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ABSTRACT 

 
This dissertation offers a unique federated continual learning setup for anomaly detection 

in the fast growing 5G Open Radio Access Network (O-RAN) environment. Conventional 

AI techniques frequently fall short of meeting the security automation needs of 5G net- 

works, owing to their outstanding latency, dependability, and bandwidth demands. As a 

result, the thesis provides an anomaly detection system that does not only use federated 

learning (FL) to solve inherent privacy problems and resource constraints but also incor- 

porates replay buffer concept in the training phase of the model to eradicate catastrophic 

forgetting. To allow the intended federated learning architecture, anomaly detectors are 

incorporated into the Near-real time RIC, while aggregation servers are installed within 

the Non-real time RIC. The configuration was carefully tested using the 5G NIDD Dataset, 

revealing a considerable boost in detection accuracy by reaching close to 99% for almost 

all datasets after including the continual learning process. The thesis also investigates 

the notion of transfer learning, in which pre-trained local models are evaluated against 

a hybrid Application layer DDoS dataset that includes benign samples from the CICIDS 

2017 dataset and attack flows generated in proprietary SDN environment. The captured 

results show almost over 99% of accuracy, confirming the suggested system’s efficacy and 

flexibility. The study represents a significant step forward in the development of a more 

secure, efficient, and privacy-protecting 5G network architecture. 

Keywords: 5G, Network automation, Security, Federated learning, Continual learning, 

Catastrophic forgetting, and DDoS 
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1 INTRODUCTION 

 
The most recent development in wireless communication technology is the fifth-generation 

(5G) network, which promises revolutionary reductions in latency, connection density, and data 

speeds. These developments will spur innovation in many other fields, including autonomous 

driving, smart cities, and the Internet of Things (IoT). The advantages of 5G are, however, offset 

by an increased attack surface and vulnerability to cyber-threats, mostly because of the network’s 

dispersed architecture. To protect these next-generation networks, it is necessary to have strong 

and effective security procedures. 

System for detecting network anomalies is crucial to protecting emerging 5G networks. These 

systems work by encountering variations from conventional network traffic patterns, which gives 

them a reliable method for spotting cutting-edge cyber attacks that are both innovative and 

complex. The capacity to identify Distributed Denial of Service (DDoS) assaults, one of the 

most pervasive and crippling dangers to network security in the connected world of today, is 

especially crucial [1]. DDoS attacks have the capacity to quickly overload a network, leading 

to substantial service disruptions and possible data loss. The rapid innovation and increasing 

complexity of DDoS attack techniques, however, make it difficult to sustain the effectiveness of 

traditional attack detection systems. In fact, traditional rule-based detection systems struggle 

to keep up with the complexity of such threats as attack vectors become more varied. This has 

led to the use of machine learning (ML) and deep learning (DL) approaches to improve the 

generalization and prediction accuracy of these systems. They help in spotting tiny changes or 

trends in network traffic that might point to a DDoS assault, even in its early stages. 

ML and DL-based anomaly detection systems nevertheless face a number of difficulties in 

spite of the aforementioned advantages. Catastrophic forgetting (CF) [2], a situation where the 

learning model tends to forget or ignore previously acquired patterns when exposed to fresh data 

or attack patterns, is an important problem. Given that attackers constantly innovate and new 

attack variations routinely appear, this problem is especially harmful in the context of DDoS 

detection. Therefore, a CF issue solution is essential to maintaining resilience in identifying 

different forms of DDoS attacks. 

A viable remedy to lessen the CF issue has been found as continual learning (CL) [3]. Models 

can adapt to new tasks while preserving information from earlier ones because to CL, which 

enables continuous learning from a stream of data. Although CL has demonstrated success in a 

number of fields, including computer vision, its use in network security, especially in the creation 

of cyber attack detector, is still unexplored. A number of approaches have been developed in 

CL to combat CF, with the usage of replay buffers being one of the most promising [4]. Replay 

buffers preserve a balance between old and new information by storing a portion of the historical 

data that the model may ”replay” during training. In numerous contexts, this method has proven 

very effective in preventing catastrophic forgetfulness. 

However to provide effective, immediate reactions to any incursions, decentralized learning 

mechanisms must be used due to the distributed design of 5G networks. Federated Learning 

(FL) stands out as a possible approach in this regard. Distributed devices, as those in a 5G 

network, can develop a shared prediction model cooperatively using FL while keeping all of the 

training data on their original devices. This decentralized strategy greatly improves data privacy, 

a crucial issue in modern cybersecurity measures, while also optimizing learning processes. For 

network intrusion detection, the fusion of FL with CL [5] offers great potential. A powerful 

approach for improving the performance of intrusion detection in 5G networks may be developed 

by combining CL’s capability to handle continually developing tasks, which addresses the 

problem of CF, with FL’s distributed and privacy-preserving nature. This combination provides 

a thorough learning framework that not only successfully identifies new threats but also preserves 

the privacy of local data, thereby addressing the key issues with 5G security. This might open 
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the door for the creation of sophisticated DDoS assault defense systems and the development of 

enhanced network anomaly detection systems that protect user data and privacy in the vast 5G 

network environment. 

 

1.1 Background and Motivation 

A new age of significant decreases in latency, connection density, and data rates has been 

ushered in by the introduction of 5G wireless communication technology. A wide range of 

industries, including autonomous vehicles, smart cities, and IoT, might benefit from this technical 

advancement. The benefits of the 5G network, principally because of its decentralized design, 

also open the door for an extended attack surface and greater susceptibility to cyberthreats. 

It highlights the urgent requirement for strong and efficient security solutions to protect these 

future networks. 

DDoS assaults, which may quickly overwhelm a network and cause substantial service 

disruption and possibly data loss, are one of the most pervasive and disruptive dangers in today’s 

linked world. Traditional rule-based detection systems face major difficulties due to the DDoS 

attack tactics’ fast growth and increasing complexity. There is a pressing need to improve these 

systems’ resilience and forecast accuracy as attack vectors become more varied. The use of 

ML and DL technologies has increased as a result, making it easier to spot minute changes or 

patterns in network traffic that might be signs of a DDoS assault. 

However, because of always changing nature of DDoS attack variants, problems with catas- 

trophic forgetting (CF), which occurs when a model forgets prior patterns when exposed to 

fresh data, plague ML and DL systems. To address CF, strategies like CL have been developed. 

Although effective in fields like computer vision, CL’s use in network security has not yet been 

fully investigated. Integrating FL, a decentralized approach that protects data privacy, with 

CL might significantly improve network intrusion detection. This combination may enhance 

network anomaly detection and DDoS protection systems while preserving data privacy in 5G 

networks. 

CL has shown promise in preventing catastrophic forgetting, especially when replay buffers 

are used to maintain a balance between new and old information. Despite CL’s shown effec- 

tiveness in areas like computer vision, its use in network security, particularly in the creation of 

a cyberattack detector, is mostly unexplored. Network intrusion detection may greatly benefit 

from the combination of CL and FL, which offers a decentralized method for collaboratively 

creating a shared prediction model while protecting data privacy. A complete learning frame- 

work that can successfully identify new risks while protecting the privacy of local data might 

be created by integrating the skills of CL and FL. 

 

1.2 Research Problem 

The security and integrity of network systems are crucially maintained by their ability to identify 

anomalies. This is especially true for 5G’s Open Radio Access Networks (O-RAN), which are 

expansive heterogeneous systems with a range of latency and privacy needs. Internal problems 

and malicious assaults are only two examples of the many things that might cause anomalies in 

a RAN. Only a few ML-based research papers have particularly focused on O-RAN, despite the 

fact that there are many studies on anomaly detection in the RAN that employ ML. This is a 

significant lacuna in the body of knowledge, especially in light of the particular difficulties and 

dangers that O-RAN in 5G networks could provide. 
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When using AI/ML for operations, protecting data privacy is essential. By protecting data 

privacy and improving communication effectiveness, FL provides potential answers. Models 

are trained locally, and just the parameters required for aggregation are shared. FL is especially 

helpful for handling sensitive data in intricate, extensive environments like RAN. However, fur- 

ther study is required on the use of FL for RAN anomaly detection to stop assaults from reaching 

the core network. FL implementation at the RAN level might greatly increase communication 

effectiveness and data privacy protection. As a result of abnormalities found using FL, it could 

also make it easier to carry out appropriate control activities, including resource management 

or the transfer of User Equipment (UE). 

Additionally, in an FL system, local detection models have a propensity to forget previously 

acquired information over time. Given how quickly cyber dangers are growing, this is an urgent 

problem to tackle. Even while federated learning has been mentioned in many research projects, 

very few have looked at how it may be combined with continuous learning. This is an important 

topic of study that needs to be addressed right away. 

Determining a comprehensive, FL-based anomaly detection framework for O-RAN in 5G 

networks that not only protects data privacy and improves communication efficiency but also 

handles the problem of learnt knowledge gradually ”forgetting” over time is the main research 

challenge as a result. The proposed study will look into how FL may be combined with ongoing 

learning to offer a reliable and efficient method for O-RAN anomaly detection. This research 

problem’s core will also include the investigation of appropriate control measures in response 

to observed abnormalities. 

 

1.3 Selected scope 

In this research, the use of continual federated learning has been explored for the detection of 

various forms of DDoS attacks in 5G networks with a focus on replay buffers. The main goal 

is to create a powerful DDoS attack detection system that can skillfully handle the particular 

difficulties of identifying various DDoS kinds that a 5G network may experience. Hypothesis has 

been put forward that continual federated learning strategies, specifically the addition of replay 

buffers, may substantially decrease the problem of catastrophic forgetting in DDoS detection 

models while identifying DDoS attack types striking different nodes of distributed 5G network 

that are not encountered by other hops in the network. 

 

1.4 Methodology 

As the proposed anomaly detector is based on an FL model, the methodology of this thesis 

is primarily comprised of steps required to generate a federated learning setup. It consists 

of following steps: data preprocessing, model training, communication between clients and 

aggregation server, federated averaging and model testing. 5G NIDD dataset [6] which has been 

populated with both real world attack and genuine traffic flows generated in the 5GTN test bed 

built in University of Oulu has been chosen to utilize. The dataset covers a variety of DDoS 

attack types mixed with real world legitimate network traffic. As the local models work with 

only numerical values, therefore, various data processing steps have been conducted to organize 

the dataset and making the data samples eligible to feed to the models. At the end of the data 

preparation segment, normalization took place which sets the feature values of all data samples 

within a predetermined range of values. Anomaly types are only one example of superfluous 

values that might exist. It is sufficient to establish whether or not an abnormality exists, hence 
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this data column was eliminated. There are 10 datasets categorized by different types of DDoS 

attacks amalgamated with benign traffic for training and evaluation purposes. 

Two local models, one for each client were developed for each training data set during the 

training step. The FL-based training model’s cycle begins with the model being trained in each 

client for 10 rounds with each dataset, which are subsequently transmitted back to the main 

server. Before being transmitted back to the end devices for training, the model parameters are 

combined at the central server. After updating the local models in all clients with aggregated 

weights, another dataset comes into place for training process. In the thesis, this is seen as one 

complete cycle. The models were trained in this manner for 3 rounds. The updated model after 

conducting mentioned rounds of training is then used to test the model’s performance with test 

datasets. 

Two scenarios which are traditional FL and FL integrated with continual learning has been 

adopted to conduct training and evaluation. At the first stage, only standalone FL setup has been 

run and CF has been spotted while feeding new datasets one by one in the system. At the later 

stage, reservoir sampling buffer [7] has been added to preserve the portion of representative 

samples from previous datasets which is then mixed up with current datasets before feeding to 

the local models for training. After completing training and federated aggregation process for 

all datasets, evaluation has been done which is same as with traditional federated learning to 

observe the difference in performance metrics values. 

 

1.5 Contribution 

This study’s major contribution is a FL based network anomaly detector integrated with CL to 

eradicate CF from local model for the sake of achieving sustainability in efficiently detecting 

continually evolving DDoS attacks over the time. O-RAN is relatively new, and there are only 

a few applications available. Utilizing ML or FL for security in O-RAN is currently in its early 

phases of research.   Anomaly detection has been studied for the networked systems such as 

the IoT, and Zero-touch Network and Service Management systems mostly by using centralized 

single node machine learning models but leveraging FL based detection has not been studied 

much in O-RAN. Moreover, addressing the critical problem of forgetting old knowledge of 

attack patterns with time has also not been highlighted much in federated setup-based detection 

techniques. Therefore, this study provides an initial step for research into using privacy along 

with knowledge preserving FL for anomaly detection in O-RAN. 

Due to the hierarchical positions of Near real-time RIC (Near-RT RIC) and Non real-time 

RIC (Non-RT RIC) and their various closed loops, FL-based solutions may be deployed in O-

RAN with ease. As a result, the continual learning based federated setup could be easily 

implemented in an O-RAN architecture as a service in Near-RT RIC segment. Additionally, a 

reference design for deployment has been proposed for more research. 

Performance was evaluated based on accuracy, precision, recall and the F1 score. Further- 

more, the cost of the implementation of the system was considered in terms of training and 

evaluation time and size of the space buffer takes to preserve representative samples. After 10 

rounds of training with each datasets and 3 rounds of federated averaging, it was possible to find 

anomalies in the test dataset with all the mentioned metrics value of above around. Therefore, 

it can be concluded that the proposed models are effective against network attacks specifically 

DoS attack in the O-RAN architecture. 
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1.6 Organization of the Thesis 

The thesis is structured as follows. 

Chapter 2 describes general details, objectives and application of continual FL. 

Chapter 3 provides a comprehensive review of related works and corresponding limitations 

in the fields of anomaly and intrusion detection in computer networks. 

Chapter 4 provides comprehensive details about the dataset and traffic patterns that have 

been adopted for this thesis along with the proposed network anomaly detection framework and 

implementation of the system. 

In chapter 5, granular and elaborate analysis of the performance of the framework has been 

conducted with substantial graphs and tables. The performance has been measured in terms of 

accuracy, precision, recall and f1 score both in traditional FL and integrated continual FL setup 

scenarios. Last part of the chapter compares both scenarios and shows the difference in terms 

of resource utilization cost and performance. 

Chapter 6 summarizes the comparative analysis of thesis project with similar research papers, 

how much the objectives of the research has been achieved along with future directions. 

Chapter 7 presents an overall summary of the thesis. 
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2 Background and Preliminaries 

 
This chapter explores the evolution of diverse environment of cyber threats in 5G networks. 

Furthermore, investigation of the structure of O-RAN architecture, different types of 5G anoma- 

lies emphasizing DDoS attack vectors, and highlighting the transformational potential of FL 

in safeguarding 5G networks has been conducted. Lastly, continual FL, a unique strategy for 

mitigating future threats has been discussed elaborately. 

 

2.1 Cyber threats in 5G and Beyond 

5G and beyond networks promise to transform the digital world by offering game-changing 

improvements including high data speeds, low latency, and huge interconnectedness. However, 

growing complexity and interconnectedness broaden the threat landscape and pose new security 

issues. 

 

2.1.1 Evolution of Cyber Threats 

Cyber risks have progressed from isolated attacks on computers to sophisticated, distributed, 

and ubiquitous threats affecting all aspects of the digital realm. The growth of connected 

devices in the 5G and beyond age, along with an increased dependence on machine learning and 

artificial intelligence, broadens the attack surface and makes networks more vulnerable to cyber 

assaults [8]. In what follows, we provide an overview of some existing cyber threats against 5G 

and beyond networks. 

 

2.1.2 Security Threats against 5G RAN 

Latency anomalies: One of the key performance indicators in 5G RAN network is latency. 

There can be considerable delay in delivering services or in any particular interface of 5G 

network. Latency in 5G network can be defined or categorized by two ways. First one 

is by measuring the time to deliver a service and the second one is time taken to send or 

receive one packet. This latency issue can occur due to several factors such as software 

faults, application overload or conflicts, scheduling problems, difficulties with network 

routing, overloaded servers, high memory usage or hardware failure. By collecting and 

analyzing performance metrics or system logs through ML algorithms, granular view and 

understanding of the complex network like 5G New Radio (NR) can be possible as well 

as detection of latency and root cause can be identified. In one research paper [9], authors 

collected the system logs from the base station containing all call records and information. 

Then the log stream has been filtered and split into streams of individual user equipment. 

Then those split data have been fed to ML algorithm to know deeply the reason behind 

subtle latency in the network. 

Jamming attacks: [10] Jammers placed on purpose by adversaries constitute a substan- 

tial danger in 5G networks. They disrupt wireless networks in a variety of ways. Regular 

jammers, which need a lot of power, continually block legitimate signals without moni- 

toring user behavior. Delusive jammers fool by sending legitimate bit sequences, making 

them more difficult to detect. Random jammers save energy by alternating between active 

and idle modes. Responsive jammers monitor the communication channel and transmit 

• 

• 
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only when necessary, using less power. Go-next jammers are selective, focusing on one 

frequency channel at a time, and if a jammer is detected, it will follow the transmitter to the 

next frequency. Control channel jammers interfere with information exchange between 

transmitters and receivers, potentially resulting in service denial or network access denial. 

 

2.1.3 DDoS attack in 5G 

The transition to 5G networks opens up previously unimagined possibilities for improving 

connection speeds, latency, and overall connection. This transformation, however, offers major 

issues in terms of network security. The Distributed Denial of Service (DDoS) assault, which 

is a significant danger in the 5G context, is one of the most common and disruptive types 

of cyberattack. DDoS assaults in 5G networks can have disastrous consequences, such as 

considerable downtime, loss of crucial data, and damaged services, all of which can result in 

major financial losses and reputational harm. Because of the highly scattered and dynamic 

nature of 5G networks, as well as the vast number of connected devices and increasing data 

rates, DDoS assaults have a larger attack surface.This makes detecting and mitigating such risks 

difficult. Added to that, because of developments in attack plans and methodologies, DDoS 

attacks on 5G networks may be more complicated and sophisticated than their predecessors. 

As a result, building DDoS defensive methods that are resilient, scalable, and economical is 

a critical necessity for safeguarding 5G networks. Various form of DDoS attacks in mobile 

network has been described below. 

Existing DDoS attacks can be classified into [11]: 

Volume based attacks: This sort of DDoS attack seeks to flood a network’s bandwidth 

with massive amounts of data. UDP (User Datagram Protocol) floods, ICMP (Internet 

Control Message Protocol) floods, and other spoofed-packet floods are examples. The 

primary purpose is to overwhelm the target site’s bandwidth, bringing its services to a 

standstill. These assaults are often quantified in bits per second (Bps). 

Protocol based attacks: These attacks take use of flaws in a server’s resources or in inter- 

mediary communication devices such as firewalls and load balancers. SYN (Synchronize) 

floods, fragmented packet assaults, the Ping of Death, Smurf DDoS, and other attacks are 

examples. The attack operates by consuming server resources until the server is unable to 

perform the targeted services. The frequency of these assaults is expressed in packets per 

second (Pps). 

Application layer attacks: These are some of the most devious forms of DDoS assaults 

since they use requests that appear to be genuine and benign.   The purpose is to crash 

the web server, which is frequently accomplished by exploiting vulnerabilities in popular 

systems such as Apache, Windows, or OpenBSD. Low-and-slow assaults and GET/POST 

floods, in which attackers overwhelm a server with HTTP requests, are examples of this 

kind. These assaults are often quantified in requests per second (Rps). 

Each form of DDoS assault poses a substantial risk to network security and necessitates 

various defenses. Understanding these threats and establishing powerful defensive measures 

against them will be crucial as we go into the 5G era and beyond. Given the sophistication of 

these assaults and the sheer volume of network data that must be monitored, traditional detection 

and mitigation approaches may no longer be enough. This is where Artificial Intelligence (AI) 

can come in handy. 

• 

• 

• 
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With their capacity to learn, adapt, and reply in real-time, AI-based solutions are particularly 

well-suited to solving the issues posed by DDoS assaults. AI can analyze trends, detect ab- 

normalities, and identify possible risks faster and more accurately than traditional approaches. 

Furthermore, AI can respond to threats independently, allowing for faster response times and 

decreasing the window in which assaults might do damage. 

Deploying these AI technologies at the network edge provides further benefits. Edge com- 

puting moves processing and data storage closer to the point of use, improving reaction times 

and reducing bandwidth use. In terms of DDoS mitigation, this implies being able to respond 

to an assault almost immediately and as near to the source as feasible. On top of that, a coor- 

dinated approach to DDoS detection can improve the efficacy of these tactics. Networks can 

work together more effectively to identify and shut down DDoS assaults by exchanging threat 

information and responses in real-time. A cooperative paradigm based on FL, in which ML 

models are taught across numerous decentralized edge devices, offering a global perspective of 

the threat landscape while protecting data privacy, might be used. 

 

2.1.4 Cyber Threat Prevention Leveraging Federated Learning and O-RAN 

As we have discussed in previous section that AI-based solutions, edge computing along with 

collaborative approach represent a promising future in our DDoS defenses in the 5G era and 

beyond. These novel approaches reflect the future of cybersecurity, in which proactive and 

intelligent systems collaborate to ensure the integrity and dependability of our networks. 

To combat the growing threat of cyber attacks in 5G and beyond, security paradigms must 

evolve. Integrating FL based detection mechanism with O-RAN is one interesting technique. 

[12] FL enables decentralized machine learning, inetwork edge (i.e., on the devices themselves), 

improving privacy and avoiding some of the hazards associated with data centralization. FL 

integration n which models are trained at the with O-RAN near real-time RAN Intelligent 

Controller (RIC) services may enable effective threat detection and response mechanisms. It 

might help identify and mitigate DDoS assaults, for example, by learning from network traffic 

patterns and making localized judgments at the network edge. 

Moreover, Open-RAN encourages interoperability and reduces vendor lock-in, potentially 

lowering the danger of supply chain assaults. It enables operators to select various suppliers 

for different RAN components, enhancing resistance against specific vulnerabilities. The com- 

bination of these technologies offers a viable path ahead in terms of securing 5G and beyond 

networks. However, it is a challenging endeavor that will need continual study and collaboration 

from academia, business, and government. 

 

2.2 Open RAN Architecture 

The 5G Open O-RAN represents a fundamental shift in the design of cellular networks. The 

RAN, which comprises base stations and associated digital signal processors, has traditionally 

been the component of a mobile telecommunications system that links individual devices to 

other sections of the network via radio connections. The hardware and software in these classic 

designs are tightly integrated and frequently come from the same manufacturer. 

Open RAN changes this by disconnecting the RAN’s hardware and software components. 

This makes the RAN ecosystem more adaptable, interoperable, and competitive. Networks 

may be designed with software and hardware from a variety of suppliers, enabling for more 

innovation, faster deployment, and potentially reduced prices. Furthermore, Open RAN is 
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Figure 2.1: O-RAN interfaces and components. 

[13] 

 
concerned with the disaggregation of the Baseband Unit (BBU) into discrete pieces that may 

be scaled independently. The BBU is made up of three major parts: the Central Unit (CU), the 

Distributed Unit (DU), and the Radio Unit (RU). 

RIC is a critical component of Open RAN in the context of 5G. The RIC is further subdi- 

vided into two essential components: non-real-time (Non-RT RIC) and near-real-time (Near-RT 

RIC).The Non-RT RIC focuses on non-time-sensitive policy, optimization, and lifecycle man- 

agement functions. It is in charge of higher-level network-wide optimization and hosts the 

service management platform as well as non-real-time apps.The Near-RT RIC, on the other 

hand, is concerned with time-sensitive operations, including features such as real-time radio 

resource management, admission control, and scheduling. It allows near-real-time applications 

and houses RAN functions that demand a faster reaction time. 

5G Open RAN is a vital part of the 5G network revolution because it provides advanced 

features such as network slicing, which allows various virtual networks to be established on the 

same infrastructure to serve different types of services or applications. 

 

2.2.1 O-RAN Interfaces 

In the O-RAN architecture, there are a number of open interfaces with various network respon- 

sibilities that enable more interoperability and increased functionality [13] [14]. Figure 2.1 

depicts the entire connectivity of different interfaces with corresponding building blocks of 5G 

O-RAN architecture. 



15 
 

 

O1 Interface: The framework for service management and orchestration can leverage 

network capabilities through this interface. It connects managed elements such as Open 

Central Unit Control Plane (O-CU-CP), Open Central Unit User Plane (O-CU-UP), O- 

RAN evolved Nobe B (O-eNB), O-RAN Distribution Unit (O-DU), O-RAN Radio Unit (O- 

RU) to Service Mangement and Orchestration (SMO) framework. This interface provides 

FCAPS services which are respectively fault, configuration, accounting, performance and 

security management. 

O2 Interface: It refers to the interface between O-cloud and SMO framework for providing 

workload management and resource allocation.   The functions this interface includes 

are learning about O-cloud infrastructure, administration, scale in/out, platform software 

management. Besides, through this interface, O-cloud resource management like creation, 

deletion, and assigning O-cloud infrastructure are also performed. 

R1 Interface: Through this interface, RAN applications (rApps) communicates to lever- 

age non-real time RIC functions. R1 interface is also used for ML models training as well 

as data analysis purposes. 

A1 Interface: It is the interface that establishes connection between Non-RT RIC func- 

tions in SMO framework and Near-RT RIC functions. A1 interface provides policies and 

ML model management as well as information enrichment services. 

E2 Interface: This interface connects near real time RIC to the nodes such as O-CU, O- 

DU and O eNB. The protocols here in this interface are basically control plane protocols. 

The functions this interface provide are near real time RIC services, control the policies 

in E2 nodes, E2 nodes configuration updates, E2 set up and reset and report general error 

situations. 

Open Front-haul M-Plane: The components of the O-RU are handled using the Open 

Front-haul M-Plane interface. It is used to initialize and configure operational settings 

or for performance reporting. The risk factor here is that, software up-gradation in the 

components occur through this interface. 

Open Front-haul CUS -Plane: This interface has three parts which are control, user and 

synchronization plane. This interface is responsible for time synchronization between O- 

DU and O-RU units. Apart from that, downlink and uplink IQ data along with scheduling 

and beam-forming commands are transmitted through this interface. 

 

2.2.2 Security Opportunities of O-RAN 

O-RAN architecture, a critical component of the 5G ecosystem, offers various options to improve 

network security. O-RAN can provide the flexibility required to handle the security concerns of 

5G and beyond by shifting away from a proprietary and monolithic model of network function 

provision and toward a more open and disaggregated approach. The O-RAN design not only 

transforms 5G infrastructure, but also includes new features such as the RIC, as well as rApps 

and xApps. Together, these components add to the network’s substantial security potential. 

RIC is a revolutionary RAN design feature that incorporates AI/ML capabilities into the 

RAN, enabling intelligent control and optimization of network resources. Software applications 

that operate on the RIC platform are known as rApps and xApps [15]. rApps are responsible for 

• 

• 

• 

• 

• 

• 

• 
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radio resource management and radio layer control. xApps on the other hand, provide higher- 

layer network management and control functions, giving a wide range of services ranging from 

traffic management to advanced security features. 

Security rApps and xApps have the ability to significantly improve network security. These 

systems may use machine learning and AI to analyze network traffic in real time, detect irregu- 

larities, and rapidly mitigate possible risks such as DDoS assaults. A security-oriented xApp, 

for example, may monitor data flow to discover patterns associated with known risks and then 

take quick automatic action to neutralize these threats, considerably decreasing possible harm. 

Furthermore, these applications can employ FL models for joint threat detection and mitigation 

across various network nodes while protecting individual user data privacy. It is conceivable to 

implement near real-time, AI-driven security services directly within the RAN by integrating 

these models within rApps and xApps. 

in a nutshell, rApps and xApps provide an incredible opportunity to strengthen the security 

protections in the O-RAN architecture. They might serve as the first line of defense against 

increasingly complex and persistent attacks to 5G networks, making them an essential component 

of future-proof and resilient network security policies. 

 

2.3 Federated Learning 

It is a ML approach that enables models to be trained on decentralized data, which is data that 

is dispersed over several devices or places as opposed to being centralized in one place. As per 

shown in Figure 2.2, training regional ML models on regional datasets is how federated learning 

operates. Then, these nearby data centers regularly swap the model’s parameters and create 

global parameters by applying various federated aggregation techniques. The local models are 

then update their parameters to global ones served by centralized data centers. FL is especially 

helpful when the data is confidential or it is not feasible or desired to send the data to a central 

site for training via the internet. 
 

 

 

Figure 2.2: Federated Learning Architecture. 

[16] 
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2.3.1 Benefits of Federated Learning 

The ability to train ML models on data that would otherwise be challenging or impossible 

to utilize for training is one of the key advantages of FL. Consider a healthcare firm that 

has patient medical record data dispersed across many hospitals and clinics, for instance. 

For the purpose of training a central ML model, this data may be sensitive and subject to 

privacy rules, making its transmission via the internet challenging or impossible. Without 

ever sending the data over the internet, federated learning makes it feasible to train a ML 

model on this decentralized data. 

The ability to train machine learning models on data that is continuously updated or 

changing is another advantage of federated learning. Consider a social networking site 

with information on user interactions and postings as an illustration. As new posts are 

created and exchanges take place, this information is continuously updated. Without 

having to continually transfer the data to a central site for training, federated learning 

makes it feasible to train a machine learning model on this dynamic data. 

In situations when the data is dispersed throughout several organizations or groups that 

might not wish to share their data with one another, federated learning might be help- 

ful. In these situations, FL enables ML models to be trained on distributed data without 

the requirement for data exchange. This implies that companies may utilize AI to im- 

prove choices without compromising data privacy and running the risk of compromising 

customer information. 

Using FL, ML models may be trained on data produced by mobile devices, such as 

behavioral patterns of users, location and sensor data. This may be very beneficial when 

creating tailored suggestions or anticipating user demands. The ability to train the model 

on a lot of data without having to send it over the internet or spend a lot of battery capacity 

is one advantage of utilizing federated learning in this situation. 

ML models may be trained upon data produced by industrial control systems, such as 

data from sensors or actuators, using federated learning. Using this, control parameter 

optimization or equipment failure prediction may be possible. The ability to train the 

model on data from several systems without sending the data over the internet or interfering 

with the systems’ normal functioning is one advantage of utilizing federated learning in 

this situation. 

ML models may be trained using data produced by financial institutions, such as transaction 

data or credit ratings, using federated setup. For the purpose of identifying fraud or 

estimating credit risk, this is beneficial. In this situation, one advantage of adopting FL 

is that it permits the model to be trained on data from many financial institutions without 

requiring them to exchange sensitive information. 

FL can be adapted and implemented on student-generated data, such as assessing perfor- 

mance information or learning preferences. This can help with individualized instruction 

or making adjustments for certain students’ requirements. Overall, by enabling the train- 

ing of models on sensitive and decentralized data, FL has the potential to significantly 

broaden the scope and application of ML. By enabling the training of models on continu- 

ously changing data without the requirement for constant data transfer, it can also increase 

the effectiveness of machine learning. 

• 

• 

• 

• 

• 

• 

• 



18 
 

 

2.3.2 Adopting Federated learning over traditional machine learning approach 

Data privacy and security: FL makes it possible to train a machine learning model 

without sending the data over the internet or storing it in a single location, which is 

enormously beneficial when the data is sensitive or subject to privacy laws. It may not be 

practical or desirable in certain situations to transport the data to a central site for training 

as is typical for traditional ML methodologies. 

Large data volume: Federated learning enables the training of models without the 

requirement for data to be sent over the internet or stored in a centralized place, making 

it suitable for training machine learning models on enormous quantities of decentralized 

data. This can be especially helpful when the amount of data is massive to transfer or 

keep in one place. 

Data updating: Federated learning can be effective for training machine learning models 

on data that is continually evolving or being updated since it eliminates the need to send 

training data continuously to a centralized place. When data is continually changing and 

frequent data transfers to a central location are needed for training, this might be especially 

helpful. 

 

2.4 Continual Federated Learning 

In the developing subject of ML known as continual FL, the problems of FL and constant learning 

are combined. The capacity of a model to learn from a stream of data, continuously adapt to new 

tasks, and retain information from past ones is known as continual learning, sometimes known 

as lifelong learning. It has been a ML aim for a while, and there has been substantial recent 

development [17] [18]. However, ’catastrophic forgetting’—the phenomena where the model 

forgets previous tasks while it learns new ones—remains a challenge for many ongoing learning 

techniques. FL, on the other hand, is a distributed method to ML that enables model training on 

a vast corpus of decentralized data. Without sharing data samples, the model is trained across a 

number of distributed edge devices or servers retaining local data samples [19]. The protection 

of privacy and decrease in communication costs are two key advantages. Combining these 

two ideas, continual federated learning aims to continuously develop a model on dispersed data 

streams. The FL paradigm is used to collaboratively enhance the global model while allowing 

models to learn from a series of challenges on each local device [20]. It is a particularly active 

study subject because it has the potential to be used in fields including health informatics, IoT, 

and mobile devices, where data privacy and learning continuity are crucial. 

As Continual Federated Learning emerges as a powerful paradigm for improving machine 

learning models, tactics like experience replay and buffer management become critical to its 

successful implementation. Experience Replay is a mechanism that saves the model’s experi- 

ences (data samples) in a replay buffer or memory. Instead than using only the most recent data 

during training, the model randomly picks a batch of earlier events from the buffer to learn. 

This approach enables the model to break correlations in the observation sequence, flattening 

the data distribution and making better use of experiences, hence assisting in the mitigation of 

catastrophic forgetting (CF). This method becomes much more essential in Continual FL, as 

models continuously learn from a sequence of tasks on each local device [21]. There are several 

buffer techniques that can be adopted to enhance continual learning output. 

• Naive Buffer: A naive buffer is the most basic type of replay buffer. It randomly gathers 

• 

• 

• 
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samples from the training data and then randomly picks from these samples during replay. 

The advantage of this strategy is its simplicity and effectiveness in breaking correlations 

in the observation sequence. It may, however, neglect essential but unusual events on 

occasion. 

Reservoir Sampling Buffer: This form of buffer, which is an example of reservoir 

sampling, keeps a fixed-size sample of its items regardless of the amount of elements it 

encounters. When the buffer is full, it uses a probability to determine whether to replace 

an existing element in the buffer with a new one. The reservoir buffer guarantees that each 

viewed sample has an identical probability of appearing in the buffer, regardless of when 

it was encountered. It is especially beneficial when the data size is unknown or unlimited. 

[7] 

Generative Replay Buffer: Instead of keeping prior samples in a replay buffer, a gen- 

erative model is employed in a generative replay buffer to generate them. The benefit of 

this strategy is that the buffer may produce as many” past” samples as needed, conserving 

memory space.[22] 

Hindsight Replay Buffer: The agent learns from a strategy it did not really adopt during 

its investigation in retrospect replay buffers, treating it as if it were the original plan. 

Because the agent may learn from its errors, it can lead to a more efficient learning 

process.[23] 

These buffer solutions provide greater effectiveness and efficiency for continuous learning, 

allowing for better handling of catastrophic forgetting as well as more efficient memory uti- 

lization. As continual learning progresses and more research is undertaken, increasingly more 

complex and effective buffer methods are expected to be employed. 

• 

• 

• 
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3 RELATED WORK AND LIMITATIONS 

 
In this chapter, I will discuss about established research work related to the field of detecting 

anomalies and intrusions in networked systems using machine learning and their limitations. 

Additionally, I will highlight the differentiators of this thesis work with the mentioned related 

research papers. 

In [24], authors proposed a Hierarchical FL architecture consisting of three layers which are 

clients, edge servers and global servers. Fully connected Artificial Neural Networks (ANNs) 

with 2 hidden layers populating 256 perceptrons in each layer has been used as local and global 

models. One of the significant findings of this research is the reduced training time advantage 

of FL in comparison to centralized model. The trade-offs between communication expense and 

training time based on frequency of contact with the servers were underlined by the authors in 

this paper. To conduct experiments researchers have used UNSW-NB15 dataset [25] to feed to 

their model, which is basically constructed out of synthetic environment along with major issues 

such as class imbalance and class overlap [26]. 

To fullfill the purpose of detecting IoT network intrusions, another proposition [27] has been 

made by the researchers by adopting both centralized and federated setup based on convolutional 

neural network (CNN) and recurrent neural network (RNN) models. To observe the outcome 

of the training and evaluation process of the federated setup, Edge-IIoTset [28], which consists 

of real-world traffic flows mixed up with various attack types such as DDoS, XSS, MITM, SQL 

Injection, and backdoor, has been split and distributed among a range of 3 to 15 participating 

clients in this work. 

Another research work [29] related to application layer DDoS Protection has proposed a 

framework with four building blocks of Network Flow Collector, Features Extractor, Detector, 

and Security Policy Manager. Here Multi-Layer Perceptron (MLP) model has been used as 

the detector which has been fed app layer traffic collected and extracted by network flow 

collector and feature extractor, respectively. The authors have used intrusion detection dataset 

CICIDS- 2017 [30] to train the model. Being the traditional single node centralized anomaly 

detection system is the limitation of the proposed architecture which does not cover unknown 

attacks and sufficient attack surfaces of the network as well. Moreover, Neural Networks 

(NNs) have a tendency to forget previously learned information due to a condition known as 

CF which can be another drawback that can happen over time with the proposed model in this 

paper. 

In [6], authors have investigated the performance of various ML approaches such as Decision 

Tree [31], Random Forest [32], K-Nearest Neighbor [33], Naive Bayes [34] and MLP [35] in 

terms of anomaly detection in 5G. To conduct training, authors have constructed 5G NIDD 

dataset [36] populating real world network traffic collected from 5GTN implemented at Univer- 

sity of Oulu, Finland. Researchers have covered all types of DDoS attacks by generating attack 

flows using various attack tools like Hping3, goldeneye, slowloris, torshammer and NMAP 

along with legitimate traffic flows to construct the dataset. However, in this paper, instead of 

leveraging federated learning process, traditional single node machine learning approach has 

been taken into account. 

To address the challenge of continuously evolving cyber-attacks, authors of the paper [37] 

proposed Anomaly-based Network Intrusion Detection Systems (A-NIDS) by applying continual 

learning to eradicate catastrophic forgetting. Researchers have chosen CICIDS 2017, CICIDS 

2018 and KDD Cup’99 datasets to investigate the performance of the proposed system. To cope 

up with class imbalance problem of the datasets, class incremental and domain incremental 

learning settings have been adopted with the framework. Researchers have chosen simple MLP 

and CNN [38] for detection purpose. Furthermore, two continual learning algorithms, which 

are Elastic Weight Consolidation (EWC) and Gradiaent Episodic Memory (GEM), have been 

implemented to reduce CF. 
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The authors of the survey paper [39] presented a thorough investigation of FL in the context 

of intrusion detection systems. By training models locally on devices and communicating just 

the model parameters to a central server, FL, as a decentralized learning approach, protects 

security and improves privacy. The authors investigated numerous technologies and methods 

that use ML, DL, and FL for intrusion detection, highlighting their advantages and synergies. 

Additionally, they emphasized current difficulties in the use of FL in intrusion detection and 

suggest potential future study routes, successfully laying the groundwork for greater research 

in this field. This thorough study offers a useful insight of FL’s function and possibilities for 

enhancing intrusion detection systems. With a motivation to leverage immense capabilities of 

FL described in this research paper[39], I have employed FL as a part of my solution to tackle 

DDoS attack and protect decentralized 5G network in this dissertation, 

Another research work regarding anomaly detection in RAN environment is presented in 

[40], where researchers investigated the increasing complexity of mobile radio access networks 

as well as the rising of customer service quality demands. They emphasized the necessity 

for automated network management and maintenance solutions to meet high service level 

expectations, evaluating existing solutions such as Self-Organizing Networks (SON), Mobility 

Load Balancing (MLB), and automatic antenna tilting, which frequently overlook service KPIs, 

which directly influence user experience. They discovered a gap in anomaly detection accuracy 

as well as a lack of telecommunication data-specific functions in existing R libraries, noting that 

most current algorithms, designed for specialized datasets such as fraud detection or earthquake 

signals, fail when applied to telecommunication network performance data. To address this, 

they examined and tweaked R’s” changepoint” package[41], which can identify not just local 

abnormalities but also anomalous time series—an important aspect of radio access network 

(RAN) performance monitoring. They improved the method to reduce false positive anomalies 

and compared its performance to that of other prominent R libraries, confirming its higher 

accuracy for radio network performance data. Their research proposes a scalable, general 

anomaly detection system for high-dimensionality data that avoids the need for further tuning for 

different KPI groups or technologies, hence aiding automated network performance monitoring 

significantly. 

The authors in [42] addressed two key issues in the realm of Deep Learning-based IDS in 

this study: CF and covariate shift. To identify and quantify these alterations in data distribution, 

the authors presented an eight-stage statistics and machine learning guided implementation 

approach. They also presented a unique feature importance-based approach for assessing the 

influence of individual feature drift on IDS performance. The NSL KDD[43] and CICIDS 

2017[44] datasets were analyzed using this methodology. The study found that continuous 

learning-based approaches outperformed classic statistical techniques and cutting-edge boosting 

and DNN models in terms of accuracy and false-positive rates. 

Here[45], the authors offer a unique solution to network slicing in 5G networks, which they 

describe as a Virtual Network Embedding (VNE) problem in their research study. Their purpose 

is to map slice requests onto the core network as efficiently as possible. They found two important 

hurdles in this area: guaranteeing slice isolation for protection against DDoS attacks and 

obtaining high request coverage. To overcome these issues, the authors provide Slice Isolation- 

based RL (SIRL), an actor-critic Reinforcement Learning (RL) paradigm. This methodology 

creates the issue environment using five ideal graph characteristics, which are subsequently 

controlled using a ranking mechanism. This ranking system simplifies the characteristics while 

also improving learning performance. 

In this paper[46], researchers presented an autonomic and cognitive security management 

architecture developed for 5G and beyond networks in this study. This unique architecture 

enables fine-grained zero-touch security control at several levels, including network functions, 
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sub-slices, and slices, as well as across multiple administrative and technological domains. They 

proved the framework’s interoperability with current standards including zero-touch network 

and service management (ZSM), 3rd Generation Partnership Project (3GPP), and Network 

Functions Virtualization (NFV). This was done to demonstrate that their technique is compliant 

with current standards and so acceptable for real-world use. Authors created a testbed to enable 

distributed and totally autonomous detection of abnormalities inside a network slice and to 

serve as a Proof-of-Concept (PoC) for monitoring and analytics functionalities. An anomaly 

detection model was incorporated into the analytics service utilizing multivariate time series and 

the unsupervised deep learning method LSTM (long short-term memory) AutoEncoder. They 

used a dataset of 2361 samples to train the LSTM-based AutoEncoder model to reconstruct 

time-series for typical behavior, with 20% of these samples being saved for validation. They 

carried out tests where abnormalities were effectively identified, such as application-layer DDoS 

assaults on the video streamer CNF. 

In response to the problem of CF in FL, in which the global model forgets past learned 

knowledge while adjusting to new tasks, the researchers [47] developed Continual Federated 

Learning with Distillation (CFeD). The team set up a testing environment with 100 clients, 10 

percent of whom were chosen at random to participate in each training cycle. For text and picture 

classification tasks, they employed datasets such as THUCNews, SogouCS, Sina2019, NLPIR 

Weibo Corpus, CIFAR10, CIFAR-100, and Caltech-256. They created task sequences for two 

different scenarios: Domain-IL and Class-IL. Domain-IL represented circumstances in which 

input distributions changed continuously during the series, whereas Class-IL indicated instances 

in which new classes arose progressively across the run. They employed Finetuning, FedAvg, 

MultiHead, EWC, LwF, DMC, and their own developed approach, CFeD, for comparative 

evaluation. The study includes successively training models on various tasks and assessing the 

performance of their methods against these proven methodologies. 

The below mentioned table (Table 3.1) depicts comparative overview of this thesis work with 

related research works described in this chapter. 
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Table 3.1: Comparison with related research work. 
Reference Year Techniques used Contribution 

 

 
[23] 

 

 
2022 

 

 

Conventional FL setup 

The research work presented traditional Federated Learning architecture, 

demonstrating its reduced training time advantage compared to centralized models. 

The work also provides insight into the trade-offs between communication costs and 

training time in a FL context, based on the frequency of contact with servers 

 
 

[26] 

 
 

2023 

 
 

Single node ML models and conventional FL setup 

The research approached detecting IoT network intrusions, using both centralized and 

federated setups with convolutional neural network (CNN) and recurrent neural 

network (RNN) models, and demonstrating their effectiveness with real-world traffic 

data containing various attack types. 

 
[28] 

 
2020 

 
Single node ML models 

This research proposed a four-block framework for application layer DDoS Protection 

using a Multi Layer Perceptron (MLP) model as single node model, demonstrating its 
effectiveness through the use of the CICIDS-2017 dataset. 

 

 

[6] 

 

 

2022 

 

 

Single node ML models 

The authors in this study evaluated the effectiveness of various machine learning 

models, including Decision Trees, Random Forest, K-Nearest Neighbor, Naive Bayes, 

and MLP, for anomaly detection in 5G, utilizing a custom-built 5G NIDD dataset 

composed of real-world network traffic and a comprehensive range of DDoS attack 

types. 

 

 
[36] 

 

 
2022 

 

 

Single node ANN with EWC and GEM 

The authors proposed an Anomaly-based Network Intrusion Detection System (A- 

NIDS) that employs continual learning to mitigate catastrophic forgetting, effectively 

addressing evolving cyber threats, utilizing a combination of different datasets and 

continual learning algorithms like Elastic Weight Consolidation (EWC) and Gradient 

Episodic Memory (GEM) 

 

 
[38] 

 

 
2022 

 

 

Conventional FL setup 

The authors conducted a comprehensive exploration of Federated Learning (FL) in 

intrusion detection systems, highlighting its privacy and security benefits, 

investigating related technologies and methodologies, addressing existing challenges, 

and paving the way for future research avenues, thus providing valuable insight into 

the potentials of FL in enhancing intrusion detection. 

 

 
[39] 

 

 
2018 

 

 

changepoint (R library) 

The researchers addressed the complexity of mobile radio access networks and 

customer service expectations by adapting the "changepoint" package in R to develop 

a scalable, generic anomaly detection algorithm for high-dimensionality data, proving 

its superior accuracy in handling telecom network performance data and aiding 

automated network performance monitoring. 

 
[41] 

 
2022 

Single node DNN models with LwF, experience 

replay, and 
dark experience replay 

The researchers addressed the challenges of CF and covariate shift in deep learning- 

based IDS, employing eight-stage framework and continual learning models in large- 
scale systems security. 

 
 

[45] 

 
 

2023 

 
 

Reinforcement Learning (RL) 

Slice requests are efficiently mapped into the core network using the author's 

suggested Slice Isolation-based Reinforcement Learning (SIRL) model, which makes 

use of five ideal graph characteristics and a ranking mechanism to provide high 

request coverage and slice isolation for DDoS prevention. 

 
[46] 

 
2022 

 
LSTM (long short-term memory) AutoEncoder 

In order to provide fine-grained zero-touch security control across many levels and 

domains, the researchers designed an autonomic and cognitive security management 
architecture for 5G and beyond networks. 

[44] 2022 Continual FL with Distillation technique 
Continual Federated Learning with Distillation (CFeD) approach has been made by the 

researchers to prevent catastrophic forgetting in Federated Learning 

  
 

2023 

 
Continual FL with reservior sampling buffer 

technique 

To detect DDoS attacks in 5G, continual FL based setup has been proposed with 

reservoir sampling buffer to maintain effeciency in performance over time by 

preserving old knowledge during continuous learning of new traffic pattern while 

detecting attacks targeting various nodes in distributed network. 
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4 CONTINUAL FEDERATED LEARNING FRAMEWORK 

 
In this section, I will describe the complete continual FL framework and work process that I am 

proposing towards making a sustainable network attack detection system. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Legitimate Users 
 

Internet 

Figure 4.1: Integration of the Proposed Model in O-RAN. 

 

Integration and placement of proposed DDoS detection framework in O-RAN architecture 

has been shown in Figure 4.1. The local detector for each basestation is deployed in Near-RT RIC 

as xAPPs to protect corresponding basestation from incoming anomalous traffics. Federated 

aggregation process is placed in Non-RT RIC of the segment of SMO, where global parameters 

for all basestations is generated along with updating local models accordingly. As shown in 

Figure 4.1, incoming traffic to each basestation is captured from the F1 interface between O-DU 

and O-CU-UP and redirect towards local detector(xApp) after conducting data preprocessing. 

Then after finishing necessary training process in clients, local weights are sent for federated 

aggregation in SMO section through A1 interface. The entire dataprocessing steps with the 

detailed description of used dataset, model framework and deployment procedure has been 

described in below sections. 

 

4.1 Description of Dataset 

The 5G-NIDD dataset is unique since it produces benign traffic using live traffic from actual 

mobile devices in the network in contrast to other datasets that often use simulated traffic. The 

use of many protocols, including HTTP, HTTPS, SSH, and SFTP, provides more realistic traffic 

behavior and adds to the depth and variety of the dataset.[6] 
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4.1.1 Attack types and tools 

A prominent class of cyber risks is known as DoS attacks, the primary objective of which is 

to prevent authorized users from accessing a system or network resource [48]. This can be 

done by temporarily or permanently interrupting the functions of a host that is connected to the 

Internet, frequently by flooding it with an overwhelming amount of Internet traffic [49]. In a 

DoS attack, the attacker specifically seeks to impede authorized users from using the targeted 

service [50]. The use of network ”flooding”, which blocks lawful network traffic, or machine 

interference, which limits access to a certain service, are common techniques [50]. There are 

two classes of DoS attacks. The first category consists of assaults intended to bring down a 

server. The second, often referred to as flood assaults, happen when the server is overloaded 

with too much traffic to buffer, which slows down the system until it ultimately stops working 

[49]. Researchers [6] examined three common forms of DoS/DDoS attacks: application layer, 

protocol-based, and volume-based assaults. Using tools like Hping3, volume-based assaults 

utilized methods like ICMP Flood and UDP Flood to deliver an excessive amount of data and 

overload network resources. The SYN Flood, SYN Scan, and TCP Connect Scan attacks, which 

manipulate the TCP three-way handshake protocol to drain network resources or use Nmap to 

search for open ports, are examples of protocol-based attacks that took use of weaknesses in 

the current protocol. Application layer assaults, like the HTTP Flood, target application layer 

services by impersonating normal human activity in order to avoid detection and are carried out 

utilizing tools like the Goldeneye. The Slowrate DoS was also investigated for its distinctive, 

slowly moving assaults, which are often more challenging to spot. Furthermore, they used Nmap 

to carry out a UDP Scan to assess port statuses. All of these methods reflect several DoS/DDoS 

attack subcategories that are included in the dataset. 

ICMP Flood: To overrun the target network in this investigation, ICMP echo requests 

were sent at high frequency. This assault, which made use of the Hping3 program, 

rendered the service unavailable to normal users. 

UDP Flood: The researcher used the Hping3 program to send a large number of UDP 

packets in an attempt to simulate a UDP flood assault. As a result, the system stopped 

responding since there were so many ”Destination Unreachable” answers. 

SYN Flood: The researchers launched a SYN flood assault by taking advantage of the 

TCP three-way handshake protocol. This resulted in a large number of partially open 

connections, eventually draining the receiver and blocking access to authorized users. 

HTTP Flood: An HTTP flood attack, which is good at imitating human behavior and 

evading detection, was also used in the research to target the application layer. This web 

server assault was conducted using the Python-based Goldeneye tool. 

Slowrate DoS: The researchers also looked at slow rate DoS assaults, which are more 

difficult to identify since they move at a slower pace and send out fewer packets. They 

used several Python scripts and tools to carry out slow POST requests and slowloris DoS 

attacks. 

SYN Scan: The researchers used a partial three-way handshake during the setup of a TCP 

connection to find available ports using the SYN scan technique. The Nmap open-source 

program was used to carry out this quick and well-liked scanning methodology. 

• 

• 

• 

• 

• 

• 



26 
 

 

TCP Connect Scan: Unlike SYN scan, the TCP connect scan successfully completed the 

three-way handshake, which made it slower but necessitated less privileges. The Nmap 

program was also used to do this scan. 

UDP Scan: As a last step, the researchers sent UDP datagrams to certain ports to perform 

a UDP scan. The target’s response, or lack thereof, was used to establish a port’s state. 

The Nmap tool was also used to carry out this scan. 

 

4.2 Data Preprocessing 

Handling Missing values: I have removed all missing values and infinite values from the 

datasets, as they contain substantial number of missing and infinite values. 

Feature and Target Seperation: Here I have seperated features from recorded network 

flows in the datasets and their labels in the form of independent and dependent variables. 

Label Encoding: Moving forward with binary classification approach, I have categorized 

the input traffic into legitimate and malicious traffic. I have taken all DDoS classes as part 

of the attack category along with regular flow as benign traffic. Therefore, I have encoded 

the legitimate and attack traffic patterns to binary values of 0 and 1 correspondingly. 

One-Hot Encoding: The process to convert categorical features into a format that can 

be feed to machine learning model is named as one-hot encoding. In my experiments, I 

have conducted one-hot encoding transformation for certain categorical features, where 

I have created separate binary feature for each and every unique category contained by 

a particular categorical feature. These newly created dummy features basically represent 

the presence with a binary 1 or the absence with a binary 0 of a specific feature in the 

datasets. 

Feature Scaling Since many machine learning algorithms struggle when the input nu- 

merical properties have variable scales, standardization of the features is crucial. In this 

research, I have performed standardization of the feature set prior to feeding data into 

model using standard scaler technique which standardizes the features by removing the 

mean and scaling to unit variance [51]. 

Sampling Buffer I have kept the size of the buffer reservoir as 5000. This means that to 

maintain a broad and representative sample of experiences for the training process, the 

buffer will keep track of a subset of 5000 data samples from the incoming data stream. 

The reservoir sampling technique decides whether to keep or reject a new experience 

based on a given probability when fresh experiences come in and the buffer fills up [7]. 

In order to ensure that the model can learn from a representative collection of events 

without stressing the memory resources, the reservoir sampling approach is implemented 

in this way, which is a crucial step in memory management for tasks involving continuous 

learning. 

 

4.3 Proposed model 

I have used MLP approach for training and detection of network anomalies in our research. 

The detection model which is a feedforward neural network is constructed with one input layer 

• 

• 

• 

• 

• 

• 

• 

• 
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of 82 input features coming from 5G NIDD dataset [6], three hidden layers with 64 neurons 

each and one output layer containing only one node for binary classification detection. I have 

used ReLU activation function in hidden layers and sigmoid in the final layer of our model. To 

go with the nature of detection scenario, I have used binary crossentropy (BCE) as criterion 

to minimize the loss during training process. Moreover, as optimizer of the model, adaptive 

learning rate optimization algorithm, Adam has been utilized. Carrying out investigation with 

various values, learning rate has been kept as 0.01 for optimum detection accuracy. From feature 

selection perspective, I have deleted the features such as source and destination IP addresses 

as well as ports to keep the anomaly detection system as generic as possible. I also eliminated 

features with null values and consistent values across all flows since they have no influence on 

model correctness. After removing unnecessary features, I have considered most other features 

critical and kept them as input of the model by considering the fact that, network traffics are 

continuously changing over time with the evolution of zero day attacks. 

 

4.4 Experimental Setup 

To conduct experiments, I have used three virtual machines (VMs) as shown in Figure 4.2, two 

of which served as clients and one of which served as the central server for federated averaging 

of the weights coming from clients after determined rounds of training. Each VM had the 

configuration of two CPU cores, 5 GB of RAM, and the Ubuntu 22.04.2 LTS (Jammy Jellyfish) 

operating system installed. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Client 1 Client 2 

Figure 4.2: Experimental Setup. 

 

Each of the remote clients sends the weights of the model using HTTP post request after the 

training phase with local data and checks HTTP response to ensure successful transaction of 

weights. The central server performs standard federated averaging (FedAVg)[19] after ensuring 
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arrival of weights from all the remote clients and serves the updated weights to each of the client 

using HTTP GET method. Besides enabling scalability in terms of handling large number of 

clients, FedAvg can reduce communication cost and handles Non-IID data effectively which has 

motivated in applying this technique as aggregation process in this thesis work. 

 

4.5 Training Strategy and Federated Aggregation Process 

4.5.1 Local Training Process 

After preprocessing and preparing all datasets to fit for the proposed model, I have trained the 

model by considering two different scenarios. The first scenario goes with conventional FL 

skipping CL integration where I have fed all the datasets categorized by different attack types 

one by one to the local models in two clients and train the models with the batch size 128 along 

with learning rate 0.01. During the training process of one batch, output of one layer has been 

fed forward to other layer and at the end of the training, average loss has been calculated and 

fed backward to the model for optimization. Training has been conducted in 10 epochs for each 

dataset. When the training is finished, corresponding client sends the weights of the model 

to aggregation server for federated averaging [19] to be conducted. After federated averaging 

process, the clients get the updated weights coming from aggregation server and updates their 

models accordingly. By following 3 rounds of the same process of federated averaging with one 

training dataset, evaluation process for all the test datasets takes place to see how the effectively 

the local models are identifying attacks of other client. Here to test the efficiency of the local 

models, I have chosen training datasets of one client as the test dataset for other client which has 

not been encountered by the local model before. Evaluation for all training dataset have also 

been performed to see how CF is happening in the model, as the model proceeds further with 

the training of new datasets everytime. 

At the second scenario, I have chosen Reservoir Sampling Buffer [7] to preserve a portion of 

previously learned samples. The algorithm of entire local training and evaluation process has 

been mentioned in Figure 4.3. As per the algorithm in Figure 4.3, I have employed techniques to 

eradicate over-fitting problem, where the the model checks for maximum 3 epochs of accuracy 

and compares with highest accuracy point got so far. If the accuracy doesn’t improve in 3 

epochs it stops the training process and moves forward with the highest accuracy achieved. 

After completing training with one dataset, buffer is filled with representative samples from 

that dataset and when new dataset comes into place for training, the buffer is concatenated and 

shuffled with the current dataset before feeding to the model. By following the above processes 

of training and federated aggregation, evaluation for all train and test datasets happen the same 

way as first scenario and metrics results between two scenarios have been compared with each 

other to observe how the local models are detecting anomalies along with eradicating CF in 

parallel. 
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Figure 4.3: Algorithm of Training and Evaluation in Client 

 

4.5.2 Federated Averaging Process 

After performing local training process, all clients send their weights and corresponding data 

size which is used by the central server to perform standard federated averaging (FedAvg) [19] 

by following below formula: 
 

 
𝑤avg = 

𝐾 
𝑘
.
=

1 

𝑛𝑘 · 𝑤𝑘 
 

 

 
(4.1) 

 

Here, 𝑤avg denotes the averaged weights, 𝐾 is the total number of clients, 𝑛𝑘 is the number 

of samples at client 𝑘, and 𝑤𝑘 are the weights received from client 𝑘. After conducting 
federated averaging, updated weights are then distributed to all clients before starting next 
training and evaluation process locally. The pseudo code of entire aggregation process of the 
central server has been shown in Figure 4.4 

𝑛
𝑘 

. 
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Figure 4.4: Algorithm of Federated Aggregation Process 
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5 EVALUATION 

 
In this chapter, the entire evaluation process of the local models in all remote clients will be 

described elaborately. We know that, with the distributed nature of 5G O-RAN, possibility and 

susceptibility to cyber attacks have gone up high. Moreover, day by day network traffic patterns 

along with the way of performing cyber attacks are changing along with increasing attack 

surface. That is why although federated setup can efficiently reduce cyber attack from various 

vulnerable nodes, the consistency in detecting anomalies decrease with time due to forgetful 

nature of the local models. As the models in various network end points continue to learn new 

traffic patterns, they tend to forget the knowledge preserved from old samples which is called 

CF. To observe the performance of the proposed model in detecting cyber threats specifically 

DDoS attacks, I made two strategies, one of which are conventional FL where the performance 

metrics along with the sign of CF has been observed and another one comes with knowledge 

preserving nature which is the strategy of FL integrated with CL. 

 

5.1 Conventional Federated Learning Strategy 

To evaluate the designed model, at the first place, I have started by making a strategy which will 

perform and improve the detection efficiency of the local models by standard federated learning 

concept. one loop of the training process include 10 epochs of training and immediately after 

the training process, each of the two remote clients sends their local model’s weights to central 

server for the calculation of standard federated averaging process. Upon completion of federated 

averaging, central server updates all local models with updated weights. The above mentioned 

process has been considered as one round of training. By careful observation of evaluation 

metrics results, I had to conduct 3 rounds of training process with each training dataset to get 

satisfactory performance from the local models. 

After completing training with each dataset, I have swapped current training dataset of one 

client to other client which has been considered as test dataset for that client so that each client 

can be tested with flows that their corresponding local model has not experienced during training. 

Moreover, to investigate the existence of CF, I have tested local models with all datasets right 

after conducting training process with each separate attack dataset. 
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(d) F1 score of test dataset in client 1. 

Figure 5.1: Performance evaluation metrics of the test dataset in client 1. 
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(d) F1 score of test dataset in client 2. 

Figure 5.2: Performance evaluation metrics of the test dataset in client 2. 

 

I have drawn dedicated line graphs for accuracy, precision, recall and F1 score of both test 

data and train data separately for each client. From the line graphs of accuracy, precision, recall 

and F1 score for both clients, a significant fluctuation can be seen in results, which means that, as 

the recorded network flows are different in different dataset, moving forward with each dataset, 
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associated local models in clients tend to forget what it has learned from the previous dataset. 

That is why when any local model of any client encounters old samples, it is not being able to 

detect accurately. It is a clear sign of forgetful nature of the ML models. 
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(c) Recall of train dataset in client 1. 
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(d) F1 score of train dataset in client 1.

Figure 5.3: Performance evaluation metrics of the train dataset in client 1. 
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Figure 5.4: Performance evaluation metrics of the train dataset in client 2. 

 

Evaluation metrics table 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6 mentioned at the end of this chapter 

for both clients offer more clear perception about how CF is occurring in traditional FL setup. 

For example, after training with first dataset named Goldeneye 1 and Goldeneye 2, respectively, 

in client 1 and client 2, I tested both clients against both datasets. The evaluation accuracy 
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for client 1 came out as 99.67% and 99.88% for train and test data, respectively. On the other 

hand,in client 2, an accuracy of 99.85% and 99.54% sequentially for train and test data has been 

achieved. However, when the second training dataset (i.e., ICMPFlood 1 and ICMPFlood 2) is 

fed to the local models, weights start to change by the knowledge gathered around the current 

dataset. That is why accuracy drops drastically for previous train and test data to 59.04% and 

57.94% in client 1 along with 30.93% and 18,86% percent in client 2. Same problem has been 

experienced in the values of precision, recall and F1 score also. After finishing entire training 

process with 10 datasets in each client, all the metrics output stays quite low and inconsiderable, 

except for the last dataset. 

 

5.2 Continual Federated Learning Strategy 

To reduce the effects of CF in local models, I have made another strategy, where I have included 

reservoir sampling buffer from the avalanche library.[7] The difference between one training 

cycle with previously mentioned conventional strategy is that, after training with first dataset, 

buffer preserves 5000 representative samples from that dataset. Then, before feeding second 

dataset to client for training, the samples in buffer is concatenated and shuffled with current 

dataset so that a replay of previous experience can occur during training period. By following 

this way, the weights are reforming in all layers of the model in such a way that the model doesn’t 

forget what it learned in previous training round. 

Substantial understanding can be achieved by meticulous observation of line graphs of con- 

tinual FL strategy. According to the line graphs in Figure 5.7 and 5.8, the metrics values for 

each dataset stays low and fluctuating until the dataset comes into training phase, but when a 

particular dataset is fed to the model, the detection efficiency of that dataset goes approximately 

above 95% and from that phase, it continues to maintain high evaluation values even after the 

local models being trained on other datasets. Besides satisfactory evaluation results in train 

data, the models in both clients perform efficiently in detecting test data which are unknown to 

corresponding local models as depicted in Figure 5.5 and 5.6. Eventually, when the local models 

are trained with all types of DDoS attack datasets, due to the beneficiary effect of experience 

replay strategy, the weights in the models of both clients are set in such a way to make the local 

models competent enough to detect any type of DDoS attack along with genuine traffic with 

significantly high metrics values. 
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(d) F1 score of test dataset in client 1. 

Figure 5.5: Performance evaluation metrics of the test dataset in client 1 (With Buffer). 
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(d) F1 score of test dataset in client 2. 

Figure 5.6: Performance evaluation metrics of the test dataset in client 2 (With Buffer). 
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(c) Recall of train dataset in client 1. 
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(d) F1 score of train dataset in client 1. 

Figure 5.7: Performance evaluation metrics of the train dataset in client 1 (With Buffer). 
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Figure 5.8: Performance evaluation metrics of the train dataset in client 2 (With Buffer). 
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after having data samples in buffer, the accuracy in evaluation stage does not go significantly 
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points with the help of buffer itself. For instance, accuracy of Goldeneye 1, ICMPFlood 1, SSH1 

in client 1 can be observed which are maintaining the mark of 99% with a negligible decimal 

value. Same goes for other datasets also. At the end of entire training process, both clients 

are detecting almost all test datasets with above 98% accuracy. However, there is an overhead 

cost in terms of training time and memory buffer size that comes with this solution. The buffer 

with 5000 samples posses 273.4375 MB in memory, If the buffer size is increased to 10000 

and 20000 samples, it will take 546.875 and 1093.75 MB respectively. Moreover, from Table 

5.4 and 5.6, it can be clearly seen that for comparatively large datasets, the solution with the 

buffer takes extra 5 to 7 seconds and for smaller datasets the system takes 2 to 3 seconds extra to 

process training phase and smaller datasets 2 to 3 seconds. Also for client 2, it takes even longer 

time than client 1. By giving dedicated hardware with increased resource configuration and 

schedule cleaning of the operating system resources, training time can be significantly reduced. 



Table 5.1: Accuracy and Precision Tables for Client 1. 
 

 

ACCURACY TABLE OF CLIENT 1 

 Training Dataset 

Goldeneye1 ICMPFlood1 SSH1 SYNFlood1 SYNScan1 Slowloris1 TCPConnect1 Torshammer1 UDPFlood1 UDPScan1 

without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer 

E
va

lu
a

tio
n

 D
a

ta
se

t 

T
ra

in
 D

a
ta

se
t 

Goldeneye1 99.67 99.92 59.04 99.74 18.85 99.86 64 99.77 74.79 99.7 87.79 99.71 74.59 99.71 98.51 99.72 67.99 99.63 50.9 99.6 

ICMPFlood1 87.2 89.76 100 100 96.65 100 91.11 99.91 52.67 99.91 97.68 99.95 25.6 99.97 82.8 99.94 91.64 99.98 40.44 99.97 

SSH1 75.12 77.36 89.3 94.34 100 100 90.86 96.89 54.85 99.5 87.19 99.32 53.67 100 73.63 99.44 76.93 100 66.54 100 

SYNFlood1 95.61 96.53 89.18 95.82 89.26 90.1 99.97 96.97 61.42 99.87 98.87 99.96 39.23 99.97 94.59 99.96 90.27 99.88 33.03 99.97 

SYNScan1 25.84 53.68 17.24 12.5 12.5 12.5 27.62 22.48 99.91 99.95 68.68 99.9 99.87 99.92 99.45 99.87 81.21 99.77 99.57 99.79 

Slowloris1 97.94 98.39 81.88 93.92 79.99 94.76 89.53 99.11 84.47 94.53 99.31 99.92 81.96 96.24 95.73 94.85 98.92 99.09 85.53 99.36 

TCPConnect1 30.99 64.97 18.8 13.91 13.94 13.89 25.83 53.56 95.56 93.88 74.67 93.85 99.36 99.93 99.65 99.95 82.03 99.49 95.89 99.3 

Torshammer1 99.7 97.37 51.86 98.37 21.6 99.36 54.25 99.28 65.04 98.68 88.63 99.45 84.23 99.18 99.97 99.97 68.12 99.84 68.92 99.84 

UDPFlood1 84.52 81.55 62 76.76 62 55.32 70.42 63.07 57.27 78.17 95.94 80.86 49.09 58.12 49.72 55.91 99.53 97.55 82.98 99.81 

UDPScan1 13.03 27.13 21.51 21.48 21.47 21.46 19.67 19.67 91.12 21.52 50.74 21.57 95.38 21.46 97.42 49.06 79.98 53.95 99.75 99.9 
                      

T
e

st D
a

ta
se

t 

Goldeneye2 99.88 99.93 57.94 99.66 30.92 99.8 69.31 99.79 75.74 99.77 85.43 99.77 76.67 99.71 98.72 99.71 68.68 99.71 51.47 99.67 

ICMPFlood2 89.86 92.41 99.91 99.99 96.25 99.97 98.79 99.54 48.64 99.63 82.33 99.76 28.34 96.14 73.62 99.32 75.7 96.61 27.48 99.91 

SSH2 78.13 82.4 89.91 93.45 100 100 92.49 96.1 55.67 98.82 88.81 99.19 54.71 99.56 73.86 98.9 81.3 99.48 65.76 99.63 

SYNFlood2 97.94 98.11 83.94 99.98 65.06 97.29 99.96 99.98 99.83 99.97 99.66 99.98 99.87 99.96 95.45 99.96 76.15 99.99 68.94 99.98 

SYNScan2 23.06 51.64 15.17 13.01 13.03 12.97 26.31 22.48 99.91 99.95 68.75 99.9 99.84 99.9 99.18 99.84 79.33 99.75 99.52 99.78 

Slowloris2 98.94 99.32 66.52 99.76 44.32 99.79 86.13 99.76 87.4 99.74 99.42 99.89 96.06 99.83 97.72 99.89 85.59 99.56 74.5 99.58 

TCPConnect2 28.46 60.7 17.19 13.93 13.93 13.85 24.69 44.73 97.86 92.5 74.79 92.49 99.35 99.47 99.55 99.54 82.79 99.07 97.79 99.08 

Torsahmmer2 54.82 67.8 9.23 38.96 5.32 55.41 16.69 51.2 66.05 76.01 56.12 73.28 73.96 75.82 99.67 99.63 52.15 89.46 59.73 98.31 

UDPFlood2 52.06 52.96 61.8 61.89 62 61.61 61.29 56.53 75.87 50.2 58.64 61.85 70.93 54.62 82.14 63.03 88.52 84.58 99.98 99.86 

UDPScan2 18.34 21.08 22.15 22.07 22.18 22.11 22.23 21.76 91.66 22.05 38.65 22.1 92.52 22.11 77.55 22.06 60.97 49.53 99.69 96.86 

PRECISION TABLE OF CLIENT 1 

 Training Dataset 

Goldeneye1 ICMPFlood1 SSH1 SYNFlood1 SYNScan1 Slowloris1 TCPConnect1 Torshammer1 UDPFlood1 UDPScan1 

without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer 

E
va

lu
a

tio
n

 D
a

ta
se

t 

T
ra

in
 D

a
ta

se
t 

Goldeneye1 99.32 97.4 99.86 100 100 99.86 99.86 98.77 95.76 99.45 98.77 99.59 95.77 99.59 98.77 98.91 99.73 97.68 99.59 98.22 

ICMPFlood1 31.49 32.9 100 100 100 97.31 69.33 74.73 19.04 77.54 46.57 88.16 6.41 91.14 26.15 90.26 49.64 84.91 26.06 91.11 

SSH1 0 9.43 0 9.43 100 100 0 9.43 0 28.28 0 56.55 0 62.3 0 43.45 4.48 71.72 0 81.15 

SYNFlood1 50.17 83.44 95.13 100 100 100 99.1 99.09 53.45 99.08 82.58 99.09 29.36 98.19 50.75 97.28 63.21 99.09 19.63 99.09 

SYNScan1 80.18 87.86 100 97.78 100 96.62 100 92.72 100 99.97 90.84 99.97 100 99.97 93.16 95.48 99.96 100 100 100 

Slowloris1 51.47 77.49 90.71 97.09 100 95.05 94.49 89.83 71.55 86.79 85.09 97.95 64.7 93.89 46.53 94.06 88.31 86.96 86.38 82.91 

TCPConnect1 84.16 86 100 100 100 94.51 100 96.46 100 100 88.65 100 100 100 92.24 98.89 100 100 100 100 

Torshammer1 96.01 97.04 100 99.6 100 99.57 98.93 99.19 89.24 99.6 96.95 100 89.02 99.6 97.63 100 100 100 100 100 

UDPFlood1 98.59 0 100 87.46 100 60.06 99.95 0 46.29 0 99.51 72.37 39.45 40.36 42.92 51.09 99.96 74.69 87.9 99.63 

UDPScan1 7 33.85 100 88.82 100 90.06 73.98 70.71 87.74 83.25 75.6 87.45 88.99 87.16 92.58 86.96 98.34 97.52 100 98.76 
                      

T
e

st D
a

ta
se

t 

Goldeneye2 97.54 99.18 100 99.86 100 99.73 98.77 99.45 92.51 99.59 96.98 99.86 93.81 99.86 96.58 99.86 98.63 99.59 99.44 100 

ICMPFlood2 30.68 35.18 95.51 100 100 100 86.5 93.57 23.93 93.65 27.46 95.8 6.15 97.9 24.84 97.2 35.34 99.3 0.8 97.9 

SSH2 9.43 0 9.43 0 100 100 9.43 4.48 0 63.68 9.43 44.28 0 100 9.43 60.2 15.17 100 0 100 

SYNFlood2 84.93 52.97 99.01 99.41 100 98.46 97.28 97.32 92.73 98.34 88.71 98.8 93.65 98.81 83.57 98.8 82.51 99.82 95.46 99.68 

SYNScan2 81.96 86.31 100 100 100 100 100 90.62 100 99.93 90.37 99.93 100 99.93 91.65 97.07 97.62 100 100 100 

Slowloris2 69.49 54.05 92.75 99.16 100 94.57 93.88 90.01 71.28 90.44 78.75 97.92 75.43 97.89 69.57 97.93 92.91 95.35 92.92 94.56 

TCPConnect2 81.39 87.1 100 97.8 100 94.5 100 95.19 100 99.98 89.15 100 100 100 92.83 98.9 99.93 100 100 100 

Torsahmmer2 96.96 95.33 100 100 100 98.37 100 98.38 97.05 97.64 97.35 98.99 97.4 96.27 100 97.64 100 97.63 100 100 

UDPFlood2 0 74.65 76.7 73.21 100 44.02 41.63 52.23 61.18 78.23 26.83 78.92 56.67 46.36 68.02 46.21 76.79 94.07 99.95 99.99 

UDPScan2 19.99 40.37 96.27 97.45 100 96.6 94.62 59.79 88.17 92.11 68.18 94.02 85.15 95.54 86.27 89.23 88.15 98.47 100 99.86 

4
2
 



Table 5.2: Recall and F1 score Tables for Client 1. 
 

 

RECALL TABLE OF CLIENT 1 

 Training Dataset 

Goldeneye1 ICMPFlood1 SSH1 SYNFlood1 SYNScan1 Slowloris1 TCPConnect1 Torshammer1 UDPFlood1 UDPScan1 

without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer 

E
va

lu
a

tio
n

 D
a

ta
se

t 

T
ra

in
 D

a
ta

se
t 

Goldeneye1 99.66 99.95 58.4 99.54 17.58 99.73 63.26 99.76 74.5 99.73 87.53 99.73 74.27 99.66 98.49 99.65 67.3 99.68 50.01 99.49 

ICMPFlood1 100 99.97 100 99.97 83.19 99.97 100 99.97 100 99.97 100 99.97 100 80.51 100 97.22 100 99.97 94.29 99.97 

SSH1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

SYNFlood1 98.91 100 49.53 99.93 49.53 95.45 99.99 99.95 99.99 99.95 99.82 99.95 99.82 99.93 100 99.95 86.36 99.97 56.62 99.95 

SYNScan1 22.85 50.34 11.11 7.83 6.1 7.83 22.27 17.77 99.77 99.88 67.36 99.74 99.67 99.75 99.65 99.78 79.32 99.47 99.17 99.46 

Slowloris1 99.76 100 76.89 99.73 74.41 99.83 86.48 99.93 88.45 99.91 100 99.92 99.76 99.92 99.93 99.93 99.1 99.76 81.95 99.84 

TCPConnect1 30.39 58.58 15.15 7.73 9.87 7.73 22.66 40.22 94.72 91.12 73.82 91.11 98.7 98.77 99.76 99.1 80.73 98.09 94.92 98.1 

Torshammer1 99.7 67.35 46.44 37.47 13.37 54.53 49.35 50.02 61.96 75.54 87.37 72.47 82.91 75.35 100 99.62 64.28 89.18 65.07 98.24 

UDPFlood1 60.18 0 0 0 0 0 22.19 0 77.96 0 89.76 0.31 63.52 40.41 98.06 63.7 98.81 89.81 63.87 100 

UDPScan1 6.17 10.89 4.54 8.69 4.41 8.69 6.05 8.95 98.33 9.09 42.29 8.97 99.77 8.84 97.88 8.99 74.84 40.33 98.11 96.42 
                      

T
e

st D
a

ta
se

t 

Goldeneye2 99.83 99.93 51.83 99.73 21.14 99.86 64.89 99.76 72.87 99.7 82.23 99.7 72.67 99.71 98.33 99.71 63.54 99.62 44.21 99.59 

ICMPFlood2 99.97 100 99.97 100 80.51 100 99.97 100 100 100 80.51 100 100 100 99.97 100 80.51 100 80.51 100 

SSH2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

SYNFlood2 99.97 100 64.64 87.09 26.51 53.68 99.95 93.5 99.97 99.99 99.95 99.99 99.97 99.99 100 99.99 61.22 99.99 39.08 99.99 

SYNScan2 20.27 51.96 10.09 6.1 7.83 6.1 21.51 16.9 99.76 99.88 67.9 99.77 99.62 99.8 99.62 99.88 77.7 99.52 99.03 99.52 

Slowloris2 100 100 60.49 91.58 34.26 92.73 83.71 98.28 86.26 92.65 100 99.93 96.55 94.74 99.93 92.92 83.22 98.72 70.77 99.04 

TCPConnect2 25.16 64.49 11.15 9.87 7.73 9.87 19.13 51.08 96.99 92.96 72.48 92.89 98.48 99.86 99.67 99.91 80.52 99.16 96.72 98.66 

Torsahmmer2 54.11 97.17 7.04 98.16 3 99.28 14.8 99.19 65.57 98.54 55.11 99.38 73.47 99.12 99.66 99.99 50.97 99.85 58.48 99.77 

UDPFlood2 0 77.85 0 61.16 0 64.76 0 32.32 100 59 5.14 67.72 100 64.7 100 97.48 100 99.87 100 99.52 

UDPScan2 9.09 16.44 8.69 4.52 8.69 4.54 9.09 4.59 94.66 6.17 31.08 6.17 99.81 5.89 78.37 38.79 56.5 43.49 99.41 99.87 

F1 SCORE TABLE OF CLIENT 1 

 Training Dataset 

Goldeneye1 ICMPFlood1 SSH1 SYNFlood1 SYNScan1 Slowloris1 TCPConnect1 Torshammer1 UDPFlood1 UDPScan1 

without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer 

E
va

lu
a

tio
n

 D
a

ta
se

t 

T
ra

in
 D

a
ta

se
t 

Goldeneye1 99.14 97.38 68.83 99.75 17.58 99.72 73.06 98.65 78.24 99.31 91.05 99.45 77.71 99.41 97.96 98.73 73.33 97.51 56.19 97.95 

ICMPFlood1 34.2 35.2 100 99.98 83.19 97.31 72 74.94 21.66 77.68 47.64 88.31 9.09 72.54 28.85 87.54 52.32 84.91 22.7 91.11 

SSH1 0 9.43 0 9.43 100 100 0 9.43 0 28.28 0 56.55 0 62.3 0 43.45 4.48 71.72 0 81.15 

SYNFlood1 53.23 84.77 46.66 99.96 49.53 97.6 99.11 99.07 56.41 99.06 83.33 99.07 33.66 98.15 54.09 97.25 57.59 99.08 19.22 99.07 

SYNScan1 20.32 44.77 13.25 6.72 6.1 6.66 24.25 15.31 99.88 99.92 66.06 99.85 99.83 99.86 93.34 95.41 80.07 99.72 99.56 99.72 

Slowloris1 51.67 77.62 71.41 96.95 74.41 94.97 83.91 89.82 65.9 86.78 85.31 97.92 64.87 93.87 46.74 94.02 87.87 86.84 70.93 82.84 

TCPConnect1 26.26 53.52 18.04 7.73 9.87 4.44 28.2 47.93 95.64 94.42 66.33 94.41 99.22 99.28 92.16 98.39 83.64 98.82 96.5 98.83 

Torshammer1 95.87 75.25 59.75 51.49 13.37 68.26 58.46 64.4 61.65 85.31 88.78 82.55 77.99 85.08 97.64 99.81 68.9 93.4 73.22 99.07 

UDPFlood1 74.49 0 0 0 0 0 35.9 0 57.91 0 94.32 0.61 48.49 40.15 59.56 56.48 99.38 81.41 73.77 99.81 

UDPScan1 0.57 3.68 4.66 2.48 4.41 6.21 2.56 0.49 89.83 1.99 40.42 4.25 91.23 0.28 92.57 1.8 77.46 40.27 98.4 96.81 
                      

T
e

st D
a

ta
se

t 

Goldeneye2 97.45 99.15 61.17 99.73 21.14 99.66 73.52 99.33 73.88 99.44 84.67 99.71 74.63 99.71 95.64 99.72 68.22 99.4 49.69 99.79 

ICMPFlood2 33.52 36.96 95.53 100 80.51 100 86.59 93.63 26.95 93.67 27.46 95.8 9.14 97.9 27.91 97.2 35.34 99.3 0.8 97.9 

SSH2 9.43 0 9.43 0 100 100 9.43 4.48 0 63.68 9.43 44.28 0 100 9.43 60.2 15.17 100 0 100 

SYNFlood2 86.4 56.18 75.38 88.54 26.51 54.41 97.25 91.69 92.72 98.44 88.88 98.82 93.64 98.83 84.83 98.82 58.48 99.9 37.21 99.69 

SYNScan2 15.02 47.87 11.37 6.1 7.83 6.1 23.46 15.82 99.88 99.9 65.26 99.84 99.8 99.86 91.71 97.1 76.33 99.75 99.48 99.75 

Slowloris2 69.64 54.31 60.28 93.34 34.26 90.11 82.29 90.02 61.77 86.89 78.82 97.89 73.63 94.47 69.64 92.73 80.87 94.95 67.92 94.31 

TCPConnect2 23.01 55.5 13.28 8.77 7.73 7.67 24.51 55.37 98.23 93.67 68.95 93.6 99.07 99.93 92.94 98.86 84.62 99.54 98.05 99.17 

Torsahmmer2 64.69 93.76 10.33 98.99 3 97.94 22.46 97.91 75.55 96.83 64.03 98.61 81.67 95.77 99.82 97.64 56.65 97.56 71.43 99.88 

UDPFlood2 0 76.04 0 66.41 0 52.22 0 39.64 75.76 67 8.49 72.69 72.19 53.8 80.83 62.54 86.76 96.85 99.98 99.75 

UDPScan2 0.66 13.67 8.69 4.62 8.69 4.65 6.97 1.6 86.14 5.94 26.66 5.97 87.66 6.06 74.9 40.32 50.23 43.81 99.69 99.86 

4
3
 



 

 

 

 

 

 

 
 

Table 5.3: Training and Evaluation Time Tables for Client 1. 
EVALUATION TIME TABLE OF CLIENT 1 

 Training Dataset 

Goldeneye1 ICMPFlood1 SSH1 SYNFlood1 SYNScan1 Slowloris1 TCPConnect1 Torshammer1 UDPFlood1 UDPScan1 

without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer 

Evalu
atio

n
 D

atase
t 

Train
 D

atase
t 

Goldeneye1 492.42 483.73 463.44 504.7 462 474.53 549.85 478.19 515.25 477.02 508.84 622 516.73 478.48 520.76 504.33 480.17 493.95 495.17 520.3 

ICMPFlood1 99.8 84.13 94.08 76.61 89.51 79.27 116.07 76.03 108.97 78.26 107.97 82.87 142.04 79.05 91.72 79.47 126.93 78.07 103.18 79.27 

SSH1 24.07 14.86 11.21 11.58 11.18 10.75 14.14 11.17 12.47 12.39 11.86 10.86 12.77 16.36 11.74 12.09 11.56 15.77 15.26 11.21 

SYNFlood1 251.02 71.55 228.94 75.74 226.18 74.12 276.14 74.56 269.24 74.52 249.03 75.14 243.04 77.19 234.6 79.29 235.81 78.91 264.38 76.48 

SYNScan1 58.9 63.51 58.14 62.76 58.45 61.96 66.12 61.49 82.8 61.61 57.85 62.04 77.95 64.72 59.85 63.8 59.15 63.94 71.75 62.84 

Slowloris1 167.63 66.78 160.8 69.34 163.95 67.18 185.83 71.58 197.49 66.24 163.53 69.08 190.07 65.97 171.04 68.3 177.48 70.06 198.3 67.74 

TCPConnect1 63.87 60.48 58.91 67.32 59 62.03 66.84 69 73.07 61.34 58.92 63.62 67.93 66.81 70.28 63.18 74.81 65.59 95.65 62.76 

Torshammer1 221.95 167.34 193.89 176.46 197.47 170.7 228.58 183.86 223.8 166.24 197.43 179.18 225.73 182.05 261.28 181.39 238.04 175.87 208.41 177.49 

UDPFlood1 264.04 299.67 252.22 276.46 317.69 267.19 314.02 265.66 277.78 256.97 306.94 385.31 253.55 262.62 270.23 301.6 272.68 265.75 260.33 281.32 

UDPScan1 58.45 78.43 50.01 56.87 55.65 59.15 64.55 55.78 57.68 56.75 56.64 62.72 75.1 60.78 53.89 63.9 51.87 55.29 53.2 60.01 
                      

Test D
atase

t 

Goldeneye2 473.69 504.82 585.53 480.36 453.27 478.76 532.9 478.69 493.45 469.2 491.43 526.95 484.24 480.25 564.72 499.04 488.21 485.16 496.82 499.38 

ICMPFlood2 79.19 97.68 74.83 94.67 71.97 100.84 72.95 94.96 78.54 95.04 79.58 110.51 75.91 101.57 82.96 98.65 74.43 95.99 76.48 99 

SSH2 12.19 14.66 10.14 18.09 9.98 15.64 19.12 12.47 11.44 11.55 10.39 16.36 11.36 16.26 16.13 16.31 12.87 12.45 10.42 12.85 

SYNFlood2 78.09 236.69 69.08 241.6 70.59 246.7 79.26 236.41 74.22 230.67 73.86 277.82 77.82 262.67 101.48 244.75 84.34 237.44 81.7 249 

SYNScan2 61.68 60.36 63 67.91 58.06 61.99 64.55 63.4 60.75 60.22 62.54 101.41 59.93 65.55 70.21 62.66 79.35 60.9 69.38 62.37 

Slowloris2 69.06 173.59 66.58 175.17 62.66 169.2 77.38 171.88 70.67 165.11 65.47 224.29 67.8 192.22 93.36 171.38 85.69 173.26 72.34 173.46 

TCPConnect2 60.98 90.81 63.11 64.49 58.91 63.91 66.01 68.67 64.72 61.47 61.63 73.9 63.65 68.92 96.72 61.7 57.34 62.1 81.54 62.89 

Torsahmmer2 176.24 198.06 172.61 209.58 166.49 214.08 189.29 208.46 187.18 207.19 191.57 206.89 175.27 225.41 185.01 200.56 174.2 220.66 185.36 221.4 

UDPFlood2 366.75 256.55 273.4 271.42 251.12 282.19 314.11 262.72 275.12 262.22 321.63 292.37 276.38 281.22 293.17 271.57 255.9 297.59 278.36 270.01 

UDPScan2 68.52 73.64 59.72 56.42 53.29 55.27 69.41 55.1 59.51 54.82 66.78 68.82 57.85 58.38 66.18 56.44 72.02 55.76 61.94 56.57 

 
 

TRAINING TIME TABLE OF CLIENT 1 

Training Dataset without buffer with buffer 

Goldeneye1 34.93 41.4 

ICMPFlood1 6.54 11.7 

SSH1 0.39 2.36 

SYNFlood1 14.71 19.62 

SYNScan1 2.93 7.13 

Slowloris1 13.9 15.9 

TCPConnect1 3.3 8.66 

Torshammer1 13.2 17.19 

UDPFlood1 17.99 29.59 

UDPScan1 2.52 7.95 
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Table 5.4: Accuracy and Precision Tables for Client 2. 
 

ACCURACY TABLE OF CLIENT 2 

 Training Dataset 

Goldeneye1 ICMPFlood1 SSH1 SYNFlood1 SYNScan1 Slowloris1 TCPConnect1 Torshammer1 UDPFlood1 UDPScan1 

without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer 

E
va

lu
a

tio
n

 D
a

ta
se

t 

T
ra

in
 D

a
ta

se
t 

Goldeneye2 99.85 99.95 30.93 99.82 30.92 99.87 63.18 99.8 73.76 99.79 80.34 99.78 75.32 99.72 98.41 99.77 62.69 99.74 48.46 99.68 

ICMPFlood2 90.4 91.18 99.99 99.97 96.25 99.97 98.74 99.5 57.09 99.63 89.29 99.79 31.66 99.52 75.92 99.83 79.64 95.52 27.46 99.72 

SSH2 79.82 81.96 100 92.05 100 100 90.65 96.39 55.96 98.16 90.65 98.9 56.41 97.35 74.89 98.67 82.47 99.56 65.98 99.63 

SYNFlood2 98.08 98.18 65.06 99.99 65.06 99.97 99.97 99.98 99.81 99.98 99.77 99.98 99.87 99.74 95.46 99.96 73.5 99.99 67.48 99.98 

SYNScan2 21.26 55.63 13.03 12.98 13.03 12.96 22.25 13.06 99.91 99.94 42.1 99.9 99.77 99.86 99.18 99.87 75.48 99.75 99.52 99.78 

Slowloris2 99.03 99.26 44.3 99.73 44.32 99.73 86.24 99.83 87.21 99.72 99.59 99.87 94.39 99.59 97.77 99.86 79.72 99.57 69.67 99.51 

TCPConnect2 23.28 64.38 13.93 13.93 13.93 13.83 18.43 19.45 96.67 92.5 54.38 92.5 99.35 99.93 99.55 99.79 86.03 99.07 98.8 99.1 

Torshammer2 49.46 69.27 5.34 35.5 5.32 46.55 15.27 40.7 62.98 75.56 36.29 74.15 61.08 91.28 99.8 99.88 50.5 97.51 69.12 99.17 

UDPFlood2 52.36 52.48 62 61.78 62 61.46 61.51 57.29 75.06 51.76 57.24 63.65 71.3 65.38 85.3 67.73 99.87 99.54 100 99.87 

UDPScan2 18.49 19.91 22.18 21.86 22.18 22.02 22.25 21.76 87.75 22.7 24.94 22.16 91.66 39.65 77.13 64.98 62.09 52.72 99.69 99.89 
                      

T
e

st D
a

ta
se

t 

Goldeneye1 99.54 99.98 18.86 99.8 18.85 99.86 60.73 99.75 73.07 99.7 79.25 99.7 73.06 99.7 98.26 99.72 63.43 99.64 50.83 99.57 

ICMPFlood1 87.78 83.54 96.65 99.99 96.65 99.99 91.27 99.92 61.81 99.92 97.81 99.95 44.6 99.7 82.96 99.94 96.31 99.96 39.07 99.92 

SSH1 75.37 76.68 100 89.93 100 100 91.11 95.77 56.9 99.56 88.93 99.44 55.04 98.82 74 99.32 78.98 100 66.29 100 

SYNFlood1 95.11 96.05 89.26 96.88 89.26 93.13 99.98 96.97 69.77 99.87 99.14 99.97 58.52 99.7 94.58 99.96 93.86 99.88 30.86 99.97 

SYNScan1 23 57.14 12.5 12.5 12.5 12.49 22.87 12.49 99.91 99.95 44.25 99.9 99.82 99.92 99.45 99.87 78.97 99.76 99.57 99.79 

Slowloris1 97.92 98.28 79.98 98.08 79.99 97.42 89.16 99.16 89.64 95.06 99.33 99.79 98.36 99.5 95.84 96.47 95.62 97.92 83.22 98.09 

TCPConnect1 24.59 65.92 13.94 13.91 13.94 13.87 19.24 26.62 94.78 93.88 60.11 93.85 99.33 99.92 99.64 99.95 85.18 99.51 97.65 99.34 

Torsahmmer1 99.42 99.01 21.61 99.51 21.6 99.45 57.16 99.17 62.68 99.04 77.33 99.53 75.36 99.3 99.97 99.98 68.69 99.91 74.95 99.82 

UDPFlood1 69.12 81.29 62 79.94 62 69.86 66.25 70.76 71.09 70.3 65.71 80.99 51.88 44.44 50.16 41.06 96.82 65.53 55.04 67.52 

UDPScan1 14.61 23.44 21.5 21.38 21.47 21.38 21.11 21.25 91.02 23.94 32.99 26.99 95.9 91.56 97.56 79.76 82.96 91.21 99.75 99.9 

PRECISION TABLE OF CLIENT 2 

 Training Dataset 

Goldeneye1 ICMPFlood1 SSH1 SYNFlood1 SYNScan1 Slowloris1 TCPConnect1 Torshammer1 UDPFlood1 UDPScan1 

without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer 

E
va

lu
a

tio
n

 D
a

ta
se

t 

T
ra

in
 D

a
ta

se
t 

Goldeneye2 97.68 97.81 100 100 100 99.86 97.68 99.04 91.93 99.45 97.4 98.63 94.59 96.03 96.03 98.77 98.63 97.26 98.9 96.85 

ICMPFlood2 30.74 31.6 100 98.16 100 97.31 84.58 73.81 29.29 76.65 32.77 89.99 7.37 79.57 25.9 90.26 37.12 78.71 0.8 89.34 

SSH2 9.43 0 100 9.43 100 100 9.43 9.43 0 18.85 9.43 37.7 0 9.43 9.43 28.28 15.17 71.72 0 71.72 

SYNFlood2 85.03 84.37 100 100 100 100 98.19 99.09 92.73 99.09 89.8 99.09 93.65 93.59 83.6 97.28 80.75 99.09 95.46 99.09 

SYNScan2 81.99 87.91 100 95.56 100 95.51 100 92.29 100 99.97 87.41 99.97 100 97.64 91.65 95.48 97.62 100 100 100 

Slowloris2 70.52 76.44 98.99 96.08 100 95.07 85.71 92.89 72.25 85.77 83.86 94.91 77.5 78.82 69.62 92.04 93.93 82.87 92.91 80.85 

TCPConnect2 80.19 86.01 100 100 100 94.51 100 97.4 100 100 89.14 100 100 98.84 92.83 98.84 99.93 100 100 100 

Torshammer2 96.93 97.04 100 99.6 100 99.6 100 99.19 97.09 99.6 97.23 100 97.4 99.42 100 100 100 100 100 100 

UDPFlood2 0 0 100 75.42 100 48.13 54.69 0 60.82 13.02 0.51 88.63 56.99 53.35 72.1 55.47 99.65 99.2 100 99.65 

UDPScan2 20.03 28.05 100 75.16 100 83.85 96.27 70.71 88.26 83.39 59.43 87.45 86.15 87.67 86.62 86.34 89.37 98.76 100 98.76 
                      

T
e

st D
a

ta
se

t 

Goldeneye1 99.73 99.18 99.86 99.59 100 99.73 99.86 99.86 95.74 99.59 99.45 99.59 96.46 98.5 98.5 99.73 99.73 99.59 99.59 99.18 

ICMPFlood1 31.61 29.57 100 99.3 100 99.97 70.01 93.6 23.24 94.35 50.09 95.8 17.72 89.12 27.64 97.2 60.63 97.9 23.56 96.5 

SSH1 0 0 100 0 100 100 0 0 0 63.68 0 52.24 0 15.92 0 44.28 4.48 100 0 100 

SYNFlood1 50.58 51.41 99.71 99.41 100 81.95 99.12 97.32 62.86 98.34 85.4 98.81 49.3 95.96 50.76 98.5 69.31 99.82 17.6 99.68 

SYNScan1 80 86.53 100 100 100 98.88 100 89.1 100 99.93 86.58 99.93 100 98.71 93.16 97.07 99.96 100 100 100 

Slowloris1 52.26 51.97 99.59 98.73 100 94.13 90.74 92.52 79.34 90.47 85.92 97.92 81.71 86.77 46.97 97.1 88.31 96.18 83.49 91.24 

TCPConnect1 84.98 87.13 100 97.8 100 92.33 100 95.06 100 99.98 87.5 100 100 97.79 92.2 98.9 100 100 100 100 

Torsahmmer1 96.34 95.67 100 100 100 99.06 98.59 99.05 89.21 97.98 97.64 98.99 89.18 91.51 97.63 97.64 100 97.97 100 94.95 

UDPFlood1 95.92 72.63 100 86.56 100 59.52 99.84 87.64 60.69 70.42 95.91 96.61 39.86 38.75 42.77 39.19 99.95 52.43 43.44 53.92 

UDPScan1 16.03 39.14 100 92.78 100 92.78 87.25 80.51 91.53 93.47 58.81 96.34 89.7 99.06 92.64 98.37 99.48 99.51 100 99.86 
 

4
5
 



Table 5.5: Recall and F1 score Tables for Client 2. 
 

RECALL TABLE OF CLIENT 2 

 Training Dataset 

Goldeneye1 ICMPFlood1 SSH1 SYNFlood1 SYNScan1 Slowloris1 TCPConnect1 Torshammer1 UDPFlood1 UDPScan1 

without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer 

E
va

lu
a

tio
n

 D
a

ta
se

t 

T
ra

in
 D

a
ta

se
t 

Goldeneye2 99.74 99.98 21.15 99.77 21.14 99.83 57.87 99.77 70.33 99.74 76.64 99.75 70.88 99.74 97.97 99.73 57.01 99.72 40.97 99.56 

ICMPFlood2 99.97 99.97 99.97 99.97 80.51 99.97 99.97 99.97 100 99.97 80.51 99.97 98.13 99.97 99.97 99.97 80.51 99.97 80.51 99.97 

SSH2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

SYNFlood2 99.97 100 26.51 99.95 26.51 99.92 99.95 99.95 99.97 99.95 99.95 99.95 99.95 99.95 100 99.95 52.96 99.97 34.61 99.95 

SYNScan2 18.34 54.42 7.83 7.83 7.83 7.83 17.41 8.15 99.76 99.84 39.32 99.74 99.5 99.87 99.62 99.88 73.85 99.47 99.03 99.45 

Slowloris2 100 100 34.26 99.7 34.26 99.74 84.09 99.93 85.97 99.91 100 99.92 94.26 99.93 99.93 99.93 76.29 99.8 65.15 99.85 

TCPConnect2 19.44 62.32 7.73 7.73 7.73 7.73 12.58 13.69 95.76 91.12 51.32 91.12 98.48 99.9 99.67 99.68 84.25 98.09 97.73 98.15 

Torshammer2 48.57 68.86 3.04 33.98 3 45.48 13.36 39.3 62.41 75.1 34.75 73.36 60.33 91.13 99.79 99.88 49.27 97.45 68.04 99.11 

UDPFlood2 0 0 0 0 0 0 0 0 96.69 4.64 0 5.04 100 70.85 100 76.41 100 99.62 100 100 

UDPScan2 9.09 9.6 8.69 8.69 8.69 8.69 9.09 8.95 89.47 9.82 13.89 9.04 97.43 29.18 77.8 60.52 56.17 43.77 99.41 99.81 
                      

T
e

st D
a

ta
se

t 

Goldeneye1 99.52 99.98 17.59 99.8 17.58 99.86 59.99 99.74 72.74 99.7 78.84 99.69 72.67 99.72 98.24 99.72 62.66 99.63 49.95 99.56 

ICMPFlood1 100 100 83.19 100 83.19 100 100 100 100 100 100 100 100 100 100 100 100 100 87.95 100 

SSH1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

SYNFlood1 98.07 100 49.53 93.33 49.53 74.97 99.99 93.5 99.99 99.99 99.82 99.99 99.82 99.99 100 99.99 81.57 99.99 56.25 99.99 

SYNScan1 19.57 55.53 6.1 6.1 6.1 6.1 17.03 6.26 99.77 99.88 41.4 99.77 99.59 99.88 99.65 99.88 77.15 99.51 99.17 99.52 

Slowloris1 99.53 100 74.41 96.84 74.41 96.16 86.11 98.28 87.88 93.29 100 99.48 99.4 99.48 99.93 94.93 95.09 97.28 78.96 97.52 

TCPConnect1 23.56 65.45 9.87 9.87 9.87 9.87 15.6 23.43 93.86 92.96 58.69 92.89 98.64 99.91 99.76 99.91 83.93 99.23 96.82 98.71 

Torshammer1 99.37 98.98 13.37 99.43 13.37 99.36 52.33 99.07 59.35 98.93 74.89 99.46 73.09 99.39 100 100 64.92 99.91 71.72 99.84 

UDPFlood1 19.62 81.45 0 55.9 0 64.62 11.21 26.86 67.68 37.63 10.19 51.71 52.32 79.59 92.23 99.99 91.66 99.87 60.56 99.87 

UDPScan1 6.17 12.25 4.52 4.54 4.41 4.54 6.02 4.56 95.44 9.18 20.27 12.49 99.76 91.22 97.96 77.39 78.09 87.87 98.11 99.87 

F1 SCORE TABLE OF CLIENT 2 

 Training Dataset 

Goldeneye1 ICMPFlood1 SSH1 SYNFlood1 SYNScan1 Slowloris1 TCPConnect1 Torshammer1 UDPFlood1 UDPScan1 

without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer 

E
va

lu
a

tio
n

 D
a

ta
se

t 

T
ra

in
 D

a
ta

se
t 

Goldeneye2 97.53 97.8 21.15 99.88 21.14 99.78 64.62 98.93 71.08 99.32 80.61 98.5 73.84 95.9 94.87 98.63 62.35 97.12 45.35 96.63 

ICMPFlood2 33.56 34.23 99.98 98.18 80.51 97.31 84.74 74.04 32.31 76.79 32.77 90.11 10.07 79.58 29.13 90.24 37.12 78.71 0.8 89.34 

SSH2 9.43 0 100 9.43 100 100 9.43 9.43 0 18.85 9.43 37.7 0 9.43 9.43 28.28 15.17 71.72 0 71.72 

SYNFlood2 86.46 85.69 26.51 99.97 26.51 99.96 98.16 99.07 92.72 99.07 89.88 99.07 93.62 93.59 84.85 97.25 50.52 99.08 32.66 99.07 

SYNScan2 13.55 48.19 7.83 5.6 7.83 5.55 20.43 2.82 99.88 99.9 35.3 99.85 99.74 97.64 91.71 95.46 72.32 99.72 99.48 99.71 

Slowloris2 70.66 76.59 33.25 95.93 34.26 94.94 74.24 92.87 62.6 85.76 83.9 94.89 74.03 78.82 69.67 92 76.36 82.8 63.43 80.81 

TCPConnect2 16.73 57.3 7.73 7.73 7.73 4.44 15.63 15.71 97.46 94.42 47.3 94.42 99.07 98.82 92.94 98.7 89.69 98.82 98.61 98.87 

Torshammer2 59.11 76.44 3.07 47.97 3 59.95 20.12 53.83 73.2 85.08 43.53 83.32 72.06 94.71 99.89 99.94 56.46 98.64 79.63 99.52 

UDPFlood2 0 0 0 0 0 0 0 0 74.51 6.74 0 9.36 72.44 60.66 83.66 64.08 99.82 99.41 100 99.82 

UDPScan2 0.66 1.55 8.69 0 8.69 3.73 6.97 0.49 82.3 3.34 7.92 4.4 86.99 30.39 75.16 53.98 52.33 45.13 99.69 98.66 
                      

T
e

st D
a

ta
se

t 

Goldeneye1 99.48 99.17 17.46 99.49 17.58 99.66 69.26 99.73 76.74 99.44 85.2 99.44 76.94 98.35 97.55 99.58 69.03 99.4 57.73 98.96 

ICMPFlood1 34.31 32.21 83.19 99.3 83.19 99.99 72.69 93.65 25.87 94.37 51.15 95.8 20.42 89.25 30.34 97.2 61.24 97.9 16.52 96.5 

SSH1 0 0 100 0 100 100 0 0 0 63.68 0 52.24 0 15.92 0 44.28 4.48 100 0 100 

SYNFlood1 53.11 55 49.24 92.83 49.53 62.41 99.12 91.69 65.14 98.44 85.91 98.82 52.54 96.13 54.1 98.53 58.82 99.9 17.13 99.69 

SYNScan1 17.27 51.18 6.1 6.1 6.1 6.1 19.93 1.94 99.88 99.9 38.25 99.84 99.78 98.74 93.34 97.1 78.76 99.74 99.56 99.75 

Slowloris1 52.35 52.24 74 96.69 74.41 92.13 80.48 92.51 71.25 86.98 86.14 97.46 81.65 86.31 47.17 93.78 85.02 94.95 64.59 90.17 

TCPConnect1 18.78 57.01 9.87 8.77 9.87 5.5 19 26.71 94.66 93.67 50.94 93.6 99.17 97.77 92.14 98.86 88.17 99.59 98.06 99.2 

Torshammer1 96.03 95.15 13.37 99.68 13.37 98.67 60.95 98.52 59.37 97.36 79.04 98.67 70.05 91.19 97.64 97.65 72.25 97.93 80.59 94.87 

UDPFlood1 32.21 76.62 0 67.66 0 61.74 19.83 40.77 63.77 48.7 18.15 67.08 45.04 51.95 58.28 56.18 95.58 68.61 50.38 69.88 

UDPScan1 0.64 9.14 4.62 4.65 4.41 4.65 6.28 4.1 90.74 11.27 18.64 16.59 91.63 93.52 92.65 79.81 82.34 89.39 98.4 99.86 
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Table 5.6: Training and Evaluation Time Tables for Client 2. 
EVALUATION TIME TABLE OF CLIENT 2 

 Training Dataset 
Goldeneye1 ICMPFlood1 SSH1 SYNFlood1 SYNScan1 Slowloris1 TCPConnect1 Torshammer1 UDPFlood1 UDPScan1 

without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer 

E
va

lu
a

tio
n

 D
ata

set 

T
ra

in
 D

a
ta

se
t 

Goldeneye1 505.03 480.67 467.22 490.91 453.1 513.48 523.94 476.72 559.88 480.63 505.6 488.94 454.46 490.87 488.77 511.54 481.72 598.06 466.12 520.71 

ICMPFlood1 82.76 78.06 72.93 79.71 75.49 81.63 79.04 76.52 84.22 79.41 74.95 81.98 73.71 81.1 78.52 88.32 77.95 101.81 72.95 81.67 

SSH1 15.62 11.23 10.72 21.39 10.34 16.5 11 12.8 11.54 14.54 10.4 11.79 14.34 11.99 11.1 16.74 21.27 14.34 11.28 12.83 

SYNFlood1 88.29 76.59 72.84 80.07 80.25 78.46 105.99 82.4 80.59 76.39 81.73 76.69 86.81 76.35 83.84 82.85 74.78 85.41 86.22 88.76 

SYNScan1 72.43 65.55 59.52 66.93 58.67 63.85 69.22 65.75 64.96 63.57 59.24 62.59 75.58 63.07 63.42 69.13 71.16 81.31 58.88 64.29 

Slowloris1 79.9 68.06 63.73 72.11 79.35 88.6 77.48 70.87 65.35 69.06 65.54 69.46 82.3 67.98 66.5 71.86 73.18 81.03 75.37 76.81 

TCPConnect1 63.31 61.58 68.98 65.45 71.94 77.51 67.8 69.67 63.73 62.91 62.34 62.64 70.18 63.13 68.59 65.56 60.3 68.78 57.67 68.57 

Torshammer1 175.6 213.67 180.45 178.32 208.44 205.85 172.64 176.2 181.67 172.72 172.53 191.03 175.65 174.21 160.16 184.93 173.65 193.03 166.99 187.23 

UDPFlood1 258.7 300.62 257.96 275.34 265.26 308.51 273.63 273.96 296.32 261.67 278.79 287.88 260.72 284.9 253.25 272.47 255.39 301.47 241.79 282.6 

UDPScan1 55.81 54.9 56.59 57.77 51.96 77.24 55.11 62.35 64.89 57.8 59.54 59.61 55.88 57.68 54.42 61 53.32 72.78 64.9 58.21 
                      

T
e

st D
ata

set 

Goldeneye2 515.73 492.95 459.58 490.01 501.38 553.97 488.25 458.51 463.3 479.86 466.39 540.55 465.78 547.88 485.37 540.34 460.9 532.76 476.44 512.84 

ICMPFlood2 109.5 98.12 86.16 98.57 96.9 122.19 95.38 95.67 95.43 101.57 91.52 106.35 94.89 111.2 93.47 117.74 94.95 111.36 93.97 104.13 

SSH2 14.83 16.27 12.34 13.16 12.03 14.95 12.86 12.19 17.73 12.7 12.68 14.7 11.82 13.69 12.06 14.12 12.69 14.07 15.72 21.3 

SYNFlood2 278.2 253.67 225.42 234.21 244.15 291.03 259.86 233.25 232.61 243.48 256.07 257.94 231.9 256.18 240.69 266.56 254.57 254.23 253.26 256.8 

SYNScan2 64.15 60.59 56.38 63.52 67.99 78.95 65.55 61.07 63.58 65.2 86.04 68.04 64.26 65.09 67 71.79 58.36 73.16 64.72 64.49 

Slowloris2 178.67 172.79 161.22 172.91 180.12 225.63 171.31 167.45 168.21 172.79 175.55 194.85 166.71 189.66 165.52 179.64 166.4 184.48 174.85 181.86 

TCPConnect2 61.33 66.18 58.52 64.57 64.13 72.71 65.11 62.42 64.3 63.97 71.8 68.12 59.68 67.59 56.78 71.58 58.08 67.66 86.57 68.35 

Torsahmmer2 204.08 202.49 189.52 206.87 209.01 227.35 223.32 201.24 212.16 199.67 201.86 226.2 193.9 250.18 190.95 223.34 212.89 223.53 217.47 230.39 

UDPFlood2 260.26 264.16 255.9 263.99 252.57 301.21 290.54 266.67 279.21 262.91 264.09 276.61 256.04 286.52 255.34 283.57 249.38 276.36 267.7 294.05 

UDPScan2 55.21 53.63 53.88 58.84 61.71 61.67 53.8 54.92 61.9 55 67.39 56.91 51.7 60.2 54.06 60.5 53.59 57.84 52.33 61.06 

 
 

TRAINING TIME TABLE OF CLIENT 2 

Training Dataset without buffer with buffer 

Goldeneye1 34.93 60.3 

ICMPFlood1 6.53 9.91 

SSH1 0.39 3.03 

SYNFlood1 14.71 20.8 

SYNScan1 2.93 6.5 

Slowloris1 13.86 7.78 

TCPConnect1 3.3 10.14 

Torshammer1 13.2 21.1 

UDPFlood1 17.99 25.42 

UDPScan1 2.52 7.45 
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I have evaluated the pretrained local model against other dataset, named ’Application layer 

DDoS dataset’ [29], consisting of DDoS attacks generated in a SND-based testbed using Hulk 

and Slowloris tools and amalgamated with genuine traffic flow. 70% of the dataset has been 

taken for training the pretrained models and 30% samples have been taken for testing purpose. 

The evaluation table of this experiment has been shown in Table 5.7 also at the end of this 

chapter. According to Table 5.7 for application layer DDoS dataset, both clients have reached 

either over or close to 99% in terms of accuracy, precision, recall and F1 score which validates 

the trustworthiness of the proposed continual FL setup for DDoS attack detection. 

 
Table 5.7: Evaluation of Application layer DDoS dataset. 

EVALUATION OF APPLICATION LAYER DDoS DATASET 
 Accuracy Precision Recall F1 score 

Client1 99.17 99.94 98.52 99.22 

Client2 99.73 99.88 99.62 99.75 



49 
 

6 DISCUSSION 

 
6.1 Comparative Analysis with Related Research 

This thesis proposes a unique technique to anomaly detection within the context of 5G O-RAN 

architecture, based on FL and CL principles. Because the 5G O-RAN architecture is still 

in its early stages, there is a distinct lack of particularly built security algorithms that adapt 

to its unique requirements and constraints. Despite the fact that the technology is still in its 

infancy, the quickly expanding environment of 5G networks needs urgent and efficient solutions 

to protect these networks from any attacks. To fill this need, this thesis work made a proposition 

to create an anomaly detection system adapted to the 5G Open RAN architecture, harnessing the 

strong capabilities of FL. This innovative method, when paired with the highly sophisticated 5G 

architecture, has the potential to greatly improve network security, marking a watershed moment 

on the path to secure, robust, and dependable 5G networks. 

Single node models could be a two-edged sword. On the one hand, they may be hacked, 

which poses serious security threats. However, they might not be able to recognize sophisticated 

attack patterns that target several nodes in a networked system. The adoption of more thorough 

and reliable models is required as a result to guarantee the highest level of network security. 

Additionally, these models’ inherent amnesia might pose a serious danger to 5G networks. This 

problem may be resolved by combining FL with continual learning, opening the door for a more 

developed and reliable security layer. Recent research has not given this novel strategy much 

attention. 

The thesis goes beyond the conventional use of machine learning algorithms in anomaly 

detection systems by incorporating FL and CL in a realistic networked configuration, in contrast 

to the works described previously in ‘related works and limitations’ chapter. Unlike synthetic 

datasets and simulation-based setups, this dissertation is based on real-world data, which in- 

creases the usefulness and application of the conclusions as well as the actual deployment 

method. Furthermore, this study employs strong machine learning models but goes a step fur- 

ther by including continual learning, minimizing the CF commonly observed in NN, an element 

that was not well addressed in the preceding research. 

 

6.2 Assessment of Thesis Objectives 

The main objective of the thesis is to develop a FL-based anomaly detector for 5G O-RAN 

architecture. The proposed model can be deployed as a security service in RIC unit of O-RAN 

architecture. The thesis also proposes how CL can be integrated with the anomaly detector that 

can preserve important weights of the model by replaying old samples. The performance of 

the proposed system has been measured considering three scenarios: the evaluation values of 

accuracy, precision, recall and f1 score metrics in normal federated setup, continual learning 

applied on top of FL setup in next stage and lastly by evaluating the pretrained model from the 

second stage for other DDoS datasets. 

The number stays over 90% in the majority of situations, while the greatest recorded system 

accuracy is above 99%. Though the majority of the suggested algorithms shown in the literature 

study were successful in achieving acceptable accuracy, they skipped or downplayed the essential 

issue of CF. As a result, when compared to earlier studies, the suggested system accuracy can be 

deemed satisfactory. The improvement can clearly be seen with the implementation of second 

strategy where buffer has been added to training process of local models to preserve knowledge 

compared to traditional FL strategy. There is a positive improvement in all cases except the case 
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where the anomaly happens in the form of UDPFlood. Moreover, the proposed model gained 

reliability while evaluating with over 99% accuracy, precision, recall and F1 score on other 

datasets containing DDoS flow. 

Therefore, it can be said that the proposed system performance is within the expected range. 

According to the observations, the detector becomes more efficient if training data adequately 

cover all possible attack scenarios encountered by the detector. With the increasing variety of 

flow patterns in a traditional FL setup, dependability suffers as it frequently fails to accurately 

identify a sufficient number of flow categories. This problem is addressed substantially in 

the second step, when previous data are replayed throughout the training phase, resulting in 

considerable metric improvements. Thus, it can be asserted that the suggested detection system 

has successfully achieved sustainability in reliability while adding an extra layer of security in 

the networked systems. 

 

6.3 Future Research Directions 

To proceed with further investigation of the proposed thesis work, below research directions can 

be chosen to make the threat detection system more secure, matured and trustworthy. 

Examining Various Aggregation Methods: FedAvg was mostly used in this study to 

aggregate the weights from local models. Other aggregation techniques, such as Feder- 

ated Stochastic Gradient Descent (FedSGD), Federated Adam, and Federated Averaging 

Momentum (FedAM), might, however, produce results that are different. Future research 

may look into investigating these and other techniques within the framework of federated 

learning for 5G Open-RAN and evaluating their results against FedAvg. 

Utilization of Various Machine Learning Models: For the purpose of identifying 

DDoS assaults, the work detailed in this thesis made use of a MLP model. Other machine 

learning models that may be used for this purpose include Support Vector Machines 

(SVM), Random Forests, and sophisticated deep learning architectures like CNN or RNN. 

Future studies should concentrate on implementing and contrasting these various models 

in terms of how well they identify DDoS attacks within a FL environment. 

Working with Different Communication Systems: In the current study, clients and the 

aggregating server communicated via the RESTful API technology. Other communication 

techniques, such as gRPC, MQTT, or even peer-to-peer communication systems, might, 

however, improve the effectiveness of communication in FL systems. In the framework 

of 5G O-RAN, future research could take these other communication protocols into 

consideration. 

Investigation of Prospective Other Datasets: Although the present study concentrated 

on the 5G NIDD and CICIDS2017 datasets, more datasets from other domains or with 

various attack types may be explored in further research. This would put the robustness 

and generalizability of the federated learning models to the test once more. Additionally, 

artificial datasets might be created to test certain situations or uncommon attack kinds, 

enhancing the model’s capacity to counter a variety of assaults. 

Adoption of Privacy-Enhancing Techniques in System Communication: A possible 

weakness in federated learning systems is the communication of weights between clients 

and the aggregation site. In the future, studies could incorporate privacy-enhancing 

techniques (PETs) into the weight exchange procedure to protect the confidentiality and 

• 

• 

• 

• 

• 
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privacy of the weights to protect from sniffing. To assure safe and private model training 

and inference in FL frameworks, PTEs methods such as homomorphic encryption, secure 

multi-party computing, or differential privacy might be researched. FL would become 

more privacy-preserving as a result, making it more suited for use in delicate or privacy- 

sensitive applications. 

• Integration of Various CL Methods: 

Another significant research direction would be to investigate different CF techniques 

to enhance the overall cost in terms of resource utilization and latency of the system. 

Either applying EWC or LwF strategy standalone or combining these strategies with 

different kinds of replay buffer techniques would be a subject of exploration. To reduce 

memory space while keeping samples in buffer, compression method can be applied in 

preserved samples which also adds the subject of investigating the effects of compression in 

model’s performance. Moreover, Progressive Neural Network (PNN)[52] or Dynamically 

Expandable Network (DEN)[53] can be adopted and investigated to reduce the effects of 

CF. 
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7 SUMMARY 

 
The junction of security automation, 5G O-RAN architecture, and FL are examined in this 

thesis, with an emphasis on how they might be used to reduce DDoS assaults. The necessity for 

advanced and automated security solutions within the framework of 5G O-RAN, an architecture 

that is becoming more and more crucial in contemporary telecommunication networks, is what 

motivates the research. 

The thesis starts off by examining security automation and describing the vital function it 

plays in the 5G O-RAN. O-RAN, which has the potential to spur flexibility and innovation, 

has emerged as a crucial area of attention as 5G networks continue to develop. However, 

this also creates additional security difficulties, especially with regard to DDoS assaults. As a 

result, robust and automated security measures are necessary to guarantee the dependability and 

resilience of these networks. 

The study offers FL and CL as viable remedies to solve these problems. These learning 

methodologies allow for collaborative ML while protecting privacy, with model training occur- 

ring locally and just aggregated updates being shared. This lowers the possibility of data leakage 

and maintains network effectiveness. 

After then, the study is divided into two sections. A model is created in the first stage using 

standard FL. In order to address the problem of CF, the technique is progressed in the second 

stage with the development of a reservoir sampling buffer replay in conjunction with FL. 5000 

samples from an earlier training dataset are buffered and mixed with the current training dataset 

at this step. Then, using a widely used federated averaging method called FedAvg, this dataset 

is utilized to update the weights of the local model. 

Three VMs make up the actual configuration, with the third serving as a central server for 

aggregation and the other two functioning as distant clients. Total 20 datasets of real-world traffic 

collected from 2 base stations (10 from each base station) of 5GTN built in University of Oulu 

consisting of various DDoS attack patterns from the 5G NIDD dataset repository have been used 

for training and assessment of this method. The detection effectiveness of the pre-trained model 

on data from other dataset named ’Application layer DDoS dataset’ [29] is also examined that 

is a combination of the DDoS attack flows produced in proprietary testbed and genuine 

samples from CICIDS2017 datasets. 

The results of the thesis show that even when training datasets are provided sequentially, 

the suggested technique may retain adequate accuracy. Importantly, the technique successfully 

detects novel data patterns, highlighting its usefulness in actual 5G O-RAN situations. These 

findings highlight the promise of FL for creating automated, flexible, and reliable security 

solutions for 5G O-RAN architecture. 
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I. & Wunder G. (2022) Open or not open: Are conventional radio access networks more 

secure and trustworthy than open-ran? arXiv preprint arXiv:2204.12227 . 

[14] O-ran. https://www.o-ran.org/. 

[15] buffer. https://rimedolabs.com/blog/ran-intelligent-controller-ric-overview-xapps-and- 

rapps/. 

[16] buffer. https://www.kdnuggets.com/2020/08/breaking-privacy-federated-learning.html. 

[17] Parisi G.I., Kemker R., Part J.L., Kanan C. & Wermter S. (2019) Continual lifelong learning 

with neural networks: A review. Neural networks 113, pp. 54–71. 

[18] Aljundi R., Babiloni F., Elhoseiny M., Rohrbach M. & Tuytelaars T. (2018) Memory aware 

synapses: Learning what (not) to forget. In: Proceedings of the European conference on 

computer vision (ECCV), pp. 139–154. 

[19] Brendan McMahan H., Moore E., Ramage D., Hampson S. & Agüera y Arcas B. (2016) 
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9 APPENDICES 
 

 

 

 
Table 9.1: List of Packages. 

Package Version 

Python 3.10.6 

Flask 2.2.3 

ipykernel 6.12.2 

Keras 2.11.0 

Jupyter Notebook 6.5.2 

Numpy 1.24.2 

Pandas 1.5.3 

Scikit-learn 1.2.1 

tensorflow 2.11.0 

torch 1.13.1 

Avalanche-lib 0.3.1 
 


