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The best constant for an inequality related to

the Mathieu series

Hiroki Azuma and Yasuhiro Fujita

Abstract. Let S(r) be the Mathieu series defined by

S(r) =

∞∑
n=1

2n

(n2 + r2)2
, r ∈ (0,∞),

which converges to 2ζ(3) as r → 0+. Here ζ is the Riemann zeta
function. Let b ∈ (0,∞) be a constant. Our aim of this paper is to
show that the inequality

S(r) <
2ζ(3)

br2 + 1
, r ∈ (0,∞)

holds if and only if b ≤ b∗ := (2ζ(5))/ζ(3). Hence b∗ is the best
constant satisfying this inequality. This best constant is related to
the Taylor expansion of S at r = 0.

1. Introduction

In 1890, French mathematician Émile Léonard Mathieu [5] first intro-

duced the series S(r), which is now called the Mathieu series, defined as

(1.1) S(r) =
∞∑
n=1

2n

(n2 + r2)2
, r ∈ (0,∞).
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He conjectured that S(r) < 1/r2 for all r ∈ (0,∞), and used this inequality

in his work on elasticity of solid bodies. However, he could not prove this

conjecture.

In 1952, Berg [2] proved this inequality, although his proof was diffi-

cult enough. It was Makai [4] who gave in 1957 an elementary proof and

obtained the following estimates:

(1.2)
1

r2 + 1
2

< S(r) <
1

r2
, r ∈ (0,∞).

In 1998, Alzer, Brenner and Ruehr [1] showed that the best constants k1

and k2 in the two–sided estimations

(1.3)
1

r2 + k1
< S(r) <

1

r2 + k2
, r ∈ (0,∞)

are given by k1 = 1/(2ζ(3)) and k2 = 1/6, where ζ(s) is the Riemann zeta

function defined by

(1.4) ζ(s) =
∞∑
n=1

1

ns
, s ∈ (1,∞).

In 2007, Hoorfar and Qi [3] gave the inequality

(1.5) S(r) <
1√

(r2 + 1)2 + 1− 1
, r ∈ (0,∞).

By a simple calculation, the inequality

1√
(r2 + 1)2 + 1− 1

<
1

r2 + 1
6

holds if and only if 0 < r <
√

23
12 = 1.38443 · · · . Thus inequality (1.5) is

better than the right-hand side inequality in (1.3) with k2 = 1/6 only when

0 < r <
√

23
12 .

Till now, the Mathieu series has attracted increasing interest and at-

tention. However, as far as the authors know, the upper bounds obtained

for S(r) never reflect the fact such that S(r) → 2ζ(3) = 2.40411 · · · as

r → 0+. Indeed, the upper bound in (1.3) with k2 = 1/6 converges to 6

which is greater than 2ζ(3) as r → 0+; the upper bound in (1.5) converges
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to
√
2 + 1 = 2.41421 · · · which is also greater than 2ζ(3) as r → 0+. This

is contrary to lower bounds for S(r), since the lower bound in (1.3) with

k1 = 1/(2ζ(3)) converges to 2ζ(3) as r → 0+.

In this paper, we would like to present an inequality for S(r), which

reflects the fact such that S(r) → 2ζ(3) as r → 0+. For this purpose, for a

given constant b ∈ (0,∞), we consider the inequality of the form

(1.6) S(r) <
2ζ(3)

br2 + 1
, r ∈

(
0,∞).

Note that the right–hand side of inequality (1.6) converges to 2ζ(3) as r →
0+. In this sense, inequality (1.6) reflects the fact such that S(r) → 2ζ(3)

as r → 0+.

Furthermore, the denominator of the right–hand side of (1.6) comes from

(1.3). Indeed, the right–hand side of (1.6) can be rewritten as
(2ζ(3)/b)

r2 + (1/b)
whose denominator has the same form as those of (1.3).

Our aim of this paper is to determine completely the range of b satisfying

inequality (1.6). Let us define the constant b∗ by

(1.7) b∗ =
2ζ(5)

ζ(3)
= 1.72525 · · · .

Our main result is

Theorem 1.1. Let b ∈ (0,∞) be a constant. Inequality (1.6) holds if and

only if b ≤ b∗.

This theorem shows that the best constant b satisfying inequality (1.6)

is given by b∗. As indicated by Lemma 2.1 and the proof of Theorem 1.1

below, this best constant is related to the Taylor expansion of S at r = 0.

We emphasize that inequality (1.6) with b = b∗ is important for a small

r. Indeed, as shown in Lemma 2.6 below, there exists a constant r0 ∈ (0, 12)

such that the inequality

1√
(r2 + 1)2 + 1− 1

<
2ζ(3)

b∗r2 + 1

holds if and only if r ∈ (r0,∞). Reflecting inequality (1.5), the objective

inequality (1.6) with b = b∗ has an advantage for only r ∈ (0, r0].



80 Hiroki Azuma and Yasuhiro Fujita

The paper is organized as follow: In Section 2, we give some preliminar-

ies. In Section 3, we prove Theorem 1.1. In Section 4, we give a concluding

remark to compare the three inequalities (1.3) with k2 = 1/6, (1.5) and

(1.6) with b = b∗.

2. Preliminaries

In this section, we give some preliminaries to prove Theorem 1.1. First

we give the Taylor expansion of S at r = 0.

Lemma 2.1.

lim
r→0+

S(r)− 2ζ(3)

r2
= −4ζ(5).

Proof. This is clear, since

S(r)− 2ζ(3)

r2
= −2

∞∑
n=1

2n2 + r2

n3(n2 + r2)2
→ −2

∞∑
n=1

2n2

n7
= −4ζ(5) (r → 0+).

This completes the proof.

Lemma 2.2. Let a ∈ (0,∞) be a constant. If a function g : [a,∞) → R is

strictly convex on [a,∞), then we have

g(x) <

∫ x+ 1
2

x− 1
2

g(t) dt, x ∈ [a+
1

2
,∞).

Proof. Let x ∈ [a + 1
2 ,∞) and y ∈ [−1

2 ,
1
2 ]. Note that a ≤ x + y, x − y.

Since g is strictly convex on [a,∞) and x+ y ̸= x− y for y ̸= 0, we have

g(x) = g
(1
2
(x+y)+

1

2
(x−y)

)
<

1

2
g
(
x+y)+

1

2
g(x−y), y ∈ [−1

2
,
1

2
]\{0}.

Integrating this inequality with respect to y over [−1
2 ,

1
2 ], we conclude that

g(x) <
1

2

∫ 1
2

− 1
2

g
(
x+ y) dy +

1

2

∫ 1
2

− 1
2

g(x− y) dy =

∫ x+ 1
2

x− 1
2

g(t) dt.

This completes the proof.
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Lemma 2.3. We have

S(r) <
1

r2 + 1
4

, r ∈ (0,
1

2
].

Remark 2.4. Milovanović and Pogány [6] showed this inequality for r ∈
(0,

√
3
2 ]. In this paper, it is sufficient to show this inequality for r ∈ (0, 12 ].

In order to make this paper self–contained, we give a proof to this lemma.

Proof. Fix r ∈ (0, 12 ]. Let

f(x) =
2x

(x2 + r2)2
, x ∈ (0,∞).

Since

f ′′(x) = 24x
x2 − r2

(x2 + r2)4
, x ∈ (0,∞),

we see that f is strictly convex on [r,∞). Note that r+ 1
2 ≤ 1 ≤ n for each

positive integer n. By Lemma 2.2, we have

f(n) <

∫ n+ 1
2

n− 1
2

f(t) dt.

Thus

S(r) =
∞∑
n=1

f(n) <

∫ ∞

1
2

f(t) dt =
[
−(t2 + r2)−1

]∞
1
2
=

1

r2 + 1
4

.

This completes the proof.

Lemma 2.5. We have

S′(r) < − 8ζ(5)r

(1 + r2)3
, r ∈ (0,∞).

Proof. Note that

S′(r) = −8r
∞∑
n=1

n

(n2 + r2)3
, r ∈ (0,∞).
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Since

n

(n2 + r2)3
>

1

n5(1 + r2)3
, n ∈ {2, 3, 4, · · · }, r ∈ (0,∞),

we have

S′(r) = −8r

∞∑
n=1

n

(n2 + r2)3
< −8r

∞∑
n=1

1

n5

1

(1 + r2)3
= − 8ζ(5)r

(1 + r2)3
, r ∈ (0,∞).

This completes the proof.

In the following, we often use the following estimates:

(2.1) 1.20205 < ζ(3) < 1.20206, 1.03692 < ζ(5) < 1.03693.

Lemma 2.6. There exists a constant r0 ∈ (0, 12) such that the inequality

1√
(r2 + 1)2 + 1− 1

<
2ζ(3)

b∗r2 + 1

holds if and only if r ∈ (r0,∞).

Proof. Let r ∈ (0,∞). By (1.7), we have

2ζ(3)

b∗r2 + 1
− 1√

(r2 + 1)2 + 1− 1

=
2ζ(3)2

√
(r2 + 1)2 + 1− 2ζ(5)r2 − 2ζ(3)2 − ζ(3)

(2ζ(5)r2 + ζ(3))(
√

(r2 + 1)2 + 1− 1)
.

Let t = r2 ∈ (0,∞). We set

f(t) = 2ζ(3)2
√

(t+ 1)2 + 1− 2ζ(5)t− 2ζ(3)2 − ζ(3), t ∈ (0,∞).

We consider the range of t ∈ (0,∞) such that f(t) > 0. We see that

f(t) > 0 if and only if the inequality

4ζ(3)4[(t+ 1)2 + 1] > [2ζ(5)t+ 2ζ(3)2 + ζ(3)]2

holds. This inequality is equivalent to the one

at2 + bt+ c > 0,
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where a, b, c are the constants given by

a = 4(ζ(3)4 − ζ(5)2),

b = 4ζ(3)(2ζ(3)3 − 2ζ(5)ζ(3)− ζ(5)),

c = ζ(3)2(4ζ(3)2 − 4ζ(3)− 1).

By (2.1), we have ζ(3)2 − ζ(5) > 1.202052 − 1.03693 > 0.40799, so that

a > 0. Since 0 < ζ(3) < 1.20206 < 1+
√
2

2 =: γ and γ is a solution of the

equation 4s2 − 4s− 1 = 0, we see that c < 0; (although we can determine

the sign of b, it is not necessary in this proof.) Hence, reflecting t > 0, we

see that the inequality at2 + bt+ c > 0 holds if and only if

t >
−b+

√
b2 − 4ac

2a
> 0.

Letting

r0 =

(
−b+

√
b2 − 4ac

2a

)1/2

,

we conclude that f(r2) > 0 if and only if r ∈ (r0,∞).

Finally, when r = 1
2 , we have t =

1
4 . Note that

√
41 > 6.40312. By (2.1),

we have

f
(1
4

)
=

(√
41

2
− 2

)
ζ(3)2 − ζ(5)

2
− ζ(3)

>

(
6.40312

2
− 2

)
· 1.202052 − 1.03693

2
− 1.20206 > 0.01563.

This implies that r0 <
1
2 . This completes the proof.

Proposition 2.7. Let b ∈ (0, ζ(5)]. Then the inequality

S(r) <
2ζ(3)

br2 + 1
, r ∈

(
0,

1

2

]
holds.
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Proof. Let b ∈ (0, ζ(5)]. By Lemmas 2.3 and 2.5, we have, for r ∈ (0, 12),

d

dr

[
(br2 + 1)S(r)

]
= 2brS(r) + (br2 + 1)S′(r)

< 2br
1

r2 + 1
4

+ (br2 + 1)
(
− 8ζ(5)r

(1 + r2)3
)

=
8r

(4r2 + 1)(1 + r2)3
[
b(1 + r2)3 − ζ(5)(br2 + 1)(4r2 + 1)

]
=

8r

(4r2 + 1)(1 + r2)3
g(r),

where

g(r) := br6 + b(3− 4ζ(5))r4 + [3b− ζ(5)(b+ 4)]r2 + b− ζ(5), r ∈ R.

We show that g(r) ≤ 0 for r ∈ [0, 12 ]. Then, since

d

dr

[
(br2 + 1)S(r)

]
< 0, r ∈ (0,

1

2
),

we conclude that (br2 + 1)S(r) < S(0+) = 2ζ(3) for r ∈ (0, 12 ].

It remains to show that g(r) ≤ 0 for r ∈ [0, 12 ]. Set

h(t) := bt3 + b(3− 4ζ(5))t2 + [3b− ζ(5)(b+ 4)]t+ b− ζ(5), t ∈ R.

Then

h′(t) = 3bt2 + 2b(3− 4ζ(5))t+ 3b− ζ(5)(b+ 4)

= 3b
(
t− 4ζ(5)− 3

3

)2 − 3b
(4ζ(5)− 3

3

)2
+ 3b− ζ(5)(b+ 4).

By (2.1), note that
4ζ(5)− 3

3
> 0.38256 >

1

4
.

Thus, h′(t) ≤ h′(0) for t ∈ [0, 14 ]. Since

h′(0) = 3b− ζ(5)(b+ 4) = b(3− ζ(5))− 4ζ(5)

≤ ζ(5)(3− ζ(5))− 4ζ(5) = −ζ(5)(1 + ζ(5)) < 0,

we have h′(t) < 0 for t ∈ [0, 14 ], and h is strictly decreasing on [0, 14 ].

Therefore,

h(t) ≤ h(0) = b− ζ(5) ≤ 0.

This implies that g(r) ≤ 0 for r ∈ [0, 12 ]. This completes the proof.
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Recall that b∗ is the constant of (1.7). By (2.1), we have

(2.2) b∗ <
2 · 1.03693
1.20205

< 1.72527.

Thus

ζ(5)

8
b∗ +

ζ(5)

2
=

ζ(5)

8
(b∗ + 4) <

1.03693

8
· 5.72527 < 0.74209.

Since
125

64
ζ(3) > 2.34775,

we have
125

64
ζ(3)− ζ(5)

8
b∗ − ζ(5)

2
> 0.

Hence,

(2.3) η(a) :=
ζ(5)(

a

2
+ 2)

125

64
ζ(3)− ζ(5)

8
a− ζ(5)

2

> 0, a ∈ (0, b∗].

This inequality is important in the following proposition.

Proposition 2.8. Let a ∈ (0, b∗]. Assume that the inequality

S(r) <
2ζ(3)

ar2 + 1
, r ∈ (0,

1

2
]

holds. Then, for a constant b with

(2.4) 0 < b ≤ min
{
b∗, η(a)

}
,

the inequality

S(r) <
2ζ(3)

br2 + 1
, r ∈ (0,

1

2
]

holds.

Proof. Let b be a constant with (2.4). By Lemma 2.5, we have, for r ∈
(0, 12),

d

dr

[
(br2 + 1)S(r)

]
= 2brS(r) + (br2 + 1)S′(r)

< 2br
2ζ(3)

ar2 + 1
+ (br2 + 1)

(
− 8ζ(5)r

(1 + r2)3
)

=
4r

(ar2 + 1)(1 + r2)3
[
bζ(3)(1 + r2)3 − 2ζ(5)(ar2 + 1)(br2 + 1)

]
=

4r

(ar2 + 1)(1 + r2)3
g(r),
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where

g(r) := bζ(3)r6+b(3ζ(3)−2aζ(5))r4+[3bζ(3)−2ζ(5)(a+b)]r2+bζ(3)−2ζ(5)

for r ∈ R. We show that g(r) ≤ 0 for r ∈ [0, 12 ]. Then, since

d

dr

[
(br2 + 1)S(r)

]
< 0, r ∈ (0,

1

2
),

we conclude that (br2 + 1)S(r) < S(0+) = 2ζ(3) for r ∈ (0, 12 ].

It remains to show that g(r) ≤ 0 for r ∈ [0, 12 ]. Set

h(t) := bζ(3)t3+b(3ζ(3)−2aζ(5))t2+[3bζ(3)−2ζ(5)(a+b)]t+bζ(3)−2ζ(5)

for t ∈ R. Then

h′′(t) = 6bζ(3)t+ 2b(3ζ(3)− 2aζ(5)).

Since a ≤ b∗, we note by (2.1) and (2.2) that

3ζ(3)− 2aζ(5) ≥ 3ζ(3)− 2b∗ζ(5) > 3 · 1.20205− 2 · 1.72527 · 1.03693 > 0.

Thus h is convex on [0, 14 ]. Hence,

h(t) ≤ max
{
h(0), h(

1

4
)
}
, t ∈ [0,

1

4
].

Note that

h(0) = bζ(3)− 2ζ(5) ≤ 0,

h(
1

4
) = b

(125
64

ζ(3)− ζ(5)

8
a− ζ(5)

2

)
− ζ(5)(

a

2
+ 2)

=
(125
64

ζ(3)− ζ(5)

8
a− ζ(5)

2

)
(b− η(a)) ≤ 0

by (2.3) and (2.4). Hence, h(t) ≤ 0 for t ∈ [0, 14 ]. This implies that g(r) ≤ 0

for r ∈ [0, 12 ]. This completes the proof.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. First, we show only if part. Let b ∈ (0,∞) be a

constant. Assume that inequality (1.6) holds. From inequality (1.6), we

have

S(r)− 2ζ(3) <
2ζ(3)

br2 + 1
− 2ζ(3) = −2ζ(3)br2

br2 + 1
, r ∈ (0,∞).
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Thus we have

S(r)− 2ζ(3)

r2
< − 2ζ(3)b

br2 + 1
r ∈ (0,∞).

Letting r → 0+ and using Lemma 2.1, we have

−4ζ(5) ≤ −2ζ(3)b.

Thus we conclude that b ≤ (2ζ(5))/ζ(3) = b∗. Hence we have shown only

if part.

Next we prove if part. By (2.1), we have

(3.1)
125

64
ζ(3) < 2.34778,

ζ(5)

2
> 0.51846.

On the other hand, by (2.1) and Proposition 2.7, we see that the assumption

of Proposition 2.8 is fulfilled for a = 1.03692. For this a, we have, by (2.1),

ζ(5)(
a

2
+ 2) > 2.61144,

ζ(5)

8
a > 0.13440.

Thus, by (3.1), we obtain

η(a) =
ζ(5)(

a

2
+ 2)

125

64
ζ(3)− ζ(5)

8
a− ζ(5)

2

>
2.61144

2.34778− 0.13440− 0.51846
> 1.54074.

Since 1.54074 < b∗ by (2.2), Proposition 2.8 implies that the inequality

S(r) <
2ζ(3)

br2 + 1
, r ∈ (0,

1

2
]

holds for b ∈ (0, 1.54074].

Now, let â = 1.54074. For this â, we have, by (2.1),

ζ(5)(
â

2
+ 2) > 2.87265,

ζ(5)

8
â > 0.19970.

Thus, by (3.1), we obtain

η(â) =
ζ(5)(

â

2
+ 2)

125

64
ζ(3)− ζ(5)

8
â− ζ(5)

2

>
2.87265

2.34778− 0.19970− 0.51846
> 1.76277.
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Since 1.76277 > b∗ by (2.2), Proposition 2.8 implies that the inequality

S(r) <
2ζ(3)

br2 + 1
, r ∈ (0,

1

2
]

holds for b ∈ (0, b∗]. Hence, reflecting Lemma 2.6 and inequality (1.5), we

have shown if part. This completes the proof.

4. A concluding remark

In this section, we give a concluding remark for the three inequalities

(1.3) with k2 = 1/6, (1.5) and (1.6) with b = b∗. Let us define the three

functions f, g, h on (0,∞) as follows:

f(r) =
1

r2 + 1
6

,

g(r) =
1√

(r2 + 1)2 + 1− 1
,

h(r) =
2ζ(3)

b∗r2 + 1
.

Note that these functions are different from ones used in Section 2. Then,

we have considered the following inequalities:

S(r) < f(r),(4.1)

S(r) < g(r),(4.2)

S(r) < h(r).(4.3)

Inequalities (4.1), (4.2) and (4.3) appear, respectively, in (1.3) with k2 =

1/6, (1.5) and (1.6) with b = b∗. Dividing the range of r ∈ (0,∞), we give

a table to show which inequality is best among (4.1), (4.2) and (4.3). Let

r0 be the constant of Lemma 2.6, and

r1 =

√
ζ(3)(3− ζ(3))

6(ζ(3)2 − ζ(5))
= 0.93958 · · · , r2 =

√
23

12
.

Note that 0 < r0 < r1 < r2 and that
r0 is a unique solution of the equation g(r) = h(r),

r1 is a unique solution of the equation f(r) = h(r),

r2 is a unique solution of the equation f(r) = g(r).
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Then we have the following table:

The range of r Inequality The best one among (4.1), (4.2) and (4.3)

0 < r < r0 h(r) < g(r) < f(r) (4.3)

r0 < r < r1 g(r) < h(r) < f(r) (4.2)

r1 < r < r2 g(r) < f(r) < h(r) (4.2)

r2 < r f(r) < g(r) < h(r) (4.1)
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[2] L. Berg, Über eine Abschätzung von Mathieu, Math, Nachr. German

7 (1952), 257–259.

[3] A. Hoorfar and F. Qi, Some new bounds for Mathieu’s series, Abstract

and Appl. Anal., 2007, DOI: 10.1155/2007/94854.

[4] E. Makai, On the inequality of Mathieu, Publ. Math. Debrecen 5

(1957), 204–205.
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