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ABSTRACT

In this thesis we investigate the mathematical modeling of cognition using
sensorimotor transition systems. The focus of the thesis is enactivism, where
an agent learns to think through actions. As a theoretical basis for our
implementation, we discuss a mathematical model of enactivist cognition,
sensorimotor interaction and how they can be used as algorithmic aides for
studying theoretical problems in robotic systems.

In Chapter 3 of this thesis, we introduce a platform which was developed
in the University of Oulu as a software project and explain how enactivism
and sensorimotor interaction have been taken advantage of, in developing a
2D platform. This platform enables one to concretely implement and explore
different interaction strategies that allow an agent to construct internal models of
its surroundings. The agent in the platform is a multi-jointed robotic arm, which
maneuvers through an obstacle-filled environment. The robotic arm tries to
explore its environment with minimal sensory feedback, using algorithms created
by the user of the platform.

Our main goal on this thesis is to implement new features to this platform.
We implement a memory functionality which allows the robotic arm to store all
its performed actions. The memory helps the agent infer to a greater extent its
surroundings from a limited sequence of action-observation pairs, and helps it
in getting a better grasp of the environment. In addition, we implement other
methods and functionalities, such as an obstacle sensor, a graph visualization of
the internal models, etc. to enhance the perceptual ability of the robotic arm.

In Section 5 , we develop an algorithm for a simple 2D environment with no
obstacles. Here the robotic arm makes a 360-degree move in four steps to perceive
its surroundings and generates a state machine graph to visualize its internal
model of the environment. The goal of the algorithm is to build an accurate
representation of the environment with the help of memory.

Through this algorithm we are able to evaluate the performance of the newly
implemented features. We also test the platform through unit testing for finding
and resolving bugs.

Keywords: Transition Systems, Robotics, Enactivism
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TIIVISTELMÄ

Tässä tutkielmassa tutkimme kognition matemaattista mallintamista käyttämällä
sensorimotorisia transitio-järjestelmiä1. Tutkielman keskiössä on enaktivismi,
jossa agentti oppii ajattelemaan toiminnan kautta. Teoreettisena perustana
toteutuksellemme käsittelemme matemaattista mallia enaktivistisesta
kognitiosta, sensorimotorista vuorovaikutusta ja kuinka niitä voidaan
käyttää algoritmien apuvälineinä teoreettisten ongelmien tutkimisessa
robottiikkajärjestelmissä2.

Tutkielman luvussa 3 esittelemme alustan, joka on kehitetty Oulun yliopistossa
ohjelmistoprojektina, ja selittämme miten enaktivismia ja sensomotorista
vuorovaikutusta on hyödynnetty 2D-alustan kehittämisessä. Alusta mahdollistaa
erilaisten vuorovaikutusstrategioiden3 konkreettisen toteuttamisen ja tutkimisen.
Näiden avulla agentti rakentaa sisäisiä malleja ympäristöstään. Alustassa
mallinnettu agentti on moninivelinen robottikäsi, joka liikkuu esteitä sisältävässä
ympäristössä. Robottikäsi pyrkii tutkimaan ympäristöään minimaalisen
sensoritiedon avulla käyttämällä alustan käyttäjän luomia algoritmeja.

Tutkielmamme päätavoite on kehittää uusia ominaisuuksia tälle alustalle.
Toteutamme muistitoiminnallisuuden, jonka avulla robottikäsi tallentaa
kaikki suoritetut toiminnot. Muisti auttaa agenttia päättelemään enemmän
ympäristöstään rajoitettujen toiminta-havainto-parien avulla, ja auttaa
sitä ympäristön hahmottamisessa. Lisäksi kehitämme muita menetelmiä ja
toiminnallisuuksia kuten estesensorin ja sisäisten mallien graafisen visualisoinnin
parantaaksemme robottikäden havainnointikykyä.

Tutkielman myöhemmässä osassa kehitämme algoritmin yksinkertaiselle
2D-ympäristölle ilman esteitä. Siinä robottikäsi tekee 360 asteen liikkeen
neljässä vaiheessa havainnoidakseen ympäristönsä, ja luo tilasiirtymäkaavion
visualisoidakseen sisäisen mallinsa ympäristöstä. Algoritmin tavoitteena on
rakentaa tarkka malli ympäristöstä muistin avulla.

Tämän algoritmin avulla pystymme arvioimaan kehittämiemme uusien
ominaisuuksien toimintaa. Testaamme alustaa myös yksikkötesteillä
löytääksemme ja korjataksemme virheitä.

Avainsanat: Transitio-järjestelmät, Robotiikka, Enaktivismi

1transition systems
2robotic systems
3interaction strategies
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1. INTRODUCTION

Typically, industrial robotic arms are equipped with numerous sensors, and are pre-
programmed for a specific environment. However, imagine we stripped away most
of the sensors and allowed the robotic arm to learn about its surroundings through
trial and error while using minimal sensorimotor feedback. Can an industrial arm
learn and comprehend its environment with minimal sensorimotor input? One can
approach this question by investigating basic sensorimotor integration in a biological
system. From this perspective, we can also obtain insights into how machines might
learn and adapt in a similar way. Numerous theories have been proposed over the years
to explain why and how organisms think [1, 2, 3, 4, 5]. Enactivism is one such theory.
It emphasizes the role of interaction and embodiment (the constrains caused by one’s
physical presence in an environment) in cognitive processes.

Minimal theoretical models of enactivist cognition are currently an active research
topic in the Perception Engineering (PE) research group at the Center for Ubiquitous
Computing (UBICOMP) in the University of Oulu. A 2D platform has been developed
in a software project [6] to learn sensorimotor interaction techniques, allowing a multi-
jointed robotic arm to manoeuvre through a space with various obstacles. To evaluate
the performance and functionality of the platform, an algorithm has been developed in
the University of Oulu.

The primary focus of our project was to improve the robotic arm’s ability to build a
better model of its interaction by implementing new features into the existing software.
For testing and training the robotic arm in its environment we have developed a new
algorithm that significantly improved the agent’s ability to model its interaction with
its environment. In addition, we have implemented unit testing to test each part of the
program’s functionality to ensure optimal performance of the software.

This thesis is divided into five sections. In Section 2, we present an introduction to
cognition and discuss mathematical modeling of cognition. Additionally, we explore
how sensorimotor interaction and enactivim can be applied in robotic systems. In
Section 3 we provide background information about the existing software platform
that serves as the starting point of our thesis, and explain what different parts of this
software does and how these software parts work together. In Section 4 we implement
new features to the existing platform and in Section 5 we test our platform through
algorithm and unit testing. Finally, in Section 6 we discuss our results and possible
further development of the platform.
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2. COGNITIVE THEORY OF SENSORIMOTOR
INTERACTIONS

2.1. Theories of Intelligence

Cognition refers to the essential ability of humans and animals to interact intelligently
with their environment, and to understand their surrounding world. Cognition allows
us to sense, process information, make judgments and form beliefs. It is hard to
concretely define what cognition means.

In recent years it has become a growing opinion among cognitive scientists that
cognitive science is in need of a new perspective [7, 8]. According to Thompson
traditional cognitive science lacks the understanding of human cognition because it
does not take into account emotion, affect, or motivation [7]. A complete theory of the
mind must also take subjectivity and consciousness into consideration [7].

Figure 1. A representation of the outside world inside the human brain [9].

In cognitive science, there are three main approaches to studying the mind:
cognitivism, connectionism, and embodied dynamicism. In cognitivism the mind
is metaphorized as a digital computer, whereas in connectionism the mind is
metaphorized as neural network. In embodied dynamicism, the mind is seen as an
embodied dynamic system [7].

In cognitivism and connectionism, the world and the mind are considered as distinct
entities that exist independently of one another, by mirroring the outside world as a
representational model inside the head (see Figure 2). Embodied dynamics denies
these assumption and takes a different approach toward cognition [7, 3].

2.1.1. Enactivism and Embodied Dynamicism

Embodied dynamicism questions most of the assumptions about cognition which have
been presented by cognitivism and connectionism, especially the idea that cognition
is a disembodied and abstract mental representation. Embodied dynamicism, like
connectionism, emphasizes self-organizing dynamic systems, but it also stipulates that
cognitive processes emerge from ongoing sensorimotor interactions between the brain,
body, and environment through nonlinear and circular causation [7].
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Figure 2. The environment, body, and nervous system (or brain) are modeled as
inseparable parts of a coupled transition system [10].

Enactivism is often viewed as a subprinciple of embodied dynamicism. It shares
many similarities with embodied dynamicism, and it stresses greatly the notion
that cognition emerges from continuous interactions between an organism and its
environment [7, 10]. Enactivism builds bridges between embodied dynamicist
accounts of the mind and phenomenological accounts of human subjectivity and
experience [7]. Together, these approaches offer a more comprehensive understanding
of cognition.

The main underlying principles of enactivism consist of five basic enactivist tenets,
formulated in [10] based on relevant literature. These tenets are as follows:

• (1) Embodiment. The environment, the body, and the nervous system are
inseparable parts of the system and they cannot be meaningfully understood in
isolation from each other [11, 12].

• (2) Groundedness. The organism’s current interactive tendencies are explained
by nothing other than its history of previous interactions. The brain does not
"acquire" or "possess" contentful states, representations, or manipulate semantic
information in any other way [12].

• (3) Emergence. The crucial properties of the brain-body-environment system
from the point of view of cognition emerge when the agent’s and the
environment’s prior structure come together to faciliate new structure which
emerges through the sensorimotor engagement [13].

• (4) Attunement. Agents differ in their ways of attunement and they have different
skills depending on their environments. A skill is a potential possibility to
engage reliably in complex sensorimotor interactions with the environment [11].

• (5) Perception. Perception arises from skillful sensorimotor activity. Perceiving
makes the agent better attuned to its environment [14, 13].

2.2. Sensorimotor Interactions

In philosophy of mind and cognitive science, sensorimotor interaction and enactivism
are closely related. We discussed earlier how, from an enactivist perspective, cognition
emerges from dynamic interactions between an agent and its environment. Sensory and
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motor capacities play a critical role in determining how these interactions are shaped.
Sensorimotor interaction approach to perception highlights the close relationship
between perception and action [15]. It argues that perception is an active process
of exploration and interaction with the environment rather than passive process of
receiving and absorbing information from the environment. Sensorimotor interaction
also suggests that action and precepting are deeply inbred with each other and they
cannot be understood in separation.

2.2.1. Sensorimotor Interaction in Perception

In Sensorimotor Life [15], an example is given to help understand sensorimotor
interaction in depth, and how it can be used to help teach robots about their
environment. In [15], Ezequiel Di Paolo and Thomas Buhrmann explain sensorimotor
perception through an imaginary setting. They provide the following example to
illustrate, how an agent would be able to find an exit door when it is in a dark room
full of curved walls (see Figure 3). The agent won’t be able to walk through or jump
over the obstacles because they are made of durable material, and they resemble tall
brick walls. These walls are curved in the form of circles and spirals. As the agent
walks around the room spectating curved walls the light goes out because of a power
failure, making it impossible for the agent to see anything. The agent remembers that
the exit door is situated close to a circular wall at the other end of the room. It decides
to find the circular wall to get closer to the exit door. The agent then walks with its
arms extended and feels the curved walls.

Figure 3. A stage for sensorimotor perception. Source: Regenerated image from
Sensorimotor life [15]

Now the main question is how the agent would be able to tell the difference between
cylinder wall from other curved walls? Only the contact with the wall is insufficient by
itself to help it understand the shape of the wall, because the local curvature of the wall
is not enough to tell the difference between cylinder wall and curved wall. But as the
agent continues to walk while feeling the curvature of the wall, maybe it observes that



10

for a while it has turned in the same direction. In this case the agent has used bodily
sensations such as kinesthetic and proprioceptive cues, generated by some regularities
in its own wall-guided walking. The knowledge is obtained from a long pattern of
sensorimotor activity. By bodily sensations it becomes certain that it had found the
cylinder wall and guides itself to the exit door next to it.

There are different kinds of sensorimotor regularities. One kind of sensorimotor
regularity is primarily influenced by the relationship between the agent’s bodily feature
and environment. Since the walls are fixed in the room, at different given spots,
a displacement of one step produces a change in tactile sensation particular to that
spot. This is one of the general sensorimotor regularities because it simply depends on
the relationship between bodily and environmental structures. Sensorimotor activity
operates in a circular manner, forming a closed loop. It is hard to tell which one
occurs first, the movement that changes the experience, or the sensation that changes
the action [15].

2.2.2. A Minimal Model

In Sensorimotor Life [15] Ezequiel Di Paolo and Thomas Buhrmann discuss the
concept of tactile discrimination and other various notions that are related to it. They
described tactile discrimination as a minimal model for understanding the deep relation
between sensorimotor environment, habitat, coordination and scheme. Regardless of
their close relations, these notions can also be used separately for different purposes.
The authors explain how psychology, neuroscience, and robotics have already made
use of these notions. They also draw attention to the potential of designing robots that
can interact with their environment in an adaptive and intelligent manner.

Sensorimotor task scenarios have been presented, in which an agent needs to solve
problems using only tactile perception. Such a task could involve finding a light
switch from a set of switches on a wall or arranging coins blindfoldly according to
their thickness order with the tip of only one finger. The authors argue that tactile
discrimination can be challenging even for solving these simple tasks, and explain the
necessity of an active categorical perception.

To demonstrate the active perception of categories, they proposed an agent-based
model where the agent’s movement is controlled by a simple neural system. The agent
moves around in a one-dimensional sensorimotor environment that contains two bell-
shaped objects of different diameters. The objective of the agent is to discriminate
between the objects’ shapes by using simple tactile perception while moving away
from a wide bell-shaped object toward a narrow bell-shaped object or other way
around. The agent senses the change of objects’ shapes through input and feeds it to a
small dynamical neural network which then continuously sends out motor commands
for managing the agent’s velocity. The agent learns to discriminate through trial and
error, and it gets a score depending on the success rate of completing this objective.
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2.3. Modeling Cognition

There are various different approaches when attempting to build a model for cognition.
In classical cognitive theory the brain is often thought of as an information-processing
device; the brain receives input from the external environment as stimuli and builds
an internal representation of it. The brain can manipulate the internal model through
computational procedures, and it can produce an output (action) [3]. This suggests that
the truly cognitive processes happen during the computational processes in between
perception and action systems [16].

A common model is the emulation theory of representation [1], which emphasizes
the computational processes in the brain that produce and consume representations
[15]. It is based on the concept of efference copy in the context of motor control,
introduced in the early 19th century [2]. The emulation theory of representation is
a framework that can synthesize a wide variety of representational functions of the
brain. It is based on constructs from control theory and signal processing. According
to the emulation theory of representation, the brain constructs neural circuits that act as
models of the body and environment. During sensorimotor engagement, these models
are driven by efference copies in parallel with the body and environment. The models
try to predict the sensory feedback of an action, and the prediction error is used to
enhance sensory information [1].

The enactive approach disagrees with the idea presented in traditional cognitive
theories that perception consists in mostly passive transduction of external stimuli into
neuronal representations. Instead, in enactivism it is argued that perceptual processing
should be conceptualized as an interactive framework, in which sensory and motor
processes work in a closed action-perception loop [3]. Enactivism also criticizes
the notion of serial information processing, according to which perception, decision
making, and action planning happen in seperate stages. This does not comply with the
enactive idea of closed action-perception loop [3]. According to the enactive view of
cognition, the primary role of the brain is guiding interaction with the environment,
rather than representing or understanding the world [3, 5, 4]. It emphasizes closed
perception-action loops and a tight coupling between agents and environments [3].

2.3.1. The Symbol Grounding Problem

For creating autonomous and intelligent agents that can act in the real world, it is
important to establish and maintain a connection between what the agent reasons about
and what it can sense in the real world [17]. This can be considered as an aspect of
the symbol grounding problem [17]. The symbol grounding problem as defined in [18]
asks: how to ground the meanings of symbols as anything different than other symbols.
In [18] a "Chinese to Chinese dictionary" example is given to help understand the
problem. Imagine one had to learn Chinese as a second language using only a Chinese
to Chinese dictionary. The symbols in this example are the words of the dictionary. A
word in the dictionary is explained using other words, and one would pass endlessly
from one word to another, never understanding what any of it meant. In this case a
word would not have any intrinsic meaning.
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This is relevant when thinking about how to represent symbols in robotics and
intelligent systems, for example an automated vacuum or facial recognition programs.
However, there is no need for the symbols to have intrinsic meaning, if an intelligent
system is able to perform tasks [18]. Regardless, endeavouring to ground symbol
systems could lead to performance gains in intelligent systems, because our own
symbols do have intrinsic meanings while those of computers do not, and we can
perform tasks which the computer so far cannot [18].

Physical symbol grounding is a subtopic of the symbol grounding problem. It is
defined in [19] as the grounding of symbols to real world objects by a physical agent
interacting in the real world [18]. One of the basic challenges in physical symbol
grounding is to ground symbols to sensory data where the symbols denote categorial
concepts such as color, shape and spatial features [18]. There are multiple different
apporaches to this challenge [18, 20, 21, 22, 23]. For example, in [21] basic words are
grounded into an agent’s own categorial representations via sensorimotor experience.
In [22, 23] an agent ties symbols to their sensorimotor instantiations and at the same
time unties sensorimotor representations from their physical specificities, correlating
them to abstract symbolic structures.

Symbol grounding is important when integrating robots and distributed systems
in dynamic and unstructured environments. Such environments require the agent an
understanding of the connection of symbolic and sensory information to be able to
successfully operate [18]. Steps towards the solution of the symbol grounding problem
will be key to creating robotic systems that are capable of high level reasoning [18].

2.3.2. Mathematical Models of Enactivist Cognition

Transition systems are very general mathematical structures that can be used as a
framework for mathematical models of enactivist models of cognition. They can be
used to describe an agent’s potential behavior. A transition system consists of states
and the transitions between the states (see Definition 1).

Definition 1 A transition system is a triple (X, U, T) where X is the state space
(mathematically it is just a set), U is the set of names for outgoing transitions (another
set), and T ⊆ X × U ×X is a ternary relation. [10]

In [24], transition systems appear in the form of information spaces that contain a
set of all possible transformations that could be applied to the agent [24]. Information
spaces can be used in solving tasks in robotics by manipulating or simplifying the
information space [24]. In the thesis, we focus on solving robotic tasks with a
minimal information approach, where the necessary brain structures emerge from
sensorimotor interaction and do not necessarily have predetermined components.
Without predetermined components, the robot does not initially have information
on its current state. The robot can get information regarding its state from sensor
observations, and from the actions that the robot has performed [24].

Transition systems can also be used to model the robot-environment interaction [25].
In [25], an example is given on how this interaction can be established using two
transition systems. An external system is used to model the physical world, which



13

matches the environment and the robot body in it. An internal system is used to
model the robot’s brain. It observes the external system through a sensor mapping
and interacts with it through a selection of actions. These two systems form a coupled
dynamical system, where the external system produces a sensory observation, and the
internal system processes the sensory observation in order to select a new action. Then
the external system processes the action and gives a new sensory observation. The
two systems form a loop as seen in Figure 4. The key in this theory is to focus on
necessary and sufficient conditions that a robot’s brain must maintain to solve the
required task [25]. By minimal sufficient conditions we mean the minimal amount
of sensing, actuation and computing needed for the task. If anything is removed from
a minimal sufficient system, the task will become unsolvable [25].

Figure 4. The internal and external systems form a loop, in which the internal system
uses the external system’s output as an input, and the external system uses the internal
system’s output as an input. Source: [10].

The mathematical framework presented in [10] as a model of cognition is intended
to be in line with the five enactivist tenets presented in Section 2.1.1. For constructing
the framework transition systems, more specifically sensorimotor systems, have been
utilized. A sensorimotor system is a transition system which includes a sensory set and
a motor set (see Definition 2).

Figure 5. (A) Transition system X . (B) Transition system A. (C) The coupled system
X ∗ A.

Definition 2 A sensorimotor system (or SM-system) is a transition system (X, U, T)
where U = S×M for some sets S and M, which we call in this context the sensory set
and the motor set, respectively. [10]
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Sensorimotor systems can be connected together to form coupled systems in order
to model any part of the environment-body-brain coupling. Numerous simulation
studies have shown that coupling an agent with the environment or another agent can
produce an interesting pattern of behaviour, which can solve tasks [3, 26, 27, 28, 29].
For example, if one transition system models the environment, and another transition
system models the agent, then the coupling of these two transition systems tells us
about all the possible ways in which the agent can engage with the environment
[10]. The coupled system contains information on what would happen in any
given environment state while the agent is in any of its states. See Figure 5 for a
demonstration on how two transition systems can be coupled.

2.4. Classical Automata Learning

An automaton is an abstract self-acting computing device which follows a
predetermined sequence of operations automatically. An automaton with a finite
number of states is called a Finite-State Machine (FSM). An FSM consists of states
and transitions as seen in Figure 6. The automaton makes transitions between states
according to its transition function, which takes the previous state and current input
symbol as its arguments.

Figure 6. A finite-state machine with two states (S1 and S2) and two types of inputs (0
and 1) [30].

Generally, deterministic automata are easier to learn than nondeterministic automata
[31]. This is because in deterministic automaton, a state can only have a single arrow
of the same label, whereas in nondeterministic automata, a state can have multiple
arrows of the same label, which can lead to the same input giving varying results.
Therefore inferring a nondeterministic automaton is more complicated, than inferring
deterministic automaton.

In computational complexity theory, decision problems are categorized into
complexity classes. The complexity classes describe the time it takes for a computer
to solve the problem. The complexity class P consists of problems that are
solvable deterministically in polynomial time. Complexity class NP (nondeterministic
polynomial time) is the set of decision problems that can be solved in polynomial
time by a nondeterministic Turing machine, or the set of problems whose solution can
be verified in polynomial time by a deterministic Turing machine [32]. The hardest
problems in the NP class are called NP-complete problems. An algorithm capable of
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solving an NP-complete problem in polynomial time would also be able to solve any
other NP problem in polynomial time. The existence of such an algorithm would prove
that the sets P and NP are in fact the same. This P versus NP problem is a well-known
unsolved problem in computer science. It is widely believed that such algorithms do
not exist [33].

Figure 7. Euler diagram of P, NP, NP-complete and NP-hard set of problems [34].

An NP-hard problem is a problem that is at least as hard as the hardest problems in
NP, but it might not be in NP. For example, the subset sum problem is NP-hard [32].
The task in the subset sum problem is to check, for a given set of non-negative integers
and a value sum, whether there exists a subset of the given set whose sum is equal to
the value sum.

The task of finding the smallest automaton consistent with a given sample of
input/output pairs is investigated in several papers and it is shown to be NP-complete
[31, 35, 36]. For example, in [36] E. Mark Gold calls this task the minimum automaton
identification problem, and he defines it as the constructing of a finite automaton with
the minimum number of states which agrees with the given data. Gold proves that
minimum automaton identification problem is NP-hard and NP-complete [36]. Our
robotic arm does minimum automaton identification, when it builds a representation of
the environment. It uses input/output pairs (sensory feedback/action pairs) as data, and
uses it to build an automaton consistent with the data. This suggests that our problem
could also be NP-hard.

The NP-Hardness results depend on a specific restriction placed on the learning
algorithm, requiring the learning algorithm to use a particular representation of the
automaton [31].

Kearn and Valiant explore the limitations of learning Boolean formulae and finite
automata [37]. Boolean formulae are constructed from variables, Boolean operators
and parenthesis [38]. In this paper they discuss the representation-free problem [37].
A representation-free hardness result means that learning is challenging regardless of
how a learning algorithm represents its hypothesis, as long as the hypothesis can be
evaluated in polynomial time [37].
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The main goal of the representation-free problem is to investigate how difficult it
is to predict the output of an unknown automaton, without any previous knowledge
of the automaton’s internal representation or structure. Traditional automata learning
determines the output of underlying automaton based on collection of observed input
and output samples. In our project, the agent attempts to learn a minimal model of an
unknown environment from finite action-observation sequences.
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3. ROBOTIC SENSORIMOTOR SYSTEM TESTING
PLATFORM

Our project is based on the software project Robotic Sensorimotor System Testing
Platform (RSSTP) which is a platform for testing algorithms. It is inspired by the
OpenAI Gym which is an open source Python library for developing and comparing
reinforcement learning algorithms. It provides a standard API to communicate
between learning algorithms and environments. The RSSTP can be used by software
developers to develop and test new algorithms, which can help a robot to learn
about its environment with minimal sensor feedback. In this section we describe
the functionality of the testing platform prior to the implementation of the additional
features that we designed in the project.

The RSSTP simulates a multi-jointed robotic arm which moves in a two-dimensional
space. The goal is for the arm to build a model of its environment by moving around
in the space. The robotic arm does not get any sensory feedback, except in a single
point in the space. We call this the sensory feedback point. This point is predetermined
by the user, and could for example be the arm’s starting point. With the help of the
sensory feedback point, the arm can try to deduce whether there are obstacles in the
space or not, and it will remember the obstacles’ precise locations.

For example, imagine a scenario where a robotic arm with a single joint starts at
the sensory feedback point. The arm then moves to the right three times. Then the
arm starts moving back to the left, but only after two movements the arm gets sensory
feedback, meaning that it is back at the starting position. How is this possible? There
must be an obstacle to the right of the starting point, and the arm hit the obstacle after
two movements to the right. When the arm tried to move to the right for the third time,
the obstacle prevented it from doing so. But because the arm does not have any other
sensors, it does not know that it hit a wall until it returns to the starting point, and
notices the inconsistency between the series of actions it took.

3.1. Software Design

The software is split into two parts - the internal and the external - and there are three
classes: the internal, the external, and the msrgym class. The internal and the external
classes of the software work independently from each other. The msrgym works as
an interface for the user and it combines the behaviour of both the internal and the
external.

3.1.1. The Internal System

The internal part of the software is the brain of the robotic arm. You can think of it as
a brain in a jar, which does not know anything about the external world.

The internal system builds a model of the environment by using a transition matrix.
The transition matrix is a type of a transition system (see Definition 1), and it consists
of states, which represent positions in the external world (see Figure 8). The size
of the matrix will be n × n, where n is the number of states. The transition matrix
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contains information about the actions that allow the robot to move between states.
These actions can be for example "move joint 2 to the left".

Figure 8. Comparison between the transition matrix and the state representation.

As the robotic arm gains more information of the environment, the internal system
manipulates the transition matrix accordingly. There are four methods which can be
used to modify the transition matrix. For example, transitions can be added or deleted
between nodes (nodes = internal states), a node can be split into two nodes, or two
nodes can be merged into one.

Figure 9. A demonstration of the split and merge methods. First, node 0 is split, and
after that nodes 0 and 2 are merged.

Figure 9 shows a demonstration of splitting and merging a node. Splitting a node
creates a new node, which retains all the attributes of the original node, such as the
transitions to other nodes. Merge is the opposite of split. It takes two nodes and turns
them into one node. The resulting node will have the combined transitions of the two
original nodes.

3.1.2. The External System

The external part of the software sets up the environment for the robotic arm.
The environment is a two-dimensional plane that can contain circular obstacles,
sensory feedback point, and the multi-jointed robotic arm. The environment and the
movements of the arm are visualized to the user as seen in Figure 10.

The external part also contains logic, which defines all the possible movements for
the arm in a certain environment. It ensures that the movements of the robotic arm
are allowed, meaning that the arm cannot go through obstacles, and it cannot intersect
with itself.
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Figure 10. The visualization of the robotic arm and its environment. The blue line
represents the multi-jointed robotic arm. They grey circles represent obstacles in the
space.

3.2. Aims of the Project

We are looking to explore different ways to improve the performance of the platform.
One of the challenges which was encountered during testing was that the algorithms
become slow, making it difficult for the arm to make progress. The robotic arm did
not have memory, so optimizing the algorithm was difficult. The platform attempts to
maintain a record of every state of the transition matrix, and when the robotic arm has
more than one joint, it becomes increasingly complex. Quickly the transition matrix
becomes too large to keep track of and it slows down the algorithm. In this work we
develop new functionalities to the platform that help the robotic arm to make progress
faster. These functionalities can be used by algorithm developers and other users as
tools to help them build and evaluate new algorithms.
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4. IMPLEMENTATION

In this section we will take an in-depth look at all the new functionalities we have
implemented and the reasoning behind them.

4.1. Implementing Memory

For the robotic arm to be able to learn through actions, it first needs to be able to
remember the actions performed in the past. For that reason, implementing memory
was necessary. With the help of the memory, the robotic arm (and the user) can
review the actions performed to move from one state to another and attempt to replicate
them. If the replication fails, then the robotic arm can deduce that its understanding
of the environment is not complete. The memory also helps the user to understand the
decision making of the robotic arm, because the user can go through the memory to
analyze the behavior of the arm.

We implemented the memory of the robotic arm as a nested list in Python. The
memory consists of steps, and every time the robotic arm moves, a new step will be
added to the memory. The memory saves three different values: the previous action,
the internal state, and the sensory feedback. The previous action is the most recently
performed action by the arm. The internal state is the state of the transition matrix, in
which the arm is in at that particular moment. The sensory feedback is either true or
false, depending on whether the arm is in its sensory feedback point or not.

4.2. Comparing Submemories

We implemented a compare method that compares two submemories to each other.
This method can be used to determine whether the memory is consistent or not. For
example, the same set of actions from the same starting point should always lead to the
same outcome. If the outcome is different, that means that the memory is inconsistent,
and the transition matrix needs to be redefined.

The memory consists of steps, and each step contains information about the robotic
arm at that moment, including sensory feedback and previous action. These steps are
indexed by non-negative integers. For example, for a memory that is six steps long,
we can choose to compare the submemories of the memory from indices two and zero.
Figure 11 shows an example of using the compare method. The submemory with the
higher starting index determines the length of the submemories. In this case, we take
the memory from index two onwards until the most recent step, indexed at five. We
get two submemories with the length of four steps each. First we compare the starting
points. Both of these submemories start from a state where they do not get sensory
feedback. They both then use the same action, which leads them to a state where they
do get sensory feedback. Again, they both use the same action, but we notice that they
end up in different states, because one of them (submemory 1) gets sensory feedback,
and the other one (submemory 2) does not. We can then deduce that the model is not
ready and it needs further refinement.
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Figure 11. An example of using the compare method. Here we compare two
submemories which start from indices 2 and 0.

Note that even if the two submemories are fully consistent, this does not mean that
the model is ready. This method does not prove whether a model is ready, but it is
rather used for proving that the model is not ready, and more adjustments needs to be
made.

4.3. Checking Determinism

We have implemented a function that determines whether the transition matrix of
the robotic arm defines a deterministic transition system. Our primary objective
is to ensure that the transition system is deterministic. If the transition system is
nondeterministic, it is possible that the action taken by the robotic arm could lead
it to multiple different states. We do not want this to occur, but rather we want a
deterministic transition system so that regardless of the circumstances the robotic arm
should always switch to the same state by the same action.

Figure 12. Examples of deterministic and nondeterministic transition systems.

If the transition system is nondeterministic, it indicates that the robotic arm does not
have enough states or it did not perceive the environment sufficiently. In this case it
needs to create more states until the transition system becomes deterministic.
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4.4. Visualizing the Transition Matrix

In the original code, the transition matrix was represented as a list of lists (Figure
13). Each row represents an internal state and its actions for transitioning to other
states. For example in Figure 13, action 1 needs to occur to get from state 0 to state 1
(represented in row 1 column 2 in Figure 13). These types of representations of small
transition matrices can be easily understood, but for bigger matrices it can get more
troublesome. We decided to add a new visualization feature of the transition matrix
by using visualizing graphs since the original visualization method was challenging to
read.

Figure 13. Transition matrix visualized as a print in command prompt.

The visualization of the state machine allows the user to better understand the
relationship between states and actions. It also facilitates the analysis of error cases,
such as a transition leading to an unexpected state. When an error occurs we will be
able to pinpoint the error and get to the core to find its cause easily by checking the
step-by-step progression of state transitions. In case of small 2× 2 or 3× 3 transition
matrices, the usefulness of the graph visualization functionality is limited. But when
the size of the transition matrix exceeds 3 × 3, it will take longer to figure out the
connections between different states and actions.

4.4.1. The First Approach: NetworkX

For graph visualization in our initial approach, we chose a Python-based visualization
tool called NetworkX. On the graph each node stands for a distinct state, and each
edge represents an action that leads to another state (Figure 14). At first, we thought
using NetworkX was an ideal choice. However, soon we discovered that the graph
had significant flaws.

Figure 14. A transition matrix visualized twice using NetworkX.
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Key flaws that appeared in our NetworkX generated graphs:

1. Overlapping occurred between directional arrowheads and vertex labels.
Occasionally labels got partially covered by vertices, which caused difficulties
to distinguish which label was assigned to which vertex. In some cases, two
directional edges were totally unrecognizable due to the label overlapping issue.

2. Each newly generated graph appeared to be drawn into a totally different
coordinates of the plot, even though the transition matrix was identical to the
previous one. This inconsistency of visual representation made it challenging to
find similarities between matrices, especially when attempting to compare many
iterations of the same matrix.

4.4.2. The Second Approach: Graphiz

Because of NetworkX’s disadvantages, we started looking for alternatives graph
visualization tool to replace it. After long consideration and reading through different
graph visualisation tools’ documentations we came to the conclusion that Graphviz
would be the solution to our problem. The implementation of Graphviz was easy
and straightforward. The graph generated by Graphviz exceeded our expectations.
High-quality graphs were generated in real-time while simultaneously creating image
files of the graphs to our directory. Newly generated graphs appeared much cleaner
and intuitive, resolving all the issues and imperfections we had encountered with
NetworkX.

Figure 15. A transition matrix visualized using Graphviz.

Figure 16. A transition matrix equivalent to the graph in 15
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4.5. Implementing the Obstacle Sensor

To enhance the robotic arm’s understanding of its environment, we implemented
an obstacle sensor functionality into the software. This functionality not only
increases the robotic arm’s awareness of its surroundings, but also gives the user more
understanding of how decisions have been made by the robotic arm.

Figure 17. The obstacle sensor calculates the lengths of the red dotted lines.

Our obstacle sensor calculates the distance between an arm tip and all obstacles
within the environment, for each of the joints of the arm (see Figure 17). To get a
precise distance calculation we obtained the coordinates of the arm tip and measured
the distance from the center point of each obstacle, while subtracting the obstacle
radius from the calculation. The real time distance measurement is available to the
user after every movement step that has been taken by the robotic arm.

4.6. Option to Change the Output of Sensory Feedback to Float

Previously, the sensory feedback provided a sensation that was either true or false,
based on whether the robotic arm was at its designated sensory feedback point or
not. While we are mainly interested in developing algorithms with minimal sensory
feedback, such as a boolean value, we decided to add an option to change the sensory
feedback to a floating-point number. This value can be used to help the robotic arm
progress faster in its tasks. The float value describes how close the robotic arm is to its
sensory feedback point on a scale from zero to one. Zero means that the arm is as far
away from the sensory feedback point as possible, and one means that the arm is in the
sensory feedback point. The user of the platform has the option to choose between a
boolean value or a float value, depending on their preferences.
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5. EVALUATION

5.1. Evaluation Plan

To test the software, we use unit tests individually for every method that we have
implemented, as well as for the memory of the robotic arm. We create the unit tests
manually and feed the tests different kinds of inputs, and make sure that the outputs
are correct. We focus on not only the output, but also how the output is achieved.

We also develop an algorithm that uses the platform. This allows us to ensure that
the software components work together as intended. The goal for the algorithm is
to build an accurate representation of the environment using a transition matrix. The
algorithm will use the methods and the memory that we have implemented.

5.2. Unit Tests

For evaluating our software we used unit testing. These test routines allowed us to
confirm that each piece of the software works, when used independently from the rest
of the system.

We made a total of 18 test functions which test eight of our implemented methods.
We used different inputs for the test functions and made sure that the outputs were as
expected. For example, when testing the compare method (see ??), we used memories
consisting of different sequences of actions and sensations as an input, and checked
that the results of the submemory comparisons were correct. Unit testing helped us to
find errors in our code, which we were able to fix after further debugging. Ultimately,
we ensured that everything works as expected.

5.3. Algorithm

We developed an algorithm to test software functionalities with a transition matrix and
limited number of states. In developing of this algorithm, we prioritized efficiency and
quick computation. The algorithm has enabled us to evaluate the performance of the
implemented functionalities and whether all the functions work in harmony. This has
helped the robotic arm to make progress in building comprehensive transition matrix
by using memory and gave it better understanding of its environment. It also helped us
to evaluate the transition matrix and graph visualizations.

The algorithm we built works in a very simple environment. We chose to use
a simple environment, because our main focus was to test the functionality of the
platform, and we did not want it to be too complicated. The algorithm works in a
simple setting, where the environment has no obstacles, the arm rotates 90 degrees at
a time, and the arm only has one action; move to the right. That means, that there are
only four possible positions for the arm.

The goal for the algorithm is to build a transition matrix, that accurately represents
the environment. We accomplish this with the help of the (binary) sensory feedback
and the memory. We also utilize the compare method which we implemented. Ideally
the resulting transition matrix would look like the one in Figure 18. It would have
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a total of four internal states, where each state represents a position of the arm. The
transitions between the states would be deterministic, and the states would construct a
loop, as seen in Figure 18.

Figure 18. The ideal transition matrix for the simple setting that we described.

Initially, the transition matrix only has one internal state (see Figure 19). The robotic
arm starts moving, and after every move, it uses the compare method to check for any
inconsistencies in its memory. When the arm reaches the sensory feedback point,
it will notice a change in sensory feedback. The arm can then deduce that it must
be in a new position, and therefore a new internal state must be created. The arm
splits the initial internal state into two states and manipulates the transitions between
the two states accordingly. If the arm performed multiple moves before reaching the
sensory feedback point, it can then deduce that there must be more than two states. For
example, if in the arm’s memory there are multiple instances of internal state 0, and
from one instance of state 0 it takes only one move to reach state 1, but from another
instance of state 0 it takes 2 moves to reach state 1. That means that the two instances
of state 0 must actually be two different positions. Therefore the arm splits the state 0
for a second time creating a third state. The arm repeats calling the compare method
and adding new states, until no more inconsistencies are found in the memory. After
the arm is done checking the memory, it can keep moving.

The implementation of the algorithm has been successful. When we tested our
platform through the algorithm, we did not encounter any crashes or software glitches.
Every function worked as we expected. In addition, no mistakes were found in
transition matrix and in graph visualization.

However, despite successful testing, we have identified a new problem with the
algorithm. It does not have the ability to recognize unique positions of the robotic
arm while perceiving the environment. As a result, it continues to generate new states
even when the entire environment had been perceived, and it fails to recognize if it has
previously created an identical state. Therefore, the algorithm keeps on adding new
states until the user-defined movement number has been reached.
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Figure 19. Demonstration of the algorithm’s progression.
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6. DISCUSSION

In this project we enhanced the funcionality and usability of the RSSTP. By using this
platform, we demonstrated that learning is possible with minimal sensory feedback,
where an agent builds an internal model of the external environment with the help of
memory and a sensory feedback point. The new implementations made it noticeably
easier for the agent to make progress in its quest to explore the environment compared
to the previous iteration of the RSSTP where the agent had no memory. However, by
adding new funcionalities such as an obstacle sensor, we have drifted away from the
minimal information approach. Nevertheless, the RSSTP can be used for exploring and
finding the minimal sufficient requirements for solving a task, but it can also be used in
more broad sense where the agent uses "extra" or possibly "unnecessary" information
such as the obstacle sensor.

There are several other platforms created for testing algorithms in robotics. For
example, OpenAI Gym is a standard application programming interface (API) for
reinforcement learning. OpenAI Gym works as a general framework in which any
type of reinforcement learning task can be defined [39]. Usually it is modeled with
two components: the agent and the environment, and the goal is to discover which
actions best achieve the task. The process of evaluating an action is done using reward
signal as an indicator to determine if the action taken gets the agent closer or farther
away from the goal of the task [39].

Another example is FRobs_RL [39], which is a Python library that aims to faciliate
the implementation, testing and deployment of reinforcement learning algorithms in
intelligent robotic applications using robot operating system Gazebo and OpenAI
Gym. Its main goal is to reduce the time it takes to transfer reinforcement
algorithms from a simulation into intelligent robotics applications and hardware. Using
FRobs_RL one can transfer a model which is trained through simulation directly into
an actual robot with minimal effort [39].

RSSTP focuses more on the theoretical side of learning problems in robotics. To our
knowledge RSSTP is the first algorithm testing platform in which the agent follows the
enactive view of cognition where sensorimotor interaction with the environment is key
in bringing intelligence to the agent. RSSTP uses transition systems to model the brain
of the agent, and instead of using reward signals, it uses minimal sensory feedback.

In the future of the RSSTP, the robotic arm can be improved to fit various
environments. We are interested in what would happen, if the environment is more
complex than our testing environment. Would the arm still be able to construct an
accurate transition matrix? For example, if the environment would have multiple
obstacles, and the robotic arm would have multiple joints and move in smaller steps
(degrees) resulting in a bigger transition matrix.

In the future new functionalities could be added to the RSSTP, for example
constructing a minimal model of the environment as opposed to our ever growing
transition matrix. For example, the agent could notice whether it is going in a loop
through pattern recognition, and then minimalize the transition matrix accordingly.
This could be implemented as a functionality in the RSSTP, or it can be left for the
algorithm developers to include this logic in their algorithms.
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Further on, the RSSTP and the idea of learning with minimal sensory feedback can
be expanded from the robotic arm into other agents and problems, for example, a
roaming robot exploring its environment.

6.1. Conclusion

In sum, we discussed different philosophical views to cognition in cognitive sciences.
We focused more closely on the enactive perspective of cognition, and how it
can be modeled mathematically using transition systems. We discussed how this
philosophical point of view can be brought into robotics, and what the benefits of
doing so are. We then introduced the RSSTP along with our newly implemented
functionalities, and explained the reasoning of the implementations. We evaluated our
implementations through unit testing and with an algorithm, which demonstrates the
use of the platform. With the algorithm we also demonstrate how an agent can learn
about its environment with minimal sensory feedback. We reached the initial target
setting of making the RSSTP more useful with more functionalities, where it is easier
for the robotic arm to make progress. While the RSSTP is one of many algorithm
learning platforms, it is unique and has its own place in the field. In the future the
RSSTP can be developed further by adding new functionalities, and it can be used to
explore theoretic philosophical questions regarding sensorimotor interaction, cognition
of an agent, and problem solving in robotics.



30

7. REFERENCES

[1] Grush R. (2004) The emulation theory of representation: Motor control, imagery,
and perception. Behavioral and Brain Sciences 27, pp. 377–396. URL: https:
//doi.org/10.1017/s0140525x04000093.

[2] Steinbuch J.G. (1811) Beytrag Zur Physiologie Der Sinne. Schrag, Nürnberg,
Germany.

[3] Pezzulo G., Donnarumma F., Iodice P., Maisto D. & Stoianov I. (2017) Model-
based approaches to active perception and control. Entropy 19, p. 266. URL:
https://doi.org/10.3390/e19060266.

[4] Pezzulo G. & Cisek P. (2016) Navigating the affordance landscape: Feedback
control as a process model of behavior and cognition. Trends in Cognitive
Sciences 20, pp. 414–424. URL: https://doi.org/10.1016/j.tics.
2016.03.013.

[5] Engel A.K., Maye A., Kurthen M. & König P. (2013) Where's the action? the
pragmatic turn in cognitive science. Trends in Cognitive Sciences 17, pp. 202–
209. URL: https://doi.org/10.1016/j.tics.2013.03.006.

[6] Georgiev F., Chakal K., Boulfrad M., Fernando R. & Hasan S. (2022) Robotic
sensorimotor system testing platform (RSSTP). Tech. rep., Oulun Yliopisto,
Oulu, Finland.

[7] Thompson E. (2007) Mind in Life. The Belknap Press Of Harvard University
Press, London, England.

[8] LeDoux J. (2002) The emotional brain revisited. In The synaptic self. NY:
Penguin Group, New York, 200-234 p.

[9] A visual guide to react mental models. https://obedparla.com/code/
a-visual-guide-to-react-mental-models/. Accessed: 2023-05-
18.

[10] Weinstein V., Sakcak B. & LaValle S.M. (2022) An enactivist-inspired
mathematical model of cognition. Frontiers in Neurorobotics 16. URL: https:
//doi.org/10.3389/fnbot.2022.846982.

[11] Gallagher S. (2017) Enactivist Interventions. Oxford University Press. URL:
https://doi.org/10.1093/oso/9780198794325.001.0001.

[12] Hutto D.D. & Myin E. (2012) Radicalizing Enactivism. The MIT Press. URL:
https://doi.org/10.7551/mitpress/9780262018548.001.
0001.

[13] Varela F., Rosch E. & Thompson E. (1992) The Embodied Mind: Cognitive
Science and Human Experience. The MIT Press, Cambridge, Massachusetts.

https://doi.org/10.1017/s0140525x04000093
https://doi.org/10.1017/s0140525x04000093
https://doi.org/10.3390/e19060266
https://doi.org/10.1016/j.tics.2016.03.013
https://doi.org/10.1016/j.tics.2016.03.013
https://doi.org/10.1016/j.tics.2013.03.006
https://obedparla.com/code/a-visual-guide-to-react-mental-models/
https://obedparla.com/code/a-visual-guide-to-react-mental-models/
https://doi.org/10.3389/fnbot.2022.846982
https://doi.org/10.3389/fnbot.2022.846982
https://doi.org/10.1093/oso/9780198794325.001.0001
https://doi.org/10.7551/mitpress/9780262018548.001.0001
https://doi.org/10.7551/mitpress/9780262018548.001.0001


31

[14] O'Regan J.K. & Noë A. (2001) A sensorimotor account of vision and visual
consciousness. Behavioral and Brain Sciences 24, pp. 939–973. URL: https:
//doi.org/10.1017/s0140525x01000115.

[15] Paolo E.D., Buhrmann T. & Barandiaran X. (2017) Sensorimotor Life.
Oxford University Press. URL: https://doi.org/10.1093/acprof:
oso/9780198786849.001.0001.

[16] Hurley S. (2008) The shared circuits model (SCM): How control, mirroring,
and simulation can enable imitation, deliberation, and mindreading. Behavioral
and Brain Sciences 31, pp. 1–22. URL: https://doi.org/10.1017/
s0140525x07003123.

[17] Coradeschi S., Loutfi A. & Wrede B. (2013) A short review of symbol grounding
in robotic and intelligent systems. KI - Künstliche Intelligenz 27, pp. 129–136.
URL: https://doi.org/10.1007/s13218-013-0247-2.

[18] Harnad S. (1990) The symbol grounding problem. Physica D: Nonlinear
Phenomena 42, pp. 335–346. URL: https://doi.org/10.1016/0167-
2789(90)90087-6.

[19] Vogt P. (2002) The physical symbol grounding problem. Cognitive Systems
Research 3, pp. 429–457. URL: https://doi.org/10.1016/s1389-
0417(02)00051-7.
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