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The best constant for an inequality related to
the Mathieu series

Hiroki AzuMA and Yasuhiro FuJiTA

Abstract. Let S(r) be the Mathieu series defined by

> 2n
S(?"):;m, TE(0,00),

which converges to 2¢(3) as r — 0+. Here ¢ is the Riemann zeta
function. Let b € (0,00) be a constant. Our aim of this paper is to
show that the inequality

2¢(3)
brz +1’

S(r) < r € (0,00)

holds if and only if b < b* := (2¢(5))/¢(3). Hence b* is the best
constant satisfying this inequality. This best constant is related to
the Taylor expansion of S at r = 0.

1. Introduction

In 1890, French mathematician Emile Léonard Mathieu [5] first intro-

duced the series S(r), which is now called the Mathieu series, defined as

= 2n
(1.1) S(ry=>» ———=, re€(0,00).
>
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He conjectured that S(r) < 1/r2 for all » € (0, 00), and used this inequality
in his work on elasticity of solid bodies. However, he could not prove this
conjecture.

In 1952, Berg [2] proved this inequality, although his proof was diffi-
cult enough. It was Makai [4] who gave in 1957 an elementary proof and

obtained the following estimates:

1

1.2 —_—
( ) TQ +%

< S(r)< =, re(0,00).

In 1998, Alzer, Brenner and Ruehr [1] showed that the best constants k;

and ks in the two—sided estimations

1 1

1.3 < S(r) <
(1.3) O

r € (0,00)

are given by k1 = 1/(2¢(3)) and ks = 1/6, where ((s) is the Riemann zeta
function defined by

(1.4) OESS ni s e (1,00).

n=1

In 2007, Hoorfar and Qi [3] gave the inequality

1
(1.5) S(r) < , 1€ (0,00).
(r2+1)2+1-1
By a simple calculation, the inequality
1 1

(r2+1)2+1—1<r2+1
6

holds if and only if 0 < r < \/% = 1.38443---. Thus inequality (1.5) is
better than the right-hand side inequality in (1.3) with ko = 1/6 only when
O<r< \/% .

Till now, the Mathieu series has attracted increasing interest and at-
tention. However, as far as the authors know, the upper bounds obtained
for S(r) never reflect the fact such that S(r) — 2((3) = 2.40411--- as
r — 0+. Indeed, the upper bound in (1.3) with k2 = 1/6 converges to 6

which is greater than 2((3) as r — 0+; the upper bound in (1.5) converges
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to v/2 + 1 = 2.41421 - - - which is also greater than 2¢(3) as r — 0+. This
is contrary to lower bounds for S(r), since the lower bound in (1.3) with
k1 =1/(2¢(3)) converges to 2¢(3) as r — 0+.

In this paper, we would like to present an inequality for S(r), which
reflects the fact such that S(r) — 2¢(3) as r — 0+. For this purpose, for a
given constant b € (0, 00), we consider the inequality of the form

2¢(3)
br2 41’
Note that the right-hand side of inequality (1.6) converges to 2((3) as r —
0+. In this sense, inequality (1.6) reflects the fact such that S(r) — 2¢(3)
as r — 0+.

(1.6) S(r) < r € (0,00).

Furthermore, the denominator of the right-hand side of (1.6) comes from

2¢(3)/b
(1.3). Indeed, the right-hand side of (1.6) can be rewritten as (263)/h)
r2 + (1/b)
whose denominator has the same form as those of (1.3).
Our aim of this paper is to determine completely the range of b satisfying

inequality (1.6). Let us define the constant b* by

(1.7) b= 250) 0.

¢(3)

Our main result is

Theorem 1.1. Let b € (0,00) be a constant. Inequality (1.6) holds if and
only if b < b*.

This theorem shows that the best constant b satisfying inequality (1.6)
is given by b*. As indicated by Lemma 2.1 and the proof of Theorem 1.1
below, this best constant is related to the Taylor expansion of S at r = 0.

We emphasize that inequality (1.6) with b = b* is important for a small
r. Indeed, as shown in Lemma 2.6 below, there exists a constant ro € (0, %)
such that the inequality

1 2((3)
)
(FP2+1)24+1-1 b2+l

holds if and only if r € (rg,00). Reflecting inequality (1.5), the objective
inequality (1.6) with b = b* has an advantage for only r € (0, r9].



80 Hiroki AzuMA and Yasuhiro FuJjiTa

The paper is organized as follow: In Section 2, we give some preliminar-
ies. In Section 3, we prove Theorem 1.1. In Section 4, we give a concluding
remark to compare the three inequalities (1.3) with ks = 1/6, (1.5) and
(1.6) with b = b*.

2. Preliminaries

In this section, we give some preliminaries to prove Theorem 1.1. First

we give the Taylor expansion of S at r = 0.

Lemma 2.1.

- S(r) —2¢(3) _
g, S = i)
Proof. This is clear, since
S(r ) - 2C = 22 42 > 2n?
AT P 22n3n2+r2 Z::—7=—4< 5) (r— 04).
This completes the proof. O

Lemma 2.2. Let a € (0,00) be a constant. If a function g : [a,00) — R is

strictly convex on [a,00), then we have

Proof. Let x € [a + %,oo) and y € [—%,%} Note that a < z + y,z — .

Since g is strictly convex on [a,00) and x + y # x — y for y # 0, we have

g(x)=g(%(x+y)+%(:c—y))<%g(x+y)+%g(w—y), y € [- 2 2]\{0}

, %], we conclude that

N[

Integrating this inequality with respect to y over [—
1 [2 1 [z v+3
g(ﬂf)<2/ g(ﬂf+y)dy+2/ g(w—y)dy=/ g(t) dt.
,% 7% o1

This completes the proof. O
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Lemma 2.3. We have

1 1
re (0, =]

S -
(T)<7’2+i7 2

Remark 2.4. Milovanovi¢ and Pogény [6] showed this inequality for r €
(0, @] In this paper, it is sufficient to show this inequality for r € (0, %]

In order to make this paper self-contained, we give a proof to this lemma.

Proof. Fix r € (0, 3]. Let

2z
f(z) = @1 x € (0,00)
Since ) )
xr- —r
fl/(x) = 24x m, T € (0, OO),

we see that f is strictly convex on [r,00). Note that r + % <1 < n for each

positive integer n. By Lemma 2.2, we have

n—&-%
fo< [ s
n—3
Thus
e} 00 - o 1
S0V =2 fo < [ S0 = [+ 2T =
n=1 b 2 r +1
This completes the proof. O

Lemma 2.5. We have

8C(5)r

S0 <~

r € (0,00).

Proof. Note that

> n
S/(r) = —81";:1 7@2 ) r € (0,00).
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Since
L > € (2,34}, 1 (0,00)
(2 +12)3 ~ mb(1 423 oW H I TE S
we have
8¢(5)r
:—87‘2 35 STZ 1+'r2 S r € (0,00).
This completes the proof. 0

In the following, we often use the following estimates:

(2.1) 120205 < ((3) < 1.20206, 1.03692 < ((5) < 1.03693.

Lemma 2.6. There exists a constant rg € (0, %) such that the inequality

1 2(3)
<
2+ 1)2+1-1 bor?2+1

holds if and only if r € (g, 00).

Proof. Let r € (0,00). By (1.7), we have

2¢(3) 1
ri+1l 202411
)2/ (12 +1)2 + 1 —2¢(5)r* — 2((3)* - ¢(3)
(2¢(5)r2 +CB3N(V(r? +1)2+1-1) .

Let t =% € (0,00). We set

f#) =2¢C3)2/(t+1)2+1 —2((5)t —2¢(3)* = ¢(3), te (0,00).

We consider the range of ¢ € (0,00) such that f(¢t) > 0. We see that
f(t) > 0 if and only if the inequality

4B+ 1) + 1] > [20(5)t +20(3)* + C(3))*
holds. This inequality is equivalent to the one

at®> + bt +¢ > 0,
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where a, b, ¢ are the constants given by

a=4(¢(3)* = ¢(5)%),
b= 4¢(3)(2¢(3)° — 2¢(5)¢(3) — ¢(5)),
c=((3)%(4¢(3)* — 4¢(3) — 1).

By (2.1), we have ((3)? — ¢(5) > 1.20205% — 1.03693 > 0.40799, so that
a > 0. Since 0 < ((3) < 1.20206 < 1+—2‘/§ =: v and 7 is a solution of the
equation 452 — 4s — 1 = 0, we see that ¢ < 0; (although we can determine
the sign of b, it is not necessary in this proof.) Hence, reflecting ¢ > 0, we
see that the inequality at® + bt + ¢ > 0 holds if and only if

—b+ Vb? —4ac
> % >

t 0.

Letting

) <—b+v@%—mw>ﬂ2
0= )
2a

we conclude that f(r2) > 0 if and only if r € (rg, o0).
Finally, when r = %, we have t = %. Note that v/41 > 6.40312. By (2.1),

we have

1= (5 - 2)cwr -2 e

<6-4g312 _ 2) +1.20205% — 1'0?;693 —1.20206 > 0.01563.

This implies that ry < % This completes the proof. O

Proposition 2.7. Let b € (0,{(5)]. Then the inequality

2¢(3) 1

S(r) < 2]

holds.
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Proof. Let b € (0,((5)]. By Lemmas 2.3 and 2.5, we have, for r € (0, 1),

L0 4 18] = 2rS(r) + (0 + 1S (1)

dr
8C(5
< 2br (1—1—(7")233)

1
r2 41 +(or® +1) (=
4

8r
(4r2 +1)(1 4 r2)3 [
8r

= @)

b(L+72)3 — ¢(5)(br® + 1) (4% + 1)]

where
g(r) == br® +b(3 —4C(B)r* + 30— CB) b+ 4)]r2 +b—((5), rER.

We show that g(r) < 0 for 7 € [0, 1]. Then, since

d
- [(br* +1)S(r)] <0, re€ (0, 5),

we conclude that (br? +1)S(r) < S(04) = 2((3) for r € (0, 3].
It remains to show that g(r) < 0 for r € [0, 3]. Set

h(t) := bt> +b(3 — 4C(5) 2 + [3b — C(B)(b+ )]t +b—C¢(5), tER.
Then

R(t) = 3bt2 +2b(3 —4¢(5))t +3b— ¢(5)(b+4)
— 3b(t— 4C(5?))_3)2 = 36(4C(5?))_3)2 +3b— C(5)(b+4).
By (2.1), note that

44(5; =3 > (0.38256 > i.

Thus, &' () < #'(0) for t € [0, 1]. Since
W(0) = 3b—¢(5)(b+4) =0b(3 - ((5)) - 4((5)
< CO)B=CB) —4¢(5) = =¢(5)(1 +¢(5)) <0,

we have W/(t) < 0 for t € [0,1], and h is strictly decreasing on [0, 1].

Therefore,
h(t) < h(0) =b—((5) <0.

This implies that g(r) < 0 for r € [0, %] This completes the proof. O
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Recall that b* is the constant of (1.7). By (2.1), we have

. 2-1.03693
(2.2) b < oop0n < 172527
Thus
Cf)m—%cf)::cf)w*+4)<Lm%93-5z527<074m9
Since 195
51 0(3) > 234775,
we have 195 (5),. C5)
1B g >0
Hence,
a
(2.3) (a) ‘O +2 0, ac(0,0]
) = > 0, € (0,b].
T @, @
64 8 2

This inequality is important in the following proposition.

Proposition 2.8. Let a € (0,b*]. Assume that the inequality
%xE) o]

S(T)<a7“2—|—17 6(0a§]
holds. Then, for a constant b with
(2.4) o<bgmm@ﬂm@}
the inequality
2((3) 1
S(r) < w21 " € (0, 5]

holds.

85

Proof. Let b be a constant with (2.4). By Lemma 2.5, we have, for r €

0,3),
C%‘ [(er + 1)S(T)] = 2b?”5(?”) + (b?"Q + 1)SI(T)
a0
B (ar? + 1%7(11 +r2)3 [bC(?))(l + 7"2)3 — 2((5)(ar2 + 1)(br2 i 1)]
4r

- (ar? +1)(1+r2)3 9(r);
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where
g(r) = b¢(3)r°+b(3¢(3) —2a¢(5))r* +[3b¢ (3) —2¢(5) (a-+b)|r? +b¢ (3) —2¢(5)

for € R. We show that g(r) < 0 for r € [0, 1]. Then, since

d%‘ [(br* +1)S(r)] <0, re€ (0,

we conclude that (br? +1)S(r) < S(0+) = 2¢(3) for r € (0, 3].
It remains to show that g(r) < 0 for r € [0, 3]. Set

h(t) := bC(3)t° +b(3¢(3) —2a( (5))1% +[3b¢(3) — 2¢ (5) (a+b)]t +b¢(3) —2¢(5)
for t € R. Then

R (t) = 6b¢(3)t + 2b(3¢(3) — 2a((5)).
Since a < b*, we note by (2.1) and (2.2) that

3¢(3) — 2aC(5) > 3¢(3) — 2b*C(5) > 3 - 1.20205 — 2 - 1.72527 - 1.03693 > 0.

Thus h is convex on [0, 1]. Hence,
h(t) < max{h(O),h(%)}, t e, %].
Note that
h(0) = bC¢(3) —2¢(5) <0,
n) = (e P SO 52 1a)

(D)~ a0y piay) <0

by (2.3) and (2.4). Hence, h(t) < 0 for t € [0, 1]. This implies that g(r) < 0
for r € [0, %] This completes the proof. O

3. Proof of Theorem 1.1

Proof of Theorem 1.1. First, we show only if part. Let b € (0,00) be a
constant. Assume that inequality (1.6) holds. From inequality (1.6), we
have

2((3)br?
241

2¢(3)

S(r) ~20(3) < 557

2((3) =

r € (0,00).
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Thus we have

S(r) — 26(3) __ (3

r2 “pry1 "€ 00

Letting » — 0+ and using Lemma 2.1, we have
—4¢(5) < =2¢(3)b.

Thus we conclude that b < (2¢(5))/¢(3) = b*. Hence we have shown only
if part.
Next we prove if part. By (2.1), we have

125 5
(3.1) 1 S(3) < 234778, C(2) > 0.51846.

On the other hand, by (2.1) and Proposition 2.7, we see that the assumption
of Proposition 2.8 is fulfilled for a = 1.03692. For this a, we have, by (2.1),

g(5)(% +2) > 2.61144, C(;)a > 0.13440.

Thus, by (3.1), we obtain

C(5)(% +2) 2.61144

n(a) = 5 C(3)  C(5) ~ 2.34778 — 0.13440 — 0.51846
64 g ‘T

> 1.54074.

Since 1.54074 < b* by (2.2), Proposition 2.8 implies that the inequality

2¢(3) 1
1 703

S(r) <

holds for b € (0, 1.54074].
Now, let a = 1.54074. For this a, we have, by (2.1),

? 5
g(5)(g +2) > 2.87265, C(s)& > 0.19970.

Thus, by (3.1), we obtain

a
¢ (5)(5 +2) N 2.87265
C(5) ~ 2.34778 — 0.19970 — 0.51846

> 1.76277.
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Since 1.76277 > b* by (2.2), Proposition 2.8 implies that the inequality

2¢(3 1
S(r) < ngiL)l, re 3]

holds for b € (0,b*]. Hence, reflecting Lemma 2.6 and inequality (1.5), we

have shown if part. This completes the proof. O

4. A concluding remark

In this section, we give a concluding remark for the three inequalities
(1.3) with k2 = 1/6, (1.5) and (1.6) with b = b*. Let us define the three

functions f, g,h on (0,00) as follows:

f0) = ot
6
) = -
I/ -y R
2C(3
RO = s

Note that these functions are different from ones used in Section 2. Then,

we have considered the following inequalities:

(4.1) S(r) < f(r),
(4.2) S(r) <g(r),
(4.3) S(r) < h(r).

Inequalities (4.1), (4.2) and (4.3) appear, respectively, in (1.3) with ky =
1/6, (1.5) and (1.6) with b = b*. Dividing the range of r € (0, 00), we give
a table to show which inequality is best among (4.1), (4.2) and (4.3). Let

ro be the constant of Lemma 2.6, and

_ [CO6-CB) _ s
rl_\/6(<(3)2_C(5))_0.93958 , T2

Note that 0 < rg < r1 < ro and that

DO
w

—_
[\]

7o is a unique solution of the equation g(r) = h(r),
h(r),
g(r)-

r1 is a unique solution of the equation f(r)

9 is a unique solution of the equation f(r)
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Then we have the following table:

The range of r ‘ Inequality ‘ The best one among (4.1), (4.2) and (4.3) ‘
0<r<ry h(r) < g(r) < f(r) (4.3)
ro<r<ry |g(r)<h(r)<f(r) (4.2)
ri<r<ry |g(r)<f(r)<h(r) (4.2)
Ty < T flr) <g(r) <h(r) (4.1)
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