
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Redha Aouadja

SOC REGRESSION STRATEGY DEVELOPMENT

Master’s Thesis
Degree Programme in Computer Science and Engineering

June 2023

Aouadja R. (2023) SoC Regression Strategy Development. University of Oulu,
Degree Programme in Computer Science and Engineering, 52 p.

ABSTRACT

The objective of the verification process of hardware is ensuring that the design
does not contain any functional errors. Verifying the correct functionality of a
large System-on-Chip (SoC) is a co-design process that is performed by running
immature software on immature hardware. Among the key objectives is to ensure
the completion of the design before proceeding to fabrication.

Verification is performed using a mix of software simulations that imitate the
hardware functions and emulations executed on reconfigurable hardware. Both
techniques are time-consuming, the software running perhaps at a billionth and
the emulation at thousands of times slower than the targeted system. A good
verification strategy reduces the time to market without compromising the testing
coverage.

This thesis compares regression verification strategies for a large SoC project.
These include different techniques of test case selection, test case prioritization
that have been researched in software projects.

There is no single strategy that performs well in SoC throughout the whole
development cycle. In the early stages of development time based test case
prioritization provides the fastest convergence. Later history based test case
prioritization and risk based test case selection gave a good balance between
coverage, error detection, execution time, and foundations to predict the time
to completion.

Keywords: Test suite minimization, test case selection, test case prioritization,
universal verification methodology.

Contents

ABSTRACT
LIST OF ABBREVIATIONS AND SYMBOLS
1. INTRODUCTION... 8

1.1. Thesis Structure .. 11
2. SYSTEM ON CHIP VERIFICATION.. 12

2.1. Intellectual Properties (IPs) ... 12
2.2. Subsystems .. 13
2.3. Universal Verification Framework .. 13
2.4. SoC Verification Flow ... 14

2.4.1. Design Specification and Feature Extraction 15
2.4.2. Verification Planning ... 15
2.4.3. Test Case Development and Simulation 15
2.4.4. Coverage Collection and Analysis .. 16

2.5. Verification Closure .. 16
3. UNIVERSAL VERIFICATION METHODOLOGY...................................... 19

3.1. UVM Architecture .. 19
3.2. UVM Class Hierarchy... 20
3.3. UVM Phases .. 21
3.4. UVM Verification of AXI BUS ... 22

3.4.1. AXI Verification Challenges .. 23
3.4.2. AXI Verification Test Bench .. 23
3.4.3. Test-Cases .. 25

4. SOC REGRESSION STRATEGIES... 27
4.1. SoC Vs Software Regression Strategies .. 27
4.2. Test Suite Minimization .. 28

4.2.1. Code Coverage-Based Minimization... 29
4.2.2. Greedy Algorithm-Based Minimization 30

4.3. Test Case Prioritization ... 30
4.3.1. Risk-Based Prioritization ... 30
4.3.2. History-Based Prioritization... 31
4.3.3. Coverage-Based Prioritization .. 31
4.3.4. Time-Based Prioritization .. 31

4.4. Test Case Selection ... 31
4.4.1. Risk Based Selection ... 32
4.4.2. History Based Selection... 32
4.4.3. Coverage Based Selection .. 32

4.5. Miscellaneous Techniques ... 32
4.5.1. Rerunning Failed Test Cases .. 33
4.5.2. Improved Regression Reporting ... 33
4.5.3. Continuous Development in SoC.. 33

4.6. Evaluation of SoC Regression Strategies .. 33
4.6.1. Evaluation Metrics .. 34
4.6.2. Implementation Criteria (IC) .. 34

4.7. Strategy Selection ... 35
4.8. Main Concerns and Limitations of SoC Regression Testing 35

5. IMPLEMENTATION .. 36
5.1. Regression Environment Overview .. 36
5.2. Current Regression Strategy .. 37
5.3. Limitations of the Current Implementation ... 38
5.4. Implemented Solutions.. 39

5.4.1. Test-Case Selection ... 39
5.4.2. Test Case Prioritization .. 40
5.4.3. Regression Script Environment .. 41
5.4.4. Continuous Coverage Merging ... 41
5.4.5. Rerunning Failed Tests .. 41
5.4.6. Regression Result Error Bucketing ... 42
5.4.7. Continuous Development .. 43

6. EVALUATION, RESULTS AND FUTURE WORKS.................................... 44
6.1. Results and Evaluation of Implemented Strategies 44

6.1.1. Regression Time.. 46
6.1.2. Fault Detection.. 47
6.1.3. Coverage Collection .. 47

6.2. Review of the Other Improvements .. 47
6.3. Recommendations .. 48

7. CONCLUSION .. 49
8. REFERENCES ... 50

PREFACE

I would like to take this opportunity to express my gratitude to my manager Sami Jylhä
for his continuous guidance, support and encouragement throughout my thesis journey.
His expertise and valuable insights have helped to shape the thesis to what it is.

I would like to also thank my technical leader Kaustubh Pagedar for his technical
mentorship and expertise that has enriched my technical understanding and vision for
the thesis.

I also want to express my appreciation for my supervisors Olli Silvén and Tuomo
Hänninen for refining the academic aspect of this thesis. Their feedback, insights and
attention to detail has lead to improvements of the scope of the thesis.

Oulu, June 8, 2023
Redha Aoudja

To my dad who never saw this journey.

LIST OF ABBREVIATIONS AND SYMBOLS

APFD Average Percentage of Fault Detected
AXI Advanced eXtensible Interface
CD Continuous Development
CE Coverage Effectiveness
CI Continuous Integration
CPU Central Processing Unit
DFT Design For Test
DUT Design Under Test
EDA Electronic Design Automation
FPGA Field Programmable Gate Array
GIT Global Information Tracker
GUI graphical user interface
IC Implementation Criteria
IoT Internet of Things
IP Intellectual Property
LSF Load Sharing Facility
OVM Open Verification Methodology
RTL Register Transfer Level
SLT System Level Tests
SoC System on Chip
SPI Serial Programmable Interface
SS Subsystem
T Test-case set
t Test-case
UVM Universal Verification Methodology
VC Verification Component
VIP Verification Intellectual Property
YAML Yet Another Markup Language

8

1. INTRODUCTION

New embedded systems that combine software and hardware are developed through
software-hardware co-design process that rely on test software running on simulated
and emulated incomplete System-on-Chip (SoC). The objective is to find the errors
in design as early as possible, and to identify whether they are in the software or the
hardware parts. Ensuring the correct functionality of software is called testing and
in case of hardware it is verification. Figure 1 shows the progress in the typical co-
design process from initial specifications and system partitioning decisions to multiple
iterative stages of software compilation, hardware synthesis, testing, and verification,
until the final integration in a physical product.

Figure 1. SoC Co-design flow.

SoCs have a very long and complex design cycle in which verification lasts through
the whole development process. It is necessary to constantly verify that the design
still behaves according to specification. With the advancement of the design, new bugs
are created, detected and fixed. As new design updates are frequently released and
their design sanity is needs to be checked, verification regression is one of the most
expensive and time-consuming parts of the SoC design process. As the design flow
advances and its complication grows, the cost of fixing an error increases and impacts
the market delivery time. Figure 2 illustrates this challenge on logarithmic scale [1].
Among the reasons for this trend is the increasing number of hardware functionalities
and respective software tests.

Figure 2. Cost of fixing bugs throughout the life cycle.

9

At early stages of design, fixing a bug is no more than updating the code or
specification, which take a short amount of time and little effort. As the design
has advanced to layout or even to the tape release stage, fixing a bug often requires
generating a new layout and making a new release. That is already much more time and
money-consuming because of the high computing needs of the pre-silicon verification
procedures. Producing early silicon and then fixing errors discovered after integrating
the software may require significant software and hardware design effort. This could
be hugely more expensive if the bug had not escaped detection earlier.

In the worst case returning back to the early development phase is needed, fixing
the bug, then proceeding through all the verification tests with possibly modified or a
completely new layout, release, and tapeout. In case the error escapes until volume
production, the cost of the fix becomes exponentially more expensive. This is because
of product recalls and potential damage compensations. An example could be an error
in automotive SoCs that endangers humans.

The share of verification in the design effort is 50-80% of the development [2].
Industry research estimates that 50% of all produced SoCs require at least one spin,
often more [3]. In those re-spins 74% were caused by functional errors [2], that could
have been detected through verification during the design process.

With the continuous shrinkage of chip size to include more functionality, SoC
verification challenges have become increasingly complex [4]. Due to this complexity,
SoC verification requires careful planning and is needed during the whole design life-
cycle [5]. Figure 3 illustrates the design life cycle of a SoC from design specification
to delivery.

Figure 3. SoC design life cycle.

At the beginning of the SoC development, hardware verification and software
development start when the design specification is available. The design specification
is turned into RTL code, that is verified by simulations to ensure that the design
behaves according to specifications. After the RTL design phase, verification is also
performed during the synthesized physical design to test the timing, power, area, and
other performance metrics.

The performance metrics are checked using power-aware simulation, static or
dynamic checks, and prototyping using FPGAs to emulate the design. The software
that is needed to control the FPGA is also developed and tested in parallel to be ready
before tape-out, which is the final design to be manufactured. Validation and physical
SoC testing are started after tape-out and slightly before mass production. SoC testing
is done for the manufactured chip to find production defects, faults, and reliability
issues at a wafer level. Validation, on the other hand, tests the actual manufactured

10

chip assembled in the circuit board to find any bugs, or potential failures that would
occur during deployment.

SoC regression testing is a process that lasts through the whole functional
verification phase, and it constantly verifies the design behavior by running the whole
test suite on it, typically containing thousands or test cases. In software, regression
testing is applied after a modification or design update. In SoC, however, regressions
are run more regularly on a daily basis with the advancement of the design, it tests
the design to regain confidence that the design still functions according to the initial
specification (modified or not).[6]

Many techniques exist in research on how to reduce the time and cost of regressions,
starting from all the way to 1977. Fischer wrote a paper about test-case selection [7],
then hundreds of papers and research were conducted since. Research for improving
software regression and reducing the feedback cycle between testing and correction
has been focusing on common strategies, with many ways how to implement them.
The most researched techniques are test case selection [8], test suite minimization [9]
and test case prioritization [10].

However, none of the techniques were standardized in the industry. Surveys and
further research [11] [7] have shown that there is a large gap between conducted
academic research and industrial practice because companies rely on their experiences
instead of standard practices. This is the case since most research focuses on the same
technical issues, and tries to improve those techniques to obtain better results using
the defined metrics [11]. Companies, on the other hand, start with the test-all method,
then reduce the feedback cycle using techniques that were learned from their practices
and experience, instead of the researched practices. Companies have a larger database
about their regressions compared to research, as research relies on the data collected
by other research.

In SoC regression, no research has been conducted on those practices, and in fact,
very little research has been done in SoC regression itself, since researchers are
not heavily involved in this domain. This introduces the problem of how valid the
conducted research in SoC, and how effective are those software regression techniques
in case of SoCs.

Which regression testing techniques that are standard in software research could be
used in industry with complex SoC projects? Those questions have been answered
differently in software research, so a practical case study involving verification is
crucial to assess their industrial applicability. The improvement opportunities need to
be investigated, at least for the shorter daily feedback cycles, to achieve more efficient
hardware verification regression testing. The key questions include

• Which other non-researched strategies and practices should be followed?

• Which other improvements could be made to ease SoC test-case debugging?

• How should rerunning failed test-cases effect regression feedback cycle times?

• What are the disadvantages of applying regression strategies?

This thesis addresses those problems through practical experiments to reduce the
feedback cycle time and to improve the regression flow. The emphasis is on quick
strategies that improve the verification regression process.

11

After determining the problems that need to addressed, feedback was gathered
from lessons-learned meetings with experts. The focus was on tackling the issues
in industrial development. Running verification regressions and experimenting with
different strategies provided understanding of the problems, and visions of the potential
solutions against earlier reported research results [11],[7]. In particular, test-case
selection/prioritization and test suite minimization were experimented with actual
industry verification cases for which "ground truth" was supposedly known.

However, several issues were observed that directed part of the focus of this thesis
to areas of improvement that lack academic research. Instead, the experience of
industry experts was relied upon. These included important practical issues including
simulation times vs. coverage scores, error detection rates, and developer satisfaction
based on the effort of identifying the root causes for failing test cases.

1.1. Thesis Structure

This thesis in divided into seven chapters. The first chapter gives an introduction to
the topic from problem description to objectives and methodologies. The following
chapter is a brief overview about System-on-chip verification, and is followed by the
description of the most common verification framework, the Universal Verification
Methodology (UVM), in Chapter 3. The fourth chapter addresses regression testing,
including its limitations and challenges. The implementation issues are considered in
Chapters 5 and 6, followed by evaluation and discussion in Chapter 7.

12

2. SYSTEM ON CHIP VERIFICATION

System-on-chip or SoC is an integrated circuit (IC) that typically contains
programmable processors. As the name suggests System-on-Chip integrates a
whole system inside, usually multiple processor cores, accelerators, interconnects,
memory components, analog or digital converters, input and output ports, and
software components. Application-specific signal processors have been actively used
in the automotive industry, mobile phones, Internet of Things (IoT), and wireless
communications. System on Chip architecture is quite complex and takes years to
design and verify. This is why SoC is divided into smaller building blocks.

SoCs are designed using a top-down methodology to reduce the complexity of the
design and facilitate reuse. The typical architecture of a modern-day SoC containing
subsystems and IPs is shown on Figure 4.

Figure 4. SoC architecture example.

As illustrated in the picture, the main hardware components of a SoC are Subsystems
and IPs that are connected with each other, throughout specific interfaces.

2.1. Intellectual Properties (IPs)

IPs or Intellectual property is defined as ideas, inventions or patents that are created
by individuals or companies and are protected by law. IPs play an important building
block for SoCs, as they can be reused for multiple purposes. Often various IPs are
used as CPUs, Ethernet controllers, peripheral interconnects, and interfaces that allow
subsystems or other IPs to communicate with each other such as Advanced eXtensible
Interface (AXI) or SPI.

13

Various types of IPs are reused in SoC with varying levels of portability and
flexibility, Hard IPs, Firm IPs, and soft IPs. Hard IPs are offered by the vendors as
hard layout designs, that are not flexible and can’t be modified. In Hard IP reuse the
IP interfaces must be configured with other modules in SoC design since the interfaces
and ports can’t be re-designed or modified. The main advantages of using Hard IPs
is the low cost of code maintenance, and the high performance due to minimized
timing violations [12]. A firm IP is a semi-hard IP that is more flexible as it allows
modifications or configuration in IP reuse, which allows the designer to change the
interfaces and the location of the IP. Soft IPs are the most flexible and portable ones
as they are fully flexible since they come as a netlist or an RTL code that could be
modified to suit all applications and configurations.

After a SoC company buys IP licenses, a package to implement and test the IP is
received containing test patterns, signal specifications, needed software components,
along with design notes [12]. IPs usually come with their VIPs (Verification IP) to be
used for verifying their functionality in the SoC. VIPs contain a set of codes that are
used for verification, which is typical in Universal Verification Methodology UVM).
In the case of UVM, the provided VIPs includes sequences, checkers, scoreboards and
coverage model, and other UVM components.

2.2. Subsystems

Subsystems are a bigger part of SoC since they typically include various IPs,
manufactured by different vendors. A subsystem combines many functionalities of
different IPs to provide different functionality for the SoC.

Typically a subsystem may host many IPs to provide functionality like Audio, Video
or graphics, but most common Subsystems contains the CPU and its cache, SoC
memory, interconnect, peripherals, and security. The advantage of having a subsystem
of SoC is re-usability and easy unit verification.

Subsystem verification assures that individual components are behaving according
to the specification and achieving the goal of the subsystem. A collection of
subsystems connected through different buses will eventually give the SoC top-level,
which is verified to see if all the components are working correctly together, and the
interconnects are functional.

2.3. Universal Verification Framework

Universal verification methodology is a standardized verification methodology
that provides the needed resources for verification. Those resources are tools,
methodologies, libraries and components that allow verification engineers to re-use
test-benches and increase the productivity while reducing the verification effort [13].

UVM allows the encapsulation of various design or verification block of various
languages such as SystemVerilog, SystemC and Python. This is achieved in UVM
since every component in the test-bench is independent. Each component is self
contained, and it has its own interface to connect with the rest of the components.
In mixed-language verification, for instance SystemVerilog and SystemC, the two

14

languages are used for verification in separate blocks, but connected to the same
interface. UVM_connect in the UVM framework allows the connection between
SystemC and System Verilog blocks. This allows access, control and object passing
which facilitates reuse of the available VIP components of both languages [siemens].

2.4. SoC Verification Flow

Most of the SoC design life cycle is spent on verification, which consumes a large
number of resources and effort throughout the cycle. Solid verification is very
crucial and it needs to be planned correctly before starting it. If a bug manages
not to be detected in this verification stage, the cost of fixing it will be much more
expensive, since the design has advanced or silicon might be produced. Throughout
SoC development and verification, immature software is constantly ran in immature
multiprocessor hardware. This is a complicated process in Telecommunication SoCs,
since they have multiple layers. The flow chart below in Figure 5 shows the flow of
SoC functional verification.

Figure 5. SoC functional verification flow.

15

2.4.1. Design Specification and Feature Extraction

The first phase of starting the verification is feature extraction. Feature extraction
is based on the design specification, which contains the basic functionality and
requirements of the design. During the design specification phase, specifications are
collected from the end user requirements, then collaborative work between architects,
design, software, and verification engineers decides the architecture, and which
components to use. Verification engineers then extract the functionality and features
from the design specifications and start including the features and functionality in the
verification plan.

A solid understanding of the SoC architecture and functionality is required before
verification, to create accurate verification plans. This is necessary to avoid
unnecessary bugs related to wrong feature collection.

2.4.2. Verification Planning

After feature extraction a plan for the verification activities is created. The complete
plan includes execution resources, methods, and procedures needed to achieve the
metrics. The objective is to capture all verification plans, features, objectives, and
coverage goals that are used to track the progress of verification. At this level, reusable
verification components are also identified, which will reduce the verification time and
effort. [14]

SoC verification plan needs to ensure that the verification phase is well defined and
effective to catch any design bugs before production. It also enables tracking how the
verification is progressing towards the target, and estimating the time to market. The
verification plan could be modified if problems or bugs appear, however, the overall
goal should remain the same [15].

2.4.3. Test Case Development and Simulation

Based on the verification plan, individual test cases are written and simulated to test a
specific feature to see if the functional requirement is met. Typically some test cases
are reused throughout verification using UVM.

Test cases range from System Level Tests (SLT) and Design For Test (DFT). SLT
is high level testing used to test the software and hardware components together to
detect the bugs that might have escaped in lower level testing. DFTs on the other
hand, operate at lower level, and are a faster since they directly deliver test vectors and
monitor the output of the chip [16]. In case of SoC interconnects, for example, test
cases can include latency tests, where the data is verified to be read or written at the
given clock cycle frame to ensure that the correct data is read and written.

Two kinds of functional simulators are mainly used event-based simulators or cycle-
based simulators. Event-based simulators propagate events one by one through a
design that includes functionality and timing, then detect events when a steady state
condition is met. Events are propagated through design stages after an input change
stimulus is detected [15] [17]. Cycle-based simulators on the other hand, evaluate the

16

logic of components and ports at once since it has no notion of time, which significantly
speeds the simulation compared to the event-based [15]. However, since this type of
simulator converts the gate-level net-list into Boolean equations, this only makes it
useful in synchronous cases and not in asynchronous or multi-clock driven SoCs [17].

After individual test case simulations are done, debugging starts for the failed test
cases to find the root cause of the failure. In UVM for example, verification engineers
can increase message printing verbosity during simulation, so the data flow and signals
can be tracked throughout the simulation, which will help in debugging.

2.4.4. Coverage Collection and Analysis

Coverage collection is very crucial in verification, as it allows the designer to know
the covered areas and functions of the chip during verification. The coverage goals are
usually decided in the verification plan. During simulation, tests run to verify the RTL
code and a coverage tool, typically included in EDA software tracks how the RTL code
is exercised. [15]

Two types of metrics are used for collecting coverage, code coverage, and functional
coverage. Code coverage measures the percentage of the covered RTL code, and it
identifies which parts of the code haven’t been covered. This is achieved by measuring
code statements, branches, conditions, and state machines. Functional coverage, on
the other hand, measures how well are the features covered based on the defined cover
groups and points. Each functional covered point represents a feature or behavior that
needs to be verified according to the design specification.

After a regression suite is simulated, a coverage report is created by merging the
status of all the test cases (pass/fail) and mapping those back to the verification
plan. Merged results visualize how many design features are covered according to
the verification plan. For each feature to be fully covered, all related test cases need to
pass, and all points and groups need to be covered.

After the simulation, a coverage report is available to be analyzed by the verification
team, which increases the confidence level in the design.

2.5. Verification Closure

Verification closure is made when the design meets all the specifications and
requirements, then the design can move to the silicon phase. This is a very crucial step
in SoC development life-cycle as it ensures that no errors have remained that would
cause a problem when the chip is in use. If the verification closure is made before
detecting and fixing a functional issue, the issue will be exponentially more expensive
to fix as seen in Figure 2 of Chapter 1.

After the verification plans have been executed and the design has been fully
checked according to the specifications, the verification part should be over, which
is called verification sign-off. Sign-off is usually made after finishing all simulations,
meeting all requirements, and having review meetings of the test results and chip, test
documentation. However, in real life, it is hard to say if the verification has been
finalized or not. This is important because verification engineers are usually never sure

17

that the design has no remaining errors and that verification should be finished. In
other words, it is a management decision.

Verification closure is usually a decision that is made after the design has achieved
the verification thoroughness metrics. Those metrics are more than chip coverage and
errors, but also on the company’s judgment on the quality, rate, and complexity of
found errors [18].

At the end of the design life-cycle chip coverage is maximized and errors are
minimized. The following Figure 6 shows the approximate progress of chip coverage
and error rates throughout the development phase of SoCs.

Figure 6. Errors versus Chip Coverage throughout developement.

From Figure 6 we can see that errors are minimized with the increase of the chip
coverage over time. However, even after the design and verification phase is finished,
a gap still exists between a full 100% chip coverage and zero errors. This is typically
the case since half the manufactured SoCs require spin-offs because many errors can
be detected after production. This decreases the chip coverage confidence and results
in the gap seen in Figure 6.

From a test case point of view, various test cases are produced to achieve a high
chip coverage and detect design errors. Figure 7 shows the approximate number of
produced tests throughout verification and the number of used tests. Figure 8 shows
the approximate total time of regression with added tests.

18

Figure 7. Number of Produced versus Used
Tests.

Figure 8. Regression Total Time.

As seen in Figure 7, the test cases that are actually used and kept during the
development phase are significantly less than the produced test cases. This is due to
the fact that throughout regression, various test cases become redundant as other test
cases cover more chip area and detect more errors. Redundant and obsolete tests are
removed from the test suite to increase the efficiency and reduce the regression time.
The effect of having a large amount of test cases is seen in the duration of regression
time as Figure 8 shows.

19

3. UNIVERSAL VERIFICATION METHODOLOGY

UVM or universal verification methodology is an open-source common verification
methodology standard derived from OVM (Open Verification Methodology) and
initiated by Accellera Systems [19]. UVM is supported by multiple vendors such
as Synopsys, Mentor Graphics, Siemens, and IP vendors, and it is used by many
semiconductor companies around the world.

UVM is very crucial in SoC verification as it reduces the verification time and effort
by standardizing the usage of SV and compoenent/test-bench creation. UVM enables
easy re-use and modularity throughout the introduction and reuse of Verification
Components (VCs) and Verification IPs (VIPs). The built test-benches using the
standard methodologies can be reused from one project to another, Thus reducing the
needed time and effort to create new test-benches for each project.

The other advantage of UVM over traditional SV is the improved debug capability.
UVM provides built-in configurable debug features that allow the generation,
collection and analysis of data during simulations. Those features ease the debugging
and development process as it can give detailed information about the phases of
simulation, data value and size, topology components, etc.

UVM uses an object-oriented test bench, where the structure of the test-bench is well
defined and each component has a defined interface and purpose to other components
[20].

3.1. UVM Architecture

Figure 9 presents the standard UVM test-bench architecture. The test environment is
the top-level component of UVM which contains all the other UVM components .

DUT or (Design Under Test) is the design being tested, which is typically an IP,
module, or even subsystem that is part of the SoC top-level. The design is connected
to levels of transactors in the UVM test environment at the pin level. Those transactors
drive and sample the signals inside it, then the output of the DUT can be monitored, to
see if it behaves in a correct way according to the input [20].

Test is the top level entity that holds the Env components, it controls the generation
of the environment, starts test sequences and overrides components by overriding
sequence items [21]

Env holds the test-bench structure it contains the scoreboard, and initiates the agent.
The agent is the component responsible for driving and monitoring the DUT, typically
contains the sequencer, driver and monitor.

Sequencer is responsible for running sequences, which are a set of randomized
transaction stimulus. To test our design, the sequences are created using the generation
code, the sequence of transactions are ran then down-streams them to the driver when
they are demanded [22]. Sequences constitute of sequence items, the basic data objects
that are passing between components in an abstraction level [22].

Monitor is component is derived from the uvm_monitor class, it is the passive
element in the test-bench. It captures the DUT signal activity, converts it into
transaction level data objects the transfers it to the scoreboard [23] [24].

20

Figure 9. UVM structure.

Driver is extended from the uvm_driver, it is the active element in the test-bench.
The driver is responsible for driving the DUT signals after receiving them from the
sequencer. It generates reads, writes and addresses of the data signal, then maps the
sequences to the DUT interface [23] [24].

Scoreboard checks the functionality of the design, it receives the transaction-level
objects from the DUT. The received results are compared to the expected reference
data, then the matches are tracked to be presented at the end of the UVM simulation.

3.2. UVM Class Hierarchy

Since UVM has an object-oriented architecture, its classes are structured in a
hierarchical manner and derived from a set of core classes as shown on the following
Figures. Figure 10 shows the classes derived from the uvm object, and Figure 11 shows
the classes derived from the component class.

Figure 10. UVM class structure.

21

uvm_object is the base class of all uvm classes after uvm void and uvm root. All
uvm components (monitor, sequencer, scoreboard..) are derived from this class. This
class also provides methods for basic operations. uvm_report_object is the lower class
in the hierarchy that handles reporting. The user sets the reporting configuration, then
it prints all the messages, warnings and errors. After the configuration file is read,
the reports go through uvm_report_server for the messages to be formatted. Different
verbosity levels for reporting are available, this is set in the configuration file, and this
decides the verbosity of messages to show (UVM INFO, UVM WARNING, UVM
ERROR).

uvm_transaction contains the timing and record interface, it also allows simple
transactions to be sent to the DUT. [24]

uvm_sequence_item is the class containing an item or a sequence unit created by the
test bench and sent to the DUT. uvm_sequence constitutes of one or various sequence
items.

uvm_component holds all the previously described UVM components, while it
provides all the necessary interfaces. Those interfaces include Hierarchy, phasing,
configuration, reporting, and factory.

Figure 11. UVM component class structure.

3.3. UVM Phases

Since the uvm_component is the parent to all components, all components need to pass
to a pre-determined set of phases in a specific order. The phases are considered as a
synchronizing mechanism during the simulation, this order is shown in Figure 12.

Figure 12. UVM phases.

Build phase is the first and initial phase as it instantiates and builds all the
components needed for the simulation [22].

22

In Connect phase All components that have their TLM ports are connected together
for the simulation to run. The connect phase connects them together using their ports.
The elaboration phase typically ends by the end of the connect phase and before the
run phase starts. The UVM topology is displayed after elaboration. This is called the
end_of_elaboration_phase.

During the Run phase, start_of_simulation_phase is where the run-time
configuration happens and the topology is actually displayed. The run phase is when
the simulation starts, which makes it the only time-consuming task.

The next phase is extract_phase where the data is extracted from the various test-
bench components, and the reference data is computed from the scoreboard. The data
is then compared in the scoreboard during the check_phase, then displayed during the
report_phase [22].

Final operations are made during the final_phase.

3.4. UVM Verification of AXI BUS

AXI protocol is a very crucial bus interface used in most modern-day SoCs. The
protocol provides interconnection between design cores, it offers easy reads and writes
in system memory and software drivers.

As depicted in Figure 13, the AXI bus contains five main channels, write address,
write data, write response, read address, and read data. The AXI protocol offers burst
reads/writes, unaligned data transfer, and separate read/write channels, since it has
separate addresses and data lines. The data is transferred using a handshake protocol,
where VALID and READY signals are exchanged between the masters and slaves.
This allows a two-way control, where both the master and slave can affect the transfer
rates. The architecture of the simplest AXI bus containing just one master and one
slave is shown in Figure 13.

Figure 13. AXI master/slave channel connections.

23

3.4.1. AXI Verification Challenges

The AXI IP is a simple example, but its verification can get challenging with the
complexity of the protocol since it contains various channels and transaction types.
In a real-life example of AXI many masters and slaves are working simultaneously,
and each channel or transaction has its own specification, requirements, signals, timing
constraints, and set of rules. The verification becomes significantly challenging with
the increased scale of the implementation. This becomes significantly complex when
designs contain various AXI masters and slaves, and the number of internal states and
signals to verify is larger. In addition, timing is also an issue since most designs are
asynchronous and have different clocking frequencies, and it is difficult to cover all the
scenarios in the same test bench [25].

3.4.2. AXI Verification Test Bench

Considering the challenges, the previously explained UVM components are used to
create a simple UVM test-bench to verify a single AXI IP (one master, one slave). The
structure of the test-bench and DUT is shown in Figure 14.

Figure 14. AXI UVM environment.

Starting from the top test-bench tb_top, the interfaces are initiated, the virtual
interface is set to the configuration database and the test is run using the run_test()

24

as seen in Listing 1. The code following examples were made using the UVM tutorial
from chipverify [24].

initial begin
uvm_config_db #(virtual axi4lite_if)::set(null,"","vif",dut_if1);
run_test("axi4lite_reset_test");
end

Listing 1. run_test.
The env file contains the test-bench components as seen in Figure 9, and the uvm_env
class extends other components classes. In here, the scoreboard and the agent are built
as shown in Listing 2, then connected in the connect phase (Listing 3).

class axi4lite_env extends uvm_env;
`uvm_component_utils (axi4lite_env)

axi4lite_agt axi_agt; //agent
axi4lite_sb axi_sb; //scoreboard

virtual function void build_phase (uvm_phase phase);
super.build_phase (phase);
`uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);
//agent
axi_agt = axi4lite_agt::type_id::create ("axi_agt", this);
//scoreboard
axi_sb = axi4lite_sb ::type_id::create ("axi_sb", this);

Listing 2. build phase.

virtual function void connect_phase (uvm_phase phase);
`uvm_info("TRACE", $sformatf("%m"), UVM_HIGH);
axi_agt.axi_mon.analysis_port.connect (axi_sb.ap_imp);

Listing 3. Connect phase.
In uvm_agent the sequencer, monitor, and driver are declared and built, only the
sequencer and driver are inter-connected. The structure of the agent is shown in Listing
3.

25

axi4lite_sqr axi_sqr; //sequencer
axi4lite_drv axi_drv; //driver
axi4lite_mon axi_mon; //monitor

virtual function void build_phase(uvm_phase phase);
super.build_phase(phase);

if (get_is_active()) begin
axi_sqr = axi4lite_sqr::type_id::create("axi_sqr", this);
axi_drv = axi4lite_drv::type_id::create("axi_drv", this);

end
axi_mon = axi4lite_mon::type_id::create("axi_mon", this);

endfunction : build_phase
virtual function void connect_phase(uvm_phase phase);

super.connect_phase (phase);
if (get_is_active()) begin

axi_drv.seq_item_port.connect (axi_sqr.seq_item_export);
end

endfunction : connect_phase

Listing 4. uvm_agent.

3.4.3. Test-Cases

For the sake of simplicity, we look at two test cases. The first test case will monitor the
data flow, where the read and writes will be checked, then a reset test, where the reset
functionality of the AXI bus is verified. The write at the AXI input is compared to the
read at the output for the data test. The reads are first generated by executing sequences
(inherited from uvm_sequence class). This sequence contains read transactions
targeted to specific DUT addresses, the returned data is then compared and verified
to find data mismatches or bus errors.
Write tests are also executed in a similar way, writes are also generated by executing
sequences targeting specific DUT addresses. Data is then read from the exact addresses
that it has been written into, to verify if the read data matches the written one. This
also finds data mismatches and potential bus errors.
The read and write generated sequence transactions are captured by the monitor, then
are sent to the scoreboard for checking, which verifies the correctness of the data
and reports the output and results at the end of the simulation. The read and write
generation is shown in Listing 5 and 6.

26

`uvm_info ("Test", "regular sequence start", UVM_MEDIUM)
//generate write sequence
if (!this.randomize(rand_repeat) with
{rand_repeat inside {[10:15]};}) $display ("ERROR");
axi4lite_seq_o.access_mode = WRITE;
fork

repeat (rand_repeat) begin
if (!this.randomize(rand_addr)) $display ("ERROR");
rand_addr[1:0] = 'b00;
access_addr.push_back(rand_addr);
axi4lite_seq_o.addr = rand_addr;
axi4lite_seq_o.start(axi4lite_env_o.axi_agt.axi_sqr);

end
#200ns axi4lite_env_o.applyreset(100);

join

Listing 5. Write sequence generation.

//generate read sequence
#100ns;
axi4lite_seq_o.access_mode = READ;
repeat (rand_repeat) begin

axi4lite_seq_o.addr = access_addr.pop_front();
axi4lite_seq_o.start(axi4lite_env_o.axi_agt.axi_sqr);

end

Listing 6. Read sequence generation.
The reset test is a simpler test, where the reset sequences are executed to the AXI
interconnect, then captured by the monitor and sent to the scoreboard. The monitor
should also see other AXI transactions and states during the reset period. The
scoreboard then checks the AXI behavior during the reset and makes sure that the
reset is correctly applied for the DUT, and that all the states and values are set to the
initial reset state.

27

4. SOC REGRESSION STRATEGIES

SoC development program is a big activity, as it involves hundreds of people working
for the same goal. This gets complex when designs are started from scratch without
any re-use of a platform or previous SOC generation.
After the chip design is updated or modified, regression testing is applied to verify the
design’s health, track the current verification progress, and how the design maturity is
progressing over calendar time. This includes generating new or modifying test cases
to reassure that functional requirements are still met according to the same or modified
specification (depending on the regression type).
During the design life-cycle, regression is performed when a bug is detected, or after
a fix is implemented, on a well-tested program according to a test plan. Regression
testing is also very crucial in the maintenance phase where the system has updates for
correction, adaptation, or performance improvement. [26]
Regression testing has its own test plan, which contains conditions when the test should
run, typically time schedule (daily,weekly, etc.) or triggered by events such as Git
triggers. The regression test plan also marks to which level of abstraction the regression
should be done depending on the change[15]. This selects the subsets of tests to be ran.
After the design has been verified with and acquired a good level of confidence, design
updates and re-verification are put in place for the Golden model using a formal control
procedure [15]. Tape-out is only done after all regression test cases are passed, and the
design specification is fully met.
Functional verification consumes almost 70 percent of the effort for finishing a SoC
design. This makes verification one of the hardest phases of SoC design. This stresses
the need for solid regression strategies to ease the verification phase and make it more
efficient and precise [27]. Studies indicate that up to 80 % of the software verification
testing cost is spent on regression testing and more than 50 % of maintenance cost is
spent in regression testing [28].
Regression testing researchers have been mainly focusing on software, not SoC
hardware, optimizing regression from test cases’ points of view. Three areas of that
have been extensively researched and surveyed, test suite minimization [29] [30],
test case selection[8], and test case prioritization [10]. Test suite minimization is a
technique that removes unnecessary tests from the suite. Test case selection determines
which tests should be selected to test the modified areas of the software. Test case
prioritization chooses the ordering of tests to satisfy the desired criteria, such as
maximum coverage [31], regression duration [32], and early fault detection [33].

4.1. SoC Vs Software Regression Strategies

System on Chip regression can borrow some strategies from software regression,
however, not all strategies are applicable in SoC. This is due to the fact that SoC
verification is different from traditional software verification. In software verification,
if a bug manages to escape and not be detected during regression, it can be easily
fixed later on with a software update at a relatively low cost. However, in system
chips, there is no margin for error: if a bug manages to escape and not be detected
before tape-out and production, the chip has to be re-designed and produced again (if

28

no workaround is available). This raises the cost exponentially as shown in Figure
2. The other significant difference is that SoC development aims to minimize time
to market, as SoC design life cycle is significantly longer than software development.
The longer the development and release cycle is, the more risk is of missing the market
time window, thus losing profitability and market share to competition.
The other major difference between SoC and software regression lies in coverage
collection during the regression. Software coverage collection mainly focuses on
functional coverage, which is collected from the percentage of covered lines of code,
branches, and functions executed during tests.
SoC on the other hand, coverage is collected differently, at the beginning of design,
code line or statement coverage is seen as a good assessment of the test cases. However,
as design advances, more detailed coverage metrics are added to evaluate SoC test
cases. SoC coverage metrics might include Toggle coverage that analyses toggled
signal bits, triggering coverage that captures triggered sensitivity list items, along with
path and signal coverage explore the exercised routes and ROM addresses and state
signals. Those additional coverage metrics allow SoC manufacturers to ensure the
functional behavior of the different system hardware blocks, interfaces, protocols, and
chip performance.
Different coverage criteria and more complex tests lead to a significantly longer
regression time in SoC compared to software. This is due to the fact that software
regression typically involve test-case that exercise the software functionality, not clock
cycle constraints and complex hardware test-cases. The following Table 1 summarises
the mentioned differences between software and SoC.

Table 1. Main differences between SoC and Software Regression
Software Regression System on Chip Regression

Average number
of test cases Relitevly small Large

Regression
lenght Relatively short Can last days to weeks

Defect fix
after production

Generally a software
update is enough.

The chip has to be re-designed ,
verified,’
and produced again

Coverage
collection Mostly functional coverage More complex coverage metrics

Complexity
of test-cases

Test cases are fairly simpler,
the main focus is
on functional behavior

Test cases focus on timing,
data-paths, connectivity, resets
, logic, states and performance

Research
plenty of research has been conducted
in multiple areas of regression

No research has been made
for SoC regression testing

4.2. Test Suite Minimization

Test suite minimizaion has been defined in previous research. as if we have a set T of
test cases t1,t2,t3...tn, we need to find the minimum set of test cases that satisfies the
testing requirements [34]. This will permanently remove the redundant tests from the

29

test suite, thus minimizing the total number of tests in the test suite. Those redundant
test cases are typically measured by coverage, as if a part has been already covered,
other test that achieves the same level of coverage are removed. Figure 15 shows the
minimization of the full test suite by removing obsolete tests and keeping the essential
tests.

Figure 15. Test suite minimization techniqu.e

4.2.1. Code Coverage-Based Minimization

This technique removes redundant or ineffective test cases that do not contribute to
achieving a high level of code coverage. Test cases that exercise the same code paths
or have the same outcome as other test cases can be removed [35]. Figure 16 shows
how coverage-based minimization removes test cases that cover the same parts of the
chip and leaves unique test cases.

Figure 16. Coverage-based minimization technique.

As seen in Figure 16, some test cases such as test case 4, cover the area covered by test
cases 1,2 and 3. Those test cases that cover the same area as test case 4 are removed.
The test cases left after minimization cover unique parts of the chip that are not covered
by any tests.
In SoC, regression often contains thousands of tests, which are constantly updated or
improved throughout the design. The new improved test cases often make the old test
cases obsolete from a coverage point of view and make the earlier test cases extra
luggage for regression. This technique is used to reduce the extra luggage, which
decreases regression time and increases efficiency.

30

4.2.2. Greedy Algorithm-Based Minimization

This technique iteratively removes the test case that contributes the least to the overall
test coverage until a certain threshold is reached. This process continues until the
desired level of test coverage is achieved with the smallest possible test suite. [35] [34]
In [36] a new algorithm was proposed and analyzed which aims to reduce the number
of tests in a test suite without compromising coverage and fault detection effectiveness.
The technique identifies group-related tests by detecting the relationships between tests
in the test suite. After the test suite is grouped, one or couple tests that achieve the
group effectiveness are selected, then the rest of test cases in the group are removed.
This algorithm stops whenever no further test cases can be removed without reducing
the effectiveness of the test suite.
The strategy is rarely used in SoC, but it is supported by various EDA tools since it
allows verification of the sanity of a new release that contains minor changes. Then,
the team can continue their work on top of the release.

4.3. Test Case Prioritization

Test case prioritization reorders the sequence of the tests to run according to a chosen
criteria or goal. Test case prioritization, might lead to a short regression time, a
higher coverage, or detecting errors at an earlier phase of regression, depending on
selected criteria to prioritize test cases [32]. Figure 17 shows a small regression test
suite. Initially, the test cases were in random order, and the prioritization algorithm
prioritized them to be ordered from the highest priority (5) test to the lowest (1).

Figure 17. Test Case Prioritization technique.

4.3.1. Risk-Based Prioritization

Risk-Based prioritization prioritizes test cases based on the potential risk or impact of
the defects that they are designed to identify. Test cases with a higher likelihood of
identifying critical or high-risk defects are given higher priority than those less likely
to identify such defects. [37]

31

4.3.2. History-Based Prioritization

This technique prioritizes test cases based on their past performance or effectiveness
in identifying defects. Test cases that have been more effective in the past are given
higher priority than those that have been less effective [37].
Research has shown that previously failed test cases are most likely to fail again
[38], which makes history-based prioritization very effective in detecting design faults.
History also allows us to learn the behavior of test cases in previous regressions, which
helps us to reduce simulation time.

4.3.3. Coverage-Based Prioritization

With this strategy, test cases are prioritized according to their RTL code. The highest
priority is given to the test cases with the highest coverage percentage in critical
design areas [31]. Coverage metrics for prioritization can differ from code coverage,
functional coverage, and assertion coverage.

4.3.4. Time-Based Prioritization

In time-based prioritization, simulation time is the most critical element, as test cases
are ordered based on the available regression time. Test cases that could be executed
quickly with high coverage are selected to be run if the regression time is short and
limited [32].
However, in a larger testing suite, such as in SoC top-level, some test cases take more
than a week to finish. Therefore, if they are chosen to be run at the end of regression
after all shorter tests are done, this causes the regression to take an extra week.

4.4. Test Case Selection

In software testing, test case selection is very important as it reduces the regression
suite by selecting only the relevant test cases according to certain criteria. In SoC, the
design includes billions of transistors, and the code often contains millions of lines.
This makes SoC regression more complex than software regression. In SoC regression,
various combinations of stimuli and inputs have to be extensively tested in all parts of
the chip to assure the functionality of the design. Finding the bug at a later stage will
drastically increase the cost of the fix, this is test case selection techniques have to be
precise in their selection. Figure 18 shows how test cases are selected after a program
has been modified.

32

Figure 18. Test suite Selection technique.

4.4.1. Risk Based Selection

Test cases that are deemed to be high-risk based on factors such as the criticality of the
functionality being tested, the complexity of the code areas, are selected. This method
identifies failures that could have a significant impact on the system.

4.4.2. History Based Selection

This involves selecting test cases that have previously identified bugs or issues in
the software system. By re-executing these test cases, it is possible to ensure that
the identified bugs have been fixed and to detect any new errors that may have been
introduced. History based selection verifies that the identified bugs have been resolved,
and will not cause later failures.

4.4.3. Coverage Based Selection

This is achieved by selecting test cases that exercise a specific portion of the software
code, such as a particular module, function, or method. The goal is to achieve a high
level of code coverage and identify errors in specific areas of the code. This method is
limited to finding errors that may only occur in a specific code area.

4.5. Miscellaneous Techniques

Other techniques that aim into reducing the feedback cycle have not been as intensively
investigated as the preceding ones. However, industrial companies rely on them in
regression testing practice.

33

4.5.1. Rerunning Failed Test Cases

Rerunning failed tests is a very crucial part of the regression flow. After the failure of
each test case, the failure needs to be analyzed and the root cause detected. This is
typically done by fixing the error, then rerunning the test case individually and locally.
However, simply fixing the error and moving on is not enough, since the error could
occur again in other regressions.
This technique can also introduce new problems that may have been caused by the fix.
For example, the fix could cause another test case to fail, or introduce a new defect that
was not recognized by the original test case. Re-running failed test cases ensure that
the test case owners will catch those issues early and effectively.
Many methods are possible to rerun failed test cases, ranging from manual to
automatic. In manual rerun, the test case owner manually replicates the test case after
the fix, then a regression is run after that.
In automatic rerun, the failed test cases will automatically rerun according to a set of
rules. Automatic rerun could mainly be achieved in two ways, the software provides
the feature, where it automatically runs test cases upon failure, or in CD.

4.5.2. Improved Regression Reporting

After the regression is finished, the results need to be analyzed, and the root cause of
errors found and fixed. Detailed error reporting and good metrics help owners to track
the progress of their efforts and see the areas of improvement.
Test reporting can include test case execution status, error reports, and detailed
coverage. Bucketing errors would help test case owners easily debug their test cases,
and fix the errors.

4.5.3. Continuous Development in SoC

System on chip includes millions of lines for design and millions for verification,
which makes CI/CD practices primordial to managing large projects. This is why
agile development is used throughout the project, planning, and development phase,
as it improves collaboration, and delivery time by having various scrum sprints with
shorter-term deliveries. [wbst]
The other important aspect of continuous development in SoC regression is automated
testing. Automated testing allows SoC verification regression to be launched
automatically based on the defined criteria, which is usually trigger-based, or schedule-
based testing.

4.6. Evaluation of SoC Regression Strategies

Since various regression improvement strategies exist, criteria have to be put in place to
evaluate the different techniques according to the requirements. This has been adapted
to the requirements of SoC and the company, and the following criteria have been

34

chosen from research to evaluate the test case prioritization strategies, since it is the
most focused point of the thesis.

4.6.1. Evaluation Metrics

Execution time is very crucial in SoC development, as shorter regression time reduce
the feedback cycle, thus meeting the goals faster and minimizing time to market. This
metric shows us the efficiency of our test case prioritization technique, this is evaluated
by comparing test suite execution time of different prioritization strategies. SoC
development has limited software or IP licenses to use during verification, reducing
regression time increases the number of available licenses to use for other regressions.
Fault detection rate is a telltale measure to assess the effectiveness of test case
prioritization schemes [10]. The ability of the strategy to find design faults at an
early stage of regression speeds up the time-to-market. With this measure, the tests
are made to discover the potential bugs by detecting faults that failed during the earlier
regression runs.
Coverage effectiveness is an important measure for the effectiveness of the scheme.
Different regression strategies lead to varying levels of chip coverage. The most
effective is the one that covers the most in the least amount of time. This criterion
has been used in research to evaluate regression strategies.

4.6.2. Implementation Criteria (IC)

Since companies rely on their criteria and experience more than research [11], and
research has focused on software instead of SoC, the evaluation criteria mentioned on
research might to be suitable for this implementation.
IC1: Applicability in SoC needs to be taken in account on which strategies to

implement. This is because SoC regression is significantly different from software
regressions, and its improvement methods have not been as researched. Since all
the mentioned regression strategies are borrowed from software regression, their
feasibility in SoC must be checked before they are selected as a technique to be
implemented.
IC2: Implementation feasibility has to be analyzed before implementing the solution
in our current environment. This is evaluated considering compatibility with our tools,
the feasibility in the current project, and time spent on the thesis.
IC3: scalability of the technique has to be confirmed before selecting the testing
strategy, to assure that it can handle a big complex system. Research often investigates
scenarios where the test suite is at a smaller scale compared to real-life SoC systems.
IC4: Resource utilization is a big factor in SoC regressions. SoC regression runs
consume a significant amount of resources during their execution, those resources vary
from physical resources such as memory, CPU, storage, and software resources such as
software licenses. Although physical resources might not be critical, licenses are a big
limitation that needs to be taken in account to choose the right strategy to implement.

35

4.7. Strategy Selection

All techniques were examined and they were given a score from 1 to 5 according to
previously defined evaluation criteria, where a higher score is more acceptable. The
results of this evaluation are summarized on the following table.

Table 2. Technique Evaluation
Technique/ Evaluation IC1 IC2 IC3 IC4 Total
Testcase Prioritization 5 5 4 4 18
Testcase Selection 3 4 2 4 13
Test Suite minimization 1 2 2 5 10
Rerunning Failed Testcases 5 5 5 5 20

4.8. Main Concerns and Limitations of SoC Regression Testing

Regression testing is very crucial in SoC, however, it has concerns from the sides of
time, cost, and precision. One of the biggest concerns about regression runs is the
time since a regression suite might contain thousands of tests, and some test cases
often need days to weeks to finish. This is a major concern in SoC, since the design is
largely complex and requires all features to be verified and bugs to be corrected before
the next phases, which will be more expensive.
To minimize regression time, companies often use LSF clusters containing multiple
threads in multiple processors, this allows the practice of parallel testing Parallel test
case execution is very important strategy that makes a difference in regression run
time, this is achieved by running multiple tests in parallel in different threads and
processors. However, the limitation of this strategy is that companies usually have a
limited number of IP or software licenses to be used, which limits how many tests can
be run in parallel, and the remaining unused licenses.

36

5. IMPLEMENTATION

In this chapter, we look at the current regression environment in the company, starting
from the current regression flow, to its limitations, then diving into the researched
regression strategies in practice. Finally, the implementation of other improvement
points is explored based on the company’s experience and needs.
The regression is currently launched twice a week to provide fast turnaround time for
test case development and feature coverage progress. Regression is typically launched
immediately after a new design release is available. Regressions are also launched
between design releases to provide visibility to pass/fail status of test cases and feature
coverage progress. A regression tool is used to run regressions, where test cases are
fetched using a script, after the regression is done, the results are visible in the tool
GUI.

5.1. Regression Environment Overview

At first, the verification strategy is written, which contains detailed information
about verification. Verification strategy includes all the verification methodologies
starting from the verification targets, test-bench structure, coverage criteria and needed
verification tools. Verification plan is a crucial document to list in details all
verification features, which must be tested during verification phase. Verification plan
document also describes in details which test case is testing which feature. In addition
verification engineers need define how feature must be tested by defining cover groups
and points for each feature.
Initially, related test cases are separately written and simulated by their owners, then
debugged if they fail. Some test cases requires a set of reference data defined in a yml
file, then results are compared to the data during simulation. The correctness of the data
or result defines the test case as pass or fail, a log file is then generated with detailed
information about the simulation. Test case properties are then added by the owner
to a regression test case file containing all test cases. This file contains the test name,
sub-system name or IP name, owner, and other parameters needed for simulation.
The whole regression flow is managed by a regression tool and a series of scripts
accompanying it. The scripts are used to set up the environment and launch the
regression tool. Test case execution, result collection and reporting is automatically
managed by the tool after regression has started.
A chain of scripts starts by setting up the environment and regression parameters,
then fetching the list of test cases, their YAML files, owners, needed builds, coverage
criteria, then prepare them for regression. The regression flow is described in the
following figure 19.

Figure 19. Regression flow.

37

Regression starts by creating and checking the required dependencies for test cases,
which are the needed builds for the tests to be run upon, and the reference data that
is used for results comparison during simulation, and the coverage criteria. Image
compilation and elaboration starts and the image builds are generated, which are many
in a complex SoC. After build images are generated, test cases start to run in a parallel
manner, where each set of test cases starts running after their required build has been
generated.
Each test case generates its own log file, the tool uses the log files to determine if the
test has passed or failed using regular expressions. This gives the ability to add new
regular expression to detect custom events during simulation, or to make a conditional
pass or fail. The status of the test case (pass or fail) is added to the overall regression
pass/fall and displayed in the GUI. The coverage is collected throughout the regression
phase, from the areas of code covered by each test, as specified in the coverage criteria,
and each test case will have its own coverage score. The coverage score for each test
case is created by the simulator while the test case is being executed.
At the end of regression, results collection begins, and the coverage is collected from
all test cases according to the coverage mapping criteria. The combined coverage
results are merged into the database, and the total coverage is displayed in the GUI.
The regression will be evaluated mostly from the areas of pass/fail and coverage, which
will also tell how the project is progressing toward the end goal.

5.2. Current Regression Strategy

The main research in the fields of regression has been heavily focused on test case
selection, test suite minimization, and test-case prioritization. Other areas that are
based on company needs have not been extensively investigted. However, in the
company, regressions are managed in a way that the company has learned from its
experience, which differs from the methods investigated in academia, This matches
with the conclusions of many research papers [11].
Regressions are planned in a timely-structured way to detect bugs and increase design
confidence with coverage information. In the current environment, regression is used
to verify the design, and also to track the current progress against the goals. Full
regressions are launched twice a week containing all test cases across all subsystems,
which will show the complete current coverage, and test pass rate. This allows the
company to keep track of project progress according to the milestones and the overall
target. For instance, tracking the coverage on a weekly basis between actually achieved
and target coverage numbers.
New test cases are added continuously during development phase to increase the
chip coverage. Sometimes new cases might makes older test cases that cover the
same areas redundant, and coverage based test suite minimization is used to delete
the redundant test cases. For test case prioritization, in the current implementation,
tests are prioritized based on the company’s current requirement, which is reducing
regression run-time. From the company’s experience, the shortest regression time is
achieved by running bigger builds and tests at first, which reduces regression time.
Regression turnaround time is mostly dictated by 5-10% of the regression cases, which
are the so called long tests. Therefore the regression time is not necessary getting any

38

shorter, even if some redundant cases are removed from regression. It is all about
balancing the number of parallel runs and optimizing the priority of the test case
execution within regression suite. This is why test suite minimization, or test case
selection are not fit as strategies that would improve regression in SoC.

5.3. Limitations of the Current Implementation

The current regression environment contains a large number of nested scripts and
variables, and each kind of regression requires a specific script depending on various
other scripts. This requires an extensive understanding of the script flow and the role
of each variable, which makes running another type of regression or making minor
modifications a hard task for an inexperienced user.
After the regression is launched, coverage collection is done only after results from
all tests are finalized, which keeps the management and users unaware of how the
regression is doing.
At the end of regression, The Regression GUI shows a summary of regression results
upon ending, which displays the errors that have occurred during regression. The
limitation here is that the regression error summary does not provide much detail about
the error, it just shows the error type and count, such as UVM ERROR 20. To see more
details, each test case owner has to open the log file related to each test-case to see the
errors, then refer to the test files that have generated the specified error.
After the regression, each user debugs their test cases, and each test case is locally
simulated to be fixed, then it will be simulated again in the next regression. The
issue here is that the regression tool runs tests using specific commands and sets of
parameters, which makes recreating the exact same test scenario difficult, which leads
to different results. The regression environment allows all the failed tests to be rerun
again, but it does not give enough flexibility for specific tests to run in a different
manner, for specific users or specific design areas. All those actions are manual and
require test case owners to relaunch the tests in their local area.
Those limitations complicate launching regressions and debugging test cases, which
creates room for areas of improvement. Having a simpler regression environment
eases regression launch, and modification, whereas having fewer script nests simplifies
variable handling. Collecting coverage results on the fly, allows management and users
to predict and report coverage results and even take action before the regression is
finished.
To improve the regression summary, a script is needed to parse through all log files of
all tests and packetize the errors. The buckets can be displayed for users, with a direct
link for log and test files, which eases debugging. A flexible mechanism for rerunning
regression is needed to allow each user to automatically rerun only his test cases and
replicates them in the same or different manner relative to the tool. To select which
test cases to run, a new regression schedule has to be put in place, with different test
cases selected for each regression, depending on the available time for regression.

39

5.4. Implemented Solutions

5.4.1. Test-Case Selection

Test case selection is one of the most crucial regression strategies that would make
a large impact. Although sophisticated methods of test case selection have been
researched in practice, SoC regression does not rely on test case selection. In
this implementation, researched solutions do not match the requirement (as will be
explained in the evaluation chapter), instead, test cases are selected based on a pre-
defined schedule. Figure 20 shows how the full regression test suite is divided into
subsystems that are checked daily, and weekly regression that runs the full test suite.

Figure 20. Implemented Test case selection technique.

Daily regression

Starting from a daily routine, by the end of each day, a few crucial test cases are run
to verify the sanity of the design, this makes sure that possible made changes have not
broken the design. This daily regression compiles the design, runs the main design
builds, then runs a few sanity tests on them, to assure the overall functionality of the
design compared to the main specification. Since the design is large and constitutes
many subsystems, the top-level sanity check is not enough to ensure the sanity of
the whole design. To assure the sanity of the whole design without running the full
regression, the design has been split into various parts, where each part’s sanity needs
to be checked during the week. The most crucial test cases of every subsystem are
selected to be run as a design sanity check, here test cases have been selected using
the Risk-based selection method. Every day, a regression containing the selected test
cases of every subsystem is automatically run. This ensures quick feedback about
sanity since failing is fast if something is broken.

Weekly regression

A full regression is launched at a minimum rate of once a week, this provides the total
coverage and test pass rate, which is necessary to track the weekly progress and the
total progress toward the project milestones. In this process cycle no selection criteria
are used since all tests are needed to provide the total coverage. After test cases are

40

starting to fail during regression, each user debugs their test cases, to find and fix the
bug. Then a regression containing the failed test cases is run to ensure they pass before
launching a full regression.

5.4.2. Test Case Prioritization

Many test case prioritization techniques are available that satisfy various regression
criteria depending on each need. For the company, the most important criteria are
precision and time, this is why the currently implemented solution is used to minimize
the total regression time.
History-based prioritization is used as a prioritization technique in our regression, test
case behavior is collected from previous regressions, and test case simulation time is
noted on an average basis. Based on this information, test cases are prioritized based
on their execution time, and test cases that take the most time are considered a high
priority to execute at the beginning of regression. The test suites contain hundreds of
tests, some last for hours, and some last for a couple of days or even a week. This
strategy is effective because it makes sure that test cases that last long begin as early
as possible, and will not begin at the end of regression and delay the regression extra
time. This strategy is presented in the cycle on Figure 21.

Figure 21. Regression priority cycle.

Another failure-history-based prioritization has been made according to the company’s
needs, in this method, regression prioritizes the previously failed test cases to be started
first, then passes to the previously passed test cases. The key benefit of this approach is
that it shortens the feedback cycle of the failed tests since their results are shown at an
earlier phase of regression. According to research test cases that have previously failed
are very likely to fail again. This restores the confidence of the design when previously
failed test cases pass, and shortens the time needed to start debugging and fixing the
previously failed bugs.
A hybrid method that uses both approaches is also proposed to meet both requirements,
time, and failure likelihood. It reads the test case history, the duration of a test case,
and its initial status (pass/fail), then it starts by ordering the failed test cases first, then

41

the remaining test cases. Failed test cases are ranked from the longest to the shortest
lasting, then the remaining test cases are then ordered in the same way.

5.4.3. Regression Script Environment

In the pre-regression phase, scripts are modified to add extra features and verbosity
for errors. For launching regressions, the complex scripting environment is revised,
and the complexity has been reduced. In the original implementation, 19 scripts were
used to launch different forms of regression, the flow was similar in all scripts, but
different variable instances were used. Those original 19 scripts were replaced by
just 5 new scripts that were still tested to provide the same functionality with more
flexibility. Instead of calling different scripts to run different regressions, one script
could be called while inserting the regression type as a flag, then the script performs
the needed regression based on the input.
Those 19 scripts have a long execution hierarchy, where the initial script executes
various other scripts that executes further scripts. This becomes essentially a problem
when the user wants to do a small change, as the variables might be overwritten.
While reducing the complexity, one layer of scripting was removed, and embedded in
other scripts, this eases debugging while easing the launch of regression.

5.4.4. Continuous Coverage Merging

Coverage collection is typically done after regression, the regression tool reads the log
files and the coverage criteria, then collects the coverage across the chip, then displays
the final coverage value. During the new implementation, continuous coverage
merging is enabled, which allows the users to see the coverage percentage at any time.
This is achieved by collecting the coverage after each test and adding it to a total
regression score that is visible throughout the regression in the tool GUI.

5.4.5. Rerunning Failed Tests

Rerunning failed test cases before launching a full regression is a very crucial strategy
to fix bugs and assures an increasing pass rate with every regression. A script is added
to gather data from the regression database, which gathers the failed tests along with
detailed information about their owners and log files. This feature, launches a new
regression with only the failed test cases and their needed builds. This could be used
by the regression manager to rerun all failed test cases in a new regression session, or
by individual test case owners. Figure 22 shows the cycle of running failed test cases.

42

Figure 22. Flow of Rerunning Test-cases.

Currently, there is no method for users to quickly rerun their failed test cases. The
practice is either running test cases one by one or manually gathering the list of failed
test cases and then launching regression. The users can now use the feature to locally
rerun their failed test cases, which will facilitate user experience and eases debugging.
Inserting the session name username is enough to launch a new regression with their
failed test cases.
Since rerunning test cases will not replicate the same testing scenario, the added feature
also gives the ability to replicate the exact test case, by giving the exact commands and
parameters executed during regression as an executable command. This command
simulates the test case using the same parameters and seeds, and gives the user the
flexibility to modify the needed parameters, or to recreate the same test case as it was,
to understand how a test case can fail only under certain conditions.

5.4.6. Regression Result Error Bucketing

After regression is done, the regression tool reads the log files and detects the errors
using a set of regular expressions. Those regular expressions have been revised, and
various patterns have been added to not just detect that there is an error, but also detect
the error type and name. Those detected errors are grouped into a smaller set of error
types, such as data, file, access, timeout, etc. In the regression GUI, the error buckets
are visible and divided into smaller chunks.
As an addition to the tool, a script has been written to give a detailed report to all users
about the results of the regression. All log files of all test cases are parsed, and results
can be shown to users, with variable levels of verbosity that can be selected. Each user
will get custom information about all his/her test cases, such as all errors, log files,
and files that have generated errors. Users can decide to see high verbosity with all
errors shown, or lower verbosity levels of errors including a summary, where only few
relevant errors are shown, files that generated them, and needed log files are shown for
easy debugging. those features can also be emailed to each user.

43

5.4.7. Continuous Development

Continuous development is necessary in SoC because RTL development is heavily
relying on RTL releases which are Git changes. Continuous development happens
between those RTL releases. Since the regression suite is large and it takes a long
time, regression has to be automated according to the previously described schedule.
Continuous development is focusing on the previously mentioned sanity checks, that
keep the development trunk clean for the next full regression. Two main methods
were used to automate regressions according to schedule and git changes. Jenkins
is an open-source tool used for continuous development and continuous integration, it
facilitates software development by continuous testing and integration using workflows
called pipelines. In SoC, Jenkins is used to automate regressions according to the
regression schedule, and it could also be used to perform trigger-based builds.
Trigger-based builds, rely on the events that occurred on the project repository such as
commits. Those builds are triggered after a commit has been detected, then a build can
launch using the newly committed change. Typically in those pipelines, the committed
change goes first to a staging branch, not directly to the master branch, if the build
passes, the change is committed to the master branch. Other pipelines exist where the
build is triggered by the commit, but the changes do not get staged or wait for the
build to finish, this is the case when the system is complex and various changes are
committed in a short time period.
In scheduled regressions, sanity checks are executed in Jenkins as daily runs, to verify
the overall sanity and assure that the design is not broken before the next full regression
run.

44

6. EVALUATION, RESULTS AND FUTURE WORKS

In this chapter, data is collected from the different practical implementations
mentioned in the previous chapter. This data is presented and evaluated using the
criteria defined in Chapter 4.
For the regression strategies, strategies were selected based on the implementation
criteria. The criteria includes, SoC applicability, implementation feasibility, scalability
and resource utilization. After the strategy is chosen, the right technique is also chosen
based on the regression quality metrics. Those metrics are rate of fault detection,
coverage effectiveness, and regression time.
However, the evaluation criteria used by researchers to evaluate their strategies and
techniques does not apply in this SoC case. This is because researchers usually choose
an open source project to test and evaluate their strategies on, which is typically
in a high maturity level. Selecting a project in a high maturity level assures the
robustness and reliability of tests and results, since the software behaves according
to the modifications they have made for testing purposes.
On the other hand, SoC projects have a longer development cycle, and no SoC projects
have been studied on the research of improving regression strategies. In this work, the
evaluation metrics used in research will not be as reliable, because they are applied
to a SoC project that has not reached maturity yet. Regressions are running daily
throughout the project life cycle, and new errors appear and new disappear regularly.
This tends to make the metrics less reliable the rates of fault detection or coverage
collection might vary.
The other limitation, is that SoCs have a very large test suite and it constantly updated
with more tests. This makes applying the mathematical formulas used in research such
as APFD (Average Percentage of Faults Detected) or CE (Coverage effectiveness) a
harder task, especially witht the limited thesis time.

6.1. Results and Evaluation of Implemented Strategies

Based on the evaluation criteria that has met the company needs, selected schemes
for test case prioritization were implemented. Test case selection and test suite
minimization were not selected or applied. In our case, regressions are made to track
the progress versus the goals, and full chip coverage using a full regression suite is
needed for that. Minimizing or selecting test cases will lead to an incomplete test suite
and missing coverage. Thus not properly tracking the feature and code progress.
The implemented prioritization methods are all test history based, and their main
objective is to minimize regression time and maximize fault detection and coverage
collection. The results are collected using a Python script that reads the database every
30 minutes for good precision, and stores all the needed regression data in a table
which is then represented as multiple graphs for better representation. The collection
of this data took approximately a month
The following graph in Figure 23 represents passed test cases during regression. While
strategy 1 is prioritizing long test cases, and Strategy 2 is prioritizing failed test cases.
Both strategies read the previous regression log while taking the last session name as
input, then re-order the test cases based on that. Strategy 1 orders test cases from the

45

longest to the shortest then starts regression with the longest. Strategy 2 puts the failed
test cases at the top then are followed by the passed tests. The order of failed and passed
test cases in strategy 2 is based on their last execution history in the reference session.
Failed test cases are ordered from the first failing test case to the last, and passing test
cases from the first to pass to the last. Unlike the rest of the strategies, strategy 2 has
been manually stopped earlier after collecting the important results (after 40h), which
were the first two days of regression.
In the default strategy on the other hand, test cases are not randomly ordered but a few
are ordered according to different criteria.

Figure 23. Passed tests using different strategies.

From Figure 23 we can that the different strategies provide different pass rates
throughout the time frame. The Default strategy seems to give the quickest passed
results compared to the rest of the strategies. Strategy 2 (prioritizing failed test
cases) provides very similar results compared to the default used method. Strategy
1 (prioritizing long test cases) is the most different of the three, as the results are
delayed compared to the previous strategies. The failed test cases are also monitored
and shown on the following Figure 24.

46

Figure 24. Failed tests using different strategies.

From the previous Figure 24, different results were achieved based on the strategy, but
also taking in account that limited licenses were available during the regression runs,
and some test cases were failing due to that in Strategy 1. Strategy 2 has been stopped
after 40 hours of run time. In this case it is fair to evaluate the failure rate in the first
40 hours. Running failed test cases at first (Strategy 2) has given the least amount of
failed tests, followed by the default strategy, then strategy one having the most amount
of failures.

6.1.1. Regression Time

As mentioned in the previous chapters, regression length makes a huge difference in
development cost and time. The total regression time of the implemented prioritization
strategies has been measured to visualize the difference.
From Figure 23 it is clear that when using the default and strategy 2 more test-cases
have passed in a shorter time, which decreases the feedback cycle time. This is
explained by the fact that in strategy 1 the regression is started with longer test-cases
which take more time to give the results. However, while using no strategy or strategy
2, the initial test cases that regression has started with, end faster, and give faster results.
The initial feedback loop of 90 % of test cases is shorter while running failed test
cases first, or when using the default method. However, while measuring the total
regression time of regressions, we can see that starting with longer tests at first result
in shorter regression time. From this we conclude that starting regression with longer
tests reduces the total regression time. However, this comes at a cost, which is that the
early feedback cycle time increases.

47

6.1.2. Fault Detection

The used metric to evaluate fault detection is how early are the faults detected during
regression, since this will help the test case owners to fix their errors earlier. Detecting
faults earlier can reduce the cost (as seen in Figure 2) and time of SoC development. In
our specific project case, the project is mature enough not to have many failures, so it
is challenging to judge error detection rate. However, the number of results that appear
in the earlier phase of regression can approximately give a measure on how early can
faults be detected. Having more results at the beginning of regression can reduce the
feedback time and increase the likely-hood of detecting faults. This is the case since as
we see in both graphs (23, 24) the first 20 hours of regression are important since they
give the most information about test-case results. After the 20 hour mark, other results
of long test-case are at a slower constant rate.
From the previous graphs (23, 24), we can see that initial results are revealed in
different phases depending on the used strategy. Strategy 1 reduces total regression
time but it compromises the earlier phase of regression. An approximate of 18 hour
delay of showing results of failed test-cases is seen when using strategy 1.
Strategy 2 (Running failed test cases first) seems to be the most promising as it can
test previous failures and report sooner is the same failures occur again. This will also
reduce the total regression time and the initial feedback cycle since failing test cases
can fail quickly allowing more test cases to be executed.

6.1.3. Coverage Collection

Coverage is also very important in our project, since it shows the progress compared
to the goal. Evaluation the coverage effectiveness in this case is also time-oriented, the
techniques are evaluated based on how much coverage is achieved earliest.
Coverage in this regression has not been heavily monitored such as failed and pass test-
case rate, but in a less frequent manner, and exact coverage was not analysed. However,
as we can see, since strategy 1 gives less results at the early phase of regression, it
achieves less coverage at the beginning of regression, but results in a slightly higher
coverage at the last phase of regression. It is concluded that using the default regression
flow gives a better coverage view.

6.2. Review of the Other Improvements

This work has also focused on other areas of regression improvement that were not
investigated, and that are company specific. Those improvements cannot be analyzed
using numerical metrics because they did drastically affect the regression performance,
but improved the user experience and the regression flow. Those improvements have
been evaluated by the user experience of regression experts.
The mechanism of rerunning failed test-cases for instance, achieve less failures in
regressions where previous failing test cases have been rerun. This is mainly because
often test-cases fail in regression even-thought they have passed when they have been
simulated individually by their owners. Sometimes test-cases fail in regression due

48

to other issues that are not UVM or feature related, but because of wrongly used
parameters, different reference data or environment related issues. Rerunning those
failed test-cases in a regression gives more insights, and reassures that they will not
fail again in the next regression since the regression related issues can be solved.
Test-case selection has not been applied in this regression flow, but selecting crucial
test-cases of subsystems and running a daily smaller regression for them assures the
sanity of the whole chip. In this manner, if a daily sanity check fails, verification
engineers can solve the issue before the next regression, which will reduce the feedback
cycle and reduce the overall time to market.

6.3. Recommendations

This thesis has uncovered the differences between SoC and software regressions, and
explored a few aspects of achieving a better regression performance. However, many
techniques still can be applied, and different evaluation metrics can be used.

• Applying a dynamic strategy that combines all prioritization strategies.

• Using AI and machine learning to optimize the performance

• Evaluating the results using mathematical models such as APFD and CE.

• In dept exploration of Test suite minimization and Test case Selection in SoC.

49

7. CONCLUSION

This thesis compares regression verification strategies for a large SoC project. These
include different techniques of test case selection, test case prioritization that have
been researched in software projects. There is no single strategy that performs well in
SoC throughout the whole development cycle. In the early stages of development
time based test case prioritization provides the fastest convergence. Later history
based test case prioritization and risk based test case selection gave a good balance
between coverage, error detection, execution time, and foundations to predict the time
to completion.
Most software regression strategies are not compatible in SoC due to the nature of
the projects and the risks involved when they are implemented. Each strategy that
is initially compatible and has been implemented has its own up and downsides.
Strategies in SoC should not be applied or evaluated based on research, but in the
company’s own interest. Interests range from fault detection, coverage, and overall
regression time. A good balance in this case is to focus on satisfying the important
metrics and reducing the downsides of the strategy. In this thesis the gap between
research and practice has been revealed. Improving regression strategies should not
mainly focus on the most popular of research strategies, but in adapting them, and
adding new strategies meet to the company needs.

50

8. REFERENCES

[1] URL: https://dvcon-proceedings.org/wp-content/uploads/
the-cost-of-soc-bugs-presentation.pdf.

[2] Yang W., Chung M.K. & Kyung C.M. (2003) Current status and challenges of
soc verification for embedded systems market. pp. 213 – 216.

[3] Brijmohan K., Hegde N. & Pankaj L. (2015) Design defect diagnosis in a buggy
model of sparc t1 processor using random test program generator. In: 2015
Fifth International Conference on Advances in Computing and Communications
(ICACC), IEEE, pp. 3–6.

[4] Bamford N., Bangalore R.K., Chapman E., Chavez H., Dasari R., Lin Y.
& Jimenez E. (2006) Challenges in system on chip verification. In: Seventh
International Workshop on Microprocessor Test and Verification (MTV’06),
IEEE, pp. 52–60.

[5] Chen W., Ray S., Bhadra J., Abadir M. & Wang L.C. (2017) Challenges and
trends in modern soc design verification. IEEE Design & Test 34, pp. 7–22.

[6] Leung H.K. & White L. (1990) A study of integration testing and software
regression at the integration level. In: Proceedings. Conference on Software
Maintenance 1990, IEEE, pp. 290–301.

[7] Fischer K.F. (1977) A test case selection method for the validation of software
maintenance modifications .

[8] Grindal M., Lindström B., Offutt J. & Andler S.F. (2006) An evaluation of
combination strategies for test case selection. Empirical Software Engineering
11, pp. 583–611.

[9] Khan S.U.R., Lee S.P., Javaid N. & Abdul W. (2018) A systematic review on
test suite reduction: Approaches, experiment’s quality evaluation, and guidelines.
IEEE Access 6, pp. 11816–11841.

[10] Rothermel G., Untch R.H., Chu C. & Harrold M.J. (2001) Prioritizing test cases
for regression testing. IEEE Transactions on software engineering 27, pp. 929–
948.

[11] Rooksby J., Rouncefield M. & Sommerville I. (2009) Testing in the wild: The
social and organisational dimensions of real world practice. Computer Supported
Cooperative Work (CSCW) 18, pp. 559–580.

[12] Awati R. (2022), What is an intellectual property core (ip core)? –
techtarget definition. URL: https://www.techtarget.com/whatis/
definition/IP-core-intellectual-property-core.

[13] Francesconi J., Rodriguez J.A. & Julian P.M. (2014) Uvm based testbench
architecture for unit verification. In: 2014 Argentine Conference on Micro-
Nanoelectronics, Technology and Applications (EAMTA), IEEE, pp. 89–94.

https://dvcon-proceedings.org/wp-content/uploads/the-cost-of-soc-bugs-presentation.pdf
https://dvcon-proceedings.org/wp-content/uploads/the-cost-of-soc-bugs-presentation.pdf
https://www.techtarget.com/whatis/definition/IP-core-intellectual-property-core
https://www.techtarget.com/whatis/definition/IP-core-intellectual-property-core

51

[14] Edn (2017), Soc functional verification flow. URL: https://www.edn.com/
soc-functional-verification-flow/.

[15] Rashinkar P., Paterson P. & Singh L. (2002) System-on-a-chip verification
methodology and Techniques. Springer US.

[16] Moyer B. (2022), Software-driven and system-level tests drive chip
quality. URL: https://semiengineering.com/software-driven-
and-system-level-tests-drive-chip-quality/.

[17] Staff E. (1996), Edn access - 07.04.96 digital logic simulation: Event-driven,
cycle-based, and home-brewe. URL: https://www.edn.com/edn-
access-07-04-96-digital-logic-simulation-event-
driven-cycle-based-and-home-brewe/.

[18] Achieving functional verification closure. URL: https://www.design-
reuse.com/articles/3717/achieving-functional-
verification-closure.html.

[19] Harshitha N., Kumar Y.P. & Kurian M. (2021) An introduction to universal
verification methodology for the digital design of integrated circuits (ic’s): A
review. In: 2021 International Conference on Artificial Intelligence and Smart
Systems (ICAIS), IEEE, pp. 1710–1713.

[20] SIEMENS Universal Verification Methodology UVM Cookbook.

[21] Francesconi J., Rodriguez J.A. & Julian P.M. (2014) Uvm based testbench
architecture for unit verification. In: 2014 Argentine Conference on Micro-
Nanoelectronics, Technology and Applications (EAMTA), IEEE, pp. 89–94.

[22] Kaith D., Patel J.B. & Gupta N. (2015) A technical road map from system verilog
to uvm. International Journal on Recent and Innovation Trends in Computing and
Communication 3, pp. 1302–1306.

[23] Height H. (2012) A practical guide to adopting the universal verification
methodology (UVM). Lulu. com.

[24] Uvm monitor structure. URL: https://www.chipverify.com/uvm/
uvm-monitor.

[25] Mohanty S.K., Sengupta S. & Mohapatra S.K. (2015) Test bench automation
to overcome verification challenge of soc interconnect. In: 2015 International
Conference on Man and Machine Interfacing (MAMI), pp. 1–4.

[26] Leung H.K. & White L. (1989) Insights into regression testing (software testing).
In: Proceedings. Conference on Software Maintenance-1989, IEEE, pp. 60–69.

[27] Ghosh P., Ghosh S., Singh P. & Mishra S. (2015) Case study: Re-visiting soc
verification challenges and best practices. In: 2015 19th International Symposium
on VLSI Design and Test, IEEE, pp. 1–9.

https://www.edn.com/soc-functional-verification-flow/
https://www.edn.com/soc-functional-verification-flow/
https://semiengineering.com/software-driven-and-system-level-tests-drive-chip-quality/
https://semiengineering.com/software-driven-and-system-level-tests-drive-chip-quality/
https://www.edn.com/edn-access-07-04-96-digital-logic-simulation-event-driven-cycle-based-and-home-brewe/
https://www.edn.com/edn-access-07-04-96-digital-logic-simulation-event-driven-cycle-based-and-home-brewe/
https://www.edn.com/edn-access-07-04-96-digital-logic-simulation-event-driven-cycle-based-and-home-brewe/
https://www.design-reuse.com/articles/3717/achieving-functional-verification-closure.html
https://www.design-reuse.com/articles/3717/achieving-functional-verification-closure.html
https://www.design-reuse.com/articles/3717/achieving-functional-verification-closure.html
https://www.chipverify.com/uvm/uvm-monitor
https://www.chipverify.com/uvm/uvm-monitor

52

[28] Chittimalli P.K. & Harrold M.J. (2009) Recomputing coverage information to
assist regression testing. IEEE Transactions on Software Engineering 35, pp.
452–469.

[29] Yoo S. & Harman M. (2012) Regression testing minimization, selection and
prioritization: a survey. Software testing, verification and reliability 22, pp. 67–
120.

[30] Engström E. & Runeson P. (2010) A qualitative survey of regression
testing practices. In: Product-Focused Software Process Improvement: 11th
International Conference, PROFES 2010, Limerick, Ireland, June 21-23, 2010.
Proceedings 11, Springer, pp. 3–16.

[31] Krishnamoorthi R. & Mary S.S.A. (2009) Factor oriented requirement coverage
based system test case prioritization of new and regression test cases. Information
and Software Technology 51, pp. 799–808.

[32] Walcott K.R., Soffa M.L., Kapfhammer G.M. & Roos R.S. (2006) Timeaware
test suite prioritization. In: Proceedings of the 2006 international symposium on
Software testing and analysis, pp. 1–12.

[33] Elbaum S., Rothermel G., Kanduri S. & Malishevsky A.G. (2004) Selecting a
cost-effective test case prioritization technique. Software Quality Journal 12, pp.
185–210.

[34] Tallam S. & Gupta N. (2005) A concept analysis inspired greedy algorithm for
test suite minimization. ACM SIGSOFT Software Engineering Notes 31, pp. 35–
42.

[35] Duggal G. & Suri B. (2008) Understanding regression testing techniques. In:
Proceedings of 2nd National Conference on Challenges and Opportunities in
Information Technology.

[36] Tallam S. & Gupta N. (2005) A concept analysis inspired greedy algorithm for
test suite minimization. ACM SIGSOFT Software Engineering Notes 31, pp. 35–
42.

[37] Rothermel G., Untch R.H., Chu C. & Harrold M.J. (1999) Test case prioritization:
An empirical study. In: Proceedings IEEE International Conference on
Software Maintenance-1999 (ICSM’99).’Software Maintenance for Business
Change’(Cat. No. 99CB36360), IEEE, pp. 179–188.

[38] Noor T.B. & Hemmati H. (2015) A similarity-based approach for test case
prioritization using historical failure data. In: 2015 IEEE 26th International
Symposium on Software Reliability Engineering (ISSRE), pp. 58–68.

	Introduction
	Thesis structure

	System on Chip verification
	 Intellectual properties (IPs)
	Subsystems
	Universal Verification framework
	SoC verification flow
	Design specification and feature extraction
	verification planning
	Test case development and simulation
	coverage collection and analysis

	Verification closure

	Universal Verification Methodology
	UVM architecture
	UVM class hierarchy
	UVM Phases
	UVM verification of AXI BUS
	AXI verification challenges
	AXI verification test bench
	Test-cases

	SoC Regression Strategies
	SoC vs software regression strategies
	Test suite Minimization
	Code Coverage-Based Minimization
	Greedy Algorithm-Based Minimization

	Test case prioritization
	Risk-Based prioritization
	History-Based prioritization
	Coverage-based prioritization
	Time-based prioritization

	Test case selection
	Risk based selection
	History based selection
	Coverage based selection

	Miscellaneous techniques
	Rerunning failed test cases
	Improved regression reporting
	Continuous development in SoC

	Evaluation of SoC regression strategies
	Evaluation metrics
	Implementation criteria (IC)

	Strategy selection
	Main concerns and limitations of SoC regression testing

	Implementation
	Regression Environment Overview
	Current regression strategy
	Limitations of the current implementation
	Implemented solutions
	Test-case selection
	Test case prioritization
	Regression script environment
	Continuous coverage merging
	Rerunning failed tests
	Regression result error bucketing
	Continuous development

	Evaluation, Results and future works
	Results and evaluation of Implemented strategies
	Regression time
	Fault detection
	Coverage collection

	Review of the other improvements
	Recommendations

	Conclusion
	REFERENCES

