
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING
DEGREE PROGRAMME IN WIRELESS COMMUNICATIONS ENGINEERING

MASTER’S THESIS

META-LEARNING APPLICATIONS
FOR MACHINE-TYPE WIRELESS

COMMUNICATIONS

Author Hebatalla Issa

Supervisor Mohammed Shehab

Second Examiner Hirley Alves

June 2023

Issa H. (2023) Meta-Learning Applications for Machine-Type Wireless Com-
munications. University of Oulu, Faculty of Information Technology and Electrical
Engineering, Degree Programme in Wireless Communications Engineering. Master’s
Thesis, 54 p.

ABSTRACT

Machine Type Communication (MTC) emerged as a key enabling technol-
ogy for 5G wireless networks and beyond towards the 6G networks. MTC
provides two service modes. Massive MTC (mMTC) provides connectiv-
ity to a huge number of users. Ultra-Reliable Low Latency Communication
(URLLC) achieves stringent reliability and latency requirements to enable
industrial and interactive applications. Recently, data-driven learning-based
approaches have been proposed to optimize the operation of various MTC
applications and allow for obtaining the desired strict performance metrics.
In our work, we propose implementing meta-learning alongside other deep-
learning models in MTC applications. First, we analyze the model-agnostic
meta-learning algorithm (MAML) and its convergence for regression and re-
inforcement learning (RL) problems. Then, we discuss uncrewed aerial ve-
hicles (UAVs) trajectory planning as a case study in mMTC and RL, illus-
trating the system model and the main challenges. Hence, we propose the
MAML-RL formulation to solve the UAV path learning problem. Moreover,
we address the MAML-based few-pilot demodulation problem in massive IoT
deployments. Finally, we extend the problem to include the interference can-
cellation with Non-Orthogonal Multiple Access (NOMA) as a paradigm shift
towards non-orthogonal communication thanks to its potential to scale well
in massive deployments. We propose a novel, data-driven, meta-learning-
aided NOMA uplink model that minimizes the channel estimation overhead
and does not require perfect channel knowledge. Unlike conventional deep
learning successive interference cancellation (SICNet), Meta-Learning aided
SIC (meta-SICNet) can share experiences across different devices, facilitat-
ing learning for new incoming devices while reducing training over- head.
Our results show the superiority of MAML performance in addressing many
problems compared to other deep learning schemes. The simulations also
prove that MAML can successfully solve the few-pilot demodulation prob-
lem and achieve better performance in terms of symbol error rates (SERs)
and convergence latency. Moreover, the analysis confirms that the proposed
meta-SICNet outperforms classical SIC and conventional SICNet as it can
achieve a lower SER with fewer pilots.

Keywords: machine type communications, meta-learning, MAML, NOMA,
SIC, modulation, pilot allocation, UAVs trajectory.

TABLE OF CONTENTS

ABSTRACT
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
1 INTRODUCTION 7

1.1 Literature Review. 7
1.2 Contributions . 10
1.3 Outlines . 11

2 MODEL AGNOSTIC META-LEARNING AND REINFORCEMENT LEARN-
ING 12
2.1 MAML Algorithm . 13

2.1.1 MAML for Regression and Classification . 14
2.1.2 MAML for RL . 15

2.2 RL Algorithms . 16
2.2.1 DQN Approach . 16
2.2.2 VPG Approach . 17
2.2.3 TRPO Approach. 17

2.3 Case Study: UAV Trajectory Planning . 18
2.4 Numerical Results . 20

2.4.1 MAML Algorithm . 20
2.4.2 UAV Path Planning Using RL. 21

3 META-LEARNING DEMODULATION FROM FEW PILOTS 26
3.1 System Model . 27
3.2 Meta-Learning Algorithm . 28
3.3 Simulation Results . 29

3.3.1 Symmetric Channel. 29
3.3.2 Rayleigh-Fading Channel . 31

4 META-LEARNING BASED FEW PILOTS DEMODULATION AND INTER-
FERENCE CANCELLATION FOR NOMA UPLINK 36
4.1 System Layout and Problem Formulation . 36

4.1.1 System Layout . 36
4.1.2 Problem Formulation . 37

4.2 Deep Learning-Based SIC . 38
4.2.1 SICNET .. 38
4.2.2 Proposed Meta-Learning Approach . 39

4.3 Numerical Analysis . 40
5 CONCLUSION 46
6 REFERENCES 48

FOREWORD

This thesis presents meta-learning applications for machine-type communication devices.
It was done at the Center of Wireless Communications (CWC) at the University of Oulu,
Finland. I would like to thank Dr. Hirley Alves for giving me a chance to join the MTC
research group and for his guidance during the work. And special thanks to my supervisor
and instructor Dr.Mohammad Shehab for his support and guidance all the time.

Oulu, 26th June, 2023

Hebatalla Issa

LIST OF ABBREVIATIONS AND SYMBOLS

5G Fifth Generation of Cellular Communication
AMR Automatic modulation recognition
AoI Age of information
BS Base station
CG Conjugate gradient
CNN Convolutional Neural Networks
CSI Channel state information
DDPG Deep deterministic policy gradient
DNN Deep Neural Networks
DQN Deep Q-Network
DRL Deep reinforcement learning
FL Federated Learning
HTC Human-Type Communication
IoT Internet of things
IoV Internet of vehicles
KPIs Key performance metrics
LR Learning rate
LSTM Long short term memory
MAML Model-agnostic meta-learning
MARL Multi-agent reinforcement learning
MDP Markov decision process
MIMO multiple-input and multiple-output
MMSE Minimum-mean square error
MTC Machine-Type Communication
NOMA Non-orthogonal multiple access
NR 5G New Radio
OFDM Orthogonal frequency division multiplexing.
OTFS Orthogonal Time Frequency Space modulation.
PAM Pulse Amplitude Modulation
PG Policy gradient
QAM Quadrature Amplitude Modulation.
QoS Quality of service
ReLU Rectified linear unit activation function
RL reinforcement learning
RW Random walk
SIC Successive interference cancellation
SISO Single-input single-output
TRPO Trust region policy gradient
UAV Unmanned aerial vehicles
VPG Vanilla policy gradient
WGN White Gaussian noise
WSN Wireless sensor network
SNR Signal-to-noise ratio
S a set of finite environment states s.

Apsq a set of possible actions.
Rpsq a real-valued reward function
P ps1, s|aq a transition probability model
Qps, aq action-value function
T a set of tasks
ppT q a distribution over tasks T
L a set of loss functions
qps1q a distribution over initial observations (states)
qpst`1|st, atq a state transitional distribution
H the task horizon
fθ a function parameterized by θ
θ general learning parameter
θ1 task adaptive parameter
α outer learning rate (step size)
β inner learning rate
η test adaptation learning rate
γ discount factor
ϵ exploration rate
Jpθq reward (cost) function
πθ Policy function parameterized by θ
Aπθ the advantage function for the current policy
V πpsq the policy value function
Qπps|aq the policy action-value function
hk Complex channel gain between device k and the BS.
nk complex additive white Gaussian noise.
CN Complex normal distribution.
ζ Noise variance.
sk The complex symbol transmitted by the device to the BS.
D Meta-training dataset.
DT Meta-testing dataset.
Ds

k Meta-training support set for device k.
DQ

k Meta-training query set for device k.
NQ

tr size of the training query set.
NS

tr size of the training support set.
pθpspnq|ypnqq Probabilistic demodulator.
Nte Number of pilots transmitted by target/test device.
x

p

lkq The lth symbol transmitted from the kth device
L The number of IoT devices per each meta-group.
Pl the transmitted power for each device.
xk The superimposed channel input signal
ψi the ith constellation symbol in the constellation space.
pl the conditional distribution of the corresponding symbol l
M the modulation order.
σp.q Activation function.

7

1 INTRODUCTION

The primary goal of the fifth generation, introduced as 5G new radio (NR), is to serve
Macine-Type Communication (MTC) besides Human-Type Communication (HTC) [1].
MTC allows the interconnection between devices and sensors without the need for human
intervention, therefore allowing for a wide variety of applications related to the Internet of
Things (IoT) [2]. MTC use cases can be classified into two main categories: ultra-reliable
low latency communication (URLLC), also known as critical machine-type communica-
tion (cMTC), and massive machine type communication (mMTC) service classes in 5G
NR [3]. However, the need for more stringent and robust performance requirements has
led to the design and development of the 6G wireless network. The methodology of an
MTC-optimized 6G network exploits the advanced machine learning (ML) tools com-
bined with enhanced 5G technologies such as non-orthogonal multiple access techniques
(NOMA).

Machine learning (ML) and artificial intelligence (AI) introduce a wide range of tools
such as deep learning, deep reinforcement learning, and distributed learning. that can be
utilized to effectively achieve the enhanced MTC applications’ key performance indicators
(KPIs). Additionally, meta-learning combined with other ML tools allows significant
enhancement in the performance of MTC applications improving the latency and the
learning time. In this context, implementing meta-learning in applications like UAV
path learning, demodulation, and NOMA techniques becomes a key enabler in MTC
applications.

This section will cover a detailed literature review of the machine learning-based ap-
proaches used in 5G and beyond wireless communication systems which enable the de-
ployment of MTC applications. Afterward, our novel contributions are presented briefly.
Finally, The outline of the whole thesis is presented.

1.1 Literature Review

Recently, deep learning has become pervasive in communication to enhance the perfor-
mance of communication systems including channel estimation [4–6], channel equaliza-
tion [7], modulation detection [8, 9]. In [9], the authors presented various deep-learning
models for automatic modulation recognition (AMR) for multiple-input multiple-output
(MIMO) communication systems which achieve better performance than the conventional
recognition methods. They show that deep neural network (DNN) and convolutional neu-
ral networks (CNN) models can be effectively optimized by transfer learning, few-shot
learning, cooperative learning, and data enhancement. However, applying deep learning
in such systems introduces many challenges including the model complexity, the training
latency, and the models’ adaptability to varying conditions like channel models. More-
over, DRL, which combines deep learning based on DNNs and reinforcement learning, has
obtained huge potential in many wireless applications thanks to its ability to effectively
find the optimal or near-optimal policies in applications with high-dimensional state and
action spaces and limited computational resources [10]. DRL has the ability to speed
up the learning process and reduce the storage required for the large action space, hence
papers [11–13] discuss the applications of DRL in IoT, cloud computing, smart vehic-
ular communications, etc. Therefore, several IoT wireless systems were studied for the

8

possibility of applying RL and DRL such as Internet of vehicles (IoV) [14, 15], cognitive
radio [16], autonomous IoT [12], wireless sensor networks (WSN) [17], and more.

Furthermore, distributed learning has emerged as an effective solution for the large
training datasets that are considered a bottleneck in classic centralized machine learning
techniques. The use of distributed learning, and specifically federated learning (FL),
reduces the need for high computational resources by enabling edge devices to mutu-
ally train their models without transporting data across the network, thus enhancing
the traffic overhead, latency, and data privacy [18]. The distributed learning underly-
ing frameworks can be exploited in many wireless applications, especially for IoT cases
where devices are connected to perform a similar coordinated task (e.g., swarms of drones
or vehicles). Multiple approaches have been introduced to enable distributed learning
for wireless applications, for example, the multi-agent reinforcement learning (MARL)
framework [19,20] has been widely used to solve different distributed optimization prob-
lems. In this case, deep neural networks are combined with reinforcement learning to
enable the learning agents to cooperatively perform a specific task without sharing the
whole collected data over the network. The use cases include distributed channel ac-
cess [21], cooperative edge caching [22], and resource allocation for UAV network [23].
In [23], the authors formulate a QoS constraint energy efficiency optimization problem
for multi-UAV networks where a MARL-based resource allocation algorithm is utilized
for UAV agents. In [24], the UAVs deployed as relay nodes between IoT sensors and the
base station are jointly trained to learn the best trajectory that minimizes the age of
information (AoI) to maintain the freshness of data transmitted by the sensors to the
base station. Moreover, FL was proposed to allow cooperative learning between a cluster
of agents by exchanging their local model parameters (weights) instead of raw data [25].
However, FL faces many challenges including complex computational algorithms and
maintaining high accuracy without sharing raw data between learning agents. To over-
come these challenges, novel FL techniques like federated multi-task learning and model
agnostic meta-learning based FL [18] are introduced to preserve privacy while achieving
high accuracy and low computational overhead. MAML-based FL tends to utilize the
meta-learning approach to find the best-suited ML model for all edge/IoT devices after
a few training iterations. Therefore, each device can use its own data to update this
general model within a few steps of gradient descent.

The concept of meta-learning can be consolidated with different deep-learning ap-
proaches to find a common model which can quickly adapt to the data variations that
happen due to the change in environment, variations of channel conditions due to mobil-
ity for instance. For example, meta-reinforcement learning aims to generalize the learning
experience to new tasks and new environments that have never been encountered dur-
ing training time [26]. In [27], a proposed MAML-based RL algorithm is used for edge
caching in vehicular networks to rapidly adapt to the change in content’s popularity
due to the mobility of vehicles and the alteration in users’ preferences. Furthermore,
meta-reinforcement learning is proposed as a potential candidate approach to effectively
solve the drones’ optimal trajectory planning for energy-constrained drones operating in
dynamic networks [28]. The simulation in [28] proves that meta-learning enhances the
RL solution and provides faster convergence to unknown environments with low compu-
tational complexity.

Despite the recent advances, there are many open challenges concerning NOMA in
massive IoT deployments such as latency, complexity of receivers, perfect channel knowl-

9

edge, and effective utilization of radio resources. These challenges prompted researchers
to look into data-driven approaches to handle multi-user connectivity [29–32]. We should
note that data-driven learning-based communication systems aim to coexist or replace
conventional model-based approaches thanks to their low complexity and ability to adapt
well to varying channels. Moreover, the learning-based models can be easily customized
to any environment, however, at the cost of new training instances. For instance, [31]
argues that although linear processing has been effective in NOMA systems, non-linear
processing is sometimes necessary to maintain good performance. The authors propose
a neural network architecture that leverages the benefits of both linear and non-linear
processing leading to efficient real-time detection performance. The authors in [30] intro-
duce a deep-learning-based user detection solution (DeepMuD) for the uplink in massive
MTC NOMA. The proposed DeepMuD employs an offline-trained long short-term mem-
ory (LSTM)-based network for multi-user detection without the need for perfect channel
state information (CSI). Interestingly, authors report that DeepMuD improves error per-
formance compared to conventional detectors and becomes even better as the number of
devices increases.

Authors in [32] design an efficient and high-performance sparse Bayesian learning-
based multi-user detection grant-free NOMA for mMTC able to handle scenarios with
relatively high or quasi-sparse user activity. Their findings demonstrate that the proposed
method outperforms traditional solutions, particularly when the number of active users
is unknown and relatively high. NOMA with SIC has been studied using many methods
[33]. For instance, the authors of [34] studied the performance of NOMA for short packet
transmission. Authors in [29] introduce a deep learning approach for estimating the
symbols named SICNet in the downlink NOMA. Contrary to conventional SIC, SICNet
replaces the interference cancellation blocks with DNNs to infer the soft information
representing the interfering symbols in a data-driven fashion, yielding robustness against
changes in the number of users and power allocation.

More recently, ML-based transceivers have gained lots of interest. For instance, the
authors of [35] proposed a meta-SICNet detection scheme for massive MIMO. The results
showed that their meta-SICNet outperforms the conventional MMSE detector. Further-
more, the work in [36] investigates learning-based transceivers using joint learning and
meta-learning techniques. An important limitation of the autoencoder-based approach
to end-to-end training is that training should be generally carried out from scratch for
each new channel. Despite the enhanced performance, such models can be trained on
an end-to-end basis irrespective of the underlying modulation or multiplexing scheme.
However, when relying on conventional training schemes, these models are required to be
trained from scratch for each separate transmission condition, which is cumbersome in
MTC networks with heterogeneous traffic and radio resources. Therefore, such networks
would benefit from a learning scheme that accumulates experience to facilitate learning
in new conditions.

In this context, meta-learning was introduced [37–39], also known as learning to learn.
Often communications networks are expected to operate under a variety of system config-
urations. Using conventional learning requires the training of a separate model for each
system configuration, leading to data and training time and processing costs. Owing to
efficiency, we want to train a single model that would perform across all configurations.
However, for such joint training, there may not exist a model that is able to perform
well. On the other hand, meta-learning uses data from multiple configurations to infer a

10

model class and learning procedure, enabling learning on configurations of interest. For
example, few-shot classification aims to infer a learning procedure that trains a classifier
under limited training data from each class. To do so, the learning procedure is inferred
from meta-training data that quickly train a classifier on meta-training tasks, rather
than training a single model to classify across all tasks [37, 38]. More specifically, in a
wireless communication setting, meta-learning outperforms (with respect to symbol error
probability) conventional and joint training in IoT scenarios where devices transmit few
pilots while adapting to non-linearities and fading. Learning to communicate on noisy
or fading channels requires training to be carried out from scratch for every channel, for
example, using pilot symbols. In this case, joint training is equivalent to non-coherent
transmission.

In [40], authors address the sensing and fusion problem in massive MTC, which aims
to collect and process a large amount of information and extract key features represent-
ing the observed process. However, sensing and fusion impose communication overheads
and data redundancy to perform a given accuracy. The authors then proposed a meta-
learning adaptive sensing and reconstruction framework that leverages prediction error
and sensing decisions so to reduce the amount of communication overhead while guaran-
teeing robustness. Besides, they show that meta-learning-based approaches outperform
conventional machine-learning algorithms in terms of convergence rate.

1.2 Contributions

The main contribution of the thesis is implementing the model agnostic meta-learning
method to enhance the performance and learning experience for MTC applications. We
developed an end-to-end, low-latency meta-learning scheme for few-pilot modulation de-
tection to support the deployment of a massive number of IoT devices transmitting their
data over fading channels. Additionally, we build upon [29, 30, 41] and propose a novel
few pilot-aided detection mechanism, named meta-SICNet, for NOMA uplink in mas-
sive MTC. Herein, as in [29], we infer the interfering symbols via deep neural networks.
However, we can reduce training over the network by the use of meta-learning, and in
addition, as in [41], we reduce the number of pilots required for detection. Therefore, the
three main pillars of our contributions are

• We propose a data-driven approach that applies meta-learning for NOMA uplink
transceiver design.

• The network model consists of multiple MTC devices transmitting their superim-
posed signal to the BS. Then, the meta-SICNet framework in the BS learns to
recover the transmitted symbols using the meta-training and adaptation approach.

• The meta-SICNet is able to decode symbols with fewer pilots, in the presence of
interference, compared to basic SIC and conventional SICNet methods.

• Extensive simulation results elucidate that the proposed meta-SICNet scheme sig-
nificantly outperforms both classical SIC and conventional SICNet in terms of out-
age probability and requires a lower number of pilots (down to 2 pilots).

11

1.3 Outlines

The rest of the thesis is organized as follows: Chapter 2 illustrates the meta-learning
techniques focusing on the model agnostic meta-learning with a simulation example,
the chapter also investigates the application of reinforcement learning for UAV path
planning and discusses the possibility of optimizing the solution using meta-RL. Chapter
3 introduces the meta-learning demodulation techniques from few-pilot data. Chapter
4 discusses the interference cancellation and few-pilot demodulation for NOMA using
meta-learning. Finally, the summary and the thesis conclusions are presented in Chapter
5.

12

2 MODEL AGNOSTIC META-LEARNING AND
REINFORCEMENT LEARNING

Machine learning is a massive field that aims to replicate human intelligence into ma-
chines or software programs. To achieve that, the learning process should be constructive
and generalized, thus shared between the learning agents. Therefore, meta-learning is
proposed to be combined with other machine-learning algorithms in order to allow a
near-human learning experience.

The key idea of meta-learning, or learning to learn, is to generalize the learning ex-
perience to new tasks and new environments that have never been encountered during
training time. This holds when the learning involves tasks from the same class but yet
different tasks. For example, the well-known image classification task can be solved using
few-shot meta-learning where the model trained on specific image classes such as cats
learns to classify new non-cats image classes [42, 43]. In [42], the MAML algorithm is
used to generate synthetic image data with artificial labels to allow unsupervised fast
learning using the meta-learning concept. The model outperforms all the Omniglot and
Mini-Imagenet few-shot learning benchmarks. Another example is the maze navigation
problem which was well-studied as a reinforcement learning problem, the meta-learning
approach can be applied to allow the RL agent to navigate new mazes and reliably
determine the exit after training on a few maze examples [44].

Furthermore, reinforcement learning is a machine learning field that allows an agent
to interact with the environment and learns from trial and error by observing the effect
of its own actions and experiences, the same way a human learns something new. The
goal of RL is to find a suitable action model that would maximize the total cumulative
reward of the agent. The basic elements of the RL problem are described using the
Markov decision process (MDP) framework [45]. An MDP consists of

• a set of finite environment states S,

• a set of possible actions Apsq in each state,

• a real-valued reward function Rpsq, and

• a transition model P ps
1

, s|aq.

Therefore, RL algorithms utilized the mathematical formulation of the MDP to accom-
plish the learning process. RL algorithms are divided into two classes: model-based and
model-free RL. Model-based learning attempts to model the environment and then choose
the optimal policy based on its learned model [46], model-based RL algorithms leverage
the learned model to simulate and plan future trajectories, enabling more efficient and
sample-efficient learning without relying on try-and-error. However, in model-free learn-
ing the agent doesn’t follow a particular model, instead, it depends on trial-and-error for
finding the optimal policy [47]. Since real-world environments don’t often have any prior
knowledge of the environment dynamics and conditions, RL problems are mostly based
on model-free approaches which are categorized into policy optimization methods and
value-based (Q-learning) methods.

In policy optimization methods, the optimal policy is computed by handling the policy
directly using policy gradient (PG) algorithms [48], while the value-based approach learns
the action-value function Qps, aq and hence discovers the optimal policy by realizing

13

Figure 1: Diagram of MAML Algorithm.

the optimal value function. Policy-based RL is more efficient when dealing with high
dimensional or continuous action spaces, it’s also beneficial in learning stochastic policies.
On the other hand, the value-based RL is most effective in sample efficiency and stability
[49]. Examples of policy gradient algorithms are vanilla policy gradient (VPG) [50] and
trust-region policy gradient (TRPO) [51].

In Section 2.1, we describe a popular meta-learning approach known as MAML intro-
ducing the algorithm and its mathematical formulation. Then, we discuss the MAML for
reinforcement learning algorithm and the experimental evaluation of the MAML algo-
rithm for regression and RL problems. Section 2.2 introduces some RL approaches and
their algorithmic formulation. Section 2.3 discusses the case study of UAV path learning
for minimizing the age of information. Afterward, the simulation results are presented
and discussed in Section 2.4.

2.1 MAML Algorithm

The aim of meta-learning is to provide learning from experience and quick adaptation
to new tasks from only a few examples. To achieve this goal, the Model agnostic meta-
learning is proposed as a general framework that can be directly used for any learning
problem or combined with a learning model that is trained with gradient descent pro-
cedures such as classification, regression, and policy gradient reinforcement learning.
Therefore, the MAML algorithm leads to fast learning on a new task by performing a
few gradient updates.

To formulate a general problem setting for the MAML algorithm, a model f that maps
observations s to outputs a is trained to adapt to a large number of tasks. Each task
T “ tLps1, a1, ..., sH, aHq, qps1q, qpst`1|st, atq, Hu is a set of a loss function L, a distribution
over initial observations qps1q, a transitional distribution qpst`1|st, atq, and a task horizon
H. The model parameters are summarized in table 1. The meta-learning model is

14

Table 1: Parameters of The MAML Algorithm

Parameter Definition
T a set of tasks
ppT q a distribution over tasks T
qps1q a distribution over initial observations (states)

qpst`1|st, atq a state transitional distribution
H the task horizon
L a set of loss functions
fθ a function parameterized by θ
θ general learning parameter
θ1 task adaptive parameter
α outer learning rate (step size)
β inner learning rate

presented by a parameterized function fθ with vector parameters θ, and the model is
trained over a distribution of tasks ppT q. When the model adapts to a new task Ti, the
model’s parameters θ turns to be θ1

i which is computed using one or more gradient update
steps on the task Ti. When applying only one gradient step, the adaptive parameter θ1

i

is computed as
θ

1

i “ θ ´ α∇θLTi
pfθq (1)

The meta training aims at optimizing the loss function of fθ
1

i
with respect to θ over the

sampled tasks from ppT q as follows,

min
θ

ÿ

Ti„ppT q

LTi
pfθ

1

i
q “

ÿ

Ti„ppT q

LTi

´

fθ ´ α∇θLTi
pfθq

¯

(2)

The final step is to update the meta parameters across tasks using stochastic gradient
descent (SGD) [52] as follows,

θ Ð θ ´ β∇θ

ÿ

Ti„ppT q

LTi
pfθ

1

i
q (3)

Figure 1 represents the optimization of the meta-parameter θ to enable quick adaptation
to new tasks [37]. The algorithm is summarized in algorithm 1.

2.1.1 MAML for Regression and Classification

As established in our discussion for MAML algorithm, MAML can be used for supervised
tasks to learn the function representation of a few input/output pairs of specific tasks
using the experience acquired from training on similar tasks. For instance, in few-shot
regression, the learning objective is to anticipate the outcomes of a continuous function
utilizing a few datapoints sampled from that function, after the meta-training on other
functions that have similar statistical properties. To formulate the supervised classifica-
tion/regression problem, we adjust the horizon H “ 1 and drop the time subscript from

15

Algorithm 1: MAML Algorithm
Input: distribution over tasks ppT q; step size hyperparameters α and β.
Output: Learning parameter vector θ.

1 Randomly initialize the parameter vector θ.
2 Start Meta-Training:
3 while not done do
4 Sample batch of tasks Ti „ ppT q.
5 for each Ti do
6 Calculate the gradient ∇θLTi

pfθq with respect to K examples.
7 Compute adapted parameters θ1 using (1) as

θ1
i “ θ ´ α∇θLTi

pfθq

8 end
9 update the meta-parameter θ:

θ Ð θ ´ β∇θ

ÿ

Ti„ppT q

LTi
pf 1

θq

10 end
11 End Meta-Training.

the observation s. The loss function can be defined as a mean-squared error (MSE) loss
or cross-entropy loss, the MSE loss for regression problems can be defined as

LTi
pfϕq “

ÿ

spjq,ypjq„Ti

||fϕpspjq
q, ypjq

||
2
2 (4)

where spjqq, ypjq represents the input-output pair sampled from the task Ti, the cross-
entropy loss function for classification is expressed as

LTi
pfϕq “

ÿ

spjq,ypjq„Ti

ypjq log fϕpspjq
q ` p1 ´ ypjq

qp1 ´ log fϕpspjq
qq. (5)

2.1.2 MAML for RL

To apply MAML for RL problems, a few-shot meta-learning approach is adopted to
enable the agent to quickly learn a policy for a new task by applying only a small
amount of experience. A new task might include a new learning goal, for example, an
agent might learn how to walk in a certain direction and then quickly learn to walk
in a different direction. A new task might also involve accomplishing the same goal
in a new unknown environment, for example, an agent might learn how to navigate a
certain maze so that when faced with a new maze, it can determine its exit with only
a few samples. To formulate the meta-RL problem, the RL task Ti is defined with its
initial state distribution qipx1q, a state transition distribution qipst`1|st, atq, and the loss

16

function LTi
corresponding to the (negative) reward function R. The whole learning task

is modeled as an MDP that has a horizon of H. In MDP, the learning agent is allowed to
access limited sample trajectories for few-shot learning. Thus, the learning model defined
as fθ is a policy that maps the observations or states st to an action distribution at at
each timestep t P t1, ..., Hu. The loss for task Ti and model fϕ can be defined as

LTi
pfϕq “ ´Est,at„fϕ,qTi

”
H
ÿ

t“1
Ripst, atq

ı

(6)

The MAML algorithm requires RL models parameterized by differentiable parameters
in order to estimate the gradient updates for the meta-optimization. Therefore, the
policy gradient methods are employed for that purpose.

2.2 RL Algorithms

In this section, we briefly discuss some popular RL algorithms which have been used
effectively in research to solve a variety of RL problems. These algorithms include DQN,
VPG, and TRPO approaches.

2.2.1 DQN Approach

The state-action value function, the Q-function Qπps, aq is used to compute the value of
applying an action a after observing a state s. It can be updated each time instant as

Q ps ptq , a ptqq “ Q ps ptq , a ptqq `

α
´

r ptq ` γ max
a

Q ps pt ` 1q , aq ´ Q ps ptq , a ptqq

¯

, (7)

where α is the learning rate, rptq is the reward, γ Q ps pt ` 1q , a pt ` 1qq is the discounted
state-action value at time instant t` 1, γ is the discount factor, and ϵ is the exploration
rate. For each episode, the agent randomly explores a new action with a probability of ϵ
or selects a greedy action that maximizes the state-action value with probability 1 ´ ϵ.
In order to achieve the best policy after training for a relatively long period, the value
of ϵ decays as the learning progresses. Therefore, random actions are more likely to be
chosen at the beginning of training to explore the state space, whereas the model chooses
the best actions after training for a while to obtain the best policy [53].

The DQN model consists of two neural networks, the estimator network which es-
timates the actual Q-function, and the target network, which estimates the target
Q-function. Two major strategies are implemented to improve the learning rate;
the fixed Q-targets and experience replay buffer. For every fixed number of steps,
the Q-function estimator network is updated via the DQN. However, the experience
tuplesps pt ` 1q , a pt ` 1q , r pt ` 1q , s pt ` 1qq are stored in a buffer memory to be sam-
pled and used for training the neural network. Besides utilizing past experience, the
experience replay detects and breaks highly correlated samples. The deep Q-learning
algorithm is summarized in algorithm 2 [54].

17

Algorithm 2: Deep Q-Learning Algorithm
1 Initialize the replay memory to capacity N.
2 Initialize action-value function Q with random weights.
3 for each episode do
4 Initialize sequence s1 “ tx1u and preprocessed sequenced ϕ1 “ ϕps1q

5 for each time step t “ 1, . . . , T do
6 Select a random action at with probability ϵ.
7 otherwise, select at “ maxaQ

˚pϕpstq, a; θq

8 Execute action at and observe the reward rt and image xt`1.
9 Set st`1 “ st, at, xt`1, and preprocess ϕt`1 “ ϕpst`1q

10 Store transitions pϕt, at, rt, ϕt`1q in the replay memory.
11 Sample random minibatch of transitions pϕj, aj, rj, ϕj`1q from the memory.

12 Set yj “

#

rj for terminal ϕj`1

rj ` γmaxa1Qpϕj`1, a
1; θq for non-terminal ϕj`1

13 Perform a gradient descent step on pyj ´ Qpϕj, aj; θqq2

14 end
15 end

2.2.2 VPG Approach

RL aims at obtaining the optimal behavior strategy for the agent to achieve higher
rewards. Therefore, the policy gradient algorithms emerge as the recommended approach
in RL since they operate directly on policy optimization. The VPG algorithm is one of the
common PG approaches that has been used often in solving RL problems, It’s not only
suitable when implementing the MAML algorithm, but also it outperforms the Q-learning
approach in many RL tasks. To formulate the VPG problem, the policy is modeled as
a parameterized function πθpa|sq with respect to the parameter θ. The PG approaches
aim at optimizing the parameter θ to achieve the best reward (average return). Thus,
the gradient of the reward function Jpθq for the VPG algorithm is defined as

∇θJpθq “ E
τPπθ

«

T
ÿ

t“0
∇θ log πθpat|stqA

πθ pst, atq

ff

(8)

where τ is the trajectory of the states and actions taken by the agent during learning
and Aπθ is the advantage function for the current policy defined as

Aπθ “ Qπ
ps, aq ´ V π

psq (9)

where Qπps, aq is the policy action-value function and V πpsq is the policy value function.

2.2.3 TRPO Approach

TRPO is a policy gradient method based on estimating the gradient of the expected
return (total rewards) collected from sampled trajectories [55]. TRPO has rapidly gained
popularity thanks to its stability compared to VPG and other natural policy gradient

18

methods [56] that include second-order optimization. As suggested by its name, the
algorithm defines a trust region in which the maximum step size for policy exploration
is determined to locate the optimal point in this region. Therefore, there are three main
pillars of TRPO algorithms to achieve this goal; first, the conjugate gradient method
which approximates the updated value without the need to compute the inverse of the
fisher information matrix defined as

F pθq “ Eθ

“

∇θ log πθpxq∇θ log πθpxq
T

‰

(10)

where πθpxq is the optimized policy. The second pillar is the line search that shrinks
the trust region until the update is satisfactory, and the third is the improvement check
which is used to verify whether the update actually improves the policy trajectory. Conse-
quently, TRPO outperforms the former natural gradient methods on many RL tasks. For
example, the work introduced in [57] establishes a detailed comparison between TRPO,
VPG, deep deterministic policy gradient (DDPG), and DQN with normalized advantage
function (DQN-NAF). The authors performed comparative experiments on robotic arm
control tasks such as reaching a target at a random position and picking or placing an
object. The reported results elucidate the robustness and superiority of TRPO compared
to the other algorithms.

2.3 Case Study: UAV Trajectory Planning

Recently, UAVs have been extensively proposed in research for several MTC applications
thanks to their eminent performance guarantees. Consequently, UAVs are deployed in
large IoT setups as mobile relay units between the IoT devices and the BS to minimize the
age of information and maintain the data freshness within limited energy consumption.
Hence, several learning schemes such as deep reinforcement learning are proposed to
tackle the problem of minimizing the AoI and the energy consumption for IoT sensors [58].
In this section, we investigate two deep RL schemes for optimizing age and compare their
behaviors.

The system model is defined as a set of devices randomly distributed over a 2D area,
the position of each device is given by Ld “ pxd, ydq. A UAV is deployed to collect update
packets from these devices by flying over the service area as shown in figure 2. The main
target of the UAVs is to collect information from the devices by following a strategy that
reduces the total sum of the age of information (AoI). The AoI metric is used to evaluate
the freshness of information, it is defined as the time elapsed since the last update packet
received at a UAV was generated. Specifically, we define AoI Adpt ` 1q for the device d
at time slot t ` 1 as

Adpt ` 1q “

#

1, if wptq “ d,

mintAd,maxptq, Adptq ` 1u, otherwise,
(11)

where Ad,max denotes the maximum allowed AoI. The definition guarantees that the AoI
of the device d is equal to one when it generates an update packet at time slot t, otherwise,
the AoI is increased by one. To formulate the MDP for the RL solution, we define the
states, actions, and rewards as follows.

1. State space: The state space of the system at time slot t is expressed as sptq “

plptq,Aptqq where:

19

Figure 2: System Model for UAV path learning showing the trajectory of 1 UAV flying
over 5 devices.

• lptq is a location vector that comprises the position of each UAV, u, luptq P P at
time t.

• Aptq “ pA1ptq, A2ptq, ..., AN ptqq (N ă D) includes the AoI of all devices served by
the UAVs, where AN ptq P A “ r1, 2, ..., AN,maxs.

Hence, the state space of the system is given by S “ PU ˆ AN , where U “ t1, . . . , u, . . . u
is the set of UAVs.

2. Action space: The action space at time t is given by the movement of the UAVs
vuptq and the scheduling policy wptq that determines the next device to be served by
the UAV. Hence, that action at time t is aptq “ pvuptq, wptqq. Here, vuptq P V has 5
directional actions (North, South, East, West, and Hovering) as shown in (12). Then,
the action space is given by B “ VU ˆ WU .

lupt ` 1q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

luptq ` p0, rq, vuptq “ North,
luptq ´ p0, rq, vuptq “ South,
luptq ` pr, 0q, vuptq “ East,
luptq ´ pr, 0q, vuptq “ West,
luptq, Hovering.

(12)

3. Reward: The reward determines the weighted sum of the age of information for all
IoT devices covered by the UAVs. We define the reward r for the UAV at time instant t
as

rptq “ ´

D
ÿ

d“1
Adptq (13)

As illustrated in the system model, the UAV experiences a large dimensional state
space. Thus, we adopt the deep Q-network (DQN) approach to overcome the dimension-
ality problem thanks to its ability to approximate the action-value function (Q-function).

20

We also investigate the performance of the VPG algorithm and compare its behavior with
DQN, the simulation analysis is presented in the following section.

2.4 Numerical Results

2.4.1 MAML Algorithm

In this section, we evaluate the performance of the MAML algorithm for both regression
and RL problems as in [37].

Regression

The MAML algorithm is tested for a simple regression problem, the learning tasks are
defined as a mapping from the input to the output of a sine wave, where the amplitude
and phase of the sinusoidal function vary for each task. Therefore, the distribution over
tasks ppT q is continuous. The amplitude is chosen within the range r0.1, 5.0s, and the
phase is defined within r0, πs, both input and output have a dimensionality of 1. During
training and testing, data points x are sampled uniformly from r´5.0, 5.0s. The loss is
defined as the mean-squared error between the prediction fpxq and the true function
value. When training with MAML, we use one gradient update with K “ 10 examples
with a fixed step size α “ 0.01 and use Adam [59] as the meta-optimizer.

The simulation results are presented in figure 3, figure 3a shows the adaptation pro-
cess of the meta-learner over gradient update steps. After one update step, the model
approaches the true function and after 10 steps the model highly approximates the true
function. The figure shows that the model was able to adapt quickly with few data
points. Moreover, Figure 3b represents the adaptation for the neural network model
with respect to the gradient steps, the plot clearly shows that the neural net poorly ap-
proximates the true function values compared to the MAML adaptation, even after 10
update steps. Figure 4 shows the mean-squared error loss of the MAML algorithm and a
neural network model without meta-training. The model learned with MAML performs
much better and converges faster than the neural network model, the model manages to
improve with extra gradient update steps outperforming the conventional neural network
setup without MAML.

Reinforcement Learning

To visualize the performance of MAML for RL problems, we train a deep neural network
model that has two hidden layers of 100 neurons each, and apply the ReLU activation
function [60]. The gradient updates are computed using VPG, while the TRPO is used
as the meta-learner.

The tasks are defined based on a simulated planar cheetah robot that runs in a partic-
ular direction or at a particular velocity. The learning objective is to achieve a particular
velocity when running in specific directions. To achieve the target velocity, the reward
is selected as the negative absolute value between the agent’s current velocity and the
target velocity, which is chosen randomly from a uniform distribution between 0.0 and
2.0. To achieve the target direction, the reward is the magnitude of the velocity when
running in the forward or the backward direction, which is selected randomly for each

21

task in ppT q. The task horizon or the number of episodes for each task is H “ 200,
with 20 iterations for each gradient step. The results for the half-cheetah direction task
are shown in Figure 5 where the average return is plotted vs. the number of meta tasks
or batches. The average return for the 1-gradient step is growing with the number of
batches compared to the training with the RL algorithm only which keeps the same value
for different batches. The MAML-RL approach accelerates the learning and adaptation
process for the RL agents which often consume a lot of training and exploration time to
start learning and achieving a higher return.

2.4.2 UAV Path Planning Using RL

In this section, we discuss the results obtained from DQN and VPG learning approaches.
The achieved AoI is compared to the random walk (RW) baseline. We assume the IoT
devices are configured on a space of 1100 m × 1100 m, which is divided into 11 × 11 grids.
For training the DQN approach, we use a neural network with two hidden layers with
64 neurons for each layer. The learning rate is α “ 10´4, we adopt the Adam optimizer,
ReLU activation function, and replay buffer of size 100000. The discount factor γ “ 0.99,
and we train the model with 10,000 trained episodes using Pytorch framework [61].

For training the VPG agent, we use two hidden layers with 20 neurons each, the corre-
sponding learning rate α “ 10´5, the model adapts Adam optimizer, Softmax activation
function, γ “ 0.99, and 10,000 trained episodes using Pytorch framework.

Figures 6a and 6b show the average score per 10,000 episodes for DQN and VPG, re-
spectively. The scores represent the total reward or the average return after performing
a chosen action on the environment. Thus, they reflect the learning progress and conver-
gence to the optimal policy. The plot shows that the scores tend to improve and converge
with the number of training episodes. Figure 7 compares the average age (AoI) for DQN,
VPG, and RW agents, the results show that DQN and VPG algorithms improve the
average age for all devices compared to the conventional RW approach. Furthermore,
the VPG agent achieves lower age than DQN in some setups of IoT devices, which proves
that the PG method outperforms the value-based DQN method when tackling the path
learning problem.

In this chapter, we discussed the MAML algorithm and its applications in various
machine-learning fields. The simulation proved that MAML approach boosts the perfor-
mance of the ML tasks including the reinforcement learning problems. We also presented
the UAV trajectory planning problem in massive IoT setups as a case study in mMTC
applications. Moreover, we discussed different RL approaches to solve this problem by
finding the optimal UAV trajectory that achieves lower AoI and maintains the informa-
tion freshness between the BS and the IoT sensors. The next step is to use the MAML-RL
method to enhance the performance of the UAV trajectory problem. The meta tasks can
be defined based on different setups of IoT devices, hence, the UAVs can quickly adapt to
new environments where the distribution of the sensors alters, and be able to determine
the best path after a few update steps.

22

(a) Few-shot adaptation for MAML regression task.

(b) Few-shot adaptation for neural net regression task.

Figure 3: Results for few-shot adaptation using MAML Algorithm.

23

Figure 4: The loss function for MAML and a neural network for 10 gradient steps

Figure 5: Reinforcement learning results for the half-cheetah direction task.

24

(a) Average score for DQN learning agent.

(b) Average score for VPG learning agent.

Figure 6: Average reward for DQN and VPG agents.

25

Figure 7: Average AoI for Random Walk vs. DQN-Agent and VPG agent for 1 UAV and
5 Devices.

26

3 META-LEARNING DEMODULATION FROM FEW
PILOTS

For IoT scenarios where a large number of devices transmit a few pilots using short pack-
ets over a fading channel, the accurate estimation of the end-to-end channel becomes
unfeasible. Therefore, the demodulation problem can be solved using machine learning
approaches. Demodulation and decoding can be managed as a classification problem
where the input is the received baseband signals and the output is the actually transmit-
ted symbols [41, 62–68]. For this matter, the pilots are used as the training data for the
neural network model while the performance is measured in the test time with different
channel conditions. However, the training on neural networks requires a large amount of
training data, i.e. transmission of a long pilot sequence. To handle the problem of short
packet transmission with few pilot symbols, a meta-learning approach for few-shot learn-
ing is proposed in [41]. The learning model is based on the MAML algorithm proposed
in [37]. The pilots from the previous transmission of other IoT devices are used as meta-
training data for the demodulator to be able to adapt quickly to the change in the channel
conditions between the test devices and the base station. In [63], the authors extend their
meta-learning solution by adopting other offline versions of the MAML approach which
include first-order MAML (FOMAML) [37], REPTILE [69], and CAVIA [70]. The sim-
ulation results presented in the paper show that the meta-learning-based approaches
outperform the conventional learning-based techniques, moreover, the CAVIA algorithm
seems to achieve higher performance with fewer pilots than both MAML and REPTILE.
The paper also proposed an online meta-learning scheme where the meta-learner is con-
currently updated while the pilots are received, their online adaptation model is based on
the work presented in [71,72]. The results also show good performance in online settings
compared to conventional learning, however, the online model is slower and achieves a
relatively higher symbol error rate than the offline model. In order to optimize the online
meta-learning for few-pilot demodulation, the authors in [64] introduce a Bayesian meta-
learning approach to obtain a calibrated few-pilot demodulators by optimizing the prior
data distribution used in Bayesian inference. The proposed Bayesian model is motivated
by the VAMPIRE scheme in [73] which relies on Gaussian variational posteriors [74].
The numerical results discussed in the paper show the model’s ability to achieve lower
symbol error rates and better calibration performance in terms of expected calibration
error (ECE) [75]. Additionally, the Bayesian meta-learning is employed in [65] for de-
modulation and channel equalization problems. The authors combined Bayesian learning
with active meta-learning [76, 77] to effectively reduce the number of tasks required by
the meta-learner to collect the training data and adapt to new tasks.

In this Chapter, we reconstruct the system model and the simulation results presented
in [41]. We focus on the few-shot MAML approach for few-pilot demodulation and on-
line adaptation to the variations in CSI. The simulations include two channel condition
scenarios; a symmetric channel (˘1), and a Rayleigh fading channel. We also adopt
two modulation schemes pulse amplitude modulation with modulation order 4 (4-PAM)
and quadrature amplitude modulation with modulation order 16 (16-QAM). The anal-
ysis proves the superiority of MAML to solve the short packet transmission problem
encountered in massive MTC applications and massive IoT scenarios.

27

Figure 8: System model for few-pilot demodulation using meta-learning.

3.1 System Model

We consider the IoT system and the meta-learning solution proposed in [41]. The system
model illustrated in figure 8 consists of a base station (BS), K meta-training devices, and
one meta-test device. For each device, k, sk denotes the complex symbol transmitted by
the device. yk is the corresponding received signal at the BS such that

yk “ hksk ` nk (14)

where hk is the complex channel gain from the device k to the BS, and nk „ CN p0, ζq is
the complex additive white Gaussian noise (AWGN) and ζ is the noise variance. Based on
the transmission of few-pilot symbols, a probabilistic demodulator pθps|yq, parameterized
by the learning parameter θ, learns to demodulate the received signal y to recover the
transmitted symbols s with a low probability of symbol error. To inspire the model to
learn from few-pilot data, the signals received at the BS from previous transmissions by
the meta-training devices are gathered and treated as meta-training data. Particularly,
the BS contains N pairs of symbols sk and received signal yk for each meta-training
device k “ 1, . . . , K. The meta-training dataset is expressed as D “ tDuk“1,...,K , where
Dk “ tps

pnq

k , y
pnq

k q : n “ 1, . . . , Nu, and ps
pnq

k , y
pnq

k q are the nth pilot-received signal pairs
for the kth meta-training device.

For the meta-test device, the BS receives Nte pilot symbols. The Nte pilots received
from the test device are gathered in the set DT “ tpspnq, ypnqq : n “ 1, . . . , Nteu. Therefore,
the demodulator model is trained using the meta-training data D and then adapted to
the pilot data DT received from the meta-test device.

28

Support-Set

Query-Set

Training
Dataset

Neural Network

Neural Network

k

Test-Set Neural Network

Meta-Training on K Meta-Devices

Adaptation on Meta-Test Device

Figure 9: Illustration of the Meta-Learning approach.

Figure 10: Neural Network Demodulator Diagram

3.2 Meta-Learning Algorithm

In this section, we describe the meta-learning algorithm for the demodulator [41]. The
learning is performed in two phases; the meta-learning phase, and the test-adaptation
phase. In the meta-learning phase, we use the meta-training data D and iterate over the
number of K meta-tasks (meta-devices) to learn a general parameter vector θ using the
inner task parameter θ1

k. This can be done offline at the BS while collecting data from

29

training devices. For the meta-test adaptation phase, the learned parameter θ is used to
enable fast adaptation based on the few pilots Nte transmitted by the target (meta-test)
devices. Consequently, the test dataset DT is used to train a demodulator pθps|yq to
minimize the cross-entropy loss

LDT
pθq “ ´

ÿ

pspnq|ypnqqPDT

log pθpspnq
|ypnq

q (15)

Then, the stochastic gradient descent algorithm is used to update the parameter θ iter-
atively as

θ Ð θ ´ η∇θ logpspnq
|ypnq

q, (16)
where the pair pspnq|ypnqq P DT , and η is the step size. As discussed in [37], the purpose
of the MAML algorithm is to find the initial parameter θ such that, for any device, the
loss after one iteration of 16 applied to the received pilots is minimized. The algorithm is
illustrated in figure 9 where the training dataset is split into support and query sets, the
support set is used for the meta-training devices to train the neural network parameters
θ1

k. The query set is fed into the neural network (NN) to update the meta parameter θ.
After the meta-training is performed, the general parameter θ is used to initialize the
neural network that adapts to the test dataset. The algorithm is detailed in algorithm
3 [41].

3.3 Simulation Results

In this Section, we illustrate the simulation results for both symmetric and Rayleigh
fading channels using 4-PAM and 16-QAM modulation schemes.

3.3.1 Symmetric Channel

In this experiment, we adopt a simple scenario where we assume the fading is bi-
nary, i.e., the channel hk is symmetric and with values ˘1. Here we assume a pulse-
amplitude modulation with four amplitude levels (4-PAM) where the pilot symbols
are S “ t´3,´1, 1, 3u. Pilot symbols in the meta-training dataset D and meta-test
datasetDT follow a fixed periodic sequence t´3,´1, 1, 3,´3,´1, . . . , u while transmitted
symbols in the test set for the meta-test device are randomly selected from the set S. The
number of meta-training devices is K “ 20, and the number of pilot symbols per device
is N “ 8 for 4-PAM and N “ 32 for 16-QAM. The devices are divided equally into two
sets, support set with channel value `1 and the number of pilots NQ

tr “ 4, 16 and query
set with channel value ´1 and NS

tr “ 4, 16 for 4-PAM and 16-QAM, respectively. For the
adaptation on the meta-test device, the channel value is chosen randomly between `1
and ´1.

The demodulator, shown in figure 10, is a neural network with an input layer of 2
neurons, one hidden layer with 30 neurons, and a softmax output layer with 4 neurons in
case of 4-PAM and 16 neurons in case of 16-QAM, the activation function σp.q “ tanhp.q
for 4-PAM, and σp.q “ ReLUp.q for 16-QAM. For meta-learning with MAML, we use a
mini-batch of size 4 with fixed learning rates α “ 0.1 and β “ 0.001. The weights and
biases are all initialized randomly. For the adaptation in the meta-test device, we adopt

30

Algorithm 3: Meta-Learning Demodulation
Input: Meta-training data D “ tDk“1,...,Ku, and meta-testing pilot data DT ; NS

tr

and NQ
tr ; step size α and β.

Output: Learning parameter vector θ; SER.
1 Randomly initialize the parameter vector θ.
2 Start Meta-Training:
3 while not done do
4 for each meta-training device k do
5 Randomly split Dk into two sets; support-set DS

k of size NS
tr, and query-set

DQ
k of size NQ

tr .
6 Calculate the gradient ∇θLDT

pθq from (20) with DT “ DQ
k , and ∇2

θLDT
pθq.

7 Compute adapted parameters θ1 using

θ1
k “ θ ´ β∇θLDQ

k
pθq

8 end
9 update the meta-parameter θ:

θ Ð θ ´ α∇θ

K
ÿ

k“1
LDS

k
pθ1

kq

10 end
11 Start Meta-Testing Adaptation:
12 for testing epochs do
13 Load the learned parameter vector θ.
14 Sample data from DT .
15 Update θ in the direction of the gradient with step size η by

θ Ð θ ´ η∇θLDT
pθq

16 end

a mini-batch of size 1 and learning rate α “ 0.01. The signal-to-noise ratio (SNR) is
15dB. The simulation parameters are summarized in table 2.

We compare the performance of the meta-learning algorithm with a simple neural
network demodulator in which we only train the devices without the experience of meta-
learning. The comparison is illustrated in figure 11 in which we plot the symbol error rate
with respect to the number of pilots Nte for the meta-test device. The figure shows that
the MAML approach outperforms the neural network model and quickly adapt to the
few pilot transmission of the test device. The MAML algorithm’s training convergence is
analyzed for error rate and training loss given in 15. The results are illustrated in figure
12a and 12b which show that the MAML update step greatly accelerates the convergence
achieving much lower loss and error rate for the same number of the training epochs.

31

Table 2: Meta-demodulator Model Parameters

Simulation Parameters 4-PAM 16-QAM
Activation function for hidden layers tanh ReLU
Modulation Order M 4 16
Number of pilots symbols per device 4 16

Common Parameters:
Number of devices K 20
Optimizer Adam
Outer learning rate α 0.1
Inner learning rate β 0.001
Learning rate for adaptation η 0.01
Number of training epochs 10,000
Size of testing data for target devices 106

Training SNR 15 dB
Number of adaptation epochs 1000
Number of DNN layers 3
Neurons for hidden layer 30
Activation function (output layers) Softmax

3.3.2 Rayleigh-Fading Channel

We consider a more complicated scenario where we adopt a Rayleigh fading channel
where hk „ CN p0, 1q. In figure 13, we plot the average symbol error rate with respect
to the number of pilots Nte transmitted by the meta-test device. The performance is
compared to a basic neural network-based model. The simulation results show that the
MAML approach adapts more quickly than the NN baseline scheme when encountered
with the channel of the target device. However, in the Rayleigh fading scenario, more
pilots are needed to achieve the same SER compared to the symmetric channel scenario
presented in Figure 11.

The training convergence is also investigated for the Rayleigh fading channel configu-
ration. Figure 14a the error rate convergence vs. training epochs for MAML before and
after updating the meta-parameter. The error quickly converges for the meta-training
approach. The loss value is also plotted against the training epochs in figure 14b, The
MAML loss quickly converges and achieves the minimum value of ´1.

32

(a) 4-PAM modulation.

(b) 16-QAM modulation.

Figure 11: Symbol error rate for a different number of transmitted pilots. The figure
compares the error rate for a simple neural network model and the meta-learning ap-
proach for the binary-fading (symmetric) channel.

33

(a) Average error rate for meta-training before and after MAML update step vs.
training epochs.

(b) Average training loss for meta-training before and after MAML update step vs.
training epochs.

Figure 12: Convergence analysis for MAML-algorithm training phase before and after
MAML update step. The simulation is done for 4-PAM modulation symmetric channel.

34

(a) 4-PAM modulation.

(b) 16-QAM modulation.

Figure 13: Symbol error rate for a different number of transmitted pilots. The figure
compares the error rate for a simple neural network model and the meta-learning ap-
proach for the Rayleigh-fading channel.

35

(a) Average error rate for meta-training before and after MAML update step vs. training
epochs.

(b) Average training loss for meta-training before and after MAML update step vs. training
epochs.

Figure 14: Convergence analysis for MAML-algorithm training phase before and after
MAML update step. The simulation is done for 4-PAM modulation Rayleigh fading
channel.

36

4 META-LEARNING BASED FEW PILOTS
DEMODULATION AND INTERFERENCE

CANCELLATION FOR NOMA UPLINK

The path to future wireless networks is encompassed by a massive deployment of devices,
enabling smart cities, autonomous vehicles, and many unforeseen scenarios. Besides a
large number of devices, these mMTC devices are often battery constraint, with limited
computational capability, and have heterogeneous and sporadic traffic patterns. Com-
bined, these characteristics impose many challenges for the design of efficient random-
access procedures and radio resource management. Therefore, researchers are increas-
ingly studying multiple access techniques that are able to scale well to this massiveness
while coping with the existence of interference and scarce spectrum. In this context,
NOMA with SIC has shown potential and has been the focus of academy and industry
in recent years [29,33,34,78–81]. This is because NOMA schemes allow for multiple-user
transmission with superior performance compared to conventional orthogonal schemes.
These recent surveys evince the popularity and potential of NOMA and overview key
characteristics, techniques, and applications [33,80,81].

In this Chapter, we extend the meta-learning for the few-pilot demodulation problem to
include interference from other IoT devices. Furthermore, we utilize the non-orthogonal
multiple access technique and propose a meta-learning based successive interference can-
cellation approach to cancel the interference from other IoT devices. The numerical
results demonstrate the robust performance of the proposed meta-SICNet model on the
demodulation and interference cancellation task using only few pilots and a few meta
tasks. The work in this Chapter is published in [82].

The rest of the chapter is organized as follows: Section 4.1 depicts the system model
and the problem formulation. Conventional SICNet and the proposed meta-learning-
based SICNET solutions are presented in Section 4.2, and Section 4.3 elucidates the
results.

4.1 System Layout and Problem Formulation

4.1.1 System Layout

We consider a non-orthogonal uplink channel where we have K meta-training device
groups and one meta-testing group. For each group k, L IoT devices transmit their data
to the BS within the same time and frequency resources as illustrated in Figure 15. The
devices transmit tx

pkq“1,...,K
l“1,...,L u symbols to the BS using superposition coding, where the

symbol xpkq

l is the lth symbol transmitted from the kth device. Specifically, the symbol
x

pkq

l is amplified with the transmitted power Pl for l “ 1, . . . , L. The channel input is the
superimposed signal xk given by

xk “

L
ÿ

l“1

a

Plx
pkq

l (17)

The symbols are sampled from an M -point constellation S, and assumed to be mutually
independent with unit mean power, i.e., E

”
ˇ

ˇ

ˇ
x

pkq

l

ˇ

ˇ

ˇ

ı

“ 1. For simplicity, we assume all

37

Figure 15: The system model comprises k sets of meta-training devices and one Meta-
testing device. Each meta-training set, k, transmits a superimposed signal, xk of L-
devices to the BS.

devices have the same modulation order M . The channel output at the BS for each k
group denoted as yk for k “ 1, . . . , K is given by

yk “ hkxk ` nk, (18)

where hk P C is the channel coefficient between the BS and the device-group k, and
nk „ CN p0, ζq is the complex AWGN.

4.1.2 Problem Formulation

We aim to construct a symbol detection demodulator based on a short packet transmis-
sion of a few pilot symbols. For each device l in the device group k, the detected symbol,
i.e., x̂pkq

l , is estimated from the channel output yk. To enable symbol recovery using
few-pilot learning, we use a data-driven approach based on meta-learning and DNNs.
Assuming no prior information about the channel model at the receiver, the BS can use
the signals received from the previous pilot transmissions of K other IoT device groups,
which are referred to as meta-training devices and their data as meta-training data. In
particular, the BS has available N pairs of pilots xk and received signal yk for each meta-
training group k “ 1, . . . , K. The meta-training dataset is denoted as D “ tDuk“1,...,K ,
where Dk “ tpxk

pnq, y
pnq

k q : n “ 1, . . . , Nu, and pxk
pnq, y

pnq

k q are the pilot-received signal
pairs for the kth meta-training group of devices.

For the meta-test devices, the BS receives Nte pilot symbols. It collects the Nte pilots
received from the target device in set DT “tpxpnq, ypnqq :n“1,. . ., Nteu. The demodulator
can be trained using meta-training data D and the pilot symbols DT from the meta-
test devices. To recover the symbols, the successive interference cancellation algorithm
is utilized, such that the power allocations for the superimposed symbols satisfy P1 ą

38

Figure 16: Architecture of SICNet for DNN-based SIC for L “ 2 devices.

P2. . .ąPL. Hence, the meta-learning-based DNN successively detects each symbol from
the channel output signal yk.

4.2 Deep Learning-Based SIC

In this section, we describe the data-driven solutions based on DNNs to perform SIC
and symbol detection. First, we introduce the conventional DNN-based SICNet; then we
illustrate the proposed meta-SICNet approach.

4.2.1 SICNET

The DNN-based SIC, called SICNet, was introduced in [29] to estimate the transmitted
symbols in the downlink NOMA users scheme. For the sake of illustration, we consider
an uplink scheme with L “ 2 devices in each device group. As depicted in Figure 16,
the architecture of SICNet is implemented using sequential DNN blocks. Each block
performs symbol recovery, which is considered a classification problem. Therefore, the
structure of SICNet consists of L DNN stages, where each stage estimates the transmitted
symbol of each device. Each stage uses the received signal yk and the output vector pl

for l “ 1, . . . , L that represents the conditional distribution of the corresponding symbol,
expressed as

pl “

»

—

–

p̂pxl “ ψ1|yk,p1, . . . ,pl´1q
...

p̂pxl “ ψM |yk,p1, . . . ,pl´1q

fi

ffi

fl

, (19)

where ψi is the ith constellation symbol in the constellation space S for i “ 1, . . . ,M ,
and p̂pxl “ ψi|yk,p1, . . . ,pl´1q is a parametric estimation of the probability of xl given
yk and the previous estimates p1, . . . ,pl´1.

The data-driven feature of the SICNet increases its capability to detect symbols reli-
ably without requiring full knowledge of the channel model. Concretely, it works in a
model-agnostic manner contrary to the conventional SIC algorithm [29], which requires

39

Figure 17: Architecture of meta-SICNet

a restricted channel model [83]. Thus, SICNet operates with arbitrary channel mod-
els depending on the classification process of the data-driven DNN. Furthermore, the
SICNet architecture only requires knowledge of the modulation order M and the power
coefficients of the transmitted signals.

4.2.2 Proposed Meta-Learning Approach

In this section, we describe the meta-learning approach for demodulation based on [41]. In
our proposed method, the meta-learning-based SICNet allows learning the interference
cancellation and signals demodulation using a few-pilot transmission. Moreover, the
model can quickly adapt to the change in the channel conditions, in contrast to the
classical SICNet.

In our model, the learning is performed in two phases; the meta-learning phase and
the test-adaptation phase, as shown in Figure 17. In the meta-learning phase, we use
the meta-training data D and iterate over the number of K meta-tasks (meta-devices)
to learn a general parameter vector θ using the inner task parameter θ1

k. This can be
done offline at the BS while collecting data from training devices. For the meta-test

40

adaptation phase, the learned parameter θ is adapted to enable fast adaptation based on
the few pilots P transmitted by the target (meta-test) devices. Consequently, the test
data-set DT is used to train a demodulator pθpx|yq to minimize the cross-entropy loss
given by

LDT
pθq “ ´

ÿ

pxpnq|ypnqqPDT

log pθpxpnq
|ypnq

q. (20)

Then, the stochastic gradient descent is used to update the parameter θ iteratively as

θ Ð θ ´ η∇θ logpxpnq
|ypnq

q, (21)

where the pair pxpnq|ypnqq P DT , and η is the step size. As discussed in [37], the purpose
of the MAML algorithm is to find the initial parameter θ such that, for any device, the
loss after one iteration of (21) applied to the received pilots is minimized. The training
and testing (adaptation) steps are illustrated in Algorithm 4.

4.3 Numerical Analysis

In this section, we evaluate the performance of the proposed meta-SICNet in terms
of symbol error rate (SER) and compare it to the performance of classical SIC and
conventional SICNet. The simulation parameters for meta-SICNeT are presented in
Table 3. The model considers K “ 20 meta-device groups for training, and each group
includes L “ 2 non-orthogonal interference devices for the UL system. The transmitted
signal to the BS is modulated using the BPSK modulation scheme of modulation order
2, where the signal is superimposed by the power coefficients P1 “ 4 and P2 “ 1. The
SICNet architecture comprises 2 DNN blocks, and each DNN consists of 4 layers; the
input and output layers and two hidden layers. The number of neurons in each hidden
layer is shown in Table 3. The training loss criteria is based on the combined loss from
both devices. For the end-to-end training, we used the Adam optimizer with the meta-
learning rate α “ 0.1 and inner learning rate β “ 0.001. For simplicity, we consider a
symmetric channel model of ˘1, where half of the training groups have a channel of `1
and the other half ´1. For adaption on target devices, the channel is chosen randomly
as `1 or ´1. The training is performed on an 11-th Gen Intel Core i5 2.40GHz CPU
and 16-GB RAM.

Figure 18 depicts the performance of SER for both meta-SICNet and SICNet for a
different number of pilots. The simulation was performed for Nte “ 1, 2, . . . , 8 with an
SNR value of 15 dB. The results show that the meta-learning approach outperforms
the SICNet in terms of SER. Moreover, it is clear that increasing the number of pilots
improves learning performance. However, for meta-SICNet, the SER relatively saturates
faster at 2 or 3 pilots. Note that device 2 always performs better since interference is
already removed after decoding the signal from device 1, which captures the SIC effect.

In Figure 19, we plot the symbol outage probability as a function of the SNR for SNR
values t0, 2, . . . , 18u using 4 pilot symbols. It appears that the meta-SICNet can capture
the effect of SNR as the symbol error rate significantly improves when increasing the
SNR. Again, it is obvious that the meta-SICNet outperforms conventional SICNet and
the classical SIC for all SNR values, which proves the superiority of the proposed meta-

41

Algorithm 4: Meta-Learning based SIC
Input: Meta-training data D “ tDk“1,...,Ku, and meta-testing pilot data DT ; NS

tr

and NQ
tr ; step size α and β.

Output: Learning parameter vector θ; SER.
1 Randomly initialize the parameter vector θ.
2 Start Meta-Training:
3 while not done do
4 for each meta-training group k do
5 Randomly split Dk into two sets; support-set DS

k of size NS
tr, and query-set

DQ
k of size NQ

tr .
6 Calculate the gradient ∇θLDT

pθq from (20) with DT “ DQ
k , and ∇2

θLDT
pθq.

7 Compute adapted parameters θ1 using (21) as

θ1
k “ θ ´ β∇θLDQ

k
pθq

8 end
9 update the meta-parameter θ:

θ Ð θ ´ α∇θ

K
ÿ

k“1
LDS

k
pθ1

kq

10 end
11 Start Meta-Testing Adaptation:
12 for testing epochs do
13 Load the learned parameter vector θ.
14 Sample data from DT .
15 Update θ in the direction of the gradient with step size η by

θ Ð θ ´ η∇θLDT
pθq

16 end

learning solution for in NOMA uplink. Note that the classical SIC is the worst performer
here, so we just added one curve for illustration.

In Figure 20, we address the performance of meta-SICNet for a different number of
meta-training tasks (device groups) with 15dB SNR and Nte “ t4, 8u pilots. The sim-
ulation shows that the capacity of learning for the meta-SICNet model improves when
increasing the meta-training device groups. Therefore, the model can achieve lower SER
if the training experience is shared between more device groups.

Table 4 illustrates the training complexity for both meta-SICNet and SICNet in terms
of the number of parameters, training time per epoch, and adaptation (testing) time. Al-
though the meta-SICNet approach achieves higher computational complexity, the train-
ing can be done offline among the meta-training device groups. Then, the online adapta-
tion process is performed to continuously update the model parameters without having
to train the model again. On the contrary, the SICNet model requires completing the

42

Table 3: meta-SICNet Model Parameters

Parameter Value
Number of device groups for meta-SICNet K 20
Number of devices in each group L 2
Modulation Number M 2
Power factors of the devices P1, P2 4, 1
Number of DNN layers for SICNet 4
Neurons for DNN block 1 24-12
Neurons for DNN block 2 32-16
Activation function for hidden layers ReLU
Activation function for output layers Softmax
Optimizer Adam
Outer learning rate α 0.1
Inner learning rate β 0.001
Number of training epochs 300
Number of pilots for training data NS

tr, N
Q
tr 4, 4

Size of testing data for target devices 106

Training SNR 6 dB
Learning-rate for adaptation on test devices η 0.001
Number of adaptation epochs 1000

Table 4: Complexity analysis of meta-SICNet vs. SICNet, 8 pilots

Model # Parameters Training time Test-time

Meta-SICNet 2240 50.3 ms 4.01 ms
SICNet 1120 10.9 ms 41.01 ms

whole training process online whenever the channel condition alters. Therefore, the test-
ing (adaptation) time for the meta-based approach is much less than SICNet for the same
number of pilots. Hence, meta-SICNet can achieve lower SER with relatively low online
complexity (i.e, only 4.01 ms of adaptation time).

We studied the convergence of our model in Figures 21 and 22. The convergence is
measured for two interference devices before and after the MAML update through the
meta-training. Both the training loss and error rate converge at 300 training epochs,
moreover, the MAML update drives the model to converge faster achieving a lower error
rate and loss value. As illustrated in the figures, the performance of the first device is
lower than the second since the SICNet cancels the interference and recovers the symbols
in order. Thus, the symbols which are recovered first have a higher error rate and loss
value than the symbols recovered last.

43

Figure 18: Symbol error rate vs. number of pilots for Meta-testing devices and SICNet
(SNR = 15 dB).

Figure 19: Symbol error rate vs. SNR for Meta-testing devices, SICNet, and conventional
SIC (number of pilots = 4).

44

Figure 20: Symbol error rate vs. number of meta-training tasks (number of device groups)
for SNR = 15 dB, and number of pilots 4, 8.

45

Figure 21: Convergence of error rate vs. the training epochs.

Figure 22: Convergence of loss function vs. training epochs.

46

5 CONCLUSION

In this thesis, we present the meta-learning approach to optimize the performance of var-
ious massive machine-type communication applications where a large number of IoT de-
vices are deployed, especially in URLLC applications where stringent latency and reliabil-
ity requirements are required. We analyzed the model-agnostic meta-learning algorithm
and its applications in different machine-learning fields such as regression, classification,
and reinforcement learning. The models are built and implemented in Python using the
Pytorch framework for deep learning development. Moreover, we propose implementing
MAML in three mMTC applications; i) UAV path learning and trajectory planning using
reinforcement learning, ii) few-pilot demodulation for massive IoT configurations, and
iii) interference cancellation and demodulation for NOMA schemes. First, we studied
the MAML algorithm and analyzed its implementation in regression and RL problems.
The simulation results demonstrated the advantages of MAML and meta-learning in op-
timizing the learning process, allowing the DL model to collect the learning experience
and grow monotonically when encountered with unknown situations that require accom-
plishing new tasks. Moreover, we introduced the UAV path learning problem in terms
of AoI and data freshness indicator. We illustrate the detailed system model and the
mathematical formulation of the problem. Furthermore, we investigated the different RL
solutions and algorithms, i.e., DQN and VPG. The results show that the VPG algorithm
outperforms the DQN approach and achieves lower AoI maintaining more freshness of
information. Additionally, we discussed the potential of applying the MAML-RL scheme
for UAV trajectory planning in cases of varying configurations of IoT sensors. The ap-
plication of MAML is expected to optimize the AoI and provide the possibility to adapt
to the dynamics of UAVs and the change in the relative positions between the sensors
and the UAV relays.

Following that, we presented the meta-learning based few-pilot demodulation as a
promising solution for short packet transmission in massive IoT scenarios. Consequently,
we proposed a MAML-based approach that achieves lower symbol error rates and quick
adaptation to the varying channel condition compared to a neural network-based ap-
proach. The simulation results manifest the model convergence and its superior perfor-
mance in cases of a few number of pilots and low SNR value.

Furthermore, in [82], we introduced a data-driven meta-learning-aided NOMA uplink
model. Unlike classical SIC and conventional deep learning SIC, the proposed meta-
SICNet can accumulate experience across different devices, facilitating the learning pro-
cess for newly introduced devices and reducing the training overhead. Our results con-
firm that meta-SICNet outperforms conventional SICNet as it can achieve a lower symbol
outage probability. Moreover, meta-SICNet can converge faster and renders significantly
good performance for a few pilots (only 2 or 3 pilots). Although meta-SICNet consumes
a longer time for training, the training phase is performed offline, and the online adap-
tation phase consumes a very short time (« 4 ms) compared to conventional SIC, which
reduces the online complexity.

There are plenty of possible extensions to the meta-SICNet approach proposed here,
among which full-duplex NOMA [84] with self-interference cancellation, adaptation to
a higher number of devices, and meta-learning aided massive MIMO [85]. Moreover,
further future extensions to the work presented in this thesis can be attained, which
leads to the realization of the 6G network. A possible extension that can be addressed

47

by meta-learning is the novel two-dimensional modulation technique, the orthogonal
time frequency space modulation (OTFS) [86]. OTFS is designed to effectively perform
modulations in time-varying channels by transforming the multipath signal into a two-
dimensional delay-Doppler domain. OTFS provides full diversity and supports the large
antenna structures deployed in massive MIMO systems. Therefore, combining the power
of OTFS with the potential of meta-learning and the MAML algorithm will enhance the
performance and the latency of the OTFS scheme.

While data-driven and machine-learning approaches have emerged in various wireless
communication fields, our research shows that meta-learning has a huge potential in
mMTC and URLLC applications. The reason for that is the ability of meta-learning to
satisfy the key performance metrics required by many applications, e.g., energy consump-
tion, reliability, latency, connectivity, and network capacity. However, there are many
challenges that need to be addressed in order to achieve the full potential of learning
from experience. One of the challenges is obtaining ample knowledge about the problem
and the environment. The choice of tasks can be misleading and repetitive and does not
fully represent the aspects of the learning problem or the altering conditions of the en-
vironment. Hence, it is crucial to construct a distribution of tasks that allow the model
to generalize its learning process and gain sufficient experience. Another shortcoming
that concerns the implementation of MAML is the assumption that the MAML train-
ing encounters new data samples at each iteration (task) which guarantees the model
convergence to a generalized learning stage. However, the training often passes through
the same data points multiple times, since the training acquires a large distribution of
realized datapoints and randomly samples the meta-data for each training task. There-
fore, the MAML training requires more refinement to be ble to distinguish between the
training error and the so-called generalization error that might compromise the whole
meta-learning process and the training convergence.

48

6 REFERENCES

[1] Kodheli O., Guidotti A. & Vanelli-Coralli A. (2017) Integration of Satellites in 5G
through LEO Constellations. In: GLOBECOM 2017-2017 IEEE Global Communi-
cations Conference, IEEE, pp. 1–6.

[2] Popovski P., Nielsen J.J., Stefanovic C., De Carvalho E., Strom E., Trillingsgaard
K.F., Bana A.S., Kim D.M., Kotaba R., Park J. et al. (2018) Wireless access for
ultra-reliable low-latency communication: Principles and building blocks. Ieee Net-
work 32, pp. 16–23.

[3] Mahmood N.H., Böcker S., Moerman I., López O.A., Munari A., Mikhaylov K.,
Clazzer F., Bartz H., Park O.S., Mercier E. et al. (2021) Machine type communica-
tions: key drivers and enablers towards the 6G era. EURASIP Journal on Wireless
Communications and Networking 2021, p. 134.

[4] Soltani M., Pourahmadi V., Mirzaei A. & Sheikhzadeh H. (2019) Deep learning-
based channel estimation. IEEE Communications Letters 23, pp. 652–655.

[5] Ye H., Li G.Y. & Juang B.H. (2017) Power of deep learning for channel estimation
and signal detection in OFDM systems. IEEE Wireless Communications Letters 7,
pp. 114–117.

[6] He H., Wen C.K., Jin S. & Li G.Y. (2018) Deep learning-based channel estimation
for beamspace mmWave massive MIMO systems. IEEE Wireless Communications
Letters 7, pp. 852–855.

[7] Erdogmus D., Rende D., Principe J.C. & Wong T.F. (2001) Nonlinear channel equal-
ization using multilayer perceptrons with information-theoretic criterion. In: Neural
Networks for Signal Processing XI: Proceedings of the 2001 IEEE Signal Processing
Society Workshop (IEEE Cat. No. 01TH8584), IEEE, pp. 443–451.

[8] O’shea T. & Hoydis J. (2017) An introduction to deep learning for the physical layer.
IEEE Transactions on Cognitive Communications and Networking 3, pp. 563–575.

[9] Zhang F., Luo C., Xu J., Luo Y. & Zheng F. (2022) Deep learning based automatic
modulation recognition: Models, datasets, and challenges. Digital Signal Processing
, p. 103650.

[10] Frikha M.S., Gammar S.M., Lahmadi A. & Andrey L. (2021) Reinforcement and
deep reinforcement learning for wireless Internet of Things: A survey. Computer
Communications 178, pp. 98–113.

[11] Luong N.C., Hoang D.T., Gong S., Niyato D., Wang P., Liang Y.C. & Kim D.I.
(2019) Applications of deep reinforcement learning in communications and network-
ing: A survey. IEEE Communications Surveys & Tutorials 21, pp. 3133–3174.

[12] Lei L., Tan Y., Zheng K., Liu S., Zhang K. & Shen X. (2020) Deep reinforcement
learning for autonomous internet of things: Model, applications and challenges.
IEEE Communications Surveys & Tutorials 22, pp. 1722–1760.

49

[13] Nguyen T.T., Nguyen N.D. & Nahavandi S. (2020) Deep reinforcement learning
for multiagent systems: A review of challenges, solutions, and applications. IEEE
transactions on cybernetics 50, pp. 3826–3839.

[14] Yang F., Wang S., Li J., Liu Z. & Sun Q. (2014) An overview of internet of vehicles.
China communications 11, pp. 1–15.

[15] Althamary I., Huang C.W. & Lin P. (2019) A survey on multi-agent reinforcement
learning methods for vehicular networks. In: 2019 15th International Wireless Com-
munications & Mobile Computing Conference (IWCMC), IEEE, pp. 1154–1159.

[16] Wang Y., Ye Z., Wan P. & Zhao J. (2019) A survey of dynamic spectrum allocation
based on reinforcement learning algorithms in cognitive radio networks. Artificial
intelligence review 51, pp. 493–506.

[17] Kumar D.P., Amgoth T. & Annavarapu C.S.R. (2019) Machine learning algorithms
for wireless sensor networks: A survey. Information Fusion 49, pp. 1–25.

[18] Chen M., Gündüz D., Huang K., Saad W., Bennis M., Feljan A.V. & Poor H.V.
(2021) Distributed learning in wireless networks: Recent progress and future chal-
lenges. IEEE Journal on Selected Areas in Communications 39, pp. 3579–3605.

[19] Busoniu L., Babuska R. & De Schutter B. (2008) A comprehensive survey of multia-
gent reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews) 38, pp. 156–172.

[20] Feriani A. & Hossain E. (2021) Single and multi-agent deep reinforcement learning
for AI-enabled wireless networks: A tutorial. IEEE Communications Surveys &
Tutorials 23, pp. 1226–1252.

[21] Guo Z., Chen Z., Liu P., Luo J., Yang X. & Sun X. (2022) Multi-agent reinforce-
ment learning-based distributed channel access for next generation wireless networks.
IEEE Journal on Selected Areas in Communications 40, pp. 1587–1599.

[22] Zhong C., Gursoy M.C. & Velipasalar S. (2019) Deep multi-agent reinforcement
learning based cooperative edge caching in wireless networks. In: ICC 2019-2019
IEEE International Conference on Communications (ICC), IEEE, pp. 1–6.

[23] Cui J., Liu Y. & Nallanathan A. (2019) Multi-agent reinforcement learning-based re-
source allocation for uav networks. IEEE Transactions on Wireless Communications
19, pp. 729–743.

[24] Eldeeb E., de Souza Sant’Ana J.M., Pérez D.E., Shehab M., Mahmood N.H. & Alves
H. (2022) Multi-uav path learning for age and power optimization in iot with uav
battery recharge. IEEE Transactions on Vehicular Technology .

[25] Bonawitz K., Eichner H., Grieskamp W., Huba D., Ingerman A., Ivanov V., Kiddon
C., Konečnỳ J., Mazzocchi S., McMahan B. et al. (2019) Towards federated learning
at scale: System design. Proceedings of machine learning and systems 1, pp. 374–388.

50

[26] Nagabandi A., Clavera I., Liu S., Fearing R.S., Abbeel P., Levine S. & Finn C. (2018)
Learning to adapt in dynamic, real-world environments through meta-reinforcement
learning. arXiv preprint arXiv:1803.11347 .

[27] Sakr H. & Elsabrouty M. (2023) Meta-reinforcement learning for edge caching in
vehicular networks. Journal of Ambient Intelligence and Humanized Computing 14,
pp. 4607–4619.

[28] Hu Y., Chen M., Saad W., Poor H.V. & Cui S. (2020) Meta-reinforcement learning
for trajectory design in wireless uav networks. In: GLOBECOM 2020-2020 IEEE
Global Communications Conference, IEEE, pp. 1–6.

[29] Van Luong T., Shlezinger N., Xu C., Hoang T.M., Eldar Y.C. & Hanzo L. (2022)
Deep learning based successive interference cancellation for the non-orthogonal
downlink. IEEE transactions on vehicular technology 71, pp. 11876–11888.

[30] Emir A., Kara F., Kaya H. & Yanikomeroglu H. (2021) DeepMuD: Multi-User Detec-
tion for Uplink Grant-Free NOMA IoT Networks via Deep Learning. IEEE Wireless
Communications Letters 10, pp. 1133–1137.

[31] Schaufele D., Marcus G., Binder N., Mehlhose M., Keller A. & Stańczak S. (2022)
GPU-Accelerated Machine Learning in Non-Orthogonal Multiple Access. In: 2022
30th European Signal Processing Conference (EUSIPCO), pp. 667–671.

[32] Zhang X., Fan P., Liu J. & Hao L. (2022) Bayesian Learning-Based Multiuser De-
tection for Grant-Free NOMA Systems. IEEE Transactions on Wireless Communi-
cations 21, pp. 6317–6328.

[33] Ding Z., Lei X., Karagiannidis G.K., Schober R., Yuan J. & Bhargava V.K. (2017) A
Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges
and Future Trends. IEEE Journal on Selected Areas in Communications 35, pp.
2181–2195.

[34] Dosti E., Shehab M., Alves H. & Latva-aho M. (2019) On the performance of
non-orthogonal multiple access in the finite blocklength regime. Ad Hoc Networks
84, pp. 148–157. URL: https://www.sciencedirect.com/science/article/pii/
S157087051830708X.

[35] Khani M., Alizadeh M., Hoydis J. & Fleming P. (2020) Adaptive neural signal
detection for massive mimo. IEEE Transactions on Wireless Communications 19,
pp. 5635–5648.

[36] Park S., Simeone O. & Kang J. (2020) Meta-learning to communicate: Fast end-
to-end training for fading channels. In: ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5075–5079.

[37] Finn C., Abbeel P. & Levine S. (2017) Model-agnostic meta-learning for fast adap-
tation of deep networks. In: International conference on machine learning, PMLR,
pp. 1126–1135.

51

[38] Chen L., Jose S.T., Nikoloska I., Park S., Chen T. & Simeone O. (2023) Learning
with limited samples: Meta-learning and applications to communication systems.
Foundations and Trends in Signal Processing 17, pp. 79–208. URL: http://dx.
doi.org/10.1561/2000000115.

[39] Beck J., Vuorio R., Liu E.Z., Xiong Z., Zintgraf L., Finn C. & Whiteson S. (2023),
A Survey of Meta-Reinforcement Learning. URL: http://arxiv.org/abs/2301.
08028.

[40] Wu H., Zhang Z., Jiao C., Li C. & Quek T.Q.S. (2019) Learn to Sense: A Meta-
Learning-Based Sensing and Fusion Framework for Wireless Sensor Networks. IEEE
Internet of Things Journal 6, pp. 8215–8227.

[41] Park S., Jang H., Simeone O. & Kang J. (2019) Learning how to demodulate from
few pilots via meta-learning. In: 2019 IEEE 20th International Workshop on Signal
Processing Advances in Wireless Communications (SPAWC), IEEE, pp. 1–5.

[42] Khodadadeh S., Boloni L. & Shah M. (2019) Unsupervised meta-learning for few-
shot image classification. Advances in neural information processing systems 32.

[43] Ren M., Triantafillou E., Ravi S., Snell J., Swersky K., Tenenbaum J.B., Larochelle
H. & Zemel R.S. (2018) Meta-learning for semi-supervised few-shot classification.
arXiv preprint arXiv:1803.00676 .

[44] Li K., Gupta A., Reddy A., Pong V.H., Zhou A., Yu J. & Levine S. (2021) Mural:
Meta-learning uncertainty-aware rewards for outcome-driven reinforcement learning.
In: International conference on machine learning, PMLR, pp. 6346–6356.

[45] Li Y. (2017) Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274 .

[46] Moerland T.M., Broekens J., Plaat A., Jonker C.M. et al. (2023) Model-based re-
inforcement learning: A survey. Foundations and Trends® in Machine Learning 16,
pp. 1–118.

[47] Çalışır S. & Pehlivanoğlu M.K. (2019) Model-free reinforcement learning algorithms:
A survey. In: 2019 27th Signal Processing and Communications Applications Con-
ference (SIU), IEEE, pp. 1–4.

[48] Riedmiller M., Peters J. & Schaal S. (2007) Evaluation of policy gradient methods
and variants on the cart-pole benchmark. In: 2007 IEEE International Symposium
on Approximate Dynamic Programming and Reinforcement Learning, IEEE, pp.
254–261.

[49] Arulkumaran K., Deisenroth M.P., Brundage M. & Bharath A.A. (2017) Deep rein-
forcement learning: A brief survey. IEEE Signal Processing Magazine 34, pp. 26–38.

[50] Williams R.J. (1992) Simple statistical gradient-following algorithms for connection-
ist reinforcement learning. Machine learning 8, pp. 229–256.

52

[51] Schulman J., Levine S., Abbeel P., Jordan M. & Moritz P. (2015) Trust region
policy optimization. In: International conference on machine learning, PMLR, pp.
1889–1897.

[52] Bottou L. (2012) Stochastic gradient descent tricks. Neural Networks: Tricks of the
Trade: Second Edition , pp. 421–436.

[53] Kiran B.R., Sobh I., Talpaert V., Mannion P., Al Sallab A.A., Yogamani S. & Pérez
P. (2021) Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems 23, pp. 4909–4926.

[54] Mnih V., Kavukcuoglu K., Silver D., Graves A., Antonoglou I., Wierstra D. &
Riedmiller M. (2013) Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 .

[55] Peters J. & Schaal S. (2008) Reinforcement learning of motor skills with policy
gradients. Neural networks 21, pp. 682–697.

[56] Kakade S.M. (2001) A natural policy gradient. Advances in neural information pro-
cessing systems 14.

[57] Franceschetti A., Tosello E., Castaman N. & Ghidoni S. (2021) Robotic arm control
and task training through deep reinforcement learning. In: International Conference
on Intelligent Autonomous Systems, Springer, pp. 532–550.

[58] Eldeeb E., Pérez D.E., de Souza Sant’Ana J.M., Shehab M., Mahmood N.H., Alves
H. & Latva-Aho M. (2022) A learning-based trajectory planning of multiple uavs for
aoi minimization in iot networks. In: 2022 Joint European Conference on Networks
and Communications & 6G Summit (EuCNC/6G Summit), IEEE, pp. 172–177.

[59] Kingma D.P. & Ba J. (2014) Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 .

[60] Agarap A.F. (2018) Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375 .

[61] Paszke A., Gross S., Massa F., Lerer A., Bradbury J., Chanan G., Killeen T., Lin
Z., Gimelshein N., Antiga L. et al. (2019) Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing sys-
tems 32.

[62] Jiang Y., Kim H., Asnani H. & Kannan S. (2019) Mind: Model independent neural
decoder. In: 2019 IEEE 20th International Workshop on Signal Processing Advances
in Wireless Communications (SPAWC), IEEE, pp. 1–5.

[63] Park S., Jang H., Simeone O. & Kang J. (2020) Learning to demodulate from few
pilots via offline and online meta-learning. IEEE Transactions on Signal Processing
69, pp. 226–239.

[64] Cohen K.M., Park S., Simeone O. & Shamai S. (2021) Learning to learn to demod-
ulate with uncertainty quantification via Bayesian meta-learning. In: WSA 2021;
25th International ITG Workshop on Smart Antennas, VDE, pp. 1–6.

53

[65] Cohen K.M., Park S., Simeone O. & Shamai S. (2022) Bayesian Active Meta-
Learning for Reliable and Efficient AI-Based Demodulation. IEEE Transactions on
Signal Processing 70, pp. 5366–5380.

[66] Park S., Simeone O. & Kang J. (2020) End-to-end fast training of communication
links without a channel model via online meta-learning. In: 2020 IEEE 21st In-
ternational Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), IEEE, pp. 1–5.

[67] Raviv T., Park S., Simeone O., Eldar Y.C. & Shlezinger N. (2023) Online meta-
learning for hybrid model-based deep receivers. IEEE Transactions on Wireless Com-
munications .

[68] Simeone O., Park S. & Kang J. (2020) From learning to meta-learning: Reduced
training overhead and complexity for communication systems. In: 2020 2nd 6G
Wireless Summit (6G SUMMIT), IEEE, pp. 1–5.

[69] Nichol A., Achiam J. & Schulman J. (2018) On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999 .

[70] Zintgraf L., Shiarli K., Kurin V., Hofmann K. & Whiteson S. (2019) Fast context
adaptation via meta-learning. In: International Conference on Machine Learning,
PMLR, pp. 7693–7702.

[71] Finn C., Rajeswaran A., Kakade S. & Levine S. (2019) Online meta-learning. In:
International Conference on Machine Learning, PMLR, pp. 1920–1930.

[72] Simeone O. & Spagnolini U. (2004) Adaptive pilot pattern for OFDM systems.
In: 2004 IEEE International Conference on Communications (IEEE Cat. No.
04CH37577), vol. 2, IEEE, vol. 2, pp. 978–982.

[73] Nguyen C., Do T.T. & Carneiro G. (2020) Uncertainty in model-agnostic meta-
learning using variational inference. In: Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision, pp. 3090–3100.

[74] Louizos C. & Welling M. (2016) Structured and efficient variational deep learning
with matrix Gaussian posteriors. In: International conference on machine learning,
PMLR, pp. 1708–1716.

[75] Guo C., Pleiss G., Sun Y. & Weinberger K.Q. (2017) On calibration of modern neural
networks. In: International conference on machine learning, PMLR, pp. 1321–1330.

[76] Kaddour J., Sæmundsson S. et al. (2020) Probabilistic active meta-learning. Ad-
vances in Neural Information Processing Systems 33, pp. 20813–20822.

[77] Kirsch A., Van Amersfoort J. & Gal Y. (2019) Batchbald: Efficient and diverse
batch acquisition for deep Bayesian active learning. Advances in neural information
processing systems 32.

[78] Liu Y., Qin Z., Elkashlan M., Ding Z., Nallanathan A. & Hanzo L. (2017) Nonorthog-
onal multiple access for 5g and beyond. Proceedings of the IEEE 105, pp. 2347–2381.

54

[79] Yuan Y., Yuan Z. & Tian L. (2020) 5G Non-Orthogonal Multiple Access Study in
3GPP. IEEE Communications Magazine 58, pp. 90–96.

[80] Shahab M.B., Abbas R., Shirvanimoghaddam M. & Johnson S.J. (2020) Grant-free
non-orthogonal multiple access for iot: A survey. IEEE Communications Surveys &
Tutorials 22, pp. 1805–1838.

[81] Elbayoumi M., Kamel M., Hamouda W. & Youssef A. (2020) NOMA-Assisted
Machine-Type Communications in UDN: State-of-the-Art and Challenges. IEEE
Communications Surveys & Tutorials 22, pp. 1276–1304.

[82] Issa H., Shehab M. & Alves H. (2023) Meta-Learning Based Few Pilots De-
modulation and Interference Cancellation For NOMA Uplink. arXiv preprint
arXiv:2306.05848 .

[83] Andrews J.G. (2005) Interference cancellation for cellular systems: a contemporary
overview. IEEE Wireless Communications 12, pp. 19–29.

[84] Ding Z., Fan P. & Poor H.V. (2018) On the coexistence between full-duplex and
NOMA. IEEE Wireless Communications Letters 7, pp. 692–695.

[85] Lu L., Li G.Y., Swindlehurst A.L., Ashikhmin A. & Zhang R. (2014) An overview
of massive MIMO: Benefits and challenges. IEEE journal of selected topics in signal
processing 8, pp. 742–758.

[86] Hadani R., Rakib S., Tsatsanis M., Monk A., Goldsmith A.J., Molisch A.F. &
Calderbank R. (2017) Orthogonal time frequency space modulation. In: 2017 IEEE
Wireless Communications and Networking Conference (WCNC), IEEE, pp. 1–6.

