
 

 

 

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING 

DEGREE PROGRAMME IN ELECTRONICS AND COMMUNICATIONS ENGINEERING 

 
 
 
 

 
 
 
 
 
 

MASTER’S THESIS
 

UVM TESTBENCH IN PYTHON: FEATURE AND 
PERFORMANCE COMPARISON WITH 
SYSTEMVERILOG IMPLEMENTATION 

 
 
 
 
 
 
 

 

 Author Miikka Sinervä

 
 Supervisor Juha Häkkinen

 
 Second Examiner Jukka Lahti 

 

 Technical Advisor Kimmo Varjonen 

 

 

June 2023 



 

Sinervä M. (2023) UVM Testbench in Python: Feature and performance comparison with 

SystemVerilog implementation. University of Oulu, Faculty of Information Technology and 

Electrical Engineering, Degree Programme in Electronics and Communications Engineer ing. 
Master’s Thesis, 60 p. 

 

 

ABSTRACT 

Python is emerging as a new language for functional verification of digital integrated 

circuits (ICs). With the Python verification framework cocotb enabling to write  

testbenches in Python, new libraries are being developed for various verification 

techniques and methodologies, such as functional coverage, constrained random 

verification and Universal Verification Methodology (UVM). Python testbenches have 

been used in some research and product development, but there is little information 

available on their performance, and no studies about applying UVM in Python have been 

published. 

In this thesis, a Python UVM testbench was developed using pyuvm and other Python 

verification libraries for an AHB-Lite slave IP, and a matching testbench in 

SystemVerilog was also built to examine the differences in their implementations . 

Testbench codebase sizes, simulation execution times, memory use and coverage 

accumulation were compared. The Python testbench had 30% less lines of code, 

suggesting that testbench development may be faster in Python than SystemVerilog. The  

execution times of the Python testbench on commercial simulators were 8 to 21 times 

longer than those of the SystemVerilog testbench in tests with AHB-Lite write operations  

and random stimulus. 

In conclusion, given the performance gap and the UVM Register Abstraction Layer 

(RAL) being at an early stage of development in pyuvm, the studied Python libraries are 

not competitive with SystemVerilog and its UVM implementation for verifying complex 

designs like systems-on-chip (SoCs) at this stage. Nevertheless, pyuvm enables Python 

programmers and users of open-source simulators without support for SystemVerilog 

UVM to start using the methodology. A Python UVM testbench based on pyuvm is 

currently viable for verifying simple designs, and it opens new avenues of research in 

digital IC verification. 

 

Key words: pyuvm, cocotb, integrated circuit (IC), register-transfer level (RTL) 

verification. 

 



 

Sinervä M. (2023) UVM-testipenkki Pythonilla: Ominaisuuksien ja suorituskyvyn 

vertailu SystemVerilog-toteutuksen kanssa. Oulun yliopisto, tieto- ja sähkötekniikan 

tiedekunta, elektroniikan ja tietoliikennetekniikan tutkinto-ohjelma. Diplomityö, 60 s. 
 

 

TIIVISTELMÄ 

Python on nousemassa uudeksi kieleksi digitaalisten integroitujen piirien 

varmennukseen. Cocotb-viitekehys mahdollistaa testipenkkien kirjoittamisen Pythonilla, 

ja uusia Python-kirjastoja kehitetään eri varmennusmenetelmille, kuten funktionaaliselle  

kattavuudelle, rajoitetulla satunnaisherätteellä verifioinnille ja universaalille  

varmennusmenetelmälle (engl. Universal Verification Methodology, UVM). Python-

testipenkkejä on pienissä määrin käytetty tutkimuksissa ja tuotekehityksessä, mutta 

niiden suorituskyvystä on hyvin vähän tietoa, ja UVM:n käytöstä Pythonilla ei ole 

julkaistu tutkimuksia. 

Tässä työssä kehitettiin UVM-testipenkki Pythonilla AHB-Lite-orjana toimivalle IP-

lohkolle käyttäen pyuvm:ää ja muita Python-verifiointikirjastoja, ja vastaava testipenkki 

luotiin myös SystemVerilogilla toteutusten vertailua varten. Testipenkeistä verrattiin 

koodikannan kokoa, suoritusaikaa, muistin käyttöä ja kattavuuden kertymistä. Python-

testipenkissä oli 30 % vähemmän koodirivejä, mikä voi merkitä, että testipenkkien 

kehittäminen Pythonilla on nopeampaa kuin SystemVerilogilla. Suoritusajat kaupallisilla 

simulaattoreilla oli Python-testipenkillä 8–21 kertaa pidempiä kuin SystemVerilog-

testipenkillä testeissä, joissa ajettiin AHB-Lite -kirjoitusoperaatioita ja 

satunnaisherätettä. 

Koska suorituskykyero oli näin merkittävä, ja koska UVM:n rekisteriabstraktiotaso 

(engl. Register Abstraction Layer, RAL) on vasta alkutekijöissään pyuvm:ssä, voidaan 

todeta, että tutkitut Python-kirjastot eivät ole vielä nykyisellä tasollaan kilpailukykyis iä 

SystemVerilogin ja sen UVM-implementaation kanssa monimutkaisten piirien kuten 

järjestelmäpiirien varmennukseen. Siitä huolimatta pyuvm mahdollistaa UVM:n käytön 

Python-ohjelmoijille ja avoimen lähdekoodin simulaattoreissa, joissa ei ole vielä 

SystemVerilog UVM:lle tukea. Pyuvm-pohjainen Python UVM-testipenkki soveltuu tällä 

hetkellä yksinkertaisten mallien varmennukseen ja avaa uusia tutkimussuuntia 

digitaalisten integroitujen piirien varmennukseen. 

 

Avainsanat: pyuvm, cocotb, integroitu piiri, RTL-varmennus. 

  



 

TABLE OF CONTENTS 

ABSTRACT 

TIIVISTELMÄ 

TABLE OF CONTENTS 

FOREWORD 

LIST OF ABBREVIATIONS AND SYMBOLS 

1 INTRODUCTION .............................................................................................................7 

2 SIMULATING A PYTHON TESTBENCH .....................................................................9 

2.1 Communication between Python testbench and simulator ......................................9 

2.2 Coroutines ..............................................................................................................10 

2.3 A simple testbench .................................................................................................10 

3 UVM IN PYTHON..........................................................................................................14 

3.1 Universal Verification Methodology .....................................................................14 

3.2 Python and SystemVerilog.....................................................................................16 

3.3 pyuvm .....................................................................................................................18 

3.3.1 Class definition and object creation ...........................................................20 

3.3.2 Phasing .......................................................................................................22 

3.3.3 Configuration database ...............................................................................23 

3.3.4 Interfacing with the DUT ...........................................................................24 

3.3.5 Transaction-level modelling .......................................................................27 

3.3.6 Reporting system ........................................................................................30 

3.3.7 UVM Register Abstraction Layer ..............................................................31 

3.3.8 Defining test cases ......................................................................................32 

4 TESTBENCH SUPPLEMENTATION ...........................................................................33 

4.1 Functional coverage ...............................................................................................33 

4.2 Constrained random verification ............................................................................36 

4.3 Passing objects between Python and SystemVerilog .............................................37 

5 TEST SETUP...................................................................................................................39 

5.1 The device under test..............................................................................................39 

5.2 The testbenches ......................................................................................................39 

6 PERFORMANCE AND CODEBASE COMPARISON .................................................42 

6.1 Code size comparison.............................................................................................42 

6.2 Performance tests ...................................................................................................43 

6.2.1 Idle tests ......................................................................................................43 

6.2.2 Write tests ...................................................................................................44 

6.2.3 Random stimulus tests ................................................................................46 

6.3 Coverage test ..........................................................................................................47 

7 DISCUSSION ..................................................................................................................49 

8 SUMMARY.....................................................................................................................52 

9 REFERENCES ................................................................................................................53 

10 APPENDICES .................................................................................................................55 

 



 

FOREWORD 

 

This thesis was conducted at Nokia to study the viability of using Python for developing UVM 

testbenches. I would like to thank Nokia and Sami Jylhä for providing me with the opportunity 
to work on this thesis. I want to thank Kimmo Varjonen for his help with technical aspects of 

the work and with finalizing the thesis. I also want to thank Juha Häkkinen for supervising the 

thesis and for helping with structuring and polishing the work. I also wish to thank Jukka Lahti 
for the second examination of the thesis and for his lectures in digital electronics that sparked 

my interest in the functional verification of integrated circuits. 

 
Oulu, June 22, 2023 

 

 
Miikka Sinervä 



 

LIST OF ABBREVIATIONS AND SYMBOLS 

AHB Advanced High-Performance Bus 

API application programming interface 

ASIC application-specific integrated circuit 
DPI direct programming interface 

DUT device under test 

EDA electronic design automation 
FIFO first-in, first-out 

FLI Foreign Language Interface 

FPGA field-programmable gate array 
GPI Generic Procedural Interface 

HDL hardware description language 

IC integrated circuit 
IP intellectual property 

RAL Register Abstraction Layer 

RTL register-transfer level 
SMT satisfiability modulo theories 

SoC system-on-chip 

SPI Serial Peripheral Interface 
SV-UVM SystemVerilog Universal Verification Methodology 

TLM transaction- level modelling 

UCIS Unified Coverage Interoperability Standard 
UVM Universal Verification Methodology 

VIP Verification Intellectual Property 

VHPI VHDL Procedural Interface 
VPI Verification Procedural Interface 

VSZ Virtual memory size 

 
 

 



 

 

1 INTRODUCTION 

An essential part of developing digital integrated circuits (ICs) is to verify their functiona lity 

before mass production is started. One step of this verification process is to create a testbench 

that applies stimuli to a register-transfer level (RTL) model of the design in a hardware 
description language (HDL) simulator to make sure that the model meets its specifications. The 

model needs to be synthesizable to logic gates and eventually to transistors, which sets 

limitations on how the designer can write the HDL code that defines the hardware. The same 
rules do not apply to the testbench that will not be synthesized, but its code is still typically 

written in a hardware description and verification language called SystemVerilog. It includes 

both synthesizable and non-synthesizable constructs, forming a complex language of 248 
keywords [1 p. 1182–1183]. 

In recent years, there has been exploration on using Python for RTL verification. Python is 

currently the most popular programming language, with over 440 000 extension packages that 
verification engineers could also benefit from [2][3]. One open-source package that enables 

using Python for verification is cocotb. Initially released in 2013, cocotb framework contains 

modules to write testbenches and verification code in Python for (System)Verilog and VHDL 
models. Cocotb works on various free and proprietary simulators. [4][5][6] 

Python testbenches based on cocotb are already in use in academia and the industry. For 

example, Ashmanskas et al. (2023) successfully verified three application-specific integrated 
circuits (ASICs) for CERN’s High Luminosity Large Hadron Collider with cocotb. The authors 

commended the Python-based verification for its ease of development [7]. The 2022 Wilson 

Research Group Functional Verification Study, where study participants from the IC/ASIC and 
field-programmable gate array (FPGA) market were surveyed, found that cocotb was used in 

5% of the IC/ASIC and FPGA projects [8][9]. 

In 2020, an open-source package leveraging cocotb to implement Universal Verifica t ion 
Methodology (UVM) in Python, pyuvm, was introduced. UVM is a standardized class library 

of SystemVerilog testbench components and utilities. The purpose of UVM is to reduce 

verification complexity and to improve interoperability by providing a consistent methodology 
which both internal and external teams in a verification project can apply [10 p. 7]. UVM makes 

it easier to reuse verification components in new testbenches with its modular, object-oriented 

design [10 p. 12]. Pyuvm is an effort to implement UVM in Python while taking advantage of 
the characteristics of the language [11].  

The goal of this thesis is to build an intellectual property (IP) level UVM testbench in Python 

using pyuvm and other available Python libraries and to evaluate its viability for RTL 
verification. Another testbench is developed in SystemVerilog with the same functionality and 

the same tests to the extent that is possible to compare the features, codebase size and 

performance. Functional coverage and constrained random verification are included in both 
implementations. Applying the methodologies in Python is explained and compared to 

SystemVerilog in detail. This approach aims to build a basic understanding of developing UVM 

testbenches in Python for further research on the subject. 
The main content of the thesis is split into five chapters. Chapter 2 introduces cocotb for 

building Python testbenches in a non-UVM context. Chapter 3 focuses on pyuvm, evaluat ing 

its feature availability and describing how its implementation of UVM is different from the 
SystemVerilog version with testbench code examples. Chapter 4 presents two ways to add 

constrained random stimulus and functional coverage to a Python testbench: with a Python and 

C implementation of the features with PyVSC, or with an interface to a SystemVerilog module 
with pyquesta. Chapter 5 is a high-level overview of the Python and SystemVerilog testbenches 



 

 

8 

built for performance tests. Chapter 6 presents a codebase comparison of the testbenches and 

test simulations with their results. In addition, the discussion chapter evaluates the achieved 

goals and results of the thesis and considers possibilities for further research, and the summary 
chapter provides a brief summary of the thesis. 

 



 

 

9 

2 SIMULATING A PYTHON TESTBENCH 

To understand how a Python UVM testbench operates, one must first know the basics of the 
underlying coroutine-based cosimulation testbench environment, cocotb. The following 
sections will explain how cocotb communicates with a simulator, the concept of coroutines and 
its relation to cocotb, and provide an example of a simple Python testbench and its operation. 
 

2.1 Communication between Python testbench and simulator 

A Python testbench built with cocotb executes outside the HDL simulator. Whenever the 
testbench needs to interact with the simulator, cocotb does it with a call through a language 
interface. Simulators provide foreign language interfaces that allow external C/C++ programs 
to interact with RTL tools and access or affect the state of the RTL model [1 p. 953][12]. Since 
cocotb testbenches are written in Python, another type of interface is also needed between 
Python and C++. The connection between the testbench and the simulator is pictured below in 
Figure 1. [13]

  

 
 

Figure 1. Communication between a Python testbench and an HDL simulator with cocotb. 
 
IEEE Standard for VHDL language specifies VHDL Procedural Interface (VHPI). It 

provides access to a VHDL model and a simulator with a set of VHPI functions [12]. Siemens’ 
Questa Sim uses its own proprietary and non-standard Foreign Language Interface (FLI) in 
addition to VHPI. The SystemVerilog Verification Procedural Interface (VPI), specified in the 
SystemVerilog Language Reference Manual, is used to access SystemVerilog objects [1 p. 
953]. 

These three interfaces pass information between a simulator and an abstraction layer written 
in C++ called Generic Procedural Interface (GPI). GPI hides implementation details of VHPI, 
VPI and FLI from the Python side by having common routines to access all three of them. 
[13][14]  

Python provides Python/C application programming interface (API) to write extension 
modules in C or C++, or to embed the Python interpreter in C/C++ modules [15]. Cocotb uses 
this API to embed the Python interpreter into the simulator process to launch the Python 
environment at the start of the simulation run. It also has a C++ extension module to provide 
the Python side with functions that use GPI to access the simulator. 



 

 

10 

 
2.2 Coroutines 

A subroutine is a piece of code, stored in one place, that can be executed from an outside 

program with a call. The program jumps to execute that piece of code, and then jumps back to 

where it left. Subroutines allow reusing the same code without having to duplicate it to each 
place where its functionality is needed. [16] 

A coroutine is a general case of a subroutine. With two linked coroutines, there is no main 

routine and a subroutine – they can be considered equal. The main difference of the two types 
is that a coroutine will continue from where its execution was last suspended, while a subroutine 

will always start from the beginning. [16] 

Coroutines are a heavily used concept in cocotb. They serve the same purpose as a 
SystemVerilog task: they can contain simulation time consuming constructs. A coroutine may, 

for example, schedule signal value changes in the device under test (DUT), and then yield 

control to another coroutine while it waits for the next rising edge of a clock signal. Once all 
active coroutines are in a waiting state, the execution can be passed to the simulator to advance 

the simulation. [17] 

Below is an example of a coroutine in a Python testbench with cocotb. The function is 
defined as a coroutine with async keyword. First, it schedules a value change of aresetn signal 

in the DUT to 0. The next line’s await keyword means that the coroutine will give up control 

of the execution until the coroutine following the await keyword returns. In this case, the 
testbench will continue executing other coroutines – or wait if nothing else is scheduled – until 

five clock cycles have passed. After that, the program returns to the reset coroutine to schedule 

a change in aresetn value to 1. 
 
async def reset(dut): 

    dut.aresetn.setimmediatevalue(0) 

    await ClockCycles(dut.clk, 5) 

    dut.aresetn.value = 1 

 
2.3 A simple testbench 

Let us build a testbench consisting of a few coroutines to see how it is constructed and how 

multiple coroutines interact. The DUT will be a VHDL module that has a clock input clk, an 

asynchronous reset input aresetn, and one 32-bit register that can be written to with data_in 
input and read from data_out output. 

First, the Python modules used in this testbench are imported. The Python standard library 

module random is used for generating random numbers. Cocotb also groups related 
functionality into individual modules. The module clock contains a class for clock generation, 

and the module triggers provides triggers for signal transitions and coroutine synchronizat ion, 

among others. 
 
import random 

import cocotb 

from cocotb.clock import Clock 

from cocotb.triggers import ClockCycles, RisingEdge 

 

The reset coroutine from the previous section will be used to reset the DUT. Let us add a 

coroutine for writing the register. 
 



 

 

11 

async def write(dut, data): 

    dut.data_in.value = data 

    await RisingEdge(dut.clk) 

 
The write coroutine writes the given data to data_in and waits one clock cycle before another 

write can be executed. Another coroutine will monitor that the data is written correctly, which 

is shown below. 
 
async def monitor_write(dut): 

    await RisingEdge(dut.aresetn) 

    await RisingEdge(dut.clk) 

    while True: 

        in_val = dut.data_in.value 

        await RisingEdge(dut.clk) 

        out_val = dut.data_out.value 

        assert ( 

            in_val == out_val 

        ), f"data_out is {hex(out_val)}, expected {hex(in_val)}" 

 

The Python keyword assert works such that if the given condition is false, the program will 
raise AssertionError – a Python exception. Exceptions determine the outcome of the simulat ion: 

if no exceptions are raised, the test passes successfully. 

Now we still need the main test coroutine that starts the clock, calls the monitor and the reset 
coroutines, and uses the write coroutine to drive stimulus to the DUT. This is described below. 

 
@cocotb.test() 

async def simple_test(dut): 

    dut.data_in.setimmediatevalue(0) 

    cocotb.start_soon(Clock(dut.clk, 100, units="ns").start()) 

    cocotb.start_soon(reset(dut)) 

    cocotb.start_soon(monitor_write(dut)) 

    await RisingEdge(dut.aresetn) 

    await RisingEdge(dut.clk) 

    for _ in range(5): 

        await write(dut, random.randrange(0, 2**32)) 

    await ClockCycles(dut.clk, 3) 

 
The first line is a Python decorator, which is a wrapper function that is used to modify the 

behaviour of or add functionality to the function or the class below it. In this case, it marks 

simple_test as the test coroutine to be run at the start of the simulation. The decorator can be 
used for coroutines, classes or any callable objects. There can be multiple tests with the 

decorator in a module, in which case the default behaviour is to run all the tests sequentia lly 

within one simulation. 
The dut object passed to the test gives access to the RTL model in its full hierarchy. 

dut.(submodule1.submodule2. … .submoduleN).signal.value is a handle linked to the 

corresponding signal in the DUT and can be used for both reading and writing the signal value. 
The first line inside simple_test coroutine also shows the special method setimmediatevalue, 

which makes a read immediately following the write to return the new value. The default 

behaviour is to return the old value until the change is applied to the DUT. The read value is 
returned in BinaryValue type, which models logic states like SystemVerilog’s logic type with 

built-in type conversions. The dut object can also be accessed through the variable cocotb.top. 

The three lines with cocotb.start_soon schedule the three coroutines to be run concurrently 
as soon as simple_test yields control at the next await statement. Clock is a class from cocotb’s 



 

 

12 

clock module for generating a clock signal with a given clock period. Using await instead of 

cocotb.start_soon for Clock.start would result in the simulation hanging, since the coroutine 

never returns. Finally, the for loop drives random input data to the DUT, while the 
monitor_write coroutine compares the input to the output in the background. 

Cocotb uses Make to build the test run environment. The Makefile for simulating this test is 

shown below. It tells where to find the testbench and the HDL module files, which simulator to 
use, and it provides custom settings for cocotb and the HDL simulator. MODULE points to the 

Python module containing the tests, and TOPLEVEL defines the HDL module to be used as the 

DUT. The final line integrates the file to cocotb’s build flow, which includes simulator specific 
Makefiles with simulation options that enable the Python testbench’s access to the simula tor. 

The build flow can be fully customized as long as the simulation options mandatory for cocotb 

are included. 
 
CWD=$(shell pwd) 

export PYTHONPATH := $(CWD)/../tb:$(PYTHONPATH) 

SIM ?= questa 

TOPLEVEL_LANG ?= vhdl 

VHDL_SOURCES = $(CWD)/../src/simple.vhd 

ifeq ($(SIM),questa) 

  WAVES = 1 

endif 

export COCOTB_RESOLVE_X ?= ZEROS 

export COCOTB_ANSI_OUTPUT=1 

MODULE := simple_test 

TOPLEVEL = simple 

include $(shell cocotb-config --makefiles)/Makefile.sim 

 

The results of this simulation are presented in Figure 2. No assertions failed, so the test 

passed. 
 

 
 

Figure 2. Simulation results of the example testbench. 
 

Because the Python testbench executes outside the simulator, there is no visibility to it from 

the graphical user interface. The RTL model and its waveforms can be inspected as in a 
simulation with a SystemVerilog testbench. Figure 3 shows the graphical user interface view 

of the simulation in Questa Sim. 



 

 

13 

 
Figure 3. Graphical user interface view of the example testbench simulation. 

 

 



 

 

14 

3 UVM IN PYTHON 

Chapter 2 showed an example of a simple Python testbench without hierarchical structure. This 

chapter introduces the Python library pyuvm for building a UVM testbench in Python. Section 

3.1 includes only a brief overview of UVM for context, but the references can be followed for 
further reading. Section 3.2 explains the key differences between SystemVerilog and Python 

that are relevant to the chapter. 

Section 3.3 focuses on the main topic, UVM in Python. The features of pyuvm are compared 
with the full set of features in SystemVerilog UVM to give an idea of what is possible with its 

current release version. The structure and functionality of a Python UVM testbench are 

explained with code examples that are compared with SystemVerilog UVM code. Most of the 
examples are sanitized excerpts from the testbenches built for the performance testing part of 

this thesis work, introduced in Chapter 5. While the complete codebase cannot be disclosed, the 

examples aim to give insight to the implementation techniques of the testbenches. 
 

3.1 Universal Verification Methodology 

UVM is a standardized methodology that defines a class library of testbench components, 

utilities and macros for functional verification [10 p. 12][18 p. 1]. The UVM classes contain a 

basic set of functionalities and can be extended to make components for specific use cases.  
Figure 4 shows an example of a UVM testbench architecture. 

 

 
Figure 4. Example UVM testbench. 

  

UVM components connect to each other with communication interfaces that operate at the 

transaction level. Transactions are class instances that encapsulate information of signal-leve l 
activity at higher levels of abstraction. For example, a transaction for reading data from a 

memory block in the design could contain a memory address, operation type indicating it is a 

read transaction, data field for the returned read data, and error field for a returned error 



 

 

15 

response in case the bus operation fails. Using transactions, testbench components can 

communicate at a level that hides implementation details of the communication protocol. This 

is called transaction- level modelling (TLM). [18 p. 7–8] 
Sequences generate sequence-enabled transactions, which are also called sequence items in 

UVM. Sequences typically randomize data fields of the items according to a set of constraints 

that place rules for the randomization. Sequences may form a hierarchy where high-leve l 
sequences use lower-level sequences to perform more sophisticated operations, for example 

combining bus write sequences to create a sequence that configures the DUT to a certain state. 

[10 p. 18, 177] 
A sequencer controls the flow of sequence items between sequences and a driver. The 

sequencer sends transactions contained by sequences to a driver and receives response 

transactions back. The sequencer then passes the response to the sequence that created the 
request transaction. [10 p. 194] 

A driver receives new transactions from the sequencer. The driver breaks the transactions 

into individual data members and initiates a data transfer to the DUT via an interface. The driver 
then waits for a response from the interface, packages the response into a transaction and passes 

that transaction to the sequencer. [10 p. 175][18 p. 34] 

A SystemVerilog interface is the only component in the example UVM architecture that 
directly connects to and communicates with the DUT. It is a non-UVM construct that contains 

nets or variables that connect to ports in the DUT. Typically, the interface implements some 

bus protocol with tasks to read, write and sample signal values, which UVM components 
driving and sampling signals call. [1 p. 748] 

A monitor is a passive component that samples the interface signals. It packages the samples 

into transactions for analysis components such as a scoreboard. [10 p. 15][18 p. 38] 
A scoreboard verifies correct functional operation of the design [18 p. 2, 70]. It predicts the 

design’s response to stimulus and checks that the observed response of the DUT matches the 

prediction [10 p. 16]. The input samples and observed responses are received from the monitor  
through an agent. Based on the input samples, the scoreboard can either calculate the expected 

response or pass the samples to a predictor, or a reference model, that generates the predicted 

response. The predictions may also be pre-generated if the applied stimulus is non-random, in 
which case the reference data is read from a file. 

An agent is a component that encapsulates a sequencer, a driver, and a monitor [10 p. 15]. 

Typically, there is an interface for each bus protocol in the design, and an agent for each 
interface. For example, a design that uses Serial Peripheral Interface (SPI) and Advanced High-

Performance Bus (AHB) would have an SPI and AHB interface, and an SPI and AHB agent. 

An environment is a container class of verification components that comprise the testbench 
[10 p. 15]. It provides default configurations to the components, and typically it can enable and 

disable components to satisfy different use cases. The environment can also be a component in 

another environment of a larger, subsystem or top level, testbench [18 p. 2].  
A test is the topmost class in the UVM hierarchy. The test instantiates and configures the 

environment and creates and starts sequences to test some functionality of the DUT. [18 p. 2] 

One way to pass configuration parameters in the testbench hierarchy is through a 
configuration database, which is a part of the UVM class library. A component creates 

configuration objects that contain the necessary information to configure other, typically 

hierarchically lower-level, components. An example of such information is a flag for enabling 
or disabling a driver in an agent. The component stores the objects in the database, and the 

components that the objects are assigned to obtain the configuration objects when the 

components are being built. [18 p. 58–59] 



 

 

16 

There are two ways to create UVM objects and components. The first is to call the class 

constructor, as is typical in object-oriented programming languages. The other way is to create 

the component using a UVM factory. Calling one of the factory’s creation methods creates an 
instance of a class and returns it. The main benefit of using this method is that the type of class 

instances created through the factory can be overridden with a derived type of the class. The 

test, for example, can set an override in the factory such that whenever it creates a monitor 
instance of type A, it creates a monitor instance of type B derived from A instead. [18 p. 40–

41] 

A UVM test goes through certain pre-defined phases. Each component contains functions 
and tasks that define what they will execute in each phase. The three essential phases are the 

build phase, the connect phase and the run phase. In the build phase, testbench components are 

created and configured. In the connect phase, the components that pass transactions between 
each other are connected. The UVM standard defines classes and interfaces for TLM to enable 

sending and receiving transactions. These interfaces are connected in the connect phase. The 

run phase is where the simulation time consuming part of the test is executed: drivers driving 
stimulus and monitors sampling the signals. [10 p. 95, 162] 

The result of the test will depend on the amount and the severity of reported errors during 

the test run. For example, if a testbench component fails to obtain its build configuration, the 
test may issue a fatal error with uvm_fatal macro and end the test immediately. If the scoreboard 

notices a disparity in the predicted and the observed response, it may raise a normal error with 

uvm_error. The macro uvm_warning can be used for minor or potential issues, and uvm_info 
for messages of simply informational nature. These report messages are tallied in the UVM’s 

report server, and the message counts can be printed after the simulation to inform about the 

test results. [10 p. 54, 429] 
 

3.2 Python and SystemVerilog 

To help understand the implementation details of pyuvm, this section highlights some of the 

key differences between Python and SystemVerilog. There are slight differences in the 

terminology when discussing features of Python and SystemVerilog, so let us clarify them first.  
SystemVerilog class consists of properties and methods. Properties are class’s data, and 

methods are its subroutines – functions and tasks. Together they are called class members. An 

object is an instance of a class. [1 p. 170–171] 
In Python, a class consists of attributes. Attributes can be divided into class attributes and 

instance attributes. Instance attributes belong to an instance of a class, or an instance object. 

Instance attributes comprise of data attributes – also called instance variables – and instance 
methods. The class attributes are class variables and class methods. They belong to a class 

object. Below is an example of this attribute division. [19][20] 

 



 

 

17 

class MyClass: 

    string = "Hello world!" # class variable 

    def __init__(self): # class constructor 

        self.name = "John" # instance variable 

    def func(self): # instance method 

        print("foo") 

         

inst_obj = MyClass() # creates an instance object and calls __init__ 

print(inst_obj.name) # referring to an instance variable 

print(MyClass.string) # referring to a class variable 

f = inst_obj.func # instance method object 

inst_obj.func() # instance method call 

f() # equivalent to the previous line 

 
The previous example shows that even functions are objects in Python. Everything except 

most keywords are objects. A string of characters is an object of str class. MyClass is a class 

object of type class – a metaclass that creates other classes. 
SystemVerilog is a statically typed language. Before execution, a compiler needs to compile 

SystemVerilog code. All variables have types that are determined in compile-time. The type is 

given when a variable is declared. Attempting to store a value of wrong type to the variable 
results in a compilation error. Using a method that does not exist in the variable also leads to a 

compilation error. 

 
int a = 10; 

a = '{20, 30}; // compilation error 

a.quack(); // compilation error 

 
Python, on the other hand, is a dynamically typed language. Python uses an interpreter which 

can run source files directly without a separate compilation phase [20]. All type checking is 

performed in runtime [21]. The type of value stored in a variable can change, because a variable 
in Python is only a reference to an object that holds the value. Python interpreter determines the 

object type implicitly, so a type is not needed in a variable declaration. Calling a non-existent 

method results in a runtime error. 
 
a = 10 # a points to an object of int class 

a = [20, 30] # now it points to an object of list class 

a.quack() # runtime error 

 

In the code above, the interpreter did not check a’s type to see if it implements quack method. 

It simply called the method and returned an exception because the method was not found. Let 
us look at the next example to see the implications of this. The example code defines classes 

Duck and Crow and their instance methods, creates a list with instance objects of both classes, 

and tries to call methods fly and quack of the objects. 
 



 

 

18 

class Duck: 

    def fly(self): 

        print("Duck flying") 

 

    def quack(self): 

        print("Quack!") 

 

class Crow: 

    def fly(self): 

        print("Crow flying") 

 

    def caw(self): 

        print("Caw caw!") 

 

for animal in [Duck(), Crow()]: 

    animal.fly() 

    animal.quack() 

 

The output for this example is: 
 
>>> Duck flying 

>>> Quack! 

>>> Crow flying 

>>> AttributeError: 'Crow' object has no attribute 'quack' 

 

The crow worked as a duck until it had to quack. This is an example of Python’s duck typing. 

It is a programming style where the type of the objects does not matter as long as they have the 
used attributes [20]. For example, functions accept all types of objects as arguments. The 

objects only need to have the attributes that the functions will use. This contrasts with 

SystemVerilog, where type compatibility is maintained with explicit argument types, type 
parameters and type casting. 

In both languages, it is possible to use a class as a base for a new class. The new class will 

have all the members, or attributes, of the base class, also known as super class, in addition to 
the ones declared in the new class. This is known as single inheritance. In Python, a class can 

also inherit from more than one base class, which is called multiple inheritance [19]. 

 
class A: pass 

class B(A): pass 

class C(A): pass 

class D(B, C): pass 

 
Class B and C inherit the attributes of Class A through single heritance, but Class D receives 

the attributes of all A, B and C through multiple inheritance. However, since B and C share a 

common base class A, it must be searched for a method last in a method call from a Class D 
instance so that any method overrides by B or C still hold. Python uses the C3 lineariza t ion 

algorithm to resolve the search order as D, B, C and finally A [22]. 

 
3.3 pyuvm 

Pyuvm is an implementation of the Universal Verification Methodology in Python. The idea of 
pyuvm is to provide a pythonic version of UVM that has the main features of the methodology 

while taking advantage of Python’s characteristics and built-in features [11]. A general 

overview of its current implementation status of the UVM standard IEEE 1800.2 is in Table 1. 



 

 

19 

Some features are yet to be added, like the register layer, and some are not planned to be 

included because they are already in some form in Python. The classes listed as implemented 

have at least their basic functionality but may have some properties and methods missing. 
 

Table 1. Implementation status of pyuvm 

IEEE 1800.2 

section 

Implemented in 

pyuvm 

Not implemented Comment 

5. Base classes uvm_void, 

uvm_object, 

uvm_transaction, 
uvm_port_base 

uvm_time, 

uvm_field_op 

Python magic methods 

like __str__ are used 

instead of UVM field 
operations 

6. Reporting 
classes 

- All The reporting system is 
based on Python’s 

logging library 

7. Recording 

classes 

- All Python does not run in 

a simulator 

8. Factory classes uvm_factory Component and object 

wrappers 

All classes extending 

uvm_void are 

automatically 
registered with the 

factory without a need 

for wrappers 

9. Phasing Common phases Runtime phases 

Phase domains 
Phase jumping 

 

10. 
Synchronization 

classes 

- All Python’s threading 
library provides thread 

synchronization, but 

features are not 
identical 

11. Container 
classes 

- All  

12. UVM TLM 
interfaces 

Port and export 
classes 

Implementation 
classes, TLM 2 

Implementation ports 
are not needed with 

Python’s duck typing 

and multip le 
inheritance  

13. Predefined 
component 

classes 

uvm_component, 
uvm_test,  

uvm_env, 

uvm_agent, 
uvm_monitor, 

uvm_scoreboard, 

uvm_driver, 
uvm_subscriber 

uvm_push_driver  

14. Sequence 
classes 

uvm_sequence_item 
uvm_sequence 

uvm_sequence_library  



 

 

20 

15. Sequencer 

classes 

uvm_sequencer 

Sequence item ports 

uvm_push_sequencer  

16. Policy classes - All  

17. Register layer - All  

18. Register 
model 

- All  

19. Register layer 
interaction with 

the design 

- All  

Annex B Macros 

and Defines 

- All  

Annex C 

Configuration and 

Resource classes 

uvm_config_db uvm_resource_db Pyuvm’s ConfigDB is a 

refactored version of 

uvm_config_db 

Annex D 

Convenience 
classes, interface 

and methods 

Factory interface 

Hierarchical 
reporting interface 

uvm_callback_iter 

uvm_reg_block access 
Callback typedefs 

 

Annex E Test 

sequences 

- All  

Annex F Package 

scope 

functionality 

uvm_root Everything else  

Annex G 

Command line 
arguments 

- All Python’s os module can 

be used to retrieve 
environment variables 

 
3.3.1 Class definition and object creation 

Let us compare SystemVerilog-UVM (SV-UVM) and pyuvm testbench code to learn how 
the UVM implementations are different. Below is an example definition of a custom UVM 

driver in both implementations. 

 
// SystemVerilog 

import uvm_pkg::*; 

 

class my_driver extends uvm_driver #(my_seq_item); 

  `uvm_component_utils(my_driver) 

  ... 

endclass 

 

# pyuvm 

import pyuvm 

from pyuvm import * 

 

class MyDriver(uvm_driver): 

    ... 

 

SystemVerilog uses extends keyword to make my_driver a derived class of uvm_driver. 

my_seq_item is an argument to uvm_driver’s parameter to inform about the type of sequence 
item the driver is handling. Many classes in SV-UVM need to know the size of data they will 



 

 

21 

operate on at compile-time. Type parameters provide this information to create classes for 

different types. The macro `uvm_component_utils registers my_driver class type to the UVM 

factory, so that later the factory can be used to create objects of the custom driver. 
In Python, the base class is inside parentheses following the name of the derived class. There 

is no type parameter passed to uvm_driver, since due to Python’s duck typing, ports do not need 

information about the type of objects they are handling. The factory registration macro is not 
needed because all classes extending from uvm_void are automatically registered with the 

factory. 

SV-UVM components and objects need to define a constructor method called new so that 
new objects of that class can be created. For my_driver class, it would look as follows. 

 
function new(string name, uvm_component parent = null); 

  super.new(name, parent); 

endfunction 

 

The constructor method simply calls the new method of the base class uvm_driver. In 
Python, the constructor method is __init__. However, it does not need to be defined for a 

constructor like this since the base implementation of __init__ already calls the constructor of 

the base class with the arguments. MyDriver does not need __init__ because its instance 
variables can be declared in the build phase. The constructor can be used for non-UVM classes 

and UVM objects that do not use UVM phasing, or if something needs to be initialized before 

the phases. For example, if we had a sequence item MySeqItem with instance variables data 
and addr, its __init__ could be defined as below. 

 
class MySeqItem(uvm_sequence_item): 

    def __init__(self, name): 

        super().__init__(name) 

        self.addr = None 

        self.data = None 

 

In Python, instance methods always have self as the first parameter, which refers to the object 
itself, analogous to SystemVerilog’s this. None is a special singleton object in Python, and it is 

now used to leave addr and data without an initial value. 

Unlike in SystemVerilog, instance variables in Python must be declared within one of the 
class’s instance methods. If we declare self.addr outside __init__ or other instance method, an 

exception will be raised because self is not defined outside the methods. If we declare addr 

without self outside an instance method, addr becomes a class variable, belonging to a class 
object and not an instance object. 

To create a my_seq_item object, we can either call my_seq_item’s constructor directly or use 

the factory method. In SV-UVM, it would look as follows. 
 
my_seq_item tr; 

// Direct method 

tr = new("my_seq_item_tr"); 

// Factory method 

tr = my_seq_item::type_id::create("my_seq_item_tr"); 

 
Let us look at the equivalent code in pyuvm. 

 



 

 

22 

# Direct method 

tr = MySeqItem("my_seq_item_tr") 

# Factory method 

tr = MySeqItem.create("my_seq_item_tr") 

 
The class constructor new creates a class instance in SV-UVM. In Python, a class type 

followed by parentheses calls the class constructor __init__ and returns an instance object. 

MySeqItem’s __init__ has a name parameter, so we pass a name argument. The self parameter 
does not need an argument – it is passed implicitly. 

For the factory method in SV-UVM, UVM components and objects registered with the 

factory have a proxy declared as type_id. We call that proxy’s create method to create a class 
instance. Each registered class type has its own proxy that creates objects of that type. [10 p. 

69–70] 

In pyuvm, the factory has been refactored and it does not use proxies. Instead, 
uvm_component and uvm_object implement create method that calls for the factory to return 

an instance object of the caller class. When a class is defined in Python, it starts existing as a 

class object, and its metaclass defines how that object is constructed. Pyuvm’s factory metaclass 
extends Python’s default type metaclass to store the class object to a dictionary when it is 

constructed. The factory uses the dictionary to create instance objects of the class. Since this 

metaclass is the metaclass of uvm_void, all classes extending from uvm_void are automatica l ly 
added to the dictionary i.e., registered with the factory.  

 
3.3.2 Phasing 

Pyuvm implements the common phases, from build_phase to final_phase, but runtime 

phases, such as configure_phase and reset_phase, are not implemented. Many of the phasing 
features are left out, such as phase domains, schedules, and phase jumping. The top-level 

component uvm_root simply processes through a list of common phases in order, traversing 

through the component hierarchy and calling the phase method of the current phase in each 
component. 

Like in SV-UVM, uvm_phase is the base class for all the phase classes in pyuvm, but its 

only function is to execute the phase method of a component. The classes uvm_bottomup_phase 
and uvm_topdown_phase are the base classes for phases that traverse the component tree  

bottom-up and top-down, respectively. The base class for runtime phases, uvm_task_phase, is 

replaced by uvm_threaded_execute_phase with its original coroutine-based implementation of 
runtime phases. 

Custom phases can be derived from these base classes, but there is no official support for it. 

To make pyuvm execute the custom phases requires monkey patching i.e., runtime 
modification, of the phasing module to add the custom phase to the list of phases, and of 

uvm_component to add the phase to its instance methods. In addition, custom runtime phases 

do not operate properly as they are all launched at the same with run_phase. 
Below are build_phase and run_phase declarations and an objection call in both SV-UVM 

and pyuvm. 

 



 

 

23 

// SystemVerilog 

function void build_phase(uvm_phase phase); 

task run_phase(uvm_phase phase); 

  phase.raise_objection(this); 

# Python 

def build_phase(self): 

async def run_phase(self): 

    self.raise_objection() 

 

In pyuvm, phases do not take uvm_phase as an argument because of the simplified 

implementation of the class. A typical use of the phase argument in SV-UVM is to call the 

phase’s raise_objection and drop_objection methods in run_phase to prevent its premature 
termination. These methods have been delegated to uvm_component in pyuvm, so we can call 

self.raise_objection() and self.drop_objection() instead. 

 
3.3.3 Configuration database 

As mentioned in Section 3.1, a configuration database is used in UVM to share configura t ion 
information between testbench components. It has set method to store information and get 

method to retrieve information. For example, in SystemVerilog, to pass a configuration object 

from a test class down to its environment’s agent, we could do as follows. 
 

class my_test_base extends uvm_test; 

  my_env env; 

  ... 

  function void build_phase(uvm_phase phase); 

    my_agent_configuration cfg; 

    env = my_env::type_id::create("env", this); 

    cfg = my_agent_configuration::type_id::create("my_cfg"); 

    uvm_config_db #(my_agent_configuration)::set( 

        this, "env.agt", "cfg", cfg); 

 

class my_agent extends uvm_agent; 

  my_agent_configuration cfg; 

  ... 

  function void build_phase(uvm_phase phase); 

    if(!uvm_config_db #(my_agent_configuration)::get( 

        this, "", "cfg", cfg)) begin 

      `uvm_fatal(get_type_name(), "...") 

    end 

 

The configuration database is parameterized, so we need to pass the configuration object 

type to the parameter in set and get methods. The first argument in set is the context, which is 
now the test class object, and the second argument is the instance name. Together they create 

the full hierarchical path to the component the configuration object is passed onto. The third 

argument is a name for the value in the database, and the fourth argument is the actual value 
[10 p. 404]. When the agent retrieves the configuration object, the get is wrapped in an if-

statement. If retrieving the object fails, the function call returns zero, which makes `uvm_fatal 

raise a fatal error. If the error is left uncaught at this point, using the non-existent configura t ion 
object later in the execution will lead to a segmentation fault that is less obvious to debug. 

In pyuvm, the configuration database functions similarly but the calls are simplified. Below 

is the equivalent code in pyuvm. 
 



 

 

24 

class MyTestBase(uvm_test):  

    def build_phase(self): 

        self.env = MyEnv("env", self) 

        self.cfg = MyAgentConfiguration.create("my_cfg") 

        ConfigDB().set(self, "env.agt", "cfg", self.cfg) 

 

class MyAgent(uvm_agent): 

    def build_phase(self): 

     self.cfg = ConfigDB().get(self, "", "cfg") 

 

The configuration database is named ConfigDB in pyuvm. It is a singleton object, therefore 

the constructor call ConfigDB() is used to get the database object. Type parameters are not used. 
The arguments of set method are the same as in SystemVerilog but get has only three arguments 

because the call directly returns the configuration object, which is assigned here to the instance 

variable self.cfg. The get is not wrapped in an if-statement like in SystemVerilog. As explained 
in Section 2.3, Python exceptions determine the simulation result in cocotb. The same is true 

for pyuvm. Exceptions have the same result as `uvm_fatal: they fail the test and end the test 

execution. If get cannot find the configuration object in the database, it raises 
UVMConfigItemNotFound error with a message informing about the missing object, prints a 

traceback pointing to the get call, and ends the simulation. 

 
3.3.4 Interfacing with the DUT 

In SV-UVM, to write and read bus signal values of the DUT, a SystemVerilog interface – 
“physical” interface – is typically connected to the DUT. UVM components do not directly use 

the physical interface because hierarchical references to signals would limit the reusability of 

the testbench [23]. Instead, the components use a virtual interface as a handle to the real 
interface. Through the virtual interface handle, they can assign or read signals of the physical 

interface and call the interface methods [23]. 

Let us go through an example procedure to pass a virtual interface to a driver. The top 
testbench module assigns the physical interface to a virtual interface variable in the 

configuration database as shown below. 

 
module top(); 

  ... 

  my_interface my_if(); // the physical interface 

  initial begin 

    uvm_config_db #(virtual my_interface)::set( 

        null, "uvm_test_top", "my_vif", my_if); 

  end 

 

The test class creates a configuration object cfg, gets the virtual interface from the database 

and stores the interface to a virtual interface variable in cfg. set method to store cfg in the 
database and to set it accessible to the agent is omitted as this was shown in Subsection 3.3.3. 

 
// In test class 

  my_agent_configuration cfg; 

  if (!uvm_config_db #(virtual my_interface)::get( 

      this, "", "my_vif", cfg.my_vif)) 

    `uvm_fatal("...") 

 

The agent retrieves the configuration object like previously in Subsection 3.3.3 and stores 
the virtual interface handle to the database for the driver. 



 

 

25 

 
// In agent class 

uvm_config_db#(virtual my_interface)::set( 

    this, "drv", "my_vif", cfg.my_vif); 

 

Finally, the driver obtains the virtual interface handle from the configuration database and 
assigns it to its property my_vif. Through my_vif, the driver has access to the members of the 
physical interface. 

 
// In driver class 

class my_driver extends uvm_driver #(my_seq_item); 

  virtual my_interface my_vif; 

  ... 

  if (!uvm_config_db#(virtual my_interface)::get( 

      this, "", "my_vif", my_vif)) 

    `uvm_fatal(...); 

 
There is no strict equivalent to a SystemVerilog interface in pyuvm or cocotb. Section 2.3 

showed that cocotb uses dut object to access signals in its hierarchy. We could build an 

interface- like class that directly references dut to read and assign values.  
 
class MyInterface: 

    def __init__(self): 

        self.dut = cocotb.top 

        ... 

    async def reset(self): 

        self.dut.aresetn.setimmediatevalue(0) 

        ... 

 
However, this interface has a reusability problem. Say we are building a verifica t ion 

intellectual property (VIP) for AHB-Lite protocol. AHB-Lite, according to its specificat ion,  

uses a clock signal named HCLK to synchronize the bus. In the DUT, there is a port DomClk 
that needs to connect to HCLK. If the top module, cocotb.top, is the DUT, MyInterface will 

only find DomClk – not HCLK. We must find a way to read DomClk through HCLK variable 

so that the VIP is design-agnostic. 
We could create a SystemVerilog interface whose signal names match with the variable 

names that MyInterface uses, instantiate the interface along with the DUT in a top testbench 

module, and connect the interface to the DUT. MyInterface would then point to the 
SystemVerilog interface instead of the top module, cocotb.top. 

Cocotb’s external bus package cocotb-bus solves the problem in Python using dynamic 

attributes [23]. The advantage of this approach is that the signal names do not have to match 
between the HDL entity and the Python interface. The following example shows this solution 

in a simple version that uses the configuration database. 

The VIP will use a configuration object to configure the interface. This object contains a 
dictionary that maps AHB-Lite signal names to custom names. By default, the standard and 

custom names are the same. The object also has a handle to the entity containing the bus signa ls. 

This could be the top testbench module, an interface or a modport. Here the default is the top 
module, cocotb.top. Lastly, it has a placeholder variable for the interface handle. 

 



 

 

26 

class AHBLiteConfiguration(uvm_object): 

 

    def __init__(self, name="ahb_lite_cfg"): 

        super().__init__(name) 

        self.ahb_signals = {"HCLK":"HCLK", "HRESETn":"HRESETn", 

                            ... 

        } 

        self.bus_entity = cocotb.top 

        self.ahb_if = None 

 

The base test class creates the configuration object and maps the signal names on the HDL 
side to the default names in the signal dictionary. The test also instantiates the interface, passing 

the bus entity and the signal dictionary to its constructor, and assigns the handle to ahb_if in the 

configuration object. Finally, it stores the object in the configuration database. 
 
class MyTestBase(uvm_test):   

 

    def build_phase(self): 

        self.cfg = AHBLiteConfiguration.create("ahb_lite_cfg") 

        self.cfg.ahb_signals["HCLK"] = "DomClk" 

        ... 

        self.cfg.ahb_if = AHBLiteInterface( 

            self.cfg.bus_entity, self.cfg.ahb_signals) 

        ConfigDB().set(self, "env.ahb_lite_agent", "cfg", self.cfg) 

 

The agent sets the configuration object for the driver as was shown in Subsection 3.3.3. The 
driver retrieves the configuration object and assigns the interface handle to its instance variable.  

 
class AHBLiteDriver(uvm_driver): 

 

    def build_phase(self): 

        ... 

        self.cfg = ConfigDB().get(self, "", "cfg") 

        self.ahb_if = self.cfg.ahb_if 

 

The interface class assigns the HDL signal names to the generic names using the Python 

method getattr(object, name). The method searches a given object for an attribute with a given 
name and returns a handle to the attribute. In this case, getattr searches bus_entity, which is 

equal to cocotb.top, for an attribute with the name DomClk, stored at the dictionary’s key 

HCLK, and returns a handle to it. The handle is assigned to the instance variable HCLK. Now 
we can read and drive DomClk with self.HCLK without hardcoding hierarchical signal paths or 

names in the interface. 

 
class AHBLiteInterface: 

 

    def __init__(self, bus_entity, ahb_signals): 

        self.HCLK = getattr(bus_entity, ahb_signals["HCLK"]) 

        ... 

    async def monitor_write(self, ...): 

        ... 

        await RisingEdge(self.HCLK) 

        ... 

 



 

 

27 

3.3.5 Transaction-level modelling 

To deliver transactions from one component to another, UVM TLM 1.0 includes three types 
of ports: ports, exports and imps – short for implementation ports. Ports initiate transaction 

requests. Exports forward the request to its implementation. Imps implement the used TLM 

method to execute the transfer. TLM methods include, among others, put to send transactions, 
get to receive transactions, and peek to obtain transactions without consuming it. The three 

methods have a blocking version which blocks the thread until the method succeeds, and a 

nonblocking version which tries to execute the method but may fail if the target component is 
not ready to do so. An example port connection is shown in Figure 5. [10 p. 120] 

 

 
Figure 5. An example port connection in SV-UVM. 

 
 For example, CompA is sending a transaction to CompB. Let us say the transfer needs to 

block the thread’s execution until the transfer is finished, so CompA has a 

uvm_blocking_put_port and it calls the port’s put method to request a transfer. 
 
class CompA extends uvm_component; 

  uvm_blocking_put_port #(my_seq_item) m_put_port; 

  ... 

  function void build_phase(uvm_phase phase); 

    m_put_port = new("m_put_port", this); 

    ... 

  task run_phase(uvm_phase phase); 

    ... 

    m_put_port.put(item); 

 

Ports are connected in connect_phase. Below is an example of Env connecting AgentA’s port 
to AgentB’s export. 

 
class Env extends uvm_env; 

  ... 

function void connect_phase(uvm_phase phase); 

  agent_a.put_port.connect(agent_b.put_export); 

  ... 

 

Through the connected ports and exports, the request reaches CompB’s imp, which 
implements the put method. When CompA calls the put method, the put task in CompB gets 

called. 

 



 

 

28 

class CompB extends uvm_component; 

  uvm_blocking_put_imp #(int, ed_monitor) put_imp; 

  ... 

  function void build_phase(uvm_phase phase); 

    put_imp = new("put_imp", this); 

    ... 

  task put(my_seq_item item); 

    `uvm_info("Trace", 

        $sformatf("Received item:addr:%0h, data:%0h", 

        item.addr, item.data), UVM_HIGH) 

    foo(item.addr, item.data); 

  endtask 

 

An example port connection in pyuvm is pictured in Figure 6. Pyuvm only has two of the 

three main types of ports: ports and exports. It does not have imps because duck typing and 
multiple inheritance renders them unnecessary. Ports either initiate transfers or forward them 

towards an export. An export implements the TLM method to execute the transfer.  

 

 
Figure 6. An example port connection in pyuvm. 

 

Let us go through the same example as above. Pyuvm also has the uvm_blocking_put_port 
class, but no type parameterization is needed. put is awaited because it is a blocking call. 

 
class CompA(uvm_component): 

    def build_phase(self): 

        self.put_port = uvm_blocking_put_port("put_port", self) 

    async def run_phase(self): 

        ... 

        await self.put_port.put(item) 

 
Port-to-port connections have a similar syntax to SV-UVM. Here Env has declared AgentA 

and AgentB objects and now connects their ports. 

 
class Env(uvm_env): 

    ... 

    def connect_phase(self): 

        self.agent_a.put_port.connect(self.agent_b.put_port) 

 

Pyuvm expects uvm_*_export classes to implement the needed TLM methods for the 

connected port. Therefore, CompB can inherit an export class and then implement the methods. 
In a simple case where CompB does not need to inherit from classes other than uvm_component, 



 

 

29 

the export class can be CompB’s only base class, because all uvm_*_export classes are 

originally derived from uvm_component. 

 
class CompB(uvm_blocking_put_export): 

    ... 

    async def put(self, item): 

        ... 

 
In a case where CompB has a custom base class to inherit from, called BaseCompB for 

example, Python’s multiple inheritance can be utilized. 

 
class CompB(BaseCompB, uvm_blocking_put_export): 

    ... 

    async def put(self, item): 

        ... 

 
AgentB’s put port is connected directly to CompB object itself. 

 
class AgentB(uvm_agent): 

    def build_phase(self): 

        self.comp_b = CompB("comp_b", self) 

        self.put_port = uvm_blocking_put_port("put_port", self) 

        ... 

    def connect_phase(self):     

        self.put_port.connect(self.comp_b) 

 

UVM TLM also includes first-in, first-out (FIFO) classes. FIFO classes provide a transaction 

buffer between two connected components. The classes have exports and implementations for 
the TLM methods put, get and peek. [10 p. 130–133] 

Below is an example of using FIFO’s nonblocking get method to retrieve a transaction from 

the FIFO if there is one available. The main difference of FIFOs between pyuvm and SV-UVM 
is that they are not type parameterized in pyuvm. The example also highlights the difference in 

the nonblocking try_get methods. Python does not allow assigning a function’s return value  

into its argument like SystemVerilog does with output keyword in function or task parameters. 
In SV-UVM, try_get returns the transaction in the function argument and a success bit as the 

function’s return value. In pyuvm, try_get returns a tuple with the success bit as the first value 

and the transaction as the second. 
 
// SystemVerilog 

class my_predictor extends uvm_component; 

  uvm_tlm_analysis_fifo #(ahb_lite_seq_item) ahb_fifo; 

  ... 

  function void build_phase(uvm_phase phase); 

    super.build_phase(phase); 

    ahb_fifo = new("ahb_fifo", this); 

    ... 

  endfunction 

  task run(); 

    ahb_lite_seq_item ahb_tr; 

    if(ahb_fifo.try_get(ahb_tr)) begin 

      ... 

 

 



 

 

30 

  # Python 

class MyPredictor(uvm_component): 

    def build_phase(self): 

        self.ahb_fifo = uvm_tlm_analysis_fifo("ahb_fifo", self) 

        ... 

    async def run(self): 

        success, ahb_tr = self.ahb_fifo.try_get() 

        if success: 

            ... 

 
3.3.6 Reporting system 

Pyuvm relies on cocotb’s logging system to substitute for UVM’s reporting system. Each 

UVM component extending from uvm_report_object has its own logger object that can print 
messages. The severity of the messages can range from trace messages to critical errors. In SV-

UVM, messages have both severity and verbosity levels, and messages can be omitted 

depending on the verbosity. In pyuvm, messages do not have a verbosity level but messages 
below a certain severity can be filtered. Below is an example of the pyuvm logging system in 

contrast to SV-UVM’s reporting system. 

 
// SV-UVM: 

// `uvm_info has message tag, message and verbosity parameters 

`uvm_info("TRACE", $sformatf( 

    "AHB read: addr: 0x%0h, data: 0x%0h", rd_tr.addr, rd_tr.data), 

    UVM_HIGH); 

// Verbosity controls which messages are ignored instead of severity 

// Set verbosity level for one component 

set_report_verbosity_level(UVM_FULL); 

// Set verbosity level for the component hierarchy 

set_report_verbosity_level_hier(UVM_LOW); 

 

# pyuvm: 

# Display INFO level message formatted in  

# a similar style to SystemVerilog-UVM 

self.logger.info( 

    f"AHB read: addr: {hex(rd_tr.addr)}, data: {hex(rd_tr.data)}") 

# Messages below level DEBUG are not displayed for this component 

self.set_logging_level(DEBUG) 

# Set logging level for this component and 

# all components below it in hierarchy 

self.set_logging_level_hier(ERROR) 

# Set default logging level for all UVM components in the testbench 

uvm_report_object.set_default_logging_level(CRITICAL) 

 

In its current state, the logging system is lacking major features of the UVM standard. Log 

messages do not have functionality beyond displaying information, and the functionality cannot 
be easily changed as set_*_action methods do in SV-UVM. The method logger.error(), for 

example, does not affect the test result like `uvm_error does by default. Macros like `uvm_error 

do not exist in pyuvm which is an issue for UVM objects and interfaces that exist outside the 
UVM hierarchy. There is also no equivalent of uvm_report_server that can be queried for 

message counts. 

One way to print messages in the UVM format from UVM objects and interfaces is to use 
UVM root object’s logger. Another way is to create a uvm_report_object type object and use 



 

 

31 

its logger. The second method allows to add a name tag to the messages but comes at the cost 

of creating the report object. 

 
class MyInterface: 

    def __init__(self, ...): 

        # Option #1 

        self.logger = uvm_root().logger 

        # Option #2 

        self.logger = uvm_report_object("my_interface").logger  

 
For the lack of uvm_error and uvm_report_server, a custom handler class was used as a 

temporary solution in the testbench of this work. In Python, handlers are objects that process 

messages of the loggers they are attached to. The function of the custom handler,  
ReportHandler, was to keep count of logging messages in the testbench. The main part of the 

code is below. It uses Singleton metaclass from pyuvm to ensure that all loggers share a 

common ReportHandler object. The object collects log message counts of different log levels 
to a dictionary, which can be used in a test’s report phase to print the message counts and to fail 

the test if there are errors. 

 
import logging 

from pyuvm.utility_classes import Singleton 

 

class ReportHandler(logging.Handler, metaclass=Singleton): 

    def __init__(self): 

        super().__init__() 

        self.log_counts = { 

            "DEBUG": 0, 

            "INFO": 0, 

            "WARNING": 0, 

            "ERROR": 0, 

            "CRITICAL": 0, 

        } 

 def emit(self, record): 

        if record.levelname not in self.log_counts: 

            self.log_counts[record.levelname] = 1 

        else: 

            self.log_counts[record.levelname] += 1 

 

Besides the added dependency, the main weakness of this solution is that the handler needs 

to be added to every logger in the testbench. The shortest method to do this is to use 
uvm_component’s function add_logging_handler_hier from the topmost test class to add the 

handler to every logger in the UVM hierarchy. However, this function can only be called after 

the hierarchy is built in the build phase, so any messages prior to that are not counted. The 
alternative is to add the handler in every component individually. The handler also needs to be 

added to the logger of uvm_root and to any loggers outside the UVM component hierarchy if 

used. 
 

3.3.7 UVM Register Abstraction Layer 

One major feature of UVM not introduced in Section 3.1 is the UVM register layer, also 

known as the UVM Register Abstraction Layer (RAL). It is used to create an object-oriented 

model of the registers and memories in the DUT within the testbench. The model allows to 
execute read and write operations on the DUT registers and memories on a more abstract level 



 

 

32 

than transactions, and it improves vertical reuse of testbenches. With the register model, 

registers are addressed in a verification environment by name and not by physical address, so 

addresses can change without requiring changes in the environment and tests. UVM class 
library also defines a set of test sequences for the register model to verify register functiona lity 

of the DUT. [18 p. 75–78] 

UVM RAL is not yet available in pyuvm. Only rudimentary implementations of register 
model classes uvm_reg_block, uvm_reg_map, uvm_reg and uvm_reg_field are included in the 

release version. The classes can be used to build a basic register model, but they do not define 

methods to map the model to the registers of the DUT, nor do they provide frontdoor or 
backdoor access to the registers. 

 
3.3.8 Defining test cases 

In Section 2.3, @cocotb.test() decorator was used to mark a test coroutine for cocotb to 

simulate. For pyuvm tests, @pyuvm.test() is used for the same purpose. The test decorator 
accepts arguments to modify the execution, such as the timeout limit in the example below. The 

decorator also makes the call to run_test method of uvm_root automatic. The run_test method 

is explicitly called in SV-UVM from the top testbench module to execute a UVM test. 
 
@pyuvm.test(timeout_time=6000, timeout_unit="us") 

class MySimpleTest(MyTestBase): 

 

Multiple tests can be defined in the same module. The environment variable MODULE is 

used to specify the module or modules where the tests are located. Unlike in SV-UVM, all tests 
within the specified modules are run sequentially in a single simulation. Any singleton objects, 

including the configuration database and the factory, are cleared between the tests. 

SV-UVM uses +UVM_TESTNAME command-line parameter to select the UVM test to run 
from the compiled test classes. Cocotb has an environment variable TESTCASE to select 

specific test cases from the modules, but it is not compatible with the current version of pyuvm’s 

test decorator. One alternative way is to place the tests in separate modules and select them with 
the environment variable MODULE. Another way is to define the test class without the pyuvm 

test decorator and to instead define an additional test coroutine with @cocotb.test decorator. 

The coroutine will call uvm_root to start the test using the specified test class. This coroutine 
can be used with TESTCASE. 

 
@cocotb.test(timeout_time=6000, timeout_unit="us") 

async def my_simple_test(_): 

    await uvm_root().run_test(MySimpleTest) 

 



 

 

33 

4 TESTBENCH SUPPLEMENTATION 

While UVM provides a class library of testbench components and objects, macros and other 

utilities for functional verification, many critical verification features are part of the 

SystemVerilog language itself. This chapter focuses on two of such features, functiona l 
coverage and constrained random verification, and explores two Python packages that add the 

features in a Python testbench. One of the packages, PyVSC, provides a solution primarily in 

Python, while the other, pyquesta, provides a bridge to pass objects between Python and 
SystemVerilog, allowing to randomize objects and collect coverage with SystemVerilog. 

 
4.1 Functional coverage 

The goal in functional verification is to validate a design, and this requires comprehensive tests. 

To follow the progress towards this goal and to minimize redundancy in verification, coverage 
is used as a metric to track which portions of the design have been exercised and which are still 

untested. Some types of coverage can be automatically collected, such as measuring lines of 

code that have been executed in the HDL model. Functional coverage is a manually defined 
metric to measure the percentage of exercised features or capabilities of the design as specified 

by the design specification and enumerated in the test plan [1 p. 553]. 

The test plan can include UVM tests where a sequence or a set of sequences execute a feature 
in the RTL model. Another type of items to include in the test plan are coverage groups. 

covergroup is a SystemVerilog construct that encapsulates the data and temporal requirements 

of input stimuli and output response to cover a feature [25]. During a simulation, covergroup 
receives samples of input or output data which are compared with its coverage points. Coverage 

points include bins which are associated with sampled values or value transitions. If the sample  

“hits” a bin i.e., it has a value or completes a value transition associated with a bin, the bin is 
covered. [1 p. 554–558] 

In the following example, a UVM component my_reg_cov_collector has a coverage group 

with two coverage points. cov_addr has a bin for each configuration register’s address in the 
DUT, and cov_op has bins for read and write operations. There is also a cross coverage 

cov_addr_x_op of the two coverage points, which has a bin for each combination of address 

and operation bin. The coverage collector is connected to a monitor’s analysis port. The monito r 
reads the interface bus signals, packages the values to a sequence item and sends the item to the 

analysis port subscribers. my_reg_cov_collector samples the item, and if the item’s addr or 

op_type value is found in a bin, the bin is covered. 
 



 

 

34 

class my_reg_cov_collector extends uvm_subscriber #(my_seq_item); 

  `uvm_component_utils(my_reg_cov_collector) 

   

  my_seq_item my_tr; 

   

  covergroup my_reg_cg; 

    cov_addr: coverpoint my_tr.addr { 

      bins my_reg_mask = { 32'h1000 }; 

      bins my_reg_type = { 32'h1004 }; 

      //... 

    

    cov_op: coverpoint my_tr.op_type { 

      bins read = { 0 }; 

      bins write = { 1 }; 

    

    cov_addr_x_op: cross cov_addr, cov_op; 

  endgroup 

 

  function void write(my_seq_item t); 

    my_tr = t; 

    my_reg_cg.sample(); 

  endfunction 

 

Functional coverage poses two problems for Python testbenches. Coverage constructs like 

covergroup are not part of the Python language, and they are outside the scope of pyuvm and 
cocotb. The other issue is simulator integration. With SystemVerilog, simulators can collect 

coverage information from coverage groups and present the accumulated results at the end of a 

simulation. The coverage results can be saved to a database format and merged with results 
from other simulations to keep track of a project’s verification progress. A functional coverage 

solution for Python must also be able to save the results in a format that electronic design 

automation (EDA) tools support. 
There are currently two Python packages that add functional coverage to Python testbenches: 

PyVSC and cocotb-coverage [26][27]. PyVSC was chosen for the thesis because of its active 

development, syntactic similarity with SystemVerilog, and the ability to save results in Unified 
Coverage Interoperability Standard (UCIS) database and interchange formats, which simulato rs 

can read. 

PyVSC provides coverage collection and constrained random verification features in 
Python. This section will focus on the former, while the next one focuses on the latter. 

Let us repeat the example above using PyVSC. The decorator @vsc.covergroup marks 

my_reg_cov_collector class as a coverage group. The constructor calls with_sample – one of 
the methods the decorator adds to the class – and passes a dictionary of the attributes to cover 

from samples. The method accepts either a dictionary or keyword arguments. 

 



 

 

35 

import vsc 

from my_common import my_regs 

 

@vsc.covergroup 

class my_reg_cov_collector(uvm_subscriber): 

    def __init__(self, name, parent): 

        super().__init__(name, parent) 

        self.with_sample( 

            dict( 

                addr=vsc.bit_t(32), 

                op_type=vsc.bit_t(1) 

            ) 

        ) 

 
Continuing the constructor definition, we next declare the two coverage points and their 

coverage cross. The bins are specified in a dictionary passed to the parameter bins of 

vsc.coverpoint. One of the available bin types is vsc.bin. It can cover a value or a value range. 
The address bins declarations are made simpler by having the register name-address pairs stored 

in a dictionary my_regs and using Python’s dictionary comprehension to create the bins in one 

line. 
 
        self.cov_addr = vsc.coverpoint( 

            self.addr, bins={ 

                k: vsc.bin(v) for (k, v) in my_regs.items()} 

        ) 

        self.cov_op = vsc.coverpoint( 

            self.op_type, 

            bins={ 

                "read": vsc.bin(0), 

                "write": vsc.bin(1) 

            } 

        ) 

        self.cov_addr_x_op = vsc.cross([self.cov_addr, self.cov_op]) 

 

Aside from the constructor, my_reg_cov_collector needs to define write function where 
sample() is called so that bus transactions sent to its analysis export are sampled. 

 
    def write(self, tr): 

        self.sample(tr.addr, tr.op_type) 

 
There are a few different options for viewing the results in PyVSC. One is report_coverage() 

which writes the results in a stream. The function write_coverage_db() saves the results in 

either UCIS XML interchange format or a coverage database format using the given library that 
implements UCIS C API [28]. These functions can be called in, for example, a UVM test’s 

report phase to report and save the coverage for the test. 

 
def report_phase(self): 

    vsc.report_coverage(details=False) 

    vsc.write_coverage_db("cov.xml") 

    vsc.write_coverage_db( 

        "cov.ucdb", fmt="libucis", libucis="libucis.so") 

 



 

 

36 

4.2 Constrained random verification 

As design complexity grows, it becomes increasingly infeasible to manually generate 
sufficient stimuli to verify the functionality of the design. Constrained random verification is a 

methodology that uses random stimulus to find bugs in the design. Constraints limit the range 

of random values to a set of legal values or values that test a specific feature.  The testbench 
predicts the response to the random input stimulus using a reference model or other techniques 

and compares the prediction against the observed response. Functional coverage measures how 

effectively the random stimulus explores the space of possible inputs. [29] 
SystemVerilog has constrained random stimulus generation built into the language. In a 

Python testbench, for some simple cases, Python’s pseudo-random number generation in its 

standard library random can be sufficient. The testbench in this work used PyVSC’s constrained 
random verification features as one option for random stimulus generation. PyVSC uses 

satisfiability modulo theories (SMT) solver Boolector to solve constraints and adds classes and 

methods similar to SystemVerilog constructs and patterns to control the stimulus generation. 
Let us examine a short example in both languages for comparison. A sequence class 

my_read_seq defines a sequence for a read operation from an address addr of size bytes. The 

variable reg_idx is for selecting an address from an array of register addresses. In 
SystemVerilog, random variables in a class are declared with an additional rand or randc 

keyword before the data type. The keyword constraint is used to place constraints on the 

randomization. Here inside keyword is used to limit size to values one, two and four. 
 
class my_read_seq extends uvm_sequence #(my_seq_item); 

  rand logic[31:0] addr; 

  rand int size; 

  rand int reg_idx; 

  constraint allowed_size { size inside {1, 2, 4}; } 

 

New values for the random variables in an object are selected with randomize() method. 

Additional constraints can be added if the method is followed by with keyword. The two 
constraints here make the address to be selected from cfg_regs, which holds an array of 

configuration register addresses. 

 
task cfg_reg_read(); 

  my_read_seq rd_seq; 

  rd_seq = my_read_seq::type_id::create("rd_seq"); 

  rd_seq.randomize() with { 

    reg_idx inside {[0:$size(cfg_regs)-1]}; 

    addr == cfg_regs[reg_idx]; 

  }; 

 

In PyVSC, randomized classes are marked with @vsc.randobj decorator. Random attributes 
are declared as objects of one of the random data types in PyVSC. In this example, we use 

rand_bit_t for an arbitrary-width unsigned data type and rand_uint8_t for an 8-bit unsigned 

integer. Constraint statements are defined in a method decorated with @vsc.constraint. 
 



 

 

37 

@vsc.randobj 

class MyReadSeq(uvm_sequence): 

    def __init__(self, name): 

        super().__init__(name) 

        self.addr = vsc.rand_bit_t(32) 

        self.size = vsc.rand_uint8_t() 

        self.reg_idx = vsc.rand_uint8_t() 

 

    @vsc.constraint 

    def allowed_size(self): 

        self.size.inside(vsc.rangelist(1, 2, 4)) 

 

Randomization with additional constraints takes advantage of Python’s context manager 

protocol. The keyword with wraps the constraint statements with methods that prepare the 
object for randomization and then randomize it with the added constraints. The keyword as 

assigns the name it to the prepared rd_seq object. 

 
async def cfg_reg_read(self): 

    rd_seq = MyReadSeq.create("rd_seq") 

    with rd_seq.randomize_with() as it: 

        it.reg_idx in vsc.rangelist(vsc.rng(0, len(cfg_regs)-1)) 

        it.addr == cfg_regs[reg_idx] 

 
4.3 Passing objects between Python and SystemVerilog 

As functional verification in Python is still at an early stage, there can arise situations where it 

would be beneficial to be able to borrow SystemVerilog’s features in a Python testbench. For 
example, in functional coverage and constrained random verification, PyVSC has not yet 

reached feature parity with SystemVerilog. 

For users of Questa Sim, there is an option to exchange objects with SystemVerilog from a 
Python testbench using the Python package pyquesta. It is a collection of resources being 

developed for Python programmers using Questa [30]. Currently, it only contains SVConduit, 

which is the object exchange resource. In short, SVConduit enables one-way or two-way 
transfer of an object of a defined type from Python testbench to a SystemVerilog module via 

the SystemVerilog direct programming interface (DPI). DPI is an interface that allows inter-

language calls between SystemVerilog and a foreign programming language [1 p. 938]. 
SVConduit needs the user to define the exchange object type and the behaviour associated with 

the object in the SystemVerilog module [30]. Building the rest of the exchange framework is 

automated with a script included in the package. 
The following example shows how to use SVConduit to solve constraints of a sequence item 

in SystemVerilog with Questa Sim and send the item to a Python testbench. 

The class of the exchange object is defined in YAML format. It needs to include a class 
name and properties along with their data types. 

 
MyReadSeqSVCItem: 

  addr: 

    uint 

  size: 

    uchar 

  reg_idx: 

    uchar 

 



 

 

38 

A script packaged with SVConduit creates a Python module and a SystemVerilog package 

that define a Python and a SystemVerilog class based on the YAML file. The classes include 

pre-defined serialization and deserialization methods for transferring data between them. Below 
is the skeleton of the created SystemVerilog class. 

 
class MyReadSeqSVCItem; 

  rand  int unsigned  addr; 

  rand  byte unsigned  size; 

  rand  byte unsigned  reg_idx; 

  function new(...); // Initialize members from data buffer 

  function string serialize(); // Serialize members 

endclass 

 

 The SystemVerilog package also defines functions sv_put() for sending objects from Python 

to SystemVerilog, sv_get() for the reverse, and sv_transport() for bidirectional transfer. These 
functions are not pre-defined since their implementation depends on the use case. We only need 

sv_get() for this example, so the other two are defined as dummy functions. 

 
function string sv_get(); 

    MyReadSeqSVCItem obj; 

    string obj_str; 

    obj = new(); 

    void'(obj.randomize() with { 

        size inside {1, 2, 4}; 

        reg_idx inside {[0:$size(cfg_regs)-1]}; 

        addr == cfg_regs[reg_idx]; 

    }); 

    obj_str = obj.serialize(); 

    return obj_str; 

endfunction 

 
The function sv_get selects random values for the object properties based on the constraints, 

serializes the properties in a string-type buffer and returns the buffer. SVConduit implements a 

C library which uses the C layer of DPI. A get function in the C library calls sv_get and receives 
the returned buffer from the SystemVerilog module. The C function, in turn, is called from a 

Python implementation of get, which populates the attributes of a Python class instance of a 

given type with the buffer data and returns the object. 
Now we can import SVConduit and the Python class to the testbench code and call get to 

receive a randomized MyReadSeqSVCItem object from SystemVerilog. 

 
from pyquesta import SVConduit 

from MyReadSeqSVCItemMod import MyReadSeqSVCItem 

 

async def cfg_reg_read_svc(self): 

    rd_seq = MyReadSeq.create("rd_seq") 

    rd_seq_svc_item = SVConduit.get(MyReadSeqSVCItem) 

    rd_seq.addr = cfg_regs[rd_seq_svc_item.reg_idx] 

    rd_seq.size = rd_seq_svc_item.size 

 



 

 

39 

5 TEST SETUP 

To test the simulation and verification performance of a Python UVM testbench, the same 
testbench and test cases were developed in both SystemVerilog and Python. Functiona l 
equivalence between the testbenches was maintained to the extent that was possible so that their 
performance could be compared. The following sections give an overview of the DUT and the 
testbenches. 

 
5.1 The device under test 

A small-scale IP with simple functionality was selected as the DUT to ease the effort of 
developing two testbenches. The DUT was an AHB-Lite slave, and it had registers that could 
be accessed via the bus. Some of the input and output ports were outside the control of the bus 
and were driven by a separate interface in the testbench. The relevant parts of the IP are shown 
below in Figure 7. 

 
Figure 7. The IP used as the DUT for the performance tests. 

 
5.2 The testbenches 

The general testbench architecture for both the SystemVerilog and the Python UVM 
testbench is in Figure 8, with the slight distinction that interfaces belonged to the base test class 
in the Python version and to the top testbench module in the SystemVerilog version. 



 

 

40 

 
Figure 8. The UVM testbench for the performance tests. 

 
The SystemVerilog AHB-Lite agent hierarchy, interface, and base sequences for driving and 

monitoring the 32-bit AHB-Lite bus were part of Nokia in-house VIP and were rewritten in 
Python for the Python testbench. The SystemVerilog AHB-Lite VIP was the only reused part 
of the testbench. The IP agent was for the DUT’s input and output ports outside the AHB-Lite 
bus. Both agents included a configuration object for switching between active and passive mode 
and other configurations. 

The scoreboard was fed input and output data from both monitors, and it compared predicted 
and observed responses of the DUT on each clock cycle. The predictor component within the 
scoreboard generated the predictions based on the input data. There was no reference model of 
the design available to use with the testbench, so the predictor was developed to model the DUT 
behaviour at an abstract level in SystemVerilog and Python. Its purpose was to verify the 
response to random stimuli and to help identify bugs in the testbenches. 

The operation of the predictor component involved constantly manipulating bit vectors to 
mirror the register values of the DUT and to create predicted output data. For these bit vectors,  
cocotb’s BinaryValue type was first used in the Python testbench. With the initia l 
implementation, connecting this component slowed down the simulation considerably. 
Performance analysis of the testbench revealed that methods of the BinaryValue type were 
consuming a major portion of the simulation time. In response, all bit vectors in the predictor 
were switched to bitarray type from the Python package bitarray. The bitarray type is an array 
of Boolean values with its functionality implemented in C [31]. Performance gain of the type 
over BinaryValue was not officially measured and recorded, as this was outside the scope of 
this work, but bitarray was clearly faster in this case. 

The coverage collector component was a uvm_subscriber with a coverage group, collecting 
coverage data from AHB-Lite bus operations. There were two different versions of the coverage 
groups. The first one was used for performance tests and included coverpoints for DUT register 
addresses, transaction sizes and their cross coverage. The second was made for a coverage test 



 

 

41 

and included a subset of the bins of the first version. This subset is described more in detail in 

Section 6.3. In the Python testbench, the coverage collector was implemented with PyVSC as 

shown in Section 4.1.  
The Python testbench used three different methods for constrained randomization. Sequence 

items in IP agent sequences only had one constraint to limit a field’s value to a range of integers , 

so Python’s built-in random library was sufficient to randomize the items. Sequence items in 
AHB-Lite agent sequences used two different, switchable randomization schemes which were 

compared in the performance tests. 

One of the randomization schemes used PyVSC’s constrained random features. An example 
of randomizing sequences with PyVSC was in Section 4.2. Sequences were decorated with 

@vsc.randobj like in the example but the sequence items were not. This is because the decorator 

had a drastic performance impact on the creation of UVM objects. While the impact to the total 
execution time is small in many use cases, the tests in this work created only a few sequences 

but up to 2.5 million sequence items. Therefore, it was far better to randomize sequences and 

copy the randomized values to sequence items. 
The other randomization scheme used pyquesta’s SVConduit to transport a sequence item 

from Python to SystemVerilog with the required information for randomization. The 

SystemVerilog module would then randomize the sequence item fields and send it back to 
Python. While Section 4.3 showed an example of unidirectional transfer of sequence items 

between Python and SystemVerilog with sv_get function, this method used sv_transport for 

two-way object exchange. 
The interfaces in the Python testbench were implemented in Python as shown in Subsection 

3.3.4. They were not functionally equivalent to the SystemVerilog interfaces because they did 

not have clocking blocks. Currently, cocotb does not offer a direct alternative to 
SystemVerilog’s clocking blocks. Timer trigger in cocotb could be used to add arbitrary delay 

to driving output signals, but it is uncertain if negative skew can be added to the sampling of 

input signals. Missing this functionality in the Python testbench did not affect test results but 
adds some error in the codebase comparison. 

Since the Python testbench did not use SystemVerilog interfaces, the top testbench module 

only contained top-level signals and an instantiation of the IP module. Using a top testbench 
module in such case is not necessary with cocotb, but here its main function was to wrap the IP 

module, written in VHDL, in a SystemVerilog module. This enabled simulation with Synopsys 

VCS because cocotb does not currently support VHPI for VCS. Cocotb’s default Makefile for 
VCS also required changes to enable compilation of VHDL files. Probing internal signals of 

the DUT was still not possible with this arrangement, but access to top-level signals was enough 

for the tests. The modifications to the Makefile are presented in Appendix 1. 



 

 

42 

6 PERFORMANCE AND CODEBASE COMPARISON 

This chapter covers the performance and codebase comparison of the Python and 

SystemVerilog testbenches introduced in Chapter 5. Lines of code and file size comparison 

gives one estimate for the effort put into developing the two testbenches. The performance tests 
measured the simulation performance difference of the testbenches in terms of execution time 

and memory consumption. Lastly, the coverage test measured the efficacy of SystemVerilog’s 

and PyVSC’s random stimulus generation in increasing functional coverage. 
 

6.1 Code size comparison 

Codebase statistics for the Python and SystemVerilog testbenches are in Table 2. The Python 

testbench had 30% less lines of code and 20% smaller total file size than the SystemVerilog 

testbench. Lines of code excludes comment lines and blank lines. SVConduit files were 
excluded from the comparison since this was an extra feature that did not have a counterpart in 

the SystemVerilog testbench.  

 
Table 2. Comparison of Python and SystemVerilog testbench codebase 

Testbench Lines of code Comment lines Blank lines Total file size 
(kB) 

Python 1634 237 223 82 

SystemVerilog 2325 134 428 103 

 

In SystemVerilog testbench, method prototypes were declared inside a class body with 

extern keyword, and methods were defined outside the body. In Python testbench, methods 
were defined inside classes without the prototypes because Python does not have them. This is 

one reason for the less lines of code in the Python testbench. Another reason is the lack of 

variable declarations in Python. New variables can be assigned at any point while in 
SystemVerilog variables need to be declared first before assigning a value to it. SystemVerilog 

classes also had registration macros and constructor definitions which were not needed in the 

Python testbench as explained in Subsection 3.3.1. 
Smaller differences include Python’s dictionary comprehension which saved effort of 

creating bins separately as shown in Section 4.1. No equivalent method of defining bins out of 

an associative array was found for SystemVerilog. Also, as mentioned in Section 5.2, Python 
interfaces did not have clocking block functionality of the SystemVerilog interfaces. Clocking 

blocks added 51 lines of code to the SystemVerilog testbench. 

Aside from the differences in implementation, there are several factors that contributed to a 
difference in lines of code and code size but had no correlation or had an inverse correlat ion 

with development effort. In Python testbench, a code formatter tool enforced a maximum line 

length of 88 characters, whereas in the SystemVerilog testbench, the line length cap was self-
imposed and not strictly followed. In effect, the code formatter increased lines of code but 

reduced development effort. The SystemVerilog testbench commonly had lines with only 

brackets or the keyword end of a begin-end block, while in the Python testbench, lines with 
only brackets were less common. The Python testbench had more comment lines, but it is partly 

explained by the line length restriction. Comments were mirrored between the testbenches 

wherever it was applicable. The SystemVerilog testbench had more blank lines, some of which 
had whitespace characters, increasing the file size. On the other hand, the Python testbench used 

four spaces for indentation, while the SystemVerilog testbench used only two. 



 

 

43 

 
6.2 Performance tests 

Identical UVM tests were created for both the Python and SystemVerilog testbench to measure 

memory use and execution time. The tests were executed on a Linux RHEL7 server. The 

simulators used in the tests were Synopsys VCS Release version T-2022.06_SP1_Full64 and 
Siemens QuestaSim 2022.2_1 Revision 2022.05. The Python version was 3.7.4. A list of Python 

packages used in the Python testbench, and their versions, is in Table 3. 

 
Table 3. Python packages used in the Python testbench 

Python package Version 

pyuvm 2.9.0 

cocotb 1.7.1 

PyVSC 0.7.9 

pyquesta 2.5.1 

bitarray 2.6.0 

 
For the metrics, CPU time and peak virtual memory size (VSZ) during simulation phase, as 

reported by the simulators, were used. CPU time is the time spent by the CPU executing the 

processes spawned by the simulator. Virtual memory size is the memory assigned to all the 
contributing processes. VSZ is a pessimistic metric for memory consumption since it includes 

memory that is swapped out, but it was the primary metric in the simulators. 

 
6.2.1 Idle tests 

The idle tests compare the cost of issuing signal value changes from the Python testbench versus 
the SystemVerilog testbench. The scoreboard, coverage collector and monitors were 

uninstantiated, and the drivers only reset the DUT in the beginning but were otherwise idle. A 

clock signal with a period of 100 ns was generated by a Clock class of cocotb.clock module in 
the Python testbench and by a forever looping initial block in the top testbench module in the 

SystemVerilog testbench. 

In the first variation of the test, the clock signal was generated for only one clock cycle to 
measure the baseline for memory use. In the second variation, the clock signal was generated 

for 150 ms. 

Figure 9 shows the peak virtual memory size during the simulation phase of the idle tests. 
With VCS, the Python testbench had 35% higher VSZ than the SystemVerilog testbench and 

remained steady regardless of simulation length. With Questa Sim, the SystemVerilog 

testbench simulation consumed 119 MB of VSZ regardless of test length, but with the Python 
testbench, VSZ started at 588 MB and rose all the way up to 1320 MB. This could indicate 

some simulator specific issue since test length had no effect on memory consumption with VCS. 

 



 

 

44 

 
Figure 9. Peak virtual memory size during simulation phase for idle tests. 

 

Figure 10 shows simulation phase CPU time for the 150 ms idle tests. There was a massive 
difference between the SystemVerilog and Python testbenches, with the Python test taking more 

than a hundred times longer to simulate. 

 

 
Figure 10. Accumulated CPU execution time during simulation phase for idle tests. 

 
6.2.2 Write tests 

In the write tests, a register in the DUT was written to via the AHB-Lite bus. A write sequence 

created transactions that were sent to the AHB-Lite driver to drive the write operations through 
the bus interface. The IP driver remained idle but monitors in both agents and the scoreboard 

were enabled. The test looped for 500 000 bus writes, taking 150 ms of simulation time. 

In the first variation of the test, the coverage collector was disabled. This removed the effect 
of PyVSC to focus on the performance of pyuvm and cocotb. In the second variation, the 

coverage collector was enabled to see the performance impact of PyVSC’s coverage 

functionality. In the third variation, the coverage collector was once again disabled but every 
write operation produced a UVM info message in the SystemVerilog testbench and a logging 

message in the Python testbench. In the first two variations, message verbosity and severity 

settings were adjusted such that only a few messages were produced during the simulation. This 
variation highlights the performance impact of UVM reporting system versus Python’s logging 

system. 

588

472

1 320

472

119

350

119

350

0 200 400 600 800 1000 1200 1400

Questa Sim - 1 clock cycle simulation

VCS - 1 clock cycle simulation

Questa Sim - 150ms simulation

VCS - 150ms simulation

Virtual memory size (Megabytes)

Simulation phase Peak Virtual Memory Size - Idle test

Python SystemVerilog

177,32

240,60
1,37

2,00

0 50 100 150 200 250 300

Questa Sim - 150ms simulation

VCS - 150ms simulation

CPU time (seconds)

Simulation phase CPU time - Idle test

Python SystemVerilog



 

 

45 

Figure 11 shows peak virtual memory sizes during the write test simulations. Questa Sim 

once again displayed a very high VSZ with the Python testbench, with 1450MB compared to 

237MB of SystemVerilog. The cause for this issue is not known apart from that it was only 
present in long simulations. For VCS, the Python testbench had 35% higher VSZ than the 

SystemVerilog testbench. All the test variants had identical memory consumption. If 

components were included in the compilation, whether they were instantiated or not had no 
effect on simulation phase VSZ. 

 

 
Figure 11. Peak virtual memory size during simulation phase for write tests. 

 

Figure 12 shows the CPU execution time for the write test simulations. Execution times were 

12 to 16 times longer with the Python testbench compared to the SystemVerilog testbench on 
Questa Sim, and 8 to 10 times longer on VCS. The difference in execution time was an order 

of magnitude smaller than in the idle tests but still significant. 

The coverage collector implemented with PyVSC contributed to a 10% increase in execution 
time, while the impact of the SystemVerilog coverage collector was only two to three percent. 

In absolute numbers, the difference was 88 to 115 seconds increase in the Python testbench 

execution time compared to 1 to 3 seconds with the SystemVerilog testbench. Even in relative 
numbers, PyVSC’s functional coverage had a greater impact on performance than its 

SystemVerilog counterpart. 

High verbosity increased simulation time on Questa Sim by 15 seconds with SystemVerilog 
testbench and 20 seconds with Python testbench. On VCS, the difference was larger – 21 

seconds with the SystemVerilog testbench to 39 seconds with the Python testbench. 

 

1 450

474

1 450

474

1 450

474

237

350

237

350

237

350

0 200 400 600 800 1000 1200 1400 1600

Questa Sim - cov. collector disabled

VCS - cov. collector disabled

Questa Sim

VCS

Questa Sim - high verbosity

VCS - high verbosity

Virtual memory size (Megabytes)

Simulation phase Peak Virtual Memory Size - Write test

Python SystemVerilog



 

 

46 

 
Figure 12. Accumulated CPU execution time during simulation phase for write tests. 

 
6.2.3 Random stimulus tests 

In the random stimulus tests, both the AHB-Lite agent and the IP agent were driving random 

stimulus to the DUT. All the testbench components were enabled. 
Randomized data was written to a selection of 28 registers in the DUT via AHB-Lite bus in 

a loop. The order in which the registers were written to was shuffled after each sequence loop. 

In addition to randomizing the data, the sequence would randomly select a transaction size of 
one, two or four bytes. Based on the transaction size, the sequence randomized an offset for the 

address: zero for four-byte transaction, zero or two for two bytes, and from zero to three for 

one-byte transaction. At the end of each loop, two non-random register writes were issued to 
clear a register in the DUT. 

While the AHB-Lite agent was applying random stimulus to the registers, the IP agent was 

driving randomized data to one of the DUT’s inputs on every fourth clock cycle in a separate 
thread. 

In total, the register write sequence looped 5000 times, taking approximately 45 ms of 

simulation time. 
There were two variations of the Python test. In the first variation, the random stimulus for 

AHB-Lite bus in the Python testbench was generated using PyVSC. The IP agent’s stimulus 

was generated using Python’s built-in random library, since the randomizing function simply 
selected a value from a range of integers for the data. 

In the second variation, instead of PyVSC generating the random stimulus, the AHB-Lite 

sequence items were transported via SVConduit to a SystemVerilog module which randomized 
the item fields. After randomization, the items were sent back to the Python testbench. 

Figure 13 shows the peak VSZ during the random stimulus tests. Memory consumption on 

Questa Sim with the Python testbench follows the trend of previous tests. It is now 700 MB less 
than in the 150 ms write test but 260 MB higher than in the one clock cycle idle test, suggest ing 

a linear increase in VSZ with increasing simulation length. The VSZ difference of SVConduit 

and PyVSC is insignificant. VSZ difference of Python and SystemVerilog testbenches on VCS 
supports the earlier results, with the Python testbench having 30% higher VSZ in this test. 

 

835

900

923

1 015

856

939

55

98

56

101

70

119

0 200 400 600 800 1000 1200

Questa Sim - cov. collector disabled

VCS - cov. collector disabled

Questa Sim

VCS

Questa Sim - high verbosity

VCS - high verbosity

CPU time (seconds)

Simulation phase CPU time - Write test

Python SystemVerilog



 

 

47 

 
Figure 13. Peak virtual memory size during simulation phase for random stimulus tests. 

 

Simulation phase CPU execution times of the random stimulus tests are in Figure 14. 
SVConduit version of the test took almost 60% less time to execute than the test with PyVSC. 

The SVConduit version of the Python testbench was still 9 times slower than the SystemVerilog 

testbench, however. 
While analysing the results, a bug was discovered in a SystemVerilog sequence which 

caused one of the non-random register writes to not be issued. This reduced the execution time 

of the SystemVerilog tests by approximately 2%, which makes a negligible difference to the 
overall comparison. 

 

 
Figure 14. Accumulated CPU execution time during simulation phase for random stimulus 

tests. 

 
6.3 Coverage test 

The coverage test compared the coverage accumulation rate of the two testbenches. AHB-Lite 

write operations were randomized from a range of 120 register addresses and three data sizes. 
The Python testbench used PyVSC for randomizing the operations. The coverage collector 

contained a covergroup with cross bins that covered all 360 possible combinations. The 

coverage percentage of the cross bins was measured as a function of write operations. Each 
repetition of the test had a different random seed. The tests were executed on Questa Sim only. 

844

474

846

267

366

0 100 200 300 400 500 600 700 800 900

Questa Sim - PyVSC - Python

VCS - PyVSC - Python

Questa Sim - SVConduit - Python

Questa Sim - SystemVerilog

VCS - SystemVerilog

Virtual memory size (Megabytes)

Simulation phase Peak Virtual Memory Size - Constrained 
random stimulus test

829

873

353

40

64

0 100 200 300 400 500 600 700 800 900 1000

Questa Sim - PyVSC - Python

VCS - PyVSC - Python

Questa Sim - SVConduit - Python

Questa Sim - SystemVerilog

VCS - SystemVerilog

CPU time (seconds)

Simulation phase CPU time - Constrained random stimulus test



 

 

48 

The coverage results are in Figure 15. The circles and crosses represent individua l 

measurements, and the curves are polynomial fitted curves to aid visualization. The coverage 

in Python testbench remained behind SystemVerilog’s by 1.6% on average, with the difference 
starting to show after 400 operations. This means that as the write operation count increased, 

PyVSC tended more often to produce random values that were already covered than 

SystemVerilog. The raw test result data is available in Appendix 2. 
 

 
Figure 15. Coverage as a function of write operations for the Python and SystemVerilog 

testbench in the coverage test. 
 



 

 

49 

7 DISCUSSION 

SystemVerilog provides a rich set of verification features, but Python with cocotb was a 

viable alternative to it for writing testbenches. PyVSC’s constrained random verification and 

functional coverage sufficiently substituted their SystemVerilog counterparts for the test cases 
in this work. SVConduit was successfully used to borrow constrained random features of 

SystemVerilog in Python. The Python package bitarray provided bit vectors with high 

performance to the predictor component. 
As the focus of this thesis was on UVM, it did not cover in detail what SystemVerilog 

features are available in cocotb and other Python libraries, and what are still missing. The novel 

capabilities that Python may offer for verification were not explored either because the 
testbench in this work had to be implemented in both languages. These are important topics to 

cover in future studies. 

Pyuvm was viable for building a UVM testbench for IP-level verification. Its current features 
enabled to build a configurable UVM environment with an AHB-Lite VIP, an IP specific agent 

and a scoreboard with a predictor. A coverage collector implemented with PyVSC was also 

incorporated as a UVM component in the environment. 
The incomplete UVM RAL makes subsystem and top-level verification with pyuvm 

challenging at this point of its development. In a typical system-on-chip (SoC), many IPs 

together form a subsystem, and the complete SoC at top-level consists of many subsystems. 
The design is verified at each level. UVM RAL helps to reuse verification code from one level 

to the next. A lower level UVM register model is easy to integrate to a higher level testbench, 

and the stimulus code can be reused as well when it only refers to the register names in the 
model, while the model links the names to their actual addresses. 

Performance test results of the Python testbench also raised a concern for top-level 

verification of complex SoCs, where simulation times can become a bottleneck for productivity 
even with SystemVerilog. Driving the clock signal from the Python testbench was two orders 

of magnitude slower than from the SystemVerilog testbench. The write tests and random 

stimulus tests took 8 to 21 times longer to run in Python than in SystemVerilog. Moving the 
clock signal generation from Python to SystemVerilog would help alleviate the performa nce 

issues, but it may not always be feasible. Memory consumption was also notably higher with 

the Python testbench, but the results only show the difference for small testbenches. More data 
is needed to see how the memory use scales for large verification environments. 

The hybrid solution of randomizing AHB-Lite sequence items in SystemVerilog with 

SVConduit was faster than the PyVSC solution to a surprising degree, even though the sequence 
items had to cross over the Python-SystemVerilog language interface in both directions. The 

motivation behind using SVConduit was to test the feasibility of utilizing SystemVerilog in a 

Python environment, but it also proved to be a method to improve the performance of the 
testbench. A future study could explore if an SVConduit module is able to pass objects between 

a Python and a SystemVerilog UVM testbench running at the same time. Enabling the reuse of 

SystemVerilog legacy VIPs with a Python testbench would facilitate a transition to Python as 
a verification language. 

Implementing the most performance critical data types and algorithms in C is also one way 

to improve the performance of a Python testbench. Switching the data type of bit vectors in the 
predictor component from cocotb’s BinaryValue type to the bitarray library’s bitarray type, 

implemented in C, resulted in faster simulation execution. 

It should be noted that a more complex DUT than the one used in this work would demand 
more from the simulator to calculate the state of the model, which would affect the performance 



 

 

50 

difference between the testbenches. The testbenches themselves were also light to execute 

outside the transaction- level traffic handling. As a result, the simulations had to be extended by 

looping the test sequences from thousands to hundreds of thousands of times to reach long 
enough execution times for comparison. Therefore, the test results may not give an accurate 

estimate for the performance in computationally demanding test scenarios at subsystem and top 

level. 
Lack of need for testbench compilation in Python is an advantage which was not shown in 

the performance tests due to the simplicity of the testbench. The compilation took less than a 

second for the SystemVerilog testbench. For large verification environments, a full compilat ion 
can consume substantial amount of time. 

The coverage test revealed that PyVSC did not produce as uniform distribution of random 

values as SystemVerilog. While designing the random stimulus test, it was noticed that with 
PyVSC, certain registers were written to far more often than others when the test selected the 

target register randomly as in Section 4.2. Therefore, the sequence was changed to go through 

the registers in order and the coverage test was added to measure coverage accumulation. An 
update to PyVSC addressed this issue but some difference in uniformness remained as can be 

seen from the test results. 

In addition to pyuvm, there is another Python package that implements UVM in Python, 
called uvm-python. Its repository page states that it already includes UVM RAL with frontdoor 

and backdoor access, and TLM 2.0, which are not yet included in pyuvm [32]. Based on its 

class reference, uvm-python is a faithful port of the SystemVerilog UVM implementation to 
Python without a strong attempt to simplify the implementation to make it more pythonic like 

pyuvm [33]. A comparison of uvm-python and pyuvm could be considered for a future topic of 

study. 
Let us summarize the advantages of using Python as a hardware verification language as 

opposed to SystemVerilog. Python is the most popular programming language and using it for 

verification would allow businesses to draw from a much larger pool of talent than the people 
who know SystemVerilog. As a dynamically typed language with features like duck typing, 

reflection and multiple inheritance, Python gives a degree of flexibility and conciseness to the 

code that is not possible with SystemVerilog. Since Python is a dynamic programming 
language, a Python testbench does not need to be compiled before running a test, which can 

potentially save a lot of time during development. And with the thriving open-source 

community around Python, there are hundreds of thousands of shared packages to utilize when 
coding with Python. 

The disadvantages, of course, cannot be ignored either. SystemVerilog was standardized by 

IEEE almost 18 years ago in 2005. Accellera released the first version of UVM standard and 
its SystemVerilog class library in 2011. SystemVerilog and its UVM implementation have 

reached a level of maturity that Python packages for verification do not currently offer. The 

packages need more time to develop to improve quality and performance and to bring them 
closer to feature parity with SystemVerilog and SV-UVM. As the work is mostly being done 

by volunteers, the timeline to reach that point is uncertain, and the development may stagnate 

without financial support. And although Python’s dynamicity was mentioned as an advantage, 
there are also merits to statically typed languages like SystemVerilog. A separate code 

compilation phase enables compiler optimization, which can explain some of the observed 

difference between SystemVerilog and Python simulation execution times. Also, compila t ion 
can detect errors before they become run-time errors. In addition, explicitly declared variable 

types convey the programmer’s intent, although type hints are available in modern Python. [21] 



 

 

51 

Considering all the above, four main use cases are suggested for a Python UVM testbench 

based on pyuvm in its current state. The first is to verify designs with sufficiently low 

complexity, with the register count perhaps in the dozens, where slower simulation speed and 
the lack of UVM RAL can be managed. The DUT in this thesis is a good example of a design 

for which a Python testbench is a viable option. The second is to use it in any cocotb based 

verification environment. Naturally, all Python testbenches can benefit from UVM’s features – 
the structure, the component reusability and the TLM implementation, to name a few. The third 

use case is to use it with open-source HDL simulators. The two prominent free and open-source 

HDL compilers/simulators that support SystemVerilog, Icarus Verilog and Verilator, do not 
currently support SV-UVM. Pyuvm enables UVM on these EDA tools. The fourth use case is 

to use it for research. Python as a hardware verification language is not well studied and 

discovering novel ways to use it for RTL verification could bring great value to the 
semiconductor industry. 



 

 

52 

8 SUMMARY 

Testbenches for functional verification of integrated digital circuits are typically written in 

SystemVerilog, and it is also the language for the Universal Verification Methodology as 

defined in the IEEE standard. But recently, Python has been emerging as a new language for 
functional verification. cocotb provides a framework to write testbenches in Python and to 

connect the testbench with an HDL simulator. Enabled by cocotb, Python libraries are being 

developed for different verification areas, including UVM.  
In this thesis, the viability of Python for UVM based verification with pyuvm and other 

available libraries was studied. Pyuvm is an implementation of UVM in Python. Its key features 

currently include base classes, reporting system based on Python’s logging library, factory 
classes, phasing, TLM 1.0, predefined component classes, sequences, sequencer, and sequence 

items. A notable feature still under development is the UVM RAL, which limits the capability 

of pyuvm especially for subsystem and top-level verification of SoCs. 
Pyuvm was successfully used to develop a UVM testbench for an AHB-Lite slave IP 

component, and a matching testbench was also built in SystemVerilog for comparison. In 

addition to pyuvm and cocotb, the Python testbench used PyVSC for functional coverage and 
constrained random stimulus, and bitarray for calculations with bit vectors. With SVConduit, 

the Python testbench also had the ability to exchange objects with a SystemVerilog module, 

which was used as an alternative option for randomizing sequence items. 
Based on the codebase comparison, developing testbenches may be faster in Python than 

SystemVerilog. The Python testbench had 30% less lines of code and 20% smaller total file 

size than the SystemVerilog testbench. Features of Python and pyuvm lead to shorter code lines 
and less repetitive code like factory registration macros and constructors with only a call to the 

constructor of the base class. The results include some error due to code formatting and minor 

differences in functionality. Differences in language syntax also affected line count without 
comparable effect on development effort. 

The Python testbench did not fall far behind in functional coverage accumulation, but it had 

performance issues. A batch of UVM tests were executed for both testbenches on Siemens 
Questa Sim and Synopsys VCS for performance comparison. Clock signal generation in the 

Python testbench was two orders of magnitude slower than in the SystemVerilog testbench. For 

tests involving more of the testbench with AHB-Lite write operations and random stimulus 
generation, execution times were 8 to 21 times longer in the Python testbench. In terms of 

memory consumption, the Python testbench had 30–35% higher VSZ on VCS. On Questa Sim, 

there were indications of a memory leak with the Python testbench in longer simulations, where 
VSZ could be several times higher than with the SystemVerilog testbench. 

With the large performance gap and the UVM RAL missing in pyuvm, SystemVerilog UVM 

may still be the superior option for verifying complex designs like SoCs. However, the libraries 
used in this work already enable advanced verification methodologies with Python and open-

source HDL simulators, and the ecosystem for Python RTL verifica tion continues to evolve. In 

its current state, a Python UVM testbench is a viable option for verifying simple designs and is 
also a promising subject of research. 



 

 

53 

9 REFERENCES 

[1] IEEE. (2017) IEEE Standard for SystemVerilog—Unified Hardware Design, 

Specification, and Verification Language, IEEE Std 1800-2017, p. 1182–1183, 953, 170–
171, 553–558, 748, 938 

[2] Cass S. (2022) Top Programming Languages 2022. IEEE Spectrum (Accessed 
20.5.2023). URL: https://spectrum.ieee.org/top-programming- languages-2022 

[3] Python Software Foundation. PyPI - The Python Package Index (Accessed 19.3.2023). 
URL:  https://pypi.org/ 

[4] Potential Ventures, SolarFlare communications. cocotb (Accessed 4.5.2022). URL:  
https://www.cocotb.org/ 

[5] Potential Ventures, Solarflare Communications, cocotb contributors. cocotb, Github 
repository (Accessed 4.5.2022). URL: https://github.com/cocotb/cocotb  

[6] cocotb documentation: Simulator support (Accessed 27.12.2022). URL: 
https://docs.cocotb.org/en/stable/simulator_support.html  

[7] Ashmanskas W.J., Dandoy J.R, Dressnandt N.C, Keener P.T., Kroll J., Lipeles E., Lu S., 

Newcomer F.M., Nikolica A., Rosser B.J., Thomson E. (2023) Verification of simulated 
ASIC functionality and radiation tolerance for the HL-LHC ATLAS ITk Strip Detector. 
Journal of instrumentation, Vol. 18, 2023. 

[8] Foster H., Wilson Research Group, Siemens EDA. (2022) 2022 Wilson Research Group 
IC/ASIC functional verification trends, p. 11–12 

[9] Foster H., Wilson Research Group, Siemens EDA. (2022) 2022 Wilson Research Group 
FPGA functional verification trends, p. 13–14 

[10] IEEE. (2020) IEEE Standard for Universal Verification Methodology Language 

Reference Manual, IEEE Std 1800.2-2020, p. 7, 12, 15–16, 18, 54, 69–70, 95, 120, 130–
133, 162, 173–175, 177, 194, 404, 429 

[11] Salemi R., Siemens. pyuvm, Github repository (Accessed 5.5.2022). URL: 
https://github.com/pyuvm/pyuvm 

[12] IEEE. (2019) IEEE Standard for VHDL Language Reference Manual, IEEE Std 1076-
2019, p. 355 

[13] cocotb contributors. cocotb documentation: GPI Library Reference (Accessed 2.5.2022). 
URL: https://docs.cocotb.org/en/stable/library_reference_c.html  

[14] cocotb contributors. cocotb wiki: cocotb internals (Accessed 09.08.2022). URL: 
https://github.com/cocotb/cocotb/wiki/cocotb-Internals  

[15] Python Software Foundation. Python 3.7.14 Documentation: Extending and Embedding 

the Python interpreter (Accessed 27.12.2022). URL: 
https://docs.python.org/3.7/extending/index.html  

[16] Knuth D. (1997) The Art of Computer Programming, Volume 1: Fundamenta l 
Algorithms, Third Edition. p. 186–187, 193–195 

[17] cocotb contributors. cocotb documentation: Coroutines and Tasks (Accessed 
12.03.2023). URL: https://docs.cocotb.org/en/stable/coroutines.html 

[18] Accellera. (2015) Universal Verification Methodology (UVM) 1.2 User’s Guide. p. 1–2, 
4, 7–8, 34, 38, 40–41, 58–59, 70, 75–78 

[19] Python Software Foundation. The Python Tutorial: Classes (Accessed 10.08.2022). URL: 
https://docs.python.org/3/tutorial/classes.html  

https://spectrum.ieee.org/top-programming-languages-2022
https://pypi.org/
https://www.cocotb.org/
https://github.com/cocotb/cocotb
https://docs.cocotb.org/en/stable/simulator_support.html
https://github.com/pyuvm/pyuvm
https://docs.cocotb.org/en/stable/library_reference_c.html
https://github.com/cocotb/cocotb/wiki/cocotb-Internals
https://docs.python.org/3.7/extending/index.html
https://docs.cocotb.org/en/stable/coroutines.html
https://docs.python.org/3/tutorial/classes.html


 

 

54 

[20] Python Software Foundation. Python 3.7.14 Documentation: Glossary (Accessed 
09.08.2022). URL: https://docs.python.org/3.7/glossary.html 

[21] Tratt L. (2009) Dynamically typed languages. Advances in Computers, vol. 77, p. 149–
184, July 2009 

[22] Rossum G.V. Method Resolution Order (Accessed 09.08.2022). URL: http://python-
history.blogspot.com/2010/06/method-resolution-order.html 

[23] Siemens. (2021) Universal Verification Methodology UVM Cookbook. p. 75 

[24] Cocotb maintainers, Potential Ventures, SolarFlare communications. cocotb-bus, Github 
repository (Accessed 30.11.2022). URL: https://github.com/cocotb/cocotb-bus 

[25] Piziali, A. (2008) Functional Verification Coverage Measurement and Analysis. First 
Edition. p. 39–40 

[26] Ballance M. PyVSC, Github repository (Accessed 30.11.2022). URL: 
https://github.com/fvutils/pyvsc 

[27] Cieplucha M., Pleskacz W.A. Cocotb-coverage, Github repository (Accessed 
30.11.2022). URL: https://github.com/mciepluc/cocotb-coverage  

[28] Ballance M., Contributors. PyVSC coverage. PyVSC documentation (Accessed 
28.05.2023). URL: https://fvutils.github.io/pyvsc/coverage.html 

[29] Spear, C., Tumbush, G. (2012) SystemVerilog for Verification: A Guide to Learning the 
Testbench Language Features. p. 169–170, 172 

[30] Salemi R., Siemens. pyquesta (Accessed 30.11.2022). URL: 
https://pypi.org/project/pyquesta/ 

[31] Schnell I. bitarray, Github repository (Accessed 30.11.2022). URL:  
https://github.com/ilanschnell/bitarray  

[32] Poikela T. uvm-python, Github repository (Accessed 29.05.2023). URL: 
https://github.com/tpoikela/uvm-python  

[33] Poikela T. uvm-python Class Reference (Accessed 29.05.2023). URL: https://uvm-
python.readthedocs.io/en/latest/uvm_1.2_class_reference.html 

https://docs.python.org/3.7/glossary.html
http://python-history.blogspot.com/2010/06/method-resolution-order.html
http://python-history.blogspot.com/2010/06/method-resolution-order.html
https://github.com/cocotb/cocotb-bus
https://github.com/fvutils/pyvsc
https://github.com/mciepluc/cocotb-coverage
https://fvutils.github.io/pyvsc/coverage.html
https://pypi.org/project/pyquesta/
https://github.com/ilanschnell/bitarray
https://github.com/tpoikela/uvm-python
https://uvm-python.readthedocs.io/en/latest/uvm_1.2_class_reference.html
https://uvm-python.readthedocs.io/en/latest/uvm_1.2_class_reference.html


 

 

55 

10 APPENDICES 

Appendix 1 The modified cocotb’s Makefile for VCS to enable VHDL compilation 

Appendix 2 Table of coverage test results 
  



 

 

56 

Appendix 1    The modified cocotb’s Makefile for VCS to enable VHDL compilation 

 
############################################################################### 

# Copyright (c) 2013 Potential Ventures Ltd 

# Copyright (c) 2013 SolarFlare Communications Inc 

# All rights reserved. 

# 

# Redistribution and use in source and binary forms, with or without  

# modification, are permitted provided that the following conditions are met: 

#     * Redistributions of source code must retain the above copyright  

#       notice, this list of conditions and the following disclaimer. 

#     * Redistributions in binary form must reproduce the above copyright  

#       notice, this list of conditions and the following disclaimer in the 

#       documentation and/or other materials provided with the distribution. 

#     * Neither the name of Potential Ventures Ltd, 

#       SolarFlare Communications Inc nor the 

#       names of its contributors may be used to endorse or promote products  

#       derived from this software without specific prior written permission. 

# 

# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 

AND 

# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 

# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 

# DISCLAIMED. IN NO EVENT SHALL POTENTIAL VENTURES LTD BE LIABLE FOR ANY 

# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 

# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;  

# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 

# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 

# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS  

# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

############################################################################### 

 

# Based on Colin Marquardt's work at: 

# https://github.com/cocotb/cocotb/commit/302e122fe04530ab7c7c292ba05f20573723c1d6 

 

include $(shell cocotb-config --makefiles)/Makefile.inc 

 

ifeq ($(TOPLEVEL_LANG),vhdl) 

 

# Unchanged part omitted 

 

RTL_LIBRARY ?= $(TOPLEVEL) 

 

$(SIM_BUILD)/synopsys_sim.setup: 

 @mkdir -p $(SIM_BUILD)/work 

 @mkdir -p $(SIM_BUILD)/$(RTL_LIBRARY) 

 -@rm -f $@ 

 @echo "WORK > $(RTL_LIBRARY)"             >> $@ 

 @echo "$(RTL_LIBRARY) : ./$(RTL_LIBRARY)" >> $@ 

 

# Compilation phase 

$(SIM_BUILD)/simv: $(SIM_BUILD) $(SIM_BUILD)/synopsys_sim.setup $(VERILOG_SOURCES) \ 

 $(VHDL_SOURCES) $(SIM_BUILD)/pli.tab $(CUSTOM_COMPILE_DEPS) 

 LD_LIBRARY_PATH=$(LIB_DIR):$(LD_LIBRARY_PATH) TOPLEVEL=$(TOPLEVEL) 

ifneq ($(VERILOG_SOURCES),) 

 cd $(SIM_BUILD) && \ 

 vlogan -sverilog -nc -l sv_comp.log -work $(RTL_LIBRARY) $(PLUSARGS) $(EXTRA_ARGS) \ 

 $(GPI_ARGS) $(COMPILE_ARGS) $(SV_COMPILE_ARGS) $(VERILOG_SOURCES) 

endif 



 

 

57 

ifneq ($(VHDL_SOURCES),) 

 cd $(SIM_BUILD) && \ 

 vhdlan -nc -l vhdl_comp.log -work $(RTL_LIBRARY) $(PLUSARGS) $(EXTRA_ARGS ) 

$(GPI_ARGS) \ 

 $(COMPILE_ARGS) $(VHDL_COMPILE_ARGS) $(VHDL_SOURCES) 

endif 

 cd $(SIM_BUILD) && \ 

 $(CMD) -top $(TOPLEVEL) $(PLUSARGS) +acc+1 +vpi -P pli.tab -V -notice \ 

 -timescale=$(COCOTB_HDL_TIMEUNIT)/$(COCOTB_HDL_TIMEPRECISION) \ 

 $(EXTRA_ARGS) $(ELAB_ARGS) -debug -load $(shell cocotb-config --lib-name-path vpi vcs) -l 

elab.log 

 

# Execution phase 

$(COCOTB_RESULTS_FILE): $(SIM_BUILD)/simv $(CUSTOM_SIM_DEPS) 

 -@rm -f $(COCOTB_RESULTS_FILE) 

 

 -PYTHONPATH=$(LIB_DIR):$(PWD):$(PYTHONPATH) 

LD_LIBRARY_PATH=$(LIB_DIR):$(LD_LIBRARY_PATH) \ 

 MODULE=$(MODULE) TESTCASE=$(TESTCASE) TOPLEVEL=$(TOPLE VEL) 

TOPLEVEL_LANG=$(TOPLEVEL_LANG) \ 

 $(SIM_CMD_PREFIX) $(SIM_BUILD)/simv +define+COCOTB_SIM=1 $(SIM_ARGS) 

$(EXTRA_ARGS) | tee $(SIM_BUILD)/sim.log 

 

 $(call check_for_results_file) 

 

# Unchanged part omitted 

 

  



 

 

58 

Appendix 2    Table of coverage test results 

 
Write 
operations 

Cross Coverage (%), 
Python 

Cross Coverage (%), 
SystemVerilog 

20 5.28 5.55 

40 10.28 10.83 

60 14.72 15.55 

80 19.44 20.00 

100 23.61 23.88 

120 28.61 28.61 

140 32.50 32.22 

160 36.11 35.27 

180 36.94 41.66 

200 43.06 41.66 

220 43.33 46.11 

240 46.67 47.50 

260 51.67 50.55 

280 51.67 53.05 

300 56.94 56.66 

320 57.22 57.50 

340 58.89 60.27 

360 63.61 63.88 

380 64.44 65.83 

400 66.94 67.22 

420 66.94 69.16 

440 70.83 71.11 

460 71.11 71.11 

480 70.28 73.05 

500 72.22 76.38 

520 77.22 76.38 

540 74.44 77.77 

560 75.00 78.61 

580 78.89 80.27 

600 77.78 83.61 

620 79.72 83.61 

640 81.67 81.11 

660 81.67 83.05 

680 80.83 87.77 

700 83.89 87.50 

720 84.44 86.11 

740 84.72 85.55 

760 85.00 88.05 

780 83.06 87.22 

800 88.06 88.88 

820 85.83 90.27 

840 85.83 91.66 



 

 

59 

860 89.44 90.27 

880 90.83 90.83 

900 86.39 92.22 

920 88.61 92.50 

940 90.56 92.50 

960 92.50 93.33 

980 90.56 93.33 

1000 90.83 94.44 

1020 91.67 93.61 

1040 92.22 91.94 

1060 92.78 93.88 

1080 91.94 93.33 

1100 93.06 94.72 

1120 94.72 96.11 

1140 93.61 95.55 

1160 94.72 96.94 

1180 91.67 94.72 

1200 94.44 96.94 

1220 95.56 97.50 

1240 96.11 96.94 

1260 95.83 97.22 

1280 95.83 97.50 

1300 94.44 96.66 

1320 94.72 97.22 

1340 95.83 98.88 

1360 94.72 97.22 

1380 96.67 97.50 

1400 97.22 98.05 

1420 95.28 98.61 

1440 95.83 98.33 

1460 96.11 98.33 

1480 97.78 97.50 

1500 97.50 98.61 

1520 96.39 98.61 

1540 96.94 99.44 

1560 96.39 98.61 

1580 97.78 97.77 

1600 96.94 99.72 

1620 96.94 98.05 

1640 98.61 99.16 

1660 97.50 99.16 

1680 98.61 98.61 

1700 98.61 99.16 

1720 98.61 98.33 

1740 98.61 98.61 



 

 

60 

1760 98.06 99.72 

1780 98.61 99.72 

1800 97.78 99.16 

1820 98.06 99.16 

1840 99.17 99.16 

1860 97.22 99.72 

1880 98.89 99.44 

1900 96.94 99.44 

1920 98.89 99.44 

1940 99.17 100.00 

1960 98.33 100.00 

1980 99.72 99.72 

2000 98.61 100.00 

 


	ABSTRACT
	TIIVISTELMÄ
	TABLE OF CONTENTS
	FOREWORD
	List of Abbreviations and symbols
	1 Introduction
	2 Simulating a Python Testbench
	2.1 Communication between Python testbench and simulator
	2.2 Coroutines
	2.3 A simple testbench

	3 UVM in Python
	3.1 Universal Verification Methodology
	3.2 Python and SystemVerilog
	3.3 pyuvm
	3.3.1 Class definition and object creation
	3.3.2 Phasing
	3.3.3 Configuration database
	3.3.4 Interfacing with the DUT
	3.3.5 Transaction-level modelling
	3.3.6 Reporting system
	3.3.7 UVM Register Abstraction Layer
	3.3.8 Defining test cases


	4 Testbench supplementation
	4.1 Functional coverage
	4.2 Constrained random verification
	4.3 Passing objects between Python and SystemVerilog

	5 Test setup
	5.1 The device under test
	5.2 The testbenches

	6 Performance and codebase comparison
	6.1 Code size comparison
	6.2 Performance tests
	6.2.1 Idle tests
	6.2.2 Write tests
	6.2.3 Random stimulus tests

	6.3 Coverage test

	7 Discussion
	8 Summary
	9 References
	10 Appendices

