
1

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

DEGREE PROGRAMME IN WIRELESS COMMUNICATIONS ENGINEERING

MASTER’S THESIS

Continual Federated Learning For Network Anomaly

Detection in 5G Open-RAN

Author Fahim Muhtasim Hossain

Supervisor Professor Tarik Taleb

Advisor Dr. Chafika Benzaid

June 2023

Fahim Muhtasim Hossain. (2023) Federated Continual Learning For Network Anomaly

Detection in 5G. Faculty of Information Technology and Electrical Engineering, Degree Pro-

gramme in Wireless Communications Engineering

ABSTRACT

This dissertation offers a unique federated continual learning setup for anomaly detection

in the fast growing 5G Open Radio Access Network (O-RAN) environment. Conventional

AI techniques frequently fall short of meeting the security automation needs of 5G net-

works, owing to their outstanding latency, dependability, and bandwidth demands. As a

result, the thesis provides an anomaly detection system that does not only use federated

learning (FL) to solve inherent privacy problems and resource constraints but also incor-

porates replay buffer concept in the training phase of the model to eradicate catastrophic

forgetting. To allow the intended federated learning architecture, anomaly detectors are

incorporated into the Near-real time RIC, while aggregation servers are installed within

the Non-real time RIC. The configuration was carefully tested using the 5G NIDD Dataset,

revealing a considerable boost in detection accuracy by reaching close to 99% for almost

all datasets after including the continual learning process. The thesis also investigates

the notion of transfer learning, in which pre-trained local models are evaluated against

a hybrid Application layer DDoS dataset that includes benign samples from the CICIDS

2017 dataset and attack flows generated in proprietary SDN environment. The captured

results show almost over 99% of accuracy, confirming the suggested system’s efficacy and

flexibility. The study represents a significant step forward in the development of a more

secure, efficient, and privacy-protecting 5G network architecture.

Keywords: 5G, Network automation, Security, Federated learning, Continual learning,

Catastrophic forgetting, and DDoS

CONTENTS

ABSTRACT

CONTENTS

PREFACE

LIST OF SYMBOLS AND ABBREVIATIONS
1 INTRODUCTION . 6

 1.1 Background and Motivation . 7
 1.2 Research Problem . 7
 1.3 Selected scope . 8
 1.4 Methodology . 8
 1.5 Contribution . 9
 1.6 Organization of the Thesis . 10

2 Background and Preliminaries . 11
 2.1 Cyber threats in 5G and Beyond . 11
 2.1.1 Evolution of Cyber Threats . 11
 2.1.2 Security Threats against 5G RAN . 11
 2.1.3 DDoS attack in 5G . 12
 2.1.4 Cyber Threat Prevention Leveraging Federated Learning and O-RAN . 13
 2.2 Open RAN Architecture . 13
 2.2.1 O-RAN Interfaces . 14
 2.2.2 Security Opportunities of O-RAN . 15
 2.3 Federated Learning . 16
 2.3.1 Benefits of Federated Learning . 17
 2.3.2 Adopting Federated learning over traditional machine learning approach 18
 2.4 Continual Federated Learning . 18

3 RELATED WORK AND LIMITATIONS . 20

4 CONTINUAL FEDERATED LEARNING FRAMEWORK 24
 4.1 Description of Dataset . 24
 4.1.1 Attack types and tools . 25
 4.2 Data Preprocessing . 26
 4.3 Proposed model . 26
 4.4 Experimental Setup . 27
 4.5 Training Strategy and Federated Aggregation Process 28
 4.5.1 Local Training Process . 28
 4.5.2 Federated Averaging Process . 29

5 EVALUATION . 31
 5.1 Conventional Federated Learning Strategy . 31
 5.2 Continual Federated Learning Strategy . 36

6 DISCUSSION . 49
 6.1 Comparative Analysis with Related Research 49
 6.2 Assessment of Thesis Objectives . 49
 6.3 Future Research Directions . 50

7 SUMMARY . 52

8 REFERENCES . 53

9 APPENDICES . 56

PREFACE

This master’s thesis, produced for the Master’s Program in Wireless Communications Engi-

neering at the Mobile Network Softwarization and Service Customization (MOSAIC) research

group, Centre for Wireless Communications, University of Oulu, proposes a federated continual

learning-based anomaly detector for 5G O-RAN. It was created as part of the Master of Science

in Wireless Communications Engineering program. This research work is partially supported by

the European Union’s Horizon 2020 Research and Innovation Program through the 6GSandbox

project under Grant No. 101096328 and the Business Finland 6Bridge 6Core project under

Grant No. 8410/31/2022. This dissertation goes into extensive detail on the O-RAN archi-

tecture, federated learning, continual learning, and anomaly detection. I would like to convey

my profound appreciation to Dr. Chafika Benzaid for her invaluable support, direction, and

insightful recommendations during the thesis process. Furthermore, I would like to thank Prof.

Tarik Taleb for his collaboration and advice during the duration of my master’s thesis. I would

also like to thank my parents for their support.

Oulu, June, 2023

Fahim Muhtasim Hossain

LIST OF SYMBOLS AND ABBREVIATIONS

5G Fifth Generation

AI Artificial Intelligence

NR New Radio

IoT Internet of Things

DDoS Distributed Denial of Service

ML Machine Learning

DL Deep Learning

CF Catastrophic Forgetting

CL Continual Learning

FL Federated Learning

O-RAN Open Radio Access Network

RAN Radio Access Network

O-C U-CP O-RAN Central Unit Control Plane

O-CU-UP O-RAN Central Unit User Plane

O-D U O-RAN Distribution Unit

O-RU O-RAN Radio Unit

SMO Service Management and Orchestration

O-eNB O-RAN evolved Nobe B

NIDD Network Intrusion Detection Datatet

5GTN 5G test bed

RIC RAN Intelligent Controller

NN Neural Networks

ANN Artificial Neural Networks

CNN Convolutional Neural Network

RNN Recurrent Neural Network

MLP Multi Layer Perceptron

SVM Support Vector Machines

XSS Cross site scripting

MITM Man In The Middle Attack

SQL Structured Query Language

NMAP Network Mapper

NIDS Network Intrusion Detection Systems

EWC Elastic Weight Consolidation

GEM Gradient Episodic Memory

HTTPS Hyper Text Transfer Protocol Secure

SSH Secure Shell

SFTP Simple File Transfer Protocol

ICMP Internet Control Message Protocol

UDP User Datagram Protocol

TCP Transmission Control Protocol

ReLU Rectified Linear Unit

BCE Binary Crossentropy

VM Virtual Machine

FedAvg Federated Averaging

FedSGD Federated Stochastic Gradient Descent

FedAM Federated Averaging Momentum

REST Representational State Transfer

API Application Programming Interface

KPI Key Performance Indicator

DNN Deep Neural Network

PNN Progressive Neural Network

DEN Dynamically Expandable Network

SON Self-Organizing Networks

MLB Mobility Load Balancing

CFeD Continual Federated Learning with Distillation

EWC Elastic Weight Consolidation

LwF Learning Without Forgetting

VNE Virtual Network Embedding

RL Reinforcement Learning

SIRL Slice Isolation-based Reinforcement Learning

LSTM long short-term memory

ZSM zero-touch network and service management

3GPP 3rd Generation Partnership Project

NFV Network Functions Virtualization

6

1 INTRODUCTION

The most recent development in wireless communication technology is the fifth-generation

(5G) network, which promises revolutionary reductions in latency, connection density, and data

speeds. These developments will spur innovation in many other fields, including autonomous

driving, smart cities, and the Internet of Things (IoT). The advantages of 5G are, however, offset

by an increased attack surface and vulnerability to cyber-threats, mostly because of the network’s

dispersed architecture. To protect these next-generation networks, it is necessary to have strong

and effective security procedures.

System for detecting network anomalies is crucial to protecting emerging 5G networks. These

systems work by encountering variations from conventional network traffic patterns, which gives

them a reliable method for spotting cutting-edge cyber attacks that are both innovative and

complex. The capacity to identify Distributed Denial of Service (DDoS) assaults, one of the

most pervasive and crippling dangers to network security in the connected world of today, is

especially crucial [1]. DDoS attacks have the capacity to quickly overload a network, leading

to substantial service disruptions and possible data loss. The rapid innovation and increasing

complexity of DDoS attack techniques, however, make it difficult to sustain the effectiveness of

traditional attack detection systems. In fact, traditional rule-based detection systems struggle

to keep up with the complexity of such threats as attack vectors become more varied. This has

led to the use of machine learning (ML) and deep learning (DL) approaches to improve the

generalization and prediction accuracy of these systems. They help in spotting tiny changes or

trends in network traffic that might point to a DDoS assault, even in its early stages.

ML and DL-based anomaly detection systems nevertheless face a number of difficulties in

spite of the aforementioned advantages. Catastrophic forgetting (CF) [2], a situation where the

learning model tends to forget or ignore previously acquired patterns when exposed to fresh data

or attack patterns, is an important problem. Given that attackers constantly innovate and new

attack variations routinely appear, this problem is especially harmful in the context of DDoS

detection. Therefore, a CF issue solution is essential to maintaining resilience in identifying

different forms of DDoS attacks.

A viable remedy to lessen the CF issue has been found as continual learning (CL) [3]. Models

can adapt to new tasks while preserving information from earlier ones because to CL, which

enables continuous learning from a stream of data. Although CL has demonstrated success in a

number of fields, including computer vision, its use in network security, especially in the creation

of cyber attack detector, is still unexplored. A number of approaches have been developed in

CL to combat CF, with the usage of replay buffers being one of the most promising [4]. Replay

buffers preserve a balance between old and new information by storing a portion of the historical

data that the model may ”replay” during training. In numerous contexts, this method has proven

very effective in preventing catastrophic forgetfulness.

However to provide effective, immediate reactions to any incursions, decentralized learning

mechanisms must be used due to the distributed design of 5G networks. Federated Learning

(FL) stands out as a possible approach in this regard. Distributed devices, as those in a 5G

network, can develop a shared prediction model cooperatively using FL while keeping all of the

training data on their original devices. This decentralized strategy greatly improves data privacy,

a crucial issue in modern cybersecurity measures, while also optimizing learning processes. For

network intrusion detection, the fusion of FL with CL [5] offers great potential. A powerful

approach for improving the performance of intrusion detection in 5G networks may be developed

by combining CL’s capability to handle continually developing tasks, which addresses the

problem of CF, with FL’s distributed and privacy-preserving nature. This combination provides

a thorough learning framework that not only successfully identifies new threats but also preserves

the privacy of local data, thereby addressing the key issues with 5G security. This might open

7

the door for the creation of sophisticated DDoS assault defense systems and the development of

enhanced network anomaly detection systems that protect user data and privacy in the vast 5G

network environment.

1.1 Background and Motivation

A new age of significant decreases in latency, connection density, and data rates has been

ushered in by the introduction of 5G wireless communication technology. A wide range of

industries, including autonomous vehicles, smart cities, and IoT, might benefit from this technical

advancement. The benefits of the 5G network, principally because of its decentralized design,

also open the door for an extended attack surface and greater susceptibility to cyberthreats.

It highlights the urgent requirement for strong and efficient security solutions to protect these

future networks.

DDoS assaults, which may quickly overwhelm a network and cause substantial service

disruption and possibly data loss, are one of the most pervasive and disruptive dangers in today’s

linked world. Traditional rule-based detection systems face major difficulties due to the DDoS

attack tactics’ fast growth and increasing complexity. There is a pressing need to improve these

systems’ resilience and forecast accuracy as attack vectors become more varied. The use of

ML and DL technologies has increased as a result, making it easier to spot minute changes or

patterns in network traffic that might be signs of a DDoS assault.

However, because of always changing nature of DDoS attack variants, problems with catas-

trophic forgetting (CF), which occurs when a model forgets prior patterns when exposed to

fresh data, plague ML and DL systems. To address CF, strategies like CL have been developed.

Although effective in fields like computer vision, CL’s use in network security has not yet been

fully investigated. Integrating FL, a decentralized approach that protects data privacy, with

CL might significantly improve network intrusion detection. This combination may enhance

network anomaly detection and DDoS protection systems while preserving data privacy in 5G

networks.

CL has shown promise in preventing catastrophic forgetting, especially when replay buffers

are used to maintain a balance between new and old information. Despite CL’s shown effec-

tiveness in areas like computer vision, its use in network security, particularly in the creation of

a cyberattack detector, is mostly unexplored. Network intrusion detection may greatly benefit

from the combination of CL and FL, which offers a decentralized method for collaboratively

creating a shared prediction model while protecting data privacy. A complete learning frame-

work that can successfully identify new risks while protecting the privacy of local data might

be created by integrating the skills of CL and FL.

1.2 Research Problem

The security and integrity of network systems are crucially maintained by their ability to identify

anomalies. This is especially true for 5G’s Open Radio Access Networks (O-RAN), which are

expansive heterogeneous systems with a range of latency and privacy needs. Internal problems

and malicious assaults are only two examples of the many things that might cause anomalies in

a RAN. Only a few ML-based research papers have particularly focused on O-RAN, despite the

fact that there are many studies on anomaly detection in the RAN that employ ML. This is a

significant lacuna in the body of knowledge, especially in light of the particular difficulties and

dangers that O-RAN in 5G networks could provide.

8

When using AI/ML for operations, protecting data privacy is essential. By protecting data

privacy and improving communication effectiveness, FL provides potential answers. Models

are trained locally, and just the parameters required for aggregation are shared. FL is especially

helpful for handling sensitive data in intricate, extensive environments like RAN. However, fur-

ther study is required on the use of FL for RAN anomaly detection to stop assaults from reaching

the core network. FL implementation at the RAN level might greatly increase communication

effectiveness and data privacy protection. As a result of abnormalities found using FL, it could

also make it easier to carry out appropriate control activities, including resource management

or the transfer of User Equipment (UE).

Additionally, in an FL system, local detection models have a propensity to forget previously

acquired information over time. Given how quickly cyber dangers are growing, this is an urgent

problem to tackle. Even while federated learning has been mentioned in many research projects,

very few have looked at how it may be combined with continuous learning. This is an important

topic of study that needs to be addressed right away.

Determining a comprehensive, FL-based anomaly detection framework for O-RAN in 5G

networks that not only protects data privacy and improves communication efficiency but also

handles the problem of learnt knowledge gradually ”forgetting” over time is the main research

challenge as a result. The proposed study will look into how FL may be combined with ongoing

learning to offer a reliable and efficient method for O-RAN anomaly detection. This research

problem’s core will also include the investigation of appropriate control measures in response

to observed abnormalities.

1.3 Selected scope

In this research, the use of continual federated learning has been explored for the detection of

various forms of DDoS attacks in 5G networks with a focus on replay buffers. The main goal

is to create a powerful DDoS attack detection system that can skillfully handle the particular

difficulties of identifying various DDoS kinds that a 5G network may experience. Hypothesis has

been put forward that continual federated learning strategies, specifically the addition of replay

buffers, may substantially decrease the problem of catastrophic forgetting in DDoS detection

models while identifying DDoS attack types striking different nodes of distributed 5G network

that are not encountered by other hops in the network.

1.4 Methodology

As the proposed anomaly detector is based on an FL model, the methodology of this thesis

is primarily comprised of steps required to generate a federated learning setup. It consists

of following steps: data preprocessing, model training, communication between clients and

aggregation server, federated averaging and model testing. 5G NIDD dataset [6] which has been

populated with both real world attack and genuine traffic flows generated in the 5GTN test bed

built in University of Oulu has been chosen to utilize. The dataset covers a variety of DDoS

attack types mixed with real world legitimate network traffic. As the local models work with

only numerical values, therefore, various data processing steps have been conducted to organize

the dataset and making the data samples eligible to feed to the models. At the end of the data

preparation segment, normalization took place which sets the feature values of all data samples

within a predetermined range of values. Anomaly types are only one example of superfluous

values that might exist. It is sufficient to establish whether or not an abnormality exists, hence

9

this data column was eliminated. There are 10 datasets categorized by different types of DDoS

attacks amalgamated with benign traffic for training and evaluation purposes.

Two local models, one for each client were developed for each training data set during the

training step. The FL-based training model’s cycle begins with the model being trained in each

client for 10 rounds with each dataset, which are subsequently transmitted back to the main

server. Before being transmitted back to the end devices for training, the model parameters are

combined at the central server. After updating the local models in all clients with aggregated

weights, another dataset comes into place for training process. In the thesis, this is seen as one

complete cycle. The models were trained in this manner for 3 rounds. The updated model after

conducting mentioned rounds of training is then used to test the model’s performance with test

datasets.

Two scenarios which are traditional FL and FL integrated with continual learning has been

adopted to conduct training and evaluation. At the first stage, only standalone FL setup has been

run and CF has been spotted while feeding new datasets one by one in the system. At the later

stage, reservoir sampling buffer [7] has been added to preserve the portion of representative

samples from previous datasets which is then mixed up with current datasets before feeding to

the local models for training. After completing training and federated aggregation process for

all datasets, evaluation has been done which is same as with traditional federated learning to

observe the difference in performance metrics values.

1.5 Contribution

This study’s major contribution is a FL based network anomaly detector integrated with CL to

eradicate CF from local model for the sake of achieving sustainability in efficiently detecting

continually evolving DDoS attacks over the time. O-RAN is relatively new, and there are only

a few applications available. Utilizing ML or FL for security in O-RAN is currently in its early

phases of research. Anomaly detection has been studied for the networked systems such as

the IoT, and Zero-touch Network and Service Management systems mostly by using centralized

single node machine learning models but leveraging FL based detection has not been studied

much in O-RAN. Moreover, addressing the critical problem of forgetting old knowledge of

attack patterns with time has also not been highlighted much in federated setup-based detection

techniques. Therefore, this study provides an initial step for research into using privacy along

with knowledge preserving FL for anomaly detection in O-RAN.

Due to the hierarchical positions of Near real-time RIC (Near-RT RIC) and Non real-time

RIC (Non-RT RIC) and their various closed loops, FL-based solutions may be deployed in O-

RAN with ease. As a result, the continual learning based federated setup could be easily

implemented in an O-RAN architecture as a service in Near-RT RIC segment. Additionally, a

reference design for deployment has been proposed for more research.

Performance was evaluated based on accuracy, precision, recall and the F1 score. Further-

more, the cost of the implementation of the system was considered in terms of training and

evaluation time and size of the space buffer takes to preserve representative samples. After 10

rounds of training with each datasets and 3 rounds of federated averaging, it was possible to find

anomalies in the test dataset with all the mentioned metrics value of above around. Therefore,

it can be concluded that the proposed models are effective against network attacks specifically

DoS attack in the O-RAN architecture.

10

1.6 Organization of the Thesis

The thesis is structured as follows.

Chapter 2 describes general details, objectives and application of continual FL.

Chapter 3 provides a comprehensive review of related works and corresponding limitations

in the fields of anomaly and intrusion detection in computer networks.

Chapter 4 provides comprehensive details about the dataset and traffic patterns that have

been adopted for this thesis along with the proposed network anomaly detection framework and

implementation of the system.

In chapter 5, granular and elaborate analysis of the performance of the framework has been

conducted with substantial graphs and tables. The performance has been measured in terms of

accuracy, precision, recall and f1 score both in traditional FL and integrated continual FL setup

scenarios. Last part of the chapter compares both scenarios and shows the difference in terms

of resource utilization cost and performance.

Chapter 6 summarizes the comparative analysis of thesis project with similar research papers,

how much the objectives of the research has been achieved along with future directions.

Chapter 7 presents an overall summary of the thesis.

11

2 Background and Preliminaries

This chapter explores the evolution of diverse environment of cyber threats in 5G networks.

Furthermore, investigation of the structure of O-RAN architecture, different types of 5G anoma-

lies emphasizing DDoS attack vectors, and highlighting the transformational potential of FL

in safeguarding 5G networks has been conducted. Lastly, continual FL, a unique strategy for

mitigating future threats has been discussed elaborately.

2.1 Cyber threats in 5G and Beyond

5G and beyond networks promise to transform the digital world by offering game-changing

improvements including high data speeds, low latency, and huge interconnectedness. However,

growing complexity and interconnectedness broaden the threat landscape and pose new security

issues.

2.1.1 Evolution of Cyber Threats

Cyber risks have progressed from isolated attacks on computers to sophisticated, distributed,

and ubiquitous threats affecting all aspects of the digital realm. The growth of connected

devices in the 5G and beyond age, along with an increased dependence on machine learning and

artificial intelligence, broadens the attack surface and makes networks more vulnerable to cyber

assaults [8]. In what follows, we provide an overview of some existing cyber threats against 5G

and beyond networks.

2.1.2 Security Threats against 5G RAN

Latency anomalies: One of the key performance indicators in 5G RAN network is latency.

There can be considerable delay in delivering services or in any particular interface of 5G

network. Latency in 5G network can be defined or categorized by two ways. First one

is by measuring the time to deliver a service and the second one is time taken to send or

receive one packet. This latency issue can occur due to several factors such as software

faults, application overload or conflicts, scheduling problems, difficulties with network

routing, overloaded servers, high memory usage or hardware failure. By collecting and

analyzing performance metrics or system logs through ML algorithms, granular view and

understanding of the complex network like 5G New Radio (NR) can be possible as well

as detection of latency and root cause can be identified. In one research paper [9], authors

collected the system logs from the base station containing all call records and information.

Then the log stream has been filtered and split into streams of individual user equipment.

Then those split data have been fed to ML algorithm to know deeply the reason behind

subtle latency in the network.

Jamming attacks: [10] Jammers placed on purpose by adversaries constitute a substan-

tial danger in 5G networks. They disrupt wireless networks in a variety of ways. Regular

jammers, which need a lot of power, continually block legitimate signals without moni-

toring user behavior. Delusive jammers fool by sending legitimate bit sequences, making

them more difficult to detect. Random jammers save energy by alternating between active

and idle modes. Responsive jammers monitor the communication channel and transmit

•

•

12

only when necessary, using less power. Go-next jammers are selective, focusing on one

frequency channel at a time, and if a jammer is detected, it will follow the transmitter to the

next frequency. Control channel jammers interfere with information exchange between

transmitters and receivers, potentially resulting in service denial or network access denial.

2.1.3 DDoS attack in 5G

The transition to 5G networks opens up previously unimagined possibilities for improving

connection speeds, latency, and overall connection. This transformation, however, offers major

issues in terms of network security. The Distributed Denial of Service (DDoS) assault, which

is a significant danger in the 5G context, is one of the most common and disruptive types

of cyberattack. DDoS assaults in 5G networks can have disastrous consequences, such as

considerable downtime, loss of crucial data, and damaged services, all of which can result in

major financial losses and reputational harm. Because of the highly scattered and dynamic

nature of 5G networks, as well as the vast number of connected devices and increasing data

rates, DDoS assaults have a larger attack surface.This makes detecting and mitigating such risks

difficult. Added to that, because of developments in attack plans and methodologies, DDoS

attacks on 5G networks may be more complicated and sophisticated than their predecessors.

As a result, building DDoS defensive methods that are resilient, scalable, and economical is

a critical necessity for safeguarding 5G networks. Various form of DDoS attacks in mobile

network has been described below.

Existing DDoS attacks can be classified into [11]:

Volume based attacks: This sort of DDoS attack seeks to flood a network’s bandwidth

with massive amounts of data. UDP (User Datagram Protocol) floods, ICMP (Internet

Control Message Protocol) floods, and other spoofed-packet floods are examples. The

primary purpose is to overwhelm the target site’s bandwidth, bringing its services to a

standstill. These assaults are often quantified in bits per second (Bps).

Protocol based attacks: These attacks take use of flaws in a server’s resources or in inter-

mediary communication devices such as firewalls and load balancers. SYN (Synchronize)

floods, fragmented packet assaults, the Ping of Death, Smurf DDoS, and other attacks are

examples. The attack operates by consuming server resources until the server is unable to

perform the targeted services. The frequency of these assaults is expressed in packets per

second (Pps).

Application layer attacks: These are some of the most devious forms of DDoS assaults

since they use requests that appear to be genuine and benign. The purpose is to crash

the web server, which is frequently accomplished by exploiting vulnerabilities in popular

systems such as Apache, Windows, or OpenBSD. Low-and-slow assaults and GET/POST

floods, in which attackers overwhelm a server with HTTP requests, are examples of this

kind. These assaults are often quantified in requests per second (Rps).

Each form of DDoS assault poses a substantial risk to network security and necessitates

various defenses. Understanding these threats and establishing powerful defensive measures

against them will be crucial as we go into the 5G era and beyond. Given the sophistication of

these assaults and the sheer volume of network data that must be monitored, traditional detection

and mitigation approaches may no longer be enough. This is where Artificial Intelligence (AI)

can come in handy.

•

•

•

13

With their capacity to learn, adapt, and reply in real-time, AI-based solutions are particularly

well-suited to solving the issues posed by DDoS assaults. AI can analyze trends, detect ab-

normalities, and identify possible risks faster and more accurately than traditional approaches.

Furthermore, AI can respond to threats independently, allowing for faster response times and

decreasing the window in which assaults might do damage.

Deploying these AI technologies at the network edge provides further benefits. Edge com-

puting moves processing and data storage closer to the point of use, improving reaction times

and reducing bandwidth use. In terms of DDoS mitigation, this implies being able to respond

to an assault almost immediately and as near to the source as feasible. On top of that, a coor-

dinated approach to DDoS detection can improve the efficacy of these tactics. Networks can

work together more effectively to identify and shut down DDoS assaults by exchanging threat

information and responses in real-time. A cooperative paradigm based on FL, in which ML

models are taught across numerous decentralized edge devices, offering a global perspective of

the threat landscape while protecting data privacy, might be used.

2.1.4 Cyber Threat Prevention Leveraging Federated Learning and O-RAN

As we have discussed in previous section that AI-based solutions, edge computing along with

collaborative approach represent a promising future in our DDoS defenses in the 5G era and

beyond. These novel approaches reflect the future of cybersecurity, in which proactive and

intelligent systems collaborate to ensure the integrity and dependability of our networks.

To combat the growing threat of cyber attacks in 5G and beyond, security paradigms must

evolve. Integrating FL based detection mechanism with O-RAN is one interesting technique.

[12] FL enables decentralized machine learning, inetwork edge (i.e., on the devices themselves),

improving privacy and avoiding some of the hazards associated with data centralization. FL

integration n which models are trained at the with O-RAN near real-time RAN Intelligent

Controller (RIC) services may enable effective threat detection and response mechanisms. It

might help identify and mitigate DDoS assaults, for example, by learning from network traffic

patterns and making localized judgments at the network edge.

Moreover, Open-RAN encourages interoperability and reduces vendor lock-in, potentially

lowering the danger of supply chain assaults. It enables operators to select various suppliers

for different RAN components, enhancing resistance against specific vulnerabilities. The com-

bination of these technologies offers a viable path ahead in terms of securing 5G and beyond

networks. However, it is a challenging endeavor that will need continual study and collaboration

from academia, business, and government.

2.2 Open RAN Architecture

The 5G Open O-RAN represents a fundamental shift in the design of cellular networks. The

RAN, which comprises base stations and associated digital signal processors, has traditionally

been the component of a mobile telecommunications system that links individual devices to

other sections of the network via radio connections. The hardware and software in these classic

designs are tightly integrated and frequently come from the same manufacturer.

Open RAN changes this by disconnecting the RAN’s hardware and software components.

This makes the RAN ecosystem more adaptable, interoperable, and competitive. Networks

may be designed with software and hardware from a variety of suppliers, enabling for more

innovation, faster deployment, and potentially reduced prices. Furthermore, Open RAN is

14

Figure 2.1: O-RAN interfaces and components.

[13]

concerned with the disaggregation of the Baseband Unit (BBU) into discrete pieces that may

be scaled independently. The BBU is made up of three major parts: the Central Unit (CU), the

Distributed Unit (DU), and the Radio Unit (RU).

RIC is a critical component of Open RAN in the context of 5G. The RIC is further subdi-

vided into two essential components: non-real-time (Non-RT RIC) and near-real-time (Near-RT

RIC).The Non-RT RIC focuses on non-time-sensitive policy, optimization, and lifecycle man-

agement functions. It is in charge of higher-level network-wide optimization and hosts the

service management platform as well as non-real-time apps.The Near-RT RIC, on the other

hand, is concerned with time-sensitive operations, including features such as real-time radio

resource management, admission control, and scheduling. It allows near-real-time applications

and houses RAN functions that demand a faster reaction time.

5G Open RAN is a vital part of the 5G network revolution because it provides advanced

features such as network slicing, which allows various virtual networks to be established on the

same infrastructure to serve different types of services or applications.

2.2.1 O-RAN Interfaces

In the O-RAN architecture, there are a number of open interfaces with various network respon-

sibilities that enable more interoperability and increased functionality [13] [14]. Figure 2.1

depicts the entire connectivity of different interfaces with corresponding building blocks of 5G

O-RAN architecture.

15

O1 Interface: The framework for service management and orchestration can leverage

network capabilities through this interface. It connects managed elements such as Open

Central Unit Control Plane (O-CU-CP), Open Central Unit User Plane (O-CU-UP), O-

RAN evolved Nobe B (O-eNB), O-RAN Distribution Unit (O-DU), O-RAN Radio Unit (O-

RU) to Service Mangement and Orchestration (SMO) framework. This interface provides

FCAPS services which are respectively fault, configuration, accounting, performance and

security management.

O2 Interface: It refers to the interface between O-cloud and SMO framework for providing

workload management and resource allocation. The functions this interface includes

are learning about O-cloud infrastructure, administration, scale in/out, platform software

management. Besides, through this interface, O-cloud resource management like creation,

deletion, and assigning O-cloud infrastructure are also performed.

R1 Interface: Through this interface, RAN applications (rApps) communicates to lever-

age non-real time RIC functions. R1 interface is also used for ML models training as well

as data analysis purposes.

A1 Interface: It is the interface that establishes connection between Non-RT RIC func-

tions in SMO framework and Near-RT RIC functions. A1 interface provides policies and

ML model management as well as information enrichment services.

E2 Interface: This interface connects near real time RIC to the nodes such as O-CU, O-

DU and O eNB. The protocols here in this interface are basically control plane protocols.

The functions this interface provide are near real time RIC services, control the policies

in E2 nodes, E2 nodes configuration updates, E2 set up and reset and report general error

situations.

Open Front-haul M-Plane: The components of the O-RU are handled using the Open

Front-haul M-Plane interface. It is used to initialize and configure operational settings

or for performance reporting. The risk factor here is that, software up-gradation in the

components occur through this interface.

Open Front-haul CUS -Plane: This interface has three parts which are control, user and

synchronization plane. This interface is responsible for time synchronization between O-

DU and O-RU units. Apart from that, downlink and uplink IQ data along with scheduling

and beam-forming commands are transmitted through this interface.

2.2.2 Security Opportunities of O-RAN

O-RAN architecture, a critical component of the 5G ecosystem, offers various options to improve

network security. O-RAN can provide the flexibility required to handle the security concerns of

5G and beyond by shifting away from a proprietary and monolithic model of network function

provision and toward a more open and disaggregated approach. The O-RAN design not only

transforms 5G infrastructure, but also includes new features such as the RIC, as well as rApps

and xApps. Together, these components add to the network’s substantial security potential.

RIC is a revolutionary RAN design feature that incorporates AI/ML capabilities into the

RAN, enabling intelligent control and optimization of network resources. Software applications

that operate on the RIC platform are known as rApps and xApps [15]. rApps are responsible for

•

•

•

•

•

•

•

16

radio resource management and radio layer control. xApps on the other hand, provide higher-

layer network management and control functions, giving a wide range of services ranging from

traffic management to advanced security features.

Security rApps and xApps have the ability to significantly improve network security. These

systems may use machine learning and AI to analyze network traffic in real time, detect irregu-

larities, and rapidly mitigate possible risks such as DDoS assaults. A security-oriented xApp,

for example, may monitor data flow to discover patterns associated with known risks and then

take quick automatic action to neutralize these threats, considerably decreasing possible harm.

Furthermore, these applications can employ FL models for joint threat detection and mitigation

across various network nodes while protecting individual user data privacy. It is conceivable to

implement near real-time, AI-driven security services directly within the RAN by integrating

these models within rApps and xApps.

in a nutshell, rApps and xApps provide an incredible opportunity to strengthen the security

protections in the O-RAN architecture. They might serve as the first line of defense against

increasingly complex and persistent attacks to 5G networks, making them an essential component

of future-proof and resilient network security policies.

2.3 Federated Learning

It is a ML approach that enables models to be trained on decentralized data, which is data that

is dispersed over several devices or places as opposed to being centralized in one place. As per

shown in Figure 2.2, training regional ML models on regional datasets is how federated learning

operates. Then, these nearby data centers regularly swap the model’s parameters and create

global parameters by applying various federated aggregation techniques. The local models are

then update their parameters to global ones served by centralized data centers. FL is especially

helpful when the data is confidential or it is not feasible or desired to send the data to a central

site for training via the internet.

Figure 2.2: Federated Learning Architecture.

[16]

17

2.3.1 Benefits of Federated Learning

The ability to train ML models on data that would otherwise be challenging or impossible

to utilize for training is one of the key advantages of FL. Consider a healthcare firm that

has patient medical record data dispersed across many hospitals and clinics, for instance.

For the purpose of training a central ML model, this data may be sensitive and subject to

privacy rules, making its transmission via the internet challenging or impossible. Without

ever sending the data over the internet, federated learning makes it feasible to train a ML

model on this decentralized data.

The ability to train machine learning models on data that is continuously updated or

changing is another advantage of federated learning. Consider a social networking site

with information on user interactions and postings as an illustration. As new posts are

created and exchanges take place, this information is continuously updated. Without

having to continually transfer the data to a central site for training, federated learning

makes it feasible to train a machine learning model on this dynamic data.

In situations when the data is dispersed throughout several organizations or groups that

might not wish to share their data with one another, federated learning might be help-

ful. In these situations, FL enables ML models to be trained on distributed data without

the requirement for data exchange. This implies that companies may utilize AI to im-

prove choices without compromising data privacy and running the risk of compromising

customer information.

Using FL, ML models may be trained on data produced by mobile devices, such as

behavioral patterns of users, location and sensor data. This may be very beneficial when

creating tailored suggestions or anticipating user demands. The ability to train the model

on a lot of data without having to send it over the internet or spend a lot of battery capacity

is one advantage of utilizing federated learning in this situation.

ML models may be trained upon data produced by industrial control systems, such as

data from sensors or actuators, using federated learning. Using this, control parameter

optimization or equipment failure prediction may be possible. The ability to train the

model on data from several systems without sending the data over the internet or interfering

with the systems’ normal functioning is one advantage of utilizing federated learning in

this situation.

ML models may be trained using data produced by financial institutions, such as transaction

data or credit ratings, using federated setup. For the purpose of identifying fraud or

estimating credit risk, this is beneficial. In this situation, one advantage of adopting FL

is that it permits the model to be trained on data from many financial institutions without

requiring them to exchange sensitive information.

FL can be adapted and implemented on student-generated data, such as assessing perfor-

mance information or learning preferences. This can help with individualized instruction

or making adjustments for certain students’ requirements. Overall, by enabling the train-

ing of models on sensitive and decentralized data, FL has the potential to significantly

broaden the scope and application of ML. By enabling the training of models on continu-

ously changing data without the requirement for constant data transfer, it can also increase

the effectiveness of machine learning.

•

•

•

•

•

•

•

18

2.3.2 Adopting Federated learning over traditional machine learning approach

Data privacy and security: FL makes it possible to train a machine learning model

without sending the data over the internet or storing it in a single location, which is

enormously beneficial when the data is sensitive or subject to privacy laws. It may not be

practical or desirable in certain situations to transport the data to a central site for training

as is typical for traditional ML methodologies.

Large data volume: Federated learning enables the training of models without the

requirement for data to be sent over the internet or stored in a centralized place, making

it suitable for training machine learning models on enormous quantities of decentralized

data. This can be especially helpful when the amount of data is massive to transfer or

keep in one place.

Data updating: Federated learning can be effective for training machine learning models

on data that is continually evolving or being updated since it eliminates the need to send

training data continuously to a centralized place. When data is continually changing and

frequent data transfers to a central location are needed for training, this might be especially

helpful.

2.4 Continual Federated Learning

In the developing subject of ML known as continual FL, the problems of FL and constant learning

are combined. The capacity of a model to learn from a stream of data, continuously adapt to new

tasks, and retain information from past ones is known as continual learning, sometimes known

as lifelong learning. It has been a ML aim for a while, and there has been substantial recent

development [17] [18]. However, ’catastrophic forgetting’—the phenomena where the model

forgets previous tasks while it learns new ones—remains a challenge for many ongoing learning

techniques. FL, on the other hand, is a distributed method to ML that enables model training on

a vast corpus of decentralized data. Without sharing data samples, the model is trained across a

number of distributed edge devices or servers retaining local data samples [19]. The protection

of privacy and decrease in communication costs are two key advantages. Combining these

two ideas, continual federated learning aims to continuously develop a model on dispersed data

streams. The FL paradigm is used to collaboratively enhance the global model while allowing

models to learn from a series of challenges on each local device [20]. It is a particularly active

study subject because it has the potential to be used in fields including health informatics, IoT,

and mobile devices, where data privacy and learning continuity are crucial.

As Continual Federated Learning emerges as a powerful paradigm for improving machine

learning models, tactics like experience replay and buffer management become critical to its

successful implementation. Experience Replay is a mechanism that saves the model’s experi-

ences (data samples) in a replay buffer or memory. Instead than using only the most recent data

during training, the model randomly picks a batch of earlier events from the buffer to learn.

This approach enables the model to break correlations in the observation sequence, flattening

the data distribution and making better use of experiences, hence assisting in the mitigation of

catastrophic forgetting (CF). This method becomes much more essential in Continual FL, as

models continuously learn from a sequence of tasks on each local device [21]. There are several

buffer techniques that can be adopted to enhance continual learning output.

• Naive Buffer: A naive buffer is the most basic type of replay buffer. It randomly gathers

•

•

•

19

samples from the training data and then randomly picks from these samples during replay.

The advantage of this strategy is its simplicity and effectiveness in breaking correlations

in the observation sequence. It may, however, neglect essential but unusual events on

occasion.

Reservoir Sampling Buffer: This form of buffer, which is an example of reservoir

sampling, keeps a fixed-size sample of its items regardless of the amount of elements it

encounters. When the buffer is full, it uses a probability to determine whether to replace

an existing element in the buffer with a new one. The reservoir buffer guarantees that each

viewed sample has an identical probability of appearing in the buffer, regardless of when

it was encountered. It is especially beneficial when the data size is unknown or unlimited.

[7]

Generative Replay Buffer: Instead of keeping prior samples in a replay buffer, a gen-

erative model is employed in a generative replay buffer to generate them. The benefit of

this strategy is that the buffer may produce as many” past” samples as needed, conserving

memory space.[22]

Hindsight Replay Buffer: The agent learns from a strategy it did not really adopt during

its investigation in retrospect replay buffers, treating it as if it were the original plan.

Because the agent may learn from its errors, it can lead to a more efficient learning

process.[23]

These buffer solutions provide greater effectiveness and efficiency for continuous learning,

allowing for better handling of catastrophic forgetting as well as more efficient memory uti-

lization. As continual learning progresses and more research is undertaken, increasingly more

complex and effective buffer methods are expected to be employed.

•

•

•

20

3 RELATED WORK AND LIMITATIONS

In this chapter, I will discuss about established research work related to the field of detecting

anomalies and intrusions in networked systems using machine learning and their limitations.

Additionally, I will highlight the differentiators of this thesis work with the mentioned related

research papers.

In [24], authors proposed a Hierarchical FL architecture consisting of three layers which are

clients, edge servers and global servers. Fully connected Artificial Neural Networks (ANNs)

with 2 hidden layers populating 256 perceptrons in each layer has been used as local and global

models. One of the significant findings of this research is the reduced training time advantage

of FL in comparison to centralized model. The trade-offs between communication expense and

training time based on frequency of contact with the servers were underlined by the authors in

this paper. To conduct experiments researchers have used UNSW-NB15 dataset [25] to feed to

their model, which is basically constructed out of synthetic environment along with major issues

such as class imbalance and class overlap [26].

To fullfill the purpose of detecting IoT network intrusions, another proposition [27] has been

made by the researchers by adopting both centralized and federated setup based on convolutional

neural network (CNN) and recurrent neural network (RNN) models. To observe the outcome

of the training and evaluation process of the federated setup, Edge-IIoTset [28], which consists

of real-world traffic flows mixed up with various attack types such as DDoS, XSS, MITM, SQL

Injection, and backdoor, has been split and distributed among a range of 3 to 15 participating

clients in this work.

Another research work [29] related to application layer DDoS Protection has proposed a

framework with four building blocks of Network Flow Collector, Features Extractor, Detector,

and Security Policy Manager. Here Multi-Layer Perceptron (MLP) model has been used as

the detector which has been fed app layer traffic collected and extracted by network flow

collector and feature extractor, respectively. The authors have used intrusion detection dataset

CICIDS- 2017 [30] to train the model. Being the traditional single node centralized anomaly

detection system is the limitation of the proposed architecture which does not cover unknown

attacks and sufficient attack surfaces of the network as well. Moreover, Neural Networks

(NNs) have a tendency to forget previously learned information due to a condition known as

CF which can be another drawback that can happen over time with the proposed model in this

paper.

In [6], authors have investigated the performance of various ML approaches such as Decision

Tree [31], Random Forest [32], K-Nearest Neighbor [33], Naive Bayes [34] and MLP [35] in

terms of anomaly detection in 5G. To conduct training, authors have constructed 5G NIDD

dataset [36] populating real world network traffic collected from 5GTN implemented at Univer-

sity of Oulu, Finland. Researchers have covered all types of DDoS attacks by generating attack

flows using various attack tools like Hping3, goldeneye, slowloris, torshammer and NMAP

along with legitimate traffic flows to construct the dataset. However, in this paper, instead of

leveraging federated learning process, traditional single node machine learning approach has

been taken into account.

To address the challenge of continuously evolving cyber-attacks, authors of the paper [37]

proposed Anomaly-based Network Intrusion Detection Systems (A-NIDS) by applying continual

learning to eradicate catastrophic forgetting. Researchers have chosen CICIDS 2017, CICIDS

2018 and KDD Cup’99 datasets to investigate the performance of the proposed system. To cope

up with class imbalance problem of the datasets, class incremental and domain incremental

learning settings have been adopted with the framework. Researchers have chosen simple MLP

and CNN [38] for detection purpose. Furthermore, two continual learning algorithms, which

are Elastic Weight Consolidation (EWC) and Gradiaent Episodic Memory (GEM), have been

implemented to reduce CF.

21

The authors of the survey paper [39] presented a thorough investigation of FL in the context

of intrusion detection systems. By training models locally on devices and communicating just

the model parameters to a central server, FL, as a decentralized learning approach, protects

security and improves privacy. The authors investigated numerous technologies and methods

that use ML, DL, and FL for intrusion detection, highlighting their advantages and synergies.

Additionally, they emphasized current difficulties in the use of FL in intrusion detection and

suggest potential future study routes, successfully laying the groundwork for greater research

in this field. This thorough study offers a useful insight of FL’s function and possibilities for

enhancing intrusion detection systems. With a motivation to leverage immense capabilities of

FL described in this research paper[39], I have employed FL as a part of my solution to tackle

DDoS attack and protect decentralized 5G network in this dissertation,

Another research work regarding anomaly detection in RAN environment is presented in

[40], where researchers investigated the increasing complexity of mobile radio access networks

as well as the rising of customer service quality demands. They emphasized the necessity

for automated network management and maintenance solutions to meet high service level

expectations, evaluating existing solutions such as Self-Organizing Networks (SON), Mobility

Load Balancing (MLB), and automatic antenna tilting, which frequently overlook service KPIs,

which directly influence user experience. They discovered a gap in anomaly detection accuracy

as well as a lack of telecommunication data-specific functions in existing R libraries, noting that

most current algorithms, designed for specialized datasets such as fraud detection or earthquake

signals, fail when applied to telecommunication network performance data. To address this,

they examined and tweaked R’s” changepoint” package[41], which can identify not just local

abnormalities but also anomalous time series—an important aspect of radio access network

(RAN) performance monitoring. They improved the method to reduce false positive anomalies

and compared its performance to that of other prominent R libraries, confirming its higher

accuracy for radio network performance data. Their research proposes a scalable, general

anomaly detection system for high-dimensionality data that avoids the need for further tuning for

different KPI groups or technologies, hence aiding automated network performance monitoring

significantly.

The authors in [42] addressed two key issues in the realm of Deep Learning-based IDS in

this study: CF and covariate shift. To identify and quantify these alterations in data distribution,

the authors presented an eight-stage statistics and machine learning guided implementation

approach. They also presented a unique feature importance-based approach for assessing the

influence of individual feature drift on IDS performance. The NSL KDD[43] and CICIDS

2017[44] datasets were analyzed using this methodology. The study found that continuous

learning-based approaches outperformed classic statistical techniques and cutting-edge boosting

and DNN models in terms of accuracy and false-positive rates.

Here[45], the authors offer a unique solution to network slicing in 5G networks, which they

describe as a Virtual Network Embedding (VNE) problem in their research study. Their purpose

is to map slice requests onto the core network as efficiently as possible. They found two important

hurdles in this area: guaranteeing slice isolation for protection against DDoS attacks and

obtaining high request coverage. To overcome these issues, the authors provide Slice Isolation-

based RL (SIRL), an actor-critic Reinforcement Learning (RL) paradigm. This methodology

creates the issue environment using five ideal graph characteristics, which are subsequently

controlled using a ranking mechanism. This ranking system simplifies the characteristics while

also improving learning performance.

In this paper[46], researchers presented an autonomic and cognitive security management

architecture developed for 5G and beyond networks in this study. This unique architecture

enables fine-grained zero-touch security control at several levels, including network functions,

22

sub-slices, and slices, as well as across multiple administrative and technological domains. They

proved the framework’s interoperability with current standards including zero-touch network

and service management (ZSM), 3rd Generation Partnership Project (3GPP), and Network

Functions Virtualization (NFV). This was done to demonstrate that their technique is compliant

with current standards and so acceptable for real-world use. Authors created a testbed to enable

distributed and totally autonomous detection of abnormalities inside a network slice and to

serve as a Proof-of-Concept (PoC) for monitoring and analytics functionalities. An anomaly

detection model was incorporated into the analytics service utilizing multivariate time series and

the unsupervised deep learning method LSTM (long short-term memory) AutoEncoder. They

used a dataset of 2361 samples to train the LSTM-based AutoEncoder model to reconstruct

time-series for typical behavior, with 20% of these samples being saved for validation. They

carried out tests where abnormalities were effectively identified, such as application-layer DDoS

assaults on the video streamer CNF.

In response to the problem of CF in FL, in which the global model forgets past learned

knowledge while adjusting to new tasks, the researchers [47] developed Continual Federated

Learning with Distillation (CFeD). The team set up a testing environment with 100 clients, 10

percent of whom were chosen at random to participate in each training cycle. For text and picture

classification tasks, they employed datasets such as THUCNews, SogouCS, Sina2019, NLPIR

Weibo Corpus, CIFAR10, CIFAR-100, and Caltech-256. They created task sequences for two

different scenarios: Domain-IL and Class-IL. Domain-IL represented circumstances in which

input distributions changed continuously during the series, whereas Class-IL indicated instances

in which new classes arose progressively across the run. They employed Finetuning, FedAvg,

MultiHead, EWC, LwF, DMC, and their own developed approach, CFeD, for comparative

evaluation. The study includes successively training models on various tasks and assessing the

performance of their methods against these proven methodologies.

The below mentioned table (Table 3.1) depicts comparative overview of this thesis work with

related research works described in this chapter.

23

Table 3.1: Comparison with related research work.
Reference Year Techniques used Contribution

[23]

2022

Conventional FL setup

The research work presented traditional Federated Learning architecture,

demonstrating its reduced training time advantage compared to centralized models.

The work also provides insight into the trade-offs between communication costs and

training time in a FL context, based on the frequency of contact with servers

[26]

2023

Single node ML models and conventional FL setup

The research approached detecting IoT network intrusions, using both centralized and

federated setups with convolutional neural network (CNN) and recurrent neural

network (RNN) models, and demonstrating their effectiveness with real-world traffic

data containing various attack types.

[28]

2020

Single node ML models

This research proposed a four-block framework for application layer DDoS Protection

using a Multi Layer Perceptron (MLP) model as single node model, demonstrating its
effectiveness through the use of the CICIDS-2017 dataset.

[6]

2022

Single node ML models

The authors in this study evaluated the effectiveness of various machine learning

models, including Decision Trees, Random Forest, K-Nearest Neighbor, Naive Bayes,

and MLP, for anomaly detection in 5G, utilizing a custom-built 5G NIDD dataset

composed of real-world network traffic and a comprehensive range of DDoS attack

types.

[36]

2022

Single node ANN with EWC and GEM

The authors proposed an Anomaly-based Network Intrusion Detection System (A-

NIDS) that employs continual learning to mitigate catastrophic forgetting, effectively

addressing evolving cyber threats, utilizing a combination of different datasets and

continual learning algorithms like Elastic Weight Consolidation (EWC) and Gradient

Episodic Memory (GEM)

[38]

2022

Conventional FL setup

The authors conducted a comprehensive exploration of Federated Learning (FL) in

intrusion detection systems, highlighting its privacy and security benefits,

investigating related technologies and methodologies, addressing existing challenges,

and paving the way for future research avenues, thus providing valuable insight into

the potentials of FL in enhancing intrusion detection.

[39]

2018

changepoint (R library)

The researchers addressed the complexity of mobile radio access networks and

customer service expectations by adapting the "changepoint" package in R to develop

a scalable, generic anomaly detection algorithm for high-dimensionality data, proving

its superior accuracy in handling telecom network performance data and aiding

automated network performance monitoring.

[41]

2022

Single node DNN models with LwF, experience

replay, and
dark experience replay

The researchers addressed the challenges of CF and covariate shift in deep learning-

based IDS, employing eight-stage framework and continual learning models in large-
scale systems security.

[45]

2023

Reinforcement Learning (RL)

Slice requests are efficiently mapped into the core network using the author's

suggested Slice Isolation-based Reinforcement Learning (SIRL) model, which makes

use of five ideal graph characteristics and a ranking mechanism to provide high

request coverage and slice isolation for DDoS prevention.

[46]

2022

LSTM (long short-term memory) AutoEncoder

In order to provide fine-grained zero-touch security control across many levels and

domains, the researchers designed an autonomic and cognitive security management
architecture for 5G and beyond networks.

[44] 2022 Continual FL with Distillation technique
Continual Federated Learning with Distillation (CFeD) approach has been made by the

researchers to prevent catastrophic forgetting in Federated Learning

2023

Continual FL with reservior sampling buffer

technique

To detect DDoS attacks in 5G, continual FL based setup has been proposed with

reservoir sampling buffer to maintain effeciency in performance over time by

preserving old knowledge during continuous learning of new traffic pattern while

detecting attacks targeting various nodes in distributed network.

24

4 CONTINUAL FEDERATED LEARNING FRAMEWORK

In this section, I will describe the complete continual FL framework and work process that I am

proposing towards making a sustainable network attack detection system.

Legitimate Users

Internet

Figure 4.1: Integration of the Proposed Model in O-RAN.

Integration and placement of proposed DDoS detection framework in O-RAN architecture

has been shown in Figure 4.1. The local detector for each basestation is deployed in Near-RT RIC

as xAPPs to protect corresponding basestation from incoming anomalous traffics. Federated

aggregation process is placed in Non-RT RIC of the segment of SMO, where global parameters

for all basestations is generated along with updating local models accordingly. As shown in

Figure 4.1, incoming traffic to each basestation is captured from the F1 interface between O-DU

and O-CU-UP and redirect towards local detector(xApp) after conducting data preprocessing.

Then after finishing necessary training process in clients, local weights are sent for federated

aggregation in SMO section through A1 interface. The entire dataprocessing steps with the

detailed description of used dataset, model framework and deployment procedure has been

described in below sections.

4.1 Description of Dataset

The 5G-NIDD dataset is unique since it produces benign traffic using live traffic from actual

mobile devices in the network in contrast to other datasets that often use simulated traffic. The

use of many protocols, including HTTP, HTTPS, SSH, and SFTP, provides more realistic traffic

behavior and adds to the depth and variety of the dataset.[6]

SMO

A1 A1
Non-RT RIC

FedAvg

Near-RT RIC Near-RT RIC

Detector Detector

E2 E2

O1 O1

O-CU-UP O-CU-UP

F1-u
F1-u

N3 N3

Data Preprocessing Traffic Capture O-DU O-DU Traffic Capture Data Preprocessing

O-FH O-FH

UPF UPF
O-RU O-RU

Attackers Attackers

N6 N6

User 1 User 2 User 3 User 4 User 5
User 6 User 7 User 8 User 9 User 10

Legitimate Users

25

4.1.1 Attack types and tools

A prominent class of cyber risks is known as DoS attacks, the primary objective of which is

to prevent authorized users from accessing a system or network resource [48]. This can be

done by temporarily or permanently interrupting the functions of a host that is connected to the

Internet, frequently by flooding it with an overwhelming amount of Internet traffic [49]. In a

DoS attack, the attacker specifically seeks to impede authorized users from using the targeted

service [50]. The use of network ”flooding”, which blocks lawful network traffic, or machine

interference, which limits access to a certain service, are common techniques [50]. There are

two classes of DoS attacks. The first category consists of assaults intended to bring down a

server. The second, often referred to as flood assaults, happen when the server is overloaded

with too much traffic to buffer, which slows down the system until it ultimately stops working

[49]. Researchers [6] examined three common forms of DoS/DDoS attacks: application layer,

protocol-based, and volume-based assaults. Using tools like Hping3, volume-based assaults

utilized methods like ICMP Flood and UDP Flood to deliver an excessive amount of data and

overload network resources. The SYN Flood, SYN Scan, and TCP Connect Scan attacks, which

manipulate the TCP three-way handshake protocol to drain network resources or use Nmap to

search for open ports, are examples of protocol-based attacks that took use of weaknesses in

the current protocol. Application layer assaults, like the HTTP Flood, target application layer

services by impersonating normal human activity in order to avoid detection and are carried out

utilizing tools like the Goldeneye. The Slowrate DoS was also investigated for its distinctive,

slowly moving assaults, which are often more challenging to spot. Furthermore, they used Nmap

to carry out a UDP Scan to assess port statuses. All of these methods reflect several DoS/DDoS

attack subcategories that are included in the dataset.

ICMP Flood: To overrun the target network in this investigation, ICMP echo requests

were sent at high frequency. This assault, which made use of the Hping3 program,

rendered the service unavailable to normal users.

UDP Flood: The researcher used the Hping3 program to send a large number of UDP

packets in an attempt to simulate a UDP flood assault. As a result, the system stopped

responding since there were so many ”Destination Unreachable” answers.

SYN Flood: The researchers launched a SYN flood assault by taking advantage of the

TCP three-way handshake protocol. This resulted in a large number of partially open

connections, eventually draining the receiver and blocking access to authorized users.

HTTP Flood: An HTTP flood attack, which is good at imitating human behavior and

evading detection, was also used in the research to target the application layer. This web

server assault was conducted using the Python-based Goldeneye tool.

Slowrate DoS: The researchers also looked at slow rate DoS assaults, which are more

difficult to identify since they move at a slower pace and send out fewer packets. They

used several Python scripts and tools to carry out slow POST requests and slowloris DoS

attacks.

SYN Scan: The researchers used a partial three-way handshake during the setup of a TCP

connection to find available ports using the SYN scan technique. The Nmap open-source

program was used to carry out this quick and well-liked scanning methodology.

•

•

•

•

•

•

26

TCP Connect Scan: Unlike SYN scan, the TCP connect scan successfully completed the

three-way handshake, which made it slower but necessitated less privileges. The Nmap

program was also used to do this scan.

UDP Scan: As a last step, the researchers sent UDP datagrams to certain ports to perform

a UDP scan. The target’s response, or lack thereof, was used to establish a port’s state.

The Nmap tool was also used to carry out this scan.

4.2 Data Preprocessing

Handling Missing values: I have removed all missing values and infinite values from the

datasets, as they contain substantial number of missing and infinite values.

Feature and Target Seperation: Here I have seperated features from recorded network

flows in the datasets and their labels in the form of independent and dependent variables.

Label Encoding: Moving forward with binary classification approach, I have categorized

the input traffic into legitimate and malicious traffic. I have taken all DDoS classes as part

of the attack category along with regular flow as benign traffic. Therefore, I have encoded

the legitimate and attack traffic patterns to binary values of 0 and 1 correspondingly.

One-Hot Encoding: The process to convert categorical features into a format that can

be feed to machine learning model is named as one-hot encoding. In my experiments, I

have conducted one-hot encoding transformation for certain categorical features, where

I have created separate binary feature for each and every unique category contained by

a particular categorical feature. These newly created dummy features basically represent

the presence with a binary 1 or the absence with a binary 0 of a specific feature in the

datasets.

Feature Scaling Since many machine learning algorithms struggle when the input nu-

merical properties have variable scales, standardization of the features is crucial. In this

research, I have performed standardization of the feature set prior to feeding data into

model using standard scaler technique which standardizes the features by removing the

mean and scaling to unit variance [51].

Sampling Buffer I have kept the size of the buffer reservoir as 5000. This means that to

maintain a broad and representative sample of experiences for the training process, the

buffer will keep track of a subset of 5000 data samples from the incoming data stream.

The reservoir sampling technique decides whether to keep or reject a new experience

based on a given probability when fresh experiences come in and the buffer fills up [7].

In order to ensure that the model can learn from a representative collection of events

without stressing the memory resources, the reservoir sampling approach is implemented

in this way, which is a crucial step in memory management for tasks involving continuous

learning.

4.3 Proposed model

I have used MLP approach for training and detection of network anomalies in our research.

The detection model which is a feedforward neural network is constructed with one input layer

•

•

•

•

•

•

•

•

27

Datasets

Task 1 Task 2

+
Task n

Local Datasets Buffer

Datasets
+

Task 1 Task 2 Task n

Local Datasets Buffer

of 82 input features coming from 5G NIDD dataset [6], three hidden layers with 64 neurons

each and one output layer containing only one node for binary classification detection. I have

used ReLU activation function in hidden layers and sigmoid in the final layer of our model. To

go with the nature of detection scenario, I have used binary crossentropy (BCE) as criterion

to minimize the loss during training process. Moreover, as optimizer of the model, adaptive

learning rate optimization algorithm, Adam has been utilized. Carrying out investigation with

various values, learning rate has been kept as 0.01 for optimum detection accuracy. From feature

selection perspective, I have deleted the features such as source and destination IP addresses

as well as ports to keep the anomaly detection system as generic as possible. I also eliminated

features with null values and consistent values across all flows since they have no influence on

model correctness. After removing unnecessary features, I have considered most other features

critical and kept them as input of the model by considering the fact that, network traffics are

continuously changing over time with the evolution of zero day attacks.

4.4 Experimental Setup

To conduct experiments, I have used three virtual machines (VMs) as shown in Figure 4.2, two

of which served as clients and one of which served as the central server for federated averaging

of the weights coming from clients after determined rounds of training. Each VM had the

configuration of two CPU cores, 5 GB of RAM, and the Ubuntu 22.04.2 LTS (Jammy Jellyfish)

operating system installed.

Client 1 Client 2

Figure 4.2: Experimental Setup.

Each of the remote clients sends the weights of the model using HTTP post request after the

training phase with local data and checks HTTP response to ensure successful transaction of

weights. The central server performs standard federated averaging (FedAVg)[19] after ensuring

Client 2 weights

Global weights
Flask App Client 1 weights

Aggregator

Local model Local model

28

arrival of weights from all the remote clients and serves the updated weights to each of the client

using HTTP GET method. Besides enabling scalability in terms of handling large number of

clients, FedAvg can reduce communication cost and handles Non-IID data effectively which has

motivated in applying this technique as aggregation process in this thesis work.

4.5 Training Strategy and Federated Aggregation Process

4.5.1 Local Training Process

After preprocessing and preparing all datasets to fit for the proposed model, I have trained the

model by considering two different scenarios. The first scenario goes with conventional FL

skipping CL integration where I have fed all the datasets categorized by different attack types

one by one to the local models in two clients and train the models with the batch size 128 along

with learning rate 0.01. During the training process of one batch, output of one layer has been

fed forward to other layer and at the end of the training, average loss has been calculated and

fed backward to the model for optimization. Training has been conducted in 10 epochs for each

dataset. When the training is finished, corresponding client sends the weights of the model

to aggregation server for federated averaging [19] to be conducted. After federated averaging

process, the clients get the updated weights coming from aggregation server and updates their

models accordingly. By following 3 rounds of the same process of federated averaging with one

training dataset, evaluation process for all the test datasets takes place to see how the effectively

the local models are identifying attacks of other client. Here to test the efficiency of the local

models, I have chosen training datasets of one client as the test dataset for other client which has

not been encountered by the local model before. Evaluation for all training dataset have also

been performed to see how CF is happening in the model, as the model proceeds further with

the training of new datasets everytime.

At the second scenario, I have chosen Reservoir Sampling Buffer [7] to preserve a portion of

previously learned samples. The algorithm of entire local training and evaluation process has

been mentioned in Figure 4.3. As per the algorithm in Figure 4.3, I have employed techniques to

eradicate over-fitting problem, where the the model checks for maximum 3 epochs of accuracy

and compares with highest accuracy point got so far. If the accuracy doesn’t improve in 3

epochs it stops the training process and moves forward with the highest accuracy achieved.

After completing training with one dataset, buffer is filled with representative samples from

that dataset and when new dataset comes into place for training, the buffer is concatenated and

shuffled with the current dataset before feeding to the model. By following the above processes

of training and federated aggregation, evaluation for all train and test datasets happen the same

way as first scenario and metrics results between two scenarios have been compared with each

other to observe how the local models are detecting anomalies along with eradicating CF in

parallel.

29

𝐾
𝑘=1

Figure 4.3: Algorithm of Training and Evaluation in Client

4.5.2 Federated Averaging Process

After performing local training process, all clients send their weights and corresponding data

size which is used by the central server to perform standard federated averaging (FedAvg) [19]

by following below formula:

𝑤avg =

𝐾
𝑘
.
=

1

𝑛𝑘 · 𝑤𝑘

(4.1)

Here, 𝑤avg denotes the averaged weights, 𝐾 is the total number of clients, 𝑛𝑘 is the number

of samples at client 𝑘, and 𝑤𝑘 are the weights received from client 𝑘. After conducting
federated averaging, updated weights are then distributed to all clients before starting next
training and evaluation process locally. The pseudo code of entire aggregation process of the
central server has been shown in Figure 4.4

𝑛
𝑘

.

30

Figure 4.4: Algorithm of Federated Aggregation Process

31

5 EVALUATION

In this chapter, the entire evaluation process of the local models in all remote clients will be

described elaborately. We know that, with the distributed nature of 5G O-RAN, possibility and

susceptibility to cyber attacks have gone up high. Moreover, day by day network traffic patterns

along with the way of performing cyber attacks are changing along with increasing attack

surface. That is why although federated setup can efficiently reduce cyber attack from various

vulnerable nodes, the consistency in detecting anomalies decrease with time due to forgetful

nature of the local models. As the models in various network end points continue to learn new

traffic patterns, they tend to forget the knowledge preserved from old samples which is called

CF. To observe the performance of the proposed model in detecting cyber threats specifically

DDoS attacks, I made two strategies, one of which are conventional FL where the performance

metrics along with the sign of CF has been observed and another one comes with knowledge

preserving nature which is the strategy of FL integrated with CL.

5.1 Conventional Federated Learning Strategy

To evaluate the designed model, at the first place, I have started by making a strategy which will

perform and improve the detection efficiency of the local models by standard federated learning

concept. one loop of the training process include 10 epochs of training and immediately after

the training process, each of the two remote clients sends their local model’s weights to central

server for the calculation of standard federated averaging process. Upon completion of federated

averaging, central server updates all local models with updated weights. The above mentioned

process has been considered as one round of training. By careful observation of evaluation

metrics results, I had to conduct 3 rounds of training process with each training dataset to get

satisfactory performance from the local models.

After completing training with each dataset, I have swapped current training dataset of one

client to other client which has been considered as test dataset for that client so that each client

can be tested with flows that their corresponding local model has not experienced during training.

Moreover, to investigate the existence of CF, I have tested local models with all datasets right

after conducting training process with each separate attack dataset.

32

F1
 s

co
re

P

re
ci

si
o

n

100
95
90

80

Accuracy of test datasets

Goldeneye2 ICMPFlood2 SSH2

SYNFlood2 SYNScan2 Slowloris2

TCPConnect2 TorShammer2 UDPFlood2

UDPScan2

100
95
90

80

Precision of test datasets

Goldeneye2 ICMPFlood2 SSH2
SYNFlood2 SYNScan2 Slowloris2
TCPConnect2 TorShammer2 UDPFlood2

UDPScan2

60 60

40 40

20 20

0 0

Training Dataset

(a) Accuracy of test dataset in client 1.

Recall of test datasets

Goldeneye2 ICMPFlood2 SSH2
SYNFlood2 SYNScan2 Slowloris2
TCPConnect2 TorShammer2 UDPFlood2

UDPScan2

100
95
90

Training Dataset

(b) Precision of test dataset in client 1.
F1 score of test datasets

Goldeneye2 ICMPFlood2 SSH2
SYNFlood2 SYNScan2 Slowloris2
TCPConnect2 TorShammer2 UDPFlood2

UDPScan2

100
95
90

80 80

60 60

40 40

20 20

0 0

Training Dataset

(c) Recall of test dataset in client 1.

Training Dataset

(d) F1 score of test dataset in client 1.

Figure 5.1: Performance evaluation metrics of the test dataset in client 1.

R
e

ca
ll

A

cc
u

ra
cy

33

F1
 s

co
re

P

re
ci

si
o

n

100
95
90

80

Accuracy of test datasets

Goldeneye1 ICMPFlood1 SSH1

SYNFlood1 SYNScan1 Slowloris1

TCPConnect1 TorShammer1 UDPFlood1

UDPScan1

100
95
90

80

Precision of test datasets

Goldeneye1 ICMPFlood1 SSH1
SYNFlood1 SYNScan1 Slowloris1
TCPConnect1 TorShammer1 UDPFlood1

UDPScan1

60 60

40 40

20 20

0 0

Training Dataset

(a) Accuracy of test dataset in client 2.

Recall of test datasets

Goldeneye1 ICMPFlood1 SSH1
SYNFlood1 SYNScan1 Slowloris1
TCPConnect1 TorShammer1 UDPFlood1

UDPScan1

100
95
90

Training Dataset

(b) Precision of test dataset in client 2.
F1 score of test datasets

Goldeneye1 ICMPFlood1 SSH1
SYNFlood1 SYNScan1 Slowloris1
TCPConnect1 TorShammer1 UDPFlood1

UDPScan1

100
95
90

80 80

60 60

40 40

20 20

0 0

Training Dataset

(c) Recall of test dataset in client 2.

Training Dataset

(d) F1 score of test dataset in client 2.

Figure 5.2: Performance evaluation metrics of the test dataset in client 2.

I have drawn dedicated line graphs for accuracy, precision, recall and F1 score of both test

data and train data separately for each client. From the line graphs of accuracy, precision, recall

and F1 score for both clients, a significant fluctuation can be seen in results, which means that, as

the recorded network flows are different in different dataset, moving forward with each dataset,

R
e

ca
ll

A

cc
u

ra
cy

34

associated local models in clients tend to forget what it has learned from the previous dataset.

That is why when any local model of any client encounters old samples, it is not being able to

detect accurately. It is a clear sign of forgetful nature of the ML models.

100
95
90

80

60

40

20

0

Accuracy of train datasets

Goldeneye1 ICMPFlood1 SSH1
SYNFlood1 SYNScan1 Slowloris1
TCPConnect1 Torshammer1 UDPFlood1

UDPScan1

100

90

80

70

60

50

40

30

20

10

0

Precision of train datasets

Goldeneye1 ICMPFlood1 SSH1
SYNFlood1 SYNScan1 Slowloris1
TCPConnect1 TorShammer1 UDPFlood1

UDPScan1

Training Dataset

(a) Accuracy of train dataset in client 1.

Recall of train datasets

Goldeneye1 ICMPFlood1 SSH1
SYNFlood1 SYNScan1 Slowloris1
TCPConnect1 TorShammer1 UDPFlood1

UDPScan1

100

90

80

70

60

50

40

30

20

10

0

Training Dataset

(b) Precision of train dataset in client 1.

F1 score of train datasets

Goldeneye1 ICMPFlood1 SSH1
SYNFlood1 SYNScan1 Slowloris1
TCPConnect1 TorShammer1 UDPFlood1

UDPScan1

100

90

80

70

60

50

40

30

20

10

0

Training Dataset

(c) Recall of train dataset in client 1.

Training Dataset

(d) F1 score of train dataset in client 1.

Figure 5.3: Performance evaluation metrics of the train dataset in client 1.

Re
ca

ll
Ac

cu
ra

cy

F1
 s

co
re

Pr

ec
isi

on

35

F1
 s

co
re

P

re
ci

si
o

n

100
95
90

80

Accuracy of train datasets

Goldeneye2 ICMPFlood2 SSH2

SYNFlood2 SYNScan2 Slowloris2

TCPConnect2 TorShammer2 UDPFlood2

UDPScan2

100
95
90

80

Precision of train datasets

Goldeneye2 ICMPFlood2 SSH2
SYNFlood2 SYNScan2 Slowloris2
TCPConnect2 TorShammer2 UDPFlood2

UDPScan2

60 60

40 40

20 20

0 0

Training Dataset

(a) Accuracy of train dataset in client 2.

Recall of train datasets

Goldeneye2 ICMPFlood2 SSH1
SYNFlood2 SYNScan2 Slowloris2
TCPConnect2 TorShammer2 UDPFlood2

UDPScan2

100
95
90

Training Dataset

(b) Precision of train dataset in client 2.
F1 score of train datasets

Goldeneye2 ICMPFlood2 SSH2
SYNFlood2 SYNScan2 Slowloris2
TCPConnect2 TorShammer2 UDPFlood2

UDPScan2

100
95
90

80 80

60 60

40 40

20 20

0 0

Training Dataset

(c) Recall of train dataset in client 2.

Training Dataset

(d) F1 score of train dataset in client 2.

Figure 5.4: Performance evaluation metrics of the train dataset in client 2.

Evaluation metrics table 5.1, 5.2, 5.3, 5.4, 5.5 and 5.6 mentioned at the end of this chapter

for both clients offer more clear perception about how CF is occurring in traditional FL setup.

For example, after training with first dataset named Goldeneye 1 and Goldeneye 2, respectively,

in client 1 and client 2, I tested both clients against both datasets. The evaluation accuracy

R
e

ca
ll

A

cc
u

ra
cy

36

for client 1 came out as 99.67% and 99.88% for train and test data, respectively. On the other

hand,in client 2, an accuracy of 99.85% and 99.54% sequentially for train and test data has been

achieved. However, when the second training dataset (i.e., ICMPFlood 1 and ICMPFlood 2) is

fed to the local models, weights start to change by the knowledge gathered around the current

dataset. That is why accuracy drops drastically for previous train and test data to 59.04% and

57.94% in client 1 along with 30.93% and 18,86% percent in client 2. Same problem has been

experienced in the values of precision, recall and F1 score also. After finishing entire training

process with 10 datasets in each client, all the metrics output stays quite low and inconsiderable,

except for the last dataset.

5.2 Continual Federated Learning Strategy

To reduce the effects of CF in local models, I have made another strategy, where I have included

reservoir sampling buffer from the avalanche library.[7] The difference between one training

cycle with previously mentioned conventional strategy is that, after training with first dataset,

buffer preserves 5000 representative samples from that dataset. Then, before feeding second

dataset to client for training, the samples in buffer is concatenated and shuffled with current

dataset so that a replay of previous experience can occur during training period. By following

this way, the weights are reforming in all layers of the model in such a way that the model doesn’t

forget what it learned in previous training round.

Substantial understanding can be achieved by meticulous observation of line graphs of con-

tinual FL strategy. According to the line graphs in Figure 5.7 and 5.8, the metrics values for

each dataset stays low and fluctuating until the dataset comes into training phase, but when a

particular dataset is fed to the model, the detection efficiency of that dataset goes approximately

above 95% and from that phase, it continues to maintain high evaluation values even after the

local models being trained on other datasets. Besides satisfactory evaluation results in train

data, the models in both clients perform efficiently in detecting test data which are unknown to

corresponding local models as depicted in Figure 5.5 and 5.6. Eventually, when the local models

are trained with all types of DDoS attack datasets, due to the beneficiary effect of experience

replay strategy, the weights in the models of both clients are set in such a way to make the local

models competent enough to detect any type of DDoS attack along with genuine traffic with

significantly high metrics values.

37

F1
 s

co
re

P

re
ci

si
o

n

100
95
90

80

Accuracy of test datasets

Goldeneye2 ICMPFlood2 SSH2

SYNFlood2 SYNScan2 Slowloris2

TCPConnect2 TorShammer2 UDPFlood2

UDPScan2

100
95
90

80

Precision of test datasets

Goldeneye2 ICMPFlood2 SSH2
SYNFlood2 SYNScan2 Slowloris2
TCPConnect2 TorShammer2 UDPFlood2

UDPScan2

60 60

40 40

20 20

0 0

Training Dataset

(a) Accuracy of test dataset in client 1.

Recall of test datasets

Goldeneye2 ICMPFlood2 SSH2
SYNFlood2 SYNScan2 Slowloris2
TCPConnect2 TorShammer2 UDPFlood2

UDPScan2

100
95
90

Training Dataset

(b) Precision of test dataset in client 1.
F1 score of test datasets

Goldeneye2 ICMPFlood2 SSH2
SYNFlood2 SYNScan2 Slowloris2
TCPConnect2 TorShammer2 UDPFlood2

UDPScan2

100
95
90

80 80

60 60

40 40

20 20

0 0

Training Dataset

(c) Recall of test dataset in client 1.

Training Dataset

(d) F1 score of test dataset in client 1.

Figure 5.5: Performance evaluation metrics of the test dataset in client 1 (With Buffer).

R
e

ca
ll

A

cc
u

ra
cy

38

F1
 s

co
re

P

re
ci

si
o

n

100
95
90

80

Accuracy of test datasets

Goldeneye1 ICMPFlood1 SSH1

SYNFlood1 SYNScan1 Slowloris1

TCPConnect1 TorShammer1 UDPFlood1

UDPScan1

100
95
90

80

Precision of test datasets

Goldeneye1 ICMPFlood1 SSH1
SYNFlood1 SYNScan1 Slowloris1
TCPConnect1 TorShammer1 UDPFlood1

UDPScan1

60 60

40 40

20 20

0 0

Training Dataset

(a) Accuracy of test dataset in client 2.

Recall of test datasets

Goldeneye1 ICMPFlood1 SSH1
SYNFlood1 SYNScan1 Slowloris1
TCPConnect1 TorShammer1 UDPFlood1

UDPScan1

100
95
90

Training Dataset

(b) Precision of test dataset in client 2.
F1 score of test datasets

Goldeneye1 ICMPFlood1 SSH1
SYNFlood1 SYNScan1 Slowloris1
TCPConnect1 TorShammer1 UDPFlood1

UDPScan1

100
95
90

80 80

60 60

40 40

20 20

0 0

Training Dataset

(c) Recall of test dataset in client 2.

Training Dataset

(d) F1 score of test dataset in client 2.

Figure 5.6: Performance evaluation metrics of the test dataset in client 2 (With Buffer).

R
e

ca
ll

A

cc
u

ra
cy

39

F1
 s

co
re

P

re
ci

si
o

n

100
95
90

80

Accuracy of train datasets

Goldeneye1 ICMPFlood1 SSH1

SYNFlood1 SYNScan1 Slowloris1

TCPConnect1 Torshammer1 UDPFlood1

UDPScan1

100
95
90

80

Precision of train datasets

Goldeneye1 ICMPFlood1 SSH1
SYNFlood1 SYNScan1 Slowloris1
TCPConnect1 Torshammer1 UDPFlood1

UDPScan1

60 60

40 40

20 20

0 0

Training Dataset

(a) Accuracy of train dataset in client 1.

Recall of train datasets

Goldeneye1 ICMPFlood1 SSH1
SYNFlood1 SYNScan1 Slowloris1
TCPConnect1 Torshammer1 UDPFlood1

UDPScan1

100
95
90

Training Dataset

(b) Precision of train dataset in client 1.
F1 score of train datasets

Goldeneye1 ICMPFlood1 SSH1
SYNFlood1 SYNScan1 Slowloris1
TCPConnect1 Torshammer1 UDPFlood1

UDPScan1

100
95
90

80 80

60 60

40 40

20 20

0 0

Training Dataset

(c) Recall of train dataset in client 1.

Training Dataset

(d) F1 score of train dataset in client 1.

Figure 5.7: Performance evaluation metrics of the train dataset in client 1 (With Buffer).

R
e

ca
ll

A

cc
u

ra
cy

40

F1
 s

co
re

P

re
ci

si
o

n

100
95
90

80

Accuracy of train datasets

Goldeneye2 ICMPFlood2 SSH2

SYNFlood2 SYNScan2 Slowloris2

TCPConnect2 TorShammer2 UDPFlood2

UDPScan2

100
95
90

80

Precision of train datasets

Goldeneye2 ICMPFlood2 SSH2
SYNFlood2 SYNScan2 Slowloris2
TCPConnect2 TorShammer2 UDPFlood2

UDPScan2

60 60

40 40

20 20

0 0

Training Dataset

(a) Accuracy of train dataset in client 2.

Recall of train datasets

Goldeneye2 ICMPFlood2 SSH2
SYNFlood2 SYNScan2 Slowloris2
TCPConnect2 TorShammer2 UDPFlood2

UDPScan2

100
95
90

Training Dataset

(b) Precision of train dataset in client 2.
F1 score of train datasets

Goldeneye2 ICMPFlood2 SSH2
SYNFlood2 SYNScan2 Slowloris2
TCPConnect2 TorShammer2 UDPFlood2

UDPScan2

100
95
90

80 80

60 60

40 40

20 20

0 0

Training Dataset

(c) Recall of train dataset in client 2.

Training Dataset

(d) F1 score of train dataset in client 2.

Figure 5.8: Performance evaluation metrics of the train dataset in client 2 (With Buffer).

The essential benefit of this replay buffer strategy can be seen from the line graphs shown in

Figure 5.5, 5.6, 5.6 and 5.8 and table 5.4, 5.5 and 5.6. According to the tables 5.4, 5.5 and 5.6,

after having data samples in buffer, the accuracy in evaluation stage does not go significantly

low which means the model retains considerable amount of knowledge from the previous data

R
e

ca
ll

A

cc
u

ra
cy

41

points with the help of buffer itself. For instance, accuracy of Goldeneye 1, ICMPFlood 1, SSH1

in client 1 can be observed which are maintaining the mark of 99% with a negligible decimal

value. Same goes for other datasets also. At the end of entire training process, both clients

are detecting almost all test datasets with above 98% accuracy. However, there is an overhead

cost in terms of training time and memory buffer size that comes with this solution. The buffer

with 5000 samples posses 273.4375 MB in memory, If the buffer size is increased to 10000

and 20000 samples, it will take 546.875 and 1093.75 MB respectively. Moreover, from Table

5.4 and 5.6, it can be clearly seen that for comparatively large datasets, the solution with the

buffer takes extra 5 to 7 seconds and for smaller datasets the system takes 2 to 3 seconds extra to

process training phase and smaller datasets 2 to 3 seconds. Also for client 2, it takes even longer

time than client 1. By giving dedicated hardware with increased resource configuration and

schedule cleaning of the operating system resources, training time can be significantly reduced.

Table 5.1: Accuracy and Precision Tables for Client 1.

ACCURACY TABLE OF CLIENT 1

 Training Dataset

Goldeneye1 ICMPFlood1 SSH1 SYNFlood1 SYNScan1 Slowloris1 TCPConnect1 Torshammer1 UDPFlood1 UDPScan1

without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer

E
va

lu
a

tio
n

 D
a

ta
se

t

T
ra

in
 D

a
ta

se
t

Goldeneye1 99.67 99.92 59.04 99.74 18.85 99.86 64 99.77 74.79 99.7 87.79 99.71 74.59 99.71 98.51 99.72 67.99 99.63 50.9 99.6

ICMPFlood1 87.2 89.76 100 100 96.65 100 91.11 99.91 52.67 99.91 97.68 99.95 25.6 99.97 82.8 99.94 91.64 99.98 40.44 99.97

SSH1 75.12 77.36 89.3 94.34 100 100 90.86 96.89 54.85 99.5 87.19 99.32 53.67 100 73.63 99.44 76.93 100 66.54 100

SYNFlood1 95.61 96.53 89.18 95.82 89.26 90.1 99.97 96.97 61.42 99.87 98.87 99.96 39.23 99.97 94.59 99.96 90.27 99.88 33.03 99.97

SYNScan1 25.84 53.68 17.24 12.5 12.5 12.5 27.62 22.48 99.91 99.95 68.68 99.9 99.87 99.92 99.45 99.87 81.21 99.77 99.57 99.79

Slowloris1 97.94 98.39 81.88 93.92 79.99 94.76 89.53 99.11 84.47 94.53 99.31 99.92 81.96 96.24 95.73 94.85 98.92 99.09 85.53 99.36

TCPConnect1 30.99 64.97 18.8 13.91 13.94 13.89 25.83 53.56 95.56 93.88 74.67 93.85 99.36 99.93 99.65 99.95 82.03 99.49 95.89 99.3

Torshammer1 99.7 97.37 51.86 98.37 21.6 99.36 54.25 99.28 65.04 98.68 88.63 99.45 84.23 99.18 99.97 99.97 68.12 99.84 68.92 99.84

UDPFlood1 84.52 81.55 62 76.76 62 55.32 70.42 63.07 57.27 78.17 95.94 80.86 49.09 58.12 49.72 55.91 99.53 97.55 82.98 99.81

UDPScan1 13.03 27.13 21.51 21.48 21.47 21.46 19.67 19.67 91.12 21.52 50.74 21.57 95.38 21.46 97.42 49.06 79.98 53.95 99.75 99.9

T
e

st D
a

ta
se

t

Goldeneye2 99.88 99.93 57.94 99.66 30.92 99.8 69.31 99.79 75.74 99.77 85.43 99.77 76.67 99.71 98.72 99.71 68.68 99.71 51.47 99.67

ICMPFlood2 89.86 92.41 99.91 99.99 96.25 99.97 98.79 99.54 48.64 99.63 82.33 99.76 28.34 96.14 73.62 99.32 75.7 96.61 27.48 99.91

SSH2 78.13 82.4 89.91 93.45 100 100 92.49 96.1 55.67 98.82 88.81 99.19 54.71 99.56 73.86 98.9 81.3 99.48 65.76 99.63

SYNFlood2 97.94 98.11 83.94 99.98 65.06 97.29 99.96 99.98 99.83 99.97 99.66 99.98 99.87 99.96 95.45 99.96 76.15 99.99 68.94 99.98

SYNScan2 23.06 51.64 15.17 13.01 13.03 12.97 26.31 22.48 99.91 99.95 68.75 99.9 99.84 99.9 99.18 99.84 79.33 99.75 99.52 99.78

Slowloris2 98.94 99.32 66.52 99.76 44.32 99.79 86.13 99.76 87.4 99.74 99.42 99.89 96.06 99.83 97.72 99.89 85.59 99.56 74.5 99.58

TCPConnect2 28.46 60.7 17.19 13.93 13.93 13.85 24.69 44.73 97.86 92.5 74.79 92.49 99.35 99.47 99.55 99.54 82.79 99.07 97.79 99.08

Torsahmmer2 54.82 67.8 9.23 38.96 5.32 55.41 16.69 51.2 66.05 76.01 56.12 73.28 73.96 75.82 99.67 99.63 52.15 89.46 59.73 98.31

UDPFlood2 52.06 52.96 61.8 61.89 62 61.61 61.29 56.53 75.87 50.2 58.64 61.85 70.93 54.62 82.14 63.03 88.52 84.58 99.98 99.86

UDPScan2 18.34 21.08 22.15 22.07 22.18 22.11 22.23 21.76 91.66 22.05 38.65 22.1 92.52 22.11 77.55 22.06 60.97 49.53 99.69 96.86

PRECISION TABLE OF CLIENT 1

 Training Dataset

Goldeneye1 ICMPFlood1 SSH1 SYNFlood1 SYNScan1 Slowloris1 TCPConnect1 Torshammer1 UDPFlood1 UDPScan1

without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer

E
va

lu
a

tio
n

 D
a

ta
se

t

T
ra

in
 D

a
ta

se
t

Goldeneye1 99.32 97.4 99.86 100 100 99.86 99.86 98.77 95.76 99.45 98.77 99.59 95.77 99.59 98.77 98.91 99.73 97.68 99.59 98.22

ICMPFlood1 31.49 32.9 100 100 100 97.31 69.33 74.73 19.04 77.54 46.57 88.16 6.41 91.14 26.15 90.26 49.64 84.91 26.06 91.11

SSH1 0 9.43 0 9.43 100 100 0 9.43 0 28.28 0 56.55 0 62.3 0 43.45 4.48 71.72 0 81.15

SYNFlood1 50.17 83.44 95.13 100 100 100 99.1 99.09 53.45 99.08 82.58 99.09 29.36 98.19 50.75 97.28 63.21 99.09 19.63 99.09

SYNScan1 80.18 87.86 100 97.78 100 96.62 100 92.72 100 99.97 90.84 99.97 100 99.97 93.16 95.48 99.96 100 100 100

Slowloris1 51.47 77.49 90.71 97.09 100 95.05 94.49 89.83 71.55 86.79 85.09 97.95 64.7 93.89 46.53 94.06 88.31 86.96 86.38 82.91

TCPConnect1 84.16 86 100 100 100 94.51 100 96.46 100 100 88.65 100 100 100 92.24 98.89 100 100 100 100

Torshammer1 96.01 97.04 100 99.6 100 99.57 98.93 99.19 89.24 99.6 96.95 100 89.02 99.6 97.63 100 100 100 100 100

UDPFlood1 98.59 0 100 87.46 100 60.06 99.95 0 46.29 0 99.51 72.37 39.45 40.36 42.92 51.09 99.96 74.69 87.9 99.63

UDPScan1 7 33.85 100 88.82 100 90.06 73.98 70.71 87.74 83.25 75.6 87.45 88.99 87.16 92.58 86.96 98.34 97.52 100 98.76

T
e

st D
a

ta
se

t

Goldeneye2 97.54 99.18 100 99.86 100 99.73 98.77 99.45 92.51 99.59 96.98 99.86 93.81 99.86 96.58 99.86 98.63 99.59 99.44 100

ICMPFlood2 30.68 35.18 95.51 100 100 100 86.5 93.57 23.93 93.65 27.46 95.8 6.15 97.9 24.84 97.2 35.34 99.3 0.8 97.9

SSH2 9.43 0 9.43 0 100 100 9.43 4.48 0 63.68 9.43 44.28 0 100 9.43 60.2 15.17 100 0 100

SYNFlood2 84.93 52.97 99.01 99.41 100 98.46 97.28 97.32 92.73 98.34 88.71 98.8 93.65 98.81 83.57 98.8 82.51 99.82 95.46 99.68

SYNScan2 81.96 86.31 100 100 100 100 100 90.62 100 99.93 90.37 99.93 100 99.93 91.65 97.07 97.62 100 100 100

Slowloris2 69.49 54.05 92.75 99.16 100 94.57 93.88 90.01 71.28 90.44 78.75 97.92 75.43 97.89 69.57 97.93 92.91 95.35 92.92 94.56

TCPConnect2 81.39 87.1 100 97.8 100 94.5 100 95.19 100 99.98 89.15 100 100 100 92.83 98.9 99.93 100 100 100

Torsahmmer2 96.96 95.33 100 100 100 98.37 100 98.38 97.05 97.64 97.35 98.99 97.4 96.27 100 97.64 100 97.63 100 100

UDPFlood2 0 74.65 76.7 73.21 100 44.02 41.63 52.23 61.18 78.23 26.83 78.92 56.67 46.36 68.02 46.21 76.79 94.07 99.95 99.99

UDPScan2 19.99 40.37 96.27 97.45 100 96.6 94.62 59.79 88.17 92.11 68.18 94.02 85.15 95.54 86.27 89.23 88.15 98.47 100 99.86

4
2

Table 5.2: Recall and F1 score Tables for Client 1.

RECALL TABLE OF CLIENT 1

 Training Dataset

Goldeneye1 ICMPFlood1 SSH1 SYNFlood1 SYNScan1 Slowloris1 TCPConnect1 Torshammer1 UDPFlood1 UDPScan1

without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer

E
va

lu
a

tio
n

 D
a

ta
se

t

T
ra

in
 D

a
ta

se
t

Goldeneye1 99.66 99.95 58.4 99.54 17.58 99.73 63.26 99.76 74.5 99.73 87.53 99.73 74.27 99.66 98.49 99.65 67.3 99.68 50.01 99.49

ICMPFlood1 100 99.97 100 99.97 83.19 99.97 100 99.97 100 99.97 100 99.97 100 80.51 100 97.22 100 99.97 94.29 99.97

SSH1 100

SYNFlood1 98.91 100 49.53 99.93 49.53 95.45 99.99 99.95 99.99 99.95 99.82 99.95 99.82 99.93 100 99.95 86.36 99.97 56.62 99.95

SYNScan1 22.85 50.34 11.11 7.83 6.1 7.83 22.27 17.77 99.77 99.88 67.36 99.74 99.67 99.75 99.65 99.78 79.32 99.47 99.17 99.46

Slowloris1 99.76 100 76.89 99.73 74.41 99.83 86.48 99.93 88.45 99.91 100 99.92 99.76 99.92 99.93 99.93 99.1 99.76 81.95 99.84

TCPConnect1 30.39 58.58 15.15 7.73 9.87 7.73 22.66 40.22 94.72 91.12 73.82 91.11 98.7 98.77 99.76 99.1 80.73 98.09 94.92 98.1

Torshammer1 99.7 67.35 46.44 37.47 13.37 54.53 49.35 50.02 61.96 75.54 87.37 72.47 82.91 75.35 100 99.62 64.28 89.18 65.07 98.24

UDPFlood1 60.18 0 0 0 0 0 22.19 0 77.96 0 89.76 0.31 63.52 40.41 98.06 63.7 98.81 89.81 63.87 100

UDPScan1 6.17 10.89 4.54 8.69 4.41 8.69 6.05 8.95 98.33 9.09 42.29 8.97 99.77 8.84 97.88 8.99 74.84 40.33 98.11 96.42

T
e

st D
a

ta
se

t

Goldeneye2 99.83 99.93 51.83 99.73 21.14 99.86 64.89 99.76 72.87 99.7 82.23 99.7 72.67 99.71 98.33 99.71 63.54 99.62 44.21 99.59

ICMPFlood2 99.97 100 99.97 100 80.51 100 99.97 100 100 100 80.51 100 100 100 99.97 100 80.51 100 80.51 100

SSH2 100

SYNFlood2 99.97 100 64.64 87.09 26.51 53.68 99.95 93.5 99.97 99.99 99.95 99.99 99.97 99.99 100 99.99 61.22 99.99 39.08 99.99

SYNScan2 20.27 51.96 10.09 6.1 7.83 6.1 21.51 16.9 99.76 99.88 67.9 99.77 99.62 99.8 99.62 99.88 77.7 99.52 99.03 99.52

Slowloris2 100 100 60.49 91.58 34.26 92.73 83.71 98.28 86.26 92.65 100 99.93 96.55 94.74 99.93 92.92 83.22 98.72 70.77 99.04

TCPConnect2 25.16 64.49 11.15 9.87 7.73 9.87 19.13 51.08 96.99 92.96 72.48 92.89 98.48 99.86 99.67 99.91 80.52 99.16 96.72 98.66

Torsahmmer2 54.11 97.17 7.04 98.16 3 99.28 14.8 99.19 65.57 98.54 55.11 99.38 73.47 99.12 99.66 99.99 50.97 99.85 58.48 99.77

UDPFlood2 0 77.85 0 61.16 0 64.76 0 32.32 100 59 5.14 67.72 100 64.7 100 97.48 100 99.87 100 99.52

UDPScan2 9.09 16.44 8.69 4.52 8.69 4.54 9.09 4.59 94.66 6.17 31.08 6.17 99.81 5.89 78.37 38.79 56.5 43.49 99.41 99.87

F1 SCORE TABLE OF CLIENT 1

 Training Dataset

Goldeneye1 ICMPFlood1 SSH1 SYNFlood1 SYNScan1 Slowloris1 TCPConnect1 Torshammer1 UDPFlood1 UDPScan1

without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer

E
va

lu
a

tio
n

 D
a

ta
se

t

T
ra

in
 D

a
ta

se
t

Goldeneye1 99.14 97.38 68.83 99.75 17.58 99.72 73.06 98.65 78.24 99.31 91.05 99.45 77.71 99.41 97.96 98.73 73.33 97.51 56.19 97.95

ICMPFlood1 34.2 35.2 100 99.98 83.19 97.31 72 74.94 21.66 77.68 47.64 88.31 9.09 72.54 28.85 87.54 52.32 84.91 22.7 91.11

SSH1 0 9.43 0 9.43 100 100 0 9.43 0 28.28 0 56.55 0 62.3 0 43.45 4.48 71.72 0 81.15

SYNFlood1 53.23 84.77 46.66 99.96 49.53 97.6 99.11 99.07 56.41 99.06 83.33 99.07 33.66 98.15 54.09 97.25 57.59 99.08 19.22 99.07

SYNScan1 20.32 44.77 13.25 6.72 6.1 6.66 24.25 15.31 99.88 99.92 66.06 99.85 99.83 99.86 93.34 95.41 80.07 99.72 99.56 99.72

Slowloris1 51.67 77.62 71.41 96.95 74.41 94.97 83.91 89.82 65.9 86.78 85.31 97.92 64.87 93.87 46.74 94.02 87.87 86.84 70.93 82.84

TCPConnect1 26.26 53.52 18.04 7.73 9.87 4.44 28.2 47.93 95.64 94.42 66.33 94.41 99.22 99.28 92.16 98.39 83.64 98.82 96.5 98.83

Torshammer1 95.87 75.25 59.75 51.49 13.37 68.26 58.46 64.4 61.65 85.31 88.78 82.55 77.99 85.08 97.64 99.81 68.9 93.4 73.22 99.07

UDPFlood1 74.49 0 0 0 0 0 35.9 0 57.91 0 94.32 0.61 48.49 40.15 59.56 56.48 99.38 81.41 73.77 99.81

UDPScan1 0.57 3.68 4.66 2.48 4.41 6.21 2.56 0.49 89.83 1.99 40.42 4.25 91.23 0.28 92.57 1.8 77.46 40.27 98.4 96.81

T
e

st D
a

ta
se

t

Goldeneye2 97.45 99.15 61.17 99.73 21.14 99.66 73.52 99.33 73.88 99.44 84.67 99.71 74.63 99.71 95.64 99.72 68.22 99.4 49.69 99.79

ICMPFlood2 33.52 36.96 95.53 100 80.51 100 86.59 93.63 26.95 93.67 27.46 95.8 9.14 97.9 27.91 97.2 35.34 99.3 0.8 97.9

SSH2 9.43 0 9.43 0 100 100 9.43 4.48 0 63.68 9.43 44.28 0 100 9.43 60.2 15.17 100 0 100

SYNFlood2 86.4 56.18 75.38 88.54 26.51 54.41 97.25 91.69 92.72 98.44 88.88 98.82 93.64 98.83 84.83 98.82 58.48 99.9 37.21 99.69

SYNScan2 15.02 47.87 11.37 6.1 7.83 6.1 23.46 15.82 99.88 99.9 65.26 99.84 99.8 99.86 91.71 97.1 76.33 99.75 99.48 99.75

Slowloris2 69.64 54.31 60.28 93.34 34.26 90.11 82.29 90.02 61.77 86.89 78.82 97.89 73.63 94.47 69.64 92.73 80.87 94.95 67.92 94.31

TCPConnect2 23.01 55.5 13.28 8.77 7.73 7.67 24.51 55.37 98.23 93.67 68.95 93.6 99.07 99.93 92.94 98.86 84.62 99.54 98.05 99.17

Torsahmmer2 64.69 93.76 10.33 98.99 3 97.94 22.46 97.91 75.55 96.83 64.03 98.61 81.67 95.77 99.82 97.64 56.65 97.56 71.43 99.88

UDPFlood2 0 76.04 0 66.41 0 52.22 0 39.64 75.76 67 8.49 72.69 72.19 53.8 80.83 62.54 86.76 96.85 99.98 99.75

UDPScan2 0.66 13.67 8.69 4.62 8.69 4.65 6.97 1.6 86.14 5.94 26.66 5.97 87.66 6.06 74.9 40.32 50.23 43.81 99.69 99.86

4
3

Table 5.3: Training and Evaluation Time Tables for Client 1.
EVALUATION TIME TABLE OF CLIENT 1

 Training Dataset

Goldeneye1 ICMPFlood1 SSH1 SYNFlood1 SYNScan1 Slowloris1 TCPConnect1 Torshammer1 UDPFlood1 UDPScan1

without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer

Evalu
atio

n
 D

atase
t

Train
 D

atase
t

Goldeneye1 492.42 483.73 463.44 504.7 462 474.53 549.85 478.19 515.25 477.02 508.84 622 516.73 478.48 520.76 504.33 480.17 493.95 495.17 520.3

ICMPFlood1 99.8 84.13 94.08 76.61 89.51 79.27 116.07 76.03 108.97 78.26 107.97 82.87 142.04 79.05 91.72 79.47 126.93 78.07 103.18 79.27

SSH1 24.07 14.86 11.21 11.58 11.18 10.75 14.14 11.17 12.47 12.39 11.86 10.86 12.77 16.36 11.74 12.09 11.56 15.77 15.26 11.21

SYNFlood1 251.02 71.55 228.94 75.74 226.18 74.12 276.14 74.56 269.24 74.52 249.03 75.14 243.04 77.19 234.6 79.29 235.81 78.91 264.38 76.48

SYNScan1 58.9 63.51 58.14 62.76 58.45 61.96 66.12 61.49 82.8 61.61 57.85 62.04 77.95 64.72 59.85 63.8 59.15 63.94 71.75 62.84

Slowloris1 167.63 66.78 160.8 69.34 163.95 67.18 185.83 71.58 197.49 66.24 163.53 69.08 190.07 65.97 171.04 68.3 177.48 70.06 198.3 67.74

TCPConnect1 63.87 60.48 58.91 67.32 59 62.03 66.84 69 73.07 61.34 58.92 63.62 67.93 66.81 70.28 63.18 74.81 65.59 95.65 62.76

Torshammer1 221.95 167.34 193.89 176.46 197.47 170.7 228.58 183.86 223.8 166.24 197.43 179.18 225.73 182.05 261.28 181.39 238.04 175.87 208.41 177.49

UDPFlood1 264.04 299.67 252.22 276.46 317.69 267.19 314.02 265.66 277.78 256.97 306.94 385.31 253.55 262.62 270.23 301.6 272.68 265.75 260.33 281.32

UDPScan1 58.45 78.43 50.01 56.87 55.65 59.15 64.55 55.78 57.68 56.75 56.64 62.72 75.1 60.78 53.89 63.9 51.87 55.29 53.2 60.01

Test D
atase

t

Goldeneye2 473.69 504.82 585.53 480.36 453.27 478.76 532.9 478.69 493.45 469.2 491.43 526.95 484.24 480.25 564.72 499.04 488.21 485.16 496.82 499.38

ICMPFlood2 79.19 97.68 74.83 94.67 71.97 100.84 72.95 94.96 78.54 95.04 79.58 110.51 75.91 101.57 82.96 98.65 74.43 95.99 76.48 99

SSH2 12.19 14.66 10.14 18.09 9.98 15.64 19.12 12.47 11.44 11.55 10.39 16.36 11.36 16.26 16.13 16.31 12.87 12.45 10.42 12.85

SYNFlood2 78.09 236.69 69.08 241.6 70.59 246.7 79.26 236.41 74.22 230.67 73.86 277.82 77.82 262.67 101.48 244.75 84.34 237.44 81.7 249

SYNScan2 61.68 60.36 63 67.91 58.06 61.99 64.55 63.4 60.75 60.22 62.54 101.41 59.93 65.55 70.21 62.66 79.35 60.9 69.38 62.37

Slowloris2 69.06 173.59 66.58 175.17 62.66 169.2 77.38 171.88 70.67 165.11 65.47 224.29 67.8 192.22 93.36 171.38 85.69 173.26 72.34 173.46

TCPConnect2 60.98 90.81 63.11 64.49 58.91 63.91 66.01 68.67 64.72 61.47 61.63 73.9 63.65 68.92 96.72 61.7 57.34 62.1 81.54 62.89

Torsahmmer2 176.24 198.06 172.61 209.58 166.49 214.08 189.29 208.46 187.18 207.19 191.57 206.89 175.27 225.41 185.01 200.56 174.2 220.66 185.36 221.4

UDPFlood2 366.75 256.55 273.4 271.42 251.12 282.19 314.11 262.72 275.12 262.22 321.63 292.37 276.38 281.22 293.17 271.57 255.9 297.59 278.36 270.01

UDPScan2 68.52 73.64 59.72 56.42 53.29 55.27 69.41 55.1 59.51 54.82 66.78 68.82 57.85 58.38 66.18 56.44 72.02 55.76 61.94 56.57

TRAINING TIME TABLE OF CLIENT 1

Training Dataset without buffer with buffer

Goldeneye1 34.93 41.4

ICMPFlood1 6.54 11.7

SSH1 0.39 2.36

SYNFlood1 14.71 19.62

SYNScan1 2.93 7.13

Slowloris1 13.9 15.9

TCPConnect1 3.3 8.66

Torshammer1 13.2 17.19

UDPFlood1 17.99 29.59

UDPScan1 2.52 7.95

4
4

Table 5.4: Accuracy and Precision Tables for Client 2.

ACCURACY TABLE OF CLIENT 2

 Training Dataset

Goldeneye1 ICMPFlood1 SSH1 SYNFlood1 SYNScan1 Slowloris1 TCPConnect1 Torshammer1 UDPFlood1 UDPScan1

without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer

E
va

lu
a

tio
n

 D
a

ta
se

t

T
ra

in
 D

a
ta

se
t

Goldeneye2 99.85 99.95 30.93 99.82 30.92 99.87 63.18 99.8 73.76 99.79 80.34 99.78 75.32 99.72 98.41 99.77 62.69 99.74 48.46 99.68

ICMPFlood2 90.4 91.18 99.99 99.97 96.25 99.97 98.74 99.5 57.09 99.63 89.29 99.79 31.66 99.52 75.92 99.83 79.64 95.52 27.46 99.72

SSH2 79.82 81.96 100 92.05 100 100 90.65 96.39 55.96 98.16 90.65 98.9 56.41 97.35 74.89 98.67 82.47 99.56 65.98 99.63

SYNFlood2 98.08 98.18 65.06 99.99 65.06 99.97 99.97 99.98 99.81 99.98 99.77 99.98 99.87 99.74 95.46 99.96 73.5 99.99 67.48 99.98

SYNScan2 21.26 55.63 13.03 12.98 13.03 12.96 22.25 13.06 99.91 99.94 42.1 99.9 99.77 99.86 99.18 99.87 75.48 99.75 99.52 99.78

Slowloris2 99.03 99.26 44.3 99.73 44.32 99.73 86.24 99.83 87.21 99.72 99.59 99.87 94.39 99.59 97.77 99.86 79.72 99.57 69.67 99.51

TCPConnect2 23.28 64.38 13.93 13.93 13.93 13.83 18.43 19.45 96.67 92.5 54.38 92.5 99.35 99.93 99.55 99.79 86.03 99.07 98.8 99.1

Torshammer2 49.46 69.27 5.34 35.5 5.32 46.55 15.27 40.7 62.98 75.56 36.29 74.15 61.08 91.28 99.8 99.88 50.5 97.51 69.12 99.17

UDPFlood2 52.36 52.48 62 61.78 62 61.46 61.51 57.29 75.06 51.76 57.24 63.65 71.3 65.38 85.3 67.73 99.87 99.54 100 99.87

UDPScan2 18.49 19.91 22.18 21.86 22.18 22.02 22.25 21.76 87.75 22.7 24.94 22.16 91.66 39.65 77.13 64.98 62.09 52.72 99.69 99.89

T
e

st D
a

ta
se

t

Goldeneye1 99.54 99.98 18.86 99.8 18.85 99.86 60.73 99.75 73.07 99.7 79.25 99.7 73.06 99.7 98.26 99.72 63.43 99.64 50.83 99.57

ICMPFlood1 87.78 83.54 96.65 99.99 96.65 99.99 91.27 99.92 61.81 99.92 97.81 99.95 44.6 99.7 82.96 99.94 96.31 99.96 39.07 99.92

SSH1 75.37 76.68 100 89.93 100 100 91.11 95.77 56.9 99.56 88.93 99.44 55.04 98.82 74 99.32 78.98 100 66.29 100

SYNFlood1 95.11 96.05 89.26 96.88 89.26 93.13 99.98 96.97 69.77 99.87 99.14 99.97 58.52 99.7 94.58 99.96 93.86 99.88 30.86 99.97

SYNScan1 23 57.14 12.5 12.5 12.5 12.49 22.87 12.49 99.91 99.95 44.25 99.9 99.82 99.92 99.45 99.87 78.97 99.76 99.57 99.79

Slowloris1 97.92 98.28 79.98 98.08 79.99 97.42 89.16 99.16 89.64 95.06 99.33 99.79 98.36 99.5 95.84 96.47 95.62 97.92 83.22 98.09

TCPConnect1 24.59 65.92 13.94 13.91 13.94 13.87 19.24 26.62 94.78 93.88 60.11 93.85 99.33 99.92 99.64 99.95 85.18 99.51 97.65 99.34

Torsahmmer1 99.42 99.01 21.61 99.51 21.6 99.45 57.16 99.17 62.68 99.04 77.33 99.53 75.36 99.3 99.97 99.98 68.69 99.91 74.95 99.82

UDPFlood1 69.12 81.29 62 79.94 62 69.86 66.25 70.76 71.09 70.3 65.71 80.99 51.88 44.44 50.16 41.06 96.82 65.53 55.04 67.52

UDPScan1 14.61 23.44 21.5 21.38 21.47 21.38 21.11 21.25 91.02 23.94 32.99 26.99 95.9 91.56 97.56 79.76 82.96 91.21 99.75 99.9

PRECISION TABLE OF CLIENT 2

 Training Dataset

Goldeneye1 ICMPFlood1 SSH1 SYNFlood1 SYNScan1 Slowloris1 TCPConnect1 Torshammer1 UDPFlood1 UDPScan1

without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer

E
va

lu
a

tio
n

 D
a

ta
se

t

T
ra

in
 D

a
ta

se
t

Goldeneye2 97.68 97.81 100 100 100 99.86 97.68 99.04 91.93 99.45 97.4 98.63 94.59 96.03 96.03 98.77 98.63 97.26 98.9 96.85

ICMPFlood2 30.74 31.6 100 98.16 100 97.31 84.58 73.81 29.29 76.65 32.77 89.99 7.37 79.57 25.9 90.26 37.12 78.71 0.8 89.34

SSH2 9.43 0 100 9.43 100 100 9.43 9.43 0 18.85 9.43 37.7 0 9.43 9.43 28.28 15.17 71.72 0 71.72

SYNFlood2 85.03 84.37 100 100 100 100 98.19 99.09 92.73 99.09 89.8 99.09 93.65 93.59 83.6 97.28 80.75 99.09 95.46 99.09

SYNScan2 81.99 87.91 100 95.56 100 95.51 100 92.29 100 99.97 87.41 99.97 100 97.64 91.65 95.48 97.62 100 100 100

Slowloris2 70.52 76.44 98.99 96.08 100 95.07 85.71 92.89 72.25 85.77 83.86 94.91 77.5 78.82 69.62 92.04 93.93 82.87 92.91 80.85

TCPConnect2 80.19 86.01 100 100 100 94.51 100 97.4 100 100 89.14 100 100 98.84 92.83 98.84 99.93 100 100 100

Torshammer2 96.93 97.04 100 99.6 100 99.6 100 99.19 97.09 99.6 97.23 100 97.4 99.42 100 100 100 100 100 100

UDPFlood2 0 0 100 75.42 100 48.13 54.69 0 60.82 13.02 0.51 88.63 56.99 53.35 72.1 55.47 99.65 99.2 100 99.65

UDPScan2 20.03 28.05 100 75.16 100 83.85 96.27 70.71 88.26 83.39 59.43 87.45 86.15 87.67 86.62 86.34 89.37 98.76 100 98.76

T
e

st D
a

ta
se

t

Goldeneye1 99.73 99.18 99.86 99.59 100 99.73 99.86 99.86 95.74 99.59 99.45 99.59 96.46 98.5 98.5 99.73 99.73 99.59 99.59 99.18

ICMPFlood1 31.61 29.57 100 99.3 100 99.97 70.01 93.6 23.24 94.35 50.09 95.8 17.72 89.12 27.64 97.2 60.63 97.9 23.56 96.5

SSH1 0 0 100 0 100 100 0 0 0 63.68 0 52.24 0 15.92 0 44.28 4.48 100 0 100

SYNFlood1 50.58 51.41 99.71 99.41 100 81.95 99.12 97.32 62.86 98.34 85.4 98.81 49.3 95.96 50.76 98.5 69.31 99.82 17.6 99.68

SYNScan1 80 86.53 100 100 100 98.88 100 89.1 100 99.93 86.58 99.93 100 98.71 93.16 97.07 99.96 100 100 100

Slowloris1 52.26 51.97 99.59 98.73 100 94.13 90.74 92.52 79.34 90.47 85.92 97.92 81.71 86.77 46.97 97.1 88.31 96.18 83.49 91.24

TCPConnect1 84.98 87.13 100 97.8 100 92.33 100 95.06 100 99.98 87.5 100 100 97.79 92.2 98.9 100 100 100 100

Torsahmmer1 96.34 95.67 100 100 100 99.06 98.59 99.05 89.21 97.98 97.64 98.99 89.18 91.51 97.63 97.64 100 97.97 100 94.95

UDPFlood1 95.92 72.63 100 86.56 100 59.52 99.84 87.64 60.69 70.42 95.91 96.61 39.86 38.75 42.77 39.19 99.95 52.43 43.44 53.92

UDPScan1 16.03 39.14 100 92.78 100 92.78 87.25 80.51 91.53 93.47 58.81 96.34 89.7 99.06 92.64 98.37 99.48 99.51 100 99.86

4
5

Table 5.5: Recall and F1 score Tables for Client 2.

RECALL TABLE OF CLIENT 2

 Training Dataset

Goldeneye1 ICMPFlood1 SSH1 SYNFlood1 SYNScan1 Slowloris1 TCPConnect1 Torshammer1 UDPFlood1 UDPScan1

without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer

E
va

lu
a

tio
n

 D
a

ta
se

t

T
ra

in
 D

a
ta

se
t

Goldeneye2 99.74 99.98 21.15 99.77 21.14 99.83 57.87 99.77 70.33 99.74 76.64 99.75 70.88 99.74 97.97 99.73 57.01 99.72 40.97 99.56

ICMPFlood2 99.97 99.97 99.97 99.97 80.51 99.97 99.97 99.97 100 99.97 80.51 99.97 98.13 99.97 99.97 99.97 80.51 99.97 80.51 99.97

SSH2 100

SYNFlood2 99.97 100 26.51 99.95 26.51 99.92 99.95 99.95 99.97 99.95 99.95 99.95 99.95 99.95 100 99.95 52.96 99.97 34.61 99.95

SYNScan2 18.34 54.42 7.83 7.83 7.83 7.83 17.41 8.15 99.76 99.84 39.32 99.74 99.5 99.87 99.62 99.88 73.85 99.47 99.03 99.45

Slowloris2 100 100 34.26 99.7 34.26 99.74 84.09 99.93 85.97 99.91 100 99.92 94.26 99.93 99.93 99.93 76.29 99.8 65.15 99.85

TCPConnect2 19.44 62.32 7.73 7.73 7.73 7.73 12.58 13.69 95.76 91.12 51.32 91.12 98.48 99.9 99.67 99.68 84.25 98.09 97.73 98.15

Torshammer2 48.57 68.86 3.04 33.98 3 45.48 13.36 39.3 62.41 75.1 34.75 73.36 60.33 91.13 99.79 99.88 49.27 97.45 68.04 99.11

UDPFlood2 0 0 0 0 0 0 0 0 96.69 4.64 0 5.04 100 70.85 100 76.41 100 99.62 100 100

UDPScan2 9.09 9.6 8.69 8.69 8.69 8.69 9.09 8.95 89.47 9.82 13.89 9.04 97.43 29.18 77.8 60.52 56.17 43.77 99.41 99.81

T
e

st D
a

ta
se

t

Goldeneye1 99.52 99.98 17.59 99.8 17.58 99.86 59.99 99.74 72.74 99.7 78.84 99.69 72.67 99.72 98.24 99.72 62.66 99.63 49.95 99.56

ICMPFlood1 100 100 83.19 100 83.19 100 100 100 100 100 100 100 100 100 100 100 100 100 87.95 100

SSH1 100

SYNFlood1 98.07 100 49.53 93.33 49.53 74.97 99.99 93.5 99.99 99.99 99.82 99.99 99.82 99.99 100 99.99 81.57 99.99 56.25 99.99

SYNScan1 19.57 55.53 6.1 6.1 6.1 6.1 17.03 6.26 99.77 99.88 41.4 99.77 99.59 99.88 99.65 99.88 77.15 99.51 99.17 99.52

Slowloris1 99.53 100 74.41 96.84 74.41 96.16 86.11 98.28 87.88 93.29 100 99.48 99.4 99.48 99.93 94.93 95.09 97.28 78.96 97.52

TCPConnect1 23.56 65.45 9.87 9.87 9.87 9.87 15.6 23.43 93.86 92.96 58.69 92.89 98.64 99.91 99.76 99.91 83.93 99.23 96.82 98.71

Torshammer1 99.37 98.98 13.37 99.43 13.37 99.36 52.33 99.07 59.35 98.93 74.89 99.46 73.09 99.39 100 100 64.92 99.91 71.72 99.84

UDPFlood1 19.62 81.45 0 55.9 0 64.62 11.21 26.86 67.68 37.63 10.19 51.71 52.32 79.59 92.23 99.99 91.66 99.87 60.56 99.87

UDPScan1 6.17 12.25 4.52 4.54 4.41 4.54 6.02 4.56 95.44 9.18 20.27 12.49 99.76 91.22 97.96 77.39 78.09 87.87 98.11 99.87

F1 SCORE TABLE OF CLIENT 2

 Training Dataset

Goldeneye1 ICMPFlood1 SSH1 SYNFlood1 SYNScan1 Slowloris1 TCPConnect1 Torshammer1 UDPFlood1 UDPScan1

without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer

E
va

lu
a

tio
n

 D
a

ta
se

t

T
ra

in
 D

a
ta

se
t

Goldeneye2 97.53 97.8 21.15 99.88 21.14 99.78 64.62 98.93 71.08 99.32 80.61 98.5 73.84 95.9 94.87 98.63 62.35 97.12 45.35 96.63

ICMPFlood2 33.56 34.23 99.98 98.18 80.51 97.31 84.74 74.04 32.31 76.79 32.77 90.11 10.07 79.58 29.13 90.24 37.12 78.71 0.8 89.34

SSH2 9.43 0 100 9.43 100 100 9.43 9.43 0 18.85 9.43 37.7 0 9.43 9.43 28.28 15.17 71.72 0 71.72

SYNFlood2 86.46 85.69 26.51 99.97 26.51 99.96 98.16 99.07 92.72 99.07 89.88 99.07 93.62 93.59 84.85 97.25 50.52 99.08 32.66 99.07

SYNScan2 13.55 48.19 7.83 5.6 7.83 5.55 20.43 2.82 99.88 99.9 35.3 99.85 99.74 97.64 91.71 95.46 72.32 99.72 99.48 99.71

Slowloris2 70.66 76.59 33.25 95.93 34.26 94.94 74.24 92.87 62.6 85.76 83.9 94.89 74.03 78.82 69.67 92 76.36 82.8 63.43 80.81

TCPConnect2 16.73 57.3 7.73 7.73 7.73 4.44 15.63 15.71 97.46 94.42 47.3 94.42 99.07 98.82 92.94 98.7 89.69 98.82 98.61 98.87

Torshammer2 59.11 76.44 3.07 47.97 3 59.95 20.12 53.83 73.2 85.08 43.53 83.32 72.06 94.71 99.89 99.94 56.46 98.64 79.63 99.52

UDPFlood2 0 0 0 0 0 0 0 0 74.51 6.74 0 9.36 72.44 60.66 83.66 64.08 99.82 99.41 100 99.82

UDPScan2 0.66 1.55 8.69 0 8.69 3.73 6.97 0.49 82.3 3.34 7.92 4.4 86.99 30.39 75.16 53.98 52.33 45.13 99.69 98.66

T
e

st D
a

ta
se

t

Goldeneye1 99.48 99.17 17.46 99.49 17.58 99.66 69.26 99.73 76.74 99.44 85.2 99.44 76.94 98.35 97.55 99.58 69.03 99.4 57.73 98.96

ICMPFlood1 34.31 32.21 83.19 99.3 83.19 99.99 72.69 93.65 25.87 94.37 51.15 95.8 20.42 89.25 30.34 97.2 61.24 97.9 16.52 96.5

SSH1 0 0 100 0 100 100 0 0 0 63.68 0 52.24 0 15.92 0 44.28 4.48 100 0 100

SYNFlood1 53.11 55 49.24 92.83 49.53 62.41 99.12 91.69 65.14 98.44 85.91 98.82 52.54 96.13 54.1 98.53 58.82 99.9 17.13 99.69

SYNScan1 17.27 51.18 6.1 6.1 6.1 6.1 19.93 1.94 99.88 99.9 38.25 99.84 99.78 98.74 93.34 97.1 78.76 99.74 99.56 99.75

Slowloris1 52.35 52.24 74 96.69 74.41 92.13 80.48 92.51 71.25 86.98 86.14 97.46 81.65 86.31 47.17 93.78 85.02 94.95 64.59 90.17

TCPConnect1 18.78 57.01 9.87 8.77 9.87 5.5 19 26.71 94.66 93.67 50.94 93.6 99.17 97.77 92.14 98.86 88.17 99.59 98.06 99.2

Torshammer1 96.03 95.15 13.37 99.68 13.37 98.67 60.95 98.52 59.37 97.36 79.04 98.67 70.05 91.19 97.64 97.65 72.25 97.93 80.59 94.87

UDPFlood1 32.21 76.62 0 67.66 0 61.74 19.83 40.77 63.77 48.7 18.15 67.08 45.04 51.95 58.28 56.18 95.58 68.61 50.38 69.88

UDPScan1 0.64 9.14 4.62 4.65 4.41 4.65 6.28 4.1 90.74 11.27 18.64 16.59 91.63 93.52 92.65 79.81 82.34 89.39 98.4 99.86

4
6

Table 5.6: Training and Evaluation Time Tables for Client 2.
EVALUATION TIME TABLE OF CLIENT 2

 Training Dataset
Goldeneye1 ICMPFlood1 SSH1 SYNFlood1 SYNScan1 Slowloris1 TCPConnect1 Torshammer1 UDPFlood1 UDPScan1

without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer without buffer with buffer

E
va

lu
a

tio
n

 D
ata

set

T
ra

in
 D

a
ta

se
t

Goldeneye1 505.03 480.67 467.22 490.91 453.1 513.48 523.94 476.72 559.88 480.63 505.6 488.94 454.46 490.87 488.77 511.54 481.72 598.06 466.12 520.71

ICMPFlood1 82.76 78.06 72.93 79.71 75.49 81.63 79.04 76.52 84.22 79.41 74.95 81.98 73.71 81.1 78.52 88.32 77.95 101.81 72.95 81.67

SSH1 15.62 11.23 10.72 21.39 10.34 16.5 11 12.8 11.54 14.54 10.4 11.79 14.34 11.99 11.1 16.74 21.27 14.34 11.28 12.83

SYNFlood1 88.29 76.59 72.84 80.07 80.25 78.46 105.99 82.4 80.59 76.39 81.73 76.69 86.81 76.35 83.84 82.85 74.78 85.41 86.22 88.76

SYNScan1 72.43 65.55 59.52 66.93 58.67 63.85 69.22 65.75 64.96 63.57 59.24 62.59 75.58 63.07 63.42 69.13 71.16 81.31 58.88 64.29

Slowloris1 79.9 68.06 63.73 72.11 79.35 88.6 77.48 70.87 65.35 69.06 65.54 69.46 82.3 67.98 66.5 71.86 73.18 81.03 75.37 76.81

TCPConnect1 63.31 61.58 68.98 65.45 71.94 77.51 67.8 69.67 63.73 62.91 62.34 62.64 70.18 63.13 68.59 65.56 60.3 68.78 57.67 68.57

Torshammer1 175.6 213.67 180.45 178.32 208.44 205.85 172.64 176.2 181.67 172.72 172.53 191.03 175.65 174.21 160.16 184.93 173.65 193.03 166.99 187.23

UDPFlood1 258.7 300.62 257.96 275.34 265.26 308.51 273.63 273.96 296.32 261.67 278.79 287.88 260.72 284.9 253.25 272.47 255.39 301.47 241.79 282.6

UDPScan1 55.81 54.9 56.59 57.77 51.96 77.24 55.11 62.35 64.89 57.8 59.54 59.61 55.88 57.68 54.42 61 53.32 72.78 64.9 58.21

T
e

st D
ata

set

Goldeneye2 515.73 492.95 459.58 490.01 501.38 553.97 488.25 458.51 463.3 479.86 466.39 540.55 465.78 547.88 485.37 540.34 460.9 532.76 476.44 512.84

ICMPFlood2 109.5 98.12 86.16 98.57 96.9 122.19 95.38 95.67 95.43 101.57 91.52 106.35 94.89 111.2 93.47 117.74 94.95 111.36 93.97 104.13

SSH2 14.83 16.27 12.34 13.16 12.03 14.95 12.86 12.19 17.73 12.7 12.68 14.7 11.82 13.69 12.06 14.12 12.69 14.07 15.72 21.3

SYNFlood2 278.2 253.67 225.42 234.21 244.15 291.03 259.86 233.25 232.61 243.48 256.07 257.94 231.9 256.18 240.69 266.56 254.57 254.23 253.26 256.8

SYNScan2 64.15 60.59 56.38 63.52 67.99 78.95 65.55 61.07 63.58 65.2 86.04 68.04 64.26 65.09 67 71.79 58.36 73.16 64.72 64.49

Slowloris2 178.67 172.79 161.22 172.91 180.12 225.63 171.31 167.45 168.21 172.79 175.55 194.85 166.71 189.66 165.52 179.64 166.4 184.48 174.85 181.86

TCPConnect2 61.33 66.18 58.52 64.57 64.13 72.71 65.11 62.42 64.3 63.97 71.8 68.12 59.68 67.59 56.78 71.58 58.08 67.66 86.57 68.35

Torsahmmer2 204.08 202.49 189.52 206.87 209.01 227.35 223.32 201.24 212.16 199.67 201.86 226.2 193.9 250.18 190.95 223.34 212.89 223.53 217.47 230.39

UDPFlood2 260.26 264.16 255.9 263.99 252.57 301.21 290.54 266.67 279.21 262.91 264.09 276.61 256.04 286.52 255.34 283.57 249.38 276.36 267.7 294.05

UDPScan2 55.21 53.63 53.88 58.84 61.71 61.67 53.8 54.92 61.9 55 67.39 56.91 51.7 60.2 54.06 60.5 53.59 57.84 52.33 61.06

TRAINING TIME TABLE OF CLIENT 2

Training Dataset without buffer with buffer

Goldeneye1 34.93 60.3

ICMPFlood1 6.53 9.91

SSH1 0.39 3.03

SYNFlood1 14.71 20.8

SYNScan1 2.93 6.5

Slowloris1 13.86 7.78

TCPConnect1 3.3 10.14

Torshammer1 13.2 21.1

UDPFlood1 17.99 25.42

UDPScan1 2.52 7.45

4
7

48

I have evaluated the pretrained local model against other dataset, named ’Application layer

DDoS dataset’ [29], consisting of DDoS attacks generated in a SND-based testbed using Hulk

and Slowloris tools and amalgamated with genuine traffic flow. 70% of the dataset has been

taken for training the pretrained models and 30% samples have been taken for testing purpose.

The evaluation table of this experiment has been shown in Table 5.7 also at the end of this

chapter. According to Table 5.7 for application layer DDoS dataset, both clients have reached

either over or close to 99% in terms of accuracy, precision, recall and F1 score which validates

the trustworthiness of the proposed continual FL setup for DDoS attack detection.

Table 5.7: Evaluation of Application layer DDoS dataset.

EVALUATION OF APPLICATION LAYER DDoS DATASET
 Accuracy Precision Recall F1 score

Client1 99.17 99.94 98.52 99.22

Client2 99.73 99.88 99.62 99.75

49

6 DISCUSSION

6.1 Comparative Analysis with Related Research

This thesis proposes a unique technique to anomaly detection within the context of 5G O-RAN

architecture, based on FL and CL principles. Because the 5G O-RAN architecture is still

in its early stages, there is a distinct lack of particularly built security algorithms that adapt

to its unique requirements and constraints. Despite the fact that the technology is still in its

infancy, the quickly expanding environment of 5G networks needs urgent and efficient solutions

to protect these networks from any attacks. To fill this need, this thesis work made a proposition

to create an anomaly detection system adapted to the 5G Open RAN architecture, harnessing the

strong capabilities of FL. This innovative method, when paired with the highly sophisticated 5G

architecture, has the potential to greatly improve network security, marking a watershed moment

on the path to secure, robust, and dependable 5G networks.

Single node models could be a two-edged sword. On the one hand, they may be hacked,

which poses serious security threats. However, they might not be able to recognize sophisticated

attack patterns that target several nodes in a networked system. The adoption of more thorough

and reliable models is required as a result to guarantee the highest level of network security.

Additionally, these models’ inherent amnesia might pose a serious danger to 5G networks. This

problem may be resolved by combining FL with continual learning, opening the door for a more

developed and reliable security layer. Recent research has not given this novel strategy much

attention.

The thesis goes beyond the conventional use of machine learning algorithms in anomaly

detection systems by incorporating FL and CL in a realistic networked configuration, in contrast

to the works described previously in ‘related works and limitations’ chapter. Unlike synthetic

datasets and simulation-based setups, this dissertation is based on real-world data, which in-

creases the usefulness and application of the conclusions as well as the actual deployment

method. Furthermore, this study employs strong machine learning models but goes a step fur-

ther by including continual learning, minimizing the CF commonly observed in NN, an element

that was not well addressed in the preceding research.

6.2 Assessment of Thesis Objectives

The main objective of the thesis is to develop a FL-based anomaly detector for 5G O-RAN

architecture. The proposed model can be deployed as a security service in RIC unit of O-RAN

architecture. The thesis also proposes how CL can be integrated with the anomaly detector that

can preserve important weights of the model by replaying old samples. The performance of

the proposed system has been measured considering three scenarios: the evaluation values of

accuracy, precision, recall and f1 score metrics in normal federated setup, continual learning

applied on top of FL setup in next stage and lastly by evaluating the pretrained model from the

second stage for other DDoS datasets.

The number stays over 90% in the majority of situations, while the greatest recorded system

accuracy is above 99%. Though the majority of the suggested algorithms shown in the literature

study were successful in achieving acceptable accuracy, they skipped or downplayed the essential

issue of CF. As a result, when compared to earlier studies, the suggested system accuracy can be

deemed satisfactory. The improvement can clearly be seen with the implementation of second

strategy where buffer has been added to training process of local models to preserve knowledge

compared to traditional FL strategy. There is a positive improvement in all cases except the case

50

where the anomaly happens in the form of UDPFlood. Moreover, the proposed model gained

reliability while evaluating with over 99% accuracy, precision, recall and F1 score on other

datasets containing DDoS flow.

Therefore, it can be said that the proposed system performance is within the expected range.

According to the observations, the detector becomes more efficient if training data adequately

cover all possible attack scenarios encountered by the detector. With the increasing variety of

flow patterns in a traditional FL setup, dependability suffers as it frequently fails to accurately

identify a sufficient number of flow categories. This problem is addressed substantially in

the second step, when previous data are replayed throughout the training phase, resulting in

considerable metric improvements. Thus, it can be asserted that the suggested detection system

has successfully achieved sustainability in reliability while adding an extra layer of security in

the networked systems.

6.3 Future Research Directions

To proceed with further investigation of the proposed thesis work, below research directions can

be chosen to make the threat detection system more secure, matured and trustworthy.

Examining Various Aggregation Methods: FedAvg was mostly used in this study to

aggregate the weights from local models. Other aggregation techniques, such as Feder-

ated Stochastic Gradient Descent (FedSGD), Federated Adam, and Federated Averaging

Momentum (FedAM), might, however, produce results that are different. Future research

may look into investigating these and other techniques within the framework of federated

learning for 5G Open-RAN and evaluating their results against FedAvg.

Utilization of Various Machine Learning Models: For the purpose of identifying

DDoS assaults, the work detailed in this thesis made use of a MLP model. Other machine

learning models that may be used for this purpose include Support Vector Machines

(SVM), Random Forests, and sophisticated deep learning architectures like CNN or RNN.

Future studies should concentrate on implementing and contrasting these various models

in terms of how well they identify DDoS attacks within a FL environment.

Working with Different Communication Systems: In the current study, clients and the

aggregating server communicated via the RESTful API technology. Other communication

techniques, such as gRPC, MQTT, or even peer-to-peer communication systems, might,

however, improve the effectiveness of communication in FL systems. In the framework

of 5G O-RAN, future research could take these other communication protocols into

consideration.

Investigation of Prospective Other Datasets: Although the present study concentrated

on the 5G NIDD and CICIDS2017 datasets, more datasets from other domains or with

various attack types may be explored in further research. This would put the robustness

and generalizability of the federated learning models to the test once more. Additionally,

artificial datasets might be created to test certain situations or uncommon attack kinds,

enhancing the model’s capacity to counter a variety of assaults.

Adoption of Privacy-Enhancing Techniques in System Communication: A possible

weakness in federated learning systems is the communication of weights between clients

and the aggregation site. In the future, studies could incorporate privacy-enhancing

techniques (PETs) into the weight exchange procedure to protect the confidentiality and

•

•

•

•

•

51

privacy of the weights to protect from sniffing. To assure safe and private model training

and inference in FL frameworks, PTEs methods such as homomorphic encryption, secure

multi-party computing, or differential privacy might be researched. FL would become

more privacy-preserving as a result, making it more suited for use in delicate or privacy-

sensitive applications.

• Integration of Various CL Methods:

Another significant research direction would be to investigate different CF techniques

to enhance the overall cost in terms of resource utilization and latency of the system.

Either applying EWC or LwF strategy standalone or combining these strategies with

different kinds of replay buffer techniques would be a subject of exploration. To reduce

memory space while keeping samples in buffer, compression method can be applied in

preserved samples which also adds the subject of investigating the effects of compression in

model’s performance. Moreover, Progressive Neural Network (PNN)[52] or Dynamically

Expandable Network (DEN)[53] can be adopted and investigated to reduce the effects of

CF.

52

7 SUMMARY

The junction of security automation, 5G O-RAN architecture, and FL are examined in this

thesis, with an emphasis on how they might be used to reduce DDoS assaults. The necessity for

advanced and automated security solutions within the framework of 5G O-RAN, an architecture

that is becoming more and more crucial in contemporary telecommunication networks, is what

motivates the research.

The thesis starts off by examining security automation and describing the vital function it

plays in the 5G O-RAN. O-RAN, which has the potential to spur flexibility and innovation,

has emerged as a crucial area of attention as 5G networks continue to develop. However,

this also creates additional security difficulties, especially with regard to DDoS assaults. As a

result, robust and automated security measures are necessary to guarantee the dependability and

resilience of these networks.

The study offers FL and CL as viable remedies to solve these problems. These learning

methodologies allow for collaborative ML while protecting privacy, with model training occur-

ring locally and just aggregated updates being shared. This lowers the possibility of data leakage

and maintains network effectiveness.

After then, the study is divided into two sections. A model is created in the first stage using

standard FL. In order to address the problem of CF, the technique is progressed in the second

stage with the development of a reservoir sampling buffer replay in conjunction with FL. 5000

samples from an earlier training dataset are buffered and mixed with the current training dataset

at this step. Then, using a widely used federated averaging method called FedAvg, this dataset

is utilized to update the weights of the local model.

Three VMs make up the actual configuration, with the third serving as a central server for

aggregation and the other two functioning as distant clients. Total 20 datasets of real-world traffic

collected from 2 base stations (10 from each base station) of 5GTN built in University of Oulu

consisting of various DDoS attack patterns from the 5G NIDD dataset repository have been used

for training and assessment of this method. The detection effectiveness of the pre-trained model

on data from other dataset named ’Application layer DDoS dataset’ [29] is also examined that

is a combination of the DDoS attack flows produced in proprietary testbed and genuine

samples from CICIDS2017 datasets.

The results of the thesis show that even when training datasets are provided sequentially,

the suggested technique may retain adequate accuracy. Importantly, the technique successfully

detects novel data patterns, highlighting its usefulness in actual 5G O-RAN situations. These

findings highlight the promise of FL for creating automated, flexible, and reliable security

solutions for 5G O-RAN architecture.

53

8 REFERENCES

[1] buffer. https://www.netscout.com/threatreport/.

[2] French R.M. (1999) Catastrophic forgetting in connectionist networks. Trends in cognitive

sciences 3, pp. 128–135.

[3] Rolnick D., Ahuja A., Schwarz J., Lillicrap T. & Wayne G. (2019) Experience replay for

continual learning. Advances in Neural Information Processing Systems 32.

[4] buffer. https://avalanche-api.continualai.org/en/v0.3.1/training.htmlreplay-buffers-and-

selection-strategies.

[5] Yoon J., Jeong W., Lee G., Yang E. & Hwang S.J. (2021) Federated continual learning with

weighted inter-client transfer. In: International Conference on Machine Learning, PMLR,

pp. 12073–12086.

[6] Samarakoon S., Siriwardhana Y., Porambage P., Liyanage M., Chang S.Y., Kim J., Kim

J. & Ylianttila M. (2022) 5g-nidd: A comprehensive network intrusion detection dataset

generated over 5g wireless network. arXiv preprint arXiv:2212.01298 .

[7] avalanche.training.reservoirsamplingbuffer. https://avalanche-

api.continualai.org/en/v0.1.0/generated/avalanche.training.ReservoirSamplingBuffer.html.

[8] buffer. https://www.5gamericas.org/wp-content/uploads/2019/08/5G-Security-White-

Paper8.15. 𝑝𝑑𝑓 .

[9] Sundqvist T., Bhuyan M. & Elmroth E. (2022) Uncovering latency anomalies in 5g ran-a

combination learner approach. In: 2022 14th International Conference on COMmunication

Systems & NETworkS (COMSNETS), IEEE, pp. 621–629.

[10] Arjoune Y. & Faruque S. (2020) Smart jamming attacks in 5g new radio: A review.

In: 2020 10th annual computing and communication workshop and conference (CCWC),

IEEE, pp. 1010–1015.

[11] buffer. https://www.imperva.com/learn/ddos/ddos-attacks/.

[12] Doriguzzi-Corin R. & Siracusa D. (2022) Flad: adaptive federated learning for ddos attack

detection. arXiv preprint arXiv:2205.06661 .

[13] Klement F., Katzenbeisser S., Ulitzsch V., Krämer J., Stanczak S., Utkovski Z., Bjelakovic

I. & Wunder G. (2022) Open or not open: Are conventional radio access networks more

secure and trustworthy than open-ran? arXiv preprint arXiv:2204.12227 .

[14] O-ran. https://www.o-ran.org/.

[15] buffer. https://rimedolabs.com/blog/ran-intelligent-controller-ric-overview-xapps-and-

rapps/.

[16] buffer. https://www.kdnuggets.com/2020/08/breaking-privacy-federated-learning.html.

[17] Parisi G.I., Kemker R., Part J.L., Kanan C. & Wermter S. (2019) Continual lifelong learning

with neural networks: A review. Neural networks 113, pp. 54–71.

[18] Aljundi R., Babiloni F., Elhoseiny M., Rohrbach M. & Tuytelaars T. (2018) Memory aware

synapses: Learning what (not) to forget. In: Proceedings of the European conference on

computer vision (ECCV), pp. 139–154.

[19] Brendan McMahan H., Moore E., Ramage D., Hampson S. & Agüera y Arcas B. (2016)

Communication-efficient learning of deep networks from decentralized data. arXiv e-prints

pp. arXiv–1602.

[20] Lopez-Paz D. & Ranzato M. (2017) Gradient episodic memory for continual learning.

Advances in neural information processing systems 30.

[21] buffer. https://avalanche.continualai.org/how-tos/dataloading𝑏𝑢 𝑓 𝑓 𝑒𝑟 𝑠𝑟 𝑒 𝑝𝑙𝑎𝑦.

[22] Shin H., Lee J.K., Kim J. & Kim J. (2017) Continual learning with deep generative replay.

Advances in neural information processing systems 30.

http://www.netscout.com/threatreport/
http://www.5gamericas.org/wp-content/uploads/2019/08/5G-Security-White-
http://www.5gamericas.org/wp-content/uploads/2019/08/5G-Security-White-
http://www.5gamericas.org/wp-content/uploads/2019/08/5G-Security-White-
http://www.imperva.com/learn/ddos/ddos-attacks/
http://www.imperva.com/learn/ddos/ddos-attacks/
http://www.o-ran.org/
http://www.kdnuggets.com/2020/08/breaking-privacy-federated-learning.html
http://www.kdnuggets.com/2020/08/breaking-privacy-federated-learning.html

54

[23] Andrychowicz M., Wolski F., Ray A., Schneider J., Fong R., Welinder P., McGrew B.,

Tobin J., Pieter Abbeel O. & Zaremba W. (2017) Hindsight experience replay. Advances

in neural information processing systems 30.

[24] Marfo W., Tosh D.K. & Moore S.V. (2022) Network anomaly detection using federated

learning. In: MILCOM 2022-2022 IEEE Military Communications Conference (MIL-

COM), IEEE, pp. 484–489.

[25] Moustafa N. & Slay J. (2015) Unsw-nb15: a comprehensive data set for network intrusion

detection systems (unsw-nb15 network data set). In: 2015 military communications and

information systems conference (MilCIS), IEEE, pp. 1–6.

[26] Zoghi Z. & Serpen G. (2021) Unsw-nb15 computer security dataset: Analysis through

visualization. arXiv preprint arXiv:2101.05067 .

[27] Rashid M.M., Khan S.U., Eusufzai F., Redwan M.A., Sabuj S.R. & Elsharief M. (2023) A

federated learning-based approach for improving intrusion detection in industrial internet

of things networks. Network 3, pp. 158–179.

[28] Ferrag M.A., Friha O., Hamouda D., Maglaras L. & Janicke H. (2022) Edge-iiotset: A new

comprehensive realistic cyber security dataset of iot and iiot applications for centralized

and federated learning. IEEE Access 10, pp. 40281–40306.

[29] Benza¨ıd C., Boukhalfa M. & Taleb T. (2020) Robust self-protection against application-

layer (d) dos attacks in sdn environment. In: 2020 IEEE Wireless Communications and

Networking Conference (WCNC), IEEE, pp. 1–6.

[30] Sharafaldin I., Lashkari A.H. & Ghorbani A.A. (2018) Toward generating a new intrusion

detection dataset and intrusion traffic characterization. ICISSp 1, pp. 108–116.

[31] Ye N. & Li X. (2000) Application of decision tree classifiers to computer intrusion detec-

tion. WIT Transactions on Information and Communication Technologies 25.

[32] Tan X., Su S., Huang Z., Guo X., Zuo Z., Sun X. & Li L. (2019) Wireless sensor networks

intrusion detection based on smote and the random forest algorithm. Sensors 19, pp. 203.

[33] Liao Y. & Vemuri V.R. (2002) Use of k-nearest neighbor classifier for intrusion detection.

Computers & security 21, pp. 439–448.

[34] Li W. & Li Q. (2010) Using naive bayes with adaboost to enhance network anomaly

intrusion detection. In: 2010 Third International Conference on Intelligent Networks and

Intelligent Systems, IEEE, pp. 486–489.

[35] Esmaily J., Moradinezhad R. & Ghasemi J. (2015) Intrusion detection system based on

multi-layer perceptron neural networks and decision tree. In: 2015 7th Conference on

Information and Knowledge Technology (IKT), IEEE, pp. 1–5.

[36] Samarakoon S., Siriwardhana Y., Porambage P., Liyanage M., Chang S.Y., Kim J., Kim

J. & Ylianttila M. (2022), 5g-nidd: A comprehensive network intrusion detection dataset

generated over 5g wireless network.

[37] Amalapuram S.K., Tadwai A., Vinta R., Channappayya S.S. & Tamma B.R. (2022) Con-

tinual learning for anomaly based network intrusion detection. In: 2022 14th International

Conference on COMmunication Systems & NETworkS (COMSNETS), IEEE, pp. 497–505.

[38] Mohammadpour L., Ling T.C., Liew C.S. & Chong C.Y. (2018) A convolutional neural

network for network intrusion detection system. Proceedings of the Asia-Pacific Advanced

Network 46, pp. 50–55.

[39] Agrawal S., Sarkar S., Aouedi O., Yenduri G., Piamrat K., Alazab M., Bhattacharya S.,

Maddikunta P.K.R. & Gadekallu T.R. (2022) Federated learning for intrusion detection

system: Concepts, challenges and future directions. Computer Communications .

55

[40] Momkute D., Ž vinys K. & Barzdėnas V. (2018) Adapted anomaly detection for ran perfor-

mance. In: 2018 IEEE 6th Workshop on Advances in Information, Electronic and Electrical

Engineering (AIEEE), IEEE, pp. 1–4.

[41] Killick R. & Eckley I. (2014) changepoint: An r package for changepoint analysis. Journal

of statistical software 58, pp. 1–19.

[42] Prasath S., Sethi K., Mohanty D., Bera P. & Samantaray S.R. (2022) Analysis of continual

learning models for intrusion detection system. IEEE Access 10, pp. 121444–121464.

[43] Revathi S. & Malathi A. (2013) A detailed analysis on nsl-kdd dataset using various

machine learning techniques for intrusion detection. International Journal of Engineering

Research & Technology (IJERT) 2, pp. 1848–1853.

[44] Stiawan D., Idris M.Y.B., Bamhdi A.M., Budiarto R. et al. (2020) Cicids-2017 dataset

feature analysis with information gain for anomaly detection. IEEE Access 8, pp. 132911–

132921.

[45] Javadpour A., Ja’fari F., Taleb T. & Benza¨ıd C. (2023) Reinforcement learning-based slice

isolation against ddos attacks in beyond 5g networks. IEEE Transactions on Network and

Service Management .

[46] Benza¨ıd C., Taleb T. & Song J. (2022) Ai-based autonomic and scalable security manage-

ment architecture for secure network slicing in b5g. IEEE Network 36, pp. 165–174.

[47] Ma Y., Xie Z., Wang J., Chen K. & Shou L. (2022) Continual federated learning based on

knowledge distillation. In: Proceedings of the Thirty-First International Joint Conference

on Artificial Intelligence, volume 3.

[48] What is a denial-of-service (dos) attack? https://www.cloudflare.com/learning/ddos/glossary/denial-

of-service/.

[49] Denial-of-service attack - wikipedia. https://en.wikipedia.org/wiki/Denial-of-

service𝑎𝑡𝑡𝑎𝑐𝑘 .

[50] Understanding denial-of-service attacks. https://www.cisa.gov/news-

events/news/understanding-denial-service-attacks.

[51] Hale J., Scale, standardize, or normalize with scikit-learn.

https://towardsdatascience.com/scale-standardize-ornormalize-with-scikit-learn-

6ccc7d176a02.

[52] Rusu A.A., Rabinowitz N.C., Desjardins G., Soyer H., Kirkpatrick J., Kavukcuoglu K., Pas-

canu R. & Hadsell R. (2016) Progressive neural networks. arXiv preprint arXiv:1606.04671

.

[53] Yoon J., Yang E., Lee J. & Hwang S.J. (2017) Lifelong learning with dynamically expand-

able networks. arXiv preprint arXiv:1708.01547 .

http://www.cloudflare.com/learning/ddos/glossary/denial-
http://www.cisa.gov/news-
http://www.cisa.gov/news-

56

9 APPENDICES

Table 9.1: List of Packages.

Package Version

Python 3.10.6

Flask 2.2.3

ipykernel 6.12.2

Keras 2.11.0

Jupyter Notebook 6.5.2

Numpy 1.24.2

Pandas 1.5.3

Scikit-learn 1.2.1

tensorflow 2.11.0

torch 1.13.1

Avalanche-lib 0.3.1

