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A B S T R A C T   

Wetlands in semi-arid regions are highly productive and biologically diverse ecosystems that contribute signif-
icantly to livelihood and economic development and play a substantial role in sustaining rural livelihoods. These 
ecosystems are not only rich in biodiversity, but also predominantly valuable in terms of the services they 
provide to people, including water security, hydrological regulation, and other services. Chlorophyll-a concen-
trations and associated dynamics in two tropical wetland systems were estimated in the Makuleke and Nylsvlei 
wetlands. The Makuleke and Nylsvlei wetlands are in the Limpopo Transboundary River Basin, South Africa. 
Moderate-resolution Landsat 8 images for September 2018 and June 2019 and in situ field measurements were 
used to estimate and map chlorophyll-a concentration from the two wetlands. Landsat-derived chlorophyll-a 
concentrations were validated using field-derived chlorophyll-a measurements. Validation was implemented to 
assess the consistency of the remotely sensed chlorophyll-a estimates. The relationship between field-measured 
chlorophyll estimates and Landsat-derived chlorophyll estimates was determined using the coefficient of 
determination (r-square: R2) and the root mean square error (RMSE). The results showed that the Makuleke 
wetland had low estimates of Chl-a during September 2018. The variation of Chl-a concentration in Makuleke 
ranged from 0 to 1.15 μg/L, whereas for Nylsvlei the wetland range varied between 0 and 1.42 μg/L, for the 
period under study. The spatial characterization of Chl-a concentration varied significantly between the two 
wetlands, with much of it concentrated along the wetland shorelines. The finding of this study underscores the 
relevance of remotely detected data in the evaluation and routine monitoring of wetland water quality, a pre-
viously challenging task within situ measurements.   

1. Introduction 

Wetland is an area with water table, near or above land surface, 
either seasonally or permanently throughout the year. Wetlands exist 
globally in every country (except Antarctica) and in all different types of 
climates. According to different definitions and estimates, they account 
for only about 5–8 per cent of the world’s land area, but they make up 
20–30 per cent of the world’s carbon reserve (2500 Pg) (Salimi et al., 
2021). The wetlands of South Africa cover about 2.9 million hectares, 
accounting for about 2.4 per cent of the country’s land area. They are 
recognised as highly valuable natural resources that sustain the liveli-
hoods of local communities by providing a wide-ranging ecosystem 
goods and services that include, wild fruits, vegetables, rice, and water 
purification (Dlamini et al., 2021). 

Wetlands in semi-arid regions are highly productive and biologically 

diverse ecosystems that contribute significantly to livelihood and eco-
nomic development and play a substantial role in sustaining rural live-
lihoods (Jogo and Hassan 2010; Rebelo et al., 2010). These ecosystems 
are not only rich in biodiversity but are also predominantly valuable in 
terms of the services they provide to people, including water security, 
hydrological regulation, and other services (Dixon et al., 2016). How-
ever, these systems are currently decreasing and degrading at an 
alarming rate. Agriculture is considered the main cause of wetland loss 
worldwide. It has been estimated that South Africa has already lost 
between 35 to 50% of its wetlands (Swanepoel and Barnard, 2007). In 
Craigieburn, Mpumalanga, about 70% of the communities depend on 
wetlands as the main source of food and income (Scholes and Scholes, 
2020). In addition, the study done by Nyamadzawo et al. (2015) stated 
that many people in Malawi, Zambia, and Zimbabwe use dambos which 
are seasonal wetlands to provide enough food for local consumption and 
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business purposes and this shows the importance of wetlands. Therefore, 
the future of these wetlands is dependent on effective and routine 
assessment and monitoring initiatives that can inform policy and 
decision-making to promote sustainable management. 

Most of the population in sub-Saharan select wetlands in preference 
to other areas for their agricultural and fishery activities because of their 
higher productivity and as a result more than half of the wetlands are 
destroyed through commercial, agricultural, and mining practices as 
well as urban development (Greenfield et al., 2007; Swanepoel and 
Barnard 2007; Mitchell, 2013). Southern Africa is rich in mineral re-
sources and some of these minerals occur in areas where there is little 
water and these activities tend to pollute most of the water resources, 
including wetlands (Mitchell, 2013). Other threats to African wetlands 
include changes in wetland water quality due to the effects of industrial 
effluent and agricultural pesticides, siltation of highland catchment 
areas, and introduction of alien species of flora and fauna leading to 
colonization by single species and loss of endemic species diversity 
(Kabii, 2017). Water quality continues to decrease due to increased 
population growth and economic development, especially in developing 
countries. Degradation of water quality poses a threat to human and 
aquatic life, which raises concerns for the future of water resources 
(Dube et al., 2015; Masocha et al., 2017). There is, therefore, a need to 
monitor water quality, although, several factors in Sub-Saharan Africa 
make it difficult to assess water quality due to; limited technical 
expertise, limited financial resources, and accessibility and availability 
of appropriate remote sensing datasets required for accurate water 
quality monitoring (Dlamini et al., 2016). The other challenge that 
makes it difficult to monitor water quality in Southern Africa is that the 
exact number of wetlands is unknown due to the lack of comprehensive 
national wetland inventories characterizing and classifying wetlands in 
the systematic wetland (Jogo and Hassan, 2010). 

Chlorophyll-a (Chl-a) is a photosynthetic pigment that is found in all 
green floral components, including algae (Patra et al., 2017; Amanollahi 
et al., 2017), and is a critical indicator of wetland health. Chl-a has been 
used as an indicator to identify the biomass of the primary conductivity 
in coastal areas, estuaries, oceanic waters, and lakes. It has also been 
widely used as an indicator of water quality because it is possible to 
estimate algal biomass, which can affect changes in aquatic environ-
ments (Baek et al., 2019; Yin et al., 2016). A considerable concentration 
of phytoplankton and algae is important for the biological productivity 
and health of a water system. However, excessive concentration of 
chlorophyll is not desirable because that will cause an increase in the 
eutrophic condition of a water body and this will result in an increment 
of phytoplankton in standing crops (Patra et al., 2017). Eutrophication is 
defined as an aquatic ecosystem’s response to nutrient loading, the 
ability to identify important factors and predict subsequent algal blooms 
with the use of Chl-a is essential regarding water resources management 
(Bbalali et al., 2013). High levels of Chl-a concentrations generally 
indicate a change in the trophic status of water bodies, and it is usually 
related to the reduction in water quality and low biodiversity, which 
severely undermine ecosystem services and functions. To restore these 
services and functions, it is important to have an understanding of the 
dynamics of Chl-a concentrations (Dalu et al., 2015). High concentra-
tions of chlorophyll may also deteriorate water quality by external and 
internal nutrient loading, which in most cases leads to the disappearance 
of benthic fauna and greatly affects aquatic organisms (Patra et al., 
2016). 

Therefore, different approaches have been developed to estimate and 
map Chl-a concentrations in water bodies. The methods to measure 
chlorophyll-a can be divided into direct and indirect methods (Baek 
et al., 2019). Direct methods (such as traditional methods) are based on 
the use of in situ measurements, while indirect methods (such as remote 
sensing) provide chlorophyll-a estimates through the optical water 
characteristics (Baek et al., 2019). Traditional methods used to assess 
chlorophyll-a depend on in-situ measurements or laboratory analysis of 
the samples and although this might provide accurate measurements, it 

is time-consuming and laborious (Abdelmalik, 2018). Field data may be 
compromised due to inadequate quality control and quality assurance 
protocols during and after field data collection, especially in cases where 
field samples have to be stored for a certain period before they can be 
analysed (Dube et al., 2015). Traditional methods are limited in 
addressing factors degrading water quality at temporal and spatial 
scales. In addition, data utility may be compromised due to insufficient 
quality control and quality assurance protocols such as extended holding 
time before analysis and the use of non-standardized methods, and the 
data are often vulnerable to recording and geo-referencing errors during 
transcription (Dube et al., 2015) On the other hand, remote sensing in 
assessing chlorophyll-a provides information on the physical and 
chemical properties at temporal and physical scales (Yin et al., 2016). 

Remote sensing offers relatively cheap, repetitive, and quantitative 
methods to monitor water quality, and remote datasets such as Landsat, 
MODIS, and Sentinel-2 provide both spatial and temporal datasets for 
water quality monitoring. The use of remotely sensed data to assess 
water quality data, dates to the early 1920s in different parts of the 
world (Wang et al., 2004), with Landsat’s Thematic Mapper (TM), which 
is the sensor most widely used since then to monitor inland waters, 
which uses visible and near-infrared spectral bands. Sensor spectral 
characteristics and its 30 m pixel resolution have been used to determine 
the relationship between the reflectance of water bodies and their bio-
physical parameters, such as Chl-a concentration (phytoplankton) and 
suspended mineral matter in water bodies (Dube et al., 2015). Then 
recently, the 30 m resolution Landsat 8 Operational Land Imager (OLI) 
combined with high global data availability, presents a unique platform 
that provides the first and most up-to-date global inventory of the 
world’s lakes and water quality information retrieval at high spatial 
resolution and positional accuracy using recent Landsat algorithms 
(Patra et al., 2016). In the last three decades, remote sensing has played 
an increasing role in water quality studies, due to its technological ad-
vances including instrument/sensor and algorithm/image processing 
improvements (Dube et al., 2015). Remote sensing has the potential to 
present synoptic estimates of Chl-a concentration in aquatic ecosystems 
as it provides rapid temporal and synoptic information on the state of the 
water body, with no interpretive problems associated with 
under-sampling that are usually experienced through traditional 
methods (Dalu et al., 2015). Satellite-based remote sensing is increas-
ingly playing a fundamental role in providing valuable information 
about chlorophyll in water bodies dominated by cyanobacteria and algal 
blooms around the world (Malahlela et al., 2018). Remote sensing offers 
the opportunity to drive global variables to evaluate and monitor 
biodiversity globally and helps to fill the space and time gaps that 
remain from in situ observations. (Ali et al., 2020). 

The purpose of the study was to evaluate and map the changes in 
chlorophyll-a concentration in Makuleke and Nylsvlei wetlands during 
2018–2019. Considering that these wetlands are in nature reserves, if 
they are affected by excessive amounts of chlorophyll, this can greatly 
affect wetland productivity and their recreational use. This will result in 
the degrading of the ecosystem value of these wetlands. Therefore, 
monitoring of Chl-a in both unprotected and protected wetlands is of 
importance because the protection of water resources would satisfy the 
water demand in different sectors, and aid in assessing water quality in 
the unmonitored watershed. As field monitoring is expensive and time- 
consuming, the acquired knowledge would provide guidelines for the 
management of these water resources. 

2. Material and methods 

2.1. Description of the study area 

The Limpopo Transboundary River Basin (LTRB) is one of the largest 
catchment areas in Southern Africa and the basin has a mean altitude of 
840 m, covering approximately 412 000 km2 (see Fig. 1(a)) (Sawu-
nyama et al., 2006; Mosase et al., 2019). LTRB is in the eastern part of 
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Fig. 1. (a) Locations of the Makuleke and Nylsvlei wetlands within Limpopo; (b) Makuleke and (c) Nylsvlei Nature Reserve wetlands.  
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Southern Africa approximately between 20◦ S 26◦ S and 25◦ E 35◦ E at 
250 to 2300 m above mean sea level. The basin is shared between four 
countries, that is, Zimbabwe, South Africa, Mozambique, and Botswana 
(Gebre and Getahun, 2016), and the basin has 27 major watersheds 
(Mosase and Ahiablame, 2018). Limpopo Province (South Africa) has 
experienced a growth in its population from 5 million in 2002 to 5.8 
million in 2016 (StatsSA, 2018). The southern and western parts of the 
catchment are mainly underlined by sedimentary rocks such as sand-
stone conglomerate, while metamorphic and igneous rocks such as 
basalt are found in the northern and eastern parts of the LTRB. 

The two wetlands understudy, Makuleke and Nylsvlei Nature 
Reserve wetlands are both listed under Ramsar Convention (see Fig. 1b 
and c). The Makuleke wetland is in the northern part of LTRB (22◦23′S 
031◦11′E), within Kruger National Park on the floodplains of the Lim-
popo and Luvhuvhu rivers and bordered by Zimbabwe and Mozambique 
to the north and east, respectively (Malherbe, 2018; Reid, 2001). The 
Makuleke wetland covers approximately 240 km2 and the important 
landscapes of the nature reserves are riparian forests, grasslands, and 
pans on floodplains. Floodplains are of great importance in this 
ecosystem, as they have water even during the dry season and therefore 
act as a refuge point for wildlife and provide water for birds during both 
winter and summer months. Nylsvlei wetland is in the southern part of 
the LTRB (24◦39′S 028◦42′E). The Nylsvlei wetland covers approxi-
mately 40 km2, and the main features of the Nylsvlei nature reserve 
include riverine floodplains, flooded river basins, and seasonally flooded 
grassland, with the dominant wetland type being a seasonal river and 
associated with a grassland floodplain (Havenga et al., 2007). The 
wetland has the endangered roan antelope Hippotragus equis, and the 
area serves as a breeding ground for eight South African, red-listed water 
birds (African and Conservation, 1998; McCarthy et al., 2011). 

2.2. Remote sensing data acquisition and pre-processing 

Four medium spatial resolution (30 m) multispectral Landsat 8 OLI 
images were acquired for the two nature reserves (Makuleke and 
Nylsvlei) between 2018 and 2019 and used to derive chlorophyll-a es-
timates. The Landsat 8 OLI exhibits higher radiometric resolution 
wavelength coverage compared to Landsat 7 Enhanced Thematic Map-
per Plus (ETM +) bands; hence the use of Landsat 8 images. These im-
ages were downloaded free of charge from the National Aeronautics and 
Space Administration (NASA) and United States Geological Earth 
Explore (USGS) (https://earthexplorer.usgs.gov/). All image data from 
Landsat 8 OLI were in GeoTIFF format provided by the US Geological 
Survey Earth Explorer. Table 1 has the specifics of the images that were 
used. The selection of Landsat satellite images was influenced by the 
quality of the images, so only images with <10% cloud coverage were 
selected because cloud cover could compromise the accuracy of the 
classified images and by the month in which field measurements were 
taken. The Landsat 8 bands used in this study are available every 16 days 
with a spatial resolution of 30 m. Satellite image pre-processing before 
any detection of change is greatly needed and has a primary unique 
objective of establishing a more direct affiliation between the acquired 
data and biophysical phenomena (Butt et al., 2015). Atmospheric 
correction is an important step in any satellite image that observes the 
surface of the Earth. Therefore, to obtain accurate and precise quanti-
tative data using remote sensing, it is necessary to perform atmospheric 
correction (Abdelmalik, 2018). The images were reprojected and 

atmospherically corrected using the semi-automatic classification tool 
which implements dark object subtraction (DOS1) (the DOS1 atmo-
spheric correction box was checked before the atmospheric correction 
was run) in the QGIS software. 

2.3. In-situ measurements of Chlorophyll-a 

Field data measurements were collected in September 2018 and June 
2019 from Makuleke and Nylsvlei wetlands, respectively. June was 
considered the wet season and September the dry season. The mean 
average of three samples was taken as the value of each point and these 
samples were collected at the same location during the two seasons (dry 
and wet). Water samples were collected along the water column during 
the day at each site and stored on ice for processing in the laboratory. 
The water samples were used for chlorophyll-a extraction in 90% 
acetone using the spectroscopic method. This is also the same method 
that was used by Aminot and Rey (2000) and recently by Dalu et al. 
(2013) to monitor chlorophyll-a concentration. The acetone method 
involves measuring chlorophyll concentrations by extracting chloro-
phyll dye from the filter paper using acetone. The Chl-a concentrations 
were then calculated by measuring the absorbance of the dye extract at 
663, 645, 630, and 750 nm. The actual amount of chlorophyll was 
measured by the subtraction of the absorbance values at 750 nm from 
the absorbance values of the sample at 663, 645, and 630 nm. This data 
set was used for validation and for producing the maps. 

2.4. Mapping of wetlands 

Multi-Landsat images were classified to derive key land cover types 
such as up-built areas, bare lands, vegetation, and other water bodies. 
The normalized difference in water index (NDWI) and normalized dif-
ference in vegetation index (NDVI) were also calculated to estimate Chl- 
a. The NDWI provides critical water information and effectively extracts 
water body information from the land surface features. NDWI is very 
useful for revealing water-related characteristics of wetlands (Orimo-
loye et al., 2020). Therefore, this index was used to extract and map 
wetlands before extracting chlorophyll concentrations in both wetlands. 
The NDWI index indicates wetness and is used as a wetland inundated 
area proxy. Where a wetland is covered by hydric soils or is dry, the 
NDWI values are expected to be low. On the other hand, NDWI values 
are expected to increase with increasing moisture presence. NDWI was 
established by McFeeters (1996) (Equation (1)). The NDWI values range 
from − 1 to +1 where positive values predict water and negative values 
predict non-water. 

NDWI  =
Green − NIR
Green + NIR

(1)  

Where NIR is the reflectance in the near-infrared band; Green is the 
reflectance in the green band. 

2.5. Chlorophyll-a estimation from landsat data 

This study utilized visible bands (blue, green, and red) and near- 
infrared (NIR) bands to determine Chl-a concentration. The study 
done by Amanollahi et al. (2017) showed that band 4 with a wavelength 
between 663 nm and 668nm presents the best results in estimating 
Chlorophyll-a. Normalized Difference Vegetation Index (NDVI) and 
Chl-a have a strong correlation hence both indices are commonly used to 
measure plant primary productivity and biomass, especially in water 
bodies such as wetlands (Kulawardhana et al., 2007). As a result of the 
high NIR reflectance of chlorophyll, the NDVI index was used. NDVI as a 
commonly used vegetation index can effectively reflect vegetation in-
formation (Ma et al., 2018) and can be used as a numerical indicator of 
biomass and therefore can be used as a proxy for estimating Chl-a 
concentrations from remotely sensed data (Dube, 2012). NDVI is 

Table 1 
Satellite image specifications.  

Catchment Sensor ID Path/row Date 

Makuleke LC08_L1TP_169076 169_076 09–2018 
LCO8_L1TP_169076 169_076 06–2019 

Nylsvlei LCO8_LITP_170077 170_077 09–2018 
LCO8_L1TP_170077 170_077 06–2019  
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considered one of the most accurate indices in mapping/estimating 
Chl-a (Mwita, 2016). The NDVI was computed using the red and 
near-infrared bands of the recently launched Landsat 8 multispectral 
imagery acquired over Makuleke and Nylsvlei wetlands using atmo-
spherically corrected images of Landsat 8. NDVI was calculated 
following Tucker (1979) as follows: 

NDVI  =
NIR − Red
NIR + Red

(2)  

Where NIR is the reflectance in the near-infrared region of the electro-
magnetic spectrum (band 5 of Landsat 8), while red is the reflectance in 
the red region of the electromagnetic spectrum (band 4 of Landsat 8). 
NDVI is a dimensionless index with values ranging from − 1 to +1. In 
tropical environments, previous research has shown that NDVI values 
below 0 indicate water, those above 0 but less than 0.1 are associated 
with bare surfaces, while those in the range of 0.5 to 1 indicate dense 
green vegetation (Tucker,1979). However, when wetlands have natural 
vegetation, the NDVI values will differ depending on the density and 
vigor of each wetland. Chl-a concentration was then derived from the 
green chlorophyll index, which is measured in μg/L (CIgreen) (Gitelson 
et al., 2002) 

CIgreen  =
NIR

green
− 1 (3)  

Where NIR is the reflectance in the near-infrared region of the electro-
magnetic spectrum (band 5 of Landsat 8), while Green is the reflectance 
in the green region of the electromagnetic spectrum (band 3 of Landsat 
8). 

2.6. Accuracy assessment 

Landsat-derived chlorophyll-a concentrations were validated using 
field-derived Chl-a measurements that were taken during sampling. Five 
sampling points were used to validate the remotely sensed Chl-a esti-
mates. These samples taken in the field were plotted on classified im-
agery with remotely detected estimates using their GPS coordinates. 
Validation was implemented to assess the reliability of the remotely 
sensed Chl-a estimates. To achieve this objective, the Root Mean Square 
(RMSE) was used to assess the predictive error of the model between 
what is measured in the field and what is predicted using the Landsat 
imagery. The RMSE is the measure of the average magnitude of the 
error. Its values range from 0 to infinity. Low RMSE values indicate 
accurate model estimation and vice versa (see equation (4)) (Dalu et al., 
2015). Fig. 2 shows a summary of the methods. 

RMSE  =√
1
n

∑n

i=1
(yi − yî)2 (4)  

Where, where yi is the measured chlorophyll-a concentrations, yi ̂ is 
Landsat data-derived chlorophyll-a estimates, and n is the number of 
observations. 

3. Results 

3.1. Field measurements 

In situ Chl-a concentrations of Nylsvlei and Makuleke varied signif-
icantly, ranging from 0 μg/L to 1.42 μg/L. The highest concentration of 
Chl-a was observed in June 2019 in the Nylsvlei wetland (1.42 μg/L). 

Fig. 2. Summary of the methods used.  
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Chl-a concentrations ranged between 0.27 μg/L and 1.39 μg/L during 
September 2018 with a mean value of 0.48 μg/L. Makuleke wetland in 
June 2019, Chl-a had a mean of 0.58 μg/L and a standard deviation of 
0.38 μg/L. In September 2018, the Chl-a concentration ranged between 
0.07 μg/L to 0.64 μg/L with a mean value of 0.35 μg/L. During the 
month of June 2019, Chl-a ranged between 0 and 1.42 μg/L (mean =
0.48 μg/L, standard deviation = 0.49 μg/L) for Nylsvlei wetland (see 
Table 2). Based on the results, it can be concluded that chlorophyll-a 
(Chl-a) levels were higher during June and lower in September. 

3.2. Chl-a concentration predicted using remote sensing data 

The variation in Chl-a concentration during the study period is 
shown in Fig. 3(a and b) for Makuleke and Fig. 3(c and d) for Nylsvlei. 
The Chl-a concentration was mapped using the Clgreen index. Chl-a 
concentrations in Makuleke ranged from 0 to 1.15 μg/L and in the 
Nylsvlei wetland Chl-a ranged from 0 to 1.42 μg/L for the study period. 
The results showed that most of the Chl-a concentrations are found 
mainly along the edges of the wetlands. 

3.3. Comparison of field measurements and remotely detected data 

Chlorophyll-a concentration results for Makuleke and Nylsvlei wet-
lands in terms of the coefficient of determination (R2) and the root mean 
square error (RMSE) are shown in Fig. 4. The results indicate that 
Landsat at some points accurately estimated chlorophyll-a concentra-
tion and underestimated in some areas when compared to the field 
measurements. Landsat 8 predicted Chl-a vs. observed Chl-a concen-
trations produced an R2 value of 0.95 and a root mean error of 0.04 for 
September 2018 and for June 2019 the R2 value of 0.97 and a root mean 
error of 0.16 μg/L for Makuleke (see Fig. 4 a and b). While for Nylsvlei 
the R2 value of 0.95 and 0.06 μg/L RMSE for September 2018 and for 
June 2019, the R2 value of 0.92 and 0.26 μg/L RMSE (Fig. 4(c and d)). 

4. Discussion 

This present study aimed to investigate Chl-a concentrations in 
Nylsvlei and Makuleke Nature Reserve wetlands in the Limpopo 
Transfrontier River Basin, South Africa. Chl-a concentrations were used 
as an indicator to assess these two wetlands’ health. This study dem-
onstrates the importance of using satellite data in monitoring chloro-
phyll-a variations in wetlands, especially in remote areas. 

Chl-a mainly reflects green and absorbs most energy from wave-
lengths of violet-blue and orange-red light, which causes chlorophyll to 
appear green in a water body (Gholizadeh et al., 2016). An increase in 
Chl-a amount may lead to a decrease in light permeability in water and 
thus a decrease in oxygen produced by photosynthesis (Gönülal and 
Aslan 2019). From Landsat 8 data acquired for both wetlands, high 
concentrations of Chl-a were estimated to be in the edge part of the 
wetlands compared to the rest of the wetland. These spatial chlorophyll 
changes may be a response to seasonal variability. Temperature varia-
tions cause a situation in which the growth rates of freshwater 

eukaryotic phytoplankton generally stabilize, while the growth rates of 
many cyanobacteria increase, thereby providing a competitive advan-
tage (Paerl and Huisman, 2009). Therefore, as a result, water quality in 
many wetlands has declined progressively over the past several decades 
because of the increasing usage of recycled water in wetlands and the 
inflow of nutrients from agricultural and urban areas (Guo et al., 2017). 

Chl-a concentrations were considerably higher in June 2019 than in 
September 2018 for both the Nylsvlei and Makuleke wetlands. Some of 
the possible reasons why this was the case could be, as shown by Gönülal 
and Aslan (2019), high concentrations of nitrogen and phosphorus, 
which are caused by nutrients in aquatic ecosystems. Even though these 
elements are necessary for the biochemical cycle, are usually incorpo-
rated into the water by anthropogenic activities and their excessive 
amounts lead to eutrophication, which causes serious environmental 
problems in the aquatic ecosystem. An increase in Chl-a concentration in 
most cases indicates a change in the trophic status of a water body and it 
is usually associated with a decrease in water quality and low biodi-
versity which adversely destabilizes the ecosystem services and func-
tions (Dalu et al., 2015). An increase in Chl-a concentration may lead to 
a decrease in light permeability in water and thus a decrease in oxygen 
produced by photosynthesis, and this usually prevents the bacteria that 
decompose organic matter in the sediment and restoring the ecosystem 
(Gönülal and Aslan 2019). 

The study by Dalu et al. (2015) showed that low chlorophyll a con-
centrations could most likely be attributed to dilution due to freshwater 
inflow and increased sediment loads, which would have limited primary 
production rates. The low Chl-a concentration could also be due to a 
combination of increased water depth and sediment re-suspension tak-
ing place in the wetlands or could be caused by dilution due to fresh-
water inflow and increased sediment loads which would have limited 
primary production rates. Increased water temperature and low water 
level may affect dissolved oxygen values, while an increase in 
chlorophyll-a amounts may lead to a decrease in light permeability in 
water and thus a decrease in oxygen produced by photosynthesis 
(Gönülal and Aslan 2019). This can be the case for these wetlands 
considering where these wetlands are located. The other factor that 
might have contributed to the low concentrations of Chl-a predicted in 
both study areas is that although estimating chlorophyll through remote 
sensing techniques is possible, the use of Landsat 8 may not permit 
discrimination of chlorophyll in waters with high suspended sediments 
due to dominance of the spectral signature of suspended sediments 
(Ritchie et al., 2003). The study by Nilsaz et al. (2010) showed that high 
levels of turbidity affect the predicting of Chl-a, and this is most evident 
during the rainy season compared to the dry season. High water sus-
pended solid affects light penetration in the water resulting in low pri-
mary production (Ghorbani, 2016). This might have contributed to the 
low levels of chlorophyll-a predicted in this study. 

The concentration changes can be attributed to several factors, 
especially during planting season in the catchment area, where nutrients 
are washed into the water body with the first rainfall (Ndungu et al., 
2013). At the same time, the rainfall period leads to clearer water, 
thereby promoting light penetration into the water column. These 
changes are probably attributable to ever-increasing multiple stressors, 
such as increased agricultural activities, urbanization, and climate 
change. Other studies have stipulated that the trophic state is influenced 
by forcing factors such as eutrophication and sediment load. The effects 
of forcing factors also can be modified by other accompanying factors 
such as season, agricultural activities in the catchments, algal grazing, 
and mixing depth, which, in turn, can play a role in the prevailing water 
transparency status (Ndungu et al., 2013). Another factor that can affect 
Chl-a concentrations in these wetlands is that wetland species appear to 
vary greatly in chlorophyll and biomass reflectance as a function of plant 
species and hydrologic regime. The spectral behaviour of wetland 
vegetation is also influenced by the water content, which determines the 
absorption of the mid-infrared region, where red reflectance increases 
with leaf water stress could results in reduction in chlorophyll 

Table 2 
Chl-a summary statistics for Makuleke and Nylsvlei wetlands based on field 
measurements (September 2018 and June 2019 period).  

Parameter Makuleke Nylsvlei 

September 2018 June 2019 September 2018 June 2019 

Mean 0.48 0.58 0.35 0.48 
Median 0.39 0.46 0.4 0.3 
Mode n/a n/a 0.4 0.16 
Standard Dev. 0.21 0.38 0.19 0.49 
Range 0.58 1.12 0.52 1.54 
Minimum 0.27 0 0.07 0 
Maximum 0.85 1.39 0.64 1.42  
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concentration (Adam et al., 2010). Therefore the finding of this study 
underscores the relevance of remotely detected data in the evaluation 
and routine monitoring of wetland water quality. 

5. Conclusions 

The study aimed to assess and map chlorophyll-a concentration 
changes in Makuleke and Nylsvlei wetlands during the 2018–2019 
period. Chlorophyll-a is an indicator of the abundance of phytoplankton, 
which makes an important contribution to the overall primary produc-
tivity of water bodies, such as wetlands. Therefore, the use of remote 
sensing techniques to predict and map the concentration is important in 

the monitoring and assessment of water quality in wetlands, especially 
because of the ability of remote sensing techniques to measure chloro-
phyll concentrations spatially and temporally. The results demonstrate 
that Landsat 8 OLI data could provide a useful tool for investigating the 
spatio-temporal variability of Chl-a in wetlands, particularly in remote 
areas that are not easily accessible. 

Author statement 

Attached is the manuscript titled “Remote sensed data in esti-
mating chlorophyll-a concentration in wetlands located in the 
Limpopo Transboundary River Basin, South Africa.” The manuscript 

Fig. 3. (a–b): Depicts Chl-a concentrations over the Makuleke wetland during (a) September 2018 and (b) June 2019, (c–d): Landsat derived spatial distribution Chl- 
a concentrations over the Nylsvlei wetland during (c) September 2018 and (d) June 2019. 

Fig. 4. (a–d): Relationship between observed (field measurements) and predicted (Chl-a) values (a) September 2018, (b) June 2019 for Makuleke wetland, (c) 
September 2018, and (d) June 2019 for Nylsvlei wetland. 
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focuses on Chlorophyll-a concentrations and associated dynamics in two 
tropical wetland systems were estimated. Makuleke and Nylsvlei wet-
lands are located in the Limpopo Transboundary River Basin, South 
Africa. September 2018 and June 2019 Moderate resolution Landsat 8 
images and in-situ field measurements were used to estimate and map 
chlorophyll-a concentrations from the two wetlands. Landsat-derived 
chlorophyll-a concentrations were validated using field-derived chlo-
rophyll-a measurements. Validation was implemented to assess the 
consistency of the remotely sensed chlorophyll a estimates. The rela-
tionship between field measured and Landsat data-derived chlorophyll 
estimates were determined using the coefficient of variation (r-square: 
R2) and the Root Mean Square Error (RMSE). The results show that 
Makuleke wetland had low estimates during the month of September 
2018 and June 2019. The variation of chl-a concentration in Makuleke 
ranged from -0 to 1.15 μg/L whereas for Nylsvlei wetland the ranges 
varied between -0 and 1.42 μg/L, for the period understudy. Spatial 
characterization of Chl-a concentrations significantly varied across the 
two wetlands with much of it concentrated along wetland shorelines. 
The finding of this study underscores the relevance of remotely sensed 
data in assessing and routine monitoring wetland water quality- 
previously challenge task with in-situ measurements. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

The authors would like to thank the anonymous reviewers for their 
valuable input in this article and the Global Monitoring for Environment 
and Security (GMES)-Africa through SASCAL and WeMAST project for 
funding this entire project. The authors would also like to thank, Mr 
Siyamthanda Gxokwe, Mr Eugene Sagwati Maswanganye and Dr 
Tatenda Dalu for their assistance in the field and data collection. 

References 

Abdelmalik, K.W., 2018. Role of statistical remote sensing for inland water quality 
parameters prediction. Egypt. J. Remote Sens. Space Sci. 21 (2), 193–200. https:// 
doi.org/10.1016/j.ejrs.2016.12.002. 

Adam, Elhadi, Mutanga, Onisimo, Rugege, Denis, 2010. Multispectral and hyperspectral 
remote sensing for identification and mapping of wetland vegetation: a review. Wetl. 
Ecol. Manag. 18 (3), 281–296. https://doi.org/10.1007/s11273-009-9169-z. 

African, S., Conservation, W., 1998. Nylsvlei nature reserve. List of wetlands of 
international importance: convention on wetlands of international importance 
especially as waterfowl habitat. South Afr. Wetl. Conserv. Programme. Document No 
24121131313117.  

Ali, A., Darvishzadeh, R., Skidmore, A., Heurich, M., Paganini, M., Heiden, U., 
Mücher, S., 2020. Remote sensing evaluating prediction models for mapping canopy 
chlorophyll. Content Across Biomes 12, 1788. https://doi.org/10.3390/rs12111788, 
8.  

Amanollahi, Jamil, Kaboodvandpour, Shahram, Majidi, Hiva, 2017. Evaluating the 
accuracy of ANN and LR models to estimate the water quality in zarivar 
international wetland, Iran. Nat. Hazards 85 (3), 1511–1527. https://doi.org/ 
10.1007/s11069-016-2641-1. 

Aminot, A., Rey, F., 2000. Standard procedure for the determination of chlorophyll a by 
spectroscopic methods. In: ICES Techniques in Marine Environmental Sciences. 
Copanhagen, Denmark, pp. 8–11. 

Baek, Ji Yeon, Young, Heon Jo, Kim, Wonkook, Seok Lee, Jong, Jung, Dawoon, Kim, Dae 
Won, Nam, Jungho, 2019. A new algorithm to estimate chlorophyll-a concentrations 
in turbid yellow sea water using a multispectral sensor in a low-altitude remote 
sensing system. Rem. Sens. 11 (19) https://doi.org/10.3390/rs11192257. 

Bbalali, Saeed, Abbas Hoseini, Seyed, Ghorbani, Rasool, Kordi, Hamideh, 2013. 
Relationships between nutrients and chlorophyll a concentration in the international 
alma gol wetland, Iran. J. Aquacult. Res. Dev. 4 (3) https://doi.org/10.4172/2155- 
9546.1000173. 

Butt, Amna, Shabbir, Rabia, Saeed Ahmad, Sheikh, Aziz, Neelam, 2015. Land use change 
mapping and analysis using remote sensing and GIS: a case study of simly watershed, 
Islamabad, Pakistan. Egypt. J. Remote Sens. Space Sci. 18 (2), 251–259. https://doi. 
org/10.1016/j.ejrs.2015.07.003. 

Dalu, Tatenda, Nhiwatiwa, Tamuka, Dalu, Tatenda, Clegg, Bruce, 2013. Temporal 
variation of the plankton communities in a small tropical reservoir (Malilangwe, 

Zimbabwe). Trans. Roy. Soc. S. Afr. 68 (2), 85–96. https://doi.org/10.1080/ 
0035919X.2013.766280. 

Dalu, Tatenda, Dube, Timothy, William Froneman, P., Mwazvita, T., Sachikonye, B., 
Clegg, Bruce W., Nhiwatiwa, Tamuka, 2015. An assessment of chlorophyll-a 
concentration spatio-temporal variation using Landsat satellite data, in a small 
tropical reservoir. Geocarto Int. 30 (10), 1130–1143. https://doi.org/10.1080/ 
10106049.2015.1027292. 

Dixon, M.J.R., Loh, J., Davidson, N.C., Beltrame, C., Freeman, R., Walpole, M., 2016. 
Tracking global change in ecosystem Area: the wetland extent trends index. Biol. 
Conserv. 193, 27–35. https://doi.org/10.1016/j.biocon.2015.10.023. 

Dlamini, S., Nhapi, I., Gumindoga, W., Nhiwatiwa, T., Dube, T., 2016. Assessing the 
feasibility of integrating remote sensing and in-situ measurements in monitoring 
water quality status of lake Chivero, Zimbabwe. Phys. Chem. Earth 93, 2–11. 
https://doi.org/10.1016/j.pce.2016.04.004. 

Dlamini, M., Chirima, G., Sibanda, M., Adam, E., Dube, T., 2021. Remote Sensing 
Characterizing Leaf Nutrients of Wetland Plants and Agricultural Crops with 
Nonparametric Approach Using Sentinel-2 Imagery Data. https://doi.org/10.3390/ 
rs13214249. 

Dube, Timothy, 2012. Primary Productivity of Intertidal Mudflats in the Wadden Sea: A 
Remote Sensing Method. University of Twente, pp. 1–68. https://www.itc.nl/ 
library/papers_2012/msc/wrem/dube.pdf. 

Dube, T., Mutanga, O., Seutloali, K., Adelabu, S., Shoko, C., 2015. Water quality 
monitoring in sub-Saharan African lakes: a review of remote sensing applications. 
Afr. J. Aquat. Sci. 40 (1), 1–7. https://doi.org/10.2989/16085914.2015.1014994. 

Legesse Gebre, Sintayehu, Sineshaw Getahun, Yitea, 2016. Analysis of climate variability 
and drought frequency events in Limpopo river basin, South Africa. J. Waste Water 
Treat. Anal. 7 (3) https://doi.org/10.4172/2157-7587.1000249. 

Gholizadeh, Mohammad Haji, Melesse, Assefa M., Reddi, Lakshmi, 2016. 
A comprehensive review on water quality parameters estimation using remote 
sensing techniques. Sensors 16 (8). https://doi.org/10.3390/s16081298. 

Ghorbani, R., 2016. Evaluation of effects of physico-chemical factors on chlorophyll-a in 
shadegan international wetland-khouzestan province - Iran. Iran. J. Fish. Sci. 15 (1), 
360–368. 

Gitelson, A.A., Viña, A., Ciganda, V., Rundquist, D.C., Arkebauer, T.J., 2002. Remote 
estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 32, 08-403.  

Gönülal, O., Aslan, H., 2019. Determination of some macro element concentrations and 
chlorophyll-a distribution in a shallow lake wetland (Gökçeada salt lake lagoon, 
Çanakkale/Turkey). J. Sci. Perspect. 3 (2), 111–118. https://doi.org/10.26900/ 
jsp.3.012. 

Greenfield, R., Van Vuren, J., Wepener, V., 2007. Determination of sediment quality in 
the Nyl River system, Limpopo Province, South Africa. Water SA 33 (5), 693–700. 
https://doi.org/10.4314/wsa.v33i5.184090. 

Guo, Meng, Jing, Li, Sheng, Chunlei, Xu, Jiawei, Wu, Li, 2017. A review of wetland 
remote sensing. Sensors 17 (4), 1–36. https://doi.org/10.3390/s17040777. 

Havenga, C.F.B., Pitman, W.V., Bailey, A.K., 2007. Hydrological and hydraulic modelling 
of the nyl river floodplain Part 1. Background and hydrological modelling. WaterSA 
33 (1), 1–8. https://doi.org/10.4314/wsa.v33i1.47865. 

Jogo, Wellington, Hassan, Rashid, 2010. Balancing the use of wetlands for economic 
well-being and ecological security: the case of the Limpopo wetland in southern 
Africa. Ecol. Econ. 69 (7), 1569–1579. https://doi.org/10.1016/j. 
ecolecon.2010.02.021. 

Kabii, Tom, 2017. An Overview of African Ethics.” Themes, Issues And Problems In African 
Philosophy, vols. 61–75. https://doi.org/10.1007/978-3-319-40796-8_5. 

Kulawardhana, R.W., Thenkabail, Prasad S., Vithanage, J., Biradar, C., Islam, Md A., 
Gunasinghe, S., Alankara, R., 2007. Evaluation of the wetland mapping methods 
using Landsat ETM+ and SRTM data. J. Spatial Hydrol. 7 (2), 62–96. 

Ma, Fawang, Wang, Qiubing, Zhang, Maoxin, 2018. Dynamic changes of wetland 
resources based on MODIS and Landsat image data fusion. Eurasip J. Image Video 
Proces. 2018 (1) https://doi.org/10.1186/s13640-018-0305-7. 

Malahlela, Oupa, Oliphant, Thando, Tsoeleng, Lesiba, Mhangara, Paidamwoyo, 2018. 
Mapping chlorophyll- a concentrations in a cyanobacteria- and algae-impacted vaal 
dam using. Landsat 8 OLI Data 114 (9), 1–9. 

Malherbe, Wynand, 2018. Ramsar wetlands in South Africa : historic and current aquatic 
research ramsar wetlands in South Africa. South Afr. J. Sci. Technol. 37 (1), 1–13. htt 
p://www.satnt.ac.za. 

Masocha, Mhosisi, Amon Murwira, Magadza, Christopher H.D., Hirji, Rafik, 
Dube, Timothy, 2017. Remote sensing of surface water quality in relation to 
catchment condition in Zimbabwe. Phys. Chem. Earth 100, 13–18. https://doi.org/ 
10.1016/j.pce.2017.02.013. 

McCarthy, Terence S., Tooth, Stephen, Jacobs, Zenobia, Rowberry, Matthew D., 
Thompson, Mark, Brandt, Dion, John Hancox, P., Marren, Philip M., 
Woodborne, Stephan, Ellery, William N., 2011. The origin and development of the 
nyl river floodplain wetland, Limpopo province, South Africa: trunk-tributary river 
interactions in a dryland setting. S. Afr. Geogr. J. 93 (2), 172–190. https://doi.org/ 
10.1080/03736245.2011.619324. 

McFeeters, S.K., 1996. The use of the Normalized Difference Water Index (NDWI) in the 
delineation of open water features. Int. J. Rem. Sens. 17, 1425–1432. 

Mitchell, Stephen Anthony, 2013. The status of wetlands, threats and the predicted effect 
of global climate change: the situation in sub-saharan Africa. Aquat. Sci. 75 (1), 
95–112. https://doi.org/10.1007/s00027-012-0259-2. 

Mosase, Esther, Ahiablame, Laurent, 2018. Rainfall and temperature in the Limpopo 
river basin, southern Africa: means, variations, and trends from 1979 to 2013. Water 
(Switzerland) 10 (4). https://doi.org/10.3390/w10040364. 

Mosase, Esther, Laurent, Ahiablame, Srinivasan, Raghavan, 2019. Spatial and temporal 
distribution of blue water in the Limpopo river basin, southern Africa: a case study. 

T. Dzurume et al.                                                                                                                                                                                                                               



Physics and Chemistry of the Earth 127 (2022) 103193

9

Ecohydrol. Hydrobiol. 19 (2), 252–265. https://doi.org/10.1016/j. 
ecohyd.2018.12.002. 

John Mwita, Emiliana, 2016. Monitoring restoration of the eastern usangu wetland by 
assessment of land use and cover changes. Adv. Rem. Sens. 145–156. https://doi. 
org/10.4236/ars.2016.52012, 05 (02).  

Ndungu, Jane, Augustijn, Denie C.M., Hulscher, Suzanne J.M.H., Kitaka, Nzula, 
Mathooko, Jude, 2013. Spatio-temporal variations in the trophic status of lake 
naivasha, Kenya. Lakes Reservoirs Res. Manag. 18 (4), 317–328. https://doi.org/ 
10.1111/lre.12043. 

Nilsaz, Khlifeh M., Sabzalizadeh, S., Esmaiili, F., Ansari, H., Eskandari, G., Hashemi, A., 
Abu Obeid, S., 2010. Monitoring of Shadegan Wetland, 150P. South aquaculture 
research center of Iran. 

Nyamadzawo, G., Wuta, M., Nyamangara, J., Nyamugafata, P., Chirinda, N., 2015. 
Optimizing dambo (seasonal wetland) cultivation for climate change adaptation and 
sustainable crop production in the smallholder farming areas of Zimbabwe. Int. J. 
Agric. Sustain. 13 (1), 23–39. https://doi.org/10.1080/14735903.2013.863450. 

Orimoloye, Israel R., Kalumba, Ahmed M., Mazinyo, Sonwabo P., Werner, Nel, 2020. 
Geospatial analysis of wetland dynamics: wetland depletion and biodiversity 
conservation of isimangaliso wetland, South Africa. J. King Saud Univ. Sci. 32 (1), 
90–96. https://doi.org/10.1016/j.jksus.2018.03.004. 

Patra, Pulak Priti, Dubey, Sourabh Kumar, Kumar Trivedi, Raman, Kumar Suhu, Sanjeev, 
Keshari Rout, Sangram, 2016. Estimation of chlorophyll-a concentration and trophic 
states for an inland lake from landsat-8 OLI data: a case Nalban lake of east Kalkota 
wetland, India. Preprints. https://doi.org/10.20944/preprints201608.0149.v1. 
August: 18.  

Patra, Pulak Priti, Dubey, Sourabh Kumar, Kumar Trivedi, Raman, Kumar Sahu, Sanjeev, 
Keshari Rout, Sangram, 2017. Estimation of chlorophyll-a concentration and trophic 
states in nalban lake of east Kolkata wetland, India from Landsat 8 OLI data. Spatial 
Inf. Res. 25 (1), 75–87. https://doi.org/10.1007/s41324-016-0069-z. 

Rebelo, L.M., McCartney, M.P., Finlayson, C.M., 2010. Wetlands of sub-saharan Africa: 
distribution and contribution of agriculture to livelihoods. Wetl. Ecol. Manag. 18 (5), 
557–572. https://doi.org/10.1007/s11273-009-9142-x. 

Reid, Hannah, 2001. Contractual national parks and the Makuleke community. Hum. 
Ecol. 29 (2), 135–155. https://doi.org/10.1023/A:1011072213331. 

Ritchie, Jerry C., Zimba, Paul V., Everitt, James H., 2003. Remote sensing techniques to 
assess water quality. Photogramm. Eng. Rem. Sens. 69 (6), 695–704. https://doi. 
org/10.14358/PERS.69.6.695. 

Salimi, S., Almuktar, S.A.A.A.N., Scholz, M., 2021. Impact of climate change on wetland 
ecosystems: a critical review of experimental wetlands. J. Environ. Manag. 286, 
112160 https://doi.org/10.1016/J.JENVMAN.2021.112160. 

Sawunyama, T., Senzanje, A., Mhizha, A., 2006. Estimation of small reservoir storage 
capacities in Limpopo river basin using geographical information systems (GIS) and 
remotely sensed surface areas: case of mzingwane catchment. Phys. Chem. Earth 31 
(15–16), 935–943. https://doi.org/10.1016/j.pce.2006.08.008. 

Scholes, M., Scholes, R., 2020, September 16. A keen eye on facts saved this biodiverse 
wetland for now: threats to be aware of”. The Conversation. Available at. https://the 
conversation.com/a-keen-eye-on-facts-saved-this-biodiverse-wetland-for-now-threat 
s-to-be-aware-of-145270. 

StatsSA, 2018. Community Survey 2016: Provincial Profile: Limpopo. http://cs2016.stat 
ssa.gov.za/wp-content/uploads/2018/07/Limpopo.pdf. 

Swanepoel, C.M., Barnard, R.O., 2007. Discussion paper: wetlands in agriculture. 
Department of water affairs and forestry. South Africa. Vol. GW/A/2007/. http://sch 
olar.google.com/scholar?hl=en&btnG=Search&q=intitle:DISCUSSION+PAPER+:+
Wetlands+in+Agriculture#7. 

Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring 
vegetation. Rem. Sens. Environ. 8, 127–150. 

Wang, Yunpeng, Xia, Hao, Fu, Jiamo, Sheng, Guoying, 2004. Water quality change in 
reservoirs of shenzhen, China: detection using LANDSAT/TM data. Sci. Total 
Environ. 328 (1–3), 195–206. https://doi.org/10.1016/j.scitotenv.2004.02.020. 

Yin, Changming, He, Binbin, Quan, Xingwen, Liao, Zhanmang, 2016. Chlorophyll 
content estimation in arid grasslands from landsat-8 OLI data. Int. J. Rem. Sens. 37 
(3), 615–632. https://doi.org/10.1080/01431161.2015.1131867. 

T. Dzurume et al.                                                                                                                                                                                                                               


