧emp-num(e, x)∧emp-name(e, y)∧∃d.emp-dept(e, d)∧
dept-num(d, z) ↔ ∃x, y.baseemployee(e, x, y, z) into ANF constraints:

{emp(e) ∧ emp-num(e, x) ∧ emp-name(e, y) ∧ ∃d.emp-dept(e, d) ∧ dept-num(d, z)
→ ∃x.AuxA(x, e, z), AuxA(x, e, z) → ∃y.AuxB(x, y, e, z),
AuxB(x, y, e, z) → baseemployee(e, x, y, z), baseemployee(e, x, y, z) → emp(e),
baseemployee(e, x, y, z) → emp-num(e, x), baseemployee(e, x, y, z) → emp-name(e, y),
baseemployee(e, x, y, z) → emp-dept(e, d), baseemployee(e, x, y, z) → dept-num(d, z).}

4.1.2 Inference and Interpolation

From hereon, we assume all input constraints have been transformed into a set of logically
equivalent constraints in ANF. We treat ⊥ as an atom ⊥() with empty arguments. We
now proceed to define K-tableau and its interpolation mechanism. Similar to F-tableau,
K-tableau is also based on the signed system [19], but instead of explicitly assigning bias
labels L()/R() to formulae, biases are assigned globally by splitting a single tableau K into
a left and a right tableau KL and KR such that all L and R biased formulae are stored in KL

and KR respectively. We call FX the complementary tableau for FX. The main building
blocks of K-tableau are the so-called conditional atoms because a K-tableau K is a tuple
(KL,KR) where each KX is a set of conditional atoms.

Definition 4.5 (Conditional Atom [32]) A conditional atom is of the form r[D]⟨B⟩,
where r is a ground atom (or ⊥), D = {d1, . . . , dn} is a set of ground physical atoms
(i.e. ground atoms with predicate symbols ∈ SA), and B = {i1 : j1, . . . , im : jm} is a set of
pairs of numbers i : j (called branch numbers) corresponding to a branching point i and
a direction j. We call r[D]⟨B⟩ a conditional atom for r that depends on ground physical
atoms in D (called dependencies) and that belongs to tableau branches described by the set
B.

KX is initialized by a set of conditional atoms with empty dependencies and branches,
representing the root of a proof tree. It is important to note that unlike F-tableau, the
tree structure of K-tableau is implicitly represented by branch numbers and can hence be
reconstructed, so it suffices to store the K-tableau as two sets of conditional atoms. The use
of branch numbers allows K-tableau to apply branch factoring until the tableau construction
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phase is complete, which provides a number of practical utilities including reduced memory
usage and simplified representation. The set of dependencies for r records the set of all
physical atoms required to derive r from the premises, which is crucial for proof closure
and interpolation.

Example 4.6 (Branch Factoring) The set of conditional atoms {R0[DR0 ]⟨0 : 0⟩, R1[DR1 ]⟨0 :
1⟩, P0[DP0 ]⟨1 : 0⟩, P1[DP1 ]⟨1 : 1⟩ use branch numbers to factor branches in the following
proof tree without branch numbers:

...
/ \

/ \
R0[DR0 ] R1[DR1 ]
/ \ / \

P0[DP0 ] P1[DP1 ] P0[DP0 ] P1[DP1 ]

Definition 4.7 (K-Tableau Inference Rules [25]) Let K = (KX,KX) denote a K-tableau,
and let X(Σ) denote a set of X biased premises in ANF where Fv(ψ → φ) are assumed to
be universally quantified. For each i, let R,Ri, P, Pi denote predicate symbols, x̄, x̄i, ȳ vari-
ables, and t̄R, t̄Ri

, t̄P ground terms. Let m be a fresh branch number for K and fX a fresh
biased Skolem function symbol for ∃v.P (v, ȳ). K-tableau inference rules are defined as
follows:

∈ KX ∈ X(Σ) ∪ KX

R(t̄R)[D]⟨B⟩ R(x̄) → P (ȳ) P (t̄P )[D]⟨B⟩
R(t̄R)[D]⟨B⟩ R(x̄) → ∃v.P (v, ȳ) P (fX(t̄P ), t̄P )[D]⟨B⟩

R1(t̄R1)[D1]⟨B1⟩ R1(x̄1) ∧ . . . ∧Rk(x̄k) → P (ȳ) P (t̄P )[D1 ∪ · · · ∪Dk]⟨B1 ∪ · · · ∪Bk⟩
...

Rk(t̄Rk
)[Dk]⟨Bk⟩

R(t̄R)[D]⟨B⟩ R(x̄) → P1(ȳ) ∨ P2(ȳ) P1(t̄P )[D]⟨B ∪ {m : 0}⟩
P2(t̄P )[D]⟨B ∪ {m : 1}⟩

where ȳ ⊆ x̄ and ȳ ⊆ x̄1 ∪ · · · ∪ x̄k. Constants t̄R, t̄R1 , . . . , t̄Rk
are matched with universally

quantified variables in the left hand side of constraints to derive new conditional atoms
with arguments t̄P .
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To simplify nested conjunctions, we can apply the same technique used for binarizing nested
disjunctions to break nested conjunctions on the left hand sides into binary conjunctions by
inserting auxiliary atoms. It remains open whether binary conjunctions are more efficient
than nested conjunctions for theorem proving. For the sake of convenience, we hereon
assume that all conjunction are binary although this is not necessary in general.

Definition 4.8 (K-Tableau Physical Rule [25]) Let P be a physical predicate symbol
in SA and t̄ terms. A physical rule for P (t̄) inserts a conditional atom P (t̄)[{P (t̄)}]⟨⟩ in
KX.

Roughly speaking, P (t̄)[{P (t̄)}]⟨⟩ is a result of tautology ∀x̄.(P (x) → P (x)). Hence, it
is correct to insert P (t̄)[{P (t̄)}]⟨⟩ for arbitrary formula P (t̄) in KX. On the other hand,
the freedom to insert arbitrary tautologies is a significant source of non-determinism. We
discuss the nuance and significance of choosing appropriate instances of the physical rules
in Section 4.3.

Example 4.9 (Conditional Tableau Construction) Consider the user query q(x, y, z) ↔
employee(x, y, z) with respect to the employee-department schema in Section 2.1. For the
sake of readability, we use shorthand EMP for employee, DEPT for department, bemp for
baseemployee, enum for emp-num, ename for emp-name, edept for emp-dept, dnum for
dept-num, and efile for emp-file.

We initialize the K-tableau K = (KL,KR) with L biased query atom q(0, 1, 2)[]⟨⟩ with
initial Skolem constants 0, 1, and 2 and biased Skolem terms t1 = fL(0, 1, 2) and t2 =
gL(fL(0, 1, 2)). Then, applying K-tableau inference rules, we can construct the K-tableau
in Figure 4.1.

Next, we describe the interpolation mechanism of K-tableau, which can be thought of as a
‘meet-in-the-middle’ approach:

1. We extract from closed K-tableau proof K features CS, called closing sets, that are
shared among many closed tableau proof trees;

2. We extract from a formula ψ features KS, called complementary closing sets, that
characterize ψ; and

3. We ‘meet in the middle’: recognize if ψ is an interpolant by checking the so-called
closing condition on CS and KS.
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KL KR

q(0, 1, 2)[]⟨⟩
EMP(0, 1, 2)[]⟨⟩

bemp(t1, 0, 1, 2)[]⟨⟩
emp(t1)[]⟨⟩

phys−−−→ emp(t1)[emp(t1)]⟨⟩
enum(t1, 0)[]⟨⟩

phys−−−→ enum(t1, 0)[enum(t1, 0)]⟨⟩
ename(t1, 1)[]⟨⟩

phys−−−→ ename(t1, 1)[ename(t1, 1)]⟨⟩
edept(t1, t2)[]⟨⟩

phys−−−→ edept(t1, t2)[edept(t1, t2)]⟨⟩
dnum(t2, 2)

phys−−−→ dnum(t2, 2)[dnum(t2, 2)]⟨⟩
bemp(t1, 0, 1, 2)[emp(t1), enum(t1, 0),

ename(t1, 1), edept(t1, t2), dnum(t2, 2)]⟨⟩
q(0, 1, 2)[emp(t1), enum(t1, 0),

ename(t1, 1), edept(t1, t2), dnum(t2, 2)]⟨⟩
⊥[emp(t1), enum(t1, 0),

ename(t1, 1), edept(t1, t2), dnum(t2, 2)]⟨⟩

Figure 4.1: A conditional tableau.

We proceed to define closing sets, complementary closing sets, and closing condition in the
given order.

Construction 4.10 (Closing Sets [25]) Given a set of conditional atoms KX, a set of
closing sets CSX for KX is computed as follows:

1. Initialize CSX := {{¬r, d1, . . . , dk}⟨B⟩ | r[{d1, . . . , dk}]⟨B⟩ ∈ KX, r is physical or ⊥}.

2. Repeat steps 3 and 4 for each branching point n from the most to least recent.

3. Let K = ∅. For each pair of S1⟨B1 ∪ {n : 0}⟩, S2⟨B2 ∪ {n : 1}⟩ ∈ CSX, set K :=
K ∪ {S1 ∪ S2⟨B1 ∪B2⟩} if {m : 0,m : 1} ⊈ B1 ∪B2 for some m ̸= n.

4. CSX := (CSX ∪K)− {S⟨B ∪ {n : i}⟩ ∈ CSX | i ∈ {0, 1}}.

5. Remove all s⟨B⟩ from CSX where there exists m such that |{m : 0,m : 1} ∩B| = 1.

6. Drop ⟨B⟩ for all s⟨B⟩ in CSX.

35



This construction is applied to both the left and right tableaux KL and KR yielding CSL

and CSR.

Example 4.9 (continued) Applying Construction 4.10 to K = (KL,KR), we get closing
sets

CSL = {{¬emp(t1)}, {¬enum(t1, 0)}, {¬ename(t1, 1)}, {¬edept(t1, t2)}, {¬dnum(t2, 2)}},

CSR = {emp(t1), enum(t1, 0), ename(t1, 1), edept(t1, t2), dnum(t2, 2)},
where subsumed closing sets have been removed.

Construction 4.11 (Complementary Closing Sets [25]) Given formulae ψ, ψ1 and
ψ2, the left and right sets of complementary closing sets KSL, KSR for ψ are computed
recursively as follows:

ψ : KSL
ψ KSR

ψ

r : {{¬r}} {{r}}
ψ1 ∧ ψ2 : KSL

ψ1 ∪ KSL
ψ2 {S1 ∪ S2 | S1 ∈ KSR

ψ1 , S2 ∈ KSR
ψ2}

ψ1 ∨ ψ2 : {S1 ∪ S2 | S1 ∈ KSL
ψ1 , S2 ∈ KSL

ψ2} KSR
ψ1 ∪ KSR

ψ2

¬ψ1 : KSR
ψ1 KSL

ψ1

∃x.ψ1 : KSR
ψ1[x/tX] KSL

ψ1[x/tX]

where tX is an appropriate biased Skolem term, and ψ = r is the base case, where r is an
atom.

Example 4.10 (continued) Applying Construction 4.11 to the formula ψ = ∃e, d.emp(e)∧
emp-num(e, 0) ∧ emp-name(e, 1) ∧ emp-dept(e, d) ∧ dept-num(d, 3), we get complimentary
closing sets

KSL = {{¬emp(t1)}, {¬enum(t1, 0)}, {¬ename(t1, 1)}, {¬edept(t1, t2)}, {¬dnum(t2, 2)}},

KSR = {emp(t1), enum(t1, 0), ename(t1, 1), edept(t1, t2), dnum(t2, 2)}.

Definition 4.12 (Closing Condition [25]) Let K be a conditional tableau for the defin-
ability condition in Proposition 2.8 with closing sets CSL,CSR, and let ψ be a formula with
complementary closing sets KSL,KSR. We say K and ψ satisfy the closing condition if for
each s′ ∈ KSL(KSR), there exists s ∈ CSL(CSR) such that s ⊆ s′ respectively.

Finally, the following theorem recognizes an interpolant ψ for user query q with respect to
Σ∪ΣA by checking the closing condition on the closing sets for K and the complementary
closing sets for ψ. Consequently, we can use K-tableau to recognize valid query plans for
the purpose of query optimization.
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Theorem 4.13 (K-Tableau Interpolation [25]) Let K be a conditional tableau for the
definability condition in Proposition 2.8, and let ψ be a formula. If K and ψ satisfy the
closing condition in Definition 4.12, then ψ[0̄/ȳ] is an interpolant for qL(ȳ) → qR(ȳ).

Example 4.12 (continued) Observe that CSL = KSL and CSR = KSR, so the closing condi-
tion clearly holds. Hence, ψ = ∃e, d.emp(e)∧emp-num(e, 0)∧emp-name(e, 1)∧emp-dept(e, d)∧
dept-num(d, 3) is a valid query plan for the user query with respect to the input schema.

4.2 Reduction to Free-Variable Tableau

In this section, we prove Theorem 4.13 by reducing K-tableau interpolation to F-tableau
interpolation. The difficulty in establishing such reduction lies in mapping a construction-
based mechanism to a decision-based mechanism. F tableau interpolation constructs inter-
polants inductively on the structure of the proof tree based on interpolation rules whereas
K-tableau recognizes interpolants among candidate formulae by extracting and comparing
features from proofs and formulae. To address this difficulty, we establish two construc-
tions: the first maps a candidate formula ψ to an open F-tableau; the second maps a
K-tableau K to an open F-tableau. Then, we attach the open F-tableaux from the second
construction at the tip of the open F-tableaux from the first construction to create a closed
F-tableau that interpolates to a formula that is logically equivalent to ψ.

The proof roughly proceeds as follows. First, we show that it is possible to construct open
F-tableaux satisfying special closure and interpolation properties. Second, we link the open
F-tableaux into a closed F-tableau that interpolates to the desired formula.

Definition 4.14 (Attaching Subproof) Let F1, F2 and F3 be F-tableaux. We use Fig.
4.2 (a) to denote the tableau obtained by attaching a copy of F2 at the tip of every left open
branch in F1. We use Fig. 4.2 (b) to denote the tableau obtained by attaching a copy of
F3 at the tip of every right open branch in F1. We use Fig. 4.2 (c) to denote the tableau
obtained by attaching a copy of F2 at the tip of every left open branch in F1 and attaching
a copy of F3 at the tip of every right open branch in F1 simultaneously.

Definition 4.15 (Complete Subproof) Let F be a a F-tableau proof tree. A complete
subproof of F is a subtree with root node N that contains all descendants of N in F .

Lemma 4.16 (Interpolating Tableau) Let ψ be a range-restricted formula over SA and
L(ΣA),R(ΣA) premises, where ΣA = {∀x̄.(P L(x̄) ↔ P (x̄) ↔ PR(x̄)) | P ∈ SA}. Let
KSL,KSR be the complementary closing sets for ψ. For the sake of simplicity, assume all
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F2

F1

(a)

F1

F3

(b)

F2

F1

F3

(c)

Figure 4.2: Shorthand for attaching subproofs.

quantified variables in ψ are distinct. Let the ‘clash’ symbol ⊗ denote atomic closure on a
branch. Then we can construct a F-tableau Fψ called the interpolating tableau for ψ such
that the following properties hold:

1. Each left(right) open branch b in Fψ corresponds to a set s ∈ KSL(KSR) that contains
all open literals along the branch b, assuming L(R) superscripts on all atoms in
KSL(KSR) respectively.

2. If Fψ is a complete subproof of another F-tableau F∗ and every left(right) open branch
in F∗ is atomically closed by a subproof Fα(Fβ) that interpolates to α(β) respectively,
then the new complete subproof constructed from Fψ, Fα, and Fβ interpolates to a
formula ψ′ where ψ′ ≡ α ∨ (ψ ∧ β).

proof: We prove by structural induction on ψ and ¬ψ simultaneously.

Base cases: The interpolating tableau Fψ for ψ = R(x̄) and ψ = ¬R(x̄) is shown in Fig.
4.3 (a) and (b) respectively.

By Construction 4.11, the left and right complementary closing sets for R(x̄) are KSL =
{{¬R(x̄)}} and KSR = {{R(x̄)}}; and the left and right complementary closing sets for
¬R(x̄) are KSL = {{R(x̄)}} and KSR = {{¬R(x̄)}}. By inspection of the interpolating
tableau, there is a single left open branch and a single right open branch in Fψ, each
containing an open literal (marked in red), which corresponds to the complementary closing
sets exactly. Hence, property (1) holds for both of the base cases.

Then, construct a new complete subproof from Fψ by attaching Fα(Fβ) to each left and
right open branch in Fψ, and we get Fig. 4.4 (a) and (b) respectively.

where intermediate interpolants are marked in blue. Hence by inspection, the resulting
tableau interpolates to ψ′, where ψ′ ≡ α ∨ (R(x̄) ∧ β) and ψ′ ≡ α ∨ (¬R(x̄) ∧ β) for
ψ = R(x̄) and ψ = ¬R(x̄) respectively.
Finally, since ¬(R(x̄)) = ¬R(x̄) and ¬(¬R(x̄)) = R(x̄), properties (1) and (2) hold for ψ
and ¬ψ simultaneously.
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L(∀ȳ.(RL(ȳ) → R(ȳ)))
|

L(RL(x̄) → R(x̄))
/ \

L(¬RL(x̄)) L(R(x̄))
|

R(∀ȳ.(R(ȳ) → RR(ȳ)))
|

R(R(x̄) → RR(x̄))
/ \

R(¬R(x̄)) R(RR(x̄))
⊗
(a)

L(∀ȳ.(R(ȳ) → RL(ȳ)))
|

L(R(x̄) → RL(x̄))
/ \

L(RL(x̄)) L(¬R(x̄))
|

R(∀ȳ.(RR(ȳ) → R(ȳ)))
|

R(RR(x̄) → R(x̄))
/ \

R(R(x̄)) R(¬RR(x̄))
⊗
(b)

Figure 4.3: Interpolating tableau base cases.

L(∀ȳ.(RL(ȳ) → R(ȳ)))
|

L(RL(x̄) → R(x̄))
α ∨ (R(x̄) ∧ β)

/ \
L(¬RL(x̄)) L(R(x̄))

| |
Fα R(∀ȳ.(R(ȳ) → RR(ȳ)))
α |
⊗ R(R(x̄) → RR(x̄))

R(x̄) ∧ β
/ \

R(¬R(x̄)) R(RR(x̄))
R(x̄) |
⊗ Fβ

β
⊗

(a)

L(∀ȳ.(R(ȳ) → RL(ȳ)))
|

L(R(x̄) → RL(x̄))
α ∨ (¬R(x̄) ∧ β)
/ \

L(RL(x̄)) L(¬R(x̄))
| |
Fα ∀ȳ.(RR(ȳ) → R(ȳ)))
α |
⊗ R(RR(x̄) → R(x̄))

¬R(x̄) ∧ β
/ \

R(R(x̄)) R(¬RR(x̄))
¬R(x̄) |
⊗ Fβ

β
⊗

(b)

Figure 4.4: Interpolating tableau base cases continued.

Inductive hypothesis: Let ψ1 and ψ2 be range-restricted formulae with complementary
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closing sets KSL
1,KS

R
1 and KSL

2,KS
R
2 respectively. Let ¬ψ1 and ¬ψ2 be range-restricted

formulae with complementary closing sets KSR
1 ,KS

L
1 and KSR

2 ,KS
L
2 respectively. Suppose

we can construct interpolating tableaux Fψ1 and Fψ2 for ψ1 and ψ2 respectively such that
properties (1) and (2) hold. Similarly, suppose we can construct interpolating tableaux
F¬ψ1 and F¬ψ2 for ¬ψ1 and ¬ψ2 respectively such that properties (1) and (2) hold.

Inductive proof: We prove that we can construct interpolating tableau Fψ for ψ and
F¬ψ for ¬ψ, where ψ is any of ψ1 ∧ψ2, ψ1 ∨ψ2 and ∃x.ψ1, such that properties (1) and (2)
hold.

Conjunctive cases: We construct the interpolating tableau Fψ for ψ = ψ1 ∧ ψ2 by
attaching Fψ2 at the tip of every right open branch in Fψ1 . Pictorially, we have

Fψ1

Fψ2

By the inductive hypothesis, each left open branch b in Fψ1 (Fψ2) corresponds to a set
s1 ∈ KSL

1(s2 ∈ KSL
2) that contains all open literals along b respectively. Similarly, each

right open branch b in Fψ1 (Fψ2) corresponds to a set s1 ∈ KSR
1 (s2 ∈ KSR

2 ) that contains
all open literals along b respectively. Since F2 is attached at the tip of every right open
branch in Fψ1 , the set of left open branches in Fψ is the union of left open branches in
Fψ1 and left open branches in Fψ2 . Then since KSL

1 ∪ KSL
2 = KSL by Construction 4.11,

every left open branch b in Fψ corresponds to a set s ∈ KSL that contains all open literals
along b. Since Fψ2 is attached at the tip of every right open branch in Fψ1 , the set of right
open branches in Fψ is the concatenation of each right open branch in Fψ1 and each right
open branch in Fψ2 . Then since KSR

1 ×KSR
2 = KSR by Construction 4.11, every right open

branch b in Fψ corresponds to a set s ∈ KSR that contains all open literals along b. Hence,
property (1) holds.

Then, consider the closed tableau constructed by attaching Fα to every left open branch
and Fβ to every right open branch in Fψ. Pictorially, we have

Fψ1

Fψ2

Fβ

Fα

Fα
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By the inductive hypothesis, the right subproof consisting of Fψ2 , Fα and Fβ interpolates
to ψ′

2, where ψ
′
2 ≡ (ψ2 ∧ β)∨ α, and the complete subproof consisting of Fψ1 , Fψ2 , Fα and

Fβ interpolates to ψ′, where ψ′ ≡ (ψ1 ∧ψ′
2)∨α ≡ ((ψ1 ∧ψ2)∧ β)∨α. Hence, property (2)

holds.

Negative conjunctive cases: consider ¬ψ ≡ ¬(ψ1 ∧ ψ2) ≡ ¬ψ1 ∨ ¬ψ2. By the induc-
tive hypothesis, we can construct interpolating tableaux F¬ψ1 and F¬ψ2 for ¬ψ1 and ¬ψ2

respectively such that properties (1) and (2) hold. Then, we can construct interpolating
tableau F¬ψ for ¬ψ by attaching F¬ψ2 to every left open branch of F¬ψ1 . Pictorially, we
have

F¬ψ2

F¬ψ1

By Construction 4.11, the left complementary closing sets for ¬ψ1, ¬ψ2 and ¬ψ are KSR
1 ,

KSR
2 and KSR respectively. Then since a copy of F¬ψ2 is attached at the tip of every left

open branch in F¬ψ1 , the set of left open branches in F¬ψ is the concatenation of each left
open branch in F¬ψ1 and each left open branch in F¬ψ2 . Hence, since KSR

1 × KSR
2 = KSR,

every left open branch b in F¬ψ corresponds to a set s ∈ KSR that contains all open literals
along b. Similarly, by Construction 4.11, the right complementary closing sets for ¬ψ1,
¬ψ2 and ¬ψ are KSL

1, KS
L
2 and KSL respectively. Then since a copy of F¬ψ2 is attached

at the tip of every left open branch in F¬ψ1 , the set of right open branches in F¬ψ is
the union of right open branches in F¬ψ1 and right open branches in F¬ψ2 . Hence, since
KSL

1 ∪ KSL
2 = KSL, every right open branch b in F¬ψ corresponds to a set s ∈ KSL that

contains all open literals along b. Thus, property (1) holds for ¬ψ.
Then, consider the closed tableau constructed by attaching Fα to every left open branch
and Fβ to every right open branch in F¬ψ. Pictorially, we have

Fα

F¬ψ2

F¬ψ1

Fβ

Fβ
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By the inductive hypothesis, the left subproof consisting of F¬ψ2 , Fα and Fβ interpolates
to ¬ψ′

2, where ¬ψ′
2 ≡ (¬ψ2 ∧ β) ∨ α, and the complete subproof consisting of F¬ψ1 , F¬ψ2 ,

Fα and Fβ interpolates to ¬ψ′, where ¬ψ′ ≡ (¬ψ1 ∧ β) ∨ ¬ψ′
2 ≡ (¬(ψ1 ∧ ψ2) ∧ β) ∨ α.

Hence, property (2) holds.

Combining the above, both properties hold for conjunctive cases and their negations si-
multaneously.

Disjunctive cases: We construct the interpolating tableau F for ψ = ψ1∨ψ2 by attaching
Fψ2 at the tip of every left open branch in Fψ1 . Pictorially, we have

Fψ2

Fψ1

By the inductive hypothesis, each left open branch b in Fψ1 (Fψ2) corresponds to a set
s1 ∈ KSL

1(s2 ∈ KSL
2) that contains all open literals along b respectively. Similarly, each

right open branch b in Fψ1 (Fψ2) corresponds to a set s1 ∈ KSR
1 (s2 ∈ KSR

2 ) that contains
all open literals along b respectively. Since Fψ2 is attached at the tip of every left open
branch in Fψ1 , the set of right open branches in Fψ is the union of right open branches in
Fψ1 and right open branches in Fψ2 . Then since KSR

1 ∪ KSR
2 = KSR by Construction 4.11,

every right open branch b in Fψ corresponds to a set s ∈ KSR that contains all open literals
along b. Since Fψ2 is attached at the tip of every left open branch in Fψ1 , the set of left
open branches in Fψ is the concatenation of each left open branch in Fψ1 and each left
open branch in Fψ2 . Then since KSL

1 × KSL
2 = KSL by Construction 4.11, every left open

branch b in Fψ corresponds to a set s ∈ KSL that contains all open literals along b. Hence,
property (1) holds.

Then, consider the closed tableau constructed by attaching Fα to every left open branch
and Fβ to every right open branch in Fψ. Pictorially, we have

Fα

Fψ2

Fψ1

Fβ

Fβ
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By the inductive hypothesis, the left subproof consisting of Fψ2 , Fα and Fβ interpolates
to ψ′

2, where ψ
′
2 ≡ (ψ2 ∧ β)∨ α, and the complete subproof consisting of Fψ1 , Fψ2 , Fα and

Fβ interpolates to ψ′, where ψ′ ≡ (ψ1 ∧ β)∨ψ′
2 ≡ ((ψ1 ∨ψ2)∧ β)∨α. Hence, property (2)

holds.

Negative disjunctive cases: Consider ¬ψ ≡ ¬(ψ1 ∨ ψ2) ≡ ¬ψ1 ∧ ¬ψ2. By the induc-
tive hypothesis, we can construct interpolating tableaux F¬ψ1 and F¬ψ2 for ¬ψ1 and ¬ψ2

respectively such that properties (1) and (2) hold. Then, we can construct interpolating
tableau F¬ψ for ¬ψ by attaching F¬ψ2 to every right open branch of F¬ψ1 . Pictorially, we
have

F¬ψ1

F¬ψ2

By Construction 4.11, the right complementary closing sets for ¬ψ1, ¬ψ2 and ¬ψ are KSL
1,

KSL
2 and KSL respectively. Then since a copy of F¬ψ2 is attached at the tip of every right

open branch in F¬ψ1 , the set of right open branches in F¬ψ is the concatenation of each right
open branch in F¬ψ1 and each right open branch in F¬ψ2 . Hence, since KSL

1 × KSL
2 = KSL,

every right open branch b in F¬ψ corresponds to a set s ∈ KSL that contains all open literals
along b. Similarly, by Construction 4.11, the left complementary closing sets for ¬ψ1, ¬ψ2

and ¬ψ are KSR
1 , KS

R
2 and KSR respectively. Then since a copy of F¬ψ2 is attached at the

tip of every right open branch in F¬ψ1 , the set of left open branches in F¬ψ is the union of
left open branches in F¬ψ1 and left open branches in F¬ψ2 . Hence, since KS

R
1 ∪KSR

2 = KSR,
every left open branch b in F¬ψ corresponds to a set s ∈ KSR that contains all open literals
along b. Thus, property (1) holds for ¬ψ.
Then, consider the closed tableau constructed by attaching Fα to every left open branch
and Fβ to every right open branch in F¬ψ. Pictorially, we have

F¬ψ1

F¬ψ2

Fβ

Fα

Fα

By the inductive hypothesis, the right subproof consisting of F¬ψ2 , Fα and Fβ interpolates
to ¬ψ′

2, where ¬ψ′
2 ≡ (¬ψ2 ∧ β) ∨ α, and the complete subproof consisting of F¬ψ1 , F¬ψ2 ,
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Fα and Fβ interpolates to ¬ψ′, where ¬ψ′ ≡ (¬ψ1 ∧ ¬ψ′
2) ∨ α ≡ (¬(ψ1 ∨ ψ2) ∧ β) ∨ α.

Hence, property (2) holds.

Combining the above, both properties hold for all disjunctive cases and their negations.

Existential cases: We construct the interpolating tableau Fψ for ψ = ∃x.ψ1 by substi-
tuting every occurrence of x in Fψ1 with biased Skolem term fL(Fv(ψ)). By the inductive
hypothesis, each left (right) open branch b in Fψ1 corresponds to a set s ∈ KSL

1(s ∈ KSR
1 )

that contains all open literals along b respectively. Then since KSL = KSL
1[x/f

L(Fv(ψ))]
and KSR = KSR

1 [x/f
L(Fv(ψ))], each left (right) open branch b in Fψ corresponds to a set

s ∈ KSL(s ∈ KSR) that contains all open literals along b respectively. Hence, property (1)
holds for ψ.

By the inductive hypothesis, Fψ1 interpolates to ψ
′
1 ≡ ψ1. Then since Fψ is constructed by

replacing every x in Fψ1 by f
L(Fv(ψ)), Fψ interpolates to ψ′

1[x/f
L(Fv(ψ))]. However, since

fL(Fv(ψ)) is left biased and contains free variables only, we can apply quantification rule
(Q1) to quantify fL(Fv(ψ)) in ψ′

1[x/f
L(Fv(ψ))], so Fψ interpolates to ∃x.ψ′

1 ≡= ψ. Hence,
property (2) holds for ψ.

Negated Existential cases: We construct the interpolating tableau F¬ψ for ¬ψ =
¬(∃x.ψ1) by substituting every occurrence of x in F¬ψ1 with biased Skolem term fR(Fv(¬ψ)).
Property (1) and (2) follow from the fact that ¬(∃x.ψ1) ≡ ∀x.(¬ψ1) and right biased Skolem
term fR(Fv(¬ψ)) is universally quantified by quantification rule (Q2).

Combining the above, both properties hold for all existential cases and their negations.

This covers all the cases. Thus, we can construct interpolating tableau satisfying properties
(1), (2) for all range-restricted formulae. ■

Note that since all quantifiers in L(ΣA),R(ΣA) are universal, on-the-spot substitution in the
proof of Lemma 4.16 is equivalent to applying universal expansions using fresh variables
then applying closing substitutions in the end. The resulting proof tree is therefore a valid
closed F-tableau that can be obtained by postponed substitution.

For the proof of correctness, we assume that derivations of the conditional atoms in KX

are totally ordered although it is sufficient to keep KX as an unordered set for practical
implementations.

Construction 4.17 (Closing Tableau) A closing tableau F for K-tableau K is an open
F-tableau defined with respect to (i) a function ω, which maps each K-tableau inference
in K to a sequence of F-tableau inferences in F , and (ii) a substitution σ. Given a se-
quence of K-tableau inferences (ι1, . . . , ιn) that construct K, the closing tableau F for K is
constructed by a sequence of F-tableau inferences (ω(ι1), . . . , ω(ιn)) under substitution σ.
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Each inference ω(ιi) is applied at the tip of selected branches in the tableau constructed
from (ω(ι1), . . . , ω(ιi−1)).

The definition of branch numbers for closing tableaux is adapted accordingly. We say that
a set of branch numbers B1 is associated with a set of branch numbers B2 if B1 ⊇ B2.
As a consequence of this adapted notion of branch numbers for closing tableaux, each
inference mapping is attached to the proof many times at each step because a copy of ω(ιi)
is attached at the tip of all appropriate (i.e., associated) branches.

First, we define the base case for closing tableau construction.

0. If K is initialized with a set of conditional atoms IX, then its closing tableau F is
initialized by attaching the same set of biased initial atoms, without conditions and
branches, to its root.

Assume all conjunctions in the input constraints are binary. We define ω and σ for the
physical rule and each K-tableau inference rule in Definition 4.7 as follows:

1. Let ιi be a K-tableau inference that takes conditional atom R(t̄R)[D]⟨B⟩ ∈ KX and a
constraint R(x̄) → P (ȳ) ∈ X(Σ) to derive new conditional atom P (t̄P )[D]⟨B⟩ in KX.
We define ω(ιi) =

X(∀x̄.(R(x̄) → P (ȳ)))
|

X(R(v̄x) → P (v̄y))
/ \

X(¬R(v̄x)) X(P (v̄y))
|

X(R(t̄R))
⊗

closed by σ

and σ(v̄x) = t̄R for fresh variables v̄x. We apply ω(ι) to (ω(ι1), . . . , ω(ιi−1)) by
attaching a copy of ω(ιi) at the tip of every open branch associated with B in the
F-tableau constructed by (ω(ι1), . . . , ω(ιi−1)). The set of branch numbers for each
extended branch is B ∪ B′ where B′ is the set of branch numbers assigned to the
branch before extension by ω(ιi).
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2. Let ιi be a K-tableau inference that takes conditional atoms R1(t̄R1)[D1]⟨B1⟩ ∈ KX,
R2(t̄R2)[D2]⟨B2⟩ ∈ KX and a constraint R1(x̄1) ∧ R2(x̄2) → P (ȳ) ∈ X(Σ) to derive
new conditional atom P (t̄P )[D1 ∪D2]⟨B1 ∪B2⟩ in KX. We define ω(ιi) =

X(∀x̄.(R1(x̄1) ∧R2(x̄2) → P (ȳ)))
|

X(R1(v̄x1) ∧R2(v̄x2) → P (v̄y))
/ \

X(¬(R1(v̄x1) ∧R2(v̄x2))) X(P (v̄y))
/ \

X(¬R1(v̄x1)) X(¬R2(v̄x2))
| |

X(R1(t̄R1)) X(R2(t̄R2))
⊗ ⊗

closed by σ closed by σ

and σ(v̄x1) = t̄R1 and σ(v̄x2) = t̄R2 for fresh variables v̄x1 , v̄x2 . We apply ω(ιi) to
(ω(ι1), . . . , ω(ιi−1)) by attaching a copy of ω(ιi) at the tip of every open branch
associated with B1∪B2 in the F-tableau constructed by (ω(ι1), . . . , ω(ιi−1)). The set
of branch numbers for each extended branch is B ∪B′ where B′ is the set of branch
numbers assigned to the branch before extension by ω(ιi).

3. Let ιi be a K-tableau inference that takes conditional atom R(t̄R)[D]⟨B⟩ ∈ KX

and a constraint R(x̄) → P1(ȳ) ∨ P2(ȳ) ∈ X(Σ) to derive new conditional atoms
P1(t̄P )[D]⟨B ∪{m : 0}⟩ and P2(t̄P )[D]⟨B ∪{m : 1}⟩ in KX for a fresh branch number
m. We define ω(ιi) =

X(∀x̄.(R(x̄) → P1(ȳ) ∨ P2(ȳ)))
|

X(R(v̄x) → P1(v̄y) ∨ P2(v̄y))
/ \

X(¬R(v̄x)) X(P1(v̄y) ∨ P2(v̄y))
| / \

X(R(t̄R)) X(P1(v̄y)) X(P2(v̄y))
⊗

closed by σ

and σ(v̄x) = t̄R for fresh variables v̄x. We apply ω(ιi) to (ω(ι1), . . . , ω(ιi−1)) by
attaching a copy of ω(ιi) at the tip of every open branch associated with B in the
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F-tableau constructed by (ω(ι1), . . . , ω(ιi−1)). The set of branch numbers for the
left(right) extended branch is B ∪ {m : 0} ∪B′(B ∪ {m : 1} ∪B′) respectively, where
B′ is the set of branch numbers assigned to the branch before extension by ω(ιi).

4. Let ιi be a K-tableau inference that takes conditional atom R(t̄R)[D]⟨B⟩ ∈ KX and a
constraintR(x̄) → ∃v.P (v, ȳ) ∈ X(Σ) to derive new conditional atom P (fX(t̄P ), t̄P )[D]⟨B⟩
in KX, where fX is a X biased Skolem function symbol for ∃v.P (v, ȳ). We define
ω(ιi) =

X(∀x̄.(R(x̄) → ∃v.P (v, ȳ)))
|

X(R(v̄x) → ∃v.P (v, v̄y))
/ \

X(¬R(v̄x)) X(∃v.P (v, v̄y))
| |

X(R(t̄R)) X(P (fX(v̄y), v̄y))
⊗

closed by σ

and σ(v̄x) = t̄R for fresh variables v̄x. We apply ω(ιi) to (ω(ι1), . . . , ω(ιi−1)) by
attaching a copy of ω(ιi) at the tip of every open branch associated with B in the
F-tableau constructed by (ω(ι1), . . . , ω(ιi−1)). The set of branch numbers for each
extended branch is B ∪ B′ where B′ is the set of branch numbers assigned to the
branch before extension by ω(ιi).

5. Let ιi be an application of physical rule which inserts P (t̄R)[P (t̄R)]⟨⟩ in KX. We
define ω(ιi) =

X(∀x̄.(P (x̄) → P (x̄)))
|

X(P (v̄x) → P (v̄x))
/ \

X(¬P (v̄x)) X(P (v̄x))

and σ(v̄x) = t̄R for fresh variables v̄x. We apply ω(ιi) to (ω(ι1), . . . , ω(ιi−1)) by
attaching a copy of ω(ιi) at the tip of every open branch in the F-tableau constructed
by (ω(ι1), . . . , ω(ιi−1)). The set of branch numbers for each extended branch inherits
the set of branch numbers assigned to the branch before extension by ω(ιi).

To simplify notation in the proof of correctness, let us specify terminology for special
branches and atoms in the closing tableaux resulting from mapping ω and substitution σ.
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Definition 4.18 (Major and Minor Branches) We call branches in F that result strictly
from the mapping ω minor branches and those resulting from K-tableau disjunctive infer-
ence rules major branches.

It is clear from construction that every open minor branch contains a single open literal at
its leaf node.

Definition 4.19 (Minimal Derivation) We call a sequence of inferences
(ι1 . . . , ιn) that derives r[D]⟨B⟩ minimal if each inference ιi is necessary for deriving
r[D]⟨B⟩.

Definition 4.20 (Image) We say an occurrence of an atom r in the closing tableau is
an image of r[D]⟨B⟩ derived from (ι1 . . . , ιn) if r is in ω(ιn)σ.

We say that a minor branch is necessary to derive the image r for r[D]⟨B⟩ if the mi-
nor branch is introduced by ω(ιj)σ such that ιj is in a minimal sequence of derivations
(ι1, . . . , ιn) for r[D]⟨B⟩.

The following lemma illustrates the utility of dependencies in conditional atoms. Intu-
itively, dependencies for an atom r record a necessary and sufficient set of open minor
branches that derive r. When dependencies are merged via closing set construction based
on branch numbers, extraneous derivations are removed to produce a closing tableau that
can be closed by attaching a closing set to its root.

Lemma 4.21 Let K = (KL,KR) be a K-tableau, and CSL,CSR its left and right closing
sets. Let IX be the set of initial atoms for KX and (ι1, . . . , ιk) be an ordered list of inferences
that constructs KX. Construct closing tableau F for KX from (ι1, . . . , ιk) and IX. Then
for each r[D]⟨B⟩ ∈ KX, D contains the negation of the open literal on each minor branch
that is necessary to derive the image r in F .

proof: We prove by induction on the number of inferences n.

Case 0 (base case): Consider the base case in which KX = IX is the initial tableau. By
F-tableau initialization, each conditional atom in IX has empty dependencies and branches.
Then since there does not exist any minor branches at the root of F , statement holds.

Inductive hypothesis: Let (ι1, . . . , ιn) be a sequence of K-tableau inferences that con-
structs KX

n from initial atoms IX. Let Fn be its closing tableau. Assume statement holds
for KX

n .
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Inductive proof: Construct KX
n+1 by applying inference ιn+1 to KX

n . That is, KX
n+1

is constructed by applying (ι1, . . . , ιn+1) to the set of initial atoms IX. We prove that
statement holds for KX

n+1.

Case 1 (R(x̄) → P (ȳ)): Suppose inference ιn+1 takes conditional atom R(t̄R)[D]⟨B⟩ ∈ KX
n

and applies constraint R(x̄) → P (ȳ) ∈ X(Σ) to derive new conditional atom P (t̄P )[D]⟨B⟩
in KX

n+1. By Construction 4.17, the closing tableau Fn+1 for KX
n+1 is obtained by attaching

a copy of ω(ιn+1)σ at the tip of each branch associated with branch number B in Fn. Then
each expansion results in a new left closed branch with atomic closure ¬R(v̄x), R(t̄R) under
v̄xσ = t̄R and a new right open branch with open atom P (t̄P ) at its leaf node. In other
words, attaching ω(ιn+1)σ at the tip of a branch extends that tip with open atom P (t̄P ).
Then by the inductive hypothesis and the fact that ω(ιn+1)σ does not introduce any new
open minor branches, D contains the negation of the open literal on each minor branch
that is necessary to derive the image P (t̄P ) for P (t̄P )[D]⟨B⟩ in Fn+1. Hence statement
holds for KX

n+1.

Case 2 (R1(x̄1) ∧ R2(x̄2) → P (ȳ)): Suppose inference ιn+1 takes R1(t̄R1)[D1]⟨B1⟩ and
R2(t̄R2)[D2]⟨B2⟩ ∈ KX

n and applies constraint R1(x̄1) ∧ R2(x̄2) → P (ȳ) ∈ X(Σ) to derive
new conditional atom P (t̄P )[D1∪D2]⟨B1∪B2⟩ inKX

n+1. By Construction 4.17, F is obtained
by attaching a copy of ω(ιn+1)σ at the tip of each branch associated with branch number
B1∪B2 which contains R1(t̄R1)[D1]⟨B1⟩ and R2(t̄R2)[D2]⟨B2⟩ on the branch. Analogous to
case (1), the expansion at the tip of each branch extends the tip with open atom P (t̄P ),
so ω(ιn+1)σ does not introduce any new open minor branches. Then by the inductive
hypothesis, since D1, D2 contain the negation of the open literal on each minor branch
that is necessary to derive the images R1(t̄R1), R2(t̄R2) respectively, so does D1 ∪ D2 for
the image P (t̄P ). Hence, statement holds for KX

n+1.

Case 3 (R(x̄) → P1(ȳ) ∨ P2(ȳ)): The proof is analogous to case (1) since the left hand
side of constraint only contains a single atom. Suppose inference ιn+1 takes conditional
atom R(t̄R)[D]⟨B⟩ ∈ KX

n and applies constraint R(x̄) → P1(ȳ) ∨ P2(ȳ) ∈ X(Σ) to derive
new conditional atom P1(t̄P )[D]⟨B ∪ {m : 0}⟩ and P2(t̄P )[D]⟨B ∪ {m : 1}⟩ in KX

n+1, where
m is a fresh branching point number. By Construction 4.17, the closing tableau Fn+1 for
KX
n+1 is obtained by attaching a copy of ω(ιn+1)σ at the tip of each branch associated with

branch number B in Fn. Then each expansion results in a new left closed branch with
atomic closure ¬R(v̄x), R(t̄R) under v̄xσ = t̄R and a new right open disjunction of open
atoms P1(t̄P ) and P2(t̄P ) at its leaf node. In other words, attaching ω(ιn+1)σ at the tip of
a branch extends that tip with open disjunction of P1(t̄P )∨P2(t̄P ). Then by the inductive
hypothesis and the fact that ω(ιn+1)σ does not introduce any new open minor branches, D
contains the negation of the open literal on each minor branch that is necessary to derive
the image P1(t̄P ) and P2(t̄P ) for P1(t̄P )[D]⟨B ∪ {m : 0}⟩ and P2(t̄P )[D]⟨B ∪ {m : 1}⟩ in
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Fn+1 respectively. Hence statement holds for KX
n+1.

Case 4 (R(x̄) → ∃v.P1(v, x̄)): The proof is analogous to case (1) since the left hand side
of constraint only contains a single atom.

Case 5 (physical rule): Let p denote a physical atom. Correctness follows from the
fact that the expansion of p → p results in an open minor branch containing open literal
¬p whose negation is in the dependencies of p[p]⟨⟩. Since p → p is a tautology, (ιn+1) is
the minimal sequence that derives p[p]⟨⟩, so {p} indeed contains the negation of the open
literal on the only minor branch that is necessary to derive the image p in Fn+1. By the
inductive hypothesis, the same is true for the remaining conditional atoms originally in
KX
n , so statement holds for KX

n+1.

This covers all the cases, so by induction, statement holds. ■

Lemma 4.22 Let K = (KL,KR) be a K-tableau, and CSL,CSR its left and right closing
sets. Let CX = {r1[D1]⟨B1⟩, . . . , rk[Dk]⟨Bk⟩} be the set of conditional atoms used in the
construction of s ∈ CSX. That is, s = {¬r1, . . . ,¬rk} ∪D1 ∪ · · · ∪Dk. Let (ι1, . . . , ιn) be
the minimal sequence of inferences that derives CX from the initial atoms IX. Construct
closing tableau F from (ι1, . . . , ιn) and IX. Then the images for each ri[Di]⟨Bi⟩ ∈ CX are
open leaf nodes in F , and the remaining leaf nodes in F are on minor branches.

proof: By Construction 4.10, every Bi contains a branch number m : d such that m :
d /∈ Bj where i ̸= j, so the images of distinct conditional atoms in CX appear on distinct
branches in F . Then the images for each c ∈ CX must be open leaf nodes in F , or
else (ι1, . . . , ιn) is not minimal since we can remove an inference and still derive all of
CX. Moreover, the leaf node of each major branch is an image of some ri[Di]⟨Bi ∈ CX,
or else either (ι1, . . . , ιn) is not minimal because we can remove a disjunctive inference
rule and still derive CX or s is not a valid closing set because there exists m such that
{m : 0,m : 1} ⊈ B1 ∪ · · · ∪Bk. Then all remaining leaf nodes must be on minor branches.

■

Lemma 4.23 (Properties of Closing Tableau) Let K = (KL,KR) be a K-tableau, and
CSL,CSR its left and right closing sets. Let CX = r1[D1]⟨B1⟩, . . . , rk[Dk]⟨Bk⟩ be the set of
conditional atoms used in the construction of s ∈ CSX. Let (ι1, . . . , ιn) be the minimal
sequence of inferences that derives CX from the initial atoms IX. Construct closing tableau
F from (ι1, . . . , ιn) and IX. Then F satisfy the following:

1. F may be closed by attaching s to its root; and
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2. The resulting closed tableau can only interpolate to ⊥(⊤) for X = L(X = R) respec-
tively.

proof: First, we prove property (2). By Construction 4.17, only constraints from X(Σ)
are used during the construction of F . By the construction of s, all literals attached to
the root are implicitly X biased. Hence, the resulting closed tableau of F only contains
X biased formulae, so by Definition 3.12, it can only interpolate to ⊥(⊤) for X = L(R)
respectively. Hence, property (2) holds.

Next we prove property (1). Since (ι1, . . . , ιn) is the minimal sequence that derives CX, by
Lemma 4.22, the leaf node on each major branch in F is an image of some c ∈ CX. Then
attaching {¬r1, . . . ,¬rk} to the root of F closes all major branches in F . Next, observe
that since (ι1, . . . , ιn) is minimal, by Lemma 4.21, each Di contains the negation of the
open literal on each minor branch on the major branch with leaf node that is an image of
ri[Di]⟨Bi⟩. Then attaching D1 ∪ · · · ∪Dk to the root of F closes all minor branches in F .
Combining the above, attaching s = {¬r1, . . . ,¬rk}∪D1 ∪ · · · ∪Dk to the root of F closes
F . Thus, property (1) holds.

Thus, both properties hold for the closing tableau constructed from the minimal sequence
of inferences (ι1, . . . , ιn) and initial atoms IX. ■

Finally, we apply Construction 4.17 and Lemmas 4.16 and 4.23 to prove Theorem 4.13.

proof of Theorem 4.13: Let K = (KL,KR) and ψ be K-tableau and formula that satisfy
the closing condition (Definition 4.12). Construct interpolating tableau Fψ. Since K =
(KL,KR) and ψ satisfy the closing condition, we can construct left and right closing sets
CSL,CSR and left and right complementary closing sets KSL,KSR such that for each s′ ∈
KSX, there exists s ∈ CSX such that s ⊆ s′. Construct closing tableau FX

s for s. Then,
we can construct new F-tableau F by hanging a closing tableau FX

s at the tip of each
open branch corresponding to s′ in Fψ for all pairs of s′, s. By Lemma 4.23 property (1)
and Lemma 4.16 property (1), F is a closed F-tableau. By Lemma 4.23 property (2) and
Lemma 4.16 property (2), F interpolates to formula ψ′ that is logically equivalent to ψ.
Hence, ψ is a valid interpolant, as desired. ■

A notable consequence of Construction 4.10 is that if r[D1]⟨B1⟩ and r[D2]⟨B2⟩ are condi-
tional atoms such that D2 ⊆ D1 and B1 ⊆ B2, then for each closing set s2 constructed
from r[D2]⟨B2⟩, there exists a closing set s1 constructed from r[D1]⟨B1⟩ such that s1 ⊆ s2.
Then, by Lemma 4.22, the derivation summarized by r[D2]⟨B2⟩ is subsumed by the deriva-
tion summarized by r[D1]⟨B1⟩. Hence, we can apply the following restriction to optimize
theorem proving in K-tableau.
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Definition 4.24 (Subsumption) Let r[D1]⟨B1⟩ and r[D2]⟨B2⟩ be conditional atoms such
that D2 ⊆ D1 and B1 ⊆ B2. We say r[D2]⟨B2⟩ is subsumed by r[D1]⟨B1⟩.

Corollary 4.25 Let FX be a K-tableau and r[D1]⟨B1⟩ and r[D2]⟨B2⟩ conditional atoms
in FX. If r[D2]⟨B2⟩ is subsumed by r[D1]⟨B1⟩, then a conditional atom r∗[D∗]⟨B∗⟩ is
derivable from FX if and only if it is derivable from FX\{r[D2]⟨B2⟩} or subsumed by a
conditional atom derivable from FX\{r[D2]⟨B2⟩}.

proof: Follows from Lemma 4.22 and Definition 4.7. ■

Corollary 4.25 may be applied to remove all subsumed conditional atoms in a K-tableau.

4.3 Guessing Tautologies

In Section 4.1, we introduced the physical rule which inserts conditional atoms of the form
p[p]⟨⟩ for arbitrary ground physical atom p as a consequence of the tautology ∀x̄.(p→ p).
However, the freedom to pick arbitrary p introduces significant non-determinism during
theorem proving, which exacerbates the issue with the combinatorial explosion of the proof
search space. Hence, physical rules must be applied with caution to avoid introducing
extraneous conditional atoms. We illustrate the gravity of this issue with an example.

Example 4.26 Define input schema Σ = {R(x) ↔ P (x), Oi(x) ↔ Oi+1(x) | ∀i ∈ N, i ≤
1000}, access paths SA = {P/1/0, Oi/1/0 | ∀i ∈ N, i ≤ 1001}, and user query q(x) ↔
R(t̄R).

It is clear from the example that Oi(t̄Oi
) is extraneous for all i, so applying physical

rules indiscriminately results in 1000 extraneous inferences and closing sets. Moreover,
the problem illustrated in this simple example can be much worse in reality for more
complicated schemata containing existential variables and disjunctions.

4.3.1 Basic Physical Rule [25]

Fortunately, it is possible to apply physical rules as selectively as necessary. Two simple
observations are sufficient for eliminating most extraneous physical atoms.

Observation 4.27 By Lemma 4.16, if an atom r appears in an interpolant ψ, then there
exists left and right complementary closing sets KSL and KSR for ψ, each containing either
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r or ¬r, although r and ¬r may not be necessary to closed the interpolating tableau for
ψ. In other words, r appears in either both KSL and KSR or neither.

We do not know in advance which literals are necessary to closed the interpolating tableau
for ψ, but we do know that if one of r and ¬r is possibly needed on the X side, then by
Observation 4.27, the same can be said about the X side. It is thus constructive to restrict
the application of physical rules by the following condition.

Definition 4.28 (Basic Physical Rule) If P (t̄)[D]⟨B⟩ is in KX where P is physical,

then insert P (t̄)[P (t̄)]⟨⟩ in KX if not already exists.

The above condition is sufficient if we only wish to enumerate query plans (i.e. interpolants)
consisting of literals whose atoms are consequences of the schema Σ and user query q.
Otherwise it is clear that the condition in Definition 4.28 can never be met. In most cases,
if an atom r is not a consequence of Σ and q, r appears in a tautology in the interpolant
ψ, otherwise Σ ∪ {q} → r which is a contradiction.

4.3.2 A Messy Guessing Game

The question remains whether it is constructive to apply physical rules for literals whose
atoms are not consequences of the schema and user query. The following example illustrates
a scenario in which applying physical rule for such an atom produces an optimal plan that
is otherwise not found.

Example 4.29 (Negative Literal) Consider a query optimization problem for the user
query a(x) ∧ c(x) with respect to the database schema

Schema Query Normalized
Constraints Constraints

q(x) ↔ a(x) ∧ c(x) trans−−−−→ q(x) → a(x)
q(x) → c(x)

a(x) ∧ c(x) → q(x)

c(x) ∧ b(x, y) → ⊥ trans−−−−−−−−−−−−−−−−−−−−−→ c(x) ∧ b(x, y) → ⊥

presented as a set of constraints and the set of assess paths SA = {a/1/0, b/2/0, c/1/0}.
The system will still generate the query plan a(x) ∧ c(x), but not the plan

a(x) ∧ (¬∃y.b(x, y)) ∧ c(x),
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even though the schema implies c(x) → ¬∃y.b(x, y). The second plan may be more efficient
than the first plan when a is large, when checking the satisfaction of ¬∃y.b(x, y) is relatively
inexpensive compared to checking the satisfaction of c(x), and when the intersection of x
values in a(x) and b(x, y) is now close to the size of a.

The failure to derive the second plan in this case can be traced to the forward chaining
design of K-tableau: the premise c(x) ∧ b(x, y) → ⊥ is never executed since atoms for b
cannot be derived by forward chaining.

We observe from the above example that ¬r can be a consequence of Σ and q when r is
not. Moreover, it is possible that an optimal plan contains ¬r non-trivially (i.e., not in a
tautology). Hence, it is constructive to apply the physical rule for r under the condition that
its negation is a consequence of Σ and q. Unfortunately, since K-tableau performs forward
chaining to derive positive ground literals only, r cannot be derived using just the basic
physical rule alone. A straightforward way to rectify this problem is to extend the tableau
construction by allowing negated atoms alongside the positive atoms. This, however, leads
immediately to the need for handling free/universally quantified variables, unification,
etc. Instead, we present an alternative solution inspired by the magic set transformation
(MST) [5] that allows K-tableau construction to be based on efficient forward chaining of
constraints over ground atoms while providing a general solution to the problem illustrated
by Example 4.29.

A Messy Guessing Game. Before we present the MST-based transformation procedure,
let us first consider the intuition our procedure aims to capture: guessing and generating
tautologies P (t̄)[P (t̄)]⟨⟩ with appropriate arguments t̄ for the missing physical atoms. Let
us illustrate this guessing game with Example 4.29.

Example 4.29 (Continued) Recall that c(x) ∧ b(x, y) → ⊥ is never executed because
none of the constraints contains b(x, y) on the right hand side. We initialize the K-tableau
K = (KL,KR) with q(0) in KL. Applying forward chaining, the left closing sets for Exam-
ple 4.29 are {¬a(0)} and {¬c(0)}, and the right closing set is {a(0), c(0)}. However, to gen-
erate the query plan ‘a(x)∧(¬∃y.b(x, y))∧c(x)’, we are missing the left closing set {b(0, 1)}
because the system fails to generate its corresponding conditional atom ⊥[b(0, fR())], where
fR() is a R biased Skolem term for b. To introduce b in the tableau, we mirror the basic
physical rule and insert tautologies b(t1, t2)[b(t1, t2)], where t1, t2 are biased Skolem terms
or initial Skolem constants. The task remains to guess appropriate Skolem constants for
t1, t2 so that ⊥[b(0, fR())] is generated. In this simple case, we obviously guess t1 = 0 and
t2 = fR(). However, in most cases, guessing appropriate arguments is a non-trivial task.

Example 4.29 shows how a simple guessing game can generate appropriate conditional
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atoms for missing plans. In the next example, we illustrate difficulties with chaining of
negative atoms, which can make the guessing game messy. We also see how MST is used
to solve the messy guessing game.

Example 4.30 Consider a database schema Σ = {q(x) → d(x), q(x) → a(x), d(x) ∧
a(x) → q(x), a(x) ∧ b(x, y) → ∃z.c(x, y, z), b1(x, z) ∧ b2(z, y) → b(x, y)} for a user query q
and a set of physical atoms {a, b1, b2, c, d}.

This example contains both existential variables and chaining of negative atoms b(x, y),
b1(x, z), b2(z, y). The current system fails to produce conditional atoms for physical predi-
cates b1, b2, c, resulting in missing plan ‘d(x)∧¬∃y, z, u.((b1(x, z)∧ b2(z, y))∧¬c(x, y, u))∧
a(x)’.

To produce appropriate argument bindings in plans, we must make educated guesses for
c(x, y, u) depending on previous guesses for b(x, y). Similarly, we guess b(x, y) depending on
previous guesses for b1(x, z) and b2(z, y). Hence, in the presence of chaining, the guessing
game becomes messy since previously guessed arguments must be back propagated into
new guesses. The key observation is that any solution that plays the messy guessing game
correctly must perform back chaining on previously guessed arguments.

Since MST is a rewriting procedure designed to simulate back chaining using forward
chaining evaluation, it precisely solves the messy guessing game for our forward chaining
system. Ultimately, the goal is to guess as few conditional atoms as needed to extend
the query plan space. Given the above considerations, MST-based rewriting provides a
well-rounded solution given the positive and forward chaining nature of the system.

4.3.3 Magic Physical Rule

Magic Set Transformation for K-Tableau [18]. As illustrated by Example 4.30,
an MST-like rewriting procedure is necessary for argument back propagation. The idea
is to create auxiliary magic atoms which serve as medium for back chaining needed to
communicate argument bindings.

The rewriting procedure transforms a set of ANF input constraints Σo coupled with a
set of access paths SA into MST-enhanced constraints Σo ∪ Σg ∪ Σp, where Σg are the
constraints that generate magic atoms and Σp the physical rules that generate missing
conditional atoms from magic atoms. The procedure consists of 3 stages: (a) a first stage
that initializes the set of magic atoms V m from constraints with conjunction on their left
hand sides; (b) a second stage that recursively computes magic atoms from right hand
sides and uses V s to record explored magic atoms; and (c) a final stage that computes the
set of magic physical rules Σp.
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1. Initial Transformation. For each constraints in Σo of the form

a(xa) ∧ b(xb) → c(xc),

compute variable overlap xab = xa ∩ xb, and adornment string A ∈ {0, 1}l. Here, l is the
number of arguments in xb, and Ai = 1 if the ith argument in xb appears in xab (Ai =
0 otherwise). Create predicate magic bA(xab) for predicate b with respect to argument
binding xab. Add new constraint

a(xa) → magic bA(xab)

to Σg, and add new predicatemagic bA to V m. Note that conditional atomsmagic bA(xab)[]{}
always have empty conditions and branches. Repeat for constraint b(xb) ∧ a(xa) → c(xc)
where arguments are passed from b to a.

2. Chain Transformation. While V m is non-empty, select magic aA ∈ V m, remove it
from V m, and add it to V s. For each binary constraint

b(xb) ∧ c(xc) → a(xa)

with the right hand side matching magic aA, compute the subset of arguments xAa from xa
indicated by A, and add new constraint

magic aA(xAa ) → magic bA
′
(xAab)

to Σg, where xAab = xAa ∪ xb. Then, add one additional new constraint

magic aA(xAa ) ∧ b(xb) → magic cA
′
(xAabc)

to Σg, where arguments xAabc = (xAa ∪xb)∩xc, and new adornment string A′ computed from
xAabc and xc. Repeat for the constraint c(xc) ∧ b(xb) → a(xa) where arguments are passed
from c to b. Transformations for all remaining constraints are defined analogously. Add
new predicates to V m if not already in V m ∪ V s.

3. Magic Physical Rule. For each predicate magic aA corresponding to some physical
predicate a, add a magic physical rule (symmetric to the basic physical rule) to Σp such
that magic aA(x) generates conditional atom a(xa)[a(xa)] on the same side of the tableau
for its corresponding non-magic predicate, where the arguments indicated by A are copied
from x, and the rest of the arguments are fresh Skolem terms with the opposite bias.

Soundness and Efficacy. Previous work on interpolation-based query optimizers show
that K-tableau are sound even when restricted by absorption. Now we show that the MST-
enhanced constraints are sound and effectively generate appropriate negative conditions
without using negative ground literals.
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Theorem 4.31 (Soundness of MST-enhanced Constraints [18]) Given original in-
put constraints Σo in ANF, the MST-enhanced rewriting of Σo, denoted by Σm, is sound.

proof: Follows from the correctness of MST and the fact that magic physical rules only
insert tautologies, which preserve soundness. Hence, since Σo is sound, Σm is sound. ■

In addition to soundness, the patterns seen in Examples 4.29 and 4.30 generalize easily to
complex input schemata containing arbitrarily many negative implications and long chains
for which the missing physical atoms cannot be identified by inspection.

Theorem 4.32 (Efficacy of MST-enhanced Constraints [18]) Let Σo be the set of
original input constraints in ANF and Σm be its MST-enhanced rewriting. If a negative
atom is logically implied on some branch of the conditional tableau, then it is generated
with the correct dependencies and branches by forward chaining with respect to Σm.

proof: The base case is identical to Example 4.29. Efficacy generalizes to schemata with
chaining by induction on the length of chains. ■

Example 4.29 (revisited) We now illustrate the MST-based rewriting procedure with
Example 4.29. Performing the MST-based rewriting procedure on ANF input constraints
results in the following MST-enhanced constraints (some constraints are redundant, but
included for the sake of completeness):

Σo ={q(x) → a(x), q(x) → c(x), a(x) ∧ c(x) → q(x), c(x) ∧ b(x, y) → ⊥};
Σg ={c(x) → magic b10(x), b(x, y) → magic c1(x), a(x) → magic c1(x),

c(x) → magic a1(x),magic a1(x) → magic q1(x),magic c1(x) → magic q1(x),

magic q1(x) → magic a1(x),magic q1(x) ∧ a(x) → magic c1(x)}; and
Σp ={magic b10(x) → ∃y.b(x, y),magic c1(x) → c(x),magic a1(x) → a(x)}

Executing the above MST-enhanced constraints using forward chaining produces the fol-
lowing K-tableau, where the missing atom ⊥[b(0, fR())] is generated.
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KL KR

q(0)[]⟨⟩
a(0)[]⟨⟩ phys−−−→ a(0)[a(0)]⟨⟩
c(0)[]⟨⟩ phys−−−→ c(0)[c(0)]⟨⟩

q(0)[a(0), c(0)]⟨⟩
⊥[a(0), c(0)]⟨⟩

magic b10(0)
b(0, fR())[b(0, fR())]⟨⟩

⊥[b(0, fR())]⟨⟩

Hence, the MST rewriting procedure effectively generates the missing physical atoms with-
out additional reasoning beyond rule transformation. Ultimately, this yields the sought-
after plan a(x) ∧ (¬∃y.b(x, y)) ∧ c(x). Similarly, applying the MST-based rule rewriting
procedure to Example 4.30 yields MST-enhanced rules that generate the missing query
plans even in the presence of chaining.
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Chapter 5

System Implementation

In the previous chapter, we define K-tableau and the closing condition, which can be used
to recognize valid interpolants. To simplify the argument, we assume that candidate for-
mulae are supplied by a black box. However, in reality, being able to enumerate promising
candidates efficiently is equally important and should not be overlooked. In this chapter,
we present a solution, based on the A∗ search algorithm, that addresses the problem of
efficient candidate enumeration. Moreover, we summarize the system design of an exist-
ing interpolation-based query optimizer which leverages K-tableau and A∗ search for plan
enumeration.

5.1 Enumerating Plans

A key observation about plan enumeration is that we are not completely clueless about the
features of promising candidates. In fact, the closing sets already provide much guidance
for generating promising candidates. The idea is to iteratively construct more complex
candidate formulae from simpler formulae called fragments based on guidance from the
closing sets. However, note that depending on the K-tableau constructed, the set of in-
terpolants that are recognized by the closing sets may be a subset of the set of all valid
interpolants. In the context of K-tableau interpolation, we assume that interpolants refer
to interpolants that are recognized by a specific set of closing sets.

Definition 5.1 (Fragment) A fragment is a subformula of a candidate formula, or al-
ternatively, fragments are formulae that can be combined using logical symbols to construct
candidate formulae. We call a fragment useful if it appears non-trivially (i.e., not in a
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tautology) in an interpolant that is recognized by the closing sets. If a fragment is not useful
then we say it is extraneous.

In some sense, fragments and candidates are essentially the same. Every fragment ρ is
initially generated as a candidate; if ρ fails the closing condition, it is either pruned out for
being extraneous or kept as a fragment for constructing future candidates. From hereon
we use candidate and fragment interchangeably. We initialize the set of fragments by
literals, which are the most basic constituents of interpolants. Observe that by the closing
condition, a literal is only useful if it appears in the closing sets. Then we can further
restrict the set of initial fragments by only picking literals that appear in the closing sets.

Intuitively, we can think of the plan enumeration problem as a jigsaw puzzle. The closing
sets serve as a guiding picture for which we aim to reconstruct with fragments which
serve as jigsaw pieces in the plan enumeration puzzle. Each time we construct a bigger
fragment, we can compare it against the closing sets to measure its progress towards the
guiding picture.

To iteratively construct increasingly complex candidates, we leverage A∗ search which
uses a heuristic function based on closing sets to explore the more promising fragments
before the less promising ones. The heuristic function uses the set differences between
closing sets and complementary closing sets for ρ to estimate the distance between ρ and
a valid interpolant. At each step, we can prune out extraneous fragments by requiring the
intersection between the closing sets and each complementary closing set for the fragment
is non-empty. Moreover, the cost model for query plans is built into the heuristic function,
so A∗ search always explores fragments that are estimated to lead to cheaper query plans
first.

Finally, to ensure that all output interpolants are valid query plans, for each fragment, we
check whether all binding patterns are satisfied and prune out those with invalid binding
patterns.

5.2 The Interpolation Test Bed

The interpolation test bed (ITB) is an existing interpolation-based query optimizer that
implements K-tableau and A∗ search for query plan enumeration. The system design is
summarized in Figure 5.1.

A notable difference between K-tableau and its implementation in ITB is that biased
Skolem terms are replaced by Skolem constants, each associating with an age number
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Figure 5.1: ITB architecture [32].

denoting the order of creation. Since the order or creation is a linear extension of the
partial order on biased Skolem terms (i.e., the subterm property), we can correctly quantify
Skolem constants in the order of the most to the least recently created.

The modules that are marked in green correspond to a programmed virtual machine that
implements a K-tableau. Notice that user queries and constraints in ANF are compiled
into bytecodes which program the virtual machine. It is clear that the inference procedure
can be implemented using a straightforward approach By Proposition 4.2: matching the
left hand side of each constraint with conditional atoms in the tableau. However, due
to the combinatorial explosion of the proof search space (i.e., the set of all conditional
atoms in the tableau), the search for conditional atoms can be costly when implementing
the straightforward approach. Alternatively, we can implement the inference procedure by
selecting a new conditional atoms and executing all constraints with matching left hand
sides, which avoids the issue with search and simplifies the implementation since the set of
matching constraints is fixed for each predicate symbol. The following example illustrates
how constraints are implemented by bytecodes.

Example 5.2 (Constraints to Bytecodes) Constraints are translated into bytecodes
as follows:

1. R(x) → ∃v.R2(v, x) is translated into bytecode ‘MKSKOLEM R2’ for predicate R, which
makes new conditional atoms for R2(c, x) with fresh Skolem constant c, argument x,
and appropriate dependencies and branches.

2. R3(x) → R4(x) ∨ R5(x) is translated into bytecode ‘MKOR R4 x 0 MKOR R5 x 1’ for
predicate R3, which makes new conditional atoms for R4(x) and R5(x) at a fresh
branching point with direction numbers 0 and 1 respectively.
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3. R(x) ∧ R6(x, y) → R7(x) is translated into bytecode ‘JOIN R6 ON x, y MKATOM R7 x’
for predicate R, which performs join on conditional atoms for R6(x, y) and makes
new conditional atoms for R7(x).

In addition, for physical predicates P ∈ SA, we also include the bytecode

4. ‘MKPHYS’, which executes the basic physical rule by inserting tautological conditional
atoms for P into the complementary tableau if not already exist.

The modules that are marked in orange correspond to plan enumeration based on A∗

search. Note that ITB may alternate between theorem proving and query planning in
attempt to improve closing sets and extend the space of recognized interpolants.

Finally, the modules marked in blue correspond to program generation for the query plan.
The program generation process is briefly described in Section 2.1.3. The output of the ITB
is an executable program that retrieves answers for the user query. Detailed description
and report on ITB’s system design can be found in [32].
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Chapter 6

Beyond This Thesis

6.1 Related Work

Query optimization has been studied extensively since the proposal of the relational model
by Codd. In the context of this thesis, we only consider query optimization via reformula-
tion under constraints. The two most prominent approaches to query reformulation under
constraints are Chase & Backchase (CB) [15] and Craig interpolation [9, 11, 25, 31]. It
has been noted in [31] that CB may be thought of as a special case of Craig interpolation.
Detailed reduction and analysis can be found in [9, 31].

Other than F-tableau and K-tableau, many variant tableaux systems support interpolation
for first-order logic [21, 19, 36]. In addition, interpolation methods have also been developed
for non-tableau-based systems such as resolution provers [24].

6.2 Future Directions

1. In Section 4.1.1, we remark that all nested conjunctions on the left hand sides of
implications can be transformed into binary conjunction by inserting auxiliary atoms.
However, it is remains open whether binary conjunction will outperform nested
conjunctions for the purpose of theorem proving since it is not clear whether the
overhead of creating auxiliary atoms outweighs the cost of nested conjunctions.

2. In the definition of F-tableau and K-tableau, we assume all disjunctions are binary
although this does not have to be the case. It is easy to modify the inference and
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interpolation rules to accommodate for multi-way disjunctions. Nonetheless, it
remains open whether one is better than the other performance-wise.

3. The näıve approach to implementing equality is to apply the standard equality
axioms [19], which is what we assume for F-tableau and K-tableau in this thesis.
Unfortunately, this näıve approach is known to lead to combinatorial explosion of
the proof search space. To handle equalities more efficiently, special machineries has
been applied to proof systems. For example, superposition calculus is developed as
a result of applying paramodulation to resolution. It would be interesting and useful
to know whether similar techniques can generalize to interpolation.

4. Craig interpolation is not limited to tableau proof systems and is supported by al-
ternative proof systems such as resolution provers. It remains open whether
non-tableau provers, such as resolution and superposition provers, can outperform
tableau-based systems with respect to interpolation for the purpose of query opti-
mization.
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